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Introduction

0.1 Motivations
Let q = ps be a power of a prime number, k = Fq be a finite field with q elements and X be an algebraic
variety over k of dimension d, i.e. a separated k-scheme of finite type. We want to compute

Nr(X) := |X(Fqr )|

for all r ∈ N. André Weil made in 1949 ([Wei49]) few conjectures concerning theses numbers. Weil
conjectures are easier to deal with via the Zeta function of X which is the generating function

ζ(X, t) = exp

( ∞∑
r=1

Nr(X)
tr

r

)
=
∏
x∈X0

1

1− td(x)
,

where x going through the set X0 of closed points of X, and d(x) denotes the degree of the residual field
k(x) of x over k. Three main parts of Weil conjectures can be formulated in the following way:

(a) Rationality: the function ζ(X, t) can be written of the form

ζ(X, t) =
P1(t) . . . P2d−1(t)

P0(t) . . . P2d(t)
,

where Pi(t) ∈ Q[t] is a polynomial of degree bi, where bi coincide with the ith Betti-number of a
lifting of X to characteristic zero, is one exists.

(b) Functional equation: if X is proper and smooth, then

ζ(X,
1

qdt
) = ±qdχ(X)/2tχ(X)ζ(X, t)

with χ(X) =
∑2d
i=1(−1)ibi (Euler characteristic).

(c) Purity: if X is proper and smooth, then the polynomials Pi(t) have integral coefficients. Moreover,
if Pi(t) =

∏bi
ji=1(1 − ωjit), the complex numbers ωji have archimedean absolute values qi/2 (such

numbers are called Weil number of weight i).

More concretely, the rationality means that there exists finitely many algebraic integers αj and βj such
that for all r, we have Nr(X) =

∑
βrj −αrj (the βj are equal to the ωji with i odd and αj are equal to the

ωji with i even). When X is proper and smooth, the functional equation is translated by the property
that the application γ 7→ qd/γ induces a permutation of the αj ’s and a permutation of the βj ’s. The
purity implies that the algebraic integers αj and βj are Weil numbers with weight in [0, 2d].

Using p-adic methods, Bernard Dwork in 1960 gave the first proof of the rationality ([Dwo60]). Later,
using l-adic methods, where l is a prime number different from p, the characteristic of the algebraic
variety, Alexandre Grothendieck proved the rationality. More precisely, let k be an algebraic closure
of k, X := X ⊗k k and F be the Frobenius endomorphism on X. He obtained the cohomological
interpretation of the zeta function (e.g. [SGA4.1, SGA4.2, SGA4.3] or [Mil80, VI.13.1]):
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Theorem (Grothendieck). Z(X, t) is rational and we have the equality:

Z(X, t) =

2dX∏
i=0

det(1− tF |Hi
ét,c(X,Ql))

(−1)i+1

where Hi
ét,c(X,Ql) designates the spaces of étale cohomology with compact support of the constant sheaf

Ql.

He also proved the functional equation holds in 1965 (see [Gro95]). Using Grothendieck’s theory of
`-adic étale cohomology of varieties over a field of characteristic p 6= `, Pierre Deligne in 1974 established
the purity which fully completed the Weil conjectures ([Del80]). Moreover, he built a theory of mixedness
and weights for constructible `-adic sheaves which is compatible with the “six functors formalism” of the
`-adic cohomology, namely the mixedness and weight are stable under the functors f!, f∗, f

∗, f !,⊗ and
Hom (see [Del80]). Later, using the theory of perverse sheaves, in [BBD82] Gabber proved the stability
of purity and mixedness under intermediate extensions, with which the theory of weights for `-adic
cohomology may be regarded as complete.

However, the problem of obtaining a p-adic Weil cohomology, i.e. getting similar results within a
p-adic cohomological framework attached to a separated scheme of finite type over a perfect field k of
characteristic p remained opened. Inspired by the Dwork’s proof of the rationality of the zeta function,
Monsky and Washnitzer introduced the notion of p-adic weak completion and constructed the so-called
Monsky-Washintzer cohomology (see [MW68, Mon68, Mon71]). The is the first attempt towards a p-
adic Weil cohomology (as nice as the l-adic étale cohomology for l 6= p) and is well suited for affine and
smooth k-varieties. In the continuation of the notion of crystals and infinitesimal site formulated by
Grothendieck in the zero characteristic (see [Grot68]), Berthelot constructed the crystalline cohomology
over schemes of characteristic p, which is a p-adic Weil cohomology well adapted to proper and smooth k-
varieties ([Ber74, Ill76, BO78]). In order to unify both crystalline and Monsky-Washnitzer cohomologies
and to get a p-adic Weil cohomology at least well suited for any k-variety X, Berthelot introduced the
rigid cohomology (see [LS07] and [Ber96b]). For any k-variety X, the coefficients on X studied in rigid
cohomology, are the isocrystals on X, specially those endowed with a Frobenius action which are called
F -isocrystals. They constitute a p-adic avatar of the notion of integrable connections (which are of finite
type over the structural sheaf of the variety) on a variety of characteristic zero. This cohomology behaves
well for the following multiple reasons. For any k-variety X and any F -isocrystal E on X, Kedlaya proved
the finiteness of the rigid cohomological spaces with or without compact support denoted respectively by
H∗rig(Y,E) and H∗rig,c(Y,E) (see [Ked06a]). In addition, Etesse and Le Stum defined (see [ÉLS93]) the
L-functions associated with overconvergent F -isocrystals and obtained the following rigid cohomological
interpretation of the zeta function:

Theorem (Etesse-Le Stum). Let E be an overconvergent F -isocrystal on a smooth k-scheme Y of pure
dimension d. We then have the equality

L(Y,E, t) =
2d∏
r=1

detK(1− tF−1|Hr
rig,c(Y,E)).

When E is the constant F -isocrystal, we retrieve the Weil zeta function.

Concerning the purity, the first attempt to calculate the weights of some p-adic cohomology was made
by Katz and Messing in their famous paper [KM74]. Using Deligne’s deep results on weights, especially
“Le théorème du pgcd”, they showed that, for projective smooth varieties, the weight of crystalline coho-
mology is the same as that of `-adic one. It was reasonable to hope that the coefficient theory of weights
parallel to `-adic cohomology should exist in the spirit of the petit camarade conjecture [Del80, 1.2.10],
even though there were many obstacles that prevented the construction of such a theory. After the work
of Katz-Messing, efforts were made until Kedlaya finally obtained in [Ked06b] the expected estimation
of weights of rigid cohomology. We do not go into more details of the history, and recommend the reader
to consult the excellent explanation in the introduction of [Ked06b].

The theory of modules over suitable rings of differential operators are generically called theory of
“D-modules” and are an essential tool in the study of de Rham cohomology and other theories deriving
from it. Overconvergent F -isocrystals can be seen as a p-adic avatar of the notion of smooth constructible
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l-adic sheaves. For instance, tensor products, pullbacks, internal homomorphisms of overconvergent F -
isocrystals give overconvergent F -isocrystals. However, the property of being stable by direct images by
closed immersions are missing for such p-adic coefficients. In order to get a p-adic Weil cohomology stable
under six functors on k-varieties, being inspired by the notion of p-adic weak completion appearing in
Monsky-Washnitzer cohomology or rigid cohomology, Berthelot constructed a p-adic avatar of a theory of
modules over the ring of differential operators. The objects appearing in his theory are called arithmetic
D-modules or complexes of arithmetic D-modules. In the framework of Berthelot’s theory of arithmetic
D-modules, several constructions of p-adic coefficients stable by Grothendieck’s six functors satisfying
few extra properties, e.g. with finite de Rham cohomology, that we might call six functors formalisms,
have been verified. With N. Tsuzuki (see [CT12]), we established such a formalism for overholonomic F -
complexes of arithmetic D-modules (i.e. complexes together with a Frobenius structure) over realizable
k-varieties (i.e. k-varieties which can be embedded into a proper smooth W (k)-formal scheme). Another
example was given by holonomic F -complexes of arithmetic D-modules over quasi-projective varieties
([Car11d]). In a wider geometrical context, T. Abe established a six functors formalism for admissible
stacks, namely algebraic stacks of finite type with finite diagonal morphism (see [Abe18, 2.3]). The
starting point of his work was the case of quasi-projective k-varieties. Again, some Frobenius structures
are involved in his construction. Finally, without Frobenius structure, in [Car18], we showed how to
build such a p-adic formalism of Grothendieck’s six functors, e.g. with quasi-unipotent complexes of
arithmetic D-modules (see [Car18]). When the field k is not perfect, such a formalism has been extended
in [Car21].

In [AC18], with T. Abe we use systematically Berthelot’s arithmetic D-modules to complete the
program of establishing a p-adic theory of weights stable under six functors. In many applications, such
a theory should play as important roles as suggested by the classical situations; for example, the theory
of intersection cohomology and its purity, the theory of Springer representations, Lafforgue’s proof of
Langlands correspondence, etc.

0.2 Goals
In his introduction to arithmetic D-modules of [Ber02], Berthelot gave an excellent overview of the state
of the art of his theory in 2002. However, some proofs were missing there and were still unpublished,
specially the most technical and fundamental ones concerning his notion of quasi-coherent or coherent
complexes over a projective or inductive system of differential rings. One first main goal of this book is
to fill this gap by giving to the reader the details of Berthelot’s proofs and therefore to understand the
solid foundations of the theory of arithmetic D-modules of Berthelot.

Another main objective is to gather everything needed in the theory of arithmetic D-modules to get
in the case where the field k is perfect a six functors formalism for 1) overholonomic complexes with
Frobenius structure (or more generally of Frobenius type) on realizable varieties (see here 19.1.2.19), 2)
holonomic complexes with Frobenius structures which solves Berthelot’s conjecture in this context (see
19.2.4) or 3) more recently some slightly more technical ingredients to construct a stable coefficient with-
out Frobenius structure (see 19.1.3.10). We think this represents a sufficiently interesting mathematical
goal to prove the maturity of Berthelot’s theory. In this book, we are content to present a valid theory for
realisable (e.g. quasi-projective) k-varieties (with or without Frobenius structure). We mention at the
end (see 19.2.4.6) the extension (from the case of quasi-projective schemes) to certain algebraic stacks
by T. Abe which allowed him to establish a striking proof of the conjecture of Deligne’s little crystalline
companion.

We have very good foundational papers by P. Berthelot on arithmetic D-modules (e.g. see [Ber96c,
Ber00]), but they are mostly written without logarithmic structures. Let us explain why log-structures
are mandatory in the theory of arithmetic D-modules. The proof concerning the stability of the overholo-
nomicity with Frobenius structure reduces by devissage to check the overholonomicity of overconvergent
F -isocrystals on smooth k-varieties (see 18.3.2.2 for a proof of this later result). The main ingredient
is the semistable reduction of Kedlaya which is one of the most profound structure results concerning
overconvergent F -isocrystals. This allows us to reduce to the case of log extendable isocrystals, which
requires a log version of arithmetic D-modules. Hence, another objective of the book is to properly
rewrite all of Berthelot’s constructions within this framework as general as possible and check the log
version of theorems when they are valid. We tried to have complete proofs and to be as self-contained
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as possible. However, we have sometimes omitted some proofs by simply giving a few references or the
main ingredients of the checks. Let us cite in particular Berthelot’s Frobenius descent of the level (see
[Ber00]), the finite homological dimension of the sheaf of differential operators of finite level when the
log structure comes from a strict normal crossing divisor proved by C. Montagnon (see 6.1.4.2), with
overconvergent singularities and with trivial log structure established by C. Huyghe (see 8.7.7.9) or the
commutation of the extraordinary pullbacks of a smooth morphism to duality proved by T. Abe (see
11.3.5.1.1).

0.3 Overview
Let X → S be a smooth morphism of schemes. We recall in the first chapter Grothendieck’s construction
of the usual sheaf of differential operators DX/S of X/S, which (in contract with Berthelot construction)
can be clarified by adding “of infinite level and finite order” and denoted by D(∞)

X/S . Then we introduce the

sheaf of differential operators D(m)
X/S of finite order and of finite level m for some integer m ∈ N as defined

in ([Ber96c] §2, [Ber02] §1.2.2, [Ber90] §1.2) by Berthelot. In order to obtain coherent sheaf of rings, the
idea is to replace in Grothendieck’s construction the diagonal immersion by its m-PD envelope whose
notion is explained here in details. For instance, in the level 0 case, the sheaf D(0)

X/S is locally generated by

OX and the derivations. Next, we study the notion of left and right D(m)
X/S-modules (for m finite or not)

via respectively m-PD-stratifications and m-PD-costratifications. Beware that contrary to the infinite
level case, D(m)

X/S is not a subring EndOS (OX) but we have ring homomorphisms D(m)
X/S → D

(m+1)
X/S → DX/S

which gives for instance a canonical structure of left D(m)
X/S-modules on OX . We pay particular attention

to the case of level zero, which had already been studied in [Ber74]. For instance, we give a detailed
proof of the equivalence for an OX -module E between the data of an integrable connection relative to
X/S on E and a structure of left D(0)

X/S-module on E extending its structure of OX -module (see 2.3.2.6).
We then move on to the logarithmic context. To make things easier, we introduce the notion of

nice fine log scheme over Spec(Z/pi+1Z) for some integer i and we exclusively works in this context:
a fine log scheme S] over Spec(Z/pi+1Z) is nice if there exists a scheme Z such that S] is a log flat
Z-log-scheme (see the definition [Ogu18, IV.4.1.1] of log-flatness, which we can also simply be called
flatness). The useful point which simplify the comparison between logarithmic and non logarithmic
derivations is that when S] is a nice fine log scheme then, denoting by U := (S])∗ the open in S]

subscheme with trivial log-structure and j : U → S] the canonical inclusion, the canonical morphism
OS] → j∗OU is injective (see 3.1.1.3). Let V be a complete discrete valuation ring of characteristic
(0, p), with perfect residue field k and field of fraction K. We also benefit from a notion of nice fine log
V-formal scheme. Let X] → S] be a log smooth morphism of nice fine log schemes (or log V-formal
schemes). We construct similarly the sheaf of differential operators D(m)

X]/S]
of finite order and of finite

level m for some integer m ∈ N. Again, the notion of left and right D(m)
X/S-modules can be translated

in terms of m-PD-stratifications and m-PD-costratifications. In order to describe the right structure of
D(m)

X]/S]
-module of the sheaf ωX]/S] , we introduce the notion of logarithmic transposition (see 3.4.1). We

have treated separately the non logarithmic case because for instance in the case where the log structure
is trivial, the correspondance between logarithmic and non-logarithmic properties or formulas are not
always obvious (e.g. the logarithmic inverse formula of the Taylor formula of 3.4.5.3.2 or the logarithmic
transposition version describing the tensor product formula of 3.4.2.7.2), or because logarithmic formulas
are much more complicated than the non logarithmic ones (e.g. see 1.4.2.7 vs 3.2.3.13.1).

Next, we explain in the forth chapter how to obtain “coefficients” of differential operators more general
than the constant coefficient OX . More precisely, let BX be a commutative OX algebra which is endowed
with a left D(m)

X]/S]
-module structure on BX which is “compatible” with its OX -algebra structure. This

compatibility makes it possible to obtain a canonical ring structure on the sheaf BX ⊗OX D
(m)

X]/S]
. In

this context, BX play in BX ⊗OX D
(m)

X]/S]
the role of the constant coefficient OX in D(m)

X]/S]
. We can view

BX as the coefficients of the differential operators of BX ⊗OX D
(m)

X]/S]
. We will mainly need later such a

generalization in order to construct the sheaf of differential operators with overconvergent singularities
along a divisor. Beware that this notion of compatibility requires the full understanding of the constant
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case (i.e. BX = OX), so the reading of the first chapters are mandatory before going to the general case
of log D-modules with coefficients and we had to treat the constant case separately.

Once the differential operators of finite order are well defined in their full generality, we then define
the cohomological functors in the case of differential operators of finite orders: the pushforwards f+

and extraordinary pullbacks f ! by a morphism f , dual functor D, external tensor product �, internal
tensor product ⊗. In the case where log structures are trivial, we then give the Frobenius descent of
Berthelot whose reader can find complete proofs in [Ber00]. The main application of such a Frobenius
descent is the finiteness of the homological dimension of the sheaf of differential operators of level m:
Berthelot reduces by descent to the level 0 case which is checked using the same computations as in the
characteristic zero case.

Let S] be a nice fine V-log formal scheme. Moreover, let P] → S] be a log smooth morphism of log
formal schemes (the underlying formal schemes are denoted by S and P). Let π be a uniformizer of V
and P ] → S] be the induced modulo π morphism of log schemes over Spec k. For any integer i ≥ 0,
set P ]i := P] ×Spf V Spec(V/πi+1V), P ] := P ]0 . For simplicity, suppose P is p-torsion free, noetherian of
finite Krull dimension and P is regular.

Taking the p-adic completion of D(m)

P]/S]
, we get the sheaf “D(m)

P]/S]
of differential operators of level

m and infinite order (roughly speaking locally we get p-adically converging power series on the deriva-
tions), which remains a coherent sheaf of rings with Noetherian sections. When one wants to extend
cohomological operations to complexes of “D(m)

P]/S]
-modules, technical difficulties related to completions

appear. To obtain the desired transitivity formulas when composing several functors that do not neces-
sarily preserve coherence (in particular the transitivity of inverse and direct images), we have to integrate
completion into the definition of these functors, and thus also to impose a completion condition on the
complexes with which we are working. We call quasi-coherent in the sense of Berthelot the complexes E
of D−(“D(m)

P]/S]
) such that OP ⊗L

OP
E has quasi-coherent cohomology, and that the adjunction morphism

E → R lim←−iOPi ⊗
L
OP
E is an isomorphism. These conditions are verified by bounded complexes with

coherent cohomology. We can then extend the cohomological operations studied (the finite order case)
above to these complexes, and deduce from them by completion the expected properties or theorems.
This is written in detail in chapter 7 and is mostly based on the unpublished notes of Berthelot.

Taking the inductive limit on the level of the inductive system “D(•)
P]/S]

= (“D(m)

P]/S]
)m∈N, we get the

sheaf of differential operators of finite level and infinite order D†
P]/S]

, which is a subsheaf of the p-adic
completion of the sheaf of usual differential operators DP]/S] . Let U] be an affine open of P] endowed
with logarithmic coordinates. Let P ∈ Γ(U, “DP]/S]). We can uniquely write

P =
∑
k∈Nd

ak∂
[k]
] ,

with ak ∈ Γ(U,OP) a sequence converging to 0 for the p-adic topology when |k| goes to infinity. For any
i ∈ N, let Pi ∈ Γ(U,DP ]

i
/S]
i
) be the image of P , where P ]i /S

]
i is the reduction modulo πi+1 of P]/S].

The following conditions are equivalent (see 8.7.1.8):

(a) P ∈ Γ(U,D†
P]/S]

) ;

(b) ∃α, β ∈ R such that ord(Pi) ≤ αi+ β for any i ∈ N ;

(c) ∃c, η ∈ R+ such that η < 1 and ‖bk‖ ≤ cη|k|, for any k ∈ Nd.

This can be interpreted by saying that D†
P]/S]

is the weak completion of DP]/S] as OP-ring, the dagger

symbole meaning “p-adic completion”. The sheaf D†
P]/S],Q, its tensorisation with Q, is not any more

noetherian but is at least coherent, thanks to a theorem of flatness of the transition homomorphisms“D(m)

P]/S],Q → “D(m+1)

P]/S],Q. Montagnon proved that it is also of finite homological dimension when P is a
smooth V-formal scheme and log structure comes from a relative to P/S normal crossing divisor (see
[Mon02]).

A key fundamental idea of Berthelot’s theory is the need to work with more evolved categories which
we might be called “LD-type” category. Let us first recall what these categories introduced by Berthelot
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consist of. Consider first the derived category of “D(•)
P]/S]

-modules, i.e. of inductive systems of “D(m)

P]/S]
-

modules. By tensorizing by Q and taking the inductive limit on the level, we obtain the functor denoted
by→l

∗
Q : Db(“D(•)

P]
)→ Db(D†

P],Q). In order to obtain a fully faithful functor which factorises this functor→l
∗
Q,

Berthelot has introduced the category LD−→
b
Q(“D(•)

P]
) which is an appropriate localization (by ind-isogenies

and lim-isomorphisms) of Db(“D(•)
P]

). He has also defined a full subcategory of “coherent” (in the sense of

Berthelot) complexes of LD−→
b
Q(“D(•)

P]
) that he denotes by LD−→

b
Q,coh(“D(•)

P]
). Then he has established that the

functor→l
∗
Q induces the equivalence of categories

(∗) →l
∗
Q : LD−→

b
Q,coh(“D(•)

P]
) ∼= Db

coh(D†
P],Q).

This Berthelot theorem is at the heart of the foundations of the theory of arithmetic D-modules. Such
theorem and related to the categories of the form LD−→Q(“D(•)

P]/S]
) results were announced in [Ber02]. In this

book, the reader will found complete and detailed proofs of theses unpublished Berthelot’s foundational
theorems.

Berthelot also defines the full subcategory LD−→
b
Q,qc(“D(•)

P]
) formed by “quasi-coherent” complexes. The

pushforwards and extraordinary pullbacks can be defined for both categories of the form LD−→
b
Q,qc(“D(•)

P]/S]
)

and Db
coh(D†

P]/S],Q) and coincide for coherent complexes via the above equivalence of categories (∗)
induced by→l

∗
Q. However, even if LD-type categories are technically more involved, the LD-type categories

were constructed so that the verification of the expected properties can be formally reduced to the case
of schemes (i.e. to the context of finite order operators, without completion or passage to the inductive
limit on the level). For instance, we get without further effort that pushforwards and extraordinary
pullbacks preserve the quasi-coherence in the sense of Berthelot and are transitive with respect to the
composition. Another huge advantage to work with LD-type categories is the possibility of properly
and canonically defining the internal tensor product, which is translated for categories of the form
Db

coh(D†
P]/S],Q) by a sort of derived p-adic weak completion of the usual tensor product (such derived

p-adic weak completions need a priori the choice of a model in LD−→
b
Q,coh(“D(•)

P]
), i.e. we have to choose

an inverse of the equivalence→l
∗
Q which do not seem canonical). More comprehensively, in the chapter

9 we give the following cohomological operations for quasi-coherent inductive systems of arithmetic D-
modules: pushforwards, extraordinary pullbacks, base changes, dual functors, exterior or internal tensor
products.

Using internal tensor products, we define next localisation outside a divisor as follows. Let T be a
divisor of P . Let Y] be the open of P] complementary to T and j : Y] ⊂ P] be the inclusion. Let
m ∈ N be an integer such that pm ≥ e/(p − 1). We get a p-adically complete OP-algebra B(m)

P (T )

which is endowed with compatible canonical structure of left “D(m)

P]/S]
-module together with a canonical“D(m)

P]/S]
-linear inclusion B(m)

P (T ) → j∗OY. We define respectively the sheaf of “functions on P with
overconvergent singularities along the divisor T ” and the sheaf of “differential operators of finite level on
P]/S] with overconvergent singularities along of T ” by setting

OP(†T ) := lim−→
m

B(m)
P (T ),

D†
P]/S]

(†T ) = lim−→
m

B(m)
P (T )“⊗OP

“D(m)

P]/S]
.

Locally, if U = Spf A is some open of P such that there exist a lifting f ∈ Γ(U,OP) of an equation of
T ⊂ P , then B(m)

U (T ∩U) is the p-adic completion of OU[T ]/(fp
m+1

T −π). A version with π replaced by
p is available in the litterature (see [Ber96c]), but by default we prefer to use Huyghe’s version. This is
harmless since the ring inductive systems B(•)

P (T ) are isomorphic (up to a canonical lim-isomorphism).
After tensorising by Q the sheafOP(†T ) (indicated by the index Q), we have the following nice description:

Γ(U,OP(†T )Q)
∼−→

{ ∞∑
n=0

an
fn

: an ∈ AK , ∃ c, η ∈ R, η < 1 such that ‖an‖ ≤ cηn
}
,

xvi



where AK is endowed with the topology induced by the p-adic topology of A which induces a p-adic
norm on AK (see 8.7.1.6).

The localisation outside T is by definition the functor (†T ) := B(•)
P (T )“⊗OP

− which preserves the
quasi-coherence in the sense of Berthelot. This functor can simply be described for coherent complexes:
if E(•) ∈ LD−→

b
Q,coh(“D(•)

P]/S]
) and E := →l

∗
Q(E(•)) ∈ Db

coh(D†
P]/S],Q) is the associated complex via the

equivalence→l
∗
Q, then→l

∗
Q

(
(†T )(E(•))

) ∼−→ D†
P]/S]

(†T )Q ⊗D†
P]/S],Q

E .

The local cohomological functor with strict support over T is the functor RΓ†T so that the triangle

RΓ†T (E(•))→ E(•) → (†T )(E(•))→ RΓ†T (E(•))[1].

is exact for any E(•) ∈ LD−→
b
Q,qc(“D(•)

P]
) (see 13.1.1.5.1).

More generally, both functors can uniquely up to canonical isomorphism be extended by a local
functor RΓ†U over any subscheme U of P as follows: if U is the complementary of a divisor T of P then
RΓ†Y = (†T ), for any subschemes U and U ′ of P we have the natural isomorphism RΓ†U ◦RΓ†U ′

∼−→ RΓ†U∩U ′

and for any closed subscheme U ′ of a subscheme U of P , for any E(•) ∈ LD−→
b
Q,qc(“D(•)

P]/S]
) we have the

exact triangle of LD−→
b
Q,qc(“D(•)

P]/S]
):

RΓ†U ′(E
(•))→ RΓ†U (E(•))→ RΓ†U\U ′(E

(•))→ RΓ†U (E(•))[1].

Let us now explain the link between overconvergent isocrystals and arithmetic D-modules in the
following lifted case, which is the starting point of building a bridge between the rigid cohomology world
with arithmetic D-modules one. Suppose S is a smooth V-formal scheme, P/S is smooth and there
exists a relative strict normal crossing divisor Z of P/S such that P] = (P,MZ) is the logarithmic
V-formal scheme whose underlying logarithmic structure MZ is the one associated with Z. We have the
morphism of ringed spaces sp: (PK ,OPK ) → (P,OP,Q) induced by the specialization morphism. We
get the inverse image functor sp∗ by setting sp∗(E) := OPK ⊗sp−1OP,Q

sp−1(E), for any OP,Q-modules E .
The functors sp∗ and sp∗ induce quasi-inverse equivalences between the category of (resp. locally free

of finite type) coherent OPK -modules together with a convergent (i.e. satisfying a convergent condition:
see 10.3.2.3.1) logarithmic connection relative to P]

K/SK and that of left D†
P]/S,Q-modules which are

(resp. locally projective of finite type) coherent as OP,Q-module (see 11.1.1.2). When S = Spf V, the
category consisting of left D†

P]/S,Q-modules which are locally projective of finite type as OP,Q-module
is equivalent to the full subcategory of Iconv(P ]/ Spf V) consisting of locally free isocrystals on the log
convergent site ((P,M)/Spf V)conv defined by Shiho at [Shi02, Definition 2.1.5] (see here 10.3.1.1).

Let T be a divisor of P and MIC†(P]
K , T/S

]
K) be the category of overconvergent along T log-

isocrystal on P]/S] (see the chapter 10 and 11). We denote by MIC††(P], T/S]) the category of
DP]/S](

†T )Q-modules which are coherent as OP(†T )Q-module and such that the underlying connection
is overconvergent along T . We get almost by definition that the functors sp∗ and sp∗ induce quasi-inverse
equivalences of categories between MIC†(P]

K , T/S
]
K) and MIC††(P], T/S]).

From now let S := Spf V and let P is a separated and smooth S-formal scheme. In that case, the
category MIC††(P, T/V) is equal to the full category of that of coherent D†P/S(†T )Q-modules consisting
of objects which are coherent as OP(†T )Q-module (see 11.2.1.14). In fact, we can check that the objects
of MIC††(P, T/V) are overcoherent D†P/S(†T )Q-modules, i.e., for any smooth morphism of the form

f : P′ → P, for any divisor T ′ containing f−1(T ) we have (†T ′) ◦ f !(E) ∈ Db
coh(D†P′(†f−1(T ))Q). For

instance, when T is empty, this means that the localisation functor outside a divisor preserves the
D†-coherence and this latter property is stable under pullbacks by smooth morphisms.

We would like to extend the category MIC††(P, T/V) with T is replaced by a closed subscheme Z of
P . When T is not empty, an object of MIC††(P, T/V) is not (in general) a coherent D†P/S,Q-module.

Moreover, the sheaf D†P/S(†Z)Q has a priori no meaning because Z is not a divisor. So, in order to
well define MIC††(P, Z/V), it seems unavoidable to work with quasi-coherence complexes in the sense
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of Berthelot and to build it as a full subcategory of LD−→
b
Q,qc(“D(•)

P/S). For this purpose, we construct

a strictly full subcategory (F -)LD−→
b
Q,oc(

l“D(•)
P/S(Z)) of (F -)LD−→

b
Q,qc(

l“D(•)
P/S) consisting of objects E(•) sat-

isfying certain overconvergent condition which is required to be stable by base change (see 15.3.7.1).
The objects of (F -)LD−→

b
Q,oc(

l“D(•)
P/S(Z))) are called “D(•)

P/S(Z)-overcoherent (F -)complexes after any base

change (this is an abuse of notation since “D(•)
P/S(Z) do not a priori exists). When Z is the support of

a divisor T , we retrieve the above notion of “D(•)
P/S(T )-overcoherence. It has a canonical t-structure, its

heart is written (F -) LM−−→Q,oc(
l“D(•)

P/S(Z)). If U = P \ Z, we get an equivalence between MIC†(Y, P/K)

and MIC(•)(P, Z/V), where MIC(•)(P, Z/V) is the subcategory of LM−−→Q,oc(
l“D(•)

P/S(Z)) of objects which
are roughly speaking OP-coherent outside Z.

More generally, let Z and X be two closed subschemes of P such that Y = X \Z is smooth. We con-
struct (F -)MIC(•)(Y,X,P, Z/S) (see 16.2.1.1), a strictly full abelian subcategory of (F -)LD−→

b
Q,oc(

l“D(•)
P/S(Z))

consisting of objects with support in X and which can be seen as O-coherent on Y , together with the
canonical equivalence of categories (see 16.2.1.10.1):

sp
(•)
X↪→P,Z,+ : MIC†(Y,X/K) ∼= MIC(•)(X,P, Z/V).

The category MIC(•)(Y,X,P, Z/S) can be written MIC(•)(Y,P/S) since this only depends on Y ⊂ P.
Let Y be a subvariety of P . Let E(•) ∈ LD−→

b
Q,qc(l“D(•)

P ). Via the above equivalence of categories of

the form sp
(•)
+ , we get a notion of devissability into overconvergent isocrystals as follows: The com-

plex E(•) “splits into overconvergent isocrystals” if there exists a smooth stratification of P of the
form P = ti=1,...,rYi such that, for any i = 1, . . . , r, the cohomological spaces of RΓ†Yi(E

(•)) belong
to MIC(•)(Yi,P/V).

We then focus on the construction of stable properties by the 6 Grothendieck functors with a Frobe-
nius structure. Let us now explain further notions stable by Grothendieck’s six functors with a Frobenius
structure. Suppose from now that k is perfect and P is a smooth V-formal scheme. We give Berthelot’s
construction of the characteristic variety associated with a coherent F -D†P,Q-module. This characteristic
variety satisfies Bernstein’s inequality which yields as usual to the notion of holonomicity. In fact, without
Frobenius structure, even if the notion of characteristic variety associated with a coherent D†P,Q-module
is problematic because we canot reduce canonically to the level 0 case, we can still define a notion of
dimension of a coherent D†P,Q-module so that Bernstein’s inequality holds, which extends the notion of
holonomicity (see chapter 15). Beware that without Frobenius structure, we do not know if the holo-
nomicity is stable under pullbacks by a closed immersion for instance. In order to get a notion stable by
duality and stronger (a priori) to the overcoherence (in the strong sense: as complexes of D†P,Q-modules,
i.e. without overconvergent singularities added in D†), we introduce the notion of overholonomicity (see
[Car09b]) and that of overholonomicity after any base change to get a notion stable by base change
(see 18.1). This notion of overholonmicity is stable by duality, (extraordinary) pushforwards and (ex-
traordinary) pullbacks. Without Frobenius structure, the stability of the overholonomicity under tensor
products is an open question. However, with Tsuzuki, we proved that for any smooth subvariety Y of P
the following theorem (see [CT12] or 18.3.2.2 for a slight simplication of the proof):

Theorem (C.-Tsuzuki). Let Y be a smooth subvariety of P. The objects of F -MIC(•)(Y,P/V) are
overholonomic after any base change.

This yields that for F -complexes the notion of overcoherent, overholonomicity after any base change,
devissability into overconvergent isocrystals are equal (see 18.3.2.3). Since the tensor product of isocrys-
tals gives isocrystals, this implies that the notion of overholonomicity (after any base change) for F -
complexes is stable by tensor products. These notions are then stable under Grothendieck’s six functors.

When P is projective (which is possible when Y is quasi-projective), we prove furthermore that in
the case of F -complexes these notions are equal to that of holonomic F -complexes. The proof relies on
a construction by hand (using affine V-weak formal schemes) for certain affine and smooth k-schemes Y
of a functor spY+ from the category of overconvergent isocrystal on Y to that of arithmetic D-modules,
studying specially the case where Y has a finite é́tale map over an affine space (see chapter 17).

Finally, in the last chapter we explain how to build a formalism of Grothendieck six functors for
(without Frobenius structure) arithmetic D-modules associated to realisable k-varieties. The rough idea
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is the same but more technical than for the overholonmicity since we have to define stable by six functors
(including tensor products) categories, the stability being formal “by construction”.
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Notation

Without further mentioning, all occuring modules will be left modules. We let N = {0, 1, 2, ...} be the
set of non-negative integers.

We fix V a complete discrete valuation ring of mixed characteristics (0, p), e its absolute ramification,
k its residual field, K its field of fractions and π a uniformizer.

Logarithmic formal schemes (resp. V-weak formal schemes, resp. schemes) will be denoted by gothic
letters (resp. roman letters with the exponent † or without if no confusion is possible, resp. roman
letters). The special fibers of V-formal schemes will be denoted by the corresponding straight letters
with or without 0 as index. The V-formal scheme induced by p-adic completion of a V-weak formal
scheme will be denoted by the gothic corresponding letter, e.g., if P † a V-weak formal schemes, we set
P := P̂ † and P := P ⊗V k or P0 := P ⊗V k. Moreover, if u is a morphism of logarithmic V-formal
schemes, the induced modulo π morphism between special fibers will be denoted by u0 or simply u.

If E is a sheaf of V-modules, we set EQ := E ⊗Z Q
∼−→ E ⊗V K and Ê is the p-adic completion of E .

For any k ∈ (k1, . . . , kd) ∈ Nd, we set |k| = k1 + · · ·+ kd.
If D, D′ are two rings, we say that E is a (D,D′)-bimodule (resp. left bimodule, resp. right bimodule)

if E is endowed with two compatible structures of left (resp. left, resp. right) D -module and right (resp.
left, resp. right) D′-module. If D = D′, we simply say (resp. left, resp. right) D-bimodule.

If φ : A → B is a homomorphism of sheaves of rings, for any A-moduleM (resp. B-module N ), we
will denote by φ[(M) := HomA(B,M) (resp. φ∗(N ) is N viewed as A-module). The convention is to
work in the derived categories but the functors of the form φ[ that we will use will be exact.

Let A be an abelian category. We denote by C(A) the category of complexes of A. We say that a
complex X• ∈ C(A) is bounded from below (resp. bounded from above) if there exists n0 ∈ Z such that
Xn = 0 for n < n0 (resp. Xn = 0 for n > n0). The complex X• is bounded if it is bounded from above
and below. We denote by C+(A) (resp. C−(A), resp. Cb(A)) the full subcategory of C(A) consisting
of bounded below complexes (resp. bounded above complexes, resp. bounded complexes). Let ∗ be one
of the symbol ∅, +, −, or b. We denote by K∗(A) the homotopic category of complexes of C∗(A), i.e.,
K∗(A) is a triangulated category with the same objects as C∗(A) and classes of homotopic morphisms
as morphisms. The class S of all quasi-isomorphisms in K∗(A) is a localizing class compatible with the
triangulation. Localize by this class S, we get triangulated category D∗(A) := K∗(A)[S−1] together with
a triangulated functor Q : K∗(A)→ D∗(A).

Let A be a sheaf of rings on a topological space X (or a topos). If ∗ is one of the symbol ∅, +, −, or
b, we denote by D∗(lA) (resp. D∗(rA)) the derived category of complexes of left (resp. right) A-modules
satisfying the corresponding vanishing conditions. If ∗ is one of the symbol −, or b, we write D∗coh(A)
(resp. D∗tdf(A), resp. D∗perf(A)) for the full subcategory of D∗(A) consisting of pseudo-coherent (resp.
finite tor dimension, resp. perfect) complexes

If X is a scheme and A is an OX -algebra, then for ? ∈ {∅,+,−, b}, we denote by D?
qc(A) the full

subcategory of D?(A) consisting of complexes whose cohomology sheaves are OX -quasi-coherent.
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Chapter 1

Sheaves of differential operators of
finite order

1.1 Sheaves of differential operators of infinite level and finite
order

1.1.1 nth infinitesimal neighborhood
Let S be a scheme.

Definition 1.1.1.1. (a) We denote by C the category whose objects are S-immersions of schemes and
whose morphisms u′ → u are commutative diagrams of the form

X ′
f // X

Z ′
?�

u′

OO

// Z.
?�

u

OO (1.1.1.1.1)

We say that u′ → u is flat (resp. cartesian) if f is flat (resp. the square 1.1.1.1.1 is cartesian).

(b) Let n ∈ N. We denote by Cn the full subcategory of C whose objects are nilpotent closed immersions
of order n.

(c) Let u be an object of C. A “nilpotent closed immersion of order n induced by u” is an object u′ of
Cn endowed with a morphism u′ → u of C satisfying the following universal property: for any object
u′′ of Cn endowed with a morphism f : u′′ → u of C there exists a unique morphism u′′ → u′ in Cn
whose composition with u′ → u is f . The existence and the uniqueness up to canonical isomorphism
of the nilpotent closed immersion of order n induced by u are obvious. We will denote by Pn(u) the
nilpotent closed immersion of order n induced by u. We also say that Pn(u) is the “nth infinitesimal
neighbourhood of u”

Proposition 1.1.1.2. Let n ≥ 0 be an integer.

(a) The inclusion functor Forn : Cn → C has a right adjoint functor which we will denote by Pn : C→
Cn.

(b) Let u : Z ↪→ X be an object of C. By abuse of notation we can also write Pn(u) for the target of the
arrow Pn(u).

(i) Then Z is also the source of Pn(u).
(ii) If U ⊂ X is an open subset containing Z such that v : Z ↪→ U is a closed immersion then

Pn(u) = Pn(v) and the morphism Pn(u)→ U is affine. In that case, we denote by Pn(u) the
quasi-coherent OU -algebra so that Pn(u) = Spec(Pn(u)). The sheaf Pn(u) has his support in
Z and we can simply denote v−1Pn(u) by Pn(u). If X is noetherian, then so is Pn(u).
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Proof. Let U be an open subset of X containing u(Z) such that the induced morphism v : Z → U is a
closed immersion. Let I be the ideal of OX given by v and Un := Spec(OX/In+1). Then the closed
immersion Z ↪→ Un satisfies the universal property of Pn(u) → u (and hence do not depend on the
choice of U).

Let us recall the following standard definitions.

Definition 1.1.1.3. Let f : X → Y be an S-morphism.

(a) We say that f is “formally étale” (resp. “formally unramified”) if it satisfies the following property:
for any commutative diagram of schemes of the form

U
u0 //� _

ι

��

X

f

��
T

v // Y

(1.1.1.3.1)

such that ι is an object of C1, there exists a unique morphism (resp. there exists at most one
morphism) u : T → X such that u ◦ ι = u0 and f ◦ u = v.

(b) We say that f is “étale” if f is formally étale and Zariski locally of finite presentation.

Definition 1.1.1.4. Let f : X → Y be a morphism of S-schemes.

(a) We say that a finite set t1, . . . , td of elements of Γ(X,OX) are “formal coordinates of f ” if the
corresponding Y -morphism X → AdY is formally étale.

(b) We say that a finite set t1, . . . , td of elements of Γ(X,OX) are “coordinates of f ” if the corresponding
Y -morphism X → AdY is étale.

(c) We say that f is “weakly smooth” if, étale locally on X, f has formal coordinates. Notice that this
notion of weak smoothness is étale local on Y .

Recall that f is “smooth” if, étale locally on X, f has coordinates. Notice that this notion of smoothness
is étale local on Y .

Lemma 1.1.1.5. Let n ∈ N, f : X → Y be a formally étale morphism of S-schemes, u : Z ↪→ X and
v : Z ↪→ Y be two S-immersions such that v = f ◦ u. Then we have Pn(u) = Pn(v).

Proof. By using the universal property of the formal etaleness, we get a unique Y -morphism Pn(v)→ u
(see 1.1.1.3). It is sufficient to prove that Pn(v) → v satisfies the universal property corresponding to
Pn(u)→ u, which is easy.

Lemma 1.1.1.6. Let u→ v be a morphism of C. Let w := Pn(v)×v u (this is the product in C). Then
Pn(w) = Pn(u).

Proof. We can easily check that the composition Pn(w) → w → u satisfies the universal property of
Pn(u)→ u. Hence, we are done.

Proposition 1.1.1.7. Let f : X → Y be an S-morphism of schemes, (tλ)λ=1,...,r be formal coordinates
of f . Let u : Z ↪→ X and v : Z ↪→ Y be two S-immersions of schemes such that v = f ◦ u. Suppose that
there exist yλ ∈ Γ(Y,OY ) whose images in Γ(Z,OZ) coincide with the images of tλ. Then we have the
following isomorphism of OPn(v)-algebras

OPn(v)[T1, . . . , Tr]n
∼−→ OPn(u)

Tλ 7→ tλ − f∗(yλ), (1.1.1.7.1)

with OPn(v)[T1, . . . , Tr]n := OPn(v)[T1, . . . , Tr]/ (In + (T1, . . . , Tr))
n+1, where In is the ideal defined by

the closed immersion Pn(v).
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Proof. 1) Using Lemma 1.1.1.5 (and [Gro60, 5.3.13]), we may assume that X = Y ×S ArS , f : X → Y is
the first projection, and that the family (tλ)λ=1,...,r are the elements of Γ(X,OX) corresponding to the
coordinates of Ar. Using Lemma 1.1.1.6, we may furthermore assume that Pn(v) = v.

Let φ : Y ×S ArS → Y ×S ArS be the Y -morphism given by t1 − f∗(y1), . . . , tr − f∗(yr). Let i : Y ↪→
Y ×S ArS be the closed immersion defined by tλ 7→ 0. Since φ is etale, as φ ◦ u = i ◦ v, using Lemma
1.1.1.5, we reduce to the case where u is equal to i ◦ v, and (yλ)λ=1,...,r are equal to 0. Then 1.1.1.7.1 is
obvious.

1.1.2 Sheaf of principal parts relative to weakly smooth morphisms
Let S be a scheme.

Notation 1.1.2.1. Let X be an S-scheme. Let ∆X/S(r) : X ↪→ Xr+1
/S denote the diagonal immersion.

With notation 1.1.1.2, we set
∆n
X/S(r) := Pn(∆X/S(r)).

Let us write PnX/S(r) for the nth infinitesimal neighborhood Pn(∆X/S(r)) (see 1.1.1.2). Let U be an
open of Xr+1

/S containing the image of ∆X/S(r) such that the induced immersion v : X → U is closed.
Let I(r) be the ideal given by v. Recall, by definition, we have v∗PnX/S(r) = Pn(I(r)). For i = 0, . . . , r,
let pi : X ↪→ Xr+1

/S → X be the morphisms induced by the projections. Let pUi : U → X be the morphism
induced by the projection pi. We get the OX -algebra pUi∗Pn(I(r)). Since pUi ◦ v = id then as a sheaf
of sets PnX/S(r) = pUi∗Pn(I(r)). This yields r + 1-structures of OX -algebras on PnX/S(r). To clarify
which OX -algebra structure we consider, we set pi∗PnX/S(r) := pUi∗Pn(I(r)). By composing pUi with the
canonical morphism ∆n

X/S → U , we get the projection pni : ∆n
X/S(r) → X, for i = 0, . . . , r. We get the

ring homomorphisms pni : OX → PnX/S .
When r = 1, we simply write I, ∆n

X/S , ∆X/S , PnX/S , PX/S . The left (resp. right) structure of
OX -module on PnX/S is by definition the one given by p0∗PnX/S (resp. p1∗PnX/S).

Definition 1.1.2.2. We say that PnX/S is the sheaf of principal parts of order n of X/S.

Proposition 1.1.2.3 (Local description of PnX/S). Suppose f has formal coordinates (tλ)λ=1,...,d. Let
τλ,n be the image of 1 ⊗ tλ − tλ ⊗ 1 in PnX/S . For any i = 0, 1, we have the following isomorphism of
OX -algebras:

OX [T1, . . . , Td]n
∼−→ pi∗PnX/S

Tλ 7→ τλ,n, (1.1.2.3.1)

with OX [T1, . . . , Td]n := OX [T1, . . . , Td]/ (T1, . . . , Td)
n+1.

Proof. Since the case of where i = 1 is checked symmetrically, let us compute the case where i = 0.
Consider the commutative diagram

AdS

�

X ×S AdSp1

oo

q

##
X

t

OO

X ×S Xp1

oo
p0

//

id×t

OO

X,

(1.1.2.3.2)

where p0, p1 means respectively the left and right projection, where q is the canonical projection, where t is
the S-morphism induced by t1, . . . , td, where id×t is theX-morphism induced by p∗1(t1), . . . , p∗1(td). Since
(p∗1(tλ))λ=1,...,d are formal coordinates of p0 (because the square of the diagram 1.1.2.3.2 is cartesian),
we can apply Proposition 1.1.1.7 in the case where f is p0, u is ∆X/S , v is the identity, tλ is tλ ⊗ 1 and
yλ is tλ.

Remark 1.1.2.4. From the local description of 1.1.2.3, we get that the morphisms pn1 : ∆n
X/S(r) → X

and pn0 : ∆n
X/S(r)→ X are finite when X/S is weakly smooth.
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1.1.2.5. The closed immersions ∆n
X/S and ∆n′

X/S induce ∆n,n′

X/S := (∆n
X/S ,∆

n′

X/S) : X ↪→ ∆n
X/S ×X ∆n′

X/S .

We get ∆n,n′

X/S ∈ Cn+n′ . Using the universal property of the n+ n′ infinitesimal neighborhood of ∆X/S ,

we get a unique morphism ∆n
X/S ×X ∆n′

X/S → ∆n+n′

X/S of Cn+n′ inducing the commutative diagram

X �
� // ∆n

X/S ×X ∆n′

X/S

��

// X ×S X ×S X

p02

��
X �
� // ∆n+n′

X/S
// X ×S X.

(1.1.2.5.1)

We denote by δn,n
′
: Pn+n′

X/S → P
n
X/S ⊗OX P

n′

X/S the corresponding morphism, where PnX/S ⊗OX P
n′

X/S :=

p1∗PnX/S ⊗OX p0∗Pn
′

X/S . We compute δn,n
′
(a ⊗ b) = (a ⊗ 1) ⊗ (1 ⊗ b) and we have the commutative

diagram:

OX
pn1 //

pn+n′
1

��

PnX/S

1⊗pn
′

1

��
Pn+n′

X/S

δn,n
′
// PnX/S ⊗OX P

n′

X/S .

(1.1.2.5.2)

By replacing p02 by p01 (resp. p12), we get a unique morphism ∆n
X/S ×X ∆n′

X/S → ∆n+n′

X/S making

commutative the diagram 1.1.2.5.1. We denote by qn,n
′

0 : Pn+n′

X/S → P
n
X/S⊗OXP

n′

X/S (resp. qn,n
′

1 : Pn+n′

X/S →
PnX/S⊗OX P

n′

X/S) the corresponding morphism (or simply qn,n
′

0 or q0). We notice that qn,n
′

0 = πn+n′,n
X/S ⊗1

and qn,n
′

1 = 1⊗ ψn+n′,n′

X/S , where ψn1,n2

X/S is the projection Pn1

X/S → P
n2

X/S for any integers n1 ≥ n2.

1.1.2.6. We have the following proprieties making some links between the sheaf of relative differentials
and the sheaf of principal parts of order ≤ 1 of X/S.

(a) We denote by I1
X/S the ideal of the closed immersion ∆1

X/S and by Ω1
X/S := (∆1

X/S)−1(I1
X/S) the

corresponding OX -module (recall ∆1
X/S∗ is an homeomorphism). In other words, Ω1

X/S is the kernel
of the canonical morphism of OX -algebras (for both structures) ψ1,0

X/S : P1
X/S → P

0
X/S = OX . The

sheaf Ω1
X/S is the “sheaf of relative differentials of X/S”. Since Ω1

X/S is an ideal of P1
X/S of order 2

then the left and right structure of OX -module of Ω1
X/S (recall ψ1,0

X/S is OX -linear for both structures)
are in fact identical.

(b) We have the exact sequence of OX -modules

0→ Ω1
X/S

j−→ p0∗P1
X/S

ψ1,0

X/S−→ OX → 0, (1.1.2.6.1)

where j is the canonical inclusion (recall p0∗ means that P1
X/S is considered as an OX -algebra for its

left structure). The exact sequence 1.1.2.6.1 splits via the section p1
0 : OX → p0∗P1

X/S , which yields
the isomorphism of OX -modules

(p1
0, j) : OX ⊕ Ω1

X/S
∼−→ p0∗P1

X/S . (1.1.2.6.2)

(c) Via the isomorphism 1.1.2.6.2, we get the OX -linear homomorphism

$X/S : p0∗P1
X/S � Ω1

X/S (1.1.2.6.3)

which is a left inverse of the inclusion Ω1
X/S ⊂ p0∗P1

X/S . We compute $X/S = id−p1
0 ◦ ψ

1,0
X/S .

(d) We denote by dX/S : OX → Ω1
X/S (or simply d) the constant OS-derivation which is given by

a 7→ p1
1(a) − p1

0(a) for any local section a of OX (see notation 1.1.2). The composition of $X/S

with p1
1 : OX → P1

X/S is the constant OS-derivation dX/S . (Indeed, since ψ1,0
X/S ◦ p

1
1 = id, then

$X/S ◦ p1
1 = p1

1 − p1
0 = dX/S .) Since $X/S is OX -linear, this means that dX/S is a differential

operator of order ≤ 1 relatively to X/S (see definition 1.1.3.2).
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(e) We have the exact sequence of OX -modules

0
j−→ Ω1

X/S → p1∗P1
X/S

ψ1,0

X/S−→ OX → 0. (1.1.2.6.4)

The exact sequence 1.1.2.6.4 splits via the section p1
1 : OX → p1∗P1

X/S , which yields the isomorphism
of OX -modules

(p1
1, j) : OX ⊕ Ω1

X/S
∼−→ p1∗P1

X/S . (1.1.2.6.5)

(f) Suppose X/S has coordinates (tλ)λ=1,...,d. According to notation 1.1.2.3, let τλ,1 be the image of
1 ⊗ tλ − tλ ⊗ 1 in P1

X/S for λ = 1, . . . , d. Then $X/S(τλ,1) = τλ,1 = dtλ. Moreover, $X/S(1) = 0.
Hence, ker$X/S = OX .

1.1.3 Differential operators
We remind few elements on the concept of differential operators (see the section [Gro67, IV.16.8]). We
only collect information to understand the construction of the de Rham complex (see the paragraph
below 2.3.2.1). The reader may find further properties that we will not need in [Gro67, IV.16.8]. Let
X → S be a morphism of schemes. Let E ,F be two OX -modules, n ≥ 0 be an integer.

Notation 1.1.3.1. By convention, PnX/S ⊗OX E means p1∗(PnX/S) ⊗OX E and E ⊗OX PnX/S means
E ⊗OX p0∗(PnX/S). For instance, PnX/S ⊗OX P

n′

X/S is p1∗(PnX/S)⊗OX p0∗(Pn
′

X/S).
We have two structures of OX -module on the sheaf PnX/S ⊗OX E : the “left structure” given by

functoriality from the left structure of PnX/S and the “right structure” given by the internal tensor
product. We denote by p0∗(PnX/S ⊗OX E) (resp. p1∗(PnX/S ⊗OX E)) to clarify we are considering the left
structure (resp. right structure).

Similarly, we denote by p0∗(E ⊗OX PnX/S) (resp. p1∗(E ⊗OX PnX/S)) the OX -module given by the
internal tensor product (resp. by functoriality from the right OX -module structure of PnX/S) which is
called the left (resp. right) structure.

We denote by pn0,E : E → p0∗(E ⊗OX PnX/S) the canonical OX -linear map given by x 7→ x ⊗ 1, i.e.
is the composition of idE ⊗pn0 with the canonical isomorphism E ∼−→ E ⊗OX P0

X/S . We denote by
pn1,E : E → p1∗(PnX/S ⊗OX E) the canonical OX -linear map given by x 7→ 1⊗ x, i.e. is the composition of
pn1 ⊗ idE with the canonical isomorphism E ∼−→ P0

X/S ⊗OX E .

Definition 1.1.3.2. We say that a f−1OS-linear homomorphism D : E → F is a “differential operator of
order ≤ n (relatively to X/S)” if there exists a homomorphism of OX -modules u : pn0∗(PnX/S⊗OX E)→ F
such that D = u ◦ pn1,E (see notation 1.1.3.1).

1.1.3.3 (Local description). Let D : E → F be a f−1OS-linear homomorphism. The property that D
is a differential operator of order ≤ n is better understood locally. Let us describe it below. Suppose
S = SpecR, X = SpecA. Then Γ(X,PnX/S) = (A⊗RA)/In+1 where I is the kernel of the multiplication
A ⊗R A → A. Set E := Γ(X, E), F := Γ(X,F). Then Γ(X, pn0,E) is the canonical map E → (A ⊗R
A)/In+1 ⊗A E given by x 7→ 1 ⊗ x. Let us denote by p0,E : E → (A ⊗R A) ⊗A E the canonical map
given by x 7→ 1 ⊗ x. We have the A-linear isomorphism (A ⊗R A) ⊗A E

∼−→ A ⊗R E (for the left
structure of A ⊗R A by default). Since D is R-linear, this yields by extension a unique A-linear map
u : (A ⊗R A) ⊗A E → F such that D = ‹D ◦ p0,E . Then D is a differential operator of order ≤ n is
equivalent to saying that u(In+1) = 0. Remark also that the A-linear map u such that D = u ◦ pn0,E is
therefore unique if it exists.

Proposition 1.1.3.4. Let D : E → F be a f−1OS-linear homomorphism. The following conditions are
equivalent:

(a) D is a differential operator of order ≤ n.

(b) For any section a of OX above an open subset U , the homomorphism Da : E|U → F|U such that, for
any section t of E above a open subset V ⊂ U , we have

Da(t) = D(at)− aD(t) (1.1.3.4.1)

is is a differential operator of order ≤ n− 1.
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(c) For any open subset U of X, for any family (ai)1≤i≤n+1 of n + 1 sections of OX above U and any
section t of E above U , we have the identity

∑
H⊂{1,...,n+1}

(−1)CardH(
∏
i∈H

ai)D

Ñ
(
∏
i 6∈H

ai)t

é
= 0. (1.1.3.4.2)

Proof. Let us sketch the proof (see [Gro67, IV16.8.8)] for a complete one). These properties are local.
Hence, we can use the local description of 1.1.3.3 of a differential operator of order ≤ n. With notation
1.1.3.3, the ideal In+1 is generated by the elements of the form

n+1∏
i=1

(ai ⊗ 1− 1⊗ ai) =
∑

H⊂{1,...,n+1}

(−1)CardH(
∏
i∈H

ai)⊗ (
∏
i 6∈H

ai).

Hence, we easily check via some computation the equivalence between the three statements.

1.1.4 Sheaf of differential operators relative to weakly smooth morphisms
Let f : X → S be a weakly smooth morphism (see 1.1.1.4).

Definition 1.1.4.1. In the case where E and F are equal to OX in the definition (1.1.3.2), we get
the sheaf of differential operators of order ≤ n of f (of infinite level) is defined by putting DX/S,n :=
HomOX (pn0∗PnX/S ,OX). The sheaf of differential operators of f is defined by puttingDX/S := ∪n∈NDX/S,n.
The tautological structure of OX -module on DX/S,n is said to be the left one. For any a ∈ OX , we have
the map DX/S,n → DX/S,n induced by the OX -linear map pn1 (a) : pn0∗PnX/S → pn0∗PnX/S . This yields
another structure of OX -module on DX/S,n which is called the right structure of OX -module. For any
n′ ≥ n, the homomorphisms DX/S,n → DX/S,n′ are OX -linear for both structures. This yields two
structures of OX -modules on DX/S , the left one and the right one.

Since the image of pn1 : OX → PnX/S generates pn0∗PnX/S as OX -module, then the morphism

DX/S,n = HomOX (pn0∗PnX/S ,OX)
pn1−→ HomOS (OX ,OX) = EndOS (OX)

is injective. We get the injection DX/S ↪→ EndOS (OX). The sheaf DX/S is in fact a subring of
EndOS (OX). Indeed, let P ∈ DX/S,n, P ′ ∈ DX/S,n′ . Then it follows from the commutativity of 1.1.2.5.2
that the product PP ′ in EndOS (OX) corresponds to the element of DX/S,n+n′ defines by the composition:

PP ′ : Pn+n′

X/S

δn,n
′

−→ PnX/S ⊗OX P
n′

X/S
id⊗P ′−→ PnX/S

P−→ OX . (1.1.4.1.1)

Since DX/S is a subring of EndOS (OX), this yields a canonical structure of left DX/S-module on OX . By
definition, the action of P ∈ DX/S,n on f ∈ OX is denoted by P (f) or P · f and is given by the formula

P (f) = P ◦ pn1 (f). (1.1.4.1.2)

Remark 1.1.4.2. Let E be an OX -module. We can set DiffX/S(E , E) := ∪n∈NHomOX (pn0∗(PnX/S ⊗OX
E), E). Then we get the injection DiffX/S(E , E) ↪→ EndOS (E) via the map

HomOX (pn0∗(PnX/S ⊗OX E), E)
pn1−→ HomOS (E , E) = EndOS (E).

We check similarly that the sheaf DiffX/S(E , E) is in fact a subring of EndOS (E) (see [Gro67, IV.16.8.9]).

Notation 1.1.4.3. Let d ≥ 1 be an integer. By convention, an element k ∈ Nd is of the form k =
(k1, . . . , kd). We consider (Nd,+) as a monoid and we put |k| := k1 + · · · + kd. We endow Nd with the
partial order as follows. For any k, k′ ∈ Nd, by definition the inequality k′ ≤ k means that we have
k′i ≤ ki, for any i = 1, . . . , d. For any k, l ∈ Nd, we remark that sup{k, l} exists and n := sup{k, l} is
given by ni = max{ki, li} for any i = 1, . . . d (see 3.2.3.13 to get an example of formula involving such
computation). Moreover, for any k′ ≤ k′ in Nd, we write

k! :=
d∏
i=1

ki!,

Ç
k

k′

å
:=

d∏
i=1

Ç
ki
k′i

å
. (1.1.4.3.1)
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1.1.4.4 (Local formulas). Suppose f has the formal coordinates (tλ)λ=1,...,r. Put τλ := 1⊗ tλ − tλ ⊗ 1.
Following 1.1.2.3, the elements {τk}|k|≤n form a basis of PnX/S . The corresponding dual basis of DX/S,n
will be denoted by {∂[k], |k| ≤ n}. Hence, DX/S is a free OX -module (for both structures) with the
basis {∂[k], k ∈ Nr}. We have the formulas:

∂[k′]∂[k′′] =

Ç
k′ + k′′

k′

å
∂[k′+k′′], product rule, (1.1.4.4.1)

∂[k]f =
∑

k′+k′′=k

∂[k′](f)∂[k′′], Leibniz rule (1.1.4.4.2)

for k, k′, k′′ ∈ Nd and any f ∈ Γ(U,OU ). The product formula says the operators ∂[k] commute.
For any i = 1, . . . , d, let εi = (0, . . . , 0, 1, 0, . . . , 0) where 1 is at the ith place. We set ∂i := ∂[εi].

Write ∂k = ∂1 · · · ∂1︸ ︷︷ ︸
k1

· · · ∂d · · · ∂d︸ ︷︷ ︸
kd

. Then we get k!∂[k] = ∂k.

Proposition 1.1.4.5. Let X be a smooth scheme over S := Spec k, with k a perfect field. Any DX/S-
module which is coherent over OX is a locally free OX-module.

Proof. Let M be a DX/S-module coherent over OX . Let x be a closed point of X. We have to check
that the stalk Mx is free (or projective) over OX,x. There exists an open neighborhood U of x, such
that U/ Spec k has coordinates t1, . . . , td. Since k(x)/k is separable, then t1x, . . . , tdx generate OX,x
which number is the minimal (see [Gro67, IV.17.12.2]) i.e. t1x, . . . , tdx is a regular system of parame-
ter of mX,x. Then it follows from Nakayama’s lemma that there exist s1, s2, . . . , sm ∈ Mx such that
Mxm

∑m
i=1OX,xsi and s1, . . . , sm ∈Mx/mX,xMx are free generators of the vector spaceMx/mX,xMx

over k = OX,x/mX,x. We will show that {s1, s2, . . . , sm} is a free generator of the OX,x -module Mx.
Now we define the order of each f ∈ OX,x at x ∈ X by ord(f) := max{l ∈ N ‖ f ∈ mX,x} if f 6= 0 and
ord(f) =∞ otherwise. Let ν be the minimum of the order of f1, . . . , fm ∈ OX,x such that

m∑
i=1

fisi = 0.

To arrive to a contradiction, suppose ν ∈ N. Reordoring if necessarily, let f1, . . . , fmOX,x such that∑m
i=1 fisi = 0 and ord(f1) = ν. There exists k ∈ Nd such that |k| = ν and ∂[k](f1) ∈ O∗X,x. Using

1.1.4.4.2, we get ∂[k]fi − ∂[k](fi) ∈ mX,x. This yields 0 = ∂[k] · (
∑m
i=1 fisi) =

∑m
i=1(∂[k]fi) · si ≡∑m

i=1 ∂
[k](fi) · si mod mX,xMx. Since ∂[k](f1) ∈ O∗X,x, then this is a contradiction with the fact that

s1, . . . , sm ∈Mx/mX,xMx are free generators of the k-vector spaceMx/mX,xMx.

1.2 Partial divided power

1.2.1 Modified binomial coefficients
Let m ∈ N.

1.2.1.1. For any integer k ≥ 0, we recall the formula

vp(k!) = (k − σ(k))/(p− 1), (1.2.1.1.1)

where we set k =
∑nk
i=0 aip

i, with 1 ≤ ai ≤ p− 1, and σ(k) =
∑nk
i=0 ai. Since nk < logp(k + 1) ≤ nk + 1,

we have the estimate

(p− 1) logp(k + 1) ≤ σ(k) < (p− 1)(logp(k + 1) + 1). (1.2.1.1.2)

For k = k′ + k′′ with k′, k′′ ∈ N, from 1.2.1.1.1 we get

vp

ÇÇ
k

k′

åå
= (σ(k′) + σ(k′′)− σ(k))/(p− 1). (1.2.1.1.3)
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Notation 1.2.1.2. Let k ∈ N.

(a) We denote by q(m)
k and r(m)

k the nonnegative integers such that k = pmq
(m)
k + r

(m)
k and r(m)

k < pm.

(b) Let k′ ∈ N such that k′ ≤ k. We setß
k

k′

™
(m)

=
q

(m)
k !

q
(m)
k′ !q

(m)
k−k′ !

,

≠
k

k′

∑
(m)

=

Ç
k

k′

åß
k

k′

™−1

(m)

. (1.2.1.2.1)

Notation 1.2.1.3. Let d ≥ 1 be an integer. We complete the notation 1.1.4.3 as follows. For any k′ ≤ k′
in Nd, we write

q(m)
k

:= (q
(m)
k1

, . . . , q
(m)
kd

),

ß
k

k′

™
(m)

:=
d∏
i=1

ß
ki
k′i

™
(m)

,

≠
k

k′

∑
(m)

:=
d∏
i=1

≠
ki
k′i

∑
(m)

. (1.2.1.3.1)

1.2.1.4. Let 0 ≤ k′ ≤ k be two integers. From 1.2.1.1.3, we compute

vp

Ç≠
k

k′

∑
(m)

å
= (q

(m)
k′ + q

(m)
k−k′ − q

(m)
k − σ(r

(m)
k ) + σ(r

(m)
k′ ) + σ(r

(m)
k−k′))/(p− 1). (1.2.1.4.1)

Lemma 1.2.1.5. We have the following properties.

(a) For any integers m, k, k′ ≥ 0, we haveß
k

k′

™
(m)

∈ N,
≠
k

k′

∑
(m)

∈ Z(p).

(b) Let 0 ≤ j, and 0 ≤ q′ ≤ q be three integers. If j ≥ m, or if q < p, we have≠
pjq

pjq′

∑
(m)

∈ Z∗(p).

(c) For any nonnegative integers j, r and q such that r < pj we have≠
pjq + r

pjq

∑
(m)

∈ Z∗(p).

(d) For any k ≥ pm, we have ≠
k

pm

∑
(m)

∈ Z∗(p). (1.2.1.5.1)

Proof. The Lemma is an easy consequence of the formula 1.2.1.4.1.

Notation 1.2.1.6. Let k′, k′′ ∈ N. We set

C
(m)
k′′,k′ := q

(m)
k′k′′ !/((q

(m)
k′ !)k

′′
q

(m)
k′′ !). (1.2.1.6.1)

It follows from [Ber96c, 1.1.5] that C(m)
k′′,k′ ∈ N.

1.2.2 Divided power
We begin with a summary on divided power envelope which we need to construct differential operators
of finite level. Details of proofs can be found in [Ber96c] §1, [Ber74], [BO78].

Definition 1.2.2.1. Let A be a commutative ring with identity and I ⊂ A an ideal. By a divided power
structure on I we mean a family γ = (γi) of maps from I to A indexed by integers i ≥ 0 satisfying the
following conditions for x, y ∈ I and a ∈ A

8



(1) γ0(x) = 1, γ1(x) = x and γi(x) ∈ I for all i ≥ 2.

(2) γk(x+ y) =
∑
i+j=k γi(x)γj(y) for all k ≥ 0.

(3) γk(ax) = akγk(x) for all k ≥ 0.

(4) γi(x)γj(x) =
(
i+j
j

)
γi+j(x) for all i, j ≥ 0.

(5) γi(γj(x)) = (ij)!
i!(j!)i γij(x) for all i, j ≥ 0.

We say that (I, γ) is a PD ideal, and (A, I, γ) is a PD ring. If there is no ambiguity on γ, we write n-th
divided power γn(x) of x as x[n].

Examples 1.2.2.2. (a) 0 is a PD-ideal with γi(0) = 0 for any integer i ≥ 1.

(b) If A is a Q-algebra, every ideal has a unique PD structure, given by γi(x) = xi/i!.

(c) If V is a discrete valuation ring of unequal characteristic (0, p) and uniformizing parameter π, write
p = uπpe, with u a unit. Then πkV has a PD-structure if and only if e/(p − 1) ≤ k. In particular,
πV has a PD-structure if and only if e ≤ p− 1.

Definition 1.2.2.3. Given PD rings (A, I, γ) and (A′, I ′, γ′) we call a ring homomorphism f : A → A′

a PD homomorphism, if f(I) ⊂ I ′ and γ′n ◦ f = f ◦ γn (∀n).
Definition 1.2.2.4. Let (A, I, γ) be a PD ring. We say an ideal J ⊆ I is a sub PD ideal if and only if
γk(x) ∈ J for any x ∈ J , k ≥ 1.

Definition 1.2.2.5. Let (A, I, γ) be a PD ring. For any positive integer n, let us set I [n] ⊂ A to be the
ideal generated by the set of elements γi1(x1)γi2(x2) · · · γik(xk) with xi ∈ I and i1 + · · · ik ≥ n. Clearly
I [n] is a PD ideal, and I [n]I [m] ⊂ I [n+m]. If for some positive integer n we have I [n] = 0, then say I is
PD nilpotent.

Definition 1.2.2.6. Let (A, I, γ) be a PD ring and B be an A-algebra. We say that “γ extends to B” iff
there is a (a necessarily unique) PD structure γ on IB such that (A, I, γ)→ (B, IB, γ) is a PD-morphism.

Example 1.2.2.7. Let (A, I, γ) be a PD ring and B be an A-algebra. When I is principal, then γ
extends to B.

Proposition 1.2.2.8. Let (A, I, γ) be a PD ring. Let B be an A-algebra. (J, δ) be a PD ideal in B.
Then the following are equivalent:

(1) γ extends to B and γ = δ on IB ∩ J .

(2) The ideal IB + J has (a necessarily unique) structure δ such that (A, I, γ) → (B, IB + J, δ) and
(B, J, δ)→ (B, IB + J, δ) are PD-morphisms.

Definition 1.2.2.9. If the equivalent conditions of the proposition 1.2.2.8 are fulfilled, we say that γ
and δ are compatible.

Proposition 1.2.2.10. If (R, a, α) is a PD-ring, A is a R-algebra and I is an ideal of A, then there
exists an A algebra PA,α(I) with a PD ideal (Ī , γ) such that

(a) IPA,α(I) ⊆ Ī,

(b) γ is compatible with α

(c) and the following universal property holds: if (B, J, δ) is any PD A-algebra with IB ⊆ J and δ is
compatible with α, then there is a unique PD homomorphism ψ̃ : (PA,α(I), Ī, γ)→ (B, J, δ) such that
the following commutes

(PA,α(I), Ī, γ)

ψ

''
(A, I)

88

// (B, J, δ)

(R, a, α)

ff 77
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Definition 1.2.2.11. Under the hypotheses of the proposition, we say (A, I) has PD envelope (PA,α(I), Ī , γ)
compatible with α. We also write Pα(I) or PA(I) for PA,α(I) ([BO78] Theorem 3.19;[Ber74] 2.4.2).

Examples 1.2.2.12. Take any ring R, put A = R[T1, . . . , Td], let I = (T1, . . . , Td). Then PD envelope
PA(I) is the free R-module with basis consists of products of divided powers T [k1]

1 · · ·T [kd]
d (in the notation

for divided powers above).
If R is a Q-algebra, it follows from the uniqueness of PD-structure in an ideal in a Q-algebra that

A ∼= PA(I). If R is not a Q-algebra then PA(I) is not finitely generated as an R-algebra and is not
noetherian.

1.2.3 Divided power compatible with (p)

Let Z(p) denote the ring of integers localized at the ideal generated by p.

Definition 1.2.3.1. If A is a Z(p)-algebra, the canonical PD-structure of the ideal (p) ⊂ Z(p) extends
to A ; we will denote by p[n] = pn/n!. If (I, γ) ⊂ A is a PD-ideal, we say that γ is compatible with
(p) if γ is compatible with the canonical PD-structure of (p) (see 1.2.2.9).

The following Lemma will be applied in the case where the ideal a is (p).

Lemma 1.2.3.2. Let A be a Z(p)-algebra, (I, γ) ⊂ A, (I ′, γ′) ⊂ A be two ideals endowed with a PD-
structure compatible with (p). We denote by I1 := I + pA, I ′1 := I ′ + pA. Let α be the canonical
PD-structure on pA. Let δ (resp. δ′) be the PD-structure on I1 (resp. I ′1) extending γ (resp. γ′) and α.
The following conditions are equivalent:

(a) The PD-structure δ and δ′ coincide on I1 ∩ I ′1.

(b) The PD-structure δ and γ′ coincide on I1 ∩ I ′.

(c) The PD-structure δ and δ′ coincide on I1 ∩ I ′1.

(d) There exists on I + I ′ + pA a PD structure inducing γ, γ′ and α.

(e) There exists on I + I ′ a PD structure which is compatible with (p) and inducing γ and γ′.

In that case we say that γ and γ′ are “strictly compatible” (see below 1.2.3.3 for an extension of this
notion).

Definition 1.2.3.3. Let A→ A′ be a morphism of commutative Z(p)-algebras.

1. Let (I, γ) ⊂ A be an ideal endowed with a PD-structure compatible with (p). We say that γ “strictly
extends” to A′ if γ extends to A′ and if γ is compatible with (p), where γ is the PD-structure on
IA′ which is induced by γ. Beware that γ can extend to A′ but not strictly.

2. Let (I, γ) ⊂ A be an ideal endowed with a PD-structure compatible with (p). Let (I ′, γ′) ⊂ A′

be an ideal endowed with a PD-structure compatible with (p). We say that γ and γ′ are “strictly
compatible” if γ strictly extends to A′ and if γ and γ′ are strictly compatible (see 1.2.3.2), where
γ is the PD-structure on IA′ which is induced by γ. Beware that γ and γ′ can be compatible but
not strictly compatible.

Lemma 1.2.3.4. Let A be a Z(p)-algebra and I be an ideal of A.

(a) The ideal pA ∩ I is a sub-PD ideal of pA.

(b) If (J, γ) ⊂ I is a PD-ideal compatible with (p) then (J + pA) ∩ I is a sub-PD-ideal of J + pA.

Proof. a) If a ∈ A is such that pa ∈ I, then for any integer n ≥ 1 we have p[n]a ∈ pA ∩ I and then
(pa)[n] = p[n]an ∈ pA ∩ I.

b) The second statement is a consequence of the first one and of (J + pA) ∩ I = J + pA ∩ I.

10



1.2.4 Divided powers of level m
The definition of divided powers is modified by Berthelot to give partial divided powers. More details
can be found in [Ber96c] §1.3, 1.4. In the rest of this book, a PD-structure of an ideal of a commutative
Z(p)-algebra will always be supposed compatible with (p). Fix an integer m.

Definition 1.2.4.1. We have the following notions.

(a) Let A be a Z(p)-algebra and I be an ideal of A. A “partial PD structure of level m on I” or a “m-PD
structure on I” is the data of a PD-ideal (J, γ) such that

I(pm) + pI ⊂ J ⊂ I (1.2.4.1.1)

where I(pm) denotes the ideal generated by xp
m

for x ∈ I. We say (I, J, γ) is an “m-PD ideal of A”
and that (A, I, J, γ) is an m-PD-Z(p)-algebra.

(b) Let (A, I, J, γ) and (A′, I ′, J ′, γ′) be two m-PD-Z(p)-algebras. An “m-PD morphism” or “morphism
of m-PD-Z(p)-algebras” of the form (A, I, J, γ)→ (A′, I ′, J ′, γ′) is a homomorphism of Z(p)-algebras
φ : A → A′ such that φ(I) ⊂ I ′, and (A, J, γ) → (A′, J ′, γ′) is a PD-morphism. When φ is the
identity, we say that (I, J, γ) is a “sub-m-PD-ideal” of (I ′, J ′, γ′) ; if moreover I ′ = I, we say that
(J, γ) is a “sub-m-PD-structure” of (J ′, γ′).

Remark that a 0-PD-structure (resp. 0-PD-ideal, 0-PD morphism) is the same than a PD-structure
(resp. PD-ideal, PD morphism) since when m = 0 the equality 1.2.4.1.1 implies J = I. Moreover, for
any m′ ≥ m, if (I, J, γ) is an m-PD ideal of A then it is also an m′-PD ideal of A. In other words, an
m-PD-Z(p)-algebra can be viewed as an m′-PD-Z(p)-algebra.

Examples 1.2.4.2. We have the following m-PD structures.

(a) Let V be a discrete valuation ring of unequal characteristic (0, p) and uniformizing parameter π,
write p = uπpe, with u a unit. Let a := πhV and b := πkV. Following 1.2.2.2.c, b has a canonical
PD-structure if and only if e/(p − 1) ≤ k. It follows from the inclusions 1.2.4.1.1, that (a, b, []) is
an m-ideal if and only if e/(p − 1) ≤ k, e + h ≥ k, hpm ≥ k and k ≥ h. In particular, a has an
m-PD-structure if and only if hpm ≥ e/(p− 1).

(b) Let A be a Z(p)-algebra and I be an ideal of A. Let (J0, γ) be a PD-ideal such that J0 ∩ I is a sub
PD-ideal of J0 and such that I(pm) ⊂ J0. We denote by (J0 + pA, γ) the PD-ideal induced by the
PD-ideal (J0, γ) (compatible with (p)). Then J := (J0 + pA) ∩ I is a sub PD-ideal of (J0 + pA, γ)
(see 1.2.3.4). We get the m-PD ideal (I, J, γ).

For instance, if I(pm) ⊂ pA then by taking J0 = J = pA ∩ I endowed with the PD-structure []

induced by the canonical one of pA (see 1.2.3.4), we get the m-PD ideal (I, pA ∩ I, []). We say that
(pA ∩ I, []) is the “trivial” m-PD structure of I.

(c) If (J, γ) is an m-PD structure of an ideal I then it is also an m′-PD structure for any m′ ≥ m.

Definition 1.2.4.3. We introduce the notion of compatible m-PD structures as follows.

(i) Let (R, a, b, α) be an m-PD-Z(p)-algebra. Let A be a commutative R-algebra. We say that the
“m-PD structure (b, γ) extends to A” if α is extends strictly to A. If we denote by α the PD
structure on bA extending α, then (A, aA, bA,α) is an m-PD-Z(p)-algebra.

(ii) Let (R, a, b, α) and (A, I, J, γ) be two m-PD-Z(p)-algebras such that A is an R-algebra. We say
that “the m-PD structures (b, α) and (J, γ) are compatible” if the following conditions are satisfied

(a) the PD-structures α and γ are strictly compatible,

(b) (bA+ pA) ∩ I is a sub PD ideal of bA+ pA.

Remark 1.2.4.4. Let (R, a, b, α) and (A, I, J, γ) be two m-PD-Z(p)-algebras such that A is an R-algebra
and such that the m-PD structures (b, α) and (J, γ) are compatible. Then J + bA endowed with the PD
structure extending γ and α is an m-PD-structure on I + aA which is also compatible with (b, α). For
more details, see [Ber96c, 1.3.2.(ii)].
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1.2.4.5. Let (A, I, J, γ) be an m-PD-Z(p)-algebra. For x ∈ I and k ∈ N, the k-th partial divided power
of x is

x{k} = γ
q
(m)

k

(xp
m

)xr
(m)

k .

We can simply write x{k}. The map x 7→ x{k}(m) satisfies properties similar to that of x 7→ x[k]. We list
some of these properties:

(a) For any m′ ≥ m and k ∈ N, we have

q
(m)
k !x{k} = xk, x{k}(m′) =

q
(m)
k !

q
(m′)
k !

x{k}(m) . (1.2.4.5.1)

(b) ∀x ∈ I, x{0}(m) = 1, x{1}(m) = x ; ∀k ≥ 1, x{k}(m) ∈ I ; ∀k ≥ pm, x{k}(m) ∈ J .

(c) ∀x ∈ I, ∀k ∈ N, ∀a ∈ A, (ax){k}(m) = akx{k}(m) .

(d) ∀ x, y ∈ I we have binomial expansion

(x+ y){k}(m) =
∑

k′+k′′=k

≠
k

k′

∑
(m)

x{k
′}(m)y{k

′′}(m) . (1.2.4.5.2)

(e) For any k, k′ ∈ N,

x{k
′}(m)x{k

′′}(m) =

ß
k′ + k′′

k′

™
(m)

x{k
′+k′′}(m) . (1.2.4.5.3)

(f) For any k′, k′′ ∈ N, with notation 1.2.1.6.1, we have

(x{k
′}(m)){k

′′}(m) = C
(m)
k′′,k′x

{k′k′′}(m) .

1.3 m-PD envelopes

1.3.1 m-PD adic filtration
We give the definition of an m-PD adic filtration following [Ber00] Appendice.

Proposition 1.3.1.1. Let (R, a, b, α) and (A, I, J, γ) be two m-PD-Z(p)-algebras such that A is an R-
algebra and the m-PD structures (b, α) and (J, γ) are compatible. Consider the set F of decreasing
filtrations (FnA)n≥0 of A by ideals satisfying the following conditions:

(a) F 0A = A, F 1A = I and for n, n′ ≥ 0, we have FnA · Fn′A ⊆ Fn+n′A;

(b) for any n ≥ 1, x ∈ FnA and k ≥ 0, x{k} ∈ F knA;

(c) for all n ≥ 0, (J + pA) ∩ FnA is a sub PD ideal in (J + pA).

Then there exists a finer filtration (I{n}(m))n∈N of F , i.e. for any (FnA)n∈N ∈ F then I{n}(m) ⊆ FnA
for all n.

Definition 1.3.1.2. Under the hypotheses of 1.3.1.1, the m-PD filtration of (A, I, J, γ) is (I{n}(m))n∈N.
Say I is m-PD nilpotent if there exists n such that I{n}(m) = 0. Say I is topologically (for the p-adic
topology) m-PD nilpotent if the filtration given by the m-PD-filtration is finer than the p-adic topology
on A.

We give some example.

Proposition 1.3.1.3. Let V be a discrete valuation ring of characteristic (0, p) with maximal ideal m
and ramification index e. Let k, h ∈ N, a := mh, b := mk such that (a, b, []) is canonically an m-PD ideal
(see 1.2.4.2.a).
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(a) The m-PD filtration of a is given by

a{n} = ((πh){n
′})n′≥n.

This is independent of b, and is topologically m-PD nilpotent if and only if hpm > e
p−1 .

(b) Let A be a V-algebra, I = aA, J = bA. Then the m-PD adic filtration of (I, J, []) is given by
In = a{n}I.

Proposition 1.3.1.4. With the notation and hypotheses of 1.3.1.2, the m-PD adic filtration satisfies
the following properties:

(a) Let n ≥ 1, A := A/I{n}, $ : A → A be the canonical homomorphism, I := IA, J := JA, γ
be the quotient PD-structure on J . Then (J, γ) defines on γ an m-PD structure compatible with
(b, α), $ is a strict morphism for the m-PD-adic filtrations, and $ is universal for m-PD-morphism
(A, I, J, γ)→ (A′, I ′, J ′, γ′) such that (J ′, γ′) is compatible with (b, α) and I ′{n}(m) = 0.

(b) For any flat morphism A → A′, the ideal I ′ := IA can be endowed with an m-PD structure (J ′ =
JA′, γ′) extending (J, γ) to A′ and compatible with (b, α). Moreover, the m-PD adic filtration of
(I ′, J ′, γ′) is given by I ′{n}(m) = I{n}(m)A′.

Proof. See [Ber00, A.5].

1.3.2 m-PD envelopes of an ideal
Proposition 1.3.2.1. Let R be a Z(p)-algebra, (a, b, α) an m-PD ideal of R, A a R-algebra, I an ideal
of A. Then there exists a ring homomorphism

ϕ : A→ A1

an ideal I1 of A1 such that ϕ(I) ⊂ I1, and a m-PD structure (J1,
[ ]) of I1 which is compatible with (b, α)

such that for any R-homomorphism
f : A→ A′

satisfying f(I) ⊂ I ′ and for any m-PD structure (J ′, γ′) in A′ which is compatible with (b, α), there
exists a unique m-PD morphism

g : (A1, I1, J1,
[])→ (A′, I ′, J ′, γ′)

such that g ◦ ϕ = f .

Proof. A proof of the existence is given in [Ber96c, 1.4.1].

Definition 1.3.2.2. With notation 1.3.2.1, A1 is denoted by PA,(m),α(I) or simply by P(m),α(I) and is
called the level m partial divided power envelope of (A, I) (compatible with (b, α)). The m-PD ideal of
P(m),α(I) will be denoted by (I(m)α, Ĩ(m)α,

[ ] ).

Corollary 1.3.2.3. Under the hypotheses of 1.3.2.1, for any integer n ≥ 0, the R-algebra PnA,(m),α(I) :=

PA,(m),α(I)/I
{n+1}
(m)α is endowed with them-PD-ideal (In(m)α, Ĩ

n
(m)α,

[ ] ) := (I(m)αP
n
A,(m),α(I), Ĩ(m)αP

n
A,(m),α(I),[ ] )

which is compatible with (b, α) and satisfies (In(m)α){n+1}(m) = 0, and is endowed with an R-homomorphism
φn : A → PnA,(m),α(I) such that φn(I) ⊂ In(m)α and which is universal for R-homomorphisms R →
(A′, I ′, J ′, γ′) sending I into an m-PD ideal I ′ compatible with (b, α) and such that I ′{n+1}(m) = 0.

Proof. This is a consequence of 1.3.2.1 and 1.3.1.4.

1.3.2.4. With notation 1.3.2.2, followgin the proof of 1.3.2.1 of Berthelot, we have the equality

P(m),α(I) = P(0),α(I(m)). (1.3.2.4.1)

The construction of the m-PD ideal (I(m)α, Ĩ(m)α,
[ ] ) reduce to the level 0 case (but this is too technical

to be described here in the general case in few words). For the detailed descriptions, see the proof of
[Ber96c, 1.4.1].
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Examples 1.3.2.5. With notation 1.3.2.1, the obvious extreme examples are PA,(m),α(A) = 0 and
PA,(m),α(0) = A, (I(m)α, Ĩ(m)α,

[ ] ) = (0, 0,[ ] ).

We have the following fundamental example.

Proposition 1.3.2.6. Let m ≥ 0 be an integer, let R be a Z(p-algebra, (a, b, α) an m-PD ideal of R,
A = R[t1, . . . , td] be a polynomial algebra with coefficients in R, I = (t1, . . . , td).

(a) The m-PD-envelope PA,(m),α(I) is independent of α. The canonical morphism A → PA,(m),α(I) is
injective and PA,(m),α(I) is a free R-module having the basis t{k} := t

{k1}
1 · · · t{kd}d , (k1, . . . , kd) ∈ Nd.

(b) The m-PD-ideal I(m)α is the free R-submodule having the basis t{k1}
1 · · · t{kd}d , with

∑d
i=1 ki ≥ 1.

(c) The PD-ideal Ĩ(m)α is the R-submodule generated by the elements pt{k1}
1 · · · t{kd}d with

∑d
i=1 ki ≥ 1

and by the elements t{k1}
1 · · · t{kd}d , such that there exists i satisfying ki ≥ pm.

(d) The nth term I
{n}
(m)α of the m-PD-filtration of PA,(m),α(I) is the free R-submodule having the basis

t
{k1}
1 · · · t{kd}d , with

∑d
i=1 ki ≥ n.

(e) The m-PD-envelope PnA,(m),α(I) is independent of α. The canonical morphism A → PnA,(m),α(I) is

injective and PnA,(m),α(I) is a free R-module having the basis t{k} := t
{k1}
1 · · · t{kd}d , (k1, . . . , kd) ∈ Nd

with
∑d
i=1 ki ≥ n.

Proof. See [Ber96c, 1.5.1].

Definition 1.3.2.7. Let m ≥ 0 be an integer, let R be a Z(p-algebra, (a, b, α) an m-PD ideal of R. Let
A = R[t1, . . . , td] and I = (t1, . . . , td). We say that PA,(m),α(I) (PnA,(m),α(I)) is the m-PD polynomial
algebra with coefficients in R (resp. the m-PD polynomial algebra with coefficients in R of order n) in
d variables given by t1, . . . , td, and is denoted by R〈t1, . . . , td〉(m) (resp. R〈t1, . . . , td〉(m),n).

1.3.2.8. We keep Notation 1.3.2.1. Let K be an ideal of A. By using the universal property of the
m-PD envelope, we have the canonical homomorphism

PA,(m),α(I)→ PA/K,(m),α(I/I ∩K), (resp. PnA,(m),α(I)→ PnA/K,(m),α(I/I ∩K)). (1.3.2.8.1)

Suppose now the image of K in PA,(m),α(I) (resp. Pn(m),α(I)) is null. Then, by using the universal
property of the m-PD envelope, we construct an m-PD morphism which is an inverse of 1.3.2.8.1.
Hence, 1.3.2.8.1 is an m-PD-isomorphism. In particular, taking K = In+1, we get the canonical m-PD-
isomorphism:

PnA,(m),α(I)
∼−→ PnA/In+1,(m),α(I/In+1). (1.3.2.8.2)

1.3.2.9. We keep Notation 1.3.2.1. By using the universal property of the m-PD envelope, we get the
m-PD homomorphism PA,(m),α(I) → PA,(m),α(I + aA). It follows from 1.2.4.4, I(m)α + aPA,(m),α(I) is
endowed with the m-PD-structure Ĩ(m)α + bPA,(m),α(I) compatible with (b, α). Hence, this yields the
m-PD morphism

(PA,(m),α(I), I(m)α + aPA,(m),α(I), Ĩ(m)α + bPA,(m),α(I))→ PA,(m),α(I + aA). (1.3.2.9.1)

On the other hand, by using again the universal property of the m-PD envelope, we get the m-PD-
morphism

PA,(m),α(I + aA)→ (PA,(m),α(I), I(m)α + aPA,(m),α(I), Ĩ(m)α + bPA,(m),α(I)). (1.3.2.9.2)

By composing 1.3.2.9.1 with 1.3.2.9.2 or 1.3.2.9.2 with 1.3.2.9.1 we get the identity. Hence 1.3.2.9.1 and
1.3.2.9.2 are m-PD isomorphism.
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1.3.2.10. For any m′ ≥ m, since an m-PD-Z(p)-algebra can be viewed as an m′-PD-Z(p)-algebra, then
from the universal property we get the homomorphisms of m′-PD-Z(p)-algebra and of A-algebras of the
form

ψm,m′ : P(m′),α(I)→ P(m),α(I), ψnm,m′ : P
n
(m′),α(I)→ Pn(m),α(I). (1.3.2.10.1)

From 1.2.4.5.1, we get for any x ∈ I(m)α and k ∈ N

ψm,m′(x
{k}(m′)) =

q
(m)
k !

q
(m′)
k !

x{k}(m) . (1.3.2.10.2)

For any m′′ ≥ m′, from the universal property, we get the transitive formula ψm,m′ ◦ ψm′,m′′ = ψm,m′′

and ψnm,m′ ◦ ψnm′,m′′ = ψnm,m′′ .

Proposition 1.3.2.11. Under the hypotheses of 1.3.2.1, suppose the m-PD structure (b, α) extends to
A/I. Then the canonical homomorphisms

A/I → PA,(m),α(I)/I(m)α → PnA,(m),α(I)/I(m)α (1.3.2.11.1)

are isomorphisms for any n ∈ N.

Proof. See [Ber96c, 1.4.5].

Proposition 1.3.2.12. Under the hypotheses of 1.3.2.1, let A′ be flat commutative A-algebra. Then the
homomorphisms

PA,(m),α(I)⊗A A′ → PA′,(m),α(IA′), (1.3.2.12.1)
PnA,(m),α(I)⊗A A′ → PnA′,(m),α(IA′) (1.3.2.12.2)

are m-PD-isomorphisms, compatibles with the m-PD filtrations.

Proof. See [Ber96c, 1.4.6].

1.3.2.13. Let S be a Spec Z(p)-scheme. Let (a, b, α) be a quasi-coherent m-PD-ideal of OS . Let X be an
S-scheme and I be a quasi-coherent ideal and Z be the closed subscheme of X induced by I. It follows
from 1.3.2.12 that the presheaves on X given by U 7→ PΓ(U,O),(m),α(Γ(U, I)), U 7→ IΓ(U,O),(m),α(Γ(U, I)),
U 7→ JΓ(U,O),(m),α(Γ(U, I)), are OX -quasi-coherent. We denote theses sheaves by P(m),α(I), I(m),α(I),
J(m),α(I). Similarly, we get the OX -quasi-coherent sheaves Pn(m),α(I), In

(m),α(I), Jn
(m),α(I).

It follows from the first example of 1.3.2.5 and of Proposition 1.3.2.12 that P(m),α(I) has its support
in Z.

1.3.3 m-PD envelopes of an immersion
Let S be a Spec Z(p)-scheme. Let (a, b, α) be a quasi-coherent m-PD-ideal of OS .

Definition 1.3.3.1. Let n ≥ 1 be an integer. Let C
(m)
α (resp. C

(m)
α,n ) be the category whose objects

are pairs (u, δ) where u is a closed S-immersion Z ↪→ X of schemes and δ is an m-PD-structure on
the ideal I of OX given by u which is compatible (see definition 1.2.4.3) with α (resp. and such that
I{n+1}(m) = 0), where I{n+1}(m) is defined in proposition 1.3.1.1; whose morphisms (u′, δ′)→ (u, δ) are
commutative diagrams of the form

X ′
f // X

Z ′
?�

u′

OO

// Z
?�

u

OO (1.3.3.1.1)

such that f is an m-PD-morphism with respect to the m-PD-structures δ and δ′ (i.e., denoting by I ′
the sheaf of ideals of OX′ defined by u′, for any affine opens U ′ of X ′ and U of X such that f(U ′) ⊂ U ,
the morphism f induces the m-PD-morphism (OX(U), I(U), δ) → (OX′(U ′), I ′(U ′), δ′)). Beware that
theses categories depend on S and also on the quasi-coherentm-PD-ideal (IS , JS , α). The objects of C(m)

α

(resp. C
(m)
α,n ) are called m-PD-S-immersions compatible with α (resp. m-PD-S-immersions of order n
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compatible with α). We remark that we have the inclusions C(m)
α ⊂ C

(m′)
α for any integer m′ ≥ m (recall

an m-PD-structure is also an m′-PD-structure).
We say that a morphism (u′, δ′) → (u, δ) of C(m)

α (resp. C
(m)
α,n ) is flat (resp. cartesian) if f is flat

(resp. the square 1.3.3.1.1 is cartesian).

Notation 1.3.3.2. In this paragraph, suppose b = pOS . Then, there is a unique PD-structure on JS
which we will denote by α∅. Let u : Z ↪→ X be a closed immersion of S-schemes and δ be an m-PD-
structure on the ideal I of OX defined by u. It follows from Lemma 1.2.3.4 that the m-PD-structure
δ of I is always compatible with α∅. Hence, in the description of C(m)

α∅ (resp. C
(m)
α∅,n) we can remove

“compatible with α∅” without changing the respective categories. For this reason, we put C(m) := C
(m)
α∅

(resp. C(m)
n := C

(m)
α∅,n). But, recall these categories depend on S even if this is not written in the notation.

Finally, for any quasi-coherent m-PD-ideal (IS , JS , α) of OS , we have the inclusions

C(m)
α ⊂ C(m) and C(m)

α,n ⊂ C(m)
n . (1.3.3.2.1)

Lemma 1.3.3.3. The inclusion functor Forn : C
(m)
α,n → C

(m)
α has a right adjoint. We denote by

Qn(m),α : C
(m)
α → C

(m)
α,n this right adjoint functor. The functor Qn(m),α preserves the sources.

Proof. Let (u, δ) be an object of C(m)
α and I be the ideal defined by the closed immersion u : Z ↪→ X. Let

Qn ↪→ X be the closed immersion which is defined by I{n+1}(m) . It follows from 1.3.1.4 that Qn(m),α(u)
exists and is equal to the closed immersion Z ↪→ Qn.

Proposition 1.3.3.4. Let u : Z ↪→ X be an object of C.

(a) The canonical functor For(m) : C
(m)
α → C has a right adjoint. We denote this right adjoint functor

by P(m),α : C → C
(m)
α . We say that P(m),α(u) is the m-PD-envelope compatible with α of u.

Similarly, we have the right adjoint functor Pn(m),α : C → C
(m)
α,n of the canonical functor For(m)

n : C
(m)
α,n →

C. We say that Pn(m),α(u) is the m-PD-envelope of order n compatible with α of u. We have the
relation Pn(m),α = Qn(m),α ◦ P(m),α.

(b) By an abuse of notation we let P(m),α(u) (resp. Pn(m),α(u)) denote the target of the arrow P(m),α(u)

(resp. Pn(m),α(u)). Let U be an open of X containing Z such that the induced immersion v : Z ↪→ U

is closed. Then the morphism of schemes of P(m),α(u) → U (resp. Pn(m),α(u) → U) is affine. Let
I be the ideal of OU given by v. Then P(m),α(u) = Spec(P(m),α(I), (I(m),α(I),J(m),α(I),[ ] )) (see
notation 1.3.2.13).

(c) If α extends to Z then the source of P(m),α(u) is Z.

(d) Suppose that JS + pOS is locally principal and that X is noetherian. Then Pn(m),α(u) is a noetherian
scheme.

Proof. Let U be an open of X containing Z such that v : Z ↪→ U is a closed immersion. Let I be
the ideal of OU induced by v. Then we check that Spec(P(m),α(I), (I(m),α(I),J(m),α(I),[ ] )) satisfies
the corresponding universal property. Moreover, Pn(m),α = Qn(m),α ◦ P(m),α satisfies the desired universal
property. The other properties are easy.

Notation 1.3.3.5. Let u : Z ↪→ X be an S-immersions of schemes. Let U be an open set of X containing
Z such that the induced immersion v : Z ↪→ U is closed. Let I be the ideal given by v. Let P(m),α(u) :=
v−1P(m),α(I) and Pn(m),α(u) := v−1Pn(m),α(I). Since P(m),α(I) and Pn(m),α(I) have their support in
Z (see 1.3.2.13), then P(m),α(u) and Pn(m),α(u) do not depend on the choice of U . Beware that even
if P(m),α(I) is quasi-coherent with support in Z, we do not expect that P(m),α(u) is a quasi-coherent
OZ-module. The sheaf P(m),α(u) is endowed with the m-PD ideal of (I(m),α(u),J(m),α(u),[ ] ), where
I(m),α(u) := v−1I(m),α(I) and J(m),α(u) := v−1J(m),α(I).

For any m′ ≥ m, from the universal property
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Example 1.3.3.6. From 1.3.2.6, we get the following straightforward example. Let D be an S-scheme
such that α extends to Z. Let u : D ↪→ ArD be the closed immersion induced by T1 = 0, . . . , Tr = 0, where
T1, . . . , Tr are the coordinates of ArD. Let $ : ArD → D be the projection, which yields the quasi-coherent
OD-algebra $∗P(m),α(u). Then we get the m-PD polynomial OD-algebra in the variables T1, . . . , Tr by
setting:

$∗P(m),α(u) = OD〈T1, . . . , Tr〉(m),

where OD〈T1, . . . , Tr〉(m) is the sheafification of 1.3.2.7. In particular, this does not depend on the
compatibility with α. This is a free OD-module with basis T {k} = T

{k1}
1 · · ·T {kd}d such that

T {k
′}T {k

′′} =

ß
k′ + k′′

k′

™
T {k

′+k′′}.

We denote by (ID,(m),r,JD,(m),r,
[ ] ) the canonical m-PD-structure of P(m),α(u). We have

$∗ID,(m),r = ⊕k 6=0ODT {k}, $∗I
{n}
D,(m),r = ⊕k≥nRT {k},

$∗JD,(m),r =

∑
k

akT
{k} : ak ∈ pOD if ki < pm ∀ i


Similarly $∗Pn(m),α(u) = OD〈T1, . . . , Tr〉(m),n.

The purpose of the following Lemma is to introduce the notation 1.3.3.8.

Lemma 1.3.3.7. Let r ≥ 0 be an integer, (v, δ) ∈ C
(m)
α where v : T ↪→ D is a closed S-immersion and

(K̃, δ) is an m-PD-structure compatible with α on the ideal K of OD given by v. Let (tλ)λ=1...r be the
canonical coordinates of ArS/S. Let i : D → D ×S ArS be the closed D-immersion defined by tλ 7→ 0. Let
$ : ArD → D be the projection, which yields the quasi-coherent OD-algebra $∗P(m),δ(i ◦ v).

With notation 1.3.3.4 and 1.3.3.6, we have the following properties.

(a) We have the isomorphism of OD-m-PD-algebras

OD〈T1, . . . , Tr〉(m) → $∗P(m),δ(i ◦ v)

given by Tλ 7→ tλ.

(b) The structural m-PD ideal (I(m),α(i ◦ v),J(m),α(i ◦ v),[ ] ) of P(m),δ(i ◦ v) is given by

I(m),α(i ◦ v) = ID,(m),r +KP(m),δ(i ◦ v),

J(m),α(i ◦ v) = JD,(m),r + K̃P(m),δ(i ◦ v).

Proof. By using the remark 1.3.2.9, we can suppose that v = id. Then, this is a consequence of 1.3.2.6.

Notation 1.3.3.8. With notation 1.3.3.7, we setO(v,δ)〈T1, . . . , Tr〉(m) := $∗P(m),δ(i◦v) andO(v,δ)〈T1, . . . , Tr〉(m),n :=
$∗Pn(m),δ(i ◦ v).

Lemma 1.3.3.9. Let f : X → Y be an étale S-morphism, u : Z ↪→ X and v : Z ↪→ Y be two S-
immersions such that v = f ◦ u.

(a) Pn(m),α(u) = Pn(m),α(v).

(b) Suppose p is locally nilpotent. Then we have the equality P(m),α(u) = P(m),α(v).

Proof. Let us prove the first (resp. second) assertion. Let (P (u), δ) be the m-PD envelope (resp. of order
n) of u. Let us check that the composition of the canonical morphism P (u) → u with the morphism
u→ v (induced by f) satisfies the universal property of the m-PD envelope (resp. of order n). Let (v′, δ′)

be an object of C(m)
α (resp. C

(m)
α,n ) and g : v′ → v be a morphism of C. Using the universal property of

étaleness, since v′ is a nil-immersion, then we get a unique morphism h : v′ → u of C whose composition
with u → v gives g. Using the universal property of the m-PD-envelope of u compatible with α that
there exists a unique morphism (v′, δ′) → (P (u), δ) of C(m)

α (resp. C
(m)
α,n ) such that the composition of

v′ → P (u) with P (u)→ u is h.
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Lemma 1.3.3.10. Let u → v be a morphism of C. Let δ be the m-PD-structure of P(m),α(v) and
w := P(m),α(v) ×v u (this is the product in C). We denote by P(m),δ(w) the m-PD-envelope of w
compatible with δ. Then P(m),δ(w) and P(m),α(u) are isomorphic in C

(m)
α . Moreover, Pn(m),δ(w) and

Pn(m),α(u) are isomorphic in C
(m)
α,n .

Proof. Since the second assertion is checked in the same way, let us prove the first one. Let us check that
the composition P(m),δ(w)→ w → u satisfies the universal property of P(m),α(u)→ u. Let (u′, δ′) ∈ C

(m)
α

and f : u′ → u be a morphism of C. First let us check the existence. Composing f with u → v we get
a morphism g : u′ → v. Using the universal property of the m-PD envelope, there exists a morphism
φ : (u′, δ′)→ (P(m),α(v), δ) of C(m)

α such that the composition u′ → P(m),α(v)→ v is g. Hence, we get the
morphism (φ, f) : u′ → w. Using the universal property of P(m),δ(w), we get a morphism u′ → P(m),δ(w)

of C
(m)
δ (and then of C

(m)
α ) whose composition with P(m),δ(w) → w → u is f . Let us check the

unicity. Let α : u′ → P(m),δ(w) be a morphism of C(m)
α whose composition with P(m),δ(w) → w → u

is f . This implies that the composition of α with P(m),δ(w) → w → P(m),α(v) → v is g. Since the
composition P(m),δ(w) → w → P(m),α(v) is a morphism of C(m)

δ , then so is the composition of α with
P(m),δ(w)→ w → P(m),α(v) (in particular, this implies that α ∈ C

(m)
δ ). Using the universal property of

P(m),α(v), this latter composition morphism is uniquely determined by g. Hence, the composition of α
with P(m),δ(w)→ w is a morphism of C uniquely determined by f . Since α is a morphism of C(m)

δ , we
conclude using the universal property of P(m),δ(w).

Proposition 1.3.3.11. Let f : X → Y be an S-morphism of schemes. Suppose f is endowed with the
coordinates (tλ)λ=1,...,r. Let u : Z ↪→ X and v : Z ↪→ Y be two S-immersions of schemes such that
v = f ◦ u. Suppose that there exist yλ ∈ Γ(Y,OY ) whose images in Γ(Z,OZ) coincide with the images of
tλ. Let $ : P(m),α(u)→ P(m),α(v) and $n : Pn(m),α(u)→ Pn(m),α(v) be the canonical morphisms.

(a) Suppose p is locally nilpotent. We have the following isomorphism of m-PD-OP(m),α(v)-algebras (see
notation 1.3.3.8):

OP(m),α(v)〈T1, . . . , Tr〉(m)
∼−→ $∗OP(m),α(u)

Tλ 7→ tλ − f∗(yλ), (1.3.3.11.1)

where by abuse of notation we denote by tλ and f∗(yλ) the canonical image in OP(m),α(u).

(b) We have the following isomorphism of m-PD-OPn
(m),α

(v)-algebras (see notation 1.3.3.8):

OPn
(m),α

(v)〈T1, . . . , Tr〉(m),n
∼−→ $n∗OPn

(m),α
(u)

Tλ 7→ tλ − f∗(yλ), (1.3.3.11.2)

where on the left side Pn(m),α(v) means the object of C(m)
α (and not the target of the closed immersion),

where by abuse of notation we denote by tλ and f∗(yλ) the canonical image in OPn
(m),α

(u).

Proof. Since 1.3.3.11.2 is checked similarly, let us prove 1.3.3.11.1. Using Lemma 1.3.3.9 (and [Gro60,
5.3.13]), we may assume that X = Y ×S ArS , f : X → Y is the first projection, and that the family
(tλ)λ=1,...,r are the elements of Γ(X,OX) corresponding to the coordinates of Ar. Using Lemma 1.3.3.10,
we may furthermore assume that P(m),α(v) = v and that the target of P(m),α(v) is (S, a, b, α). By using
Lemma 1.3.3.7, we can suppose that v = id.

Let φ : Y ×S ArS → Y ×S ArS be the Y -morphism given by t1 − f∗(y1), . . . , tr − f∗(yr). Let i : Y ↪→
Y ×SArS be the closed immersion defined by tλ 7→ 0. Since φ is etale, since φ◦u = i, using Lemma 1.3.3.9,
we reduce to the case where u is equal to i, and yλ = 0 for any λ = 1, . . . , r. Using 1.3.2.6 this yields
that the morphism OY 〈T1, . . . , Tr〉(m) → OP(m),α(ι) = OP(m),α(i) given by Tλ 7→ tλ is an isomorphism.

Lemma 1.3.3.12. We have the equality Pn(m),γ ◦ Forn ◦ P
n = Pn(m),γ , where Forn : Cn → C is the

canonical functor and Pn : C→ Cn is its right adjoint (see 1.1.1.2).

Proof. Let u : Z ↪→ X be an object of C. Looking at the construction of Pn and Pn(m),γ (see the proof
of 1.1.1.2 and 1.3.3.4), the Lemma is a reformulation of 1.3.2.8.2.
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1.4 Sheaves of differential operators of finite level m and finite
order

Let S be a Spec Z(p)-scheme. Let m ∈ N. Let (a, b, α) be a quasi-coherent m-PD-ideal of OS .

1.4.1 Sheaf of principal parts of level m
Let f : X → S be a smooth morphism.
Remark 1.4.1.1. Since α extends to X, then the m-PD envelope compatible with α (of order n) of the
identity of X is the identity of X. Indeed, using the arguments given in the proof of 3.2.1.3, we can
check that the ideal 0 of OX is endowed with a (unique) m-PD structure compatible with α.

Notation 1.4.1.2. Suppose X is a S-scheme. Let ∆X/S(r) : X ↪→ Xr+1
/S denote the diagonal immersion.

With notation 1.3.3.5, we set

∆n
X/S,(m),α(r) := Pn(m),α(∆X/S(r)), ∆X/S,(m),α(r) := P(m),α(∆X/S(r)).

Let us write PnX/S,(m),α(r) for the m-PD envelope Pn(m),α(∆X/S(r)) of order n of ∆X/S(r) (see 1.3.3.5).
Let U be an open of Xr+1

/S containing the image of ∆X/S(r) such that the induced immersion v : X → U

is closed. Let I(r) be the ideal given by v. Recall, by definition, we have v∗PnX/S,(m),α(r) = Pn(m),α(I(r)).
For i = 0, . . . , r, let pi : Xr+1

/S → X be the projections. Let pUi : U ↪→ Xr+1
/S → X be the morphism induced

by the projection pi. We get the OX -algebra pi∗Pn(m),α(I(r)). Since pUi ◦ v = id then as a sheaf of sets
PnX/S,(m),α(r) = pUi∗Pn(m),α(I(r)). This yields r+1-structures of OX -algebras on PnX/S,(m),α(r). To clarify
which OX -algebra structure we consider, we set pi∗PnX/S,(m),α(r) := pUi∗Pn(m),α(I(r)). By composing pUi
with the canonical morphism ∆n

X/S,(m)(r) → U , we get the projection pni(m) : ∆n
X/S,(m),α(r) → X and

pi(m) : ∆X/S,(m),α(r) → X, for i = 0, . . . , r. We get the ring homomorphisms pni(m) : OX → PnX/S,(m)(r)

and pi(m) : OX → PX/S,(m)(r). We can simply denote pni(m) by pni and pi(m) by pi. The m-PD-ideal of
PnX/S,(m)(r) will be denoted by (InX/S,(m)(r),J

n
X/S,(m)(r),

[ ] ).
When r = 1, we simply write I, ∆n

X/S,(m),α, ∆X/S,(m),α, PnX/S,(m),α, PX/S,(m),α. The left (resp.
right) structure of OX -algebra on PnX/S,(m),α is by definition the one given by p0∗PnX/S,(m),α (resp.
p1∗PnX/S,(m),α).

Definition 1.4.1.3. We say that PnX/S,(m) is the sheaf of principal parts of level m of order n of X/S.

Proposition 1.4.1.4 (Local description). Let g : X → AdS be an étale morphism. Let t1, . . . , td be the
elements of Γ(X,OX) defining g. Set τλ := 1⊗tλ−tλ⊗1 ∈ I(1). For any µ = 0, . . . , r, let pµ : Xr+1

/S → X

be the index µ projection. For any 1 ≤ λ ≤ d, 1 ≤ µ ≤ r, set τλµ = p∗µ(tλ)−p∗µ−1(tλ) = 1⊗· · ·⊗τλ⊗· · ·⊗1.
Let τλµ(m),α (resp. τλµ(m),n,α) be the image of τλµ in PX/S,(m),α(r) (resp. PnX/S,(m),α(r)).

(a) For any i = 0, . . . r, we have the following isomorphism of OX-m-PD-algebras

OX〈Tλµ, 1 ≤ λ ≤ d, 1 ≤ µ ≤ r〉(m),n
∼−→ pi∗PnX/S,(m),α(r),

Tλµ 7→ τλµ,(m),n,α, (1.4.1.4.1)

(b) Suppose p is nilpotent in S. For any i = 0, . . . r, we have the following isomorphism of OX-m-PD-
algebras

OX〈Tλµ, 1 ≤ λ ≤ d, 1 ≤ µ ≤ r〉(m)
∼−→ pi∗PX/S,(m),α(r),

Tλµ 7→ τλµ,(m),α, (1.4.1.4.2)

Proof. By symmetry, we can focus on the case where the structure of OX -algebra of PnX/S,(m),α(r) (resp.
PX/S,(m),α(r)) is given by pn0 (resp. p0). Consider the commutative diagram

AdrS

�

X ×S AdrSq1
oo

q

((
Xr
/S

gr/S

OO

X ×S Xr
/Sq1

oo
p0

//

id×gr/S

OO

X,

(1.4.1.4.3)
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where p0, q1 means respectively the left and right projection, where q is the canonical projection, where
gr/S is the S-morphism induced by g, where id×gr/S is theX-morphism induced by (p∗µ(tλ))λ=1,...,d,µ=1,...,r.
Since étaleness is stable under base change, then (p∗µ(tλ))λ=1,...,d,µ=1,...,r are coordinates of p0. Since the
m-PD envelope compatible with α of order n (resp. m-PD envelope compatible with α) of the identity
of X is X (see remark 1.4.1.1), we can apply in the first assertion (resp. the second one), we are in the
situation to use formula 1.3.3.11.2 (resp. 1.3.3.11.1) in the case where u = ∆ and f is the left projection
p0 : X ×S Xr

/S → X. Hence, we get an isomorphism of the form 1.4.1.4.2 where τλµ,(m),α is replaced by
the image of p∗β(tλ) − p∗0(tλ) in PX/S,(m),α(r) (resp. PnX/S,(m),α(r)) for λ = 1, . . . , d, µ = 1, . . . , r. Since
p∗µ(tλ)− p∗0(tλ) = τλ0 + τλ1 + · · ·+ τλµ, we are done.

In particular, we get the following local description.

Proposition 1.4.1.5 (Local description of PX/S,(m),α). Let (tλ)λ=1,...,r be coordinates of f . Let τλ(m),α

(resp. τλ(m),n,α) be the image of 1⊗ tλ − tλ ⊗ 1 in PX/S,(m),α (resp. PnX/S,(m),α).

(a) For any i = 0, 1, we have the following OX-m-PD isomorphism

OX〈T1, . . . , Tr〉(m),n
∼−→ pi∗PnX/S,(m),α

Tλ 7→ τλ,(m),n,α. (1.4.1.5.1)

(b) Suppose p is nilpotent in S. For any i = 0, 1, we have the following OX-m-PD isomorphism

OX〈T1, . . . , Tr〉(m)
∼−→ pi∗PX/S,(m),α

Tλ 7→ τλ,(m),α. (1.4.1.5.2)

Corollary 1.4.1.6. Suppose p is nilpotent in S. Let f : X → Y be an étale morphism of smooth S-
schemes. Then the canonical homomorphism f∗PY/S,(m)(r)→ PX/S,(m)(r) is an isomorphism.

Proof. Since this is local then we can suppose there exists an étale morphism of S-schemes the form
Y → AdS . Hence, this follows from 1.4.1.4.

Remark 1.4.1.7. (a) From the local description 1.4.1.4.1, we get that PnX/S,(m),α(r) does not depend on
the m-PD-structure (satisfying the conditions of the subsection). Hence, from now, we reduce to
the case where α = α∅ (see Notation 1.3.3.2) and we remove α in the notation: we simply write
PnX/S,(m)(r), ∆n

X/S,(m)(r), τλβ(m),n, τλ(m),n.

(b) Suppose p is nilpotent in S. From 1.4.1.4.2, PX/S,(m),α(r) does not depend on the m-PD-structure
(satisfying the conditions of the subsection). Hence, we can remove α in the corresponding notation.

Remark 1.4.1.8. From the local description of 1.4.1.5, we get that the morphisms pni are finite.

Notation 1.4.1.9. For any integerm′ ≥ m and n′ ≥ n, we remark that the canonical map PnX/S,(m′)(r)→
PnX/S,(m)(r) (resp. Pn′X/S,(m)(r)→ P

n
X/S,(m)(r)) sends τλµ(m′),n to τλµ(m),n (resp. τλµ(m),n′ to τλµ(m),n).

Hence, this will be harmless to denote abusively τλµ(m),n by τλµ. Similarly, we can simply denote
abusively τλ(m),n by τλ.

1.4.1.10. Suppose p is nilpotent in S. Let g : S′ → S be a morphism of schemes, let (a′, b′, α′) be a
quasi-coherent m-PD-ideal of OS′ such that g becomes an m-PD-morphism. Put X ′ := X ×S S′. Then,
the m-PD-morphism ∆X′/S′,(m) → ∆X/S,(m) induces the isomorphism ∆X′/S′,(m)

∼−→ ∆X/S,(m) ×S S′.
Indeed, this is equivalent to check that the morphism g∗PX/S,(m) → PX′/S′,(m) is an isomorphism. This
can be checked by using the local description of 1.4.1.4.1.

1.4.1.11. Let m′ ≥ m be two integers. Since C
′(m)
n ⊂ C

′(m′)
n , then by using the universal property

defining ∆n
X/S,(m′) we get a morphism ψnm,m′ : ∆n

X/S,(m) → ∆n
X/S,(m′) and then the homomorphism

ψnm,m′ : PnX/S,(m′) → P
n
X/S,(m). We also get the equalities

pni(m) ◦ ψ
n
m,m′ = pni(m′) and pni ◦ ψnm = pni(m). (1.4.1.11.1)
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From 1.3.3.12, we get Pn(m)(P
n(∆X/S)) = Pn(m)(∆X/S). By using the universal property of the m-PD

envelopes we can check that ψnm,m′ ◦ψnm′,m′′ = ψnm,m′′ for m ≤ m′ ≤ m′′. Hence, we get a canonical map
ψnm : ∆n

X/S,(m) → ∆n
X/S and then the homomorphism ψnm : PnX/S → P

n
X/S,(m).

Now, suppose that X → S is endowed with coordinates (tλ)λ=1,...,r. With the notation of 1.4.1.5 and
1.4.1.9, following 1.3.2.10 we have

ψnm,m′(τ
{k}(m′)) =

q
(m)
k !

q
(m′)
k !

τ{k}(m) , (1.4.1.11.2)

where τ{k}(m) :=
∏r
λ=1 τ

{kλ}(m)

λ , q(m)
k ! :=

∏r
λ=1 q

(m)
kλ

! and similarly with some primes. Moreover, we

compute ψnm(τk) = q
(m)
k !τ{k}(m) .

1.4.1.12. By composing the canonical morphism ∆X/S,(m)(r)→ X]r+1
/S and ∆n

X/S,(m)(r)→ X]r+1
/S with

the ith projection pi : X
]r+1
/S → X for i = 0, . . . , r, we get

pi,(m)(r) : ∆n
X/S,(m)(r)→ X, pni,(m)(r) : ∆n

X/S,(m)(r)→ X. (1.4.1.12.1)

If there are no risk of confusion, we can simply write pi. We denote by ∆X/S,(m)(r)×pi,X,pi′ ∆X/S,(m)(r
′)

the base change of pi,(m) : ∆X/S,(m)(r) → X by pi′,(m) : ∆X/S,(m)(r
′) → X. The immersion X ↪→

∆X/S,(m)(r) ×pi,X,pi′ ∆X/S,(m)(r
′) induced by X ↪→ ∆X/S,(m)(r) and X ↪→ ∆X/S,(m)(r

′) is an closed
immersion endowed with a canonical m-PD structure. Indeed, this is an easy consequence of 1.4.1.5 (for
more details, see [Ber96c, 2.1.3.(i)]). Moreover, by using the universal property of m-PD-envelopes, we
get the m-PD-morphism q(m)(r, r

′) making commutative the diagram:

X �
� // ∆X/S,(m)(r)×pi,X,pi′ ∆X/S,(m)(r

′)

q(m)(r,r
′)

��

// Xr+1
/S ×pi,X,pi′ X

r′+1
/S

pi×pi′ //

∼
��

X ×X X

∼

��
X �
� // ∆X/S,(m)(r + r′) // Xr+r′+1

/S

pi // X.

(1.4.1.12.2)

By using again 1.4.1.5, we check that this arrow q(m)(r, r
′) is in fact an m-PD-isomorphism. Similarly,

the immersion X ↪→ ∆n
X/S,(m)(r)×X ∆n′

X/S,(m)(r
′) induced by X ↪→ ∆n

X/S,(m)(r) and X ↪→ ∆n′

X/S,(m)(r
′)

is a closed immersion endowed with a canonical m-PD structure of order n+ n′ and we have the m-PD-
morphism qn,n

′

(m) (r, r′) making commutative the diagram

X
� � // ∆n

X/S,(m)(r)×pi,X,pi′ ∆n′

X/S,(m)(r
′)

qn,n
′

(m)
(r,r′)

��

// Xr+1
/S ×pi,X,pi′ X

r′+1
/S

pi×pi′ //

∼
��

X ×X X

∼

��
X �
� // ∆n+n′

X/S,(m)(r + r′) // Xr+r′+1
/S

pi // X.

(1.4.1.12.3)

When r = r′ = 1, we simply write q(m) and qn,n
′

(m) .

Notation 1.4.1.13. For any integer n and any integers 0 ≤ i < j ≤ 2, it follows from the universal
property of m-PD-envelopes of order n that we get a unique m-PD-morphism qnij,(m) : ∆n

X/S,(m)(2) →
∆n
X/S,(m) making commutative the diagram

X �
� // ∆n

X/S,(m)(2)

qnij,(m)

��

// X ×S X ×S X

pij

��

pi //

pj
// X

X �
� // ∆n

X/S,(m)
// X ×S X

p0 //

p1

// X

(1.4.1.13.1)
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We still denote by qnij,(m) : p0∗PnX/S,(m) → pi∗PnX/S,(m)(2) or qnij,(m) : p1∗PnX/S,(m) → pj∗PnX/S,(m)(2)
the corresponding homomorphism of m-PD-OX -algebras. We can simply write the m-PD-morphism
qnij,(m) : PnX/S,(m) → PnX/S,(m)(2) and recall that this homomorphism is also a homomorphism of m-
PD-OX -algebras for two structures. Similarly we denote by qij,(m) : ∆X/S,(m)(2) → ∆X/S,(m) making
commutative the diagram 1.4.1.13.1 without the order n condition.

Notation 1.4.1.14. Let E be anOX -module. By convention, PnX/S,(m)⊗OXE means pn1∗(PnX/S,(m))⊗OXE
and E⊗OXPnX/S,(m) means E⊗OXpn0∗(PnX/S,(m)). For instance, P

n
X/S,(m)⊗OXP

n′

X/S,(m) is p
n
1∗(PnX/S,(m))⊗OX

pn
′

0∗(Pn
′

X/S,(m)).
We have two structures of OX -module on the sheaf PnX/S,(m) ⊗OX E : the “left structure” given by

functoriality from the left structure of PnX/S,(m) and the “right structure” given by the internal tensor
product. We denote by p0∗(PnX/S,(m) ⊗OX E) (resp. p1∗(PnX/S,(m) ⊗OX E)) to clarify we are considering
the left structure (resp. right structure).

Similarly, we denote by p0∗(E ⊗OX PnX/S,(m)) (resp. p1∗(E ⊗OX PnX/S,(m))) the OX -module given by
the internal tensor product (resp. by functoriality from the right OX -module structure of PnX/S,(m))
which is called the left (resp. right) structure.

We denote by pn0,E : E → p0∗(E ⊗OX PnX/S,(m)) the canonical OX -linear map given by x 7→ x⊗ 1, i.e.
is the composition of idE ⊗pn0 with the canonical isomorphism E ∼−→ E ⊗OX P0

X/S,(m). We denote by
pn1,E : E → p1∗(PnX/S,(m)⊗OX E) the canonical map given by x 7→ 1⊗x, i.e. is the composition of pn1 ⊗ idE

with the canonical isomorphism E ∼−→ P0
X/S,(m) ⊗OX E .

Notation 1.4.1.15. We simply denote by ∆n
X/S,(m)×X∆n′

X/S,(m) the base change of p
n′

0,(m) : ∆n′

X/S,(m) →
X by pn1,(m) : ∆n

X/S,(m) → X. Similarly, X2
/S ×p1,X,p0 X

2
/S is simply denoted by X2

/S ×X X2
/S . By

composition of 1.4.1.12.3 and 1.4.1.13.1, we get

X �
� // ∆n

X/S,(m) ×X ∆n′

X/S,(m)
//

qn,n
′

(m)

��

X2
/S ×X X2

/S
∼ // X ×S X ×S X

X �
� // ∆n+n′

X/S,(m)(2)

qn+n′
ij,(m)

��

// X ×S X ×S X

pij

��

pi //

pj
// X

X �
� // ∆n+n′

X/S,(m)
// X ×S X

p0 //

p1

// X.

(1.4.1.15.1)

We get the morphism pn,n
′

ij,(m) := qn+n′

ij,(m) ◦ q
n,n′

(m) : ∆n
X/S,(m) ×X ∆n′

X/S,(m) → ∆n+n′

X/S,(m) (which satisfies also

a universal property). The morphism pn,n
′

01,(m) is the composition

pn,n
′

01,(m) : ∆n
X/S,(m) ×X ∆n′

X/S,(m) → ∆n
X/S,(m)

ψn+n′,n
X/S,(m)

↪→ ∆n+n′

X/S,(m),

where the first morphism is given by the left projection. Similarly, pn,n
′

12,(m) is the composition ∆n
X/S,(m)×X

∆n′

X/S,(m) → ∆n′

X/S,(m) → ∆n+n′

X/S,(m), where the first morphism is given by the right projection.
By composing the canonical morphism ∆n

X/S,(m)×X∆n′

X/S,(m) → X×SX×SX with the ith projection
pi : X ×S X ×S X → X for i = 0, 1, 2, we get

pn,n
′

i,(m) : ∆n
X/S,(m) ×X ∆n′

X/S,(m) → X. (1.4.1.15.2)

This yields three ring homomorphisms pn,n
′

i,(m) : OX → PnX,(m)⊗OX P
n′

X,(m). When i = 0 (resp. i = 1, resp.
i = 2), this is said to be the left (resp. middle, resp right) OX -algebra structure of PnX,(m) ⊗OX P

n′

X,(m)

and this is equal to the OX -algebra structure given by the left structure of PnX/S,(m) (resp. the tensor
product, resp. the right structure of Pn′X/S,(m)). Using the associated universal properties, we have the

equalities pn,n
′

i,(m) = pn+n′

i,(m)(2) ◦ pn,n
′

ij,(m) for any i, j = 0, 1, 2.
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We denote by δn,n
′

(m) : Pn+n′

X/S,(m) → P
n
X/S,(m) ⊗OX P

n′

X/S,(m) (resp. qn,n
′

0(m) : Pn+n′

X/S,(m) → P
n
X/S,(m) ⊗OX

Pn′X/S,(m), resp. q
n,n′

1(m) : Pn+n′

X/S,(m) → P
n
X/S,(m) ⊗OX P

n′

X/S,(m)) the morphism of m-PD-algebras associated

to the morphism pn,n
′

02,(m) (resp. pn,n
′

01,(m), resp. pn,n
′

12,(m)). If there is no doubt on the level, we can also

simply write δn,n
′
, qn,n

′

0 , qn,n
′

1 .
The morphism qn,n

′

0(m) is equal to the composition qn,n
′

0(m) : Pn+n′

X/S,(m) → PnX/S,(m) → PnX/S,(m) ⊗OX
Pn′X/S,(m) (the last morphism is τ 7→ τ⊗1). Moreover, qn,n

′

1(m) is equal to the composition qn,n
′

1(m) : Pn+n′

X/S,(m) →
Pn′X/S,(m) → P

n
X/S,(m)⊗OXP

n′

X/S,(m) (the last morphism is τ 7→ 1⊗τ). In order words, we have the relation

qn,n
′

0(m) = $n,n′

i(m)◦ψ
n+n′,n
X/S,(m) and q

n,n′

1(m) = $n,n′

i(m)◦ψ
n+n′,n′

X/S,(m), where $
n,n′

0(m) : PnX/S,(m) → P
n
X/S,(m)⊗OX P

n′

X/S,(m)

and $n,n′

1(m) : Pn′X/S,(m) → P
n
X/S,(m)⊗OX P

n′

X/S,(m) are the homomorphisms associated with the projections.

The morphism qn,n
′

0(m) is OX -linear for the left (resp. right) structure of Pn+n′

X/S(m) and the left structure

(resp. of the center) of PnX/S(m) ⊗OX P
n′

X/S(m). Finally, the morphism qn,n
′

0(m) is OX -linear for the left

(resp. right) structure of Pn+n′

X/S(m) and the structure of the center (resp. right) of PnX/S(m)⊗OX P
n′

X/S(m).

Using the commutativity of the diagram 1.4.1.15.1, we see that δn,n
′

(m) is also an OX -algebra homomor-

phism for the respective left structures and for the respective right structures, i.e., δn,n
′

(m) ◦ p
n+n′

0,(m) = pn,n
′

0,(m)

and δn,n
′

(m) ◦p
n+n′

1,(m) = pn,n
′

2,(m). Using the commutativity of the diagram 1.4.1.15.1, we see that the morphism

qn,n
′

0(m) is OX -linear for the left (resp. right) structure of Pn+n′

X/S(m) and the left (resp. middle) structure of
PnX/S(m) ⊗OX P

n′

X/S(m).
By using 1.4.1.11 and the universal property of the m-PD envelopes, these morphisms are compatible

with the change of level and we have the commutative diagram:

Pn+n′

X/S

δn,n
′

��

// Pn+n′

X/S,(m′)

δn,n
′

(m′)
��

ψn+n′

m,m′ // Pn+n′

X/S,(m)

δn,n
′

(m)

��
PnX/S ⊗OX P

n′

X/S
// PnX/S,(m′) ⊗OX P

n′

X/S,(m′)

ψn
m,m′⊗ψ

n′
m,m′// PnX/S,(m) ⊗OX P

n′

X/S,(m).

(1.4.1.15.3)

Remark 1.4.1.16. The canonical m-PD structure on ∆n
X/S,(m) ×X ∆n′

X/S,(m) is characterized by the fol-

lowing property: the projections qn,n
′

0(m) : ∆n
X/S,(m) ×X ∆n′

X/S,(m) → ∆n
X/S,(m) and qn,n

′

1(m) : ∆n
X/S,(m) ×X

∆n′

X/S,(m) → ∆n′

X/S,(m) are morphisms of C(m)
n+n′ .

1.4.1.17. Suppose that f has coordinates (tλ)λ=1,...,r. With the notation of 1.4.1.5 and 1.4.1.9, since
δn,n

′
(a⊗ b) = (a⊗ 1)⊗ (1⊗ b) for any a, b,∈ OX , then

δn,n
′

(m) (τi) = τi ⊗ 1 + 1⊗ τi. (1.4.1.17.1)

The following Lemma will be useful to check the associativity of the product law of the sheaf of
differential operator:

Lemma 1.4.1.18. We denote by ∆n
X/S,(m)×X∆n′

X/S,(m)×X∆n′′

X/S,(m) the base change of p
n′

0 ◦q
n′,n′′

0 : ∆n′

X/S,(m)×X
∆n′′

X/S,(m) → X by pn1 : ∆n
X/S,(m) → X. The closed immersion X ↪→ ∆n

X/S,(m)×X ∆n′

X/S,(m)×X ∆n′′

X/S,(m)

induced by X ↪→ ∆n
X/S,(m), X ↪→ ∆n′

X/S,(m) and X ↪→ ∆n′′

X/S,(m) is endowed with a canonical m-PD struc-

ture. By abuse of notation, we denote by ∆n
X/S,(m) ×X ∆n′

X/S,(m) ×X ∆n′′

X/S,(m) this object of C(m)
n+n′+n′′ .

This m-PD structure on ∆n
X/S,(m) ×X ∆n′

X/S,(m) ×X ∆n′′

X/S,(m) is characterized by the following property:
the projections ∆n

X/S,(m)×X ∆n′

X/S,(m)×X ∆n′′

X/S,(m) → ∆n
X/S,(m), ∆n

X/S,(m)×X ∆n′

X/S,(m)×X ∆n′′

X/S,(m) →
∆n′

X/S,(m), and ∆n
X/S,(m) ×X ∆n′

X/S,(m) ×X ∆n′′

X/S,(m) → ∆n′′

X/S,(m) are morphisms of C(m)
n+n′+n′′ .

Proof. This is checked similarly to 1.4.1.12.
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1.4.2 Differential operators of level m
Let f : X → S be a smooth morphism.

Definition 1.4.2.1. (a) The sheaf of differential operators on X/S of level m and order n is

D(m)
X/S,n := HomOX (p0∗PnX/S,(m),OX). (1.4.2.1.1)

(b) For any n′ ≥ n, the surjections ψn
′,n∗

X/S,(m) : Pn′X/S,(m) ↪→ P
n
X/S,(m) induces the injections

ρ
(m)
n′,n : D(m)

X/S,n ↪→ D
(m)
X/S,n′ . (1.4.2.1.2)

The sheaf of differential operators on X/S of level m is

D(m)
X/S :=

⋃
n≥0

D(m)
X/S,n.

(c) The tautological structure of OX -module on D(m)
X/S,n is said to be the left one. For any a ∈ OX ,

we have the map D(m)
X/S,n → D

(m)
X/S,n induced by the OX -linear map pn1(m)(a) : pn0(m)∗P

n
X/S,(m) →

pn0(m)∗P
n
X/S,(m). This yields another structure of OX -module on D(m)

X/S,n which is called the right

structure of OX -module. For any n′ ≥ n, the homomorphisms D(m)
X/S,n → D

(m)
X/S,n are OX -linear for

both structures. This yields two structures of OX -modules on D(m)
X/S , the left one and the right one.

We write p0∗D(m)
X/S,n (resp. p1∗D(m)

X/S,n) when we consider the left structure (resp. the right one).

(d) Let P ∈ D(m)
X/S,n, P

′ ∈ D(m)
X/S,n′ . We define the product PP ′ ∈ D(m)

X/S,n+n′ to be the composition

PP ′ : Pn+n′

X/S,(m)

δn,n
′

(m)−→ PnX/S,(m) ⊗OX P
n′

X/S,(m)
id⊗P ′−→ PnX/S,(m)

P−→ OX . (1.4.2.1.3)

Proposition 1.4.2.2. The sheaf D(m)
X/S is a sheaf of rings with the product as defined in 1.4.2.1.3.

Proof. We have to check the product as defined in 1.4.2.1.3 is associative. To simplify notation, let us
denote PX/S,(m) (resp. OX) by P (resp. O), i.e. we remove the index in the notation. One checks the
commutativity of the diagram

Pn+n′+n′′

(PP ′)P ′′

��

Pn+n′+n′′
δn,n

′+n′′
(m) //

δn+n′,n′′
(m)��

Pn ⊗O Pn
′+n′′

id⊗δn
′,n′′

(m)��
Pn ⊗O Pn

′+n′′

id⊗P ′P ′′

��

Pn+n′ ⊗O Pn
′′δ
n,n′
(m)
⊗id
//

id⊗P ′′��
Pn ⊗O Pn

′ ⊗O Pn
′′

id⊗ id⊗P ′′��
Pn+n′

δn,n
′

(m) //

PP ′��

Pn ⊗O Pn
′

id⊗P ′��
O O Pn

P
oo Pn.

(1.4.2.2.1)

Indeed, let us check the commutativity of the top square of the middle. Since this is local, we can
suppose that f has coordinates (tλ)λ=1,...,r. With the notation of 1.4.1.5 and 1.4.1.9, by using 1.4.1.17.1,
we compute that the images of τ1, . . . , τr by both maps Pn+n′+n′′

X/S,(m) → P
n
X/S,(m)⊗OXP

n′

X/S,(m)⊗OXP
n′′

X/S,(m)

are the same. Since both maps arem-PD-morphisms (see 1.4.1.18 for them-PD-structure), then by using
1.4.1.5 we get the desired commutativity. Since the commutativity of the other squares are obvious, we
conclude the proof.

Notation 1.4.2.3 (Local description). Let X/S is equipped with coordinates t1, . . . , td. The PnX/S,(m)

is isomorphic to an m-PD polynomial algebra with coefficients in OX of order n in d variables given
by τ1, . . . , τd (see 1.4.1.5 and 1.4.1.9). In particular, PnX/S,(m) is a free OX -module with basis {τ{k}(m) :
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|k| ≤ n}. Let {∂〈k〉(m) : |k| ≤ n} be the dual basis for D(m)
X/S,n = HomOX (PnX/S,(m),OX). Remark that

the notation ∂〈k〉(m) does not depends on n, since the monomorphisms D(m)
X/S,n → D

(m)
X/S,n+1 sends ∂〈k〉(m)

to ∂〈k〉(m) . We get the basis {∂〈k〉(m) : k ∈ Nd} of D(m)
X/S .

1.4.2.4. We have OX = P0
X/S,(m) and by duality OX = D(m)

X/S,0. This yields the inclusion OX ↪→ D(m)
X/S .

From 1.4.2.1.3, we remark that OX is in fact a subring of D(m)
X/S . Moreover, since D(m)

X/S is a D(m)
X/S-

bimodule, this yields that D(m)
X/S is a OX -bimodule. We compute that D(m)

X/S,n is a sub OX -bimodule

of D(m)
X/S . Moreover, the structure of OX -module on D(m)

X/S,n coming from the multiplication on the left
(resp. the right) is equal to the left structure (resp. right structure) which was defined in 1.4.2.1.1.c.

1.4.2.5. For any m′ ≥ m, from the homomorphisms ψnm,m′ : PnX/S,(m′) → P
n
X/S,(m) and ψnm : PnX/S →

PnX/S,(m) of 1.4.1.11, we get by duality, the maps

D(m)
X/S

ρm′,m−→ D(m′)
X/S

ρm′−→ DX/S . (1.4.2.5.1)

It follows from 1.1.4.1.1, 1.4.2.1.3 and 1.4.1.15.3 that the maps of 1.4.2.5.1 are homomorphisms of filtered
rings.

When X/S is equipped with coordinates t1, . . . , td, we obtain by duality from 1.4.1.11.2 the formula

ρm′,m(∂〈k〉(m)) =
q

(m)
k !

q
(m′)
k !

∂〈k〉(m′) and ρm(∂〈k〉(m)) = q(m)
k

!∂[k]. (1.4.2.5.2)

By taking the inductive limit of ρm, we get the filtered ring morphism

ρ : lim−→
m

D(m)
X/S

∼−→ DX/S , (1.4.2.5.3)

which is an isomorphism (since this is local, this is an easy consequence of the formula 1.4.2.5.2). However,
beware that the homomorphisms 1.4.2.5.1 are not necessarily injective.

Since OX is endowed with a canonical structure of left DX/S-module, this induces a structure of left
D(m)
X/S-module on OX . It follows from 1.1.4.1.2 and 1.4.2.5.1 that the structure of D(m)

X/S-module of OX
is given via the formula

P (f) := P ◦ pn1(m)(f). (1.4.2.5.4)

Notation 1.4.2.6 (Infinite level). When f : X → S be a weakly smooth morphism, we write D(∞)
X/S :=

DX/S , PnX/S,(∞) = PnX/S,(m). The notation is justified by the isomorphism 1.4.2.5.3, i.e. we can viewed
the usual sheaf of differential operators as the sheaf of differential operators of infinite level.

Proposition 1.4.2.7. With notation 1.4.2.3, the following rules hold in D(m)
X/S.

(a) For any x ∈ Γ(X,OX), pn1,(m)(x) =
∑
|k|≤n p

n
0,(m)(∂

〈k〉(x))τ{k} ∈ PnX,(m) (Taylor formula).

(b) For any x ∈ Γ(X,OX) and k ∈ Nr, we have in Γ(X,D(m)
X/S)

∂〈k〉(m)x =
∑
i≤k

¶
k
i

©
∂〈k−i〉(m)(x)∂〈i〉(m) . (1.4.2.7.1)

(c) ∀ k′, k′′ ∈ Nd, ∂〈k
′〉∂〈k

′′〉 =
¨
k′+k′′

k′

∂
∂〈k
′+k′′〉,

(d) ∀ k, i ∈ Nd, if i ≥ k, ∂〈k〉(m)(ti) = q
(m)
k !

Ä
i
k

ä
ti−k.

Proof. a) Taylor formula 3.2.3.7.1 comes from the fact that {∂〈k〉(m) , |k| ≤ n} is the dual basis of
{τ{k}(m) , |k| ≤ n}.
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b) Let k ∈ Nr and n = |k|. Since δn,0(m) = id, then by definition of the multiplication (see 1.4.2.1.3),
we get

∂〈k〉(m)x(τ{i}(m)) = ∂〈k〉(m)(pn∗1,(m)(x)τ{i}(m)) = ∂〈k〉(m)

Ñ∑
|j|≤n

∂〈j〉(x)τ{j}τ{i}(m)

é
(1.4.2.7.2)

=
1.2.4.5.3

∂〈k〉(m)

Ñ∑
|j|≤n

®
i+ j

j

´
(m)

∂〈j〉(x)τ{j+i}

é
=

ß
k

i

™
(m)

∂〈k−i〉(m)(x)τ{j+i}. (1.4.2.7.3)

c) Since δn,n
′

(m) (τi) = τi ⊗ 1 + 1⊗ τi (see 1.4.1.17.1), then ∀ k′, k′′ ∈ Nd, setting n = |k| and n′ = |k′|,
we get

∂〈k
′〉∂〈k

′′〉(τ{i}) = ∂〈k
′〉 ◦ (id⊗∂〈k

′′〉) ◦ δn,n
′

(m) (τ{i}) = ∂〈k
′〉 ◦ (id⊗∂〈k

′′〉)(τ ⊗ 1 + 1⊗ τ){i})

=
1.2.4.5.2

∂〈k
′〉 ◦ (id⊗∂〈k

′′〉)

Ñ ∑
i′+i′′=i

≠
i

i′

∑
(m)

(τ{i
′}(m) ⊗ τ{i

′′}(m))

é
. (1.4.2.7.4)

Hence, if i = k′ + k′′, then ∂〈k
′〉∂〈k

′′〉(τ{i}) =
¨
k′+k′′

k′

∂
, otherwise this is null.

d) The last computation follows from the Tayor formula and the computation

pn∗1,(m)(t
i) =

Ä
pn∗1,(m)(t)

äi
=
Ä
pn∗0,(m)(t) + τ

äi
=

1.2.4.5.1

∑
k≤i

q
(m)
k !

Å
i

k

ã
ti−kτ{k}.

1.4.2.8. We have the following properties.

(a) For any integer k, we denote by (k)i ∈ Nd the element (k)i = (0, . . . , k, . . . , 0), where k is at the ith
place. We set ∂〈k〉i := ∂〈(k)i〉.

(b) It follows from 1.4.2.7.c that ∀ k′, k′′ ∈ Nd, we have ∂〈k
′〉∂〈k

′′〉 = ∂〈k
′′〉∂〈k

′〉. Hence, for any k we
have

∂〈k〉 =
d∏
i=1

∂
〈ki〉
i . (1.4.2.8.1)

For k ∈ N, k =
∑m−1
j=0 ajp

j +apm, with 0 ≤ aj < p for all j. It follows from 1.2.1.5 and 1.4.2.7.c that

∂
〈k〉
i = u

(
m−1∏
j=0

(∂
〈pj〉
i )aj

)
(∂
〈pm〉
i )a (1.4.2.8.2)

for some invertible elements u in Z(p) (u = 1 if m = 0).

(c) If k = pmq + r with 0 ≤ ri < pm If ri =
∑m−1
j=0 ai,jp

j with 0 ≤ ai,j < p, then

∂〈k〉 = uk

p∏
i=1

(
m−1∏
j=0

(∂
〈pj〉
i )ai,j

)
(∂

[pm]
i )qi (1.4.2.8.3)

for some invertible elements uk in Z∗(p).

We have the well known and easy result (e.g. see [LvO96, II.1.2 Proposition 3] or [BGK+87, II.5.2])
that we recall for the reader.

Lemma 1.4.2.9. Let D = ∪n∈NDn be a filtered ring (i.e. Dn are abelian groups such that Dn ·Dn′ ⊂
Dn+n′) such that grD = D0 ⊕⊕n≥1Dn/Dn−1 is noetherian. Then D is noetherian.
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Proposition 1.4.2.10. Under the hypotheses 1.4.2.3, the sheaf D(m)
X/S is generated as OS-algebra by OX

and the two by two commuting operators ∂i, ∂
〈p〉
i , · · · , ∂〈p

m〉
i , 1 ≤ i ≤ r.

More precisely, fix 1 ≤ i ≤ r. Then, for any 0 ≤ j ≤ m, for any 0 ≤ k < pj, the operator ∂〈k〉i belongs
to the sub Z(p)-algebra of D(m)

X/S generated by ∂i, ∂
〈p〉
i , · · · , ∂〈p

j−1〉
i . Moreover, for any k ∈ N, ∂〈k〉i belongs

to the sub Z(p)-algebra of D(m)
X/S generated by ∂i, ∂

〈p〉
i · · · , ∂

〈pm〉
i .

Proof. This is a straightforward consequence of the formula 1.4.2.8.3.

Proposition 1.4.2.11. We have the following properties.

(a) The graded ring gr D(m)
X/S associated to the order filtration (D(m)

X/S,n)n∈N is a commutative ring.

(b) Suppose S be a locally noetherian scheme. Let U be an affine open of X (resp. x ∈ X). Then
Γ(U, gr D(m)

X/S) (resp. D(m)
U := Γ(U,D(m)

X/S), resp. gr D(m)
X/S,x, resp. D

(m)
X/S,x) is left and right noethe-

rian.

Proof. Let us check (a). Since this is local, we can suppose Let X/S is equipped with coordinates
t1, . . . , td. Then this follows from the formulas 1.4.2.7.c and 1.4.2.7.b.

Let us prove (b). As U is affine, it is a coherent topological space, so that the functor Γ(U,−)

commutes with filtered inductive limits (see [SGA4.2] VI, 5.2). Thus the ring D(m)
U has filtration by order

and its associated graded ring is commutative and is noetherian because it is generated as Γ(U,OX)-
algebra by the finitely generated Γ(U,OX)-modules griD

(m)
U = Γ(U, griD

(m)
X/S) for i < pm (use 1.4.2.10).

This implies that the filtered ring D(m)
U is left and right noetherian (see 1.4.2.9). We proceed similarly

for the two remaining cases.

Remark 1.4.2.12. Beware that the proposition 1.1.4.5 is false in the case of finite level. For instance,
E = OX/tpOX is a D(0)

X -module which is OX -coherent but it is not a locally free OX -module.

1.4.3 Tor dimension, Cartan’s theorems A and B, perfection
Let us recall some facts on tor dimension and perfection which will be useful later.

Definition 1.4.3.1. Let D be a sheaf of rings on a topological space. Let E• ∈ C(lD).

1. Let a, b ∈ Z with a ≤ b. We say E• has tor-amplitude in [a, b] if Hi(M⊗L
D E•) = 0 for all right

D-modulesM and all i 6∈ [a, b].

2. We say E• has finite tor dimension if it has tor-amplitude in [a, b] for some integer a ≤ b. We
denote by Dtdf(D) the strictly full subcategory of D(D) consisting of complexes having finite tor
dimension on D.

3. We say E• locally has finite tor dimension if there exists an open covering {Uλ}λ∈Λ of X such that
E•|Uλ has finite tor dimension and for each λ ∈ Λ.

1.4.3.2. Let D be a sheaf of rings on a topological space X. Let E• ∈ C(lD). Let a, b ∈ Z with a ≤ b.
The following properties are equivalent.

(a) The complex E• has tor-amplitude in [a, b].

(b) There exists a complex P• of flat left D-modules with Pi = 0 for i 6∈ [a, b] together with a quasi-
isomorphism of K(lD) of the form P• → E•.

(c) For any x ∈ X, the complex E•x has tor-amplitude in [a, b].

Indeed, for the equivalence between (a) and (b) (resp. (a) and (c)), we can follow the proof of [Sta22,
08CI] (resp. [Sta22, 09U9]).

We will need later (see 5.3.2.12) the following lemma.
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Lemma 1.4.3.3. Let X be a scheme and D be a sheaf of rings on X endowed with a morphism of rings
OX → D. Let E• ∈ K(lD). Let a, b ∈ Z with a ≤ b. The following properties are equivalent.

(a) The complex E• has tor-amplitude in [a, b].

(b) We have Hn(M⊗L
D E•) = 0 for all right D-modules M which are quasi-coherent as OX-modules,

and all n 6∈ [a, b].

Proof. The implication (a)⇒ (b) is obvious by definition. Let us prove that the property (b) implies the
property 1.4.3.2.(c). Suppose E• satisfies the condition (b). LetM be a rightDx-modules and let n 6∈ [a, b]
be an integer. Let ix : Spec k(x) → X be the morphism induced by x. Since ix∗M is a quasi-coherent
right D-module, then Hn(ix∗M⊗L

DE•) = 0. Since i−1
x is exact and since i−1

x (ix∗M⊗L
DE•)

∼−→ M⊗L
Dx E

•
x ,

then Hn(M ⊗L
Dx E

•
x) = 0.

Lemma 1.4.3.4. Let ρ : D → D′ be an homomorphism of sheaf of rings on a topological space. We get
the functors ρ∗ : D(lD′)→ D(lD) and Lρ∗ = D′ ⊗L

D − : D(lD)→ D(lD′). Let a, b ∈ Z with a ≤ b.

(a) If E• ∈ D(lD) has tor amplitude in [a, b] then Lρ∗(E•) has tor-amplitude in [a, b].

(b) Suppose that D′ has tor-amplitude in [−d, 0] for some d ∈ N as a complex of K(rD). If E ′• ∈ D(lD′)
has tor amplitude in [a, b] then ρ∗(E ′•) has tor-amplitude in [a− d, b].

Proof. LetM′ be a right D′-module. The part (a) is a consequence of the isomorphismM′ ⊗L
D′ (D′ ⊗L

D
E•) ∼−→ M′ ⊗L

D E•. LetM be a right D-module. The part (b) of lemma follows from the isomorphism
M⊗L

D E ′•
∼−→ (M⊗L

D D′)⊗L
D′ E ′•.

Definition 1.4.3.5 (tor-dimension of a ring). Let D be a sheaf of rings on a topological space X. We
define the “tor-dimension of the sheaf of ring D” to be the following number (possibly ∞):

tor .dim(D) := sup{n ∈ N : TorDn (M, E) 6= 0 for some left (resp. right) D-module E (resp. M)}.

We say that D has finite tor dimension if tor .dim(D) ∈ N. We say that D has locally finite tor dimension
if there exists an open covering {Uλ → X}λ∈Λ such that D|Uλ has finite tor dimension for any λ ∈ Λ.

1.4.3.6. Let D be a sheaf of rings on a topological space X. Let n ∈ N. By definition, the following
conditions are equivalent:

(a) tor .dim(D) ≤ n ;

(b) We have TorDi (M, E) = 0 for any integer i > n and any left (resp. right) D-module E (resp. M).

(c) Any left (resp. right) D-module E (resp. M) has tor-amplitude in [−n, 0].

Remark 1.4.3.7. With notation 1.4.3.4, suppose ρ is flat. Then the functors ρ∗ and ρ∗ preserve the
tor-amplitude. However, since they are not essentially surjective, we cannot compare a priori the tor
dimensions of D and D′ (however, sometimes this might happen: see 1.4.3.24).

Remark 1.4.3.8. Let D be a sheaf of rings on a topological space X. If D has locally finite tor dimension,
then any complex of Cb(D) has locally finite tor-dimension.

1.4.3.9 (Point case). Let D be a ring. Let d ∈ N. The following assertions are equivalent.

(a) tor .dim(D) ≤ d ;

(b) Any left D-module E has tor-amplitude in [−d, 0] ;

(c) Any left D-module E of finite presentation has tor-amplitude in [−d, 0] ;

(d) For any left D-module E of finite presentation, for any right D-module M of finite presentation, for
any n > d, we have TorDn (M,E) = 0.
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Indeed, the equivalence between (a) and (b) is tautological. The implications (b) ⇒ (c) ⇒ (d) are
obvious. The converse implications follow from the fact that any left (right) D-module is a small filtered
inductive limit of modules of finite presentation (e.g. see [Bou61b, I.§2.Exercice 10]), from the fact that
tensor products commute with inductive limits and that small filtered inductive limits are exact in the
category of abelian groups.

Consider the assertions.

(i) There exists a left D-module E of finite presentation, a right D-module M of finite presentation,
such that TorDd (M,E) 6= 0 ;

(ii) There exists a left D-module E of finite presentation, a right D-module M of finite presentation,
there exists n ≥ d such that TorDn (M,E) 6= 0.

(iii) tor .dim(D) ≥ d.

It follows from the equivalence between (a) and (d) we have the last relation (i)⇒ (ii)⇔ (iii). We have
moreover:

tor .dim(D) = sup{n ∈ N,∃ a left (right) D-module E (M) of f.p. such that TorDn (M,E) 6= 0}.

Lemma 1.4.3.10. Let D be a sheaf of rings on a topological space X. We have the equality tor .dim(D) =
supx∈X tor .dim(Dx).

Proof. To check tor .dim(D) ≤ supx∈X tor .dim(Dx), we can suppose supx∈X tor .dim(Dx) is an integer
denoted by n. Let E be a left D-module. Then for any x ∈ X, the left Dx-module Ex has tor-amplitude
in [−n, 0]. Hence, following 1.4.3.2, this implies that the left D-module E has tor-amplitude in [−n, 0].
With 1.4.3.6, this yields tor .dim(D) ≤ n.

Let x ∈ X. It remains to check tor .dim(D) ≥ tor .dim(Dx). We reduce to the case where tor .dim(D)
is an integer denoted by n. Let E be a left Dx-module. Then the left D-module ix∗E has tor-amplitude
in [−n, 0]. Hence, so is E = i−1

x ix∗E.

Lemma 1.4.3.11. Let (Di)i∈I be a filtered inductive system of rings. Set D := lim−→i∈I Di. Suppose that
Di → D is right flat for any i ∈ I. Then tor .dim(D) ≤ sup{tor .dim(Di) ; i ∈ I}.

Proof. Set n := sup{tor .dim(Di): i ∈ I} that we can suppose finite. Let E be a left D-module of finite
presentation. Then there exist i0 ∈ I and a left Di0-module Ei0 of finite presentation together with an
isomorphism of left D-modules D ⊗Di0 Ei0

∼−→ E. Since tor .dim(Di0) ≤ n then Ei0 has tor amplitude
in [−n, 0]. Since Di0 → D is right flat this yields that D ⊗Di0 Ei0 has tor amplitude in [−n, 0] (use
1.4.3.4.(a)). We conclude by using 1.4.3.9.

Lemma 1.4.3.12. Let D be a sheaf of rings on a topological space X. Let x ∈ X and B be a basis of
open neighborhoods of x in X such that for any U ∈ B the ring homomorphism D(U)→ Dx is right flat.
We have tor .dim(Dx) ≤ sup{tor .dim(D(U)) ; U ∈ B}.

Proof. This is a consequence of 1.4.3.11.

Notation 1.4.3.13. By abuse of notation, for any set A we still denote by A the sheaf on a topological
space Y associated with the constant preasheaf with value A.

Definition 1.4.3.14. Let D be a sheaf of rings on a scheme or a formal scheme X. We say that D
satisfies “theorem A for coherent left modules” if the following conditions hold.

(i) The sheaf of rings D is left coherent ;

(ii) For any affine opens U, V of X such that V ⊂ U , the extension Γ(U,D)→ Γ(V,D) is right flat ;

(iii) For any affine open U of X, the functors Γ(U,−) and D|U ⊗Γ(U,D) − induces canonically quasi-
inverse equivalences between the category of coherent left D|U -modules and that of coherent left
Γ(U,D)-modules ;

We say that D satisfies “theorem B for coherent left modules” if the following conditions hold.
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(i) The sheaf of rings D is left coherent ;

(iv) For any affine open U ofX, for any coherent left D|U -module E , for any i ≥ 1, we haveHi(U, E) = 0.

We define similarly the notion of “theorems A and B for coherent right modules” and of “theorems A
and B for coherent modules” when both left and right versions are satisfied.

1.4.3.15. By convention in this book, when we add “for coherent modules”, it is understood that the ring
D is coherent and for convenience we have added the flatness condition 1.4.3.14.(ii ) to get the exactness
of the functor DU ⊗Γ(U,D) −. But we do not require affine sections to be noetherian (remark this latter
condition together with 1.4.3.14.ii implies the coherence of D: see 1.4.5.2). Such generality is needed in
Theorem 8.7.5.5.

The word “canonically” in the condition (iii) of 1.4.3.14 means that the canonical morphisms M →
Γ(U,D|U ⊗Γ(U,D) M) and D|U ⊗Γ(U,D) Γ(U,M)→M are isomorphisms for any affine open set U of X,
any coherent Γ(U,D)-module M and any coherent D|U -moduleM.

Remark 1.4.3.16. Let D be a sheaf of rings on a affine scheme or an affine formal scheme X. Put
D := Γ(X,D). We have the following properties (and its right version).

i) If D satisfies theorem A for coherent left modules then D is also left coherent from the property
1.4.3.14.(iii).

ii) Suppose D satisfies theorem B for coherent left modules. Since X is quasi-compact and quasi-
separated, then it follows from [SGA4.2, VI.5.2] that the functors Hi(X,−) for any i ≥ 0 commute
with filtered inductive limits of abelian groups. Since any left D-module is a filtered inductive limits of
coherent left D-modules (see [Bou61b, I.§2.Exercice 10]), since the functor D ⊗D − commutes also with
filtered inductive limits of abelian groups, then for any left D-module E, Hi(X,D ⊗D E) = 0 for any
i ≥ 1.

iii) Suppose D satisfies theorems A and B for coherent left modules. Then, using the same arguments
as above in ii), we get that the canonical map E → Γ(X,D⊗DE) is an isomorphism for any leftD-module
E.

Proposition 1.4.3.17. Let X be a noetherian affine (formal) scheme of finite Krull dimension. Let
D be a sheaf of rings on X satisfying theorems A and B for left coherent modules (see 1.4.3.14). Set
D = D(X). Let E be a coherent left D-module E, and n ∈ N. The following conditions are equivalent.

(a) The left D-module E has tor-amplitude in [−n, 0] ;

(b) The left D-module D ⊗D E has tor-amplitude in [−n, 0].

In particular, we get the inequality tor .dimD ≤ tor .dimD.

Proof. I) Let us prove the equivalence (a)⇔ (b).
0) By right flatness of D → D, we get (a) → (b) (see 1.4.3.4.(a)). Conversely, suppose the left D-

module D ⊗D E has tor-amplitude in [−n, 0]. Let L• be a complex of free left D-modules of finite type
such that Li = 0 for i > 0 together with a quasi-isomorphism of K(lD) of the form L• → E.

1) Let us prove the case where n = 0, i.e. suppose D⊗D E is D-flat. Let M be a left D-module. Set
E := D⊗D E,M := M ⊗D D, L• := D⊗D L• ; G• := M ⊗D L• and G• :=M⊗D L•. Following [Gro57,
3.6.5], since X is noetherian of finite Krull dimension then the functor Γ(X,−) has bounded cohomology
(see definition 4.6.1.4). Hence, it follows from 4.6.1.6.3 that we get the spectral sequence

Er,s1 = RsΓ(X,Gr)⇒ Hr+sRΓ(X,G•). (1.4.3.17.1)

Since D satisfies theorem B, since Gr is of the form Mnr for some integer nr, then if follows from
1.4.3.16.ii) that we get Er,s1 = 0 if s 6= 0. It follows from 1.4.3.16.iii) that the canonical map Gr →
Γ(X,Gr) is an isomorphism. Hence, Er,01 is canonically isomorphic to Gr and we get Hn(G•)

∼−→
HnRΓ(X,G•). Since E is flat, then G• ∼−→ M⊗D E and therefore HnRΓ(X,G•) = 0 for any n ≤ −1.
Since Hn(G•) = TorD−n(M,E), then we are done (use [Bou61b, I.§4. Proposition 1]).

2) Let us return to the general case. Let Q be the image of L−n → L−n+1. By flatness of D → D,
we get the flat left resolution L• := D ⊗D L• of E := D ⊗D E and the flat left resolution Q• := L•−n of
Q := D⊗D Q. For any right D-moduleM, this yields TorD1 (M,Q) = H−1(M⊗D Q•) = H−n−1(M⊗D
L•) = H−n−1(M⊗L

D E) = 0. Hence Q is flat. This yields that Q is flat from the step 1). Hence we get
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the exact sequence 0 → Q → L−n+1 → L−n+2 · · · → L0 → E → 0 with flat left D-modules except E
and we are done.

II) By choosing n = tor .dimD, the inequality tor .dimD ≤ tor .dimD follows from the part I) and
from 1.4.3.9.(c).

By removing the hypothesis “satisfies theorem B”, we can get closed to 1.4.3.17 results below (see
1.4.3.20). However, beware that 1.4.3.19 and 1.4.3.20 below are not enough to get a theorem A version
of the inequality tor .dimD ≤ tor .dimD. Indeed, a priori we cannot descent the projectivity of finite
presentation because D is not commutative.

Lemma 1.4.3.18. Let D → D′ be a right flat ring homomorphism such that D is a coherent ring. Then
the following assertions are equivalent.

(a) The map D → D′ be a right faithfully flat ;

(b) For any coherent left D-module E such that D′ ⊗D E = 0, we have necessarily E = 0 ;

(c) Any sequence of coherent left D-modules E → F → G such D′ ⊗D E → D′ ⊗D F → D′ ⊗D G is
exact is necessarily exact.

Proof. The equivalence between (b) and (c) is easy. The implication (a)⇒ (b) is tautological. Conversely,
suppose (c). Let E be a left D-module such that D′ ⊗D E = 0. We have to prove that E = 0. Then
E
∼−→ lim−→i∈I Ei with I a small filtered set and where Ei are coherent left D-modules (e.g. see [Bou61b,

I.§2.Exercice 10] and recall that D is coherent). Hence, lim−→i∈I D
′ ⊗D Ei = 0. Let i0 ∈ I. Since Ei is

a left D-module of finite type, then there exists i ≥ i0 such that D′ ⊗D Ei0 → D′ ⊗D Ei is the null
morphism, i.e. the sequence D′ ⊗D Ei0 → D′ ⊗D Ei0 → D′ ⊗D Ei is exact. By using the property (c),
we get that Ei0 → Ei0 → Ei is exact, i.e. Ei0 → Ei is the null morphism. Hence, lim−→i∈I Ei = 0.

Lemma 1.4.3.19. Let X be a scheme or a formal scheme. Let D be a sheaf of rings on X satisfying
theorem A for left coherent modules (see 1.4.3.14). For any affine open U of X, for any finite covering
(Ui)i∈I of U by affine opens, the extension D(U)→

∏
i∈I D(Ui) is left faithfully flat.

Proof. Let E be a coherent left D(U)-module such that (
∏
i∈I D(Ui))⊗D(U) E = 0. Following 1.4.3.18,

we reduce to prove that E = 0. Since I is finite,
∏
i∈I D(Ui) = ⊕i∈ID(Ui) and then for any i ∈ I we

get D(Ui) ⊗D(U) E = 0. Set E := D|U ⊗D(U) E. For any i ∈ I, we get E|Ui = D|Ui ⊗D(U) E
∼−→

D|Ui⊗D(Ui)D(Ui)⊗D(U)E = 0. Hence E = 0. By using the property 1.4.3.14.(iii), this yields E = 0.

Proposition 1.4.3.20. Let X be an affine scheme or an affine formal scheme. Let D be a sheaf of rings
on X satisfying theorem A for left coherent modules (see 1.4.3.14). Set D = D(X). Let E be a coherent
left D-module E, and n ∈ N. The following conditions are equivalent.

(a) There exists a finite covering (Ui)i∈I of X by affine opens such that the left D(Ui)-module D(Ui)⊗DE
has tor-amplitude in [−n, 0] for any i ∈ I;

(b) The left D-module D ⊗D E has tor-amplitude in [−n, 0].

Proof. 0) By right flatness of D(Ui)→ D, we get (a)→ (b) (see 1.4.3.4.(a)). Conversely, suppose the left
D-module D ⊗D E has tor-amplitude in [−n, 0].

1) Let us prove the case where n = 0, i.e. suppose D ⊗D E is D-flat. Let x ∈ X. By hypothesis,
Ex := Dx ⊗D E is Dx-flat. Since Ex is a flat left Dx-module of finite presentation, then it is also a
projective left Dx-modules (e.g. see [Laz69, 1.4]). We have an exact sequence of coherent left D-module
of the form 0 → K

a−→ L
b−→ E → 0, where L is a free left D-module of finite type. By applying the

exact functor Dx ⊗D −, we get the exact sequence 0 → Kx
ax−→ Lx

bx−→ Ex → 0. Since Ex is projective
then we get the section γ : Ex → Lx. Since this is a morphism of left Dx-module of finite presentation
then for an open of X containing x small enough, the map γ is (up to canonical isomorphism) the image
by D ⊗D(U) − of a morphism of left D(U)-module of the form c : D(U)⊗D E → D(U)⊗D L. Shrinking

U is necessary, we can suppose c is a section of D(U) ⊗D L
id⊗b−→ D(U) ⊗D E. Hence, D(U) ⊗D E is

projective. Since X is quasi-compact, we get a finite covering (Ui)i∈I of X by affine opens such that
D(Ui)⊗D E is projective of finite presentation and we are done.

2) We deduce from 1) the general case by copying the part I.2) of the proof of 1.4.3.17.
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1.4.3.21. Let X be an affine scheme or an affine formal scheme. Let D be a sheaf of rings on X satisfying
theorem A for left coherent modules (see 1.4.3.14). Set D = D(X). Let E be a coherent left D-module
E.

1. In fact, we have proved in 1.4.3.20 that the following conditions are equivalent.

(a) There exists a finite covering (Ui)i∈I of X by affine opens such that the left D(Ui)-module
D(Ui)⊗D E is projective of finite finite type for any i ∈ I;

(b) The left D-module D ⊗D E is flat.

2. Suppose now that for any x ∈ X, the sheaf Dx is a local (non-commutative) ring. We have therefore
the equivalent conditions:

(a) There exists a finite covering (Ui)i∈I of X by affine opens such that the left D(Ui)-module
D(Ui)⊗D E is free of finite finite type for any i ∈ I;

(b) The left D-module D ⊗D E is flat.

Indeed, suppose D-module E := D ⊗D E is flat. Then Ex = Dx ⊗D E is a projective, finitely
presented Dx-module (e.g. see [Laz69, 1.4]). Hence, following [Rot09, Theorem 4.44], Ex is a free
Dx-module of finite type. We get an isomorphism of the Dnx

∼−→ Ex. Since Dn and E are coherent,
then (e.g. use 8.4.1.11) there exists an open U containing x such that Dnx

∼−→ Ex comes from an
isomorphism of the form Dn(U)

∼−→ E(U). Hence, via theorem A for coherent D-modules, we are
done.

Proposition 1.4.3.22. Let X be a noetherian affine (formal) scheme of finite Krull dimension. Let D
be a sheaf of rings on X satisfying theorems A and B for left coherent modules (see 1.4.3.14). Let B be
an open basis of X consisting of affine opens. We have the formula

tor .dimD = sup{tor .dim(D(U)) ; U ∈ B}.

Proof. It follows from 1.4.3.17 (resp. 1.4.3.10) that we have the first (resp. second) inequality tor .dim(D(U)) ≤
tor .dimD|U ≤ tor .dimD for any U ∈ B. Hence, sup{tor .dim(D(U)) ; U ∈ B} ≤ tor .dimD. Con-
versely, let x ∈ X such that tor dim(D) = tor dim(Dx) (recall 1.4.3.10). By using 1.4.3.12, since
{U ∈ B;x ∈ U} is a basis of open neighborhoods of x in X, since the ring homomorphisms D(U)→ Dx
are right flat, then we get tor dim(Dx) ≤ sup{tor .dim(D(U)) ; U ∈ B}. Hence, we are done.

1.4.3.23. Let X be a scheme and D be a sheaf of rings on X endowed with a morphism of rings OX → D
such that D is quasi-coherent for the left multiplication. For any U ⊂ V affine opens, since O(V )→ O(U)
is flat then D(V )→ D(U) is right flat. Hence, for any affine open U , the map D(U)→ D|U is right flat.
This yields the exact functor E 7→ D|U ⊗D(U) E from the category of left D(U)-modules to the category
of left D|U -modules.

Proposition 1.4.3.24. With the notation 1.4.3.23, let Y be a principal open subscheme of X. We get
tor dim(D(Y )) ≤ tor dim(D).

Proof. We have X = SpecA, Y = SpecAf for some f ∈ A. Set Df := Γ(Y,D). Since D → Df is right
flat, then it follows from 1.4.3.4.(a) that we reduce to check the functor Df ⊗D − from the category of
left D-modules to that of left Df -modules is essentially surjective.

By quasi-coherence hypothesis, the canonical morphism Af⊗AD → Df is an isomorphism of (Af , D)-
bimodule. Hence, for any left D-module E, the canonical homomorphism Af ⊗A E → Df ⊗D E is an
isomorphism (in particular D → Df is right flat). Since the canonical homomorphism Af ⊗A Df → Df

is an isomorphism, this yield that so is the canonical morphism Df ⊗D Df → Df . Hence, for any left
Df -module E, we get the isomorphisms Df ⊗D E

∼−→ (Df ⊗D Df )⊗Df E)
∼−→ Df ⊗Df E

∼−→ E, and
we are done.

Corollary 1.4.3.25. Let X be a noetherian scheme of finite Krull dimension. Let D be a sheaf of rings
on X satisfying theorems A and B for left coherent modules (see 1.4.3.14). Suppose moreover D is
endowed with a ring morphism OX → D such that D is quasi-coherent for the left multiplication. Then
for any affine open U of X we get tor dim(D(U)) = tor dim(D|U).
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Proof. Let U be an affine open of X. By using 1.4.3.17, we get tor dim(D(U)) ≤ tor dim(D|U). Let
x ∈ U such that tor dim(D|U) = tor dim(Dx) (recall 1.4.3.10). Let B be the basis of open neighborhoods
of x in X consisting in affine opens V including in U and containing x. By using 1.4.3.12 and 1.4.3.24,
we get tor dim(Dx) ≤ tor dim(D(U)). Hence, we are done.

The following corollary improves 1.4.3.22 (which only gives (b)→ (a)) when X is a scheme and D is
left quasi-coherent:

Corollary 1.4.3.26. We keep notation and hypotheses of 1.4.3.25. Let U be an affine open of X and
n ∈ N. The following conditions are equivalent:

(a) We have tor .dim(D(U)) = n ;

(b) There exists an open basis B of U consisting of affine opens such that tor .dim(D(V )) = n, for any
V ∈ B.

Proof. This is a consequence of 1.4.3.25.

Definition 1.4.3.27. Let D be a sheaf of rings on a topological space X. Let E• ∈ C(D).

1. We say E• is “strictly perfect” if E i is zero for all but finitely many i and E i is a direct summand
of a finite free D-module for all i.

2. Let n ∈ Z. According to [Sta22, 08FT], we say E• is n-pseudo-coherent if there exists an open
covering {(Uλ → X)}λ∈Λ, and for each λ ∈ Λ there exist a strictly perfect complex of D|Uλ -modules
E•λ and a morphism αλ : E•λ → E•|Uλ of C(D|Uλ) such that Hj(αλ) is an isomorphism for j > n
and Hn(αλ) is surjective.

3. We say E• is “pseudo-coherent” if it is n-pseudo-coherent for all n ∈ Z.

4. Let a, b ∈ Z with a ≤ b. We say E• is “has perfect amplitude in [a, b]” if there exists an open
covering {Uλ → X}λ∈Λ and for each λ ∈ Λ a morphism of complexes αλ : E•λ → E•|Uλ which is a
quasi-isomorphism with E•λ strictly perfect and such that E iλ for any i 6∈ [a, b] (see [SGA6, I.4.8]).

5. We say E• is “perfect” if there exists an open covering {Uλ → X}λ∈Λ and for each λ ∈ Λ a morphism
of complexes αλ : E•λ → E•|Uλ which is a quasi-isomorphism with E•λ strictly perfect (see [Sta22,
08CM]).

6. Let n ∈ Z. We say an object of D(D) is n-pseudo-coherent (resp. pseudo-coherent, resp. per-
fect) if and only if it can be represented by a n-pseudo-coherent (resp. pseudo-coherent, resp.
perfect) complex of D-modules. We denote by Dn−coh(D) (resp. Dcoh(D), resp. Dperf(D)) the
full subcategory of D(D) consisting of n-pseudo-coherent (resp. pseudo-coherent, resp. perfect)
complexes.

Remark 1.4.3.28. Let D be a sheaf of rings on a quasi-compact topological space X. With the quasi-
compactness hypothesis, a complex E• of C(D) is perfect if and only if there exists integers a ≤ b such
that E• has perfect amplitude in [a, b].

1.4.3.29. Let D a sheaf of rings on a topological space. Suppose D is left coherent. Let n ∈ N. Let E
be a coherent left D-module. By using [SGA6, I.4.14 and I.5.8.1], the following assertions are therefore
equivalent:

a) The left D-module E has tor-amplitude in [−n, 0] ;

b) The left D-module E has perfect amplitude in [−n, 0] ;

c) There exists an open covering {Uλ → X}λ∈Λ and for each λ ∈ Λ there exists a complex P•α of
projective left D|Uλ -modules of finite type with Pi = 0 for i 6∈ [a, b] together with a quasi-isomorphism
of K(lD|Uλ) of the form P• → E|Uλ .

Let E• be an object of Db
coh(D) (see 4.6.1.3.(b)). This yields (by devissage) that E• is a perfect if and

only if E has locally finite tor dimension.
Suppose D has locally finite tor dimension (and D is still coherent). Then, it follows from 1.4.3.8

that we get the equality Db
perf(D) = Db

coh(D).
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Lemma 1.4.3.30. Let D be a left coherent ring. Let d ∈ N. We get that the following assertions are
equivalent.

(a) tor .dim(D) ≤ d ;

(b) Any left D-module E has tor-amplitude in [−d, 0] ;

(c) Any left coherent D-module E has tor-amplitude in [−d, 0] ;

(d) Any left coherent D-module E has perfect amplitude in [−d, 0] ;

(e) For any left coherent D-module E, there exists a complex P • of projective left D-modules of finite
type with P i = 0 for i 6∈ [−d, 0] together with a quasi-isomorphism of K(lD) of the form P • → E.

(f) We have ExtiD(E,F ) = 0 for any integer i > d, any left coherent D-module E and any left D-module
F .

(g) D has finite tor dimension and we have have ExtiD(E,D) = 0 for any integer i > d, any left coherent
D-module E.

Proof. By using 1.4.3.9 and 1.4.3.29, we get the equivalence between (a), (b), (c), (d), (e). The equivalence
between (e) and (f) is easy. It remains to check the implication (g) ⇒ (f). Let E be a left coherent
D-module and F be a left D-module. Since D is left coherent and has finite tor dimension, then
E ∈ Db

perf(D). Hence, it follows from 4.6.3.6.1 that the canonical morphism

RHomD(E,D)⊗L
D F → RHomD(E,D ⊗L

D F ) = RHomD(E,F )

is an isomorphism. By hypothesis RHomD(E,D) ∈ D≤q(D). Hence, we are done.

The check of the following proposition is contained in the proofs of [Ber00, 4.4.4–5].

Proposition 1.4.3.31 (Berthelot). Let D be a p-torsion free π-adically complete noetherian V-algebra.
We get the k-algebra D := D/mD and we set d := tor .dim(D). We have the following properties.

(a) We have tor .dimD ≤ d+ 1

(b) Let E be a p-torsion free left D-module of finite type. Then E admits a resolution by projective of
finite type left D-modules of length ≤ d.

(c) Let E be a left DQ-module of finite type. Then E admits a resolution by projective of finite type left
DQ-modules of length ≤ d.

(d) We have the inequality tor .dim(DQ) ≤ d.

Proof. a) First remark that since the rings are noetherian, then left global dimension is equal to the
right global dimension and to the tor dimension (see 2.3.4.2). Since the ring D is a π-adically complete
noetherian ring, then by using the m-adic filtration it follows from [LvO96, I.7.2 Corollary 2] that we get
the inequality

gl .dimD ≤ gl .dim grD.

Since π is a regular sequence of D, then we get the canonical isomorphism of graded rings

D ⊗k k[t]
∼−→ grD

given by t→ π mod m2D.
b) Remark that if N is a p-torsion free left D-module N of finite type such that N/πN is a projective

D-module then N is a projective D-module (exercice or see the end of the proof of [Ber00, 4.4.5]). Hence,
by truncating a resolution of E by p-torsion free left D-module of finite type, we get the part (b).

c) Since a left DQ-module of finite type comes from by extension a left D-module (see 7.4.5.3 and
recall the noetherianity of D), since D → DQ is flat, then get (c) from (b).

d) The inequality tor .dimDQ ≤ d follows from 1.4.3.30 and the fact that D is noetherian.
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Proposition 1.4.3.32. Let (D(i))i∈I be an inductive system indexed by a filtered set I of left (resp.
right) coherent rings such that the ring homomorphisms D(i) → D(j) are left (resp. right) flat. Set
D† := lim−→i

Di. Suppose there exists d ∈ N such that tor .dimD(m) ≤ d for m large enough. Then have
the inequality tor .dimD† ≤ d.

Proof. Since the proof is the same, let us consider the non-respective case. It follows from 1.4.3.30 that
D† is a left coherent ring. Let E be a coherent left D†-module. Using 8.4.1.13, there exist i ∈ I and
a coherent left D(i)-module E(i) such that E ∼−→ D† ⊗D(i) E(i). Since D(i) is a left coherent ring,
then following 1.4.3.30 there exists a complex P • of projective left D(n)-modules of finite type with
Pn = 0 for n 6∈ [−d, 0] together with a quasi-isomorphism of K(lD(i)) of the form P • → E(i). Since E
is quasi-isomorphic to D† ⊗D(i) P •, then we are done using loc. cit.

1.4.4 Increasing the level: finiteness of the tor-dimension
Let f : X → S be a smooth morphism.

Proposition 1.4.4.1. Suppose S is of characteristic p > 0. Suppose that X/S have coordinates
t1, . . . , td.

(a) We have ∂〈p
m+1〉(m)

i = um
Ä
∂

[pm]
i

äp
, for i = 1, . . . , d, with um = p!(pm!)p/pm+1! ∈ Z∗(p). For any

integer q, we have
(
∂
〈pm+1〉(m)

i

)q
= vm,q∂

〈pm+1q〉(m)

i , with vm,q ∈ Z∗(p).

(b) For any integer q ≥ 0, 0 ≤ r ≤ pm+1 − 1, by setting k := pm+1q + r, we have ∂
〈k〉(m)

i =

um,k

(
∂
〈pm+1〉(m)

i

)q
∂
〈r〉(m)

i , for i = 1, . . . , d, with um,k ∈ Z∗(p).

(c) Let K(m) be the set whose elements are the finite sums of the form
∑
k 6<pm+1 ak∂

〈k〉(m) , with ak ∈ OX
and k 6< pm+1 meaning that ki ≥ pm+1 for at least one 1 ≤ i ≤ d. Then K(m) is the two-sided ideal
of D(m)

X/S generated by the operators ∂〈p
m+1〉(m)

i , for i = 1, . . . , d.

(d) The center of D(m)
X/S is equal to the polynomial algebra with coefficients in OX(m+1) in the operators

∂
〈pm+1〉(m)

i .

Proof. The formula ∂〈p
m+1〉(m)

i = um
Ä
∂

[pm]
i

äp
is a consequence of 1.4.2.7.c. The fact that um is invertible

follows from 1.2.1.4.1. Let n ≥ pm+1. Then n = pmq + r with q ≥ p and 0 ≤ r < pm, n − pm+1 =
pm(q − p) + r and pm+1 = pmp+ 0. By using 1.2.1.4.1, this yields

vp

Ç≠
n

pm+1

∑
(m)

å
= ((q − p) + p− q − σ(r) + σ(r) + σ(0))/(p− 1) = 0. (1.4.4.1.1)

By using 1.4.2.7.c , this yields

∂
〈n〉(m)

i = αm,n∂
〈pm+1〉(m)

i ∂
〈n−pm+1〉(m)

i ,

with αm,n ∈ Z∗(p). Hence, by iterating this decomposition, we get the second part of a and b. By using
1.4.2.7.c, we get c. Finally, the property d is checked in [Ber96c, 2.2.6].

Proposition 1.4.4.2. If S has characteristic p. Suppose that X/S have local coordinates t1, . . . , td. Let
m′ ≥ m+ 1 be an integer.

(a) The homomorphisms D(m)
X/S → D

(m′)
X/S , and D

(m)
X/S → DX/S have the same kernel equal to K(m).

(b) Moreover, D(m′)
X/S is free on the image of ρm′,m, with the operators of the form ∂〈p

m+1n〉(m′) , n ∈ Nd

as a basis.
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Proof. By using 1.2.1.1.1, since q(m)
k = pq

(m+1)
k + s with 0 ≤ si ≤ p− 1, then we compute

vp(q
(m)
k

!/q
(m+1)
k !) =

d∑
i=1

(q
(m)
ki
− σ(q

(m)
ki

)− q(m+1)
ki

+ σ(q
(m+1)
ki

))/(p− 1) =
d∑
i=1

q
(m+1)
ki

.

This yields that vp(q
(m)
k !/q

(m+1)
k !) = 0 if and only if for any integer i we have ki ≥ pm+1, which is denoted

by k < pm+1. This implies that vp(q
(m)
k !/q

(m′)
k !) = 0 if and only if for for any integer i we have ki ≥ pm+1,

which is simply denoted by k < pm+1. Hence ρm,m′(K(m)) = 0. Conversely, let P =
∑
k ak∂

〈k〉(m) ∈ D(m)
X

be an operator such that ρm′,m(P ) = 0. From 1.4.2.5.2 this yields ρm′,m(P ) =
∑
k<pm+1

q(m)

k
!

q
(m+1)

k
!
ak∂

〈k〉(m′) ,

with
q(m)

k
!

q
(m′)
k

!
∈ Z∗(p) for any k < pm+1.This implies, for any k < pm+1, we have ak = 0. Hence, P ∈ K(m).

Then we have checked K(m) is the kernel of ρm,m′ for any m′. By passing m′ to the limit, this yields
that K(m) is also the kernel of ρm.

The image of ρm,m′ consists of elements of the form
∑
k<pm+1 ak∂

〈k〉(m′) . Hence, it follows from
1.4.4.1.a and 1.4.4.1.c the last statement.

Remark 1.4.4.3. Suppose thatX/S have local coordinates t1, . . . , td with d ≥ 1. Then similarly to 1.4.4.2,
we check that the homomorphisms D(m)

X/S → D
(m+1)
X/S , D(m)

X/S → DX/S are injective if and only if S is flat
over Z.

Proposition 1.4.4.4. Suppose p is locally nilpotent on S. For any m, D(m+1)
X/S has left and right tor-

dimension d over D(m)
X/S.

Proof. Since this is local, we can suppose that X/S has local coordinates t1, . . . , td.
1) Suppose S has characteristic p > 0. Denote by D(m)

X/S := D(m)
X/S/K

(m). Since D(m)

X/S is isomorphic

to the image of ρm′,m, it follows from 1.4.4.2.b that we reduce to check that D(m)

X/S has left and right
tor-dimension d over D(m)

X/S .

Let K(m)
0 be the zero ideal of D(m)

X/S . Set E0 := Nd. For any integer 1 ≤ r ≤ d, denote by K(m)
r the

is the two-sided ideal of D(m)
X/S generated by the operators ∂〈p

m+1〉(m)

i , for i = 1, . . . , r ; and let Er be

the subset of Nd of elements k such that k1, . . . , kr < pm+1. For any 0 ≤ r ≤ d, let J (m)
r be the subset

of D(m)
X/S consisting of the elements which can (uniquely) be written of the form

∑
k∈Er ak∂

〈k〉(m) , with

ak ∈ OX . If follows from 1.4.4.1.b that the composition morphism J (m)
r → D(m)

X/S → D
(m)
X/S/K

(m)
r is an

isomorphism and we can identify them. Moreover, for any 0 ≤ r ≤ d−1, by using 1.4.4.1.1, we can easily
check that the homomorphism ∂

〈pm+1〉(m)

r+1 : D(m)
X/S/K

(m)
r → D(m)

X/S/K
(m)
r is injective. Since K(m) = K(m)

d ,
we are done.

2) Let us go back to the general case. Suppose S is affine and pn+1 vanishes in S. We proceed by
induction on n ∈ N. For any integer 0 ≤ i ≤ n − 1, set Si := S ×Z Z/pi+1Z, Xi = X ×S Si. Let E
be a left D(m)

X/S-module. We have to prove that Hj(D(m+1)
X/S ⊗L

D(m)

X/S

E) = 0 for any j 6∈ [−d, 0]. For any

0 ≤ i ≤ n− 1, we have the isomorphisms

D(m+1)
X/S ⊗L

D(m)

X/S

D(m)
Xi/Si

∼−→ D(m+1)
X/S ⊗L

D(m)

X/S

Ä
D(m)
X/S ⊗

L
OS OSi

ä ∼−→ D(m+1)
X/S ⊗L

OS OSi
∼−→ D(m+1)

Xi/Si
.

Hence, if Gi is a left D(m)
Xi/Si

-module, we get the isomorphisms

D(m+1)
X/S ⊗L

D(m)

X/S

Gi
∼−→
Å
D(m+1)
X/S ⊗L

D(m)

X/S

D(m)
Xi/Si

ã
⊗L
D(m)

Xi/Si

Gi
∼−→ D(m+1)

Xi/Si
⊗L
D(m)

Xi/Si

Gi.

We have the exact sequence 0→ pE → E → E/pE → 0, which yields the exact triangle

D(m+1)
X/S ⊗L

D(m)

X/S

pE → D(m+1)
X/S ⊗L

D(m)

X/S

E → D(m+1)
X/S ⊗L

D(m)

X/S

E/pE → +1
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Since pE is a left D(m)
Xn−1/Sn−1

-module and E/pE is a left D(m)
X0/S0

-module, we are done.

1.4.4.5. The sheaf D(m)
X/S admits a natural filtration F•D(m)

X/S of sheaf of rings which we call the filtration

by order. If P is a section of D(m)
X/S on a neighborhood of a point x ∈ X,we denote by ordx(P ) the

smallest integer n such that Px ∈ D(m)
X/S,n,x. For any open set U ⊂ X and any P ∈ Γ(U,D(m)

X/S), put

ordU (P ) := sup
x∈U

ordx(P ).

Set FkD(m)
X/S(U) = {P ∈ Γ(U,D(m)

X/S) : ordU (P ) ≤ k}.

1.4.5 Coherence of the sheaf of differential operators
First, let us recall the notion of coherence.

Definition 1.4.5.1. Let T be a topological space, D a sheaf of rings on T . Let E be a left (resp. right)
D-module.

(i) We say that E is of finite type if for any x ∈ T , there exists an open neighborhood U of x such that
is generated by finitely many sections, i.e. there exist a positive integer r and an exact sequence in
the category of (sheaves of) left (resp. right) D-modules of the form Dr|U → E|U .

(ii) We say that E is of finite presentation if for any x ∈ T , there exists an open neighborhood U of x
such that E|U is the cokernel of a morphism of left (resp. right) D-modules of the form Da|U → D

b
|U .

(iii) We say E is a coherent left (resp. right) D-module if the following conditions are satisfied

(a) E is of finite type ;

(b) for any open sets U ⊂ T , for any morphism of left (resp. right) D-modules α : Da|U → E|U , the
kernel kerα is of finite type.

In fact, we can check that the property (b) is equivalent to the following one

(c) for any open sets U ⊂ T , any submodule F of E|U of finite type is of finite presentation.

(iv) We say that D is a left (resp. right) coherent sheaf of rings if D is coherent as a left (resp. right)
D-module.

Proposition 1.4.5.2. Let T be a topological space, D a sheaf of rings on T and B a basis of open subsets
of T satisfying the following conditions:

(a) For any U ∈ B, the ring Γ(U,D) is left (resp. right) noetherian.

(b) For any U, V ∈ B with V ⊂ U , the homomorphism Γ(U,D)→ Γ(V,D) is right (resp. left) flat.

Then D is a left (resp. right) coherent sheaf of rings.

Proof. It suffices to show that for all U ∈ B and all u : (D|U )n → D|U , N = Ker(u) is a left D|U -module
of finite type. Write D = Γ(U,D), N = Γ(U,N ). From the condition b), we can check the functor which
associates from a left D-module M the left D|U -module D|U ⊗DM is exact. Since N is of finite type by
a), this yields that N ∼−→ D|U ⊗D N is of finite type.

Corollary 1.4.5.3. Let f : X → S be a smooth morphism.

(a) Then for any inclusion of affine opens of X of the form V ⊂ U , the canonical morphism Γ(U,D(m)
X/S)→

Γ(V,D(m)
X/S) is flat.

(b) Suppose S is locally noetherian. The sheaf D(m)
X/S is coherent.
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Proof. Since D(m)
X/S is a quasi-coherent OX -module, for any inclusion of affine opens of X of the form

V ⊂ U , the canonical morphism

Γ(V,OX)⊗Γ(U,OX) Γ(U,D(m)
X/S)→ Γ(V,D(m)

X/S)

is an isomorphism. Hence, Γ(U,D(m)
X/S)→ Γ(V,D(m)

X/S) is flat. By using 1.4.2.11, we can apply proposition
1.4.5.2 to conclude.
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Chapter 2

D-modules

Let m ∈ N ∪ {+∞}.

(a) First case: m ∈ N, S is a Spec Z(p)-scheme and m ∈ N, (a, b, α) is a quasi-coherent m-PD-ideal of
OS and f : X → S be a smooth morphism.

(b) Second case: m =∞ and f : X → S is a weakly smooth morphism and we use notation 1.4.2.6.

2.1 Stratifications and costratifications

2.1.1 PD-stratifications of level m
The formula (1.4.2.8.3) shows that the data of a left D(m)

X -module structure extending an OX -module
structure is determined by the action of the operators ∂〈p

j〉
i for 0 ≤ j ≤ m. When m ≥ 1 it is not

always easy to give explicitly this action. For this reason when we want to show an OX -moduleM has
the structure of a left DX -module, we often construct on M stratifications which are just the data of
infinitesimal descent. This coordinate-free method of using the crystalline interpretation of a DX -module
in terms of stratifications was due to Grothendieck.

Definition 2.1.1.1. With notations 1.4.1.2 and 1.4.1.14, an m-PD stratification relative to X/S on an
OX -module E is the data of a family (as n varies) of PnX,(m)-linear homomorphisms

εn : PnX,(m) ⊗OX E = pn∗1(m)(E)→ pn∗0(m)(E) = E ⊗OX PnX,(m), (2.1.1.1.1)

which satisfy the following conditions:

(a) ε0 = idE and for any n′ ≥ n in N, εn and PnX,(m) ⊗Pn′
X,(m)

εn′ are canonically isomorphic, i.e. the
following diagram

ψn
′,n∗

X/S,(m)(P
n′

X/S,(m) ⊗OX E)
ψn
′,n∗

X/S,(m)
(εE
n′ ) //

∼
��

ψn
′,n∗

X/S,(m)(E ⊗OX P
n′

X/S,(m))

∼
��

PnX/S,(m) ⊗OX E
εEn // E ⊗OX PnX/S,(m)

, (2.1.1.1.2)

whose vertical isomorphisms are the canonical ones, is commutative.

(b) (Cocycle condition) For all integers n, n′ in N, with notation 1.4.1.15, we have commutative diagrams
of PnX,(m) ⊗ P

n′

X,(m)-modules:

PnX,(m) ⊗ P
n′

X,(m) ⊗ E
δn,n

′,∗
(m)

(εn+n′ ) //

qn,n
′,∗

1,(m)
(εn+n′ ) ))

E ⊗ PnX,(m) ⊗ P
n′

X,(m).

PnX,(m) ⊗ E ⊗ P
n′

X,(m)

qn,n
′,∗

0,(m)
(εn+n′ )

55
(2.1.1.1.3)
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Say an OX -linear homomorphism ϕ : E → F between modules equipped with m-PD stratifications
relative to X/S is horizontal if it commutes with all εn.

Remark 2.1.1.2. Following 1.4.1.15, we have three ring homomorphisms pn,n
′

i,(m) : OX → PnX,(m) ⊗OX
Pn′X,(m). The diagram 2.1.1.1.3 can be reinterpreted with the following commutative diagram

pn,n
′∗

2,(m)(E)
δn,n

′,∗
(m)

(εn+n′ ) //

qn,n
′,∗

1,(m)
(εn+n′ ) &&

pn,n
′∗

0,(m)(E)

pn,n
′∗

1,(m)(E).

qn,n
′,∗

0,(m)
(εn+n′ )

88
(2.1.1.2.1)

It follows from 1.4.1.12.3 and 1.4.1.13.1 that we have the commutative diagram

X
� � // ∆n

X/S,(m) ×p1,X,p0 ∆n′

X/S,(m)

��

// X2
/S ×p1,X,p0 X

2
/S

p1×p0 //

∼
��

X ×X X

∼

��
X �
� // ∆n+n′

X/S,(m)(2)

(qn+n′
01,(m)

,qn+n′
12,(m)

)

��

// X3
/S

∼(p01,p12)

��

p1 // X

∼

��
X �
� // ∆n+n′

X/S,(m) ×p1,X,p0
∆n+n′

X/S,(m)
// X2

/S ×p1,X,p0
X2
/S

p1×p0 // X ×X X.

(2.1.1.2.2)

With notation 1.4.1.13, this yields that the above condition 2.1.1.1.b is equivalent to

∀ n ∈ N, qn∗02,(m)(εn) = qn∗01,(m)(εn) ◦ qn∗12,(m)(εn). (2.1.1.2.3)

Proposition 2.1.1.3. Let E be an OX-module together with an m-PD stratification (εEn) relative to X/S.
Then the homomorphisms εEn are PnX/S,(m)-linear isomorphisms.

Proof. Let ιn(m) : PnX/S,(m)(2) → PnX/S,(m) be the m-PD-homomorphism corresponding to the closed
immersion ι : X2

/S → X3
/S given by (x, y) 7→ (x, y, x). Let σ be the canonical involution of X2

/S , i.e.
σ(x, y) = (y, x). This yields the m-PD-isomorphism σn(m) : PnX/S,(m)

∼−→ PnX/S,(m). Since p01 ◦ ι = id,
then by unicity of the m-PD-factorisation we get qn01,(m) ◦ ι

n
(m) = id. Moreover, since p12 ◦ ι = σ

then qn12,(m) ◦ ι
n
(m) = σn(m). Since p02 ◦ ι = ∆X/S ◦ p0, then qn02,(m) ◦ ι

n
(m) is equal to the composition

PnX/S,(m) � OX
pn1,(m)−→ PnX/S,(m). Hence, ιn∗(m) ◦ q

n∗
02,(m)(εn) = pn∗1,(m)(id) = id. By applying ιn∗(m) to the

equality 2.1.1.2.3 we get id = σn∗(m)(εn)◦εn. Since σn∗(m) is an involution, by applying σn∗(m) to this equality
we get id = εn ◦ σn∗(m)(εn) and then σn∗(m)(εn) is the inverse of εn.

Notation 2.1.1.4. Let E be an OX -module. For any n ∈ N, since PnX,(m) has two structures of OX -

modules, then so is D(m)
X,n, which we call the left one and the right one. When we want to clarify which

OX -module structure we choose, we write p0∗ for the left one and p1∗ for the right one. For instance,
we write HomOX (p0∗D(m)

X,n, E) to clarify that we take the left structure of OX -module to compute the

internal homomorphism sheaf. The sheaf HomOX (p0∗D(m)
X,n, E) has also by functoriality two structures

of OX -modules: the left (resp. right) one denoted by p0∗ (resp. p1∗) equal to that coming from the left
(resp. right) structure of D(m)

X,n.

We denote by D(m)
X,n⊗OX E where to compute the tensor product we have chosen the right structure of

OX -module of D(m)
X,n. By functoriality, D(m)

X,n⊗OX E is also an (OX ,OX)-module i.e. has a left structure of

OX -module denoted by p0∗ coming from the left structure of D(m)
X,n, and the internal one (i.e. given by the

tensor product) denoted by p1∗. Similarly, D(m)
X,n⊗OX D

(m)
X,n′ where the OX -module structure of the tensor

product comes from the right (resp. left) structure of D(m)
X,n (resp. D(m)

X,n′) is an (OX ,OX ,OX)-module:
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its left structure comes from the left one of D(m)
X,n, its middle structure is the internal one coming from

the tensor product, its right structure comes from the right one of D(m)
X,n′ . When we want to clarify which

OX -module structure we choose, we write pi∗ with i = 0, 1, 2 for the left, middle, right ones.
We have the Cartan isomorphism (see 4.6.3.9.1):

HomOX
Ä
p0∗D(m)

X,n′ , p1∗HomOX (p0∗D(m)
X,n, E)

ä ∼−→ HomOX
Ä
p0∗(D(m)

X,n ⊗OX D
(m)
X,n′), E

ä
. (2.1.1.4.1)

The right term of 2.1.1.4.1 can be endowed with three structures of OX -module: that coming from the
internal structure denoted by p0, that coming from the middle and right structures of D(m)

X,n ⊗OX D
(m)
X,n′

denoted respectively by pi∗ for i = 1, 2. Via the isomorphism 2.1.1.4.1, this yields three structures of
OX -module for left term that we still denote by pi∗ for i = 0, 1, 2.

It follows from 1.4.2.1.3 that we get the homomorphism

µn,n′ : D(m)
X,n ⊗OX D

(m)
X,n′ → D

(m)
X,n+n′ , (2.1.1.4.2)

where the OX -module structure of the tensor product comes from the right (resp. left) structure of D(m)
X,n

(resp. D(m)
X,n′). Since µn,n′ is OX -linear for the left (and the right) structure, we get the morphism

HomOX (µn,n′ , E) : p1∗HomOX
Ä
p0∗(D(m)

X,n+n′), E
ä
→ p2∗HomOX

Ä
p0∗(D(m)

X,n ⊗OX D
(m)
X,n′), E

ä
. (2.1.1.4.3)

Proposition 2.1.1.5. We have the following properties.

(I) Given an OX-module E. The following are equivalent.

(a) A left D(m)
X -module structure on E extending its OX-module structure.

(b) A family of OX-linear homomorphisms θn : E → p1∗(E ⊗OX PnX,(m)) (the OX-module structure
of this latter is induced by the right structure of PnX,(m)) satisfying

(i) θ0 = idE (modulo the canonical isomorphism E ∼−→ E ⊗ P0
X,(m)) and for any n, n′ ∈ N,

the diagram

E θn // E ⊗ PnX,(m)

E
θn+n′

// E ⊗ Pn+n′

X,(m)

id⊗ψn+n′,n
X/S,(m)

OO
(2.1.1.5.1)

is commutative.
(ii) for all n, n′ we have commutative diagrams (cocycle condition)

E ⊗ Pn+n′

X,(m)

id⊗δn,n
′

(m) // E ⊗ PnX,(m) ⊗ P
n′

X,(m)

E
θ′n //

θn+n′

OO

E ⊗ Pn′X,(m).

θn⊗id

OO
(2.1.1.5.2)

(c) An m-PD stratification ε = (εEn) on E.

(II) Let E be left D(m)
X -module and let θE = (θEn), εE = (εEn) be the associated family or m-PD stratifi-

cation.

(a) We retrieve from θE (resp. εE) the action by a section P of D(m)
X on E via the following

composition of the bottom (resp. top) horizontal morphisms of the commutative diagram:

E
pn1,(m),E

1.4.1.14
// PnX,(m) ⊗OX E

εEn // E ⊗OX PnX,(m)

id⊗P // E

E
θEn // p1∗(E ⊗OX PnX,(m))

id⊗P // E .

(2.1.1.5.3)
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For instance, when E = OX is endowed with the canonical m-PD-stratification (see 3.4.2.4),
we retrieve its usual action of left D(m)

X -module (see 1.4.2.5.4).
(b) Suppose X/S is equipped with coordinates t1, . . . , td. Conversely, with notation 1.4.2.3, for

any x ∈ E, we have the Taylor expansion formula

θn(x) =
∑
|k|≤n

∂〈k〉x⊗ τ{k}, εEn(1⊗ x) =
∑
|k|≤n

∂〈k〉x⊗ τ{k}. (2.1.1.5.4)

The inverse is given by

(εEn)−1(x⊗ 1) =
∑
|k|≤n

(−1)|k|τ{k} ⊗ ∂〈k〉x. (2.1.1.5.5)

(III) An OX-linear morphism φ : E → F between two left D(m)
X/S-modules is D(m)

X/S-linear if and only if φ
is horizontal.

Proof. I) 1) The idea of the proof is standard and comes from Grothendieck: Let us prove the equiv-
alence between (a) and (b). Let E be an OX -module. A left D(m)

X -module structure on E extend-
ing its OX -module structure is equivalent to the data a family (µEn)n∈N of OX -linear homomorphisms
µEn : p0∗(D(m)

X,n ⊗OX E) → E such that µE0 = idE (modulo some canonical identification) and for any
n, n′ ∈ N the following diagrams in the category of OX -modules

D(m)
X,n ⊗OX E

µEn //

ρ
(m)

n+n′,n
⊗id

��

E

D(m)
X,n+n′ ⊗OX E

µE
n+n′ // E

D(m)
X,n ⊗OX D

(m)
X,n′ ⊗OX E

id⊗µE
n′//

µn,n′⊗id

��

D(m)
X,n ⊗OX E

µEn

��
D(m)
X,n+n′ ⊗OX E

µE
n+n′ // E

(2.1.1.5.6)

are commutative (see notation 1.4.2.1.2).
By using Cartan isomorphism (see 4.6.3.9.1 in the case where A = OX and correspond to the left

structure on D(m)
X,n, A′ = OX and correspond to the right structure on D(m)

X,n, C = OX) the data of the
family (µn)n∈N is equivalent to the data of a family (νn)n∈N where νn is of the form

νn : E → p1∗HomOX (p0∗D(m)
X,n, E). (2.1.1.5.7)

The commutativity of the following diagram in the category of OX -modules

E
νn+n′ //

νn′

��

p1∗HomOX (p0∗D(m)
X,n+n′ , E)

2.1.1.4.3

��

p1∗HomOX (p0∗D(m)
X,n′ , E)

HomOX (p0∗D(m)

X,n′
,νn)

��
p2∗HomOX

Ä
p0∗D(m)

X,n′ , p1∗HomOX (p0∗D(m)
X,n, E)

ä
2.1.1.4.1
∼
// p2∗HomOX

Ä
p0∗(D(m)

X,n ⊗OX D
(m)
X,n′), E

ä
(2.1.1.5.8)

is equivalent to that of the left one of 2.1.1.5.6. Indeed, the map E → p2∗HomOX
Ä
p0∗(D(m)

X,n ⊗OX D
(m)
X,n′), E

ä
from the left and bottom path (resp. top and right path) sends e ∈ E to P ⊗ P ′ 7→ µEn(P ⊗ µEn′(P ′ ⊗ e))
(resp. to P ⊗ P ′ 7→ µEn+n′(PP

′ ⊗ e)) for any P ∈ D(m)
X,n, P

′ ∈ D(m)
X,n′ and e ∈ E .

We have the canonical isomorphism

ιn : p1∗
Ä
E ⊗OX PnX,(m)

ä ∼−→ p1∗HomOX (p0∗D(m)
X,n, E) (2.1.1.5.9)

given by e⊗ τ 7→ (P 7→ P (τ)e), where the OX -module structure on E ⊗OX PnX,(m) is given by the right
structure of PnX,(m). Set θn := (ιn)−1◦νn. Hence, by definition and functoriality, we get the commutative
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diagram:

E
νn′∼
��θn′

ss
E ⊗ Pn′X,(m)

ιn′

∼
//

νn⊗id

��θn⊗iduu

HomOX (p0∗D(m)
X,n′ , E)

HomOX (p0∗D(m)

X,n′
,νn)

��
E ⊗ PnX,(m) ⊗ P

n′

X,(m)

ιn⊗id

∼
// HomOX (p0∗D(m)

X,n, E)⊗ Pn′X,(m)

ιn′

∼
// HomOX (p0∗D(m)

X,n′ , p1∗HomOX (p0∗D(m)
X,n, E))

(2.1.1.5.10)
By composing the bottom arrows of the diagrams 2.1.1.5.10 and 2.1.1.5.8 we get the canonical isomor-
phism

E ⊗ PnX,(m) ⊗ P
n′

X,(m)
∼−→ HomOX

Ä
p0∗(D(m)

X,n ⊗OX D
(m)
X,n′), E

ä
, (2.1.1.5.11)

which is OX -linear for the right structures and is given by e ⊗ x 7→ (P ⊗ P ′ 7→ P ◦ (id⊗P ′)(x) · e)
for any P ∈ D(m)

X,n and P ′ ∈ D(m)
X,n′ , e ∈ E and x ∈ PnX,(m) ⊗ P

n′

X,(m) (indeed, if x = τ ⊗ τ ′, then we
compute (PP ′(τ ′))(τ) = P (τp∗1(P ′(τ ′)) = P ◦ (id⊗P ′)(τ ⊗ τ ′)). Hence, by construction of the product
(see 1.4.2.1.3), we compute that the diagram

p1∗HomOX (p0∗D(m)
X,n+n′ , E)

2.1.1.4.3

��

E ⊗ Pn+n′

X,(m)

id⊗δn,n
′

(m)

��

ιn+n′

∼oo

p2∗HomOX
Ä
p0∗(D(m)

X,n ⊗OX D
(m)
X,n′), E

ä
E ⊗ PnX,(m) ⊗ P

n′

X,(m)∼
2.1.1.5.11oo

(2.1.1.5.12)

is commutative. By composing (horizontally from left to right) the diagrams 2.1.1.5.10, 2.1.1.5.8 and
2.1.1.5.12, we get the diagram 2.1.1.5.2. Since the maps ιn are isomorphisms, then the commutativity of
2.1.1.5.2 is equivalent to that of 2.1.1.5.8. Since the commutativity of 2.1.1.5.1 is equivalent to that of the
left square of 2.1.1.5.6, then we get the equivalence between the assertions (a) and (b) of the proposition.

2) Now, let us prove the equivalence between (b) and (c). We have the morphism pn∗1(m) ⊗ idE : E →
PnX,(m) ⊗OX E given by e 7→ 1 ⊗ e. By adjunction involving the ring morphism pn∗1(m) : OX → PnX,(m), a
family of OX -linear homomorphisms θn : E → p1∗(E⊗OXPnX,(m)) is equivalent to a family of PnX,(m)-linear
homomorphisms εn : PnX,(m) ⊗OX E → E ⊗OX P

n
X,(m), the relation being εn ◦ (pn∗1(m) ⊗ idE) = θn.

Moreover, ε0 = idE if and only if θ0 = idE and for any n′ ≥ n, εn the diagram 2.1.1.1.2 is and only if
so is 2.1.1.5.1. Suppose now θ0 = idE and 2.1.1.5.1 is commutative. The morphism δn,n

′∗
(m) (εn+n′) is the

unique PnX,(m) ⊗ P
n′

X,(m)-linear morphism making commutative the contour of the diagram

E
pn+n′∗

1(m)
⊗idE

// Pn+n′

X,(m) ⊗ E

εn+n′

��

δn,n
′

(m)
⊗id

// PnX,(m) ⊗ P
n′

X,(m) ⊗ E

δn,n
′∗

(m)
(εn+n′ )

��
E

θn+n′ // Pn+n′

X,(m) ⊗ E
id⊗δn,n

′
(m) // E ⊗ PnX,(m) ⊗ P

n′

X,(m).

(2.1.1.5.13)

The morphism (εn ⊗ id) ◦ (id⊗εn′) is the unique PnX,(m) ⊗P
n′

X,(m)-linear morphism making commutative
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the contour of the diagram

E
pn
′∗

1(m)⊗idE
// Pn′X,(m) ⊗ E

εn+n′

��

pn∗1(m)⊗id
Pn′
X,(m)

⊗E
// PnX,(m) ⊗ P

n′

X,(m) ⊗ E

id⊗εn′
��

E
θE
n′ // E ⊗ Pn′X,(m)

pn∗1(m)⊗idE ⊗ id
//

θEn⊗id

**

PnX,(m) ⊗ E ⊗ P
n′

X,(m)

εn⊗id

��
E ⊗ PnX,(m) ⊗ P

n′

X,(m).

(2.1.1.5.14)

Since εn ⊗ id = qn,n
′,∗

1,(m) (εn+n′) and id⊗εn′ = qn,n
′,∗

0,(m) (εn+n′) (remark we need the compatibility given by
the commutativity of 2.1.1.1.2), since both composition of the top morphisms of 2.1.1.5.13 and 2.1.1.5.14
are equal (to e 7→ 1 ⊗ 1 ⊗ e), then by unicity of the factorisation, we get that the diagram 2.1.1.5.2 is
commutative if and only if the diagram 2.1.1.1.3 is commutative.

II) Let E be left D(m)
X -module and let ε = (εEn) be the associated m-PD stratification. For any

P ∈ D(m)
X,n, by construction the action of P on E is given by the composition of the bottom arrows of the

diagram:

PnX,(m) ⊗OX E
εEn // E ⊗OX PnX,(m)

ιn2.1.1.5.9
��

id⊗P // E

E

θEn
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2.1.1.5.7

νn
//

pn∗1(m)

OO

p1∗HomOX (p0∗D(m)
X,n, E)

evP // E .

(2.1.1.5.15)

Since the diagram 2.1.1.5.15 is commutative, then we get the assertion II)a). When X/S is equipped with
coordinates t1, . . . , td, then by using IIa) in the case where P = ∂〈k〉, we get that (id⊗∂〈k〉)◦θn(x) = ∂〈k〉x.
This yields the formulas 2.1.1.5.4.

Let us check that the morphism ζEn defined by the formula 2.1.1.5.5 is the inverse of the morphism
εEn. We compute

ζEn ◦ εEn(1⊗ x) = ζEn (
∑
|i|≤n

∂〈i〉x⊗ τ{i}) =
∑
|i|≤n

∑
|j|≤n

(−1)|j|τ{j}τ{i} ⊗ ∂〈j〉∂〈i〉x

1.2.4.5.3+1.4.2.7.c
=

∑
|k|≤n

∑
j≤k

(−1)|j|
Ç
k

j

å
τ{k} ⊗ ∂〈k〉x = 1⊗ x.

Similarly, we check εEn ◦ ζEn (x⊗ 1). Hence, we are done.
III) To check the last assertion we can either use the functoriality in E of the diagrams appearing in

the equivalences of (I) or make some local computations using (II).

Remark 2.1.1.6. Let E be an OX -module endowed with a family (as n varies) of PnX,(m)-linear isomor-
phisms

εn : PnX,(m) ⊗OX E = pn∗1(m)(E)
∼−→ pn∗0(m)(E) = E ⊗OX PnX,(m),

satisfying the condition (a) of 2.1.1.1. We remark that the cocycle condition is local. Let us give a local
description of this condition. Suppose X/S is equipped with coordinates t1, . . . , td. For any x of E , for
any k ∈ Nd, for any n ≥ |k|, let us denote by ∂〈k〉(x) the section of E such that we get

εEn(1⊗ x) =
∑
|k|≤n

∂〈k〉(x)⊗ τ{k}.

First remark that these elements do not depend on the choice of n which justifies the notation. Moreover,
the cocycle condition is equivalent to the condition that the formula≠

i+ j

i

∑
∂〈i+j〉(x) = ∂〈i〉(∂〈j〉(x)) (2.1.1.6.1)
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holds for any section x of E , for any i, j ∈ Nd (to understand this formula, see 1.4.2.7.c). Indeed, this is
an easy computation using δn,n

′

(m) (τi) = τi ⊗ 1 + 1⊗ τi (see 1.4.1.17.1) and the formula 1.2.4.5.2.

Example 2.1.1.7. Let Z be a closed subscheme of X/S defined by an ideal K of OX . With notation
1.3.2.13, 1.4.1.2, put

K′ = K · PnX/S,(m) + InX/S,(m) = Ker(PnX/S,(m) → OX/K) = PnX/S,(m) · K + InX/S,(m). (2.1.1.7.1)

Then the canonical map
P(m),α(K)⊗OX PnX/S,(m) → P(m),α(K′) (2.1.1.7.2)

is an isomorphism. Indeed, since this is local, we can supposeX/S is equipped with coordinates t1, . . . , td.
First, we remark that this is sufficient to check that I(m),α(K)⊗OX PnX/S,(m) +P(m),α(K)⊗OX InX/S,(m)

has anm-PD structure extending that ofI(m),α(K) and of InX/S,(m) (indeed, this would yield an inverse of
2.1.1.7.2 by using the universal property of the m-PD envelope). By flatness of pn1,(m) : OX → PnX/S,(m),
the ideal I(m),α(K)⊗OX PnX/S,(m) is endowed with an m-PD structure extending I(m),α(K)

From the description 1.4.2.3, PnX/S,(m) is isomorphic to an m-PD polynomial algebra with coefficients
in OX of order n in d variables given by τ1, . . . , τd. Hence, P(m),α(K) ⊗OX PnX/S,(m) is isomorphic to
an m-PD polynomial algebra with coefficients in P(m),α(K) of order n in d variables. Following 1.3.2.6,
the m-PD structure of P(m),α(K) ⊗OX InX/S,(m) is compatible with any m-PD-structure on I(m),α(K).
Hence, we get the m-PD structure.

For the same reason we have the canonical isomorphism

PnX/S,(m) ⊗OX P(m),α(K)→ P(m),α(K′). (2.1.1.7.3)

By composing 2.1.1.7.2 and 2.1.1.7.3, we get the isomorphisms

εn : PnX/S,(m) ⊗OX P(m),α(K)
∼−→ P(m),α(K)⊗OX PnX/S,(m)

which gives an m-PD stratification on P(m),α(K).

2.1.2 PD-costratifications of level m
Conventions on notations for derived categories are given at the beginning of Chapter 5.

2.1.2.1. We will use the following notation (for the second one, see 4.2.2).

(a) Let φ : A → B be a homomorphism of sheaves of commutative rings. We denote by φ∗ : : D(B) →
D(A) the canonical exact forgetful functor. Recall that following the Cartan isomorphisms (see the
general version 4.6.3.9) for any B-module N and any A-module M we have the bifunctorial in M
and N canonical isomorphism

HomA(φ∗N ,M) ∼= HomB(N ,HomA(B,M)). (2.1.2.1.1)

In other words, the forgetful functor φ∗ has the right adjoint ? 7→ HomA(B, ?). We denote by
φ[ : D(A) → D(B) the functor defined by setting φ[(M) := RHomA(B,M) for any M ∈ D(A).
The convention here is to work in the derived categories but our functors of the form φ[ will often
be exact.

(b) More generally, if f : (X,BX)→ (Y,BY ) is a morphism of ringed spaces, then we define the functor
f [ : D(BY )→ D(BX) by setting

f [M = f̄∗RHomBY (f∗BX ,M)

where f̄ denotes the morphism (X,BX)→ (Y, f∗BX).

2.1.2.2. Let f : X → Y be a finite morphism between two locally noetherian schemes. Mod(OX)
denotes the category of OX -modules. Since f̄ is flat, f̄∗ : Mod(f∗OX) → Mod(OX) is exact and
take quasi-coherent (resp. coherent) sheaves to quasi-coherent (resp. coherent), we get that f [ takes
D+

qc(Y ) (resp. D+
coh(Y )) to D+

qc(X) (resp. D+
coh(X)). If f is a locally free finite homeomorphism then

f [M = HomOY (f∗OX ,M) and f [ takes Dqc(Y ) (resp. Dcoh(Y )) to Dqc(X) (resp. Dcoh(X)).

45



Definition 2.1.2.3. An m-PD-costratification onM relatively to S on an OX -moduleM is the data of
a family of PnX/S(m)-linear homomorphisms

εn : HomOX (pn0,(m)∗P
n
X/S(m),M) = pn[0,(m)(M)→ pn[1,(m)(M) = HomOX (pn1,(m)∗P

n
X/S(m),M),

this ones satisfying the following conditions :

(a) ε0 = idM and for any n′ ≥ n in N, εn and ψn
′,n[

X/S,(m)(εn′) are canonically isomorphic, i.e. the following
diagram

ψn
′,n[

X/S,(m)(p
n′[
0,(m)(M))

ψn
′,n[

X/S,(m)
(εn′ ) //

∼
��

ψn
′,n[

X/S,(m)(p
n′[
1,(m)(M))

∼
��

pn[0,(m)(M)
εn // pn[1,(m)(M)

, (2.1.2.3.1)

whose vertical isomorphisms are the canonical ones, is commutative.

(b) For any n, n′, the diagram

pn,n
′[

0,(m)(M)
δn,n

′,[
(m)

(εn+n′ ) //

qn,n
′,[

0,(m)
(εn+n′ ) %%

pn,n
′[

2,(m)(M)

pn,n
′[

1,(m)(M)

qn,n
′,[

0,(m)
(εn+n′ )

99
(2.1.2.3.2)

is commutative.

Say an OX -linear homomorphism ϕ : M → N between modules equipped with m-PD costratifications
relative to S is horizontal if it commutes with all εn.

2.1.2.4. With notation 1.4.1.13, similarly to 2.1.1.2, we check that the above condition 2.1.2.3.2 is
equivalent to

∀ n, qn[02,(m)(εn) = qn[01,(m)(εn) ◦ qn[12,(m)(εn). (2.1.2.4.1)

Proposition 2.1.2.5. LetM be an OX-module together with an m-PD costratification (εMn ) relative to
X/S. Then the homomorphisms εMn are PnX/S,(m)-linear isomorphisms.

Proof. Copy the proof of 2.1.1.3.

Notation 2.1.2.6. LetM be an OX -module. Since pi∗PnX,(m) is locally free as OX -modules, then the
canonical homomorphism

ιMn : M⊗OX D
(m)
X,n =M⊗OX HomOX (p0∗PnX,(m),OX)→ HomOX (p0∗PnX,(m),M) = pn[0,(m)(M)

(2.1.2.6.1)
given by x⊗ P 7→ (τ 7→ xP (τ)) is an isomorphism. Similarly, we have the canonical isomorphism

HomOX (p1∗PnX,(m),OX)⊗OX M
∼−→ HomOX (p1∗PnX,(m),M) = pn[1,(m)(M). (2.1.2.6.2)

2.1.2.7. Let α : A → B and β : B → C be two homomorphisms of sheaves of commutative algebras. For
any A-moduleM, we get the commutative triangle

HomB(C,HomA(B,M))
∼ //

ev1

))

HomA(C,M)

−◦βvv
HomA(B,M)

(2.1.2.7.1)

where the horizontal map is the Cartan isomorphism, ev1 is the evalutation at 1 morphism and − ◦ β is
the morphism induced by composition with β.
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Proposition 2.1.2.8. Given an OX-moduleM. The following are equivalent.

(a) A right D(m)
X module structure onM extending its OX-module structure.

(b) A family θn : p1∗HomOX (p0∗PnX,(m),M) → M which are OX-linear homomorphisms (for the OX
structure on HomOX (p0∗PnX,(m),M) induced by the right OX-algebra structure on PnX,(m)) satisfying

(i) θ0 = idM, and for any n′ ≥ n in N, θn and θn′ are compatible i.e. the following diagram

pn
′[

0,(m)(M)
θn′ //M

pn[0,(m)(M)
θn //

ψn
′,n

OO

M

, (2.1.2.8.1)

whose the vertical morphism is given by adjunction of (ψn
′,n

X/S,(m)∗ a ψ
n′,n[
X/S,(m)), is commutative.

(ii) for all n, n′ we have commutative diagrams

HomOX (p0∗Pn
′

X,(m),M)
θn′ //M

HomOX (p0∗(PnX,(m) ⊗ P
n′

X,(m)),M)
δn,n

′
(m) //

θ̃n

OO

HomOX (p0∗Pn+n′

X,(m),M)

θn+n′

OO (2.1.2.8.2)

where θ̃n is the Pn′X,(m)-linear homomorphism corresponding by adjointness to the composed
morphism

HomOX (p0∗(PnX,(m) ⊗ P
n′

X,(m)),M)→ HomOX (p0∗PnX,(m),M)
θn−→M, (2.1.2.8.3)

where the fist map is induced by functoriality by qn,n
′

0(m) (which is OX-linear for the structure
defined by p1 on PnX,(m) ⊗OX P

n′

X,(m)).

(c) An m-PD costratification (εn) relatively to X/S onM.

An OX-linear morphism φ : M → N between two right D(m)
X/S-modules is D(m)

X/S-linear if and only if
φ is horizontal or if it commutes to the homomorphisms θn.

Proof. Let M be an OX -module. A right D(m)
X -module structure on M extending its OX -module

structure is equivalent to the data a family (µMn )n∈N of OX -linear homomorphisms µMn : p1∗(M⊗OX
D(m)
X,n) → M such that µM0 = idM (modulo some canonical identification) and for any n, n′ ∈ N the

following diagrams in the category of OX -modules

M⊗OX D
(m)
X,n

µMn //

ρ
(m)

n+n′,n
⊗id

��

M

M⊗OX D
(m)
X,n+n′

µM
n+n′ //M,

M⊗OX D
(m)
X,n ⊗OX D

(m)
X,n′

µMn ⊗id//

id⊗µn,n′
��

M⊗OX D
(m)
X,n′

µM
n′

��
M⊗OX D

(m)
X,n+n′

µM
n+n′ //M

(2.1.2.8.4)

are commutative (see notation 1.4.2.1.2). With notation 2.1.2.6.1, we denote by θMn the morphism
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p1∗(HomOX (p1∗PnX,(m),M))→M so that by setting µn = ιn ◦ θMn . With notation 1.4.1.15

HomOX (p0∗(PnX,(m) ⊗ P
n′

X,(m)),M)
$n,n

′
0(m) //

∼?

��

HomOX (p0∗(PnX,(m)),M)

θMn

''
HomOX (p0∗(Pn

′

X,(m)), p1∗HomOX (p0∗PnX,(m),M))

θMn

++

ev1

33

M

HomOX (p0∗(Pn
′

X,(m)), p1∗(M⊗OX D
(m)
X,n))

µMn //

∼ ιn

OO

HomOX (p0∗(Pn
′

X,(m)),M)

θM
n′

''

ev1

77

M⊗OX D
(m)
X,n ⊗OX D

(m)
X,n′

µMn ⊗id //

∼ ιn′

OO

M⊗OX D
(m)
X,n′

∼ ιn′

OO

µM
n′ //M

(2.1.2.8.5)
where the ? isomorphism is the Cartan isomorphism and the top left triangle is commutative following
2.1.2.7.1. By unicity of the factorisation, we get that θMn ◦ ? = θ̃n. By composing the left arrows of the
diagrams 2.1.2.8.5, we get the canonical isomorphism

M⊗OX D
(m)
X,n ⊗OX D

(m)
X,n′

∼−→ HomOX (p0∗(PnX,(m) ⊗ P
n′

X,(m)),M), (2.1.2.8.6)

which is OX -linear for the right structures and is given by m⊗ P ⊗ P ′ 7→ (τ ⊗ τ ′ 7→ mP (τp∗1(P ′(τ ′)) =

mP ◦ (id⊗P ′)(τ ⊗ τ ′) for any P ∈ D(m)
X,n, P

′ ∈ D(m)
X,n′ , m ∈ M. Hence, by construction of the product

(see 1.4.2.1.3), we compute that the square of the diagram

HomOX (p0∗(PnX,(m) ⊗ P
n′

X,(m)),M)
δn,n

′
(m) // HomOX (p0∗(Pn+n′

X,(m)),M)

θM
n+n′

''
M⊗OX D

(m)
X,n ⊗OX D

(m)
X,n′

∼ 2.1.2.8.6

OO

id⊗µn,n′ //M⊗OX D
(m)
X,n+n′

ιn+n′ ∼

OO

µM
n+n′ //M

(2.1.2.8.7)

is commutative. Since its triangle is commutative by definition, then so is the diagram 2.1.2.8.7. Since
the map 2.1.2.8.6 is an isomorphism, then using the commutative diagram 2.1.2.8.5 and 2.1.2.8.7 the
right square of 2.1.2.8.4 is commutative if and only if the diagram 2.1.2.8.2 is commutative.

We go from µn to εn by adjointness (use 2.1.2.1.1 in the case of pn1,(m) : OX → p1∗PnX,(m)), i.e. εn is
the unique PX/S(m)-linear morphism such that the composition map

µn : HomOX (pn0,(m)∗PX/S(m),M)
εn−→ HomOX (pn1,(m)∗PX/S(m),M)

ev1−→M (2.1.2.8.8)

is µn. Via this correspondance, by using some universal property, we can check that the commutativity
of 2.1.2.8.1 is equivalent to that of 2.1.2.3.1. Now let us suppose the square 2.1.2.8.1 is commutative.
Via this correspondance, it remains to check that the commutativity of 2.1.2.8.2 is equivalent to that of
2.1.2.3.2. Using our hypothesis, the commutativity of 2.1.2.8.2 is equivalent to saying that θn+n′ ◦δn,n

′

(m) =

θn+n′ ◦ ψn+n′,n ◦ θ̃n.

HomOX (p0∗(PnX,(m) ⊗ P
n′

X,(m)),M)
qn,n

′,[
0,(m)

(εn+n′ )

∼
//

qn,n
′

0,(m)

��

HomOX (p1∗(PnX,(m) ⊗ P
n′

X,(m)),M)

qn,n
′

0,(m)tt
qn,n

′
1,(m)

��
HomOX (p0∗Pn+n′

X,(m),M)
εn+n′

∼
//

θn+n′

++

HomOX (p1∗Pn+n′

X,(m),M)

ev1

��

HomOX (p0∗Pn+n′

X,(m),M)

ev1

ssM
(2.1.2.8.9)
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Since θn+n′ ◦ qn,n
′

0,(m) is equal to the composition morphism 2.1.2.8.3 (use again the commutativity of

2.1.2.8.1), then by uniqueness of the factorization through ev1, this yields q
n,n′

1,(m)◦q
n,n′,[
0,(m) (εn+n′) = ψn+n′,n◦

θ̃n. Hence, by composition 2.1.2.8.9 with the commutative diagram

HomOX (p1∗(PnX,(m) ⊗ P
n′

X,(m)),M)

qn,n
′

1,(m)

��

qn,n
′,[

1,(m)
(εn+n′ )

∼
// HomOX (p2∗(PnX,(m) ⊗ P

n′

X,(m)),M)

qn,n
′

1,(m)

��
HomOX (p0∗Pn+n′

X,(m),M)
εn+n′

∼
//

θn+n′

,,

HomOX (p1∗Pn+n′

X,(m),M)

ev1

��
M

(2.1.2.8.10)

we get the commutative triangle:

HomOX (p0∗(PnX,(m) ⊗ P
n′

X,(m)),M)
qn,n

′,[
1,(m)

◦qn,n
′,[

0,(m)
(εn+n′ )

∼
//

θn+n′◦ψ
n+n′,n◦θ̃n --

HomOX (p2∗(PnX,(m) ⊗ P
n′

X,(m)),M)

ev1

��
M.

(2.1.2.8.11)
Similarly to 2.1.2.8.10 (replace qn,n

′

1,(m) by δn,n
′

(m) ), we get the commutative diagram:

HomOX (p0∗(PnX,(m) ⊗ P
n′

X,(m)),M)
δn,n

′,[
(m)

(εn+n′ )

∼
//

θn+n′◦δ
n,n′
(m)

,,

HomOX (p2∗(PnX,(m) ⊗ P
n′

X,(m)),M)

ev1

��
M

(2.1.2.8.12)

Using 2.1.2.8.11 and 2.1.2.8.12, by unicity of the factorisation through ev1, this yields the equality
θn+n′ ◦ δn,n

′

(m) = θn+n′ ◦ ψn+n′,n ◦ θ̃n is equivalent to qn,n
′,[

1,(m) ◦ q
n,n′,[
0,(m) (εn+n′) = δn,n

′,[
(m) (εn+n′).

Lemma 2.1.2.9. LetM be a right D(m)
X -module. Let (εMn ) be the m-PD-costratification associated with

M.

(a) With notation 2.1.2.6.1, the action of P ∈ D(m)
X,n on x ∈ M is given from the costratification by the

formula
xP = ev1 ◦εn ◦ ιMn (x⊗ P ). (2.1.2.9.1)

(b) Suppose t1, . . . , td are coordinates of X/S. Let {∂?〈k〉, ‖k| ≤ n} be the dual basis to {τ{k}, ‖k| ≤ n}
of HomOX (p1∗PnX,(m),OX). Conversely, via the identification 2.1.2.6.1 and 2.1.2.6.2, the costratifi-
cation εn ofM satisfies the following formula for any x ∈M and any k ∈ Nd:

εn(x⊗ ∂〈k〉) =
∑
h≤k

¶
k
h

©
∂?〈h〉 ⊗ x∂〈k−h〉. (2.1.2.9.2)

We have the following formula for the inverse

ε−1
n (∂?〈k〉 ⊗ x) =

∑
h≤k

(−1)|k−h|
¶
k
h

©
x∂〈k−h〉 ⊗ ∂〈h〉. (2.1.2.9.3)

Proof. a) The formula 2.1.2.9.1 is straightforward by construction of the εMn from the right D(m)
X -module

action (see 2.1.2.8.8).
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b) Set δk,x := ιMn (x⊗ ∂〈k〉). It follows from 1.2.4.5.3 that τ{h}δk,x =
¶
k
h

©
(m)

δk−h,x. We compute

εn(δk,x)(τ{h}) =
Ä
τ{h}εn(δk,x)

ä
(1) = εn(τ{h}δk,x)(1) =

ß
k

h

™
(m)

εn(δk−h,x)(1) =

ß
k

h

™
(m)

x∂〈k−h〉.

(2.1.2.9.4)
From 2.1.2.9.4, we get the formula 2.1.2.9.2. Finally, via an easy computation, we can check that the
formula given by 2.1.2.9.3 do is the inverse.

Remark 2.1.2.10. LetM be an OX -module endowed with a family (as n varies) of PnX,(m)-linear isomor-
phisms

εn : pn[0,(m)(M)→ pn[1,(m)(M),

satisfying the condition (a) of 2.1.2.3. We remark that the cocycle condition is local. Let us give a local
description of this condition. Suppose X/S is equipped with coordinates t1, . . . , td. For any x ofM, for
any k ∈ Nd, for any n ≥ |k|, we set

x · ∂〈k〉 := ev1 ◦εn(x⊗ ∂〈k〉). (2.1.2.10.1)

First remark that these elements do not depend on the choice of n which justifies the notation. Moreover,
the cocycle condition is equivalent to the condition that the formula≠

i+ j

i

∑
x · ∂〈i+j〉 = (x · ∂〈i〉) · ∂〈j〉 (2.1.2.10.2)

holds for any section x of E , for any i, j ∈ Nd. Indeed, we have checked in the proof of 2.1.2.8 that the
family (εn) is equivalent to the family ofOX -linear homomorphisms of the form µMn : p1∗(M⊗OXD

(m)
X,n)→

M such that µM0 = idM and the left square of 2.1.2.8.4 is commutative. Moreover, we have checked
the cocycle condition is equivalent to the commutativity of the right square of 2.1.2.8.4, i.e. of the
associativity of the definition 2.1.2.10.1. By OX -linearity of µMn , we reduce to the case where the
operators are of the form ∂〈i〉 and we are done thanks to 1.4.2.7.c.

2.1.3 Internal tensor product of D-modules of level m

We give a summary of the local formulas calculating the ⊗ of D(m)
X -modules. These will be used through-

out the book implicitly. We give some details here as an illustration of calculations with left and right
modules.

Proposition 2.1.3.1. Let E, F be two left D(m)
X -modules and letM be a right D(m)

X -module.

(a) There exists on E ⊗OX F a unique structure of left D(m)
X -module (extending its structure of OX-

module) such that for any open set U ⊂ X such that U/S has coordinates, for any sections x ∈ Γ(U, E)
and y ∈ Γ(U,F) the formula holds

∂〈k〉 · (x⊗ y) =
∑
i≤k

¶
k
i

©
∂〈i〉x⊗ ∂〈k−i〉y. (2.1.3.1.1)

(b) There exists onM⊗OX E a unique structure of right D(m)
X -module such that such that for any open

set U ⊂ X such that U/S has coordinates, x ∈ Γ(U, E), y ∈ Γ(U,M) the formula holds

(y ⊗ x)∂〈k〉 =
∑
h≤k

(−1)|h|
¶
k
h

©
y∂〈k−h〉 ⊗ ∂〈h〉x. (2.1.3.1.2)

(c) Let D be a sheaf of rings on X. If the structure of left D(m)
X/S-module of E (resp. E) extends to a

structure of (D(m)
X/S ,D)-bimodule then then the structure of left D(m)

X/S-module of E ⊗OX F extends

to a structure of (D(m)
X/S ,D)-bimodule, where the structure of left D(m)

X/S-module is the tensor product

structure. Moreover, if the structure of left (resp. right) D(m)
X/S-module of E (resp. M) extends to a
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structure of (D(m)
X/S ,D)-bimodule (resp. (D,D(m)

X/S)-bimodule) then the structure of right D(m)
X/S-module

ofM⊗OX E extends to a structure of right (D,D(m)
X/S)-bimodule (resp. (D,D(m)

X/S)-bimodule). In the

same way, these structures of D(m)
X/S-module do not depend on the level m.

Proof. (a) Modulo the canonical isomorphisms of PnX/S(m)-modules

pni,(m)∗P
n
X/S(m)⊗OX (E⊗OXF)

∼−→ (pni,(m)∗P
n
X/S(m)⊗OX E)⊗Pn

X/S(m)
(pni,(m)∗P

n
X/S(m)⊗OXF), (2.1.3.1.3)

we get the isomorphisms of PnX/S(m)-modules

εE⊗Fn := εEn ⊗ εFn : PnX/S(m) ⊗OX (E ⊗OX F)
∼−→ (E ⊗OX F)⊗OX PnX/S(m).

By using the formulas 1.2.4.5.3 and 2.1.1.5.4, with the above identification 4.2.3.1.5 we get

εE⊗Fn (1⊗(x⊗y)) =

Ñ∑
|i|≤n

∂〈i〉x⊗ τ{i}
é
⊗

Ñ∑
|j|≤n

∂〈j〉y ⊗ τ{j}
é

=
∑
|k|≤n

Ñ∑
i≤k

¶
k
i

©
∂〈i〉x⊗ ∂〈k−i〉y

é
⊗τ{k},

which yields 2.1.3.1.1. Using the remark 2.1.1.6, we easily compute that the cocycle condition holds.
Hence, (εE⊗Fn ) is an m-PD-stratification relative to X/S.

(b) Set H :=M⊗OX E . Since PnX,(m) is locally free of finite rank, so for i = 0, 1, we have canonical
isomorphisms

(pni,(m))
[(H) = HomOX (pi∗PnX,(m),M⊗OX E)

∼−→ HomOX (pi∗PnX,(m),M)⊗OX E
∼−→ HomOX (pi∗PnX,(m),M)⊗Pn

X,(m)
(pi∗PnX,(m) ⊗OX E) = (pni,(m))

[(M)⊗Pn
X/S,(m)

(pni,(m))
∗(E)

Via these identifications, we get the isomorphisms of PnX/S(m)-modules

εHn := εMn ⊗ (εEn)−1.

By using the formulas 2.1.2.9.2 and 2.1.1.5.5, for any open set U ⊂ X such that U/S has coordinates,
x ∈ Γ(U, E), y ∈ Γ(U,M), we compute

εHn (y ⊗ x⊗ ∂〈k〉) = εMn (y ⊗ ∂〈k〉)⊗Pn
X,(m)

(εEn)−1(x⊗ 1)

=

Ñ∑
h≤k

¶
k
h

©
∂?〈h〉 ⊗ y∂〈k−h〉

é
⊗

Ñ∑
|i|≤n

(−1)|i|τ{i} ⊗ ∂〈i〉x

é
=
∑
h≤k

∑
|i|≤n

(−1)|i|
¶
k
h

©
τ{i}∂?〈h〉 ⊗ y∂〈k−h〉 ⊗ ∂〈i〉x. (2.1.3.1.4)

Since τ{i}∂?〈h〉(1) = 0 for h 6= i and τ{h}∂?〈h〉(1) = 1, then we compute

(y ⊗ x)∂〈k〉
2.1.2.9.1

= εM⊗En (y ⊗ x⊗ ∂〈k〉)(1)
2.1.3.1.4

=
∑
h≤k

(−1)|h|
¶
k
h

©
y∂〈k−h〉 ⊗ ∂〈h〉x.

which gives the formula 2.1.3.1.2. Using the remark 2.1.1.6, we easily compute that the cocycle condition
holds. Hence, (εHn ) is an m-PD-stratification relative to X/S.

(c) The functoriality in E , F andM of these structures of D(m)
X/S-modules is a consequence for instance

of the formulas 2.1.3.1.2 and 2.1.3.1.1. It follows from this functoriality that the part (c) holds (this can
also be proves directly via the formula 2.1.3.1.1).

2.1.4 Internal homorphism bifunctor of D-modules of level m
We give the local formulas calculating Hom.
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Proposition 2.1.4.1. Let E, F be two left D(m)
X -modules. LetM, N be two right D(m)

X -modules.

(a) There exists on the sheaf HomOX (E ,F) a unique structure of left D(m)
X -module such that for any

open set U ⊂ X such that U/S has coordinates, for any ϕ ∈ Γ(U,HomOX (E ,F)) and x ∈ Γ(U, E)

(∂〈k〉ϕ)(x) =
∑
i≤k

(−1)|i|
¶
k
i

©
∂〈k−i〉(ϕ(∂〈i〉x)). (2.1.4.1.1)

(b) There exists on HomOX (E ,M) a unique structure of right D(m)
X -module such that for any open set

U ⊂ X such that U/S has coordinates, x ∈ Γ(U, E), ϕ : E|U →M|U we have

(ϕ∂〈k〉)(x) =
∑
h≤k

¶
k
h

©
ϕ(∂〈h〉x)∂〈k−h〉. (2.1.4.1.2)

(c) There exists on HomOX (N ,M) a unique structure of left D(m)
X -module such that for any open set

U ⊂ X such that U/S has coordinates, z ∈ Γ(U,N ), ψ : N|U →M|U we have

(∂〈k〉ψ)(z) =
∑
h≤k

(−1)|k−h|
¶
k
h

©
ψ(z∂〈h〉)∂〈k−h〉. (2.1.4.1.3)

(d) Let D be a sheaf of rings on X. If the structure of left D(m)
X/S-module of F (resp. E) extends to

a structure of (D(m)
X/S ,D)-bimodule then the structure of left D(m)

X/S-module of HomOX (E ,F) extends

to a structure of (resp. left) (D(m)
X/S ,D)-bimodule. The left structure is the internal homomorphism

structure. Moreover, if the structure of left (resp. right) D(m)
X/S-module of E (resp. M) extends to

a structure of (D(m)
X/S ,D)-bimodule (resp. (D,D(m)

X/S)-bimodule), then the structure of right D(m)
X/S-

module of HomOX (E ,M) extends to a structure of right (D,D(m)
X/S)-bimodule (resp. (D,D(m)

X/S)-

bimodule). Moreover, if the structure of right D(m)
X/S-module of N (resp. of M) extends to a struc-

ture of (D,D(m)
X/S)-bimodule, then the structure of left D(m)

X/S-module of HomOX (N ,M) extends to a

structure of (resp. left) (D(m)
X/S ,D)-bimodule.

In the same way, these structures of D(m)
X/S-module do not depend on the level m.

Proof. (a) i) We construct the isomorphisms εGn. Since pni,(m)∗P
n
X/S(m) is a locally free OX -module, then

the canonical morphism

pni,(m)∗P
n
X/S(m) ⊗OX HomOX (E ,F)→ HomOX (E , pni,(m)∗P

n
X/S(m) ⊗OX F)

is an isomorphism. This yields that the canonical morphism of PnX/S(m)-modules

αi : p
n
i,(m)∗P

n
X/S(m) ⊗OX HomOX (E ,F)→ HomPn

X/S(m)
(pni,(m)∗P

n
X/S(m) ⊗OX E , p

n
i,(m)∗P

n
X/S(m) ⊗OX F)

(2.1.4.1.4)
given by τ ⊗ ϕ 7→ (τ ′ ⊗ x 7→ ττ ′ ⊗ ϕ(x)), is an isomorphism. Setting G := HomOX (E ,F), we denote by
εGn the isomorphism of PnX/S(m)-modules making commutative the diagram

PnX/S(m) ⊗OX G
α1

∼
//

εGn
��

HomPn
X/S(m)

(PnX/S(m) ⊗OX E ,P
n
X/S(m) ⊗OX F)

HomPn
X/S(m)

((εEn)−1,εFn )

��
G ⊗OX PnX/S(m)

α0

∼
// HomPn

X/S(m)
(E ⊗OX PnX/S(m),F ⊗OX P

n
X/S(m)).

(2.1.4.1.5)

ii) Let us check the formula 2.1.4.1.1. Suppose X/S has coordinates. Let ϕ : E → F be a section of G and
ψ := α1(1⊗ϕ) : PnX/S(m)⊗OX E → P

n
X/S(m)⊗OX F be the image of 1⊗ϕ by the canonical isomorphism
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α1 of 2.1.4.1.4. For any k ∈ Nd, for any n ≥ |k|, let us denote by ∂〈k〉ϕ or by ∂〈k〉(ϕ) the section of G
such that we get

εGn(1⊗ ϕ) =
∑
|k|≤n

∂〈k〉ϕ⊗ τ{k}.

The map α0(εGn(1⊗ϕ)) is the unique PnX/S(m)-linear morphism E ⊗OX PnX/S(m) → F ⊗OX P
n
X/S(m) given

by
x⊗ 1 7→

∑
|k|≤n

∂〈k〉ϕ⊗ τ{k},

for any section x of E . On the other hand, α0(εGn(1⊗ ϕ)) = εFn ◦ ψ ◦ (εEn)−1 by definition (see 2.1.4.1.5).
We compute

εFn ◦ ψ ◦ (εEn)−1(x⊗ 1)
2.1.1.5.5

= εFn ◦ ψ

Ñ∑
|i|≤n

(−1)|i|τ{i} ⊗ ∂〈i〉x

é
= εFn

Ñ∑
|i|≤n

(−1)|i|τ{i} ⊗ ϕ(∂〈i〉x)

é
2.1.1.5.4

=
∑
|i|≤n

∑
|j|≤n

(−1)|i|∂〈j〉(ϕ(∂〈i〉x))⊗ τ{j}τ{i} =
∑
|k|≤n

Ñ∑
i≤k

¶
k
i

©
(−1)|i|∂〈k−i〉(ϕ(∂〈i〉x))

é
⊗ τ{k}

Hence, we get the formula 2.1.4.1.1.
iii) Finally the fact that the cocycle condition holds for the family (εGn) (an then is an m-PD-

stratification relative to X/S) is ether a consequence by construction of that of the families (εEn) and
(εFn ) or since this is local is an easy computation using the formula 2.1.4.1.1 and the remark 2.1.1.6.

(b) i) We have the canonical isomorphisms

βi : (pni )[(HomOX (E ,M))
4.6.3.9
∼−→ HomOX ((pni )∗(E),M)

2.1.2.1.1
∼−→ HomPn

X/S,(m)

Ä
(pni )∗(E), (pni )[(M)

ä
.

(2.1.4.1.6)

We set H := HomOX (E ,M) and we denote by εHn the PnX/S,(m)-linear isomorphism making commutative
the following diagram

(pn0 )[(HomOX (E ,M))
∼
β0

//

εHn

��

HomPn
X/S,(m)

(
(pn0 )∗(E), (pn0 )[(M)

)
Hom(εEn,ε

M
n )

��
(pn1 )[(HomOX (E ,M))

∼
β1

// HomPn
X/S,(m)

(
(pn1 )∗(E), (pn1 )[(M)

)
.

(2.1.4.1.7)

ii) Let us check the formula 2.1.4.1.2. Let ϕ : E → M be a section of H, k ∈ Nr and ∂〈k〉 ⊗ ϕ be
the section of (pn0 )[(H) (via its identification with H ⊗OX D

(m)
X/S,n). We compute the morphism β0(ϕ ⊗

∂〈k〉) : (pn0 )∗(E)→ (pn0 )[(M) is the morphism given by

x⊗ τ{i} 7→ (τ{j} 7→ ∂〈k〉(τ{i}τ{j})ϕ(x)). (2.1.4.1.8)

Hence, modulo the identification (pn0 )[(M) =M⊗OX D
(m)
X/S,n, we get

β0(ϕ⊗ ∂〈k〉)(x⊗ τ{i}) =

®¶ k
i

©
ϕ(x)⊗ ∂〈k−i〉 if i ≤ k

0 otherwise.
(2.1.4.1.9)

53



Hence, we compute

εMn ◦ β0(ϕ⊗ ∂〈k〉) ◦ εEn(τ{i} ⊗ x)
2.1.1.5.4

= εMn ◦ β0(ϕ⊗ ∂〈k〉)

Ñ∑
|h|≤n

∂〈h〉x⊗ τ{h}τ{i}
é

2.1.4.1.13
= εMn

Ñ ∑
h≤k−i

ß
i+ h

i

™¶
k
i + h

©
ϕ(∂〈h〉x)⊗ ∂〈k−i−h〉

é
2.1.2.9.2

=
∑
h≤k−i

∑
j≤k−i−h

ß
i+ h

i

™¶
k
i + h

©®k − i− h
j

´
∂?〈j〉 ⊗ ϕ(∂〈h〉x)∂〈k−i−h−j〉.

We have εHn (ϕ ⊗ ∂〈k〉) = β−1
1 (εMn ◦ β0(ϕ ⊗ ∂〈k〉) ◦ εEn) by definition (see 2.1.4.1.12). Moreover, we have

the commutative diagram

(pn1 )[(HomOX (E ,M))
∼
β1

//

ev1

��

HomPn
X/S,(m)

(
(pn1 )∗(E), (pn1 )[(M)

)
∼
��

HomOX (E ,M) HomOX (E , (pn1 )[(M))
ev1

oo

(2.1.4.1.10)

where the right isomorphism is the canonical one. Hence, via the commutativity of 2.1.4.1.13, we get

x · ∂〈k〉 := ev1 ◦εHn (x⊗ ∂〈k〉) = ev1

Ä
εMn ◦ β0(ϕ⊗ ∂〈k〉) ◦ εEn(1⊗ x)

ä
= ev1

Ñ∑
h≤k

∑
j≤k−h

¶
k
h

©®k − h
j

´
∂?〈j〉 ⊗ ϕ(∂〈h〉x)∂〈k−h−j〉

é
=
∑
h≤k

¶
k
h

©
ϕ(∂〈h〉x)∂〈k−h〉.

iii) Finally the fact that the cocycle condition holds for the family (εHn ) (an then is an m-PD-
stratification relative to X/S) is ether a consequence by construction of that of the families (εEn) and
(εMn ) or since this is local is an easy computation using the formula 2.1.4.1.2 and the remark 2.1.2.10.

(c) i) Set K := HomOX (N ,M). By functoriality and extension, we get the canonical PnX/S,(m)-linear
homomorphisms

γi : (pni )∗(HomOX (N ,M))→ HomPn
X/S,(m)

Ä
(pni )[(N ), (pni )[(M)

ä
, (2.1.4.1.11)

given by φ ⊗ τ 7→ (u 7→ (τ ′ 7→ φ ◦ u(ττ ′))) with u a section of (pni )[(N ), τ and τ ′ of PnX/S,(m). By
compositing 2.1.4.1.11 with the isomorphisms

HomPn
X/S,(m)

Ä
(pni )[(N ), (pni )[(M)

ä 2.1.2.1.1
∼−→ HomOX

Ä
(pni )[(N ),M

ä
2.1.2.6
∼−→ HomOX

Ä
HomOX (pi∗PnX,(m),OX)⊗OX N ,M

ä
we get the map given by φ⊗ τ 7→ ((P ⊗ x) 7→ φ(P (τ)x)). This composition is equal to the composition
of the isomorphisms

pni∗PnX,(m) ⊗OX (HomOX (N ,M))
∼−→ HomOX

Ä
N ,HomOX

Ä
HomOX (pi∗PnX,(m),OX),M

ää
4.6.3.9
∼−→ HomOX

Ä
HomOX (pi∗PnX,(m),OX)⊗OX N ,M

ä
where first map is given by φ ⊗ τ 7→ (x 7→ (P 7→ P (τ)φ(x))), for any τ ∈ PnX,(m), φ ∈ H, x ∈
N , P ∈ HomOX (pi∗PnX,(m),OX) and is an isomorphism because the homomorphism pi∗PnX,(m) →
HomOX

Ä
HomOX (pi∗PnX,(m),OX),OX)

ä
is an isomorphism, we get that the canonical map 2.1.4.1.11

is an isomorphism.
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We denote by εKn the PnX/S,(m)-linear isomorphism making commutative the following diagram

(pn1 )∗(HomOX (N ,M))
2.1.4.1.12
∼
//

εKn

��

HomPn
X/S,(m)

(
(pn1 )[(N ), (pn1 )[(M)

)
Hom(εNn ,(ε

M
n )−1)

��
(pn0 )∗(HomOX (N ,M))

2.1.4.1.12
∼
// HomPn

X/S,(m)

(
(pn0 )[(N ), (pn0 )[(M)

)
(2.1.4.1.12)

ii) As above in (a) or (b), it is sufficient to check the formula 2.1.4.1.3. Suppose X/S has coordinates.
1) Let k ∈ Nr and let ψk be a section of HomOX (N ,M)). Modulo the canonical isomorphism

M⊗OX D
(m)
X,n

∼−→ pn[0,(m)(M) of 2.1.2.6.1, with notation 2.1.4.1.11 the map γ0(ψk⊗τ{k}) is the PnX/S,(m)-

linear homomorphism of the formM⊗OX D
(m)
X,n → pn[0,(m)(N ) defined by the formula

z ⊗ ∂〈i〉 7→ (τ{k} 7→ ψk(z)⊗ ∂〈i〉(τ{j}τ{k})).

Hence, modulo the canonical isomorphism N ⊗OX D
(m)
X,n

∼−→ pn[0,(m)(N ), with 1.2.4.5.3 we compute

γ0(ψk ⊗ τ{k})(z ⊗ ∂〈i〉) =

{¶
i
k

©
ψk(z)⊗ ∂〈i−k〉 if i ≥ k

0 otherwise.
(2.1.4.1.13)

2) Let ψ be a section of HomOX (N ,M)). We have the formula

γ0(εKn (1⊗ ψ))(z ⊗ ∂〈i〉) 2.1.1.5.4
=

∑
|k|≤n

γ0(∂〈k〉ψ ⊗ τ{k})(z ⊗ ∂〈i〉) 2.1.4.1.13
=

∑
k≤i

ß
i

k

™
(∂〈k〉ψ)(z)⊗ ∂〈i−k〉.

(2.1.4.1.14)

Modulo the identifications of 2.1.2.6.2, we compute

γ1(1⊗ ψ) = id⊗ ψ : HomOX (p1∗PnX,(m),OX)⊗OX M→HomOX (p1∗PnX,(m),OX)⊗OX N .

Via the commutative diagram 2.1.4.1.12, γ0(εKn (1⊗ ψ)) = (εMn )−1 ◦ (id⊗ ψ) ◦ εNn . We compute

(εMn )−1 ◦ (id⊗ ψ) ◦ εNn (z ⊗ ∂〈i〉) 2.1.2.9.2
= (εMn )−1 ◦ (id⊗ ψ)(z ⊗ ∂〈i〉) = (εMn )−1 ◦ (id⊗ ψ)(

∑
h≤i

ß
i

h

™
∂?〈i−h〉 ⊗ z∂〈h〉)

=
∑
h≤i

ß
i

h

™
(εMn )−1(∂?〈i−h〉 ⊗ ψ(z∂〈h〉))

2.1.2.9.3
=

∑
h≤i

∑
0≤i−k≤i−h

(−1)|k−h|
ß
i

h

™ß
i− h
i− k

™
(ψ(z∂〈h〉))∂〈k−h〉 ⊗ ∂〈i−k〉

=
∑
k≤i

ß
i

k

™Ñ∑
h≤k

(−1)|k−h|
ß
k

h

™
(ψ(z∂〈h〉))∂〈k−h〉

é
⊗ ∂〈i−k〉. (2.1.4.1.15)

It follows from 2.1.4.1.13 and 2.1.4.1.15 the equality 2.1.4.1.3.
(d) The functoriality in E , F , M or N can be checked by using these formulas. It comes from this

functoriality (or again thanks to 2.1.4.1.1, 2.1.4.1.2 and 2.1.4.1.3) the part (d) of the proposition holds.

2.2 Exchanging right and left D-modules

2.2.1 Structure of right D-modules on ωX

Let d be the relative dimension of the smooth morphism f : X → S. We set ωX/S := ΩdX/S , which is
often written as ωX when S is understood. The sheaf ωX plays an important role in D-module theory -
it is used to switch left and right modules, and therefore to define D-linear duality.
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2.2.1.1 (ωX is a right DX -module: first case). First, in order to be able to use the extraordinary inverse
functor g! by an embeddable morphism g in the context of complexes with quasi-coherent cohomology
(see [Har66, III Thm 8.7]), suppose S is locally noetherian. Beware, that this functor g! has not to be
confused with the extraordinary inverse functor as complexes of D-modules that we will define later.
Since f : X → S is smooth, by construction of the functor f ! = f ], we get ωX/S = f !(OS [−d]). Since
f ◦ pn0,(m) = f ◦ pn1,(m), by transitivity of the extraordinary inverse functor (as defined in [Har66, III Thm
8.7]), we get the canonical isomorphisms

εn : pn[0,(m)(ωX)
∼−→ pn!

0,(m)(ωX)
∼−→ pn!

0,(m)(f
!(OS [−d]))

∼−→ pn!
1,(m)(f

!(OS [−d]))
∼−→ pn!

1,(m)(ωX) = pn[1,(m)(ωX).

By using again the transitivity of the functor f !, we check that the cocycle conditions are satisfied and
therefore that the isomorphisms εn is a costratification. From Proposition 2.1.2.8, this gives ωX the
structure of a right D(m)

X -module.

Definition 2.2.1.2 (Adjoint operator). Suppose X/S has coordinates t1, . . . , td. For P =
∑
k ak∂

〈k〉 ∈
Γ(X,D(m)

X ) with ak ∈ Γ(X,OX), the adjoint of P is defined to be

tP =
∑
k

(−1)|k|∂〈k〉ak.

Lemma 2.2.1.3. Suppose X/S has coordinates t1, . . . , td. Let P,Q be two differential operators of
Γ(X,D(m)

X ). With notation 2.2.1.2, the following equalities hold: t(tP ) = P , t(PQ) = tQtP .

Proof. 1) Let us check t(tP ) = P . By additivity of P 7→ tP , we reduce to the case where P = a∂〈k〉 with
a ∈ Γ(X,OX) and k ∈ Nd. We compute:

t(tP )
1.4.2.7.1

= t

Ñ
(−1)|k|

∑
i≤k

¶
k
i

©
∂〈k−i〉(a)∂〈i〉

é
=
∑
i≤k

(−1)|i|+|k|
¶
k
i

©
∂〈i〉 · (∂〈k−i〉(a))

1.4.2.7.1
=

∑
i≤k

∑
j≤i

(−1)|i|+|k|
¶
k
i

©¶
i
j

©
∂〈i−j〉(∂〈k−i〉(a))∂〈j〉

1.4.2.7.c
=

∑
j≤k

∑
j≤i≤k

(−1)|i|+|k|
¶
k
i

©¶
i
j

©≠k − j
k − i

∑
∂〈k−j〉(a)∂〈j〉

=
∑
j≤k

nk,j∂
〈k−j〉(a)∂〈j〉

∑
j≤i≤k

(−1)|k|−|i|
Å
k − j
k − i

ã
= a∂〈k〉. (2.2.1.3.1)

where nk,j is a constant only depending on k and j such that nk,k = 1.
2) Let us check t(PQ) = tQtP . i) When P ∈ Γ(X,OX) the formula is obvious. Moreover, if follows

from the involution of the transposition that we have

t

Ñ∑
k

∂〈k〉ak

é
=
∑
k

(−1)|k|ak∂
〈k〉.

Hence, the formula t(PQ) = tQtP is clear when Q ∈ Γ(X,OX). ii) By additivity, we reduce to the case
where P = a∂〈k〉 and Q = ∂〈l〉b with a, b ∈ Γ(X,OX) and k, l ∈ Nd. From the step i), we can suppose
moreover a = 1 and b = 1. Then we can conclude thanks to 1.4.2.7.c.

Theorem 2.2.1.4. Suppose S is locally noetherian. Suppose X/S has coordinates t1, . . . , td. For the
structure of right DX-module on ωX as defined in 2.2.1.1, for any a ∈ Γ(U,OX), P ∈ Γ(U,DX) we have
therefore

(adt1 ∧ · · · ∧ dtd) · P = (tP · a)dt1 ∧ · · · ∧ dtd.

Proof. This is proved by Berthelot at [Ber00, 1.2.3].
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Corollary 2.2.1.5. There exists a unique structure of right DX-module on ωX such that for any open
set U of X such that U/S has coordinates t1, . . . , td, for any a ∈ Γ(U,OX), P ∈ Γ(U,DX) we have

(adt1 ∧ · · · ∧ dtd) · P = (tP · a)dt1 ∧ · · · ∧ dtd. (2.2.1.5.1)

Proof. By uniqueness, the corollary is local and we can suppose X and S affine. Let S′ → S be a
morphism of schemes and X ′ := X ×S S′ and $ : X ′ → X be the projection. Since $∗DX/S = DX′/S′ ,
then if ωX/S has a structure of right DX/S-module satisfying the formula 2.2.1.5.1, then ωX′/S′ has also
a structure of right DX′/S′ -module satisfying the formula 2.2.1.5.1. Hence, by passing to the limits we
reduce to the case where S is noetherian, which was already checked in 2.2.1.4.

2.2.1.6 (Left and right D-modules.). We describe here how to switch between right and left D(m)
X -

modules. Let E be a left D(m)
X -module andM be a right D(m)

X -module.

(a) Since ωX is a right D(m)
X -module and E is a left D(m)

X -module then ωX ⊗OX E is endowed with a
canonical structure of right D(m)

X -module extending its structure of OX -module (see 2.1.3.1.b).
Let U be an open subset of X such that U/S has coordinates t1, . . . , td. It follows from the formulas
2.1.3.1.2 and 2.2.1.5 that for any P ∈ Γ(U,D(m)

X ), x ∈ Γ(U, E), denoting by ω0 := dt1 ∧ · · · ∧ dtd a
basis of the free OU -module of rank one ωU/S , the right action of P on ω0 ⊗ x ∈ Γ(U, ωX ⊗OX E) is
given by

(ω0 ⊗ x) · P = ω0 ⊗ (tP · x).

In other words, by making the (non-canonical) identification of ωX ⊗OX E with E via the ω0, the
action of right D(m)

X -module on ωX ⊗OX E is given by the transposition (which definition depends
on the choice of coordinates). We say that this structure of right D(m)

X -module of ωX ⊗OX E is its
“twisted structure”.

(b) Via the canonical isomorphism of OX -modules M⊗OX ω−1
X

∼−→ HomOX (ωX ,M), since the right
term as a canonical structure of left D(m)

X -module (see 2.1.4.1.c), we get onM⊗OX ω−1
X a canonical

structure of left D(m)
X -module.

Let U be an open subset of X such that U/S has coordinates t1, . . . , td. Let ω∨0 = (dt1 ∧ · · · ∧ dtd)∨
be a basis of the free OU -module of rank one ω−1

U/S . It follows from the formulas 2.1.4.1.3 and 2.2.1.5

that for any P ∈ Γ(U,D(m)
X ), x ∈ Γ(U,M),

P · (x⊗ ω∨0 ) = (x · tP )⊗ ω∨0 .

In other words, by making the (non-canonical) identification M⊗OX ω−1
X with M via the ω∨0 , the

action of let D(m)
X -module on M⊗OX ω−1

X is given by the transposition (which definition depends
on the choice of coordinates). We say that this structure of left D(m)

X -module ofM⊗OX ω−1
X is its

“twisted structure”.

(c) From the local description, since the transposition is an involution, we compute that the canonical
isomorphism of OX -modules

(ωX ⊗OX E)⊗OX ω−1
X

∼−→ E , (2.2.1.6.1)

ωX ⊗OX (M⊗OX ω−1
X )

∼−→ M (2.2.1.6.2)

are D(m)
X -linear. This implies that the functor ωX ⊗OX − from the category of left D(m)

X -modules to
the category of right D(m)

X -modules is an equivalence of categories with quasi-inverse − ⊗OX ω−1
X .

We refer to this as the side-changing operation.

2.2.2 Transposition isomorphisms

Proposition 2.2.2.1. Let E be a left D(m)
X -module. Since D(m)

X is a D(m)
X -bimodule, then it follows from

2.1.3.1.c that we get a structure of D(m)
X -bimodule on D(m)

X ⊗OX E (resp. E ⊗OX D
(m)
X ), where the tensor

product is computed with the structure of right D(m)
X -module (resp. left D(m)

X -module) of D(m)
X .
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LetM be a right D(m)
X -module. It follows from 2.1.3.1.c that we get a structure of right D(m)

X -bimodule
on M⊗OX D

(m)
X , where the tensor product is computed with the structure of left D(m)

X -module of D(m)
X .

The structure of right D(m)
X -module on M⊗OX D

(m)
X given by the tensor product is said to be the right

one, the other one is the left structure.

(a) There is a unique D(m)
X -bimodule isomorphism

γE : D(m)
X ⊗OX E

∼−→ E ⊗OX D
(m)
X (2.2.2.1.1)

such that γE(1⊗ e) = e⊗ 1 for any section e of E. In local coordinates we have

γE(∂
〈k〉 ⊗ e) =

∑
h≤k

¶
k
h

©
y∂〈k−h〉e⊗ ∂〈h〉.

(b) There exists a unique involution

δM : M⊗OX D
(m)
X →M⊗OX D

(m)
X

exchanging both structures of right D(m)
X -modules such that δM(x ⊗ 1) = x ⊗ 1 for any section x of

M. In local coordinates we have

δM(x⊗ ∂〈k〉) =
∑
h≤k

(−1)|h|
¶
k
h

©
x∂〈k−h〉 ⊗ ∂〈h〉.

The map γE (resp. δM) is said to be the transposition isomorphism of E (resp. M).

Proof. (a) The canonical OX -linear homomorphism E → E ⊗OX D
(m)
X given by e 7→ e ⊗ 1 induces by

extension γE which is a homomorphism of left D(m)
X -modules. Next we need to see that γE is right

D(m)
X -linear, i.e. γE((1⊗e)Q) = γE(1⊗e)Q for any section Q of D(m)

X . Since this is clear by OX -linearity
of γE when Q ∈ OX , then we reduce to the case where Q = ∂〈k〉. We do a calculation:

γE((1⊗ e)∂〈k〉)

= γE

Ñ∑
h≤k

(−1)|k−h|
¶
k
h

©
∂〈h〉 ⊗ ∂〈k−h〉e

é
by (2.1.3.1.2)

=
∑
h≤k

(−1)|k−h|
¶
k
h

©
∂〈h〉(∂〈k−h〉e⊗ 1) by left D(m)

X linearity of γE

=
∑
h≤k

(−1)|k−h|
¶
k
h

©Ñ∑
i≤h

ß
h

i

™
∂〈h−i〉∂〈k−h〉e⊗ ∂〈i〉

é
by (2.1.3.1.1)

=
∑
i≤k

Ñ ∑
i≤h≤k

(−1)|k−h|
¶
k
h

©ßh
i

™≠
k − i
h− i

∑é
∂〈k−i〉e⊗ ∂〈i〉 by proposition 1.4.2.7

= e⊗ ∂〈k〉 similarly to the computation 2.2.1.3.1.

By extension from the OX -linear homomorphism E → D(m)
X ⊗OX E given by e 7→ 1⊗e the homomorphism

of right D(m)
X -modules E ⊗OX D

(m)
X → D(m)

X ⊗OX E given by e⊗P 7→ (1⊗ e)P. This map gives an inverse
of γE , in particular this is an isomorphism.

(b) Similarly, the canonical OX -linear (with the OX -module structure on the target coming from the
left structure of right D(m)

X -module) homomorphism M → M⊗OX D
(m)
X given by x 7→ x ⊗ 1 induces

the right D(m)
X -linear homomorphism δM : M⊗OX D

(m)
X →M⊗OX D

(m)
X (for the right structure for the

source and the left structure for the target). By doing a similar computation, we check the second right
D(m)
X -linearity (i.e. for the left structure for the source and the right structure for the target) and the

local formula.
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Example 2.2.2.2. From proposition 2.2.2.1.b we have the canonical isomorphism of rightD(m)
X -bimodules

δX : ωX ⊗OX D
(m)
X

∼−→ ωX ⊗OX D
(m)
X (2.2.2.2.1)

which is an involution exchanging the two right D(m)
X -module structures. By tensoring with ⊗OXω−1

X

for the right (resp. left) structure of right D(m)
X of the source (resp. target) of δX , we get the isomorphism

of D(m)
X -bimodules

αX : ωX ⊗OX D
(m)
X ⊗OX ω−1

X
∼−→ D(m)

X . (2.2.2.2.2)

By tensoring αX with ⊗OXω−1
X , this yields the isomorphism of left D(m)

X -bimodules

βX : D(m)
X ⊗OX ω−1

X
∼−→ D(m)

X ⊗OX ω−1
X

which is an involution exchanging the two left D(m)
X -module structures.

2.3 Level 0 case

2.3.1 Stratifications of order ≤ 1 and connections
Definition 2.3.1.1. Let E be anOX -module. With notations 1.4.1.2 and 1.4.1.14, anm-PD stratification
relative to X/S of order ≤ 1 is the data of a P1

X/S,(m)-linear isomorphism ε1 : P1
X/S,(m) ⊗OX E →

E ⊗OX P1
X/S,(m) such that the following diagram

ψ1,0∗
X/S,(m)(P

1
X/S,(m) ⊗OX E)

ψ1,0∗
X/S,(m)

(ε1)

��

∼ // P0
X/S,(m) ⊗OX E

∼
��

∼ // E

ψn
′,n∗

X/S,(m)(E ⊗OX P
1
X/S,(m))

∼ // E ⊗OX P0
X/S,(m)

∼ // E

, (2.3.1.1.1)

whose horizontal isomorphisms are the canonical ones, is commutative. When m = ∞, we simply say
stratification relative to X/S of order ≤ 1.

Remark 2.3.1.2. We have a canonical map from the set of m-PD stratifications relative to X/S of E (see
2.1.1.1) to that of m-PD stratifications relative to X/S of order ≤ 1 given by (εn)n∈N 7→ ε1.

Proposition 2.3.1.3. Given an OX-module E. The following are equivalent.

(a) An OX-linear homomorphism θ1 : E → p1∗(E ⊗OX P1
X,(m)) (the OX-module structure of this latter is

induced by the right structure of P1
X,(m)) making commutative the diagram

E ∼ //

θ1
$$

E ⊗ P0
X/S,(m)

E ⊗ P1
X/S,(m)

idE ⊗ψ1,0

X/S,(m)

OO
(2.3.1.3.1)

whose top isomorphism is the canonical one (recall P0
X/S,(m) = OX).

(b) An m-PD stratification ε = (εEn) of order ≤ 1 on E.

The bijection between both data is given by ε1 7→ ε1 ◦ p1
1,E = θ1.

Proof. This comes from the proof of 2.1.1.5.

2.3.1.4. When m is an integer, it follows from the local description of 1.1.2.3 and 1.4.1.5 that the
canonical homomorphism ψ1

m : P1
X/S,(m) → P

1
X/S of 1.4.1.11 is an isomorphism. Hence, the data of a

stratification relative to X/S of order ≤ 1 on E is equivalent to that of an m-PD stratification relative
to X/S of order ≤ 1 on E . In other words, the integer m has no importance and by default we simply
consider stratifications relative to X/S of order ≤ 1.

59



Definition 2.3.1.5. A connection relative to X/S on an OX -module E is an additive map ∇ : E →
E ⊗OX Ω1

X/S such that for any open U ⊆ X, for any x ∈ E(U), a ∈ OX(U) we have

∇(ax) = a∇x+ x⊗ da

where d : OX → Ω1
X/S is the constant OS-derivation.

Proposition 2.3.1.6. Let E be an OX-module. The map ε1 7→ (id⊗$) ◦ ε1 ◦ p1
1,E , where p

1
1,E is defined

at 1.1.3.1, gives a bijection between the set of connections relative to X/S on E to that of stratifications
relative to X/S of order ≤ 1 on E.

Proof. 1) Let ε1 be a stratification relative to X/S of order ≤ 1 on E . Following 2.3.1.3, it corresponds
to ε1 a homomorphism θ1 := ε1 ◦ p1

1,E : E → p1∗(E ⊗OX P1
X/S) (the OX -module structure of this latter is

induced by the right structure of P1
X/S) making commutative the diagram 2.3.1.3.1.

2) To simplify notation, we do not write the canonical isomorphisms of the form E ∼−→ P0
X/S,(m)⊗OX E

or E ∼−→ E ⊗OX P0
X/S,(m). i) Let θ1 : E → E ⊗OX P1

X/S,(m) be an additive map making commutative
the diagram 2.3.1.3.1. We get the additive map ∇ := (idE ⊗$) ◦ θ1. Since $ = id−p1

0 ◦ ψ
1,0
X/S , then we

compute ∇ = θ1 − (idE ⊗p1
0 ◦ ψ

1,0
X/S) ◦ θ1

2.3.1.3.1
= θ1 − idE ⊗p1

0. Hence

(idE ⊗ψ1,0
X/S) ◦ ∇ = (idE ⊗ψ1,0

X/S) ◦ θ1 − (idE ⊗ψ1,0
X/S) ◦ (idE ⊗p1

0)
2.3.1.3.1

= idE −(idE ⊗ψ1,0
X/S ◦ p

1
0) = idE − idE = 0.

Hence, ∇ factors through ∇ : E → E ⊗OX Ω1
X/S ⊂ E ⊗OX P

1
X/S .

ii) Conversely let ∇ : E → E ⊗OX Ω1
X/S be an additive map. Set θ1 := ∇ + idE ⊗p1

0. Since Ω1
X/S =

kerψ1,0
X/S , then we compute

(idE ⊗ψ1,0
X/S) ◦ θ1 = (idE ⊗ψ1,0

X/S) ◦ (idE ⊗p1
0) = (idE ⊗ψ1,0

X/S ◦ p
1
0) = idE ,

which means that the diagram 2.3.1.3.1 is commutative.
iii) Hence we get a bijection between the set of additive maps θ1 : E → E ⊗OX P1

X/S,(m) making
commutative the diagram 2.3.1.3.1 and that of additive maps ∇ : E → E ⊗OX Ω1

X/S . It remains to check
that θ1 is OX -linear (the OX -module structure of this latter is induced by the right structure of P1

X/S)
if and only if ∇ is a connection, which is checked in the following last step.

3) Let a be a section of OX and x of E . Denoting by 1 the unit element of P1
X/S , we compute in

E ⊗OX P1
X/S :

∇(ax) = θ1(ax)− ax⊗ 1. (2.3.1.6.1)

On the other hand, we get two sections of P1
X/S by setting a ⊗ 1 := p1

0(a) and 1 ⊗ a := p1
1(a). Since

∇(x) ∈ E ⊗OX Ω1
X/S , then a∇(x) = (1⊗ a)∇(x). Hence, we compute in E ⊗OX P1

X/S :

a∇(x) + x⊗ da = (1⊗ a) (θ1(x)− x⊗ 1) + x⊗ (1⊗ a− a⊗ 1) = (1⊗ a)θ1(x)− ax⊗ 1. (2.3.1.6.2)

Hence, with 2.3.1.6.1 and 2.3.1.6.2, we get that ∇ is a connection if and only if θ1 is OX -linear (for the
right structure of E ⊗OX P1

X/S,(m)).

2.3.2 Integrable connections and D-modules of level 0
2.3.2.1. Let ΩiX/S = ∧iOXΩX/S for i ≥ 0 be the ith exterior power. For any integers i, j, denote by
ci,j : ΩiX/S ⊗OX ΩjX/S → Ωi+jX/S the canonical projection. Recall the constant OS-derivation d : OX →
Ω1
X/S (see 1.1.2.6). Moreover, (e.g. see [Gro67, IV.16.6.2]), for any i ≥ 1, there is a unique homomorphism

of f−1OS-modules di : ΩiX/S → Ωi+1
X/S such that di(a0da1∧· · ·∧dai) = da0∧da1∧· · ·∧dai where a0, . . . , ai

are local sections of OX . In degree 0, remark d0 = d, i.e. we retrieve the constant OS-derivation
d : OX → Ω1

X/S . We get the complex of sheaves of f−1OS-modules

0→ Ω0
X/S → Ω1

X/S → Ω2
X/S → . . .
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which is called the de Rham complex of X/S.
We compute di(aw)− adi(ω) = da ∧ ω for any section a of OX and section ω = a0da1 ∧ · · · ∧ dai of

ΩiX/S . Hence, ω 7→ di(aw) − adi(ω) is linear, i.e. the map di is a differential operator of order 1 (see
1.1.3.4.1). By definition, there exists a unique OX -linear homomorphism $i : P1

X/S ⊗OX ΩiX/S → Ωi+1
X/S

whose composition with p1
1,Ωi

X/S

: ΩiX/S → P
1
X/S ⊗OX ΩiX/S is equal to di. We compute

$i(da⊗ ω) = $i(1⊗ aω)− a$i(1⊗ ω) = di(aw)− adi(ω) = da ∧ ω, (2.3.2.1.1)

for any section a of OX and section ω of ΩiX/S . The formula 2.3.2.1.1 means that the restriction of $i

on Ω1
X/S ⊗OX ΩiX/S is the canonical map ci,i+1.

Notation 2.3.2.2. Let E be an OX -module and i, j ≥ 0 be two integers. Let y (resp. z) be a section of
E ⊗OX ΩiX/S (resp. ΩiX/S ⊗OX E) and ω be a section of ΩjX/S . Then we denote by y∧ω (resp. ω∧ z) the
image of y⊗ω (resp. ω⊗ z) via idE ⊗ci,j (resp. ci,j ⊗ idE). Denote by y 7→ ty the canonical isomorphism
E ⊗OX ΩiX/S

∼−→ ΩiX/S ⊗OX E . Beware
t(y ∧ ω) = (−1)ijω ∧ ty.

2.3.2.3 (Integrable connection, de Rham complex). Let E be an OX -module endowed with a connection.
Denote by ε1 the associated relative toX/S stratification of order≤ 1 on E (see 2.3.1.6). Following 2.3.1.3,
let θ1 : E → E⊗OX P1

X be the corresponding OX -linear homomorphism making commutative the diagram
2.3.1.3.1. We get the map ∇i : E ⊗OX ΩiX/S → E ⊗OX Ωi+1

X/S from θ1 and di by composition as follows

E ⊗OX ΩiX/S

p1

1,E⊗Ωi **

θ1⊗id
Ωi
X/S // E ⊗OX P1

X/S ⊗OX ΩiX/S
idE ⊗$i // E ⊗OX Ωi+1

X/S ,

P1
X/S ⊗OX E ⊗OX ΩiX/S

ε1⊗id

OO
(2.3.2.3.1)

where the triangle is commutative. Beware that the terms P1
X/S⊗OX E ⊗OX ΩiX/S and E ⊗OX P1

X/S⊗OX
ΩiX/S have two structures of OX -modules: the left one and the right one. The morphisms p1

1,E⊗Ωi

and θ1 ⊗ idΩi
X/S

are OX -linear for the right one, whereas idE ⊗$i is OX -linear for the left one. The

composition ∇i is not OX -linear but since ε1 ⊗ id is OX -linear for both structure (and in particular for
the left structure), then ∇i : E ⊗OX ΩiX/S → E ⊗OX Ωi+1

X/S is a differential operator of order 1.
For any sections y of E ⊗OX Ω1

X/S and ω of ΩiX/S , it follows from the computation of 2.3.2.1 and the
notation 2.3.2.2 that we have idE ⊗$i(y ⊗ ω) = y ∧ ω. Since θ1(x) = ∇(x) + x⊗ 1 for any section x of
E and ω of ΩiX/S , then we compute

∇i(x⊗ ω) = idE ⊗$i(θ1(x)⊗ ω) = idE ⊗$i(∇(x)⊗ ω) + idE ⊗$i(x⊗ 1⊗ ω) = ∇(x) ∧ ω + x⊗ di(ω).
(2.3.2.3.2)

More generally, for any sections yi of E ⊗OX ΩiX/S and ωj of ΩjX/S , with notation 2.3.2.2, it follows
from 2.3.2.3.2 the formula:

∇i+j(yi ∧ ωj) = ∇i(yi) ∧ ωj + (−1)iyi ∧ dj(ωj). (2.3.2.3.3)

Indeed, by additivity, we can suppose yi is of the form yi = x⊗ ωi, where x is a section of OX and ωi is
a section of ΩiX/S . We compute

∇i+j(yi ∧ ωj) = ∇i+j(x⊗ (ωi ∧ ωj))
2.3.2.3.2

= ∇(x) ∧ (ωi ∧ ωj) + x⊗ di+j(ωi ∧ ωj)

= (∇(x) ∧ ωi) ∧ ωj + x⊗ (di(ωi) ∧ ωj + (−1)iωi ∧ dj(ωj))
2.3.2.3.2

= ∇i(yi) ∧ ωj + (−1)iyi ∧ dj(ωj).

We say that the connection ∇ of E is integrable if ∇1 ◦ ∇ = 0. In that case ∇i+1 ◦ ∇i = 0 for any i
and we get the complex

0→ E → E ⊗OX Ω1
X/S → E ⊗OX Ω2

X/S → · · · → E ⊗OX ΩdX/S → 0, (2.3.2.3.4)

which is called the de Rham complex.
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2.3.2.4 (de Rham complex: exchanging the position). Let E be an OX -module endowed with a connec-
tion. To define the map ∇i : E ⊗OX ΩiX/S → E ⊗OX Ωi+1

X/S (see 2.3.2.3.1), it was more natural to put E
on the left. However, when E = D(0)

X/S for instance, it is much better (to avoid confusion with the right

structure of OX -module of D(0)
X/S) to put E on the right (see 2.3.3.10.2). Moreover, when the connection

is integral, since E can be viewed as a left D(0)
X/S-module (see later 2.3.2.6), one might prefer to put E on

the right. In other words, we define ∇i : ΩiX/S ⊗OX E → Ωi+1
X/S ⊗OX E to be the OS-linear map making

commutative the diagram

ΩiX/S ⊗OX E
∇i //

∼
��

Ωi+1
X/S ⊗OX E

∼
��

E ⊗OX ΩiX/S
∇i

2.3.2.3.1
// E ⊗OX Ωi+1

X/S ,

(2.3.2.4.1)

where the vertical isomorphism are the canonical ones. Via the formulas given at 2.3.2.2 and 2.3.2.3.3,
for any sections zi of ΩiX/S ⊗OX E and ωj of ΩjX/S , with notation 2.3.2.2, we get

∇i+j(ωj ∧ zi) = (−1)jωj ∧∇i(zi) + dj(ωj) ∧ zi. (2.3.2.4.2)

When the connection is integrable, by convention we denote by DR(E) the de Rham complex of E , with
E on the right side.

2.3.2.5. Let E be an OX -module endowed with a connection. Suppose X/S has coordinates t1, . . . , td.
For any section x of E , we denote by ∂1(x), . . . , ∂d(x) the elements of E such that

∇(x) =
d∑
i=1

∂i(x)⊗ dti. (2.3.2.5.1)

Using 2.3.2.3.2, we compute:

∇1 ◦ ∇(x) = ∇1(
d∑
i=1

∂i(x)⊗ dti) =
d∑
j=1

d∑
i=1

∂j(∂i(x))⊗ dtj ∧ dti.

Hence, the connection is integral is equivalent to saying that the maps ∂i ∈ EndOS (E) commute two by
two, i.e., for any i, j ∈ {1, . . . , d}, for any section x of E we have the equality:

∂j(∂i(x)) = ∂i(∂j(x)).

For any k ∈ Nd, we get the OS-linear map ∂k : E → E by setting ∂k = ∂k1
1 ◦ · · · ◦ ∂

kd
d . When, the

connection is integrable, for any k, l ∈ Nd, we get the equality

∂l ◦ ∂k = ∂k ◦ ∂l = ∂k+l. (2.3.2.5.2)

Theorem 2.3.2.6. Let E be an OX-module. The following are equivalent.

(a) An integrable connection relative to X/S on E.

(b) A structure of left D(0)
X/S-module on E extending its structure of OX-module.

Proof. 0) Recall the data of a structure of left D(0)
X/S-module on E extending its structure of OX -module

is equivalent to that of a 0-PD-stratification relative to X/S on E .
1) Let (εn)n∈N be a 0-PD-stratification relative to X/S on E . We check that the connection ∇ :=

(id⊗$) ◦ ε1 ◦ p1
1,E where p1

1,E is defined at 2.3.1.3 is integrable as follows. Since this is local, we can
suppose X/S has coordinates t1, . . . , td. Let θ1 := ε1 ◦ p1

1,E . Following the proof of 2.3.1.6, we have
∇ = θ1 − idE ⊗p1

0. Following 2.1.1.5.4, we get θ1(x) =
∑d
i=1 ∂i(x)⊗ τi + x⊗ 1. Since τi = dti in P1

X/S ,
then we get ∇(x) =

∑d
i=1 ∂i(x)⊗dti, which justifies the notation of 2.3.2.5.1 concerning the definition of

62



∂i(x) from the connection. Following 2.3.2.5, ∇ is integrable if and only if ∂j(∂i(x)) = ∂i(∂j(x)), which
is obvious since ∂i∂j = ∂j∂i in D(0)

X/S .
2) From the step 1), we get the map ψ sending a integrable connection relative to X/S on E to a

0-PD-stratification relative to X/S on E given by ψ((εn)n∈N) = (id⊗$) ◦ ε1 ◦ p1
1,E . It remain check

that ψ is bijective. Since this is local, then we can suppose X/S has coordinates t1, . . . , td. Since the
connection determines the action of ∂1, . . . , ∂d, since the ring D(0)

X/S is generated as OS-algebra by OX
and by ∂1, . . . , ∂d, then we get the injectivity of ψ. Let us now check the surjectivity. Let ∇ be an
integrable connection. With notation 2.3.2.5, for any k ∈ Nd, we get the OS-linear map ∂k : E → E . For
any P ∈ D(0)

X/S , we define the OS-linear map P : E → E as follows. We can uniquely write P as a finite
sum of the form P =

∑
k ak∂

k, where ak is a section of OX . Hence, we set P (x) :=
∑
k ak(∂k(x)).

Let P,Q ∈ D(0)
X/S . We have to check that P (Q(x)) = PQ(x) for any section x of E . By additivity,

we reduce to the case where P = a∂k and Q = b∂l where a and b are sections of OX and k, l ∈ Nd. By
construction of the maps of the form P : E → E , we can suppose a = 1.

For any global section y of E , by using the formula 2.3.2.5.1, the equality ∇(by) = b∇y + y ⊗ db is
translated by the formulas

∂i(by) = b∂i(y) + ∂i(b)y, (2.3.2.6.1)

for any i = 1, . . . , d. Let x be a section of E . Using 2.3.2.6.1 in the case where y = ∂l(x), we get

∂i(Q(x))
2.3.2.6.1

= b∂i(∂
l(x)) + ∂i(b)(∂

l(x))
2.3.2.5.2

= b∂i∂
l(x) + ∂i(b)∂

l(x) = (b∂i∂
l + ∂i(b)∂

l)(x) = (∂iQ)(x)

the last equality coming from ∂ib = b∂i+∂i(b) (see 1.4.2.7.1). This yields by induction on |k| the formula
∂k(Q(x)) = (∂kQ)(x) and we are done.

The following proposition states that the equivalence of Theorem 2.3.2.6 is in fact an equivalence of
categories.

Proposition 2.3.2.7. Let E ,F be two left D(0)
X/S-modules and f : E → F be an OX-linear homomorphism.

The following are equivalent.

(a) The morphism f is D(0)
X/S-linear.

(b) The square below is commutative:

E

f

��

∇ // E ⊗OX Ω1
X/S

f⊗id

��
F ∇ // F ⊗OX Ω1

X/S ,

(2.3.2.7.1)

where the connections are the ones associated via 2.3.2.6 with the left D(0)
X/S-module structures.

Proof. Since the proposition is local, then we can suppose X/S has coordinates t1, . . . , td. By using the
formula 2.3.2.5.1, we compute that the square 2.3.2.7.1 is commutative if and only if ∂i(f(x)) = f(∂i(x))

for any i = 1, . . . , r. Since the ring D(0)
X/S is generated as OS-algebra by OX and by ∂1, . . . , ∂d, then we

are done.

2.3.2.8. Let f : E → F be a homomorphism of left D(0)
X/S-modules. It follows from 2.3.2.4.2 that the

commutativity of 2.3.2.7.1 implies that of

E ⊗OX ΩiX/S

f⊗id

��

∇i // E ⊗OX Ωi+1
X/S

f⊗id

��
F ⊗OX ΩiX/S

∇i // F ⊗OX Ωi+1
X/S .

(2.3.2.8.1)

Hence, we get the morphism of C(OS) of the form DR(E)→ DR(F) (see notation 2.3.2.4).
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2.3.2.9. Let E be a left D(0)
X/S-module. We get the integrable connection ∇ : E → Ω1

X/S ⊗OX E (see
2.3.2.6 and 2.3.2.4). This yields (see the construction of 2.3.2.3 and 2.3.2.4) the OS-linear map

∇n−1 : Ωn−1
X/S ⊗OX E → ΩnX/S ⊗OX E . (2.3.2.9.1)

Suppose now X/S has coordinates t1, . . . , td. Let {i1, . . . , in−1} be n− 1 elements of {1, . . . , d}. Let
{j1, . . . , jd−n+1} be the complementary. For any section x of E , the formula 2.3.2.4.2 yields

∇n−1((dti1 ∧ · · · ∧ dtin−1)⊗ x) = (−1)n−1dti1 ∧ · · · ∧ dtin−1 ∧∇(x)

= (−1)n−1
d−n+1∑
a=1

(dti1 ∧ · · · ∧ dtin−1
∧ dtja)⊗ ∂ja(x). (2.3.2.9.2)

2.3.2.10. Viewing D(0)
X/S as a left D(0)

X/S-module, we get from 2.3.2.9.1 the OS-linear map:

∇n−1 : Ωn−1
X/S ⊗OX D

(0)
X/S → ΩnX/S ⊗OX D

(0)
X/S . (2.3.2.10.1)

In fact, since D(0)
X/S as a D(0)

X/S-bimodule then we get by functoriality (see 2.3.2.7) that 2.3.2.10.1 is a

homomorphism of right D(0)
X/S-modules. When X/S has coordinates t1, . . . , td, following 2.3.2.9.2 and

with its notation we have

∇n−1((dti1 ∧ · · · ∧ dtin−1
)⊗ 1) = (−1)n−1

d−n+1∑
a=1

(dti1 ∧ · · · ∧ dtin−1
∧ dtja)⊗ ∂ja . (2.3.2.10.2)

Let E be a left D(0)
X/S-module. Using the formulas 2.3.2.9.2 and 2.3.2.10.2, we get the commutative

diagram:

(Ωn−1
X/S ⊗OX D

(0)
X/S)⊗D(0)

X/S

E

∼
��

∇n−1⊗id // (Ωn−1
X/S ⊗OX D

(0)
X/S)⊗D(0)

X/S

E

∼
��

Ωn−1
X/S ⊗OX E

∇n−1
// ΩnX/S ⊗OX E ,

(2.3.2.10.3)

where the vertical isomorphisms are the canonical ones. Hence we have the canonical isomorphism of
C(rD(0)

X/S) of the form DR(E)
∼−→ DR(D(0)

X/S)⊗D(0)

X/S

E .

2.3.3 Tangent sheaf, homological dimension, Spencer resolutions
2.3.3.1 (Tangent sheaf). We set TX/S := HomBX (Ω1

X/S ,BX), the tangent sheaf relative to X/S. From
Ω1
X/S ↪→ P

1
X/S , we obtain by duality the canonical epimorphism DX/S,1 � TX/S whose kernel is DX/S,0 =

OX . From the canonical epimorphism morphism $ : p0∗P1
X/S � Ω1

X/S (see 1.1.2.6.3 ), we get by duality
the OX -linear monomorphism $∨ : TX/S ↪→ DX/S,1 (for the left structure of DX/S,1).

The morphisms P1
X/S → P

1
X/S,(m) and D(m)

X/S,1 → DX/S,1 are isomorphisms for any m ∈ N. This

yields gr1D
(m)
X/S

∼−→ TX/S . Moreover, we get the OX -linear monomorphism

ι(m) : TX/S
$∨

↪→ DX/S,1
∼←− D(m)

X/S,1 ↪→ D
(m)
X/S . (2.3.3.1.1)

Suppose X/S has coordinates (tλ)λ=1,...,d. Following the local description given at 1.1.2.6, ι(m)(TX/S)

is equal to the free OX -submodule (for the left or the right structure) of D(m)
X/S generated by elements

∂1, . . . , ∂d.

Proposition 2.3.3.2. The canonical homomorphism ι(0) : TX/S → D
(0)
X/S induces an isomorphism

S(TX/S)
∼−→ grD(0)

X/S .
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Proof. Since this is local, we can suppose X/S has coordinates (tλ)λ=1,...,d. Following 2.3.3.1, ι(0)

identifies TX/S with the free OX -submodule of D(0)
X/S generated by elements ∂1, . . . , ∂d. Denote by

ξi the image of ∂i in gr1D
(0)
X/S . Then it follows from 1.4.2.7.1 that grD(0)

X/S is equal to the commutative
polynomial OX -algebra with the variable ξ1, . . . , ξd.

We suppose from now f : X → S has pure relative dimension d.

Notation 2.3.3.3. We sometimes remove the canonical inclusion ι(0) in the notation, i.e. we might
canonically identify TX/S with a sub-OX -module of D(0)

X/S . For any sections v1, v2 of TX/S , we denote
by [v1, v2] the section of TX/S which corresponds to the section v1v2 − v2v1 (we use the ring structure
of D(0)

X/S and we remark v1v2 − v2v1 ∈ TX/S). The f−1OS-bilinear map [−,−] : TX/S × TX/S → TX/S
satisfies the Jacobi identity, i.e. we get a Lie bracket on the tangent space.

Definition 2.3.3.4. Let E = (En)n∈N be a filtered left D(0)
X/S-module, i.e a left D(0)

X/S-module E endowed

with an increasing exhaustive filtration (En)n∈N by OX -submodules so that D(0)
X/S,n′ · En ⊂ En+n′ .

For any sections v1, v2 of TX/S and b of OX , we compute v1b − bv1 = v1(b) in D(0)
X/S and [bv1, v2] =

b[v1, v2] − v2(b)v1 in TX/S . Hence, similarly to [Kas95, 1.6], we can check that the morphism of left
D(0)
X/S-modules

δ : D(0)
X/S ⊗OX ∧

iTX/S ⊗OX Ej−1 → D(0)
X/S ⊗OX ∧

i−1TX/S ⊗OX Ej (2.3.3.4.1)

given by

δ (P ⊗ (v1 ∧ · · · ∧ vi)⊗ u) =
i∑

a=1

(−1)a−1Pva ⊗ (v1 ∧ · · · ∧ “va ∧ · · · ∧ vi)⊗ u
−

i∑
a=1

(−1)a−1P ⊗ (v1 ∧ · · · ∧ “va ∧ · · · ∧ vi)⊗ vau
+

∑
1≤a<b≤i

(−1)a+bP ⊗ ([va, vb] ∧ v1 ∧ · · · ∧ “va ∧ · · · ∧ “vb ∧ · · · ∧ vi)⊗ u
is well defined. Moreover, we compute that we get the following complex of left D(0)

X/S-modules

0→ D(0)
X/S ⊗OX ∧

dTX/S ⊗OX En−d · · · −→
δ
D(0)
X/S ⊗OX ∧TX/S ⊗OX En−1 −→

δ
D(0)
X/S ⊗OX En → E → 0.

(2.3.3.4.2)
We call 2.3.3.4.2 the first Spencer sequence of degree n of E and denote it by Sp

n,D(0)

X/S

(E) or Spn(E).

Theorem 2.3.3.5. With the notations of 2.3.3.4, let us suppose moreover that the filtration of E is good.
Hence, for s large enough, Sp•

s,D(0)

X/S

(E) is exact.

Proof. This is checked similarly to [Kas95, 1.6.1] (see also the similar proof of 4.7.3.6).

2.3.3.6. In particular, taking the trivial filtration of OX , we get the exact sequence of left D(0)
X/S-modules

0→ D(0)
X/S ⊗OX ∧

dTX/S · · · −→
δd
D(0)
X/S ⊗OX ∧TX/S −→δ1

D(0)
X/S → OX → 0 (2.3.3.6.1)

where the map
δi : D(0)

X/S ⊗OX ∧
iTX/S → D

(0)
X/S ⊗OX ∧

i−1TX/S (2.3.3.6.2)

is given by the formula

δi (P ⊗ (v1 ∧ · · · ∧ vi)) =
i∑

a=1

(−1)a−1Pva ⊗ (v1 ∧ · · · ∧ “va ∧ · · · ∧ vi)
+

∑
1≤a<b≤i

(−1)a+bP ⊗ ([va, vb] ∧ v1 ∧ · · · ∧ “va ∧ · · · ∧ “vb ∧ · · · ∧ vi). (2.3.3.6.3)
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2.3.3.7. Let A be a commutative algebra on a topological space X. Let E be a A-module. We denote
by E∨ := HomA(E ,A) the A-linear dual. For any integer n ≥ 0, we have a canonical A-linear morphism

∧n (E∨)→ (∧n(E))∨. (2.3.3.7.1)

The morphism is constructed as follows. By composing the morphisms

(E∨)n = HomA(E ,An)
∧n−→ HomA(∧n(E),∧n(An))

det
∼−→ (∧n(E))∨ (2.3.3.7.2)

we get an alternating n-linear mapping. By universal property, this yields the A-linear map 2.3.3.7.1
given by φ1 ∧ · · · ∧ φn 7→ ((x1 ∧ · · · ∧ xn) 7→ det(φi(xj))).

From now, suppose E is locally free of rank N . Then 2.3.3.7.1 is an isomorphism. More precisely,
suppose E has the basis e1, . . . , eN . We denote by e∗1, . . . , e∗N the dual basis of E∨ and by (ei1 ∧· · ·∧ ein)∗

the dual basis of (∧n(E))∨ associated with the basis given by the elements ei1 ∧ · · · ∧ ein . Then, the map
2.3.3.7.1 sends e∗i1 ∧ · · · ∧ e

∗
n
to (ei1 ∧ · · · ∧ ein)∗.

Moreover, we have the canonical morphism

∧N−n E → HomA(∧nE ,∧NE), (2.3.3.7.3)

given by ω 7→ (ω′ 7→ ω∧ω′). Reducing to the case where E is free, we compute that this is an isomorphism.
Since ∧NE is locally free, by using the isomorphism 2.3.3.7.1 then the canonical morphisms

∧n (E∨)⊗A ∧NE → (∧nE)∨ ⊗A ∧NE → HomA(∧nE ,∧NE) (2.3.3.7.4)

are both isomorphisms. Hence, by composing 2.3.3.7.3 and the inverse of 2.3.3.7.4, we get the canonical
isomorphism

∧N−n E ∼−→ ∧n(E∨)⊗A ∧NE . (2.3.3.7.5)

2.3.3.8. We can construct the map 2.3.2.10.1 in a second way by duality from the Spencer morphisms
as follows. Since D(0)

X/S is a locally free OX -module for its left structure (in particular), since ΩiX/S is

locally free of finite type for any integer 0 ≤ i ≤ d, then we get the canonical isomorphism of (OX ,D(0)
X/S)-

bimodules:

ΩiX/S ⊗OX D
(0)
X/S

∼−→ ∧i(T ∨X/S)⊗OX D
(0)
X/S

∼−→
2.3.3.7.1

∧i(TX/S)∨ ⊗OX D
(0)
X/S

∼−→
∼−→ HomOX

Ä
∧iTX/S ,D

(0)
X/S

ä ∼−→ HomD(0)

X/S

Ä
D(0)
X/S ⊗OX ∧

iTX/S ,D
(0)
X/S

ä
. (2.3.3.8.1)

Hence, for any integer 0 ≤ n ≤ d, we get the morphism of right D(0)
X/S-modules δ?n making commutative

the diagram

Ωn−1
X/S ⊗OX D

(0)
X/S

2.3.3.8.1∼
��

δ?n // ΩnX/S ⊗OX D
(0)
X/S

2.3.3.8.1∼
��

HomD(0)

X/S

Ä
D(0)
X/S ⊗OX ∧

n−1TX/S ,D
(0)
X/S

ä δ∨n // HomD(0)

X/S

Ä
D(0)
X/S ⊗OX ∧

nTX/S ,D
(0)
X/S

ä
,

(2.3.3.8.2)

where δ∨n is the image under the functor HomD(0)

X/S

(−,D(0)
X/S) of the Spencer morphism of left D(0)

X/S-

modules 2.3.3.6.2.

Lemma 2.3.3.9. Both maps 2.3.2.10.1 and 2.3.3.8.2 are equal, i.e. δ?n = ∇n−1.

Proof. Since this is local, we can suppose X/S has coordinates t1, . . . , td. Let {i1, . . . , in−1} be n − 1
elements of {1, . . . , d}. Let {j1, . . . , jd−n+1} be the complementary.

0) For any 1 ≤ i ≤ d, let us denote by αi the isomorphism 2.3.3.8.1. For any i elements {l1, . . . , li}
of {1, . . . , d}, we compute αi((dtl1 ∧ · · · ∧ dtli) ⊗ 1) = (1 ⊗ (∂l1 ∧ · · · ∧ ∂li))∗ where the elements 1 ⊗
(∂l1 ∧ · · · ∧ ∂li) form a basis of D(0)

X/S ⊗OX ∧
iTX/S as left D(0)

X/S-module and where the star symbol means

66



the dual basis as right D(0)
X/S-module. By right D(0)

X/S-linearity of αi, for any section P of D(0)
X/S , we get

αi((dtl1 ∧ · · · ∧ dtli)⊗ P ) = (1⊗ (∂l1 ∧ · · · ∧ ∂li))∗P .
1) For any integers 1 ≤ k1, . . . , kn ≤ d, since δn(1 ⊗ (∂k1

∧ · · · ∧ ∂kn)) =
∑i
a=1(−1)a−1∂ka ⊗ (∂k1

∧
· · · ∧”∂ka ∧ · · · ∧ ∂kn) (see 2.3.3.6.3), then we compute

δ∨n
(
(1⊗ (∂i1 ∧ · · · ∧ ∂in−1))∗

)
(1⊗ (∂k1 ∧ · · · ∧ ∂kn))

=
i∑

a=1

(−1)a−1∂ka(∂i1 ∧ · · · ∧ ∂in−1)∗(∂k1 ∧ · · · ∧”∂ka ∧ · · · ∧ ∂kn). (2.3.3.9.1)

Hence, if {i1, . . . , in−1} 6⊂ {k1, . . . , kn}, then δ∨n (1⊗(∂i1∧· · ·∧∂in−1
))∗(1⊗(∂k1

∧· · ·∧∂kn)) = 0. Moreover,
for any integer 1 ≤ a ≤ d−n+1, we get δ∨n ((1⊗(∂i1∧· · ·∧∂in−1

))∗)(1⊗(∂i1∧· · ·∧∂in−1
∧∂ja)) = (−1)n−1∂ja .

With the step 0), this yields

δ∨n ◦ αn−1

(
(dti1 ∧ · · · ∧ dtin−1

)⊗ 1
)

= δ∨n
(
(1⊗ (∂i1 ∧ · · · ∧ ∂in−1

))∗
)

= (−1)n−1
d−n+1∑
a=1

(1⊗ (∂i1 ∧ · · · ∧ ∂in−1
∧ ∂ja))∗∂ja

= αn

(
(−1)n−1

d−n+1∑
a=1

(dti1 ∧ · · · ∧ dtin−1
∧ dtja)⊗ ∂ja

)
2.3.2.10.2

= αn ◦ ∇n−1
(
(dti1 ∧ · · · ∧ dtin−1

)⊗ 1
)
.

2.3.3.10. By applying the functor HomD(0)

X/S

(−,D(0)
X/S) to the complex of left D(0)

X/S-modules

D(0)
X/S ⊗OX ∧

dTX/S −→
δd
· · · −→

δ
D(0)
X/S ⊗OX ∧TX/S −→δ1

D(0)
X/S (2.3.3.10.1)

via the canonical isomorphisms 2.3.3.8.1, we get the complex of right D(0)
X/S-modules

D(0)
X/S −→∇0

Ω1
X/S ⊗OX D

(0)
X/S −→∇1

· · · −→
∇

Ωd−1
X/S ⊗OX D

(0)
X/S −→∇d−1

ωX/S ⊗OX D
(0)
X/S . (2.3.3.10.2)

It follows from 2.3.3.9 that the complex of C(rD(0)
X/S) defined at 2.3.3.10.2 is the de Rham complex of

D(0)
X/S and is denoted by DR(D(0)

X/S) (see 2.3.2.3).

If E ∈ D(lD(0)
X/S), we define the de Rham complex of E to be the complex

DR(E) := DR(D(0)
X/S)⊗D(0)

X/S

E .

Remark, when E is a left D(0)
X/S-module, following 2.3.2.10 we retrieve the usual de Rham complex (up

to canonical isomorphisms) as defined at 2.3.2.3.

2.3.3.11. By applying the functor ωX/S ⊗OX − to the morphism of left D(0)
X/S-modules 2.3.3.6.2, we get

the morphism of right D(0)
X/S-modules:

ωX/S ⊗OX (D(0)
X/S ⊗OX ∧

nTX/S)→ ωX/S ⊗OX (D(0)
X/S ⊗OX ∧

n−1TX/S). (2.3.3.11.1)

We have moreover the isomorphism of right D(0)
X/S-modules

Ωd−nX/S ⊗OX D
(0)
X/S

∼−→
2.3.3.7.5

(∧nTX/S ⊗OX ωX/S)⊗OX D
(0)
X/S

∼−→
δX⊗id∧nTX/S

ωX/S ⊗OX (D(0)
X/S ⊗OX ∧

nTX/S), (2.3.3.11.2)

where δX is the transposition isomorphism (see 2.2.2.2.1).
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Lemma 2.3.3.12. For any integer 0 ≤ n ≤ d, the following square of right D(0)
X/S-modules

Ωd−nX/S ⊗OX D
(0)
X/S

2.3.2.10.1(−1)d−n+1∇d−n

��

∼
2.3.3.11.2

// ωX/S ⊗OX (D(0)
X/S ⊗OX ∧

nTX/S)

2.3.3.11.1 id⊗δn
��

Ωd−n+1
X/S ⊗OX D

(0)
X/S

∼
2.3.3.11.2

// ωX/S ⊗OX (D(0)
X/S ⊗OX ∧

n−1TX/S),

(2.3.3.12.1)

is commutative.

Proof. Since this is local, we can suppose X/S has coordinates t1, . . . , td. Choose a subset {i1, . . . , id−n}
of d− n elements of {1, . . . , d}. Let {j1, . . . , jn} be the complementary. Set ωd−n := dti1 ∧ · · · ∧ dtid−n ,
ωn := dtj1 ∧ · · · ∧ dtjn , ω∗n := ∂j1 ∧ · · · ∧ ∂jn and ωd := ωd−n ∧ ωn. We compute the isomorphism
Ωd−nX/S

∼−→ ∧nTX/S ⊗OX ωX/S of 2.3.3.7.5 sends ωd−n to ω∗n ⊗ ωd. Hence, the top isomorphism of the
diagram 2.3.3.12 sends ωd−n ⊗ 1 to δX ⊗ id(ω∗n ⊗ ωd ⊗ 1) = δX(ωd ⊗ 1) ⊗ ω∗n = ωd ⊗ 1 ⊗ ω∗n (see the
formulas of 2.2.2.1 satisfied by the transposition isomorphism).

For any a ∈ {j1, . . . , jn}, set ωn,̂a := dtj1 ∧ · · · ∧‘dtja ∧ · · · ∧ dtjn and ω∗
n,̂a

:= ∂j1 ∧ · · · ∧”∂ja ∧ · · · ∧ ∂jn .
Following 2.3.3.6.3, we compute δn(1 ⊗ ω∗n) =

∑n
a=1(−1)a−1∂ja ⊗ ω∗n,̂a. Hence, the right morphism of

the diagram 2.3.3.12 sends ωd ⊗ 1⊗ ω∗n to
∑i
a=1(−1)a−1ωd ⊗ ∂ja ⊗ ω∗n,̂a.

On the other hand, the left morphism of the diagram 2.3.3.12 sends ωd−n⊗1 to −
∑n
a=1(ωd−n∧dta)⊗

∂ja (see the formula 2.3.2.10.2). Set ωd−n,a := ωd−n ∧ dtja . We compute ωd−n,a ∧ ωn,̂a = (−1)a−1ωd.
Hence, the isomorphism Ωd−n+1

X/S

∼−→ ∧n−1TX/S⊗OX ωX/S of 2.3.3.7.5 sends ωd−n,a to (−1)a−1ω∗
n,̂a
⊗ωd.

Hence, the bottom isomorphism of 2.3.3.12 sends −
∑n
a=1 ωd−n,a⊗∂ja to −

∑n
a=1 δX⊗ id((−1)a−1ω∗

n,̂a
⊗

ωd ⊗ ∂ja) =
∑n
a=1(−1)a−1ωd ⊗ ∂ja ⊗ ω∗

n,̂a
(see the formulas of 2.2.2.1 satisfied by the transposition

isomorphism).

Proposition 2.3.3.13. We have the following assertions.

(i) The map ωX/S ⊗OX D
(0)
X/S

β→ ωX/S given by the structure of a right D(0)
X/S-module on ωX/S induces

a D(0)
X/S-linear resolution DR(D(0)

X/S)[d]
∼−→ ωX/S of ωX/S.

(ii) Exti
D(0)

X/S

(OX ,D(0)
X/S) = 0 for i 6= d. There is a canonical isomorphism of right D(0)

X/S-modules

Extd
D(0)

X/S

(OX ,D(0)
X/S)

∼−→ ωX/S .

Proof. By applying the functor ωX/S ⊗OX − to the exact sequence 2.3.3.6.1, with 2.3.3.12, we get that

DR(D(0)
X/S)[d] is a resolution of ωX/S . Moreover, we compute that the map ωX/S ⊗OX D

(0)
X/S

β→ ωX/S of

the resolution DR(D(0)
X/S)[d]

∼−→ ωX/S is given by the structure of a right D(0)
X/S-module on ωX/S .

2.3.4 Homological global dimension
2.3.4.1 (Left and right global Dimension). Let D be a ring. We recall few facts on the definition of
the homological/global dimension (see [BouAlgX] §8; [Wei94] Ch 4). We denote by i.dim(E) (resp.
p.dim(E), resp. f. dim(E)) the injective dimension (resp. projective dimension, resp. flat dimension) of
a left or right D-module E. The following numbers are the same:

i) sup{i.dim(F ): F is a left D-module};

ii) sup{p.dim(E): E is a left D-module};

ii’) sup{p.dim(E): E is a monogeneous left D-module};

iii) sup{n: ExtnD(E,F ) 6= 0 for some left D-modules E,F};
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iii’) sup{n: ExtnD(E,F ) 6= 0 for some monogeneous left D-module E and left D-module F}.

This common number (possibly∞) is called the left global dimension of D and is denoted by l. gl .dim(D).
Bourbaki [BX] calls it the homological dimension of D. One might sometimes say homological global
dimension of D. One may define the right global dimension r. gl .dim(D) similarly.

When r. gl .dim(D) = l. gl .dim(D), we simply write them gl .dim(D) and it is called the global
dimension of D, or the homological global dimension of D.

When D is coherent, this notion is very similar to the tor dimension (see 1.4.3.30) but not equal a
priori (beware in the condition iii’) that the monogeneous left D-module is not coherent).

2.3.4.2 (Comparison with the tor-dimension). We have obviously tor .dim(D) ≤ r. gl .dim(D) and
tor .dim(D) ≤ l. gl .dim(D). If moreover D is left (resp. right) noetherian, then tor .dim(D) =
r. gl .dim(D) (resp. tor .dim(D) = l. gl .dim(D) (see [Wei94, 4.1.5]). Hence, if D is both left and right
noetherian, then r. gl .dim(D) = l. gl .dim(D). We have almost the equality by considering inductive
limits of noetherings rings : see below 2.3.4.3.

Proposition 2.3.4.3. Let (D(m))m∈N be an inductive system indexed by N of noetherian rings such that
the ring homomorphisms D(m) → D(m+1) are injective and left (resp. right) flat. Set D† := lim−→m

Dm.
We have the inequality

tor .dimD† ≤ l. gl .dimD† ≤ tor .dimD† + 1 (resp. tor .dimD† ≤ r. gl .dimD† ≤ tor .dimD† + 1).

Proof. We have nothing to prove if the tor dimension is infinite. Suppose tor .dimD† is an integer d.
We have to prove the vanishing

ExtiD†(E,M) = 0

for all cyclic D†-module E, all D†-module M and all i > d + 1 (see 2.3.4.1). Let E ' D†/I be a
presentation of E and for any m ∈ N put

Im = D†(I ∩D(m)), Em = D†/Im.

Then I = ∪mIm, E ' lim−→m
Em, and for any M ,

HomD†(E,M)
∼−→ lim←−

m

HomD†(Em,M),

from which a spectral sequence follows

Ei,j2 = Ri lim←−
m

Extj
D†

(Em,M)⇒ En = ExtnD†(E,M).

Now for all m, since D(m) is noetherian then Im is left ideal of finite type of D†. Thus Em is coherent
on D†. By using 1.4.3.32, this yields Extj

D†
(Em,M) are zero for j > d and all m. As Ri lim←−m are zero

for i > 1, the assertion follows.

Remark 2.3.4.4. Let D be a left coherent sheaf of rings on a topological space X. Suppose there exist
an integer n and an open basis B of X such that for any U ∈ B, l. gl .dim(D(U)) ≤ n (one might define
this property by saying that l. gl .dim(D) ≤ n). Then D has finite tor-dimension ≤ n (use 1.4.3.12). This
yields the equality Db

perf(D) = Db
coh(D) (see 1.4.3.29).

Proposition 2.3.4.5 (Homological global dimension). Suppose X is affine, S is affine and regular.
Let r := sups∈f(X) dimOS,s which is suppose to be finite. Then the ring D(0)

X/S := Γ(X,D(0)
X/S) has

homological global dimension equal to 2d+ r.

Proof. Since D(0)
X/S is noetherian, then tor .dim(D

(0)
X/S) = gl .dim(D

(0)
X/S) (see 2.3.4.2). This yields that

the corollary is local in X (see 1.4.3.26) and we can therefore suppose that X → S has coordinates
t1, . . . , td. Following 2.3.3.2, grD

(0)
X/S is a polynomial ring over Γ(X,OX) with d variables. Hence,

dim grD
(0)
X/S = 2d + r. Since we have the inequality gl .dimD

(0)
X/S ≤ gl .dim grD

(0)
X/S (see [LvO96,

I.7.2 Corollary 2]), this yields gl .dimD
(0)
X/S ≤ 2d + r. It remains to exhibit a left D(0)

X/S-module E
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such that Ext2d+r

D
(0)

X/S

(E,D
(0)
X/S) 6= 0. Let s ∈ f(X) such that dimOS,s = r, s1, . . . , sr ∈ mS,x ⊂ OS,s

be a regular sequence of generators. Since s1, . . . , sr, t
p
1, . . . , t

p
d are in the center of D(0)

X/S then the

sub-OX -module of OX generated by (s1, . . . , sr, t
p
1, . . . , t

p
d) is a sub-D(0)

X/S-module of OX . Hence, we

get a left D(0)
X/S-module (resp. a left D(0)

X/S-module) by setting E := OX/(s1, . . . , sr, t
p
1, . . . , t

p
d) (resp.

E = Γ(X, E)). Let K• := K•(s1, . . . , sr, t
p
1, . . . , t

p
d) be the Koszul complex of Γ(X,OX)-free modules

given by the sequence of global sections s1, . . . , sr, t
p
1, . . . , t

p
d of Γ(X,OX) (e.g. see the description in

5.2.5.4). Since s1, . . . , sr, t
p
1, . . . , t

p
d are in the center of D(0)

X/S then K• is also a complex of left D(0)
X/S-

modules (where OX is endowed with its constant structure of left D(0)
X/S-module). By using the spectral

sequence Ei,j1 = Extj
D

(0)

X/S

(Ki, D
(0)
X/S) ⇒ Extn

D
(0)

X/S

(E,D
(0)
X/S), since Ei,j1 = 0 if j 6= d (see 2.3.3.13),

then Ext2d+r

D
(0)

X/S

(E,D
(0)
X/S) is the cokernel of the map Ed+r−1,d

1 → Ed+r,d
1 which is isomorphic to the map

Γ(X,ωX/S)d+r → Γ(X,ωX/S) whose jth component is the multiplication by (−1)juj where uj is the jth
component of (s1, . . . , sr, t

p
1, . . . , t

p
d). Hence, Ext2d+r

D
(0)

X/S

(E,D
(0)
X/S) 6= 0.
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Chapter 3

Logarithmic differential modules

We refer the readers to [Ogu18], for more details on log schemes.

3.1 Sheaf of differential operators of infinite level and finite order
on logarithmic schemes

We will keep the following notation. If X] is a log scheme, we denote by αX] : MX] → OX the underlying
log structure of X]. If f : X] → Y ] is a morphism of fine log schemes, then we denote by X and Y
the underlying schemes, by f : X → Y the underlying morphism of schemes, by f ] : OY → f∗OX (or
sometimes f ] : f−1OY → OX) and f [ : MY ] → f∗MX] (or sometimes f [ : f−1MY ] → MX]). By abuse
of notation, we might sometimes still denote by f instead of f or of f ]. We work in the category of fine
log schemes or p-adic fine log formal schemes. Hence, fiber products are computed in these categories.

3.1.1 nth infinitesimal neighborhood
Let i be an integer and S] be a fine log scheme over the scheme Spec(Z/pi+1Z). First, let us introduce
the notion of nice log-schemes that we will need only from 3.4.

Definition 3.1.1.1. We say that S] is a “nice” fine log scheme if there exists a scheme Z over Spec(Z/pi+1Z)
such that S] is a log flat Z-log-scheme (see the definition [Ogu18, IV.4.1.1] of log-flatness, which we can
also simply be called flatness). Following Lemma [Ogu18, IV.4.1.3] (i.e. we can use the zero monoid for
Z), this means that fppf locally on S] and Z, there exists a flat and strict morphism of Z-log-schemes of
the form α : S] → Z × AP where P is an integral monoid and the product is computed in the category
of log schemes over Spec(Z/pi+1Z).

Remark 3.1.1.2. Remark that it follows from [Ogu18, IV.4.1.2.4] that if Y ] is nice and X] → Y ] is log
flat (e.g log smooth), then X] is also nice.

Lemma 3.1.1.3. Let U := (S])∗ be the open in S] subscheme with trivial log-structure (see [Ogu18,
III.1.2.8]) and j : U → S] be the canonical inclusion. If S] is a nice fine log scheme (see definition
3.1.1.1), then the canonical morphism OS] → j∗OU is injective.

Proof. Let Z be a scheme over Spec(Z/pi+1Z) such that S] is a log flat Z-log-scheme. Since the lemma
is fppf local, we can suppose there exists a flat and strict morphism of Z-log-schemes α : S] → Z × AP
with P an integral monoid. Since α and the projection Z × AP → AP are strict, then it follows from
[Ogu18, III.1.2.11] that we have U = α−1((Z × AP )∗) and (Z × AP )∗ = Z × A∗P . Since A∗P = AP gr

(see [Ogu18, III.1.2.10]), then U = α−1(Z × AP gr). Let ι : Z × AP gr → Z × AP be the canonical open
immersion. Since OZ×AP → ι∗OZ×APgr is injective and α is flat, then we can conclude.

Remark 3.1.1.4. With the notation of 3.1.1.3, it is not clear that the canonical morphism j∗OU → OS]
is injective in general. Let X] is a log smooth S]-log scheme. When S] is a nice fine log scheme, we will
check (by using this injectivity) that ωX]/S] has a canonical right D(m)

X]/S]
-module structure (see Lemma

3.4.5.1). There exist some extensions of this latter result (when m = 0 or when the log scheme is the

71



reduction modulo πi+1 of some log formal scheme: see [CV17, Section 3.6]). Since the context of nice
log schemes is largely sufficient for us, this justifies why we only consider the case of nice log schemes
from the subsection 3.4.

Definition 3.1.1.5. Let f : X] → Y ] be a morphism of log schemes and BX be an OX -algebra. We
have the following quasi-flatness notions which will be useful to define derived duality or derived tensor
products over the ring of differential operators (see the example 4.6.3.3).

1. We say that f is quasi-flat if there exists a morphism of schemes g : Y → Z such that the morphism
of schemes g ◦ f : X → Z is flat.

2. We say that BX is a quasi-flat f−1OY -algebra if there exists a morphism of schemes g : Y → Z
such that the (induced by g ◦ f) morphism of ringed spaces (X,BX)→ Z is flat.

Remark 3.1.1.6. We will give later a notion of quasi-flatness in the context of “ringed logarithmic schemes”
(see 4.4.1.3). With the notation of the last statement of Definition 3.1.1.5, (X],BX)→ Y ] is a quasi-flat
morphism of ringed logarithmic schemes means that BX is a quasi-flat f−1OY -algebra (see 4.4.1.3.a).
We will moreover gives a notion of quasi-flatness for morphism of relative ringed logarithmic schemes
(see 4.4.1.3).c).

Remark 3.1.1.7. Let f : X] → Y ] be log smooth (e.g log flat) morphism of fine log schemes (resp. of
locally noetherian fine log schemes). We suppose that for any y ∈ Y , the monoid (MY ]/O∗Y )y is generated
by one element. Then X] → Y ] is integral (see [Kat89, 4.4] or [Ogu18, III.2.5.3.3]). Hence, it follows
from [Kat89, 4.5] (resp. [Ogu18, IV.4.3.5.1]) that the underlying morphism of schemes X → Y is flat.

Definition 3.1.1.8. Let u : Z] → X] be a morphism of log-schemes.

(a) According to [Ogu18, II.1.1.12], we say that u is an immersion (resp. closed immersion) if u is an
immersion (resp. a closed immersion) of schemes and if u∗MX] →MZ] is surjective (here u∗ means
the pullback of log structures [Kat89, 1.4]). An immersion (resp. a closed immersion) is exact if and
only if u∗MX] →MZ] is an isomorphism.

(b) We say that u is an open immersion if u is an exact immersion such that u is an open immersion of
schemes.

(c) Let n be an integer. A “log thickening of order (n)” (resp. “log thickening of order n”) is an exact
closed immersion u : U ] ↪→ T ] such that I(n) = 0 (resp. such that In+1 = 0), where I is the ideal
associated with the closed immersion u. The convention of the respective case is that of [Ogu18,
IV.2.1.1] and is convenient when we are dealing with n-infinitesimal neighborhood.

(d) Let a ∈ N. A “(p)-nilpotent log thickening of order a” is a log thickening of order (pa+1). A “(p)-
nilpotent log thickening” is a (p)-nilpotent log thickening of order a for some a ∈ N large enough.

An S]-immersion (resp. S]-log-thickening) is an immersion (resp. log thickening) which is an S]-
morphism.

Remark 3.1.1.9. (a) If u : Z] → X] and f : X] → Y ] are two S]-morphisms of log schemes such that
f ◦ u is an S]-immersion, then so is u (use [Gro60, 5.3.13]).

(b) If u : Z] → X] and f : X] → Y ] are two S]-morphisms of log schemes such that f ◦ u is a closed
S]-immersion and f is separated, then u is a closed immersion (use [Gro60, 5.4.4]).

(c) We can decompose a (strict) S]-immersion u into u = u1 ◦ u2, where u1 is an open S]-immersion
and u2 is a (strict) closed S]-immersion.

(d) Let u : U ] ↪→ T ] be an S]-log-thickening of order (pa) for some integer a. Since p is nilpotent in OT ,
by applying finitely many times the functor I 7→ I(p) to the ideal defined by u we obtain the zero
ideal, which justifies the definition of “(p)-nilpotent log thickening”. This also implies that u is the
composition of several S]-log-thickenings of order (p).
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Definition 3.1.1.10. (a) We denote by C] the category whose objects are S]-immersions of fine log-
schemes and whose morphisms u′ → u are commutative diagrams of the form

X ′]
f // X]

Z ′]
?�

u′

OO

// Z].
?�

u

OO (3.1.1.10.1)

We say that u′ → u is strict (resp. flat, resp. cartesian) if f is strict (resp. f is flat, resp. the square
3.1.1.10.1 is cartesian).

(b) Let n ∈ N. We denote by C]n (resp. Thick(p)) the full subcategory of C] whose objects are
S]-log-thickening of order n (resp. (p)-nilpotent S]-log-thickenings).

(c) Let u be an object of C]. A “log thickening of order n induced by u” is an object u′ of C]n endowed
with a morphism u′ → u of C] satisfying the following universal property: for any object u′′ of C]n
endowed with a morphism f : u′′ → u of C] there exists a unique morphism u′′ → u′ of C]n whose
composition with u′ → u is f . The unicity up to canonical isomorphism of the log thickening of
order n induced by u is obvious. We will denote by P ]n(u) the log thickening of order n induced
by u. We also say that P ]n(u) is the “nth infinitesimal neighbourhood of u” (see [Kat89, 5.8]). The
existence is checked below (see 3.1.1.17).

Remark 3.1.1.11. (a) If u′ → u is a strict cartesian morphism of C] with u ∈ C]n (resp. u ∈ Thick(p)),
then u′ ∈ C]n (resp. u′ ∈ Thick(p)). Indeed, the corresponding square of the form 3.1.1.10.1 of
u′ → u remains cartesian after applying the forgetful functor from the category of fine log schemes
to the category of schemes (to check this fact, we need a priori the strictness of u′ → u).

(b) The category C] has fibered products. More precisely, let u : Z] ↪→ X], u′ : Z ′] ↪→ X ′], u′′ : Z]′′ ↪→
X]′′ be some objects of C] ; let u′ → u and u′′ → u be two morphisms of C]. Then u′ ×u u′′ is the
immersion Z ′] ×Z] Z]′′ ↪→ X ′] ×X] X]′′. If u′ → u is moreover cartesian, then so is the projection
u′ ×u u′′ → u′′.

In order to be precise, let us clarify the standard definitions.

Definition 3.1.1.12. Let f : X] → Y ] be an S]-morphism of fine log schemes.

(a) We say that f is “fine formally log étale” (resp. “fine formally log unramified”) if it satisfies the
following property: for any commutative diagram of fine log schemes of the form

U ]
u0 //� _

ι

��

X]

f

��
T ]

v // Y ]

(3.1.1.12.1)

such that ι is an object of C]1, there exists a unique morphism (resp. there exists at most one
morphism) u : T ] → X] such that u ◦ ι = u0 and f ◦ u = v.

(b) We say that f is “log étale” if f is fine formally log étale and if f is of finite presentation.

(c) We say that f is “étale” if f is log étale and strict (which is equivalent to saying that f is étale and
f is strict).

Remark 3.1.1.13. (a) The definitions appearing in 3.1.1.12 do not depend on the choice of the fine log
scheme S].

(b) Let f : X] → Y ] be an S]-morphism of fine log schemes. The notion of etaleness of Kato appearing
in [Kat89, 3.3] is what we have defined as "log etaleness". We distinguish by definition “log etale”
from “etale” morphisms in order to avoid confusion when we say for instance “etale locally”.
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(c) There exists in the literature a notion of etale morphism of log schemes with coherent log structures
(see in Ogus’s book at [Ogu18, IV.3.1.1]). This notion is compatible with Kato’s notion of etale
morphism of fine log schemes. Indeed, both notions have the same characterization when we focus
on morphisms of fine log schemes (see respectively Theorem [Kat89, 3.5] and Theorem [Ogu18,
IV.3.3.1]).

To avoid confusion with the etale notion in the classical sense, we will call such a morphism a “log
etale” morphism of log schemes with coherent log structures (instead of “etale morphism”).

Moreover, let f : X] → Y ] be a morphism of log schemes with coherent log structures. From [Ogu18,
IV.3.1.11], X]int → X] and Y ]int → Y ] are log etale (see [Ogu18, III.2.1.5.1] concerning the functor
X] 7→ X]int). Hence, using Remark [Ogu18, IV.3.1.2], we can check that f is log etale if and only if
f int is log etale.

3.1.1.14. We recall in the paragraph how we can exactify an immersion. Let u : Z] ↪→ X] be an S]-
immersion of fine log-schemes. Let z be a geometric point of Z]. Using the proof of [Kat89, 4.10.1] and
Proposition [Gro67, IV.18.1.1], we can check that there exists a commutative diagram of the form‹X] f // X ′]

g //

�

X]

Z ′]
� ?

u′

OO

P0
v′

aa

h // Z]
?�

u

OO

such that the square is cartesian, f is log étale, f is affine, g is étale, v′ is an exact closed S]-immersion
and h is an étale neighborhood of z in Z].

Lemma 3.1.1.15. Let u′ → u be a strict cartesian morphism of C]. Suppose that P ]n(u), the log
thickening of order n induced by u, exists. Then the log thickening of order n induced by u′ exists and
we have P ]n(u′) = P ]n(u)×u u′.

Proof. Using the remarks of 3.1.1.11, since u′ → u is strict and cartesian, then so is the projection
P ]n(u) ×u u′ → P ]n(u) and then P ]n(u) ×u u′ ∈ C]n. Hence, we can check easily that P ]n(u) ×u u′
endowed with the projection P ]n(u)×u u′ → u′ satisfies the corresponding universal property of P ]n(u′).
We can check similarly the respective case.

Lemma 3.1.1.16. Let n ∈ N, f : X] → Y ] be a fine formally log étale morphism of fine log S]-schemes,
u : Z] ↪→ X] and v : Z] ↪→ Y ] be two S]-immersions of fine log schemes such that v = f ◦ u. If P ]n(u)
exists, then P ]n(v) exists and we have P ]n(u) = P ]n(v).

Proof. Abstract nonsense.

Proposition 3.1.1.17. We have the following properties.

(a) For any integer n, the inclusion functor For]n : C]n → C] has a right adjoint functor which we will
denote by P ]n : C] → C]n. Let u : Z] ↪→ X] be an object of C]. Then Z] is also the source of P ]n(u).

(b) Moreover, let U ] be an open of X] containing Z] such that the induced immersion v : Z] ↪→ U ]

is closed. Denoting abusively by P ]n(u) the target of the arrow P ]n(u), the underlying morphism
of schemes of P ]n(u) → U ] is affine. We denote by Pn(u) the quasi-coherent OU -algebra so that
Pn(u) = Spec(Pn(u)) where Pn(u) is the underline scheme of P ]n(u). The sheaf Pn(u) has his
support in Z and we also denote by Pn(u) the sheaf v−1Pn(u) which is independent on the choice of
U .

(c) If X is noetherian, then so is Pn(u).

Proof. Let u : Z] ↪→ X] be an S]-immersion of fine log-schemes. If u is an open immersion, then P ]n(u)
is the identity of Z]. Similarly, we reduce to the case where u is a closed immersion.

Using 3.1.1.15, the existence of P ]n(u) (and then the whole proposition) is étale local on X] (i.e.
following our convention, this is local for the Zariski topology and we can proceed by descent of a finite
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covering with étale quasi-compact morphisms). Hence, by 3.1.1.14, we may thus assume that there exists
a commutative diagram of the form ‹X] f // X]

Z]
� ?

u

OO

P0
ũ

``

such that f is log étale, f is affine and ũ is an exact closed S]-immersion. Let I be the ideal given by ũ.
Let P ]n ↪→ ‹X] be the exact closed immersion which is induced by In+1. Using 3.1.1.16, we can check
that P ]n(u) is the exact closed immersion Z] ↪→ P ]n. When X is noetherian, then so are ‹X] and Pn.

Lemma 3.1.1.18. Let u → v be a morphism of C]. Let w := P ]n(v) ×v u (this is the product in C]).
Then P ]n(w) and P ]n(u) are isomorphic in C]n.

Proof. We can easily check that the composition P ]n(w) → w → u satisfies the universal property of
P ]n(u)→ u. Hence, we are done.

Notation 3.1.1.19. Let P be a monoid. We denote by AP := (Spec(Z[P ]),MP ) the log formal scheme
whose underlying scheme is Spec(Z[P ]) and whose log structure is the log structure associated with the
pre-log structure induced canonically by P → Z[P ].

Definition 3.1.1.20. Let f : X] → Y ] be a morphism of fine S]-log schemes.

(a) We say that a finite set u1, . . . , ud of elements of Γ(X,MX]) are “formal logarithmic coordinates of f ”
if the corresponding Y ]-morphism X] → Y ]×Spec Z ANd is formally log étale (see notation 3.1.1.19).

(b) We say that a finite set u1, . . . , ud of elements of Γ(X,MX]) are “logarithmic coordinates of f ” if the
corresponding Y ]-morphism X] → Y ] ×Spec Z ANd is log étale (see notation 3.1.1.19).

(c) We say that f is “weakly log smooth” if, étale locally on X], f has formal logarithmic coordinates.
Notice that this notion of weak log smoothness is étale local on Y .

Recall that f is “log smooth” if, étale locally on X], f has logarithmic coordinates. Notice that this
notion of weak log smoothness is étale local on Y ].

Definition 3.1.1.21. Let f : X] → Y ] be a strict morphism of fine S]-log schemes.

(a) We say that a finite set t1, . . . , td of elements of Γ(X,OX) are “formal coordinates of f ” if the
corresponding Y ]-morphism X] → Y ] ×Spec Z ANd is (formally) log étale.

(b) We say that a finite set t1, . . . , td of elements of Γ(X,OX) are “coordinates of f ” if the corresponding
Y ]-morphism X] → Y ] ×Spec Z ANd is (log) étale.

(c) We say that f is “weakly smooth” if f is weakly log smooth morphism.

Remark, this is compatible with Definition 1.1.1.4.

Remark 3.1.1.22. To simplify the terminology here, the definitions 3.1.1.20 and 3.1.1.21 are different
from that of [CV17] where we had distinguished in the terminology both cases where the morphism
X] → Y ] ×Spec Z ANd is strict or not (what is called log coordinates was called log basis).

Notation 3.1.1.23. Let P ] = (P,MP ]) be a log scheme. We denote by αP : (MP ] , ·) → (OP ,×) or
simply α the underlying monoid morphism and we can identity M∗P ] and O

∗
P via α.

Lemma 3.1.1.24. Let i : X] ↪→ P ] be an exact closed S]-immersion of fine log schemes.

(a) We have the equality ker(i−1O∗P → O∗X) = ker(i−1Mgr
P ]
→Mgr

X]
). In particular, ker(O∗P,x → O∗X,x) =

ker(Mgr
P ],x
→Mgr

X],x
) for any geometric point x of X].

(b) When the ideal I of OP given by i is moreover an nil ideal then ker(i−1Mgr
P ]
→Mgr

X]
) = 1 + i−1I.
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Proof. The last statement is [Ogu18, IV.2.1.2]. Let us now check (a). Let x be a geometric point of X].
Since i is an exact closed immersion, we have (MP ]/O∗P )x = (MX]/O∗X)x (use [Kat89, 1.4.1]) and thus
(Mgp

P ]
/O∗P )x = (Mgp

X]
/O∗X)x (because the functorM 7→Mgr commutes with inductive limits). Hence, the

inclusion ker(O∗P,x → O∗X,x) ⊂ ker(Mgr
P ],x

→ Mgr
X],x

) is in fact an equality. Since we have the canonical
inclusion ker(i−1O∗P → O∗X) ⊂ ker(i−1Mgr

P ]
→Mgr

X]
), this yields that this latter inclusion is an equality.

Proposition 3.1.1.25. Let f : X] → Y ] be an S]-morphism of fine log-schemes endowed with formal
logarithmic coordinates (bλ)λ=1,...,r (see definition 3.1.1.20). Let u : Z] ↪→ X] and v : Z] ↪→ Y ] be two
S]-immersions of fine log schemes such that v = f ◦ u. Suppose given yλ ∈ Γ(Y,MY ]) whose images
in Γ(Z,MZ]) coincide with the images of bλ. Let Z] ↪→ D′n and Z] ↪→ Dn be the nth infinitesimal
neighborhood of order n of u and v respectively (see Definition 3.1.1.10.c and recall following Proposition
3.1.1.17, the source is indeed Z]). Let α : D′n → X] be the canonical morphism. Using multiplicative
notation, put uλ := α∗(bλ)

α∗(f∗(yλ)) ∈ ker(Γ(D′n,M
gr
D′n

) → Γ(Z,Mgr
Z]

)) = ker(Γ(D′n,O∗D′n) → Γ(Z,O∗Z)) (see

3.1.1.24). We set ODn [T1, . . . , Tr]n := ODn [T1, . . . , Tr]/ (IDn + (T1, . . . , Tr))
n+1, where IDn is the ideal

defined by the closed immersion Z] ↪→ Dn. Then, we have the isomorphism of ODn-algebras

ODn [T1, . . . , Tr]n
∼−→ OD′n

Tλ 7→ uλ − 1. (3.1.1.25.1)

Proof. By using Lemma 3.1.1.16, we reduce to the case where X] = Y ] ×Z ANr , f : X] → Y ] is the
first projection, and that the family (bλ)λ=1,...,r of elements of Γ(X,MX]) is given by the canonical basis
(eλ)λ=1...r of Nr. Using lemma 3.1.1.18, we may furthermore assume that Y ] = S], Z] ↪→ Y ] is an exact
closed immersion of order n. In particular, we get Dn = Y ].

Let i : Y ] → Y ] ×Z AZr be the exact closed Y ]-immersion defined by eλ 7→ 1 ∈ Γ(Y,MY ]). By
copying the parts 1), 2) and 3) of the proof of 3.2.1.17 (we replace the use of Lemma 3.2.1.7 by the use
of Lemma 3.1.1.16), we reduce to the case where u = i◦v, X] = Y ]×ZAZr , (bλ)λ=1,...,r are the elements
of Γ(X,MX]) corresponding to the canonical basis of Zr, and (yλ)λ=1,...,r are equal to 1. This case is
obvious.

Remark 3.1.1.26. Suppose we are in the situation of 3.2.1.17: let f : X] → Y ] be an S]-morphism of
fine log-schemes, (bλ)λ=1,...,r be some elements of Γ(X,MX]). Let u : Z] ↪→ X] and v : Z] ↪→ Y ] be two
S]-immersions of fine log schemes such that v = f ◦ u. Then, since v∗MY ] →MZ] is surjective (for the
étale topology), then étale locally on Y ], there exist yλ ∈ Γ(Y,MY ]) whose images in Γ(Z,MZ]) coincide
with the images of bλ.

3.1.2 Sheaf of principal parts relative to a weakly log smooth morphism
Let i be an integer and S] be a fine log scheme over the scheme Spec(Z/pi+1Z). Let f : X] → S] be a
weakly log smooth morphism of fine log-schemes. We write X] = (X,MX]).

Notation 3.1.2.1. Let ∆X]/S](r) : X] ↪→ X
]r+1
/S]

denote the diagonal immersion. With notation 3.1.1.17,
we set

∆n
X]/S](r) := P ]n(∆X]/S](r)).

Recall the source of ∆n
X]/S] is X

]. For any n′ ≥ n, we denote by

ψn
′,n

X]/S]
(r) : ∆n

X]/S](r) ↪→ ∆n′

X]/S](r) (3.1.2.1.1)

the canonical exact closed immersion. Moreover, we can denote abusively the underlying scheme of the
target of ∆n

X]/S] by ∆n
X]/S] .

Let us write PnX]/S](r) := Pn(∆X]/S](r)) (see Notation 3.1.1.17). By default PnX]/S](r) is viewed

as a sheaf of rings on X: let U ] be an open of X]r+1
/S]

containing the image of ∆X]/S](r) such that the
immersion v : X] → U ] induced by ∆n

X]/S](r) is closed. Recall, by definition, PnX]/S](r) is a sheaf on X
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such that v∗PnX]/S](r) is a quasi-coherent OU -algebra and Spec(v∗PnX]/S](r)) = ∆n
X]/S](r) (see Notation

3.1.1.17).
For i = 0, . . . , r, let pi : X

]r+1
/S]

→ X] be the projections. Let pU
]

i : U ] ↪→ X]r+1
/S]

→ X] be the

morphism induced by the projection pi. Since pU
]

i ◦ v = id then PnX]/S](r) = pU
]

i∗ (v∗PnX]/S](r)). Since
v∗PnX]/S](r) is endowed with a structure of quasi-coherent OU -algebra, we get r+ 1-structures of quasi-
coherent OX]-algebras on PnX]/S](r).

To clarify which OX]-algebra structure we consider, we set pi∗PnX]/S](r) := pU
]

i∗ Pn(I(r)). By com-

posing pU
]

i with the canonical morphism ∆n
X]/S](r) → U ], we get the projection pni : ∆n

X]/S](r) →
X]. This yields the ring homomorphisms pni (r) : OX] → PnX]/S](r) and the monoid homomorphisms
pni (r) : MX] →M∆n

X]/S]
(r).

When r = 1, we simply write I, ∆n
X]/S] , ∆X]/S] , PnX]/S] , PX]/S] , p

n
i . The left (resp. right) structure

of OX] -algebra on PnX]/S] is by definition the one given by p0∗PnX]/S] (resp. p1∗PnX]/S]).
We denote by Mn

X]/S] the log structure of ∆n
X]/S] . If a ∈ MX] , we denote by µn(a) the unique

section (see 3.1.1.24) of ker(Pn∗X]/S] → O
∗
X) such that we get in Mn

X]/S] the equality

pn1 (a) = pn0 (a)µn(a). (3.1.2.1.2)

We get the monoid morphism µn : MX] → ker(Pn∗X]/S] → O
∗
X) given by a 7→ µn(a).

Lemma 3.1.2.2. The morphisms pn1 and pn0 are strict.

Proof. Let ιn : X] ↪→ ∆n
X]/S] be the structural morphism. Since ι−1 = id, then from [Kat89, 1.4.1] we

get the isomorphisms pn∗i (MX])/Pn∗X]/S]
∼−→ MX]/O∗X and Mn

X]/S]/P
n∗
X]/S]

∼−→ ιn∗(Mn
X]/S])/O

∗
X
∼−→

MX]/O∗X (the last isomorphism is a consequence of the exactness of ιn). Hence, pn∗i (MX])/Pn∗X]/S]
∼−→

Mn
X]/S]/P

n∗
X]/S] . This implies that the canonical morphism pn∗i (MX])→Mn

X]/S] is an isomorphism.

Proposition 3.1.2.3 (Local description of PnX]/S]). Let (uλ)λ=1,...,r be logarithmic coordinates of f .
Put τ]λ,n := µn(uλ)− 1. We have the following isomorphism of OX-algebras:

OX [T1, . . . , Tr]n
∼−→ PnX]/S]

Tλ 7→ τ]λ,n, (3.1.2.3.1)

where the structure of OX-module of PnX]/S] is given by pn1 or pn0 .

Proof. Since the case of pn1 is checked symmetrically, let us compute the case where the OX -module of
PnX]/S] is given by pn0 . Consider the commutative diagram

ANr

�

X] ×S] ANrp1

oo

q

%%
X]

u

OO

X] ×S] X]
p1

oo p0 //

u×id

OO

X],

(3.1.2.3.2)

where p0, p1 means respectively the left and right projection, where q is the projection, where u is the
S]-morphism induced by u1, . . . , ur, where u × id is the X]-morphism induced by p∗1(u1), . . . , p∗1(ur).
Since (p∗1(uλ))λ=1,...,r are logarithmic coordinates of p0 (because the square of the diagram 3.1.2.3.2 is
cartesian), we can apply Proposition 3.1.1.25 in the case where f is p0, u is ∆X]/S] , bλ is p∗1(uλ), and
yλ is uλ.

Remark 3.1.2.4. From the local description of 3.1.2.3, we get that the morphisms pn1 and pn0 are finite
(i.e. the underlying morphism of schemes is finite).
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3.1.3 Sheaf of relative logarithmic differentials
We keep notation 3.1.2.

Definition 3.1.3.1. Let Y ] → T ] be a morphism of log schemes.

(a) A log derivation of Y ]/T ] with values in a sheaf of OY -modules E is a pair (d, δ), where d : OY → E
is a homomorphism of abelian sheaves and δ : MY ] → E is a homomorphism of sheaves of monoids
such that the following conditions holds:

(i) d(αY ](m)) = αY ](m)δ(m) for every local section m of MY ] ;

(ii) δ(f [(n)) = 0 for every local section n of f−1(MT ]) ;

(iii) d(ab) = ad(b) + bd(a) for every pari of local sections a, b of OY ;

(iv) d(f ](c)) = 0 for every local section c of f−1(OT ).

We denote by DerY ]/T ](E) the set of all such derivations.

(b) We denote by (dY ]/T ] , d logY ]/T ]) : OY → Ω1
Y ]/T ] the log derivation which is a universal object

representing the functor E 7→ DerY ]/T ](E) from the category of OY -modules (see [Ogu18, Theorem
IV.1.2.4]). We can also simply write (d, d log). The map (dY ]/T ] , d logY ]/T ]) is called the constant
logarithmic derivation relative to Y ]/T ] and Ω1

Y ]/T ] is called the “sheaf of relative logarithmic dif-
ferentials relative to Y ]/T ]”.

3.1.3.2. We have the following proprieties making some links between the sheaf of relative differentials
and the sheaf of principal parts of order ≤ 1 of X]/S].

(a) We denote by I1
X]/S] the ideal of the closed immersion ∆1

X]/S] . Then, following [Ogu18, IV.3.4.5], we
have Ω1

X]/S] = (∆1
X]/S])

−1(I1
X]/S]). In other words, Ω1

X]/S] is the kernel of the canonical morphism
ψ1,0
X]/S]

: P1
X]/S] → P

0
X]/S] = OX . Since Ω1

X]/S] is an ideal of P1
X/S of order 2 then the left and

right structure of OX -module of Ω1
X]/S] (recall ψ

1,0
X]/S]

is OX -linear for both structures) are in fact
identical.

(b) We have the exact sequence of OX -modules

0→ Ω1
X]/S]

j−→ p0∗P1
X]/S]

ψ1,0

X]/S]−→ OX → 0, (3.1.3.2.1)

where j is the canonical inclusion (recall p0∗ means that P1
X]/S] is considered as an OX -algebra for

its left structure). The exact sequence 3.1.3.2.1 splits via the section p1
0 : OX → p0∗P1

X]/S] , which
yields the isomorphism of OX -modules

(p1
0, j) : OX ⊕ Ω1

X]/S]
∼−→ p0∗P1

X]/S] . (3.1.3.2.2)

In particular, since p0∗P1
X]/S] is a locally free OX -module, then so is Ω1

X]/S] .

(c) Via the isomorphism 3.1.3.2.2, we get the OX -linear epimorphism

$X]/S] : p0∗P1
X]/S] � Ω1

X]/S] (3.1.3.2.3)

which is a left inverse of the inclusion Ω1
X]/S] ⊂ p0∗P1

X]/S] . We compute $X]/S] = id−p1
0 ◦ψ

1,0
X]/S]

.

(d) We have the exact sequence of OX -modules

0→ Ω1
X]/S]

j−→ p1∗P1
X]/S]

ψ1,0

X]/S]−→ OX → 0, (3.1.3.2.4)

The exact sequence 3.1.3.2.4 splits via the section p1
1 : OX → p1∗P1

X]/S] , which yields the isomor-
phism of OX -modules

(p1
1, j) : OX ⊕ Ω1

X]/S]
∼−→ p1∗P1

X]/S] . (3.1.3.2.5)
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Definition 3.1.3.3. We can extend the definition 1.1.3.2 as follows: Let E ,F be two OX -modules, n ≥ 0
be an integer. We say that a f−1OS-linear homomorphism D : E → F is a “differential operator of order
≤ n (relatively to X]/S])” if there exists a homomorphism of OX -modules u : pn0∗(PnX]/S] ⊗OX E)→ F
such that D = u ◦ pn1,E (see notation 3.2.2.13). Beware that this is not clear that such a u is unique
(hence one might prefer to call such a u as a differential operator of order ≤ n relatively to X]/S]).
However, when F is a locally free OX -module, then by using 3.1.1.3 to check the unicity, we can reduce
to the case where the log structures are trivial, which has already been checked.

3.1.3.4. We have the following description of (dX]/S] , d logX]/S]).

(a) The map dX]/S] : OX → Ω1
X]/S] is given by a 7→ p1

1(a) − p1
0(a) for any local section a of OX .

Indeed, let υ : X] → X be the canonical morphism. Since the construction of Ω1
X]/S] , the sheaf of

relative differentials of X]/S] (see notation 3.1.3.2), is functorial then for any i = 0, 1, we have the
commutative diagram:

X] �
� //

v

��

∆1
X]/S]

��

p1
i // X]

v

��
X
� � // ∆1

X/S

p1
i // X.

(3.1.3.4.1)

By construction (see the proof of [Ogu18, IV.1.2.4]), the composition of the constant OX -derivation
dX/S : OX → Ω1

X/S (see 1.1.2.6) with the canonical map Ω1
X/S → Ω1

X]/S] is dX]/S] . Hence, by using
the commutativity of 3.1.3.4.1 we are done.

(b) Moreover, d logX]/S] : MX] → Ω1
X]/S] is given by u 7→ µ1(u)− 1 (see notation 3.1.2.1.2). Indeed, we

compute

αX](u)(µ1(u)− 1) = p1
0(u)(µ1(u)− 1) = p1

1(u)− p1
0(u) = p1

1(αX](u))− p1
0(αX](u)) = dX]/S](αX](u)).

Since αX](u)d logX]/S] = dX]/S](αX](u)) (see 3.1.3.1.ai), then αX](u)(µ1(u)−1) = αX](u)d logX]/S] .
Since Ω1

X]/S] is locally free, then we conclude by using 3.1.1.3.

(c) The composition of $X]/S] with p1
1 : OX → P1

X]/S] is the constant OS-derivation dX]/S] . (Indeed,
since ψ1,0

X]/S]
◦ p1

1 = id, then $X]/S] ◦ p1
1 = p1

1− p1
0 = dX]/S] .) Since $X]/S] is OX -linear, this means

that dX]/S] (or $X]/S]) is a differential operator of order ≤ 1 relatively to X]/S] (see Definition
3.1.3.3).

3.1.3.5 (Local computation). Suppose X]/S] has logarithmic coordinates (uλ)λ=1,...,d. Let τ]λ,1 :=
µ1(uλ)−1 in P1

X]/S] for λ = 1, . . . , d. It follows from 3.1.3.4.b that τ]λ,1 = d log uλ. Moreover, following
3.1.2.3, P1

X]/S] is OX -free with the basis 1, τ]1,1, . . . , τ]d,1. Since ψ1,0
X]/S]

(τ]λ,1) = 0 and ψ1,0
X]/S]

(1) = 1,
then Ω1

X]/S] is OX -free with the basis τ]1,1, . . . , τ]d,1, i.e. d log u1, . . . , d log ud. Moreover, $X]/S](1) = 0

(and ker$X]/S] = OX) and $X]/S](τ],λ,1) = τ]λ,1.

We complete this subsection by checking that our notion of fine formally log unramified is the same
than that of formally log unramified appearing in the literature.

Proposition 3.1.3.6. Let f : X] → Y ] be an S]-morphism of fine log schemes and ∆X]/Y ] : X] ↪→
X] ×Y ] X] (as always the product is taken in the category of fine log schemes) be the diagonal S]-
immersion. The following assertions are equivalent:

(a) the morphism P ]1(∆X]/Y ]) is an isomorphism ;

(b) the morphism f is fine formally log unramified ;

(c) the morphism f is formally log unramified (this notion is defined at [Ogu18, IV.3.1.1]).
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Proof. Following [Ogu18, IV.3.1.3], the first and the last assertions are equivalent. Moreover, by defi-
nition, if f is formally log unramified then f is fine formally log unramified. It follows from 3.1.3.2.a
that the property ΩX]/Y ] = 0 is equivalent to saying that P ]1(∆X]/Y ]) is an isomorphism. Copying the
proof of “if f is formally log unramified then ΩX]/Y ] = 0” of [Ogu18, IV.3.1.3] we can check in the same
way that if f is fine formally log unramified then ΩX]/Y ] = 0 (indeed, since X] fine, then the log scheme
T := X] ⊕ ΩX]/Y ] is fine because its log structure is MX] ⊕ ΩX]/Y ] : see [Ogu18, IV.2.1.5]).

3.1.4 Sheaf of differential operators relative to weakly log smooth schemes
We keep notation 3.1.2.

3.1.4.1. The exact closed immersions ∆n
X]/S] and ∆n′

X]/S] induce ∆n,n′

X]/S]
:= (∆n

X]/S] ,∆
n′

X]/S]) : X] ↪→
∆n
X]/S]×X] ∆n′

X]/S] . Since the morphisms pn1 and pn0 are strict (see 3.1.2.2), then ∆n,n′

X]/S]
is also an exact

closed immersion. We get ∆n,n′

X]/S]
∈ C]n+n′ . Using the universal property of the n + n′ infinitesimal

neighborhood of ∆X]/S] , we get a unique morphism pn,n
′

02 : ∆n
X]/S] ×X] ∆n′

X]/S] → ∆n+n′

X]/S]
of C]n+n′

inducing the commutative diagram

X] �
� // ∆n

X]/S] ×X] ∆n′

X]/S]

pn,n
′

02

��

// X] ×S] X] ×S] X]

p02

��
X] �
� // ∆n+n′

X]/S]
// X] ×S] X].

(3.1.4.1.1)

We denote by δn,n
′
: Pn+n′

X]/S]
→ PnX]/S] ⊗OX P

n′

X]/S] the ring homomorphism induced by pn,n
′

02 . By

composing the canonical morphism ∆n
X]/S] ×X] ∆n′

X]/S] → X]×S] X]×S] X] with the three projections
pi : X

] ×S] X] ×S] X] → X] for i = 0, 1, 2, we get three projections

pn,n
′

i : ∆n
X]/S] ×X] ∆n′

X]/S] → X]. (3.1.4.1.2)

This yields three structures of locally free of finite type OX -algebra on PnX]/S] ⊗OX P
n′

X]/S] : the left one,
the middle one (equal the structure given by the tensor product) and the right one. Since p0 ◦ p02 = p0

and p1 ◦ p02 = p2, then we remark that δn,n
′
is also a homomorphism of OX -algebra for respectively the

left structure and for the right structure.
By replacing p02 by p01 (resp. p12), we get a unique morphism pn,n

′

01 (resp. pn,n
′

12 of the form
∆n
X]/S] ×X] ∆n′

X]/S] → ∆n+n′

X]/S]
making commutative the diagram 3.2.2.14.1. We notice that pn,n

′

01 is the

composition ∆n
X]/S]×X] ∆n′

X]/S] → ∆n
X]/S]

ψn+n′,n
X]/S]−→ ∆n+n′

X]/S]
, where the first morphism is given by the left

projection. Similarly, pn,n
′

12 is the composition ∆n
X]/S] ×X] ∆n′

X]/S] → ∆n′

X]/S] → ∆n+n′

X]/S]
, where the first

morphism is given by the right projection. We denote by qn,n
′

0 : Pn+n′

X]/S]
→ PnX]/S] ⊗OX P

n′

X]/S] (resp.

qn,n
′

1 : Pn+n′

X]/S]
→ PnX]/S]⊗OXP

n′

X]/S]) the corresponding morphism (or simply qn,n
′

0 or q0). The morphism

qn,n
′

0 is equal to the composition qn,n
′

0 : Pn+n′

X]/S]
→ PnX]/S] → P

n
X]/S] ⊗OX P

n′

X]/S] (the last morphism is

τ 7→ τ ⊗ 1). Moreover, qn,n
′

1 is equal to the composition qn,n
′

1 : Pn+n′

X]/S]
→ Pn′X]/S] → P

n
X]/S] ⊗OX P

n′

X]/S]

(the last morphism is τ 7→ 1⊗ τ).

Lemma 3.1.4.2. For any a ∈MX] , for any integers n, n′ ∈ N, we have δn,n
′
(µn+n′(a)) = µn(a)⊗µn′(a).

Proof. Removing some (m), we copy word by word the proof of Lemma 3.2.2.17.

Definition 3.1.4.3. The sheaf of differential operators of order≤ n of f is defined by puttingDX]/S],n :=

HomOX (pn0∗PnX]/S] ,OX). For any n′ ≥ n, from the canonical epimorphisms ψn
′,n∗

X]/S]
: Pn′X]/S] → P

n
X]/S]

(see notation 3.1.2.1.1), we get the inclusion

DX]/S],n ↪→ DX]/S],n′ .
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The sheaf of differential operators of f is defined by putting DX]/S] := ∪n∈NDX]/S],n.
Let P ∈ DX]/S],n, P ′ ∈ DX]/S],n′ . We define the product PP ′ ∈ DX]/S],n+n′ to be the composition

PP ′ : Pn+n′

X]/S]
δn,n

′

−→ PnX]/S] ⊗OX P
n′

X]/S]
id⊗P ′−→ PnX]/S]

P−→ OX . (3.1.4.3.1)

Suppose f has the formal logarithmic coordinates (uλ)λ=1,...,r. Put τ]λ := µn(uλ)−1. For any k ∈ Nr,
set τk] :=

∏r
i=1 τ

ki
]i . Following 3.1.2.3, the elements {τk] }|k|≤n form a basis of PnX]/S] . The corresponding

dual basis of DX]/S],n will be denoted by {∂[k], |k| ≤ n}. Hence, DX]/S] is a free OX -module (for both
structures) with the basis {∂[k]

] , k ∈ Nr}.

Proposition 3.1.4.4. The sheaf DX]/S] is a sheaf of rings with the product as defined in 3.1.4.3.1.

Proof. Using Lemma 3.1.4.2 (instead of Lemma 3.2.2.17), we can check the proposition 3.1.4.4 similarly
to the proposition 3.2.3.3.

3.1.4.5. We would like to endow the sheaf OX with a canonical structure of left DX]/S] -module so that
we retrieve the canonical left DX]/S]-module of 1.1.4.1.2 when log structure are trivial. By definition,
the action of P ∈ DX]/S],n on f ∈ OX is denoted by P (f) (in general we avoid to write P · f since this
can be confused with the multiplication in DX]/S]) and is defined by setting

P (f) := P ◦ pn1 (f). (3.1.4.5.1)

Contrary to the non-logarithmic case, we need to check that this gives a structure of left DX]/S] -module:
Let P ∈ DX]/S],n, P ′ ∈ DX]/S],n′ . Consider the following diagram

Pn+n′

X]/S]
δn,n

′
// PnX]/S] ⊗OX P

n′

X]/S]
id⊗P ′ // PnX]/S]

P // OX

OX

pn+n′
1

OO

pn
′

1 // Pn′X]/S]

OO

P ′ // OX ,

pn1

OO
(3.1.4.5.2)

where the middle vertical map is given by the projection ∆n
X]/S] ×X] ∆n′

X]/S] → ∆n′

X]/S] . Since δn,n
′

(m)

is a homomorphism of OX -algebras for the right structure, then the left square of 3.1.4.5.2 is commu-
tative. Since the right square of the diagram 3.1.4.5.2 is commutative by functoriality, then 3.1.4.5.2 is
commutative. Hence, by definition of the product given at 3.1.4.3.1 this means that PP ′(x) = P (P ′(x)).

3.2 Sheaf of differential operators of finite level m and finite order
on logarithmic schemes

We keep notation of the section 3.1.

3.2.1 Log m-PD envelope
Let m, i ∈ N be two integers and S] be a fine log scheme over the scheme Spec(Z/pi+1Z). Let (IS , JS , γ)
be a quasi-coherent m-PD-ideal of OS . Let us fix some definitions.

Definition 3.2.1.1. Let n ≥ 1 be an integer.

(a) Let C
(m)
]γ (resp. C

(m)
]γ,n) be the category whose objects are pairs (u, δ) where u is an exact closed

S]-immersion Z] ↪→ X] of fine log-schemes and δ is an m-PD-structure on the ideal I of OX given
by u which is compatible (see definition 1.2.4.3) with γ (resp. and such that I{n+1}(m) = 0), where
I{n+1}(m) is defined in the appendix of [Ber00]) ; whose morphisms (u′, δ′)→ (u, δ) are commutative
diagrams of the form

X ′]
f // X]

Z ′]
?�

u′

OO

// Z]
?�

u

OO (3.2.1.1.1)
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such that f is an m-PD-morphism with respect to the m-PD-structures δ and δ′ (i.e., denoting by
I ′ the sheaf of ideals of OX′ defined by u′, for any affine open sets U ′ of X ′] and U of X] such that
f(U ′) ⊂ U , the morphism f induces them-PD-morphism (OX(U), I(U), δ)→ (OX′(U ′), I ′(U ′), δ′)).
Beware that theses categories depend on S] and also on the quasi-coherent m-PD-ideal (IS , JS , γ).
The objects of C(m)

]γ (resp. C(m)
]γ,n) are called m-PD-S]-immersions compatible with γ (resp. m-PD-

S]-immersions of order n compatible with γ). We remark that we have the inclusions C(m)
]γ ⊂ C

(m′)
]γ

for any integer m′ ≥ m (recall an m-PD-structure is also an m′-PD-structure).

We say that a morphism (u′, δ′) → (u, δ) of C(m)
]γ (resp. C

(m)
]γ,n) is strict (resp. flat, resp. cartesian)

if f is strict (resp. f is flat, resp. the square 3.2.1.1.1 is cartesian).

(b) Let u be an object of C] (see the notation 3.1.1.10). An “m-PD-envelope compatible with γ of u” is
an object (u′, δ′) of C(m)

]γ endowed with a morphism u′ → u in C] satisfying the following universal

property: for any object (u′′, δ′′) of C(m)
]γ endowed with a morphism f : u′′ → u of C] there exists a

unique morphism (u′′, δ′′) → (u′, δ′) of C(m)
]γ whose composition with u′ → u is f . The unicity up

to canonical isomorphism of the m-PD-envelope compatible with γ of u is obvious. We will denote
by P ](m),γ(u) the m-PD-envelope compatible with γ of u. By abuse of notation we also denote by

P ](m),γ(u) the underlying exact closed immersion or its target. The existence is checked below (see
3.2.1.9).

(c) Let u be an object of C]. An “m-PD-envelope of order n compatible with γ of u” is an object
(u′, δ′) of C(m)

]γ,n endowed with a morphism u′ → u in C] satisfying the following universal property:

for any object (u′′, δ′′) of C(m)
]γ,n endowed with a morphism f : u′′ → u of C] there exists a unique

morphism (u′′, δ′′) → (u′, δ′) of C
(m)
]γ,n whose composition with u′ → u is f . The unicity up to

canonical isomorphism of the m-PD-envelope of order n compatible with γ of u is obvious. We will
denote by P ]n(m),γ(u) the m-PD-envelope of order n compatible with γ of u. By abuse of notation

we also denote by P ]n(m),γ(u) the underlying exact closed immersion or its target. The existence is
checked below (see 3.2.1.9).

(d) Since p is nilpotent in S], we get the forgetful functor For(m)
] : C

(m)
]γ → Thick(p) (resp. For

(m)
]n : C

(m)
]γ,n →

Thick(p)) given by (u, δ) 7→ u. We denote byC
′(m)
]γ (resp. C′(m)

]γ,n ) the image of For(m)
] (resp. For(m)

]n ).

Notation 3.2.1.2. In this paragraph, suppose JS = pOS . Then, there is a unique PD-structure on JS
which we will denote by γ∅. Let u : Z] ↪→ X] be an exact closed S]-immersion of fine log-schemes and
δ be an m-PD-structure on the ideal I of OX defined by u. It follows from Lemma 1.2.3.4 that the
m-PD-structure δ of I is always compatible with γ∅. Hence, in the description of C(m)

]γ∅
(resp. C

(m)
]γ∅,n

)
we can remove “compatible with γ∅” without changing the respective categories. For this reason, we
put C

(m)
] := C

(m)
]γ∅

(resp. C
(m)
]n := C

(m)
]γ∅,n

). But, recall these categories depend on S] even if this is
not written in the notation. Finally, for any quasi-coherent m-PD-ideal (IS , JS , γ) of OS , we have the
inclusions

C
(m)
]γ ⊂ C

(m)
] and C

(m)
]γ,n ⊂ C

(m)
]n . (3.2.1.2.1)

The following proposition gives the link between our categories.

Proposition 3.2.1.3. Suppose that JS + pOS is locally principal.

(a) We have the inclusion C]1 ⊂ C
′(m)
]γ,1 .

(b) For any n,m ∈ N such that n+ 1 ≤ pm, we have the inclusion C]n ⊂ C
′(m)
]γ,n ;

(c) We have the equality ∪m∈NC
′(m)
]γ = Thick(p).

Proof. Let us check the first two assertions. Let u : U ] ↪→ T ] a S]-log-thickening of order n, let I be
the ideal defined by the closed immersion u. When I2 = 0, we get a PD-structure γ on I defined by
putting γn = 0 for any integer n ≥ 2. Since JS + pOS is locally principal, then from [Ber96c, 1.3.2.(i).b)]
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γ extends to T . Hence, C]1 ⊂ C
]′(0)
γ,1 , which yields the first inclusion to prove. Suppose now In+1 = 0

and n+ 1 ≤ pm. In that case, I(pm) = 0. Hence, (0, δ) is an m-PD-structure of I (where δ is the unique
PD-structure on 0). Let us check that the m-PD structure (0, δ) of I is compatible with γ. By definition,
we have to check two properties (see 1.2.4.3). Since γ extends to T , then the property 1.2.4.3.(iia) is
satisfied (see Definition [Ber96c, 1.2.2]). The second one 1.2.4.3.(iib) is a straightforward consequence
of Lemma [Ber96c, 1.2.4.(i)]. Hence, (u, δ) ∈ C

(m)
]γ . Since In+1 = 0, we have in fact (u, δ) ∈ C

(m)
]γ,n. By

definition, this yields u ∈ C
′(m)
]γ,n .

Let us check the last statement. The inclusion ∪m∈NC
′(m)
]γ ⊂ Thick(p) is tautologic. Conversely, let

u : U ] ↪→ T ] be an S]-log-thickening of order (pm), let I be the ideal defined by the closed immersion
u. Since I(pm) = 0, then following the first part of the proof, we get that the m-PD structure (0, δ) is
compatible with γ of I. Hence, u ∈ C

′(m)
]γ , which concludes the proof of the last statement.

3.2.1.4. Let u : Z] ↪→ X] be an exact S]-immersion of fine log-schemes. Set (v, δ) := P(m),γ(u) (see
1.3.3.4). Let (v, δ) be the object of C(m)

]γ whose underlying object of C(m)
γ is (v, δ) and v is defined so

that the morphism v → u of C] is strict (see the definition 3.1.1.10). Then (v, δ) is the m-PD-envelope
compatible with γ of u.

Remark 3.2.1.5. Let α : (u′, δ′) → (u, δ) be a strict cartesian morphism of C(m)
]γ . Let (u′′, δ′′) be an

object of C(m)
]γ and β : u′′ → u′ be a morphism of C]. We remark that if For(m)

] (α) ◦ β is in the image

of For(m)
] then so is β. Indeed, the morphism α is defined by a cartesian diagram of the form 3.2.1.1.1.

Since α is moreover strict, then we remark that Z ′] = Z] ×X] X ′], i.e. the diagram 3.2.1.1.1 remains
cartesian after applying the forgetful functor from the category of fine log schemes to the category of
schemes. Hence, we can conclude.

3.2.1.6. Let u′ → u be a strict, flat, cartesian morphism of C], i.e. let

X ′]
g //

�

X]

Z ′]
?�

u′

OO

// Z]
?�

u

OO

be a cartesian square whose morphism g is strict and g is flat. Suppose that the m-PD-envelope com-
patible with γ of u exists (in fact, this existence will be proved later in 3.2.1.9). Let (v, δ) be this
m-PD-envelope. Set v′ := v×u u′ and let g′ : v′ → v be the projection. Since g is flat and g is strict, then
g′ is strict and g′ is flat. From [Ber96c, 1.3.2.(i)], there exists a canonical m-PD-structure δ′ compatible
with γ on the ideal defined by v′ := v×u u′ such that the projection g′ : v′ → v induces a strict cartesian
morphism of C(m)

]γ of the form (v′, δ′)→ (v, δ). With the remark 3.2.1.5, we can check that (v′, δ′) is an
m-PD-envelope compatible with γ of u′.

Lemma 3.2.1.7. Let f : X] → Y ] be a log étale S]-morphism, u : Z] ↪→ X] and v : Z] ↪→ Y ] be two
S]-immersions of fine log schemes such that v = f ◦ u. If the m-PD envelope of order n exists then it is
also an m-PD envelope of order n of v.

Proof. Let (P (u), δ) be the m-PD envelope (resp. of order n) of u. Let us check that the composition
of the canonical morphism P (u) → u with the morphism u → v (induced by f) satisfies the universal
property of the m-PD envelope (resp. of order n). Let (v′, δ′) be an object of C(m)

]γ (resp. C
(m)
]γ,n) and

g : v′ → v be a morphism of C]. Using the universal property of log étaleness, we get a unique morphism
h : v′ → u of C] whose composition with u → v gives g. Using the universal property of the m-PD-
envelope of u compatible with γ that there exists a unique morphism (v′, δ′)→ (P (u), δ) of C(m)

]γ (resp.

C
(m)
]γ,n) such that the composition of v′ → P (u) with P (u)→ u is h.

Lemma 3.2.1.8. The inclusion functor For]n : C
(m)
]γ,n → C

(m)
]γ has a right adjoint. We denote by

Q]n(m),γ : C
(m)
]γ → C

(m)
]γ,n this right adjoint functor. The functor Q]n(m),γ preserves the sources.
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Proof. Let (u, δ) be an object of C(m)
]γ and I be the ideal defined by the exact closed immersion u : Z] ↪→

X]. Let Qn ↪→ X] be the exact closed immersion which is defined by I{n+1}(m) . It follows from 1.3.1.4
that Q]n(m),γ(u) exists and is equal to the exact closed immersion Z] ↪→ Qn.

Proposition 3.2.1.9. Let u : Z] ↪→ X] be an object of C].

(a) Them-PD-envelope compatible with γ of u exists. In other words, the canonical functor For(m)
] : C

(m)
]γ →

C] has a right adjoint. We denote by P ](m),γ : C] → C
(m)
]γ this right adjoint functor. Similarly,

the m-PD-envelope of order n compatible with γ of u exists, i.e. we get the right adjoint func-
tor P ]n(m),γ : C] → C

(m)
]γ,n of the canonical functor For

(m)
]n : C

(m)
]γ,n → C]. We have the relation

P ]n(m),γ = Q]n(m),γ ◦ P
]
(m),γ .

(b) If γ extends to Z] then the source of P ](m),γ(u) is Z].

(c) By an abuse of notation we let P ](m),α(u) (resp. P ]n(m),α(u)) denote the target of the arrow P ](m),α(u)

(resp. P ]n(m),α(u)). Let U ] be an open of X] containing Z] such that the induced immersion v : Z] ↪→
U ] is closed. Then P ](m),α(u) = P ](m),α(v) and the underling morphism of schemes of P ](m),α(u)→ U

(resp. P ]n(m),α(u) → U) is affine. We denote by P(m),γ(u) (resp. Pn(m),γ(u)) the quasi-coherent OU -
algebra so that P(m),γ(u) = Spec(P(m),γ(u)) (resp. Pn(m),γ(u) = Spec(Pn(m),γ(u))) where P(m),γ(u)

(resp. Pn(m),γ(u)) is the underlying scheme of P ](m),γ(u) (resp. P ]n(m),γ(u)). The m-PD ideal of
P(m),γ(u) will be denoted by (I(m),γ(u),J(m),γ(u),[ ] ). Moreover, the sheaf P(m),γ(u) has his support
in v(Z) and we can simply denote v−1P(m),γ(u) by P(m),γ(u).

(d) Suppose that JS + pOS is locally principal and that X is noetherian. Then Pn(m),γ(u) is a noetherian
scheme.

Proof. 1) We can suppose u is a closed immersion. First, let us check the proposition concerning the
existence of P ](m),γ(u) and its properties (i.e. the second part of the proposition and the affinity of the

morphism P ](m),γ(u) → X]). Using 3.2.1.6, the existence of P ](m),γ(u) and its properties are étale local
on X]. Hence, by 3.1.1.14, we may thus assume that there exists a commutative diagram of the form‹X] f // X]

Z]
� ?

u

OO

P0
ũ

``

such that f is log étale, f is affine and ũ is an exact closed S]-immersion. In that case, following 3.2.1.4
the m-PD-envelope compatible with γ of ũ exists and the induced object of C(m)

γ is P(m),γ(ũ). Following
3.2.1.7, the m-PD-envelope compatible with γ of u exists and is isomorphic to that of ũ. Concerning
the second statement, when γ extends to Z], following [Ber96c, 2.1.1] (or [Ber96c, 1.4.5] for the affine
version), the source of the immersion P(m),γ(ũ) is Z]. Since P ](m),γ(ũ), ũ are exact closed immersion,

since the morphism P ](m),γ(ũ) → ũ is strict (see 3.2.1.4), then so is the morphism of sources induced

by P ](m),γ(ũ) → ũ. Hence, we get the second statement. We can check the third statement by recalling

that the target of P(m),γ(ũ) is affine over ‹X (see 1.3.3.4) and that P(m),γ(ũ) → ũ is strict. Concerning
the noetherianity, if X is noetherian then so is ‹X. Hence, using [Ber96c, 1.4.4] and the description of
the m-PD filtration given in the proof of [Ber96c, A.2], we get that Pn(m),γ(ũ) is noetherian (but not
P(m),γ(ũ)).

2) From Lemma 3.2.1.8, we can check that the functorQ]n(m),γ◦P
]
(m),γ is a right adjoint of For

(m)
]n : C

(m)
]γ,n →

C]. Moreover, with the description of the functor Q]n(m),γ given in the proof of 3.2.1.8, we can check the

other properties concerning P ]n(m),γ from that of P ](m),γ .
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Remark 3.2.1.10. Let (u, δ) be an object of C(m)
]γ . Then P ](m),δ(u) = (u, δ). But, beware that P(m),γ(u) 6=

(u, δ) in general.

3.2.1.11 (The case of an exact closed immersion). Let u : Z] ↪→ X] be an exact closed S]-immersion
of fine log-schemes and I be the ideal defined by u. We denote by u(m) : Z](m) ↪→ X] the exact closed
S]-immersion of fine log-schemes so that I(pm) is the ideal defined by u(m). Since the closed immersion
u is exact, in the proof of 3.2.1.9, we can skip the part concerning the exactification of u (i.e. we can
suppose f = id or equivalently ũ = u). Hence, we remark that, as in the proof of [Ber96c, 1.4.1], we get
the equality

P ](m),γ(u) = P ](0),γ(u(m)). (3.2.1.11.1)

We have also the same construction as in the proof of [Ber96c, 1.4.1] (too technical to be described here
in few words) of the m-PD ideal (I(m),γ(u),J(m),γ(u),[ ] ) of P(m),γ(u) directly from the level 0 case. For
the detailed descriptions, see the proof of [Ber96c, 1.4.1]. These descriptions, in particular 3.2.1.11.1, are
useful to check the Frobenius descent for arithmetic D-modules (see [Ber00, 2.3.6]).

Lemma 3.2.1.12. We have the equality P ]n(m),γ ◦ For]n ◦ P
]n = P ]n(m),γ , where For]n : C]n → C] is the

canonical functor and P ]n : C] → C]n is its right adjoint (see 3.1.1.17).

Proof. Let u : Z] ↪→ X] be an object of C]. Looking at the construction of Pn and P ]n(m),γ (see the proof
of 3.1.1.17 and 3.2.1.9), we reduce to the case where u is an exact closed immersion. In that case, the
Lemma is a reformulation of 1.3.2.8.2.

The following proposition will not be useful later but it allows us to extend 3.1.3.6 is some particular
case.

Proposition 3.2.1.13. Suppose that JS + pOS is locally principal. Let f : X] → Y ] be an S]-morphism
of fine log schemes and ∆X]/Y ] : X] ↪→ X] ×Y ] X] (as always the product is taken in the category of
fine log schemes) be the diagonal S]-immersion. The following assertions are equivalent:

1. the morphism f is fine formally log unramified ;

2. the morphism P ]1(∆X]/Y ]) is an isomorphism ;

3. the morphism P ]1(m),γ(∆X]/Y ]) is an isomorphism.

Proof. The equivalence between 1) and 2) has already been checked (see 3.1.3.6). Following 3.2.1.3, since
JS + pOS is locally principal, then C]1 ⊂ C

′(m)
]γ,1 . Hence, we have 3) ⇒ 1). It follows from 3.2.1.12 that

P ]1(m),γ(P ]1(∆X]/Y ])) = P ]1(m),γ(∆X]/Y ]). If P ]1(∆X]/Y ]) is an isomorphism, then P ]1(m),γ(P ]1(∆X]/Y ])) =

P ]1(∆X]/Y ]). Hence, we get the implication 2) ⇒ 4). It remains to check 4) ⇒ 3). Suppose
P ]1(m),γ(∆X]/Y ]) is an isomorphism and let (ι, δ) ∈ C

(m)
],γ,1 and let

U ]
u0 //� _

ι

��

X]

f

��
T ]

v // Y ]

be a commutative diagram of fine log schemes. Suppose there exist a morphism u : T ] → X] such that
u ◦ ι = u0 and f ◦ u = v, and a morphism u′ : T ] → X] such that u′ ◦ ι = u0 and f ◦ u′ = v. We
get the morphism (u, u′) : T ] → X] ×Y ] X]. We denote by and φ : ι → ∆X]/Y ] be a morphism of C]
induced by (u′, u) and u0. Using the universal property of the m-PD envelope of order 1, there exists
a unique morphism ψ : (ι, δ) → P ]1(m),γ(∆X]/Y ]) of C(m)

],γ,1 such that the composition of For(m)
]n (ψ) with

the canonical map P ]1(m),γ(∆X]/Y ])→ ∆X]/Y ] is φ. Since P
]1
(m),γ(∆X]/Y ]) is an isomorphism, this yields

that (u, u′) : T ] → X] ×Y ] X] is the composition of a morphism of the form T ] → X] with ∆X]/Y ] .
Hence, u = u′.
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Lemma 3.2.1.14. Let u → v be a morphism of C]. Let δ be the m-PD-structure of P ](m),γ(v) and

w := P ](m),γ(v) ×v u (this is the product in C]). We denote by P ](m),δ(w) the m-PD-envelope of w

compatible with δ. Then P ](m),δ(w) and P ](m),γ(u) are isomorphic in C
(m)
]γ . Moreover, P ]n(m),δ(w) and

P ]n(m),γ(u) are isomorphic in C
(m)
]γ,n.

Proof. Since the second assertion is checked in the same way, let us prove the first one. Let us check that
the composition P ](m),δ(w)→ w → u satisfies the universal property of P ](m),γ(u)→ u. Let (u′, δ′) ∈ C

(m)
]γ

and f : u′ → u be a morphism of C]. First let us check the existence. Composing f with u → v we get
a morphism g : u′ → v. Using the universal property of the m-PD envelope, there exists a morphism
φ : (u′, δ′)→ (P(m),γ(v), δ) of C(m)

]γ such that the composition u′ → P ](m),γ(v)→ v is g. Hence, we get the

morphism (φ, f) : u′ → w. Using the universal property of P ](m),δ(w), we get a morphism u′ → P ](m),δ(w)

of C
(m)
]δ (and then of C

(m)
]γ ) whose composition with P ](m),δ(w) → w → u is f . Let us check the

unicity. Let α : u′ → P ](m),δ(w) be a morphism of C(m)
]γ whose composition with P ](m),δ(w) → w → u

is f . This implies that the composition of α with P ](m),δ(w) → w → P ](m),γ(v) → v is g. Since the

composition P ](m),δ(w) → w → P ](m),γ(v) is a morphism of C(m)
]δ , then so is the composition of α with

P ](m),δ(w)→ w → P ](m),γ(v) (in particular, this implies that α ∈ C
(m)
]δ ). Using the universal property of

P ](m),γ(v), this latter composition morphism is uniquely determined by g. Hence, the composition of α

with P ](m),δ(w)→ w is a morphism of C] uniquely determined by f . Since α is a morphism of C(m)
]δ , we

conclude using the universal property of P ](m),δ(w).

Lemma 3.2.1.15. Let r ≥ 0 be an integer, (v, δ) ∈ C
(m)
]γ where v : T ] ↪→ D] is an exact closed S]-

immersion of fine log-schemes and (K̃, δ) is an m-PD-structure compatible with γ on the ideal K of OD
defined by v. Let (eλ)λ=1...r be the canonical basis of Zr. Let i : D] → D] ×Z AZr be the exact closed
D-immersion defined by eλ 7→ 1 ∈ Γ(D,MD]). With notation 3.2.1.9 and 1.3.3.6, we have the following
properties.

(a) The homomorphism of rings

OD〈T1, . . . , Tr〉(m) → P(m),δ(i ◦ v)

given by Tλ 7→ eλ − 1 is an isomorphism.

(b) The structural m-PD ideal (I(m),γ(i ◦ v),J(m),γ(i ◦ v),[ ] ) of P(m),δ(i ◦ v) is given by

I(m),γ(i ◦ v) = ID,(m),r +KP(m),δ(i ◦ v),

J(m),γ(i ◦ v) = JD,(m),r + K̃P(m),δ(i ◦ v).

Proof. By using the remark 1.3.2.9 and 3.2.1.4, we can suppose that v = id. Since the ideal of the exact
closed immersion i is generated by the regular sequence (eλ − 1)λ=1,...r, using 1.3.2.6 and 3.2.1.4 we can
check that the morphism of OD-algebras OD〈T1, . . . , Tr〉(m) → P(m),δ(i) given by Tλ 7→ eλ − 1 is an
isomorphism.

Notation 3.2.1.16. With notation 3.2.1.15, we setO(v,δ)〈T1, . . . , Tr〉(m) := P(m),δ(i◦v) andO(v,δ)〈T1, . . . , Tr〉(m),n :=
Pn(m),δ(i ◦ v).

Proposition 3.2.1.17. Let f : X] → Y ] be an S]-morphism of fine log-schemes, (bλ)λ=1,...,r be some
elements of Γ(X,MX]) such that (bλ)λ=1,...,r are formal logarithmic coordinates of f .

Let u : Z] ↪→ X] and v : Z] ↪→ Y ] be two S]-immersions of fine log schemes such that v = f ◦ u.
Suppose given yλ ∈ Γ(Y,MY ]) whose images in Γ(Z,MZ]) coincide with the images of bλ.

Let P ](m),γ(u) = (T ′] ↪→ D′], δ′), P ](m),γ(v) = (T ] ↪→ D], δ), and α : D′] → X] be the canonical

morphism. Using multiplicative notation, put uλ := α∗(bλ)
α∗(f∗(yλ)) ∈ ker(Γ(D′,Mgr

D′]
) → Γ(T ′,Mgr

T ′]
)) =

ker(Γ(D′,O∗D′)→ Γ(T ′,O∗T ′)) (see 3.1.1.24). Let P ]n(m),γ(u) = (T ′] ↪→ D′]n , δ
′
n), and uλ,n be the image of

uλ in ker(Γ(D′n,O∗D′n)→ Γ(T ′,O∗T ′)).
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(a) By using notation 3.2.1.16, we have the isomorphism of m-PD-OD-algebras

OP(m),γ(v)〈T1, . . . , Tr〉(m),n
∼−→ Pn(m),γ(u)

Tλ 7→ uλ,n − 1. (3.2.1.17.1)

(b) If (bλ)λ=1,...,r are moreover logarithmic coordinates then we have the isomorphism of m-PD-OD-
algebras

OP(m),γ(v)〈T1, . . . , Tr〉(m)
∼−→ P(m),γ(u)

Tλ 7→ uλ − 1. (3.2.1.17.2)

Proof. In order to check 3.2.1.17.1 (resp. 3.2.1.17.2), using the first part of lemma 3.2.1.7 (resp. the
second part of lemma 3.2.1.7) and using the first remark of 3.1.1.9, we may assume that X] = Y ]×ZANr ,
f : X] → Y ] is the first projection, and that the family (bλ)λ=1,...,r are the elements of Γ(X,MX])
corresponding to the canonical basis (eλ)λ=1...r of Nr. Using lemma 3.2.1.14, we may furthermore assume
that Y ] = S], Z] ↪→ Y ] is the exact closed immersion whose ideal of definition is IS . In particular, we
get D] = Y ] and γ is the canonical m-PD structure of D].

Let z be a geometric point of Z]. From 3.1.1.14, there exists a commutative diagram of the form

U ]
g // X] = Y ] ×Z ANr

f // Y ]

W ]
� ?

w

OO

h // Z]
?�

u

OO

* 

v

88 (3.2.1.17.3)

where g is log étale, h is an étale neighborhood of z in Z], and w is an exact closed S]-immersion. We set
vλ := g∗(bλ)

(f◦g)∗(yλ) ∈ Ker(Γ(U,Mgp
U]

)→ Γ(W,Mgp
W ])). Since w is an exact closed immersion, using 3.1.1.24,

shrinking U ] if necessary we may thus assume that vλ ∈ Γ(U,O∗U ).
1) In this step, we reduce to the case where h = id. According to [Gro67, IV.18.1.1], there exist

an étale neighborhood Y ′] → Y ] of z in Y ] and an open Z]-immersion (see the definition 3.1.1.8)
ρ : Z ′] := Z] ×Y ] Y ′] → W ] which is a morphism of étale neighborhoods of z in Z] (in particular
h ◦ ρ : Z] ×Y ] Y ′] → Z] is the canonical projection). Let us use the prime symbol to denote the base
change by Y ′] → Y ] of a Y ]-log scheme or a morphism of Y ]-log schemes. Set j := (ρ, v′) : ′] →
W ] ×Y ] Y ′] = W ′]. Since h ◦ ρ : Z ′] → Z] is the canonical projection, then we compute that h′ ◦ j = id.
Since id is an immersion, then j is an immersion (see the first remark of 3.1.1.9). Since h′ and id are
etale then so is j. Hence, j is an open Y ]-immersion. Using h′ ◦ j = id, we get the commutative diagram
over Y ′]

U ′]
g′ // X ′] = Y ′] ×Z ANr

Z ′].T4

w′◦j

gg

?�
u′

OO

Using 3.1.1.9.c we may assume (shrinking U ] if necessary) that the exact Y ]-immersion w′ ◦ j is closed.
Since the proposition is étale local on Y ], we can drop the primes, i.e. we can suppose h = id.

2) Consider the Y ]-morphism φ : U ] → Y ]×ZANr defined by the vλ’s. Since the (d log g∗(b1), . . . , d log g∗(br))
forms a basis of ΩU]/Y ] (because g is log étale), then so does (d log v1, . . . , d log vr). This implies that
the canonical map φ∗ΩX]/Y ] → ΩU]/Y ] induced by φ is an isomorphism. Since U ]/Y ] is log smooth we
get that φ is log étale (use [Kat89, 3.12]).

Let ι : Y ] → Y ]×ZANr be the Y ]-morphism defined by eλ 7→ 1 ∈ Γ(Y,MY ]), and i : Y ] → Y ]×ZAZr

be the exact closed Y ]-immersion defined by eλ 7→ 1 ∈ Γ(Y,MY ]). We compute that the diagram of
morphisms of log schemes

U ]
φ // Y ] ×Z ANr Y ] ×Z AZr

oo p1 // Y ]

Z],
R2

w

dd

?�

ι◦v

OO

* 


i◦v
77

& �
v

44 (3.2.1.17.4)
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where p1 is the first projection, is commutative.
3) In this step, we reduce to the case where u = i ◦ v, X] = Y ] ×Z AZr , (bλ)λ=1,...,r are the elements

of Γ(X,MX]) corresponding to the canonical basis of Zr, and (yλ)λ=1,...,r are equal to 1.
By using the commutativity of 3.2.1.17.3 (in the case where h = id thanks to the step 1), and using

Lemma 3.2.1.7, since g is log etale, then them-PD envelope compatible with γ of w is equal to T ′] ↪→ D′].
Again, by using the commutativity of 3.2.1.17.4, and using Lemma 3.2.1.7, since φ is log etale, then the
m-PD envelope compatible with γ of w (equal to T ′] ↪→ D′]) is equal to the m-PD envelope compatible
with γ of ι ◦ v. More precisely, following the proof of Lemma 3.2.1.7, the composition of the structural
morphism (T ′] ↪→ D′]) → w with φ is equal to the structural morphism (T ′] ↪→ D′]) → ι ◦ v). Hence,
we compute the image of bλ via the structural morphism (T ′] ↪→ D′]) → ι ◦ v) is uλ. Again, since
Y ] ×Z AZr → Y ] ×Z ANr is log etale, then the m-PD envelope compatible with γ of i ◦ v is equal to
T ′] ↪→ D′]. Hence, the image of bλ via the structural morphism (T ′] ↪→ D′])→ i ◦ v) is still uλ.

4) By using Lemma 3.2.1.15, we conclude.

3.2.2 Sheaf of principal parts of level m
Letm, i ∈ N be two integers and S] be a fine log scheme over the scheme Spec(Z/pi+1Z). Let f : X] → S]

be a log smooth morphism of fine log-schemes. Let (IS , JS , γ) be a quasi-coherent m-PD-ideal of OS
such that γ extends to X] (e.g. from [Ber96c, 1.3.2.(i).c)] when JS + pOS is locally principal, or with
the remark 3.1.1.7 when the log structure on S] is trivial). Let m ≥ 0 be an integer.
Remark 3.2.2.1. Since γ extends to X], then the m-PD envelope compatible with γ (of order n) of the
identity of X] is the identity of X]. Indeed, using the arguments given in the proof of 3.2.1.3, we can
check that the ideal 0 of OX is endowed with a (unique) m-PD structure compatible with γ.

Notation 3.2.2.2. Let ∆X]/S](r) : X] ↪→ X
]r+1
/S]

denote the diagonal immersion. With notation 3.2.1.9,
we set

∆n
X]/S],(m),γ(r) := P ]n(m),γ(∆X]/S](r)), ∆X]/S],(m),γ(r) := P ](m),γ(∆X]/S](r)).

For any n′ ≥ n, we denote by

ψn
′,n

X]/S],(m),γ
(r) : ∆n

X]/S],(m),γ(r) ↪→ ∆n′

X]/S],(m),γ(r) (3.2.2.2.1)

the canonical exact closed immersion. We denote by MX]/S],(m),γ(r) (resp. Mn
X]/S],(m),γ(r)) the log

structure of ∆X]/S],(m),γ(r) (resp. ∆n
X]/S],(m),γ(r)). Since γ extends to X], the source of ∆n

X]/S],(m),γ(r)

isX]. We can denote abusively the underlying scheme of the target of ∆X]/S],(m),γ(r) by ∆X]/S],(m),γ(r).
Let us write PnX]/S],(m),γ(r) := Pn(m),γ(∆X]/S](r)) (see Notation 3.2.1.9). By default, we only consider

PnX]/S],(m),γ(r) as a sheaf on X: Let U ] be an open of X]r+1
/S]

containing the image of ∆X]/S](r) such that
the immersion v : X] → U ] induced by ∆X]/S](r) is closed. Recall, by definition, PnX]/S],(m),γ(r) is the
sheaf of rings onX such that v∗PnX]/S],(m),γ(r) is a quasi-coherentOU -algebra satisfying Spec(v∗PnX]/S],(m),γ(r)) =

∆n
X]/S],(m),γ(r) (see Notation 3.2.1.9).

For i = 0, . . . , r, let pi : X
]r+1
/S]

→ X] be the projections. Let pU
]

i : U ] ↪→ X]r+1
/S]

→ X] be the morphism

induced by the projection pi. Since pU
]

i ◦ v = id then PnX]/S],(m),γ(r) = pU
]

i∗ (v∗(PnX]/S],(m),γ(r))). Since
v∗(PnX]/S],(m),γ(r)) is endowed with a structure of quasi-coherent OU -algebra, this yields r+1-structures
of quasi-coherent OX]-algebras on PnX]/S],(m),γ(r). To clarify which OX] -algebra structure we consider,

we write pi∗PnX]/S],(m),γ(r) to mean we use the structure induced by the ith projection. By composing pU
]

i

with the canonical morphism ∆n
X]/S],(m)(r) → U ], we get the projection pni(m) : ∆n

X]/S],(m),γ(r) → X]

and pi(m) : ∆X]/S],(m),γ(r) → X], for i = 0, . . . , r. We get the ring homomorphisms pni(m) : OX] →
PnX]/S],(m)(r) and pi(m) : OX] → PX]/S],(m)(r). We can simply denote pni(m) by p

n
i and pi(m) by pi. The

m-PD-ideal of PX]/S],(m)(r) will be denoted by (IX]/S],(m)(r),JX]/S],(m)(r),
[ ] ). The m-PD-ideal of

PnX]/S],(m)(r) will be denoted by (InX]/S],(m)(r),J
n
X]/S],(m)(r),

[ ] ).

When r = 1, we remove “(r)” and we simply write ψn
′,n

X]/S],(m),γ
, ∆n

X]/S],(m),γ , ∆X]/S],(m),γ , PnX]/S],(m),γ ,
PX]/S],(m),γ etc. The left (resp. right) structure of OX] -algebra on PnX]/S],(m),γ is by definition the one
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given by p0∗PnX]/S],(m),γ (resp. p1∗PnX]/S],(m),γ). As in 3.1.2.2, we can check that pn1,(m), p
n
0,(m) : ∆n

X]/S],(m),γ →
X] are strict morphisms.

If a ∈ MX] , using 3.1.1.24, we denote by µ(m),γ(a) the unique section of ker(P∗X]/S],(m),γ → O
∗
X)

such that we get in MX]/S],(m),γ the equality

p∗1,(m)(a) = p∗0,(m)(a)µ(m),γ(a). (3.2.2.2.2)

We get the monoid homomorphism µ(m),γ : MX]/S],(m),γ → ker(P∗X]/S],(m),γ → O
∗
X) = 1 + InX]/S],(m)

given by a 7→ µ(m),γ(a). Similarly we have the monoid homomorphism

µn(m),γ : Mn
X]/S],(m),γ → ker(Pn∗X]/S],(m),γ → O

∗
X) (3.2.2.2.3)

given by the formula
pn∗1,(m)(a) = pn∗0,(m)(a)µn(m),γ(a). (3.2.2.2.4)

3.2.2.3. Suppose X]/S] is strict. Then X/S is smooth and we get PnX/S,(m) = PnX]/S],(m).

Proposition 3.2.2.4 (Local description of PX]/S],(m),γ). Suppose f is endowed with logarithmic coor-
dinates (uλ)λ=1,...,r. Put τ]λ(m),γ := µ(m),γ(uλ)− 1 ∈ IX]/S],(m), and τ]λ(m),γ,n := µn(m),γ(uλ)− 1.

(a) We have the following OX-m-PD isomorphism

OX〈T1, . . . , Tr〉(m),n
∼−→ PnX]/S],(m),γ

Tλ 7→ τ]λ,(m),γ,n, (3.2.2.4.1)

where the structure of OX-module of PnX]/S],(m),γ is given by pn1 or pn0 .

(b) We have the following OX-m-PD isomorphism

OX〈T1, . . . , Tr〉(m)
∼−→ PX]/S],(m),γ

Tλ 7→ τ]λ,(m),γ , (3.2.2.4.2)

where the structure of OX-module of PX]/S],(m),γ is given by p1 or p0.

Proof. By symmetry, we can focus on the case where the structure of OX -module of PnX]/S],(m),γ (resp.
PX]/S],(m),γ) is given by pn0 (resp. p0). In the first assertion (resp. the second one), we are in the
situation to use formula 3.2.1.17.1 (resp. 3.2.1.17.2) in the case where u = ∆ and f is the left projection
p0 : X] ×S] X] → X]. Indeed, we first remark that (p∗1(uλ))λ=1,...,r are logarithmic coordinates of p0.
Indeed, log étaleness is stable under base change. Since the m-PD envelope compatible with γ of order
n (resp. m-PD envelope compatible with γ) of the identity of X] is X] (see remark 3.2.2.1), proposition
3.2.1.17 yields the result.

Notation 3.2.2.5. With the following remarks, we can lighten the notation.

(a) From the local description 3.2.2.4.1, we get that PnX]/S],(m),γ does not depend on them-PD-structure
(satisfying the conditions of the subsection). Hence, from now, we reduce to the case where γ = γ∅
(see Notation 3.2.1.2) and we remove γ in the notation: we simply write PnX]/S],(m), ∆n

X]/S],(m),
Mn
X]/S],(m), µ

n
(m), and τ]λ(m),n.

(b) From 3.2.2.4.2, PX]/S],(m),γ does not depend on the m-PD-structure (satisfying the conditions of
the subsection). Hence, we can remove γ in the corresponding notation.

Remark 3.2.2.6. From the local description of 3.2.2.4, we get that the morphisms pn1,(m) and pn0,(m)

are finite (i.e. the underlying morphism of schemes is finite). Moreover, since the composition the
closed nil-immersion X] ↪→ ∆n

X]/S],(m),γ with pn1,(m) or pn0,(m) is the identity, then pn1,(m) or pn0,(m) are
homeomorphisms and pn1,(m)∗ = pn0,(m)∗.
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Notation 3.2.2.7. Suppose f is endowed with logarithmic coordinates (uλ)λ=1,...,r. With notation
3.2.2.4, for any integer m′ ≥ m and n′ ≥ n, we remark that the canonical map PnX]/S],(m′) → P

n
X]/S],(m)

(resp. Pn′X]/S],(m) → P
n
X]/S],(m)) sends τ]λ(m′),n to τ]λ(m),n (resp. τ]λ(m),n′ to τ]λ(m),n). Hence, this will

be harmless to denote abusively τ]λ(m),n by τ]λ. For any k ∈ Nr, we put

τ
k
] :=

r∏
i=1

τki]i , τ
{k}(m)

] :=
r∏
i=1

τ
{ki}(m)

]i . (3.2.2.7.1)

Remark 3.2.2.8. Noticing that the main Theorem [Ogu18, IV.3.2.6] on log smoothness is valid for coherent
log structures and not only fine log structures, one might wonder why we are focusing on fine log
structures. The first reason we have in mind is that the important tool consisting of exactifying closed
immersions (see 3.1.1.14) needs fine log structures. One might refute that in the first chapter we might
replace in the definition ofC] (see 3.1.1.10) the word fine by the word coherent (but in the other categories,
e.g. C

(m)
]γ we keep fine log structures). But, if we replace in 3.2.2.4 fine log structures by coherent log

structures, the isomorphism 3.2.2.4.1 is not any more true: instead we have OXint〈T1, . . . , Tr〉(m),n
∼−→

PnX]/S],(m). Recall that since X
] is only coherent and not fine then we have in general OXint 6= OX .

3.2.2.9. Let g : S]′ → S] be a morphism of fine log schemes over Z(p), let (IS′ , JS′ , γ
′) be a quasi-

coherent m-PD-ideal of OS′ such that g becomes an m-PD-morphism. Put X ′] := X] ×S] S′]. We
suppose that γ′ extends to X ′]. Then, the m-PD-morphism ∆X′]/S′],(m) → ∆X]/S],(m) induces the
isomorphism ∆X′]/S′],(m)

∼−→ ∆X]/S],(m) ×S] S′]. Indeed, since the morphisms p0 : ∆X]/S],(m) → X]

and p0 : ∆X′]/S′],(m) → X ′] are strict, then the morphism ∆X′]/S′],(m) → ∆X]/S],(m) ×S] S′] is strict.
Hence, this is sufficient to check that the morphism g∗PX]/S],(m) → PX′]/S′],(m) is an isomorphism. This
can be checked by using the local description of 3.2.2.4.1.

3.2.2.10. Let m′ ≥ m be two integers. Since C
′(m)
]n ⊂ C

′(m′)
]n , then by using the universal property

defining ∆n
X]/S],(m′) we get a morphism ψnm,m′ : ∆n

X]/S],(m) → ∆n
X]/S],(m′) and then the homomorphism

ψnm,m′ : PnX]/S],(m′) → P
n
X]/S],(m).

From 3.2.1.12, we get P ]n(m)(P
]n(∆X]/S])) = P ]n(m)(∆X]/S]). Hence, we get a canonical map ψnm : ∆n

X]/S],(m) →
∆n
X]/S] and then the homomorphism ψnm : PnX]/S] → P

n
X]/S],(m).

Now, suppose that X] → S] is endowed with logarithmic coordinates (uλ)λ=1,...,r. With the notation
of 1.2.1.3, 3.2.2.4 and 3.2.2.7, we have

ψnm,m′(τ
{k}(m′)
] ) =

q
(m)
k !

q
(m′)
k !

τ
{k}(m)

] , ψnm(τ
k
] ) = q(m)

k
!τ
{k}(m)

] . (3.2.2.10.1)

3.2.2.11. By composing the canonical morphism ∆X]/S],(m)(r) → X]r+1
/S]

and ∆n
X]/S],(m)(r) → X]r+1

/S]

with the ith projection pi : X
]r+1
/S]

→ X] for i = 0, . . . , r, we get

pi,(m)(r) : ∆n
X]/S],(m)(r)→ X], pni,(m)(r) : ∆n

X]/S],(m)(r)→ X]. (3.2.2.11.1)

If there are no risk of confusion, we can simply write pi.
We denote by ∆X]/S],(m)(r)×pi,X],pi′ ∆X]/S],(m)(r

′) the base change of pi,(m)(r) : ∆X]/S],(m)(r)→
X] by pi′,(m)(r

′) : ∆X]/S],(m)(r
′)→ X]. Since pi,(m)(r) and pi′,(m)(r

′) are strict, then we can check the
immersion X] ↪→ ∆X]/S],(m)(r) ×pi,X],pi′ ∆X]/S],(m)(r

′) induced by X] ↪→ ∆X]/S],(m)(r) and X] ↪→
∆X]/S],(m)(r

′) is an exact closed immersion. Using 3.2.2.4, we easily check this is an m-PD closed
immersion (for more details, see [Ber96c, 2.1.3.(i)]). Moreover, thanks to the universal property of
m-PD-envelopes, we get the m-PD-morphism q(m)(r, r

′) making commutative the diagram:

X] �
� // ∆X]/S],(m)(r)×pi,X],pi′ ∆X]/S],(m)(r

′)

q(m)(r,r
′)

��

// X]r+1
/S]

×pi,X],pi′ X
]r′+1
/S]

pi×pi′ //

∼
��

X] ×X] X]

∼

��
X] �
� // ∆X]/S],(m)(r + r′) // X]r+r′+1

/S]
pi // X].

(3.2.2.11.2)
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By using again 3.2.2.4, we check that this arrow q(m)(r, r
′) is in fact an m-PD-isomorphism. Similarly,

the immersion X] ↪→ ∆n
X]/S],(m)(r) ×X] ∆n′

X]/S],(m)(r
′) induced by X] ↪→ ∆n

X]/S],(m)(r) and X] ↪→
∆n′

X]/S],(m)(r
′) is an exact closed immersion endowed with a canonical m-PD structure of order n + n′

and we have the m-PD-morphism qn,n
′

(m) (r, r′) making commutative the diagram

X] �
� // ∆n

X]/S],(m)(r)×pi,X,pi′ ∆n′

X]/S],(m)(r
′)

qn,n
′

(m)
(r,r′)

��

// X]r+1
/S]

×pi,X,pi′ X
]r′+1
/S]

pi×pi′ //

∼
��

X] ×X] X]

∼

��
X] �
� // ∆n+n′

X]/S],(m)
(r + r′) // X]r+r′+1

/S]
pi // X].

(3.2.2.11.3)
When r = r′ = 1, we simply write q(m) and qn,n

′

(m) .

Notation 3.2.2.12. For any integer n and any integers 0 ≤ i < j ≤ 2, it follows from the universal
property of m-PD-envelopes of order n that we get a unique m-PD-morphism qnij,(m) : ∆n

X]/S],(m)(2)→
∆n
X]/S],(m) making commutative the diagram

X] �
� // ∆n

X]/S],(m)(2)

qnij,(m)

��

// X] ×S] X] ×S] X]

pij

��

pi //

pj
// X

]

X] �
� // ∆n

X]/S],(m)
// X] ×S] X]

p0 //

p1

// X
]

(3.2.2.12.1)

We still denote by qnij,(m) : p0∗PnX]/S],(m) → pi∗PnX]/S],(m)(2) or qnij,(m) : p1∗PnX]/S],(m) → pj∗PnX]/S],(m)(2)

the corresponding homomorphism of m-PD-OX -algebras. We can simply write the m-PD-morphism
qnij,(m) : PnX]/S],(m) → P

n
X]/S],(m)(2) and recall that this homomorphism is also a homomorphism of m-

PD-OX -algebras for two structures. Similarly we denote by qij,(m) : ∆X]/S],(m)(2)→ ∆X]/S],(m) making
commutative the diagram 3.2.2.12.1 without the order n condition.

Notation 3.2.2.13. Let E be anOX -module. By convention, PnX]/S],(m)⊗OXE means pn1∗(PnX]/S],(m))⊗OX
E and E ⊗OX PnX]/S],(m) means E ⊗OX pn0∗(PnX]/S],(m)). For instance, PnX]/S],(m) ⊗OX P

n′

X]/S],(m) is
pn1∗(PnX]/S],(m))⊗OX p

n′

0∗(Pn
′

X]/S],(m)).
We have two structures of OX -module on the sheaf PnX/S,(m) ⊗OX E : the “left structure” given by

functoriality from the left structure of PnX/S,(m) and the “right structure” given by the internal tensor
product. We denote by p0∗(PnX/S,(m) ⊗OX E) (resp. p1∗(PnX/S,(m) ⊗OX E)) to clarify we are considering
the left structure (resp. right structure).

Similarly, we denote by p0∗(E ⊗OX PnX/S,(m)) (resp. p1∗(E ⊗OX PnX/S,(m))) the OX -module given by
the internal tensor product (resp. by functoriality from the right OX -module structure of PnX/S,(m))
which is called the left (resp. right) structure.

We denote by pn0,E : E → p0∗(E ⊗OX PnX/S,(m)) the canonical OX -linear map given by x 7→ x⊗ 1, i.e.
is the composition of idE ⊗pn0 with the canonical isomorphism E ∼−→ E ⊗OX P0

X/S,(m). We denote by
pn1,E : E → p1∗(PnX/S,(m)⊗OX E) the canonical map given by x 7→ 1⊗x, i.e. is the composition of pn1 ⊗ idE

with the canonical isomorphism E ∼−→ P0
X/S,(m) ⊗OX E .

Notation 3.2.2.14. We simply denote by ∆n
X]/S],(m)×X]∆

n′

X]/S],(m) the base change of p
n′

0,(m) : ∆n′

X]/S],(m) →
X] by pn1,(m) : ∆n

X]/S],(m) → X]. Similarly, X]2
/S]
×p1,X],p0

X]2
/S]

is simply denoted by X]2
/S]
×X] X

]2
/S]

.

91



By composition of 3.2.2.11.3 and 3.2.2.12.1, we get

X] �
� // ∆n

X]/S],(m) ×X] ∆n′

X]/S],(m)
//

qn,n
′

(m)

��

X]2
/S]
×X] X

]2
/S]

∼ // X] ×S] X] ×S] X]

X] �
� // ∆n+n′

X]/S],(m)
(2)

qn+n′
ij,(m)

��

// X] ×S] X] ×S] X]

pij

��

pi //

pj
// X

]

X] �
� // ∆n+n′

X]/S],(m)
// X] ×S] X]

p0 //

p1

// X
].

(3.2.2.14.1)
We get the morphism pn,n

′

ij,(m) := qn+n′

ij,(m) ◦ q
n,n′

(m) : ∆n
X]/S],(m)×X] ∆n′

X]/S],(m) → ∆n+n′

X]/S],(m)
(which satisfies

also a universal property). The morphism pn,n
′

01,(m) is the composition

pn,n
′

01,(m) : ∆n
X]/S],(m) ×X] ∆n′

X]/S],(m) → ∆n
X]/S],(m)

ψn+n′,n
X]/S],(m)

↪→ ∆n+n′

X]/S],(m)
,

where the first morphism is given by the left projection. Similarly, pn,n
′

12,(m) is the composition ∆n
X]/S],(m)×X]

∆n′

X]/S],(m) → ∆n′

X]/S],(m) → ∆n+n′

X]/S],(m)
, where the first morphism is given by the right projection.

By composing the canonical morphism ∆n
X]/S],(m)×X] ∆n′

X]/S],(m) → X]×S] X]×S] X] with the ith
projection pi : X] ×S] X] ×S] X] → X] for i = 0, 1, 2, we get

pn,n
′

i,(m) : ∆n
X]/S],(m) ×X] ∆n′

X]/S],(m) → X]. (3.2.2.14.2)

This yields three ring homomorphisms pn,n
′

i,(m) : OX → PnX,(m)⊗OX P
n′

X,(m). When i = 0 (resp. i = 1, resp.
i = 2), this is said to be the left (resp. middle, resp right) OX -algebra structure of PnX,(m) ⊗OX P

n′

X,(m)

and this is equal to the OX -algebra structure given by the left structure of PnX]/S],(m) (resp. the tensor
product, resp. the right structure of Pn′X]/S],(m)). Using the associated universal properties, we have the

equalities pn,n
′

i,(m) = pn+n′

i,(m)(2) ◦ pn,n
′

ij,(m) for any i, j = 0, 1, 2.

We denote by δn,n
′

(m) : Pn+n′

X]/S],(m)
→ PnX]/S],(m)⊗OXP

n′

X]/S],(m) (resp. q
n,n′

0(m) : Pn+n′

X]/S],(m)
→ PnX]/S],(m)⊗OX

Pn′X]/S],(m), resp. q
n,n′

1(m) : Pn+n′

X]/S],(m)
→ PnX]/S],(m) ⊗OX P

n′

X]/S],(m)) the morphism of m-PD-algebras as-

sociated to the morphism pn,n
′

02,(m) (resp. pn,n
′

01,(m), resp. p
n,n′

12,(m)). If there is no doubt on the level, we can

also simply write δn,n
′
, qn,n

′

0 , qn,n
′

1 .
The morphism qn,n

′

0(m) is equal to the composition qn,n
′

0(m) : Pn+n′

X]/S],(m)
→ PnX]/S],(m) → P

n
X]/S],(m) ⊗OX

Pn′X]/S],(m) (the last morphism is τ 7→ τ⊗1). Moreover, qn,n
′

1(m) is equal to the composition qn,n
′

1(m) : Pn+n′

X]/S],(m)
→

Pn′X]/S],(m) → P
n
X]/S],(m) ⊗OX P

n′

X]/S],(m) (the last morphism is τ 7→ 1 ⊗ τ). In order words, we have

the relation qn,n
′

0(m) = $n,n′

i(m) ◦ ψ
n+n′,n
X]/S],(m)

and qn,n
′

1(m) = $n,n′

i(m) ◦ ψ
n+n′,n′

X]/S],(m)
, where $n,n′

0(m) : PnX]/S],(m) →
PnX]/S],(m) ⊗OX P

n′

X]/S],(m) and $n,n′

1(m) : Pn′X]/S],(m) → PnX]/S],(m) ⊗OX P
n′

X]/S],(m) are the homomor-

phisms associated with the projections. The morphism qn,n
′

0(m) is OX -linear for the left (resp. right)

structure of Pn+n′

X]/S](m)
and the left structure (resp. of the center) of PnX]/S](m) ⊗OX P

n′

X]/S](m). Finally,

the morphism qn,n
′

0(m) is OX -linear for the left (resp. right) structure of Pn+n′

X]/S](m)
and the structure of

the center (resp. right) of PnX]/S](m) ⊗OX P
n′

X]/S](m).

Using the commutativity of the diagram 3.2.2.14.1, we see that δn,n
′

(m) is also an OX -algebra homomor-

phism for the respective left structures and for the respective right structures, i.e., δn,n
′

(m) ◦ p
n+n′

0,(m) = pn,n
′

0,(m)

and δn,n
′

(m) ◦p
n+n′

1,(m) = pn,n
′

2,(m). Using the commutativity of the diagram 3.2.2.14.1, we see that the morphism
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qn,n
′

0(m) is OX -linear for the left (resp. right) structure of Pn+n′

X]/S](m)
and the left (resp. middle) structure

of PnX]/S](m) ⊗OX P
n′

X]/S](m).
By using 1.4.1.11 and the universal property of the m-PD envelopes, these morphisms are compatible

with the change of level and we have the commutative diagram:

Pn+n′

X]/S]

δn,n
′

��

// Pn+n′

X]/S],(m′)

δn,n
′

(m′)
��

ψn+n′

m,m′ // Pn+n′

X]/S],(m)

δn,n
′

(m)

��
PnX]/S] ⊗OX P

n′

X]/S]
// PnX]/S],(m′) ⊗OX P

n′

X]/S],(m′)

ψn
m,m′⊗ψ

n′
m,m′// PnX]/S],(m) ⊗OX P

n′

X]/S],(m).

(3.2.2.14.3)

Remark 3.2.2.15. The canonicalm-PD structure on ∆n
X]/S],(m)×X]∆

n′

X]/S],(m) is characterized by the fol-

lowing property: the projections qn,n
′

0(m) : ∆n
X]/S],(m)×X]∆

n′

X]/S],(m) → ∆n
X]/S],(m) and q

n,n′

1(m) : ∆n
X]/S],(m)×X]

∆n′

X]/S],(m) → ∆n′

X]/S],(m) are morphisms of C(m)
]n+n′ .

Notation 3.2.2.16. Let E be an OX -module. With notation 3.2.2.14), we get the following three
PnX]/S],(m) ⊗OX P

n′

X]/S],(m)-modules

E ⊗OX PnX]/S],(m) ⊗OX P
n′

X]/S],(m) := E ⊗OX
Ä
PnX]/S],(m) ⊗OX P

n′

X]/S],(m)

ä
:= pn,n

′∗
0(m) (E) (3.2.2.16.1)

PnX]/S],(m) ⊗OX E ⊗OX P
n′

X]/S],(m) := pn,n
′∗

1(m) (E) (3.2.2.16.2)

PnX]/S],(m) ⊗OX P
n′

X]/S],(m) ⊗OX E :=
Ä
PnX]/S],(m) ⊗OX P

n′

X]/S],(m)

ä
⊗OX E := pn,n

′∗
2(m) (E). (3.2.2.16.3)

Lemma 3.2.2.17. For any a ∈ MX] , for any integers n, n′ ∈ N, we have δn,n
′

(m) (µn+n′

(m) (a)) = µn(m)(a) ⊗
µn
′

(m)(a).

Proof. We fix the integers n, n′ ∈ N. We denote by Mn,n′

X]/S],(m)
the log structure of ∆n

X]/S],(m) ×X]
∆n′

X]/S],(m) = Spec(PnX]/S],(m) ⊗OX P
n′

X]/S],(m)). Let a ∈ MX] . We denote by µn,n
′

i,j(m)(a) the unique

section of ker((PnX]/S],(m) ⊗OX P
n′

X]/S],(m))
∗ → O∗X) such that we get in Mn,n′

X]/S],(m)
the equality

pn,n
′

j,(m)(a) = pn,n
′

i,(m)(a)µn,n
′

i,j(m)(a) (use Lemma 3.1.1.24) for any integers i, j ∈ {0, 1, 2}. We get

µn,n
′

i,j(m) : MX]/S],(m),γ → ker((PnX]/S],(m) ⊗OX P
n′

X]/S],(m))
∗ → O∗X)

given by a 7→ µn,n
′

i,j(m)(a). For any i, j, k ∈ {0, 1, 2} we have,

µn,n
′

i,j(m)(a)µn,n
′

j,k(m)(a) = µn,n
′

i,k(m)(a). (3.2.2.17.1)

With notation 3.2.2.2.3, 3.2.2.14.1 and 3.2.2.14.2, since pn,n
′

i,(m) = pn+n′

0(m) ◦ p
n,n′

ij,(m) and pn,n
′

j,(m) = pn+n′

1(m) ◦
pn,n

′∗
ij,(m) then

pn,n
′∗

j,(m)(a) = pn,n
′∗

ij,(m)(p
n+n′∗
1 (a))

= pn,n
′∗

ij,(m)(p
n+n′∗
0 (a) · µn+n′

(m) (a))

= pn,n
′∗

i,(m)(a) · pn,n
′∗

ij,(m)(µ
n+n′

(m) (a))

We deduce by uniqueness that
pn,n

′∗
ij,(m)(µ

n+n′

(m) (a)) = µn,n
′

i,j(m). (3.2.2.17.2)

Since pn,n
′∗

02,(m)(µ
n+n′

(m) (a)) = δn,n
′

(m) (µn+n′

(m) (a)), since pn,n
′∗

01,(m)(µ
n+n′

(m) (a)) = (µn+n′

(m) (a)) = qn,n
′

0(m)(µ
n+n′

(m) (a)) =

µn(m)(a)⊗ 1, since pn,n
′∗

12,(m)(µ
n+n′

(m) (a)) = (µn+n′

(m) (a)) = qn,n
′

1(m)(µ
n+n′

(m) (a)) = 1⊗ µn′(m)(a), then it follows from
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equations 3.2.2.17.1 and 3.2.2.17.2 that

δn,n
′

(m) (µn+n′

(m) (a)) = pn,n
′∗

01,(m)(µ
n+n′

(m) (a))pn,n
′∗

12,(m)(µ
n+n′

(m) (a)),

= (µn(m)(a)⊗ 1)(1⊗ µn
′

(m)(a)),

= µn(m)(a)⊗ µn
′

(m)(a).

Proposition 3.2.2.18. We have the commutative diagram:

Pn+n′+n′′

X]/S],(m)

δn,n
′+n′′

(m) //

δn+n′,n′′
(m)

��

PnX]/S],(m) ⊗OX P
n′+n′′

X]/S],(m)

id⊗δn
′,n′′

(m)

��
Pn+n′

X]/S],(m)
⊗OX Pn

′′

X]/S],(m)

δn,n
′

(m)
⊗id
// PnX]/S],(m) ⊗OX P

n′

X]/S],(m) ⊗OX P
n′′

X]/S],(m)

(3.2.2.18.1)

Proof. Since this is local, we can suppose that f has logarithmic coordinates (uλ)λ=1,...,r. Using Lemma
3.2.2.17, we compute that the images of µn+n′+n′′

(m) (uλ) by both maps Pn+n′+n′′

X]/S],(m)
→ PnX]/S],(m) ⊗OX

Pn′X]/S],(m) ⊗OX P
n′′

X]/S],(m) are the same and equal to µn(m)(uλ) ⊗ µn
′

(m)(uλ) ⊗ µn
′′

(m)(u). Since τ]λ :=

µn(m)(uλ)− 1, then so is τ]λ. Since all maps of the diagram 3.2.2.18.1 are m-PD-morphisms (see 3.2.2.19
for the m-PD-structure), then by using the isomorphism 3.2.2.4.2, we get the desired commutativity.

The following Lemma will be useful to check the associativity of the product law of the sheaf of
differential operator:

Lemma 3.2.2.19. We denote by ∆n
X]/S],(m) ×X] ∆n′

X]/S],(m) ×X] ∆n′′

X]/S],(m) the base change of pn
′

0 ◦
qn
′,n′′

0 : ∆n′

X]/S],(m) ×X] ∆n′′

X]/S],(m) → X] by pn1 : ∆n
X]/S],(m) → X]. The exact closed immersion

X] ↪→ ∆n
X]/S],(m) ×X] ∆n′

X]/S],(m) ×X] ∆n′′

X]/S],(m) induced by X] ↪→ ∆n
X]/S],(m), X

] ↪→ ∆n′

X]/S],(m)

and X] ↪→ ∆n′′

X]/S],(m) is endowed with a canonical m-PD structure. By abuse of notation, we de-

note by ∆n
X]/S],(m) ×X] ∆n′

X]/S],(m) ×X] ∆n′′

X]/S],(m) this object of C(m)
],n+n′+n′′ . This m-PD structure on

∆n
X]/S],(m) ×X] ∆n′

X]/S],(m) ×X] ∆n′′

X]/S],(m) is characterized by the following property: the projections
∆n
X]/S],(m)×X] ∆n′

X]/S],(m)×X] ∆n′′

X]/S],(m) → ∆n
X]/S],(m), ∆n

X]/S],(m)×X] ∆n′

X]/S],(m)×X] ∆n′′

X]/S],(m) →
∆n′

X]/S],(m), and ∆n
X]/S],(m)×X]∆n′

X]/S],(m)×X]∆n′′

X]/S],(m) → ∆n′′

X]/S],(m) are morphisms of C(m)
],n+n′+n′′ .

Proof. This is checked similarly to 3.2.2.14.

3.2.3 Sheaf of logarithmic differential operators of level m and finite order
on log smooth schemes

We keep notation 3.2.2.

Definition 3.2.3.1. The sheaf of differential operators of levelm and order ≤ n of f is defined by putting
D(m)

X]/S],n
:= HomOX (pn0,(m)∗P

n
X]/S],(m),OX). Following notation 3.2.2.2.1, for any n′ ≥ n, we have the

canonical projection ψn
′,n∗

X]/S],(m)
: Pn′X]/S],(m) → P

n
X]/S],(m). By duality, this yields the monomorphisms

D(m)

X]/S],n
↪→ D(m)

X]/S],n′
.

The sheaf of differential operators of level m of f is defined by putting D(m)

X]/S]
:= ∪n∈ND(m)

X]/S],n
.

Let P ∈ D(m)

X]/S],n
, P ′ ∈ D(m)

X]/S],n′
. We define the product PP ′ ∈ D(m)

X]/S],n+n′
to be the composition

PP ′ : Pn+n′

X]/S],(m)

δn,n
′

(m)−→ PnX]/S],(m) ⊗OX P
n′

X]/S],(m)
id⊗P ′−→ PnX]/S],(m)

P−→ OX . (3.2.3.1.1)
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Example 3.2.3.2. Suppose X]/S] is strict. Then X/S is smooth and we get PnX/S,(m) = PnX]/S],(m)

(see 3.2.2.3). This yields D(m)
X/S = D(m)

X]/S]
, where D(m)

X/S is the sheaf of differential operators defined by
Berthelot in 1.4.2.

Proposition 3.2.3.3. The sheaf D(m)

X]/S]
is a sheaf of rings with the product as defined in 3.2.3.1.1.

Proof. We have to check the product as defined in 3.2.3.1.1 is associative. One checks the commutativity
of the diagram

Pn+n′+n′′

X]/S],(m)

(PP ′)P ′′

��

Pn+n′+n′′

X]/S],(m)

δ
n,n′+n′′
(m) //

δ
n+n′,n′′
(m)��

Pn
X]/S],(m)

⊗OX P
n′+n′′

X]/S],(m)

id⊗δn
′,n′′

(m)��

Pn
X]/S],(m)

⊗OX P
n′+n′′

X]/S],(m)

id⊗P ′P ′′

��

Pn+n′

X]/S],(m)
⊗OX P

n′′

X]/S],(m)

δ
n,n′
(m)

⊗id

//

id⊗P ′′��

Pn
X]/S],(m)

⊗OX P
n′

X]/S],(m)
⊗OX P

n′′

X]/S],(m)

id⊗ id⊗P ′′��
Pn+n′

X]/S],(m)

δ
n,n′
(m) //

PP ′��

Pn
X]/S],(m)

⊗OX P
n′

X]/S],(m)

id⊗P ′��
OX OX Pn

X]/S],(m)
⊗OX P

n′

X]/S],(m)P

oo Pn
X]/S],(m)

⊗OX P
n′

X]/S],(m)
.

(3.2.3.3.1)

Indeed, the commutativity of the top square of the middle was already proved (see 3.2.2.18.1). Since the
commutativity of the other squares are obvious, we conclude the proof.

Notation 3.2.3.4 (Description in logarithmic coordinates). Suppose that X] → S] is endowed with
logarithmic coordinates (uλ)λ=1,...,r. With the notation 3.2.2.7, the elements {τ{k}(m)

] , |k| ≤ n} form a

basis of PnX]/S],(m). The corresponding dual basis of D(m)

X]/S],n
will be denoted by {∂〈k〉(m)

] , |k| ≤ n}. This

yields the basis (as OX -module for both structures) {∂〈k〉(m)

] , k ∈ Nr} of D(m)

X]/S]
.

Let ε1, . . . , εr be the canonical basis of Nr, i.e. the coordinates of εi are 0 except for the ith term
which is 1. We put ∂]i := ∂]

〈εi〉(m) and ∂〈k〉(m)

]i := ∂]
〈kεi〉(m) for any k ∈ N.

3.2.3.5. For anym′ ≥ m, from the homomorphisms ψnm,m′ : PnX]/S],(m′) → P
n
X]/S],(m) and ψ

n
m : PnX]/S] →

PnX]/S],(m) of 3.2.2.10, we get by duality, the maps

D(m)

X]/S]

ρm′,m−→ D(m′)

X]/S]
ρm′−→ DX]/S] . (3.2.3.5.1)

It follows from 3.1.4.3.1, 3.2.3.1.1 and the log version of 3.2.2.14.3 that the maps of 3.2.3.5.1 are homo-
morphisms of filtered rings.

When X] → S] is endowed with logarithmic coordinates (uλ)λ=1,...,r, with notation 3.2.3.4 dualizing
3.2.2.10.1, we get the formula

ρm′,m(∂
〈k〉(m)

] ) =
q

(m)
k !

q
(m′)
k !

∂
〈k〉(m′)
] and ρm(∂

〈k〉(m)

] ) = q(m)
k

!∂
[k]
] . (3.2.3.5.2)

Since this is local, by using the formula 3.2.3.5.2, we can check that the filtered ring morphism

ρ : lim−→
m

D(m)

X]/S]
→ DX]/S] . (3.2.3.5.3)

induced by taking the inductive limit of ρm is an isomorphism. However, beware that the homomorphisms
3.2.3.5.1 are not necessarily injective.

Since OX is endowed with a canonical structure of left DX]/S] -module (see 3.1.4.5), then this induces
a structure of left D(m)

X]/S]
-module on OX . It follows from 3.1.4.5.1 and 3.2.3.5.1 that the structure of

left D(m)

X]/S]
-module of OX is given via the formula

P (f) := P ◦ pn1(m)(f). (3.2.3.5.4)
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Notation 3.2.3.6. For P ∈ Γ(X,D(m)

X]/S],n
), with notation 3.2.2.2.3 define P : Mn

X]/S],(m),γ×OX → OX
by:

P (a, x) = P (µn(m)(a)pn1,(m)
∗(x)). (3.2.3.6.1)

For any n′ ≥ n, we can also view P as an element of Γ(X,D(m)

X]/S],n′
) but we remark that the formula

3.2.3.6.1 does not depend on n such that P ∈ Γ(X,D(m)

X]/S],n
).

For any a ∈ M and any x ∈ OX , we write simply P (x) = P (0, x) and Pa(x) = P (a, x). Following
3.2.3.5.4 that OX is a left D(m)

X]/S]
-module and that P (x) corresponds to the action of P on x, i.e. the

notation are compatible.

Proposition 3.2.3.7. Suppose f is endowed with logarithmic coordinates (u1, . . . , ur). With notations
1.2.1.3 and 3.2.3.4, we have the following properties.

(a) For any x ∈ Γ(X,OX), s ∈ Γ(X,MX]), we have the following Taylor formulas:

pn1,(m)(x) =
∑
|k|≤n

pn0,(m)(∂
〈k〉
] (x))τ

{k}
] , µn(m)(s) =

∑
|k|≤n

∂〈k〉(s, 1)τ
{k}
] . (3.2.3.7.1)

(b) For any x ∈ Γ(X,OX) and k ∈ Nr, we have in Γ(X,D(m)

X]/S]
)

∂
〈k〉(m)

] x =
∑
i≤k

¶
k
i

©
∂
〈k−i〉(m)

] (x)∂
〈i〉(m)

] . (3.2.3.7.2)

Proof. a) Both Taylor formulas 3.2.3.7.1 come from the fact that {∂〈k〉(m)

] , |k| ≤ n} is the dual basis of

{τ{k}(m)

] , |k| ≤ n} (recall ∂〈k〉] (s, 1) = ∂
〈k〉
] (µn(m)(s))).

b) We do the same computation than in 1.4.2.7.b.

Lemma 3.2.3.8. Let Φ ∈ D(m)

X]/S],n
and Ψ ∈ D(m)

X]/S],n′
, a, a′ ∈MX] and x ∈ OX . Then:

(a) Φ(a′, αX(a)x) = αX(a)Φ(a · a′, x),

(b) (Φ ◦Ψ)(a, x) = Φ(a,Ψ(a, x)).

Proof. With notation 3.1.1.23, since, pn∗i,(m)(αX(a)) = α(pn∗i,(m)(a)) (recall, pni,(m) is a morphism of log
schemes), then it follows from 3.2.2.2.4 that pn∗1,(m)(αX(a)) = pn∗0,(m)(αX(a))µn(m)(a). Since the morphism
µn(m) of 3.2.2.2.3 is a monoid morphism, by OX -linearity of Φ, then we check a) as follows:

Φ(a′, αX(a)x) = Φ
Ä
µn(m)(a

′)pn∗1,(m)(αX(a)x)
ä

= Φ
Ä
µn(m)(a

′)pn∗1,(m)(αX(a))pn∗1,(m)(x)
ä

= Φ
Ä
µn(m)(a

′)pn∗0,(m)(αX(a))µn(m)(a)pn∗1,(m)(x)
ä

= αX(a)Φ
Ä
µn(m)(a · a

′)pn∗1,(m)(x)
ä

= αX(a)Φ(a · a′, x).

b) Fix a ∈MX] . Omit S] in the notations. Consider the following diagram

OX
µn
′

(m)(a)pn
′∗

1,(m) //

µn+n′
(m)

(a)pn+n′∗
1,(m)

��

Pn′X],(m)

Ψ //

µn(m)(a)⊗id

��

OX

µn(m)(a)pn∗1,(m)

��

Φa

&&
Pn+n′

X],(m)
δn,n

′
(m)

// PnX],(m) ⊗OX P
n′

X],(m) id⊗Ψ
// PnX],(m) Φ

// OX

, (3.2.3.8.1)

where µn(m)(a) ⊗ id is the morphism given by e′ 7→ µn(m)(a) ⊗ e′, where id ⊗ Ψ is the morphism given
by e ⊗ e′ 7→ epn∗1,(m)(Ψ(e′)). The right triangle commutes by definition of Φa. Via a straightforward
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computation, we get that the middle square commutes. It remains to check the commutativity of the
left square. On one hand,

(µn(m)(a)⊗ id) ◦ (µn
′

(m)(a)pn
′∗

1,(m))(x) = µn(m)(a)⊗ µn
′

(m)(a)pn
′∗

1,(m)(x).

Since δn,n
′

(m) is a homomorphism of OX -algebras for the right structures (more precisely, see 3.2.2.14), then

we get δn,n
′

(m) (pn+n′∗
1,(m) (x)) = 1⊗ pn′∗1,(m)(x). With the formula 3.2.2.17, then we get

δn,n
′

(m) (µn+n′

(m) (a)pn+n′∗
1,(m) (x)) = δn,n

′

(m) (µn+n′

(m) (a))δn,n
′

(m) (pn+n′∗
1,(m) (x))

= (µn(m)(a)⊗ µn
′

(m)(a)) · (1⊗ pn
′∗

1,(m)(x))

= µn(m)(a)⊗ µn
′

(m)(a)pn
′∗

1,(m)(x).

Hence, the diagram 3.2.3.8.1 is commutative. The composition above of 3.2.3.8.1 is Φa ◦ Ψa and that
below is (Φ ◦Ψ)a. This proves b).

3.2.3.9 (Comparison of the local description of differential operators with or without logarithmic struc-
ture). Suppose X]/S] is strict and there exists coordinates (tλ)λ=1,...,r of X]/S] (see definition 3.1.1.21).

(a) Copying the proof of 1.3.3.11, we get the following isomorphism of m-PD-OX -algebras

OX〈T1, . . . , Tr〉(m),n
∼−→ PnX]/S],(m)

Tλ 7→ τλ, (3.2.3.9.1)

where τλ := p∗1(tλ) − p∗0(tλ). The elements {τ{k}(m)}|k|≤n form a basis of PnX]/S],(m). The corre-

sponding dual basis of D(m)

X]/S],n
will be denoted by {∂〈k〉(m)}|k|≤n.

(b) Consider the following diagram
Y ]

f

��

u // ANr × T ]

��
X] t // Ar × S]

(3.2.3.9.2)

where the right arrow is induced by a morphism of fine log schemes of the form T ] → S] and by
the canonical morphism ANr → Ar, the bottom arrow is induced by the coordinates (tλ)λ=1,...,r and
where the top arrow is induced by the logarithmic coordinates (uλ)λ=1,...,r. Let τ ] (resp. ∂]〈k〉(m))
be the element constructed from (uλ)λ=1,...,r (resp. (tλ)λ=1,...,r) as defined in 3.2.2.4 (resp. 3.2.3.4)
and according to notation 3.2.2.7. Then the functorial morphism f∗PnX]/S],(m) → P

n
Y ]/T ],(m) (see

3.2.3.17) is explicitly described by
τ{k}(m) 7→ tkτ

{k}(m)

] , (3.2.3.9.3)

where the action of tk is induced by the left structure of OY -algebra of PnY ]/T ],(m). Indeed, since
f∗PnX]/S],(m) → PnY ]/T ],(m) is an m-PD-morphism, we reduce to compute the image of τi. We
compute the image of τi is 1 ⊗ ui − ui ⊗ 1 = uiτi] = tiτi] (recall definition 3.2.2.4 of τi],(m)).
Moreover, by duality, we get D(m)

Y ]/T ]
→ f∗D(m)

X]/S]
(see 3.2.3.17) is explicitly described by

∂]
〈k〉(m) 7→ tk∂〈k〉(m) . (3.2.3.9.4)

(c) Suppose now that the tλ’s lie in Γ(X,O∗X). Then (tλ)λ=1,...,r are also logarithmic coordinates of
X]/S] (see definition 3.1.1.20). We have

τ{k}(m) = p∗0(tk)τ
{k}(m)

](m) and ∂]
〈k〉(m) = tk∂〈k〉(m) , (3.2.3.9.5)

where τ ](m) (resp. ∂]〈k〉(m)) is defined in 3.2.2.4 (resp. 3.2.3.4).
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Lemma 3.2.3.10. Suppose that X] → S] is endowed with logarithmic coordinates (uλ)λ=1,...,r. With
notation 3.2.3.4, we have the formula

δn,n
′

(m) (τ]i) = τ]i ⊗ τ]i + τ]i ⊗ 1 + 1⊗ τ]i. (3.2.3.10.1)

Proof. This is a consequence of 3.2.2.17:

δn,n
′

(m) (τ]i) = δn,n
′

(m) (µn+n′

(m) (ui)− 1) = δn,n
′

(m) (µn+n′

(m) (ui))− 1

3.2.2.17
= µn(m)(ui)⊗ µ

n′

(m)(ui)− 1 = (τ]i + 1)⊗ (1 + τ]i)− 1 = τ]i ⊗ τ]i + τ]i ⊗ 1 + 1⊗ τ]i.

Lemma 3.2.3.11. Suppose f is endowed with logarithmic coordinates (u1, . . . , ur). We set tλ :=
αX](uλ), for any λ = 1, . . . , r. Let n, k ∈ Nr. We write un :=

∏r
i=1 u

ni
i , tn :=

∏r
i=1 t

ni
i . With no-

tation 3.2.3.4 we have the following formulas.

(a) If k ≤ n (see convention 1.2.1.3), then ∂〈k〉(m)

] (un, 1) = q
(m)
k !

(n
k

)
. If k 6≤ n then ∂〈k〉(m)

] (un, 1) = 0.

(b) If k ≤ n, then ∂〈k〉(m)

] (tn) = q
(m)
k !

(n
k

)
tn−k. Otherwise, ∂〈k〉(m)

] (tn) = 0.

(c) We have the formula k!

q
(m)

k
!
∂
〈k〉(m)

] =
∏

0≤k′<k(∂] − k
′),

where k′ < k means k′i < ki for any i.

Proof. a) By definition (see 3.2.3.6.1), we compute:

∂
〈k〉(m)

] (un, 1)
3.2.3.6.1

= ∂
〈k〉(m)

]

Ä
µ
|k|
(m)(u

n)
ä

= ∂
〈k〉(m)

]

(
r∏
j=1

µ
|k|
(m)(uj)

nj

)

= ∂
〈k〉(m)

]

(
r∏
j=1

(τ]j + 1)nj

)
= ∂

〈k〉
]

Ñ
r∏
j=1

nj∑
lj=0

Ç
nj
lj

å
τ
lj
]j

é
= ∂

〈k〉(m)

]

Ñ
r∏
j=1

nj∑
lj=0

Ç
nj
lj

å
q

(m)
lj

!τ
{lj}(m)

]j

é
= ∂

〈k〉(m)

]

Ñ
n∑
l=0

Ç
n

l

å
q(m)
l

!τ
{l}(m)

]

é
.

When k ≤ n, this yields

∂
〈k〉(m)

]

Ñ
n∑
l=0

Ç
n

l

å
q(m)
l

!τ
{l}(m)

]

é
= q(m)

k
!

Ç
n

k

å
, (3.2.3.11.1)

and otherwise this is null. Hence we are done.
b) By using the formula 3.2.3.8.(a) in the case where a = un, a′ = 0 and x = 1 and next 3.2.3.11.a,

since α(un) = tn, then we get ∂〈k〉] (0, tn) = tn∂
〈k〉
] (un, 1) = tnq

(m)
k !

(n
k

)
.

c) We calculate δn,n
′

(m) (τ
{k}
] ) as follows. Since qn,n

′

1(m) : Pn′X]/S],(m) → P
n
X]/S],(m) ⊗OX P

n′

X]/S],(m) is an
m-PD-morphism (see 3.2.2.14), then by using 1.2.4.5.c, we have

(τ]i⊗ τ]i){α} = ((τ]i⊗ 1) · (1⊗ τ]i)){α} = (τα]i ⊗ 1) · (1⊗ τ]i){α} = (τα]i ⊗ 1) · (1⊗ τ{α}]i ) = q(m)
α !τ

{α}
]i ⊗ τ

{α}
]i .
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Since δn,n
′

(m) , q
n,n′

0(m) and qn,n
′

1(m) are m-PD morphisms, with the formulas of 1.2.4.5 (e.g. 1.2.4.5.2 and
1.2.4.5.3), then we have

δn,n
′

(m) (τ
{ki}
]i ) = δn,n

′

(m) (τ]i)
{ki} 3.2.3.10.1

= (τ]i ⊗ τ]i + τ]i ⊗ 1 + 1⊗ τ]i){ki}

=

ki∑
α=0

≠
ki
α

∑
(τ]i ⊗ τ]i){α}(τ]i ⊗ 1 + 1⊗ τ]i){ki−α}

=

ki∑
α=0

≠
ki
α

∑
q(m)
α !τ

{α}
]i ⊗ τ{α}]i

Ñ ∑
β+γ=ki−α

≠
ki − α
β

∑
(1⊗ τ{β}]i )(τ

{γ}
]i ⊗ 1)

é
=

∑
α+β+γ=ki

≠
ki
α

∑≠
ki − α
β

∑
q(m)
α !(τ

{α}
]i ⊗ τ{α}]i )(1⊗ τ{β}]i )(τ

{γ}
]i ⊗ 1)

=
∑

α+β+γ=ki

≠
ki
α

∑≠
ki − α
β

∑
q(m)
α !τ

{α}
]i τ

{γ}
]i ⊗ τ

{α}
]i τ

{β}
]i

=
∑

α+β+γ=ki

≠
ki
α

∑≠
ki − α
β

∑
q(m)
α !

{α+ γ

α

}ßα+ β

α

™
τ
{α+γ}
]i ⊗ τ{α+β}

]i

=
∑

α+β+γ=ki

Å
ki
α

ãÅ
ki − α
β

ã
q

(m)
α+γ !q

(m)
α+β !

q
(m)
ki

!
τ
{α+γ}
]i ⊗ τ{α+β}

]i .

Hence we deduce that

δn,n
′

(m) (τ
{k}
] ) =

∑
α+β+γ=k

Å
k

α

ãÇ
k − α
β

å q(m)
α+γ

!q
α+β

!

q
(m)
k !

τ
{α+γ}
] ⊗ τ{α+β}

] . (3.2.3.11.2)

Since ∂〈l〉] ∂]i, = ∂
〈l〉
] ◦ (id⊗ ∂]i) ◦ δn,n

′

(m) , then it follows from 3.2.3.11.2 that ∂〈l〉] ∂]i,(τ
{k}
] ) 6= 0 if and only

if there exists α, β, γ ∈ Nr such that α+ β + γ = k, α+ γ = l and α+ β = εi. We have two cases: either
α = εi, β = 0, γ = l − εi and k = l or α = 0, β = εi, γ = l and k = l + εi. Hence, we compute:

∂
〈l〉
] ∂]i, = li∂

〈l〉
] + (li + 1)

q
(m)
li

!

q
(m)
li+1!

∂
〈l+ε

i
〉

] = li∂
〈l〉
] + (li + 1)

q
(m)
l !

q
(m)
l+ε

i
!
∂
〈l+ε

i
〉

] . (3.2.3.11.3)

Since (li + 1) =
(l+εi)!

l! , then we get the first equality from 3.2.3.11.3:

(l + εi)!

q
(m)
l+ε

i
!
∂
〈l+ε

i
〉

] =
l!

q
(m)
l !

∂
〈l〉
] (∂]i, − li).

By induction on |k|, this yields

(l + εi)!

q
(m)
l+ε

i
!
∂
〈l+εi〉
] =

Ñ ∏
0≤n<l

(∂]i − ni)

é
(∂]i, − li) =

∏
0≤n<l+εi

(∂]i − ni).

Remark 3.2.3.12. It follows from part c) of the above lemma that in characteristic p we have

(∂
〈ε
i
〉(1)

] )p = ∂〈εi〉(1) .

Indeed, according to the lemma,

(∂
〈ε
i
〉(1)

] )p − ∂〈εi〉(1) =

p−1∏
j=0

(∂〈ε
i
〉 − j) = p!∂〈pε

i
〉 = 0.
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From this we deduce that the p-curvature of the canonical connection associated to a D(1)
X -module E is

zero. In fact the p-curvature of ∇ is ψ(∇)(∂) = ∇(∂)p − ∇(∂(p)). Then ∇(∂]i) = (id ⊗ ∂]i) ◦ ∇ = ∂]i

and ∂(p)
]i = ∂]i. Thus ψ(∇)(∂]i) = 0.

Lemma 3.2.3.13. Suppose f is endowed with logarithmic coordinates (u1, . . . , ur). With notations
1.2.1.3 and 3.2.3.4, for any k′, k′′ ∈ Nr, we have the formula

∂
〈k′〉(m)

] ∂
〈k′′〉(m)

] =

k′+k′′∑
k=sup{k′,k′′}

k!

(k′ + k′′ − k)!(k − k′)!(k − k′′)!
q

(m)
k′ !q

(m)
k′′ !

q
(m)
k !

∂
〈k〉(m)

] , (3.2.3.13.1)

with k!
(k′+k′′−k)!(k−k′)!(k−k′′)!

q
(m)

k′
!q

(m)

k′′
!

q
(m)

k
!
∈ Z(p).

Proof. Let k, k′, k′′ ∈ Nr. If k′′ ≤ k, then it follows from 3.2.3.11.2 that we have

(id⊗ ∂〈k
′′〉

] ) ◦ δn,n
′

(m) (τ
{k}
] ) =

k′′∑
α=0

Å
k

α

ãÅ
k − α
k′′ − α

ã q(m)
k−k′′+α!q

(m)
k′′ !

q
(m)
k !

τ
{k−k′′+α}
] . (3.2.3.13.2)

When k′′ 6≤ k the left hand side of 3.2.3.13.2 is 0. Since we have

∂
〈k′〉
] ∂

〈k′′〉
] (τ

{k}
] ) := ∂

〈k′〉
] ◦ (id⊗ ∂〈k

′′〉
] ) ◦ δn,n

′

(m) (τ
{k}
] ), (3.2.3.13.3)

then from 3.2.3.13.2, the term 3.2.3.13.3 is not null if and only if there exists 0 ≤ α ≤ k′′ such that
k − k′′ + α = k′, i.e. k = (k′′ − α) + k′. This is equivalent to saying that sup{k′, k′′} ≤ k ≤ k′ + k′′. In
that case, we compute

∂
〈k′〉
] ∂

〈k′′〉
] (τ

{k}
] ) := ∂

〈k′〉
] ◦ (id⊗ ∂〈k

′′〉
] ) ◦ δn,n

′

(m) (τ
{k}
] ) =

k!

(k′ + k′′ − k)!(k − k′)!(k − k′′)!
q

(m)
k′ !q

(m)
k′′ !

q
(m)
k !

and the lemma follows.
It follows from 1.2.1.5.a that we have the equalities in Z(p):≠

α+ β + γ

α

∑Æ
β + γ

β

∏
q(m)
α !

ß
α+ γ

α

™ß
α+ β

α

™
=

Å
α+ β + γ

α

ãÇ
β + γ

β

å q(m)
α+γ

!q
α+β

!

q
(m)
α+β+γ !

=
(α+ β + γ)!

α!β!γ!

q(m)
α+γ

!q
α+β

!

q
(m)
α+β+γ !

. (3.2.3.13.4)

Replacing α, β , γ by respectively k′ + k′′ − k, k − k′, k − k′′ we are done.

Remark 3.2.3.14. With its notation, it follows from the formula 3.2.3.13, the following assertions.

(a) We have ∂〈k
′〉

] ◦ ∂〈k
′′〉

] = ∂
〈k′′〉
] ◦ ∂〈k

′〉
] .

(b) In general, contrary to the non-logarithmic formula (see 1.4.2.7.c) the equality ∂〈k
′〉

] ∂
〈k′′〉
] =

¨
k′+k′′

k′

∂
(m)

∂
〈k′+k′′〉
]

is false but it becomes true modulo the operator of less order i.e.

∂
〈k′〉
] ∂

〈k′′〉
] −

≠
k′ − k′′

k′

∑
(m)

∂
〈k′+k′′〉
] ∈ ⊕sup{k′,k′′}≤k<k′+k′′Z(p),X∂

〈k〉
] ⊂ ⊕|k|<|k′+k′′|−1 Z(p),X∂

〈k〉
] .

(3.2.3.14.1)

(c) In the particular case where k′, k′′ ∈ Nr have disjoint supports, we get ∂〈k
′〉

] ◦ ∂〈k
′′〉

] = ∂
〈k′+k′′〉
] . For

any k ∈ Nr, this yields the formula

∂
〈k〉
] = ∂

〈k1〉
],1 ◦ ∂

〈k2〉
],2 · · · ∂

〈kr〉
],r . (3.2.3.14.2)
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(d) Suppose m is finite. If k = pmq + r with 0 ≤ ri < pm, if ri =
∑m−1
j=0 ai,jp

j with 0 ≤ ai,j < p, then
by using 3.2.3.14.1, following the computations of 1.4.2.8.3 we get

∂
〈k〉
] − uk

p∏
i=1

(
m−1∏
j=0

(∂
〈pj〉
],i )ai,j

)
(∂

[pm]
],i )qi ∈ ⊕|l|<|k|−1 Z(p),X∂

〈l〉
] . (3.2.3.14.3)

for some invertible elements uk in Z∗(p).

Proposition 3.2.3.15. Supposem is finite. Suppose f is endowed with logarithmic coordinates (u1, . . . , ur).
With notation3.2.3.4, the sheaf D(m)

X]/S]
is generated as OS-algebra by OX and the two by two commuting

operators ∂],i, ∂
〈p〉
],i , · · · , ∂

〈pm〉
],i , 1 ≤ i ≤ r.

More precisely, fix 1 ≤ i ≤ r. Then, for any 0 ≤ j ≤ m, for any 0 ≤ k < pj, the operator ∂〈k〉],i
belongs to the sub Z(p)-algebra of D(m)

X]/S]
generated by ∂],i, ∂

〈p〉
],i , · · · , ∂

〈pj−1〉
],i . Moreover, for any k ∈ N,

∂
〈k〉
],i belongs to the sub Z(p)-algebra of D(m)

X]/S]
generated by ∂],i, ∂

〈p〉
],i · · · , ∂

〈pm〉
],i .

Proof. It follows from 3.2.3.14.2 that we reduce to check the proposition without multi-indices. By doing
an induction on |k| and by using 3.2.3.14.3, we conclude.

Proposition 3.2.3.16. Suppose m is finite. We have the following properties.

(a) The graded ring gr D(m)

X]/S]
associated to the order filtration (D(m)

X]/S],n
)n∈N is a commutative ring. If

X]/S] is endowed with logarithmic coordinates, the relation ∂〈k〉] ∂
〈h〉
] =

¨
k+h
k

∂
∂
〈k+h〉
] becomes exact

in grD(m)

X]/S]
.

(b) Suppose S be a locally noetherian scheme. Let U be an affine open of X (resp. x ∈ X). Then
Γ(U, gr D(m)

X]/S]
) (resp. D(m)

U := Γ(U,D(m)

X]/S]
), resp. gr D(m)

X]/S],x
, resp. D(m)

X]/S],x
) is left and right

noetherian.

(c) For any inclusion of affine opens of X of the form V ⊂ U , the canonical morphism Γ(U,D(m)

X]/S]
)→

Γ(V,D(m)

X]/S]
) is flat.

(d) Suppose S be a locally noetherian scheme. Then the sheaf of rings D(m)

X]/S]
is right and left coherent.

Proof. The first statement is a consequence of 3.2.3.14.1 and of 3.2.3.7.2. By replacing Proposition
1.4.2.10 by 3.2.3.15, to check the second assertion we can simply copy the proof of 1.4.2.11.(b). Finally,
we get the last two statements by copying the proof of 1.4.5.3.

3.2.3.17. Let g : S′] → S] be a morphism of fine log schemes over Z(p). Consider the commutative
diagram

X ′]
f //

π
X′]

��

X]

π
X]

��
S′]

g // S]

(3.2.3.17.1)

such that πX] and πX′] are formal log smooth of level m. Using the universal property of the m-
PD envelope, we get the m-PD-morphism f∗PnX]/S],(m) → PnX′]/S′],(m). This yields the morphism

D(m)

X′]/S′],n
→ f∗D(m)

X]/S],n
and then D(m)

X′]/S′]
→ f∗D(m)

X]/S]
.

When the diagram 3.2.3.17.1 is cartesian (in the category of fine log schemes), the morphism f∗PnX]/S],(m) →
PnX′]/S′],(m) is in fact an isomorphism of rings and so is D(m)

X′]/S′]
→ f∗D(m)

X]/S]
.

When g = id and f is formally log étale of level m, then the morphism f∗PnX]/S],(m) → P
n
X′]/S],(m)

is in fact an isomorphism and so is D(m)

X′]/S]
→ f∗D(m)

X]/S]
.
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3.2.4 Increasing the level: finiteness of the tor-dimension
Let S] be a nice fine log scheme over Spec(Z/pi+1Z), where i ≥ 0 is an integer (see definition 3.1.1.1).
Moreover, let X] → S] be a log smooth morphism of log schemes. Let m ∈ N be an integer.

Proposition 3.2.4.1. Suppose S is of characteristic p > 0. Suppose that X] have logarithmic coordi-
nates t1, . . . , td.

(a) For any integer q, we have
(
∂
〈pm+1〉(m)

],i

)q
= vm,q∂

〈pm+1q〉(m)

],i , with vm,q ∈ Z∗(p).

(b) The center of D(m)

X]/S]
contains the polynomial algebra with coefficients in OX(m+1) in the operators

∂
〈pm+1〉(m)

],i .

(c) For any integer q ≥ 0, 0 ≤ r ≤ pm+1 − 1, by setting k := pm+1q + r, we have ∂
〈k〉(m)

],i =

um,k

(
∂
〈pm+1〉(m)

],i

)q
∂
〈r〉(m)

],i , for i = 1, . . . , d, with um,k ∈ Z∗(p).

(d) Let K(m) be the set whose elements are the finite sums of the form
∑
k 6<pm+1 ak∂

〈k〉(m)

] , with ak ∈ OX
and k 6< pm+1 meaning that ki ≥ pm+1 for at least one 1 ≤ i ≤ d. Then K(m) is the two-sided ideal

of D(m)

X]/S]
generated by the operators ∂〈p

m+1〉(m)

],i .

Proof. Following 1.4.4.1, both tp
m+1

i and ∂〈p
m+1〉(m)

i are in the center of D(m)

U/S]
. Since D(m)

X]/S]
→ jU∗D(m)

U/S]

is an injective morphism of rings then ∂〈p
m+1〉(m)

],i = tp
m+1

i ∂
〈pm+1〉(m)

i is in the center of D(m)

X]/S]
. Hence,

a and b is a consequence of 1.4.4.1.a and 1.4.4.1.d. Moreover, it follows from 1.4.4.1 that ∂〈k〉(m)

i =

um,k

(
∂
〈pm+1〉(m)

i

)q
∂
〈r〉(m)

i , for i = 1, . . . , d, with um,k ∈ Z∗(p). This yields

∂
〈k〉(m)

],i = tki ∂
〈k〉(m)

i = um,kt
r
i

(
∂
〈pm+1〉(m)

],i

)q
∂
〈r〉(m)

i = um,k∂
〈pm+1〉(m)

],i ∂
〈r〉(m)

],i ,

the last equality being a consequence of the fact that ∂〈p
m+1〉(m)

],i is in the center of D(m)

U/S]
. Finally, c

implies d.

The following proposition is the logarithmic version of 1.4.4.2.

Proposition 3.2.4.2. Suppose that X] have logarithmic coordinates t1, . . . , td. Let m′ ≥ m+ 1 be an
integer.

(a) The kernel of the canonical homomorphism ρ(m,m′) : D(m)

X]/S]
→ D(m′)

X]/S]
is K(m), the two-sided ideal

of D(m)

X]/S]
generated by the operators ∂〈p

m+1〉(m)

],i .

(b) Moreover, D(m′)

X]/S]
is free on the image of ρ(m,m′), with the operators of the form ∂

〈pm+1n〉(m′)
] , n ∈ Nd

as a basis.

Proof. Suppose that X] have logarithmic coordinates t1, . . . , td. It follows from the computations of
the proof of 1.4.4.2 (in particular, the three last lignes) that the kernel of ρ(m,m′) is By using 3.2.4.1.c,

this yields that ∂〈p
m+1〉(m)

],i = tp
m+1

i ∂
〈pm+1〉(m)

i generates ∂〈k〉(m)

],i = tki ∂
〈k〉(m)

i for k ≥ pm+1. This yields
the result for the kernel. This implies, that the image of ρ(m,m′) is the set of finite sums of the form∑
k<pm+1 ak∂

〈k〉(m′)
] , where k < pm+1 means ki < pm+1 for any i = 1, . . . , d (we use that ∂〈k〉(m)

] = ∂
〈k〉(m′)
]

for k < pm+1). For r < pm+1, q ≥ 0 (i.e. qi ≥ 0 for any i = 1, . . . , d) and k = pm+1q + r, by using

1.4.2.7.(c) we have ∂〈k〉(m′) = ∂〈r〉(m′) · ∂〈p
m+1q〉(m′) . Since tp

m+1

i is in the center of D(m)
P , then tp

m+1

i

is in the center of the image of ρ(m,m′). Since ∂〈r〉(m′) is in this image, this yields that ∂
〈k〉(m′)
] =

∂
〈r〉(m′)
] · ∂〈p

m+1q〉(m′)
] . Hence we are done.
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Corollary 3.2.4.3. Suppose p is locally nilpotent on S. For any m′ > m, D(m′)

X]/S]
has left and right

tor-dimension d over D(m)

X]/S]
.

Proof. Similarly to 1.4.4.4, this follows from the proposition 3.2.4.2.

3.3 Sheaf of differential operators of finite order on logarithmic
formal schemes

Let V be complete discrete valuation ring of mixed characteristic (0, p). We denote by S := Spf V be
the p-adic formal scheme, i.e. such that pV is an ideal of definition. A formal V-scheme (or formal
S-scheme) is by definition an adic morphism of the form X → S (in the sense of [Gro60, 10.12], i.e.
we assume that a V-formal scheme is always locally noetherian). We recall that Shiho introduced the
notion of V-log formal schemes (see [Shi00, 2.1.1.(4)]) as follows: A V-log formal scheme X] is a formal
V-scheme X endowed with a logarithmic structure α : MX] → OX (this means that α is a logarithmic
morphism of sheaves of monoids for the étale topology over X], i.e. α is such that α−1(O∗X)→ O∗X is an
isomorphism). When MX] is fine as sheaf for the étale topology over the special fiber of X] (i.e. when
MX] is integral and MX] is coherent in the sense defined at the end of the remark [Ogu18, II.2.1.5]), we
say that the logarithmic structure MX] is fine. We say that X] is a “fine V-log formal scheme” if MX] is
fine.

Let i ≥ 0 be an integer. We set Si := Spec(V/πi+1V). If X] is a fine V-log formal scheme and i ∈ N,
then we denote by X]

i the fine log Si-scheme so that Xi := X ×S Si and the morphism X]
i → X] is

strict. For i = 0, we can simply denote X]
0 by X]. If f : X] → Y] is a morphism of fine V-log formal

schemes, then we denote by fi : X
]
i → Y ]i the induced morphism of fine Si-log schemes. We remark that

if f : X] → Y] is a morphism of fine S-log formal schemes, then fi : X
]
i → Y ]i is a morphism of fine log

Si-schemes.

3.3.1 From log schemes to formal log schemes
3.3.1.1 (Charts for S log formal schemes). Let P be a fine monoid and V{P} be the p-adic completion of
V[P ]. Since V is fixed, we denote by AP the fine V-log formal scheme whose underlying formal V-scheme
is Spf(V{P}) and whose log structure is the log structure associated with the pre-log structure induced
canonically by P → V{P}.

Let X] be a fine S-log formal scheme. We denote by PX] the sheaf associated to the constant
presheaf of P over X]. Following Shiho’s definition of [Shi00, 2.1.7], a chart of X] is a morphism of
monoids α : PX] → OX whose associated log structure is isomorphic to MX] → OX. A chart of X] is
equivalent to the data of a strict morphism of the form X] → AP .

Lemma 3.3.1.2. Let X] be a fine S-log formal scheme. Let i ≥ 0 be an integer. Then, the morphisms
O∗X → O∗X]

i

and MX] →MX]
i
are surjective.

Proof. The fact that O∗X → O∗X]
i

is surjective comes from the fact that OX is complete for the p-adic

topology. The fact that MX] → MX]
i
is surjective is étale local on X]. Hence, we can suppose there

exists a fine monoid P and a morphism of sheaves of monoids α : PX] → OX (here PX] means the sheaf
associated to the constant presheaf of P over X]) which induces the isomorphism of sheaves of monoids
PX] ⊕α−1(O∗

X
) O∗X

∼−→ MX] and the isomorphism PX]
i
⊕α−1

i
(O∗

X
]
i

) O∗X]
i

∼−→ MX]
i
. Since O∗X → O∗X]

i

is

surjective, we conclude.

Proposition 3.3.1.3. Let X] be a fine S-log formal scheme. Then, in the category of fine S-log formal
schemes, X] is the inductive limit of the system (X]

i )i.

Proof. From [Gro60, I.10.6.1], X is the inductive limit of the system (Xi)i. It remains to check that the
canonical morphism of sheaves of monoids MX] → lim←−i MX]

i
is an isomorphism. Since this is étale local

on X] and since X] is fine then we can suppose there exists a fine monoid P and a morphism of sheaves of
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monoids α : PX] → OX which induces the isomorphism of sheaves of monoids PX]⊕α−1(O∗
X

)O∗X
∼−→ MX] .

Let i ≥ 0 be an integer. We get the morphism of sheaves of monoids αi : PX]
i
→ OX]

i
which induces

the isomorphism PX]
i
⊕α−1

i
(O∗

X
]
i

) O∗X]
i

∼−→ MX]
i
. Hence, we reduce to prove that the canonical map

PX] ⊕α−1(O∗
X

) O∗X → lim←−i PX]i ⊕α−1
i

(O∗
X
]
i

) O∗X]
i

is an isomorphism. We put Fi := PX]
i
“ ⊕ ”α−1

i
(O∗

X
]
i

)O∗X]
i

where “ ⊕ ” means that the amalgamated sum is computed in the category of presheaves. We put
Ei := PX]

i
⊕ O∗

X]
i

, θi : Ei → Fi the canonical surjective morphism, Gi := PX]
i
⊕α−1

i
(O∗

X
]
i

) O∗X]
i

and

εi : Fi → Gi the canonical morphism from a presheaf to its associated sheaf. We put φi := εi ◦ θi. We
denote by πi : O∗X]

i+1

→ O∗
X]
i

, πi : Ei+1 → Ei πi : Fi+1 → Fi, πi : Gi+1 → Gi the canonical projections. Let
U→ X be an étale map such that U is connected.
1) Let si+1 ∈ Fi+1(Ui+1) and si := πi(si+1) ∈ Fi(Ui). Then the canonical map πi : θ−1

i+1(si+1)→ θ−1
i (si)

induced by πi : Ei+1(Ui+1)→ Ei(Ui) is a bijection.
a) Let us check the injectivity. Let (x, a), (x′, a′) ∈ θ−1

i+1(si+1) such that πi(x, a) = πi(x
′, a′) (where

x, x′ ∈ P and a, a′ ∈ O∗
X]
i+1

(Ui+1)). The latter equality yields x = x′. Since P is integral, θi+1(x, a) =

θi+1(x, a′) implies a = a′ (for the computation, use the remark of [Kat89, 1.3]).
b) Let us check the surjectivity. Let (y, b) ∈ θ−1

i (si). We remark that α−1(O∗X)(U) = α−1
i (O∗

X]
i

)(Ui)

and we denote it by Q. Since θi+1 is an epimorphism (in the category of presheaves) then there exists
(x, a) ∈ θ−1

i+1(si+1). Since πi(x, a) = (x, πi(a)) ∈ θ−1
i (si), there exists q, q′ ∈ Q(Ui) such that πi(a)αi(q) =

bαi(q
′) and xq′ = yq (see the remark of [Kat89, 1.3]). Set a′ := aαi+1(q)αi+1(q′)−1. Then πi(a

′) = b
and θi+1(x, a) = θi+1(y, a′), i.e. πi(y, a′) = (y, b) and (y, a′) ∈ θ−1

i+1(si+1).
2) Let ti+1 ∈ Gi+1(Ui+1) and ti := πi(ti+1) ∈ Gi(Ui). Then the canonical map πi : φ−1

i+1(ti+1)→ φ−1
i (ti)

is a bijection.
a) Let us check the injectivity. Let r, r′ ∈ φ−1

i+1(ti+1) such that πi(r) = πi(r
′). There exists an étale

covering (Uλ → U)λ of U such that θi+1(r)|Uλ = θ(r′)i+1|Uλ. From 1) (applied for Uλ instead of U), this
yields r|Uλ = r′|Uλ. Hence, r = r′.

b) Let us check the surjectivity. Let r ∈ φ−1
i (ti). Put s := θi(r). There exist an étale covering

(Uλ → U)λ of U and sections sλ ∈ Fi+1(Uλ) such that εi+1(sλ) = ti+1|Uλ and πi(sλ) = s|Uλ. From
1.b), there exists rλ ∈ Ei+1(Uλ) such that πi(rλ) = r|Uλ and θi+1(rλ) = sλ. Hence, πi(rλ) = r|Uλ and
φi+1(rλ) = ti+1|Uλ. From 2.a), this yields that (rλ)λ come from a section of Ei+1(Ui+1).

3) Now, let us check that the canonical map PX] ⊕α−1(O∗
X

) O∗X → lim←−i PX]i ⊕α−1
i

(O∗
X
]
i

) O∗X]
i

is an

isomorphism. First, we start with the injectivity. As above, put E := PX]⊕O∗X, F := PX]“⊕”α−1(O∗
X

)O∗X,
G := PX] ⊕α−1(O∗

X
) O∗X, θ : E → F , ε : F → G, φ := ε ◦ θ. Let (x, a), (y, b) ∈ E(U) such that the image of

φ(x, a) and φ(y, b) in lim←−i PX]i ⊕α−1
i

(O∗
X
]
i

) O∗X]
i

(U) are equal (where x, y ∈ P , and a, b ∈ O∗X(U)). Since

the injectivity is locally etale, we reduce to check that φ(x, a) = φ(y, b). Denote by (x, ai), (y, bi) ∈ Ei
the image of (x, a), (y, b). Shrinking U if necessary, we can suppose that θ0(x, a0) = θ0(y, b0). Doing the
same computation as in 1.b), we can check there exists c ∈ O∗X such that θ(x, a) = θ(y, c). Moreover,
since P is integral, we can check that φi(y, ci) = φi(y, bi) if and only if ci = bi (since this is etale local, we
reduce to check θi(y, ci) = θi(y, bi) if and only if ci = bi). Hence, b = c, which implies φ(x, a) = φ(y, b).
Hence, we have checked the injectivity. The surjectivity is an easy consequence of 2).

Définition 3.3.1.4. We define the category of strict inductive systems of noetherian fine log schemes
over (Si)i∈N as follows. A strict inductive system of noetherian fine log schemes over (Si)i∈N is the
data, for any integer i ∈ N, of a noetherian fine Si-log scheme X]

i , of an exact closed Si immersion
X]
i ↪→ X]

i+1 such that the induced morphism X]
i → X]

i+1 ×Si+1
Si is an isomorphism. A morphism

(X]
i )i∈N → (Y ]i )i∈N of strict inductive systems of noetherian fine log schemes over (Si)i∈N is a family of

Si-morphism X]
i → Y ]i making commutative the diagram

X]
i

//

��

X]
i+1

��
Y ]i

// Y ]i+1.
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Définition 3.3.1.5. Let X be a scheme. Let M be a sheaf (for the étale topology) of monoids over X

1. Following [Ogu18, II.1.1.3], we say that M is integral if for every x ∈ X, Mx is integral.

2. We say that M is coherent if there exists an open covering U such that the restriction of M to each
U in U admits a chart subordinate to a finitely generated monoid (see definition [Ogu18, II.2.1.5]).

3. We say that M is fine if M is integral and coherent.

4. Let f : M → N be a morphism of sheaves (for the étale topology) of monoids over X. We say that f
is local if the induced morphismM∗ →M×NN∗ is an isomorphism (see Definitions [Ogu18, I.4.1.1]
for monoids and we have taken a similar to [Ogu18, II.1.1.4] definition for sheaves of monoids).

Lemma 3.3.1.6. Let X be a scheme. Let M → N be a local morphism of sheaves (for the étale topology)
of monoids over X. Suppose M integral, N fine. Then M is fine.

Proof. Let us fix some notation. Let x be a geometric point of X. Since N is fine, using [Ogu18, I.1.3.3
and II.1.8.1], we can check that Nx is fine. Since M = N , we get that Mx is fine. Hence, there exist a
free Z-module of finite type L endowed with a morphism α : L → Mgr

x such that the composition of α
with the projection Mgr

x →M
gr

x is surjective (following Ogus’s terminology appearing in [Ogu18, II.3.3],
this means α : L → Mgr

x is a markup of Mx). We put P := L ×Mgr

x
Mx. Since Mx is integral, then

following [Ogu18, I.4.2.1] the homomorphism of monoids Mx →Mx is exact. Hence, we get the equality
P := L×Mgr

x
Mx = L×Mgr

x
Mx. Following [Ogu18, I.2.1.17.6], since L and Mx are fine and since M

gr

x is
integral, then P = L×Mgr

x
Mx is fine.

Let P → Mx be the projection. Using [Ogu18, II.2.2.4], there exist an étale neighborhood u : U →
X of x and a morphism of monoids P → M(U) inducing P → Mx. Let β : PU → u∗M be the

corresponding morphism. We get the factorization of β of the form PU → P βU
βa

−→ u∗M , where βa is the
log structure associated to β i.e. the homomorphism of monoids βa is logarithmic and is universal for
such a factorization (see [Ogu18, II.1.1.5]).

We prove that, shrinking U is necessary, the morphism βa is an isomorphism (and thenM is coherent).
Following [Ogu18, I.4.1.2], for any geometric point y of U , since βa

y is sharp and sinceMy is quasi-integral,

we can check that the morphism βa
y : (P βU )y →My is an isomorphism if and only if βa

y : : (P βU )y →My

is an isomorphism (recall My = My). Using [Ogu18, II.1.8.1], we can check that the canonical morphism
P/β−1

y (M∗y ) → (P βU )y is an isomorphism. Hence, βa
y is an isomorphism if and only if the canonical

morphism P/β−1
y (M∗y )→My is an isomorphism.

Let β0 be the composition of β with u∗M → u∗N . We get the factorization of β0 of the form

PU → P β0

U

βa
0−→ u∗N , where βa

0 is the sharp localisation of β0. Since P := L ×Mgr

x
Mx = L ×Mgr

x
Mx =

L×Ngr

x
Nx = L×Ngr

x
Nx, since N is fine, following [Ogu18, II.3.4] (which is checked similarly than [Kat89,

2.10]), replacing U if necessary, we can suppose that βa
0 is an isomorphism. For any geometric point y of

U , this yields that the morphism βa
0,y : (P β0

U )y → Ny is an isomorphism. Hence so is βa
0y : (P β0

U )y → Ny,
i.e., P/β−1

0,y(N∗y )→ Ny is an isomorphism.
Since the morphism M → N is local, the induced morphism M∗ → M ×N N∗ is an isomorphism.

Hence, we get M∗y → My ×Ny N
∗
y , i.e. the morphism My → Ny is local. Hence, we get β−1

0,y(N∗y ) =

β−1
y (M∗y ). Recalling that My = Ny, this implies that P/β−1

y (M∗y )→My is an isomorphism. Hence, we
are done.

Proposition 3.3.1.7. Let (X]
i )i∈N be a strict inductive systems of noetherian fine log schemes over

(Si)i∈N. Then lim−→iX
]
i is a fine S-log formal scheme. Moreover, the canonical morphism X]

i →
(lim−→iX

]
i )×S Si is an isomorphism of fine log schemes.

Proof. We already know that X := lim−→iXi is a formal V-scheme such that Xi
∼−→ X ×S Si. We have

lim−→iX
]
i = (lim−→iXi, lim←−i MX]

i
). Put M := lim←−i MX]

i
, X] := lim−→iX

]
i . It remains to check that M is fine

log structure of X. This is checked in the step I).
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I )1) The canonical map θ : M → OX, canonically induced by the structural morphisms θi : MX]
i
→

OX]
i
, is a log structure. Indeed, we computeM∗(U) = (lim←−i MX]

i
(Ui))

∗ = lim←−i (MX]
i
(Ui))

∗ = lim←−i M
∗
X]
i

(Ui) =

lim←−i O
∗
X]
i

(Ui) = O∗X](U), for any etale morphism U → X. Hence, M∗ = O∗X] . It remains to check that

the morphism M∗ → M ×OX
O∗X is an isomorphism, i.e. M∗(U) → M(U)×OX(U) OX(U)∗ is an isomor-

phism. Since M(U)×OX(U)OX(U)∗ ⊂M(U), the injectivity is obvious. Let us check the surjectivity. Let
(ai)i∈N ∈ lim←−i MX]

i
(Ui) such that (θi(ai))i∈N ∈ lim←−i O

∗
X]
i

(Ui). Since MX]
i
is a log structure of X]

i , we

get ai ∈ O∗X]
i

(Ui), hence (ai)i∈N ∈M∗(U).

2) Let U] → X] be an etale morphism. Suppose U affine. We prove in this step that the canonical mor-
phismsMgr

X]
i+1

(Ui+1)/O∗
X]
i+1

(Ui+1)→Mgr

X]
i

(Ui)/O∗X]
i

(Ui) andMX]
i+1

(Ui+1)/O∗
X]
i+1

(Ui+1)→MX]
i
(Ui)/O∗X]

i

(Ui)

are isomorphisms. First, we remark that since (πiOX]
i+1

)2 = 0, then we have the canonical isomorphism

of groups (1 + πiOX]
i+1
,×)

∼−→ (πiOX]
i+1
,+). Since Ui+1 is affine and πiOX]

i+1
is quasi-coherent, this

yields H1(Ui+1, 1 + πiOX]
i+1

) = 0. Hence, we get the commutative diagram (we use in the proof multi-
plicative notation)

1 1

1 // O∗
X
]
i

(Ui) //

OO

Mgr

X
]
i

(Ui)

OO

// Mgr

X
]
i

(Ui)/O∗
X
]
i

(Ui) // 1

1 // O∗
X
]
i+1

(Ui+1) //

OO

Mgr

X
]
i+1

(Ui+1) //

OO

Mgr

X
]
i+1

(Ui+1)/O∗
X
]
i+1

(Ui+1) //

OO

1

1 + πiO
X
]
i+1

(Ui+1)

OO

1 + πiO
X
]
i+1

(Ui+1)

OO

1

OO

1

OO

(3.3.1.7.1)

whose two rows and two columns are exact. Hence, the morphismMgr

X]
i+1

(Ui+1)/O∗
X]
i+1

(Ui+1)→Mgr

X]
i

(Ui)/O∗X]
i

(Ui)

is an isomorphism. Since MX]
i+1
→MX]

i
is are exact closed immersion, then following this is a log thick-

ening of finite order (see definition [Ogu18, IV.2.1.1]). Following [Ogu18, IV.2.1.2.4], this yields that
we have the surjective projection MX]

i+1
(Ui+1) = Mgr

X]
i+1

(Ui+1) ×Mgr

X
]
i

(Ui) MX]
i
(Ui) → MX]

i
(Ui). Hence,

MX]
i+1

(Ui+1)/O∗
X]
i+1

(Ui+1)→ MX]
i
(Ui)/O∗X]

i

(Ui) is surjective. Since MX]
i
(Ui) and MX]

i+1
(Ui+1) is inte-

gral, from [Ogu18, I.1.3.3], the horizontal morphisms of the commutative diagram

MX]
i+1

(Ui+1)/O∗
X]
i+1

(Ui+1)
� � //

��

Mgr

X]
i+1

(Ui+1)/O∗
X]
i+1

(Ui+1)

∼
��

MX]
i
(Ui)/O∗X]

i

(Ui)
� � // Mgr

X]
i

(Ui)/O∗X]
i

(Ui)

are injective. Hence, MX]
i+1

(Ui+1)/O∗
X]
i+1

(Ui+1)→MX]
i
(Ui)/O∗X]

i

(Ui) is an isomorphism.

3) Using Mittag-Leffler condition, we get the exact sequence

1→ lim←−
i

O∗
X]
i

(Ui)→ lim←−
i

Mgr

X]
i

(Ui)→ lim←−
i

Mgr

X]
i

(Ui)/O∗X]
i

(Ui)→ 1.

SinceO∗X(U) = lim←−i O
∗
X]
i

(Ui), using the step 2) we obtain (lim←−i M
gr

X]
i

(Ui))/O∗X(U)
∼−→ Mgr

X]0
(U0)/O∗

X]0
(U0).
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By considering the commutative diagram

(lim←−i M
gr

X]
i

(Ui))/O∗X(U)
∼ // Mgr

X]0
(U0)/O∗

X]0
(U0)

M(U)/O∗X(U) = (lim←−i MX]
i
(Ui))/O∗X(U)

?�

OO

// MX]0
(U0)/O∗

X]0
(U0)

?�

OO

we get the injectivity of the map M(U)/O∗X(U) → MX]0
(U0)/O∗

X]0
(U0). Since the maps MX]

i+1
(Ui+1) →

MX]
i
(Ui) are surjective (this is checked in the step 2), we get that M(U) → MX]0

(U0) is surjective
and then so is M(U)/O∗X(U) → MX]0

(U0)/O∗
X]0

(U0). Hence, the canonical morphism M(U)/O∗X(U) →
MX]0

(U0)/O∗
X]0

(U0) is an isomorphism. This yields M = M/M∗ = MX]0
/M∗

X]0
= MX]0

.

4) We compute that the induced morphism M∗ → M ×M
X
]
0

M∗
X]0

is an isomorphism, i.e. that the

morphism M →MX]0
is local. Hence, since M = MX]0

(see step 3), since MX]0
is fine and M is integral,

using Lemma 3.3.1.6, we get that M is fine.
II) In this last step, we establish that X]

i → X] ×S Si is an isomorphism of fine log schemes. Let
ui : X

]
i → X] be the canonical morphism. We already know that Xi

∼−→ X ×S Si. It remains to check
that the morphism u∗iM →MX]

i
is an isomorphism. Since this is a morphism of fine log structures, then

using [Ogu18, I.4.1.2], this is equivalent to check the isomorphism u∗iM
∼−→ MX]

i
. Following [Kat89,

1.4.1], u∗iM = M . From the step I).3), we have M ∼−→ MX]
i
and we are done.

Theorem 3.3.1.8. The functors X] 7→ (X]
i )i∈N and (X]

i )i∈N 7→ lim−→iX
]
i are quasi-inverse equivalences

of categories between the category of fine S-log formal schemes to that of strict inductive systems of
noetherian fine log schemes over (Si)i∈N.

Proof. This is a consequence of Propositions 3.3.1.3 and 3.3.1.7.

Lemma 3.3.1.9. Let f : X] → Y] be a morphism of fine S-log formal schemes. Then f is strict if and
only if, for any i ∈ N, fi is strict.

Proof. If f is strict then fi, the base change of f by Si ↪→ S is strict. Conversely, suppose that for any
i ∈ N, fi is strict. Let Z] be the fine S-log formal scheme whose underlying fine formal S-scheme is
X and whose log structure is f∗(M ]

Y). Then Z]i → Y ]i is strict and Zi = X]
i . Hence, Z]i = X]

i . Using
3.3.1.3, this yields that X] = Z], i.e. f is strict.

Let us finish the section by the following definition which will be useful from 3.4. The “very nice”
notion will only be useful from 9.2.1.

Definition 3.3.1.10. Let S] be a fine V-log formal scheme.

(a) We say that S] is a “nice” fine V-log formal scheme if there exists a V-formal scheme T such that
S] is a log flat T-log formal scheme, i.e. for any integer i ≥ 0 S]i is a log flat Ti-log scheme (see
definition [Ogu18, IV.4.1.1]). Following 3.1.1.1, if S] is a nice fine V-log formal scheme, then S]i is a
nice fine log scheme over Spec(Z/pi+1Z) for any integer i ≥ 0.

(b) We say that S] is a “very nice” fine V-log formal scheme if there exists a p-torsion free Noetherian
of finite Krull dimension V-formal scheme T such that S] is a log flat of finite type T-log formal
scheme. Remark that since S] → T is a log flat and integral (because the log structure of T is trivial:
see [Ogu18, III.2.5.3.3]) then following [Ogu18, IV.4.3.5] the underlying morphism S→ T is flat. In
particular S is also p-torsion free.

Definition 3.3.1.11. Let f : X] → Y] be a (adic) morphism of fine V-log formal schemes and BX be an
OX-algebra. We have the following quasi-flatness notions which will be useful in 4.6.3.3 to define duality
or tensor products over the ring of differential operators.

(a) We say that f is quasi-flat if there exists a morphism of V-formal schemes g : Y → Z such that the
morphism of schemes g ◦ f : X→ Z is flat.
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(b) We say that BX is a quasi-flat f−1OY-algebra if there exists a morphism of V-formal schemes g : Y→
Z such that the (induced by g ◦ f) morphism of ringed spaces (X,BX)→ Z is flat.

Remark 3.3.1.12. Let f : X] → Y] be a morphism of fine V-log formal schemes. We suppose that for any
y ∈ Y, the monoid (MY]/O∗Y)y is generated by one element. It follows from 3.1.1.7 that the morphism
of schemes X]

i → Y ]i is flat. Since f is of finite type, then f is flat.

3.3.2 Around log etaleness
Définition 3.3.2.1. Let f : X] → Y] be a morphism of fine S-log formal schemes. We say that f is “log
étale” (resp. “log smooth, resp. “formally log étale”) if for any integer i ∈ N the morphism fi is log étale
(resp. log smooth, resp. fine formally log étale).

When the morphism is strict, we remove the word “log”. For instance, f is étale means that f is strict
and f is log étale.

Remark 3.3.2.2. Our definition of log étaleness was named by Shiho formal log étaleness (see [Shi00,
2.2.2]). We hope there will be no confusion.

Proposition 3.3.2.3. Let Y] be a fine S-log formal schemes. Let f0 : X]
0 → Y ]0 be a log smooth

morphism of fine log S0-schemes such that X0 is affine. Then there exists a log smooth morphism of
fine S-log formal schemes of the form f : X] → Y] whose reduction modulo π is f0. We say that such
morphism f is a log smooth lifting of f0.

Proof. From [Kat89, 3.14.(1)], there exists a unique up to isomorphism log smooth morphism of fine log
Si-schemes fi : X

]
i → Y ]i endowed with an isomorphism X]

0
∼−→ X]

i ×Y ]
i
Y ]0 . Put Y] := lim−→i Y

]
i . Let

f : Y] → X] be the induced morphism. Following Theorem 3.3.1.8, Y] is a fine S-log formal schemes.
By construction, f is log smooth since fi is log smooth for any i ∈ N.

Proposition 3.3.2.4. Let f : X] → Y] be a morphism of fine S-log formal schemes. The morphism f
is log étale if and only if f is formally log étale and f0 is log étale.

Proof. If f0 is log étale then f0 is of finite type. This yields that fi is of finite type, which proves the
non-respective case.

Lemma 3.3.2.5. Let A be a commutative V-algebra, φ : M ′ →M be a morphism of A-modules. Suppose
that M is π-torsion free and φ induces the isomorphism φ : M ′/πM ′

∼−→ M/πM .
The p-adic completion of φ, ”M ′ → M̂ , is therefore an isomorphism.

Proof. The fact that φ is injective means that we have the inclusion φ−1(πM) ⊂ πM ′. SInce M is
π-torsion free, we get by induction on n the inclusion φ−1(πnM) ⊂ πnM ′.

The fact tha φ is surjective can be translated by the relation: M = φ(M ′)+πM . This yields by induc-
tion on n ≥ 1 the equality: M = φ(M ′) + πnM . Hence, φ induces the isomorphisms φn : M ′/πnM ′

∼−→
M/πnM . We are done.

3.3.2.6. Let f : X] → Y] be a morphism of fine S-log formal schemes. We set Ω1
X]/Y] := lim←−i Ω1

X]
i
/Y ]
i

.

When f is log smooth, then from [Kat89, 3.10] the OX-module Ω1
X]/Y] is locally free of finite type.

Lemma 3.3.2.7. Let f : X] → Y], g : Y] → Z] be two morphisms of fine S-log formal schemes such
that OX is p-torsion free, the morphism g ◦ f is log smooth and f0 : X]

0 → Y ]0 is log étale. Then f is log
étale.

Proof. We construct by p-adic completion the morphism φ : f∗Ω1
Y]/Z] → Ω1

X]/Z] , where we put f
∗Ω1

Y]/Z] :=

lim←−i f
∗
i Ω1

Y ]
i
/Z]
i

. Since g◦f : X] → Z] is log smooth, the OX-module Ω1
X]/Z] is locally free of finite type (see

3.3.2.6). In particular, Ω1
X]/Z] is p-torsion free. The reduction of φ modulo π is canonically isomorphic

to f∗0 Ω1
Y ]0 /Z0

→ Ω1
X0/Z0

. Since f0 is log étale, this latter homomorphism is an isomorphism. Since Ω1
X]/Z]

is p-torsion free, this yields that φ is an isomorphism (e.g. use Lemma 3.3.2.5). This implies that the
canonical morphism f∗i Ω1

Y ]
i
/Z]
i

→ Ω1
X]
i
/Z]
i

is an isomorphism. Since X]
i → Z]i is log smooth, from [Kat89,

3.12], we conclude that fi is log-étale.

108



Proposition 3.3.2.8. Let f : X] → Y] be a morphism of fine S-log formal schemes such that OX is
p-torsion free. The morphism f is log smooth if and only if, étale locally on X] there exists a log étale
Y]-morphism of the form X] → Y] ×S ANr .

Proof. Suppose f is log smooth. Since f0 is log smooth, when can suppose there exists a morphism
X]

0 → ANr such that the induced Y ]0 -morphism X]
0 → Y ]0 ×ANr is log-étale.Using 3.3.1.2, we can suppose

that X]
0 → ANr has the lifting of the form X] → ANr . We get the Y]-morphism X] → Y] ×S ANr . We

conclude by applying Lemma 3.3.2.7 that this latter morphism is log-étale.

3.3.3 Sheaf of differential operators of infinite level and finite order over
weakly log smooth S-log formal scheme

Définition 3.3.3.1. As in 3.1.1.10 we define the category C] of S-immersions of fine S-log formal
schemes. For any integer n, we denote by Cn the full subcategory of C whose objects are exact closed
immersions of order n.

3.3.3.2. By using [Kat89, 3.111 and 3.14] we easily get the following formal version of 3.1.1.14 of the
exactification of an immersion: Let u : Z] ↪→ X] be an S]-immersion of fine log formal schemes. Let z
be a geometric point of Z]. There exists a commutative diagram of the form

X̃]
f // X′]

g //

�

X]

Z′]
� ?

u′

OO

P0
v′

``

h // Z]
?�

u

OO

such that the square is cartesian, f is log étale, f is affine, g is étale, v′ is an exact closed S]-immersion
and h is an étale neighborhood of z in Z].

Lemma 3.3.3.3. The inclusion functor C]n → C] has a right adjoint functor which we will denote by
P ]n : C] → C]n. Let u : Z] ↪→ X] be an object of C]. Then Z] is also the source of P ]n(u).

Proof. Let u : Z] ↪→ X] be an object of C]. Since ui : Z
]
i ↪→ X]

i is an object of C], from 3.1.1.17, we get
the object P ]n(ui) : Z]i ↪→ P ]n(ui) of C]n such that P ]n(ui) → X]

i is affine and P ]n(ui) is noetherian.
Hence, using Theorem 3.3.1.8, we get that lim−→i P

]n(ui) satisfies the universal property of P ]n(u).

Définition 3.3.3.4. Let f : X] → Y] be a morphism of fine S-log formal schemes.

1. We say that a finite set (bλ)λ=1,...,r of elements of Γ(X,MX]) are “ formal logarithmic coordinates
of f ” if the induced Y]-morphism X] → Y] ×S ANr is formally log étale (concerning ANr , see the
notation of 3.3.1.1).

2. We say that f is “weakly log smooth” if, étale locally on X], f has formal log coordinates. Notice
that this notion of weak log smoothness is étale local on Y]. We also say that X] is a “weakly
log smooth Y]-log formal scheme” (following our terminology, the log structure of such an X] is
understood to be fine).

3. When f is strict we remove “log” in the terminology, e.g. we get the notion of “étale” morphisms,
“smooth” morphisms or “weakly smooth” morphisms.

Remark 3.3.3.5. Following Proposition 3.3.2.8, a log smooth morphism is weakly log smooth which
justifies the terminology.

3.3.3.6 (nth infinitesimal neighborhood). Let f : X] → T] be a weakly log smooth morphism of fineS-log
formal schemes. Let ∆X]/T] : X] ↪→ X]×T]X

] be the diagonal immersion. Since ∆X]/T] is an object of C],
then we can put ∆n

X]/T] := Pn(∆X]/T]). From 3.1.1.15, we have ∆n
X]
i
/Si

= ∆n
X]
i+1

/T ]
i+1

×T ]
i+1

T ]i . Hence,

using Theorem 3.3.1.8, we get the equality of fine S-log formal schemes ∆n
X]/T] = lim−→i ∆n

X]
i
/T ]
i

. Taking

the inductive limits to the strict morphisms of fine log schemes pn0 : ∆n
X]
i
/T ]
i

→ X]
i (resp. pn1 : ∆n

X]
i
/T ]
i

→
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X]
i ), using Lemma 3.3.1.9 we get the strict morphism of fine T]-log formal schemes pn0 : ∆n

X]/T] → X]

(resp. pn1 : ∆n
X]/T] → X]). Using the remark 3.1.2.4, we can check that the underlying morphism

of formal S-schemes of pn0 : ∆n
X]/T] → X] and pn1 : ∆n

X]/T] → X] are finite (more precisely, we can
check the local description 3.3.3.7.1). Hence, we denote by PnX]/T] the coherent OX-algebra such that
Spf PnX]/T] = ∆n

X]/T] .
If a ∈ MX] , we denote by µ(m)(a) the unique section of ker(O∗∆n

X]/T]
→ O∗X) such that we get in

Mn
X]/T] the equality pn∗1 (a) = pn∗0 (a)µn(a) (see 3.1.1.24). We get µn : MX] → ker(O∗∆n

X]/T]
→ O∗X) given

by a 7→ µn(a).

Proposition 3.3.3.7 (Local description of PnX]/T]). With notation 3.3.3.6, suppose given (uλ)λ=1,...,r

some formal log coordinates of f . Put τ]λ,n := µn(uλ) − 1. We have the following isomorphism of
OX-algebras:

OX[T1, . . . , Tr]n
∼−→ PnX]/T]

Tλ 7→ τ]λ,n. (3.3.3.7.1)

Proof. This is a consequence of 3.1.2.3.

Définition 3.3.3.8. With the notation 3.3.3.6, the sheaf of differential operators of order ≤ n of f is
defined by putting DX]/T],n := HomOX

(pn0∗PnX]/T] ,OX). The sheaf of differential operators of f is defined
by putting DX]/T] := ∪n∈NDX]/T],n.

Let P ∈ DX]/T],n, P ′ ∈ DX]/T],n′ . We define the product PP ′ ∈ DX]/T],n+n′ to be the composition

PP ′ : Pn+n′

X]/T]
δn,n

′

−→ PnX]/T] ⊗OX
Pn
′

X]/T]
id⊗P ′−→ PnX]/T]

P−→ OX. (3.3.3.8.1)

Similarly to 3.1.4.4, we can check that the sheaf DX]/T] is a sheaf of rings with the product as defined
in 3.3.3.8.1

3.3.4 Sheaf of differential operators of finite level m and order over log
smooth S-log formal schemes

Let m ≥ 0 be an integer. The principal ideal (p) of V is endowed with a canonical m-PD-structure,
which we will denote by γ∅.

Définition 3.3.4.1. As in 3.2.1.1, we define the categories C(m)
]n whose objects are pairs (u, δ) where u

is an exact closed S-immersion of fine log S-schemes and δ is an m-PD-structure on the ideal I defined
by u (which is compatible with γ∅) and such that I{n+1}(m) = 0 and whose morphisms (u′, δ′) → (u, δ)
are morphisms u′ → u of C] which are compatible with the m-PD-structures δ and δ′.

Proposition 3.3.4.2. 1. The canonical functor C(m)
]n → C] has a right adjoint, which we will denote

by P ]n(m) : C] → C
(m)
]n .

2. Let u be an object of C]. The source of P ]n(m)(u) is the source of u.

Proof. The first assertion is a consequence of 3.3.1.8 and 3.2.1.9 (we need in particular the 3.2.1.9.4).
Since γ∅ extends to any S-log formal schemes (because the ideal of the m-PD-structure γ∅ is locally
principal: see [Ber96c, 1.3.2.c)]), we get the second assertion.

3.3.4.3. Let u be an object of C]. We call P ]n(m)(u) the m-PD-envelope compatible of order n of u. We

sometimes denote abusively by P ]n(m)(u) the target of the arrow P ]n(m)(u).

3.3.4.4. Let f : X] → T] be a log smooth morphism of fine V-log formal schemes. Using 3.2.2.6,
we can check the underlying scheme of ∆n

X]
i
/T ]
i
,(m)

is noetherian. Moreover, from the local descrip-

tion 3.2.2.4.1, we get ∆n
X]
i
/T ]
i
,(m)

∼−→ ∆n
X]
i+1

/T ]
i+1

,(m)
×T ]

i+1
T ]i (recall also that pn0 : ∆n

X]
i
/T ]
i
,(m)

→
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X]
i is strict). Using Theorem 3.3.1.8, we get the fine T]-log formal schemes ∆n

X]/T],(m) by putting
∆n

X]/T],(m) := lim−→i ∆n
X]
i
/T ]
i
,(m)

. Let pn1 , pn0 : ∆n
X]/T],(m) → X] be the morphisms induced respectively by

pn1 , p
n
0 : ∆n

X]
i
/T ]
i
,(m)

→ X]
i . From 3.2.2.2, 3.3.1.9 and 3.2.2.6, the morphisms pn1 , pn0 : ∆n

X]/T],(m) → X]

are strict and finite (more precisely concerning the finiteness, we have the local description 3.3.4.5.1).
We denote by Mn

X]/T],(m) the log structure of ∆n
X]/T],(m). We denote by PnX]/T],(m) the coherent OX-

algebra corresponding to the underlying formal V-scheme of ∆n
X]/T],(m). Hence, ∆n

X]/T],(m) is an exact
closed immersion of the form ∆n

X]/T],(m) : X] ↪→ (Spf PnX]/T],(m),M
n
X]/T],(m)). We sometimes denote

abusively by ∆n
X]/T],(m) the target of the arrow ∆n

X]/T],(m).

As in paragraph 3.2.3.1, we can define D(m)

X]/T]
, the sheaf of differential operator on X] of level m.

3.3.4.5 (Local description). Suppose in this paragraph that X] → T] is endowed with logarithmic
coordinates (uλ)λ=1,...,r of f . Put τ]λ(m) := µn(m)(uλ) − 1 (or simply τ]λ), where µn(m)(a) is the unique
section of ker(O∗∆n

X]/T],(m)

→ O∗X) such that we get in Mn
X]/T],(m) the equalitypn∗1 (a) = pn∗0 (a)µn(m)(a).

Taking the limits to 3.2.2.4, we get the isomorphism of m-PD-OX-algebras

OX〈T1, . . . , Tr〉(m),n
∼−→ PnX]/T],(m)

Tλ 7→ τ]λ,(m) (3.3.4.5.1)

where the first term is defined as in 1.3.3.6. In particular, the elements {τ{k}(m)

] }|k|≤n form an OX-basis

of PnX]/T],(m). The corresponding dual basis of D(m)

X]/T],n
will be denoted by {∂〈k〉(m)

] }|k|≤n. Let ε1, . . . , εr
be the canonical basis of Nr, i.e. the coordinates of εi are 0 except for the ith term which is 1. We put
∂]i := ∂

〈εi〉(m)

] . We can define the logarithmic adjoint operator as in 3.4.1.2 and we can check that the
properties analogous to the subsection 3.4.1 are still satisfied of the formal context.

3.4 Logarithmic differential modules
Let m ∈ N ∪ {+∞}. When m = +∞, we remove (m) in the notation. We consider here simultaneously
the following both cases.

(i) Algebraic case: S] is a nice fine log scheme over Spec(Z/pi+1Z), where i is an integer (see definition
3.1.1.1). Moreover, X] → S] is a log smooth morphism of log schemes.

(ii) Formal case: S] is a nice fine V-log formal scheme (see definition 3.3.1.10). Moreover, X] → S] is
a log smooth morphism of log formal schemes.

Recall notation 3.2.2.5 and the fact that we can simply consider the case where the m-PD-structure γ∅ on
the base is given by the unique PD-structure on pOS . Let Y := X]∗ be the open ofX whereMX] is trivial
and j : Y ↪→ X] be the canonical open immersion. Remark ωY/S] = ωY/(S])∗ and D(m)

Y/S]
= D(m)

Y/(S])∗
,

i.e. over Y we come back to the non-logarithmic case. Since X] is nice (see 3.1.1.2), then the canonical
morphisms ωX]/S] → j∗ωY/S] and D

(m)

X]/S]
→ j∗D(m)

Y/S]
are injective (this is a consequence of 3.1.1.3).

3.4.1 Logarithmic adjoint operators
We suppose that X] → S] is endowed with logarithmic coordinates (uλ)λ=1,...,n. Let (tλ)λ=1,...,n be the
induced coordinates of Y/S, τ ](m) (resp. ∂]〈k〉(m)) be the element constructed from (uλ)λ=1,...,n (resp.
(tλ)λ=1,...,n) as defined in 3.2.2.4 (resp. 3.2.3.4).

3.4.1.1. Following 3.2.3.9.5, via the inclusion D(m)

X]/S]
→ j∗D(m)

Y/S]
we have the equality

∂]
〈k〉(m) = tk∂〈k〉(m) . (3.4.1.1.1)

Let Q ∈ Γ(Y,D(m)

Y/S]
) and by using 3.4.1.1.1, Q can be written of the form Q =

∑
k bk∂

〈k〉(m) , with
bk ∈ Γ(Y,OY ). The adjoint operator of Q is by definition tQ :=

∑
k(−1)|k|∂〈k〉(m)bk.
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Notation 3.4.1.2. Let us fix some notation concerning the logarithmic adjoint operator.

(a) We set α0,0 := 1. Let j ≥ 1 be an integer. We set α0,j = 0. For any 1 ≤ i ≤ j, we set
αi,j := (−1)j

{
j
i

}
(m)

q
(m)
j−i !

Ä
j−1
j−i

ä
where q(m)

j−i means the quotient of the Euclidian division of j− i by
pm.
For any integer λ = 1, . . . , n, for any k ≥ 0, we set

∂̃
〈k〉(m)

]λ :=
∑

0≤i≤k

αi,k∂
〈i〉(m)

]λ . (3.4.1.2.1)

In particular, ∂̃〈0〉(m)

]λ = 1. Remark that when k ≥ 1, we have in fact, ∂̃〈k〉(m)

]λ =
∑

1≤i≤k αi,k∂
〈i〉(m)

]λ .

(b) Let k = (k1, . . . , kn) ∈ Nn. We set ∂̃〈k〉(m)

] :=
∏n
λ=1 ∂̃

〈kλ〉(m)

]λ . For any i ≤ k, we put αi,k :=∏n
λ=1 αiλ,kλ ∈ Z.

∂̃
〈k〉(m)

] :=
n∏
λ=1

∂̃
〈kλ〉(m)

]λ =
∑
i≤k

αi,k∂
〈i〉(m)

] . (3.4.1.2.2)

(c) Let P ∈ Γ(X,D(m)

X]/S]
) be differential operator. We can uniquely write P of the form P =

∑
k ak∂

〈k〉(m)

]

with ak ∈ Γ(X,OX). We set ‹P :=
∑
k

∂̃
〈k〉(m)

] ak. (3.4.1.2.3)

We say that ‹P is the “logarithmic adjoint operator” of P . We can sometimes write it by tlogP instead
of ‹P .

(d) For any differential operators P,Q ∈ Γ(X,D(m)

X]/S]
), for any a ∈ Γ(X,OX), we can easily check ã = a,‡P +Q = ‹P + ‹Q and ›aP = ‹Pa.

Proposition 3.4.1.3 (Comparison between adjoint operator with or without logarithmic structure).
Suppose u1, . . . , un ∈ O∗X . Let P be a differential operator of Γ(X,D(m)

X]/S]
). We have the equality‹P = t tP

1

t
, (3.4.1.3.1)

where t = t1 = t1 · · · tn and where tP means the adjoint operator of P as an object of Γ(Y,D(m)

Y/S]
) via

the canonical inclusion Γ(X,D(m)

X]/S]
) ⊂ Γ(Y,D(m)

Y/S]
).

Proof. By additivity of the functors P 7→ ‹P and of P 7→ tP , since for any a ∈ Γ(X,OX) and differential
operator P ∈ Γ(X,D(m)

X]/S]
), we have ›aP = ‹Pa and t(aP ) = t(P )a, then we reduce to check the formula

3.4.1.3.1 in the case where P = ∂
〈k〉(m)

] . Following 3.4.1.1.1, we have ∂]〈k〉(m) = tk∂〈k〉(m) . We compute

t t(∂
〈k〉(m)

] )
1

t
= t t(tk∂〈k〉(m))

1

t
= t(−1)|k|∂〈k〉(m)tk−1

= (−1)|k|t1−k∂
〈k〉(m)

] tk−1 =
n∏
λ=1

(−1)kλt1−kλλ ∂
〈kλ〉(m)

]λ tkλ−1
λ ,

where 1 := (1, 1, . . . , 1) ∈ Nn. Hence, we reduce to check ∂̃〈k〉(m)

]λ = (−1)kt1−kλ ∂
〈k〉(m)

]λ tk−1
λ , for any integer

k ≥ 0. When k = 0, the equality is obvious since ∂〈k〉(m)

]λ = 1 and ∂̃〈k〉(m)

]λ = 1. Let us suppose k ≥ 1.

From 3.2.3.7.2, we have ∂〈k〉(m)

]λ tk−1
λ =

∑
i≤k { ki } ∂

〈k−i〉(m)

]λ (tk−1
λ )∂

〈i〉(m)

]λ . Following the formula 3.2.3.11,

we have ∂〈k−i〉(m)

]λ (tk−1
λ ) = tk−1

λ qk−i!
(
k−1
k−i
)
if i ≥ 1 and 0 if i = 0. Hence,

(−1)kt1−kλ ∂
〈k〉(m)

]λ tk−1
λ = (−1)k

∑
1≤i≤k

{ ki } qk−i!
(
k−1
k−i
)
∂
〈i〉(m)

]λ = ∂̃
〈k〉(m)

]λ .
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Remark 3.4.1.4. With notation 3.4.1.4, the definition of 3.4.1.2.3 was precisely introduced to get ∂̃〈k〉(m)

] =

t t∂]
〈k〉(m) 1

t . One reason to introduce the logarithmic adjoint operator is the formula 3.4.5.1.1.

Proposition 3.4.1.5. For any differential operators P and Q of Γ(X,D(m)

X]/S]
), we have the equalities‹‹P = P and P̃Q = ‹Q‹P .

Proof. Via the canonical inclusion Γ(X,D(m)

X]/S]
) ⊂ Γ(Y,D(m)

Y/S]
), we reduce to check the equalities in

Γ(Y,D(m)

Y/S]
). Hence, we can suppose u1, . . . , un ∈ O∗X . The proposition is therefore a consequence of

3.4.1.3.

Remark 3.4.1.6 (Logarithmic adjoint operator at the level 0). The definition of ∂̃〈k〉(m)

] given at 3.4.1.2.2
looks very complicated compared to the non-logarithmic adjoint operator. At the level 0, this is possible
to get a definition as simple as in the non-logarithmic case as follows. Any differential operator of D(0)

X]/S]

can be written uniquely of the form P =
∑
k ak∂]

k, where ∂]k =
∏n
λ=1 ∂

kλ
]λ with ∂]λ = ∂

〈1〉(0)

]λ . Beware
that ∂]k 6= ∂]

〈k〉(0) . Since ∂̃] = −∂], we get ‹P =
∑
k(−1)|k|∂]

kak, which looks like the non-logarithmic
adjoint operator definition.
Remark 3.4.1.7. Recall that from 3.2.3.7.2, for any a ∈ Γ(X,OX) and k ∈ Nr, we have in Γ(X,D(m)

X]/S]
),

∂
〈k〉(m)

] a =
∑
i≤k

¶
k
i

©
∂
〈k−i〉(m)

] (a)∂
〈i〉(m)

] . Using 3.4.1.5, this yields

a∂̃
〈k〉(m)

] =
∑
i≤k

¶
k
i

©
∂̃
〈i〉(m)

] × ∂〈k−i〉(m)

] (a). (3.4.1.7.1)

of the formula 3.4.1.7.1, beware that we can not replace ∂̃] by ∂].

3.4.1.8. The logarithmic adjoint operator commutes with the canonical morphism ρm+1,m : D(m)

X]/S]
→

D(m+1)

X]/S]
, i.e., for any P ∈ Γ(X,D(m)

X]/S]
), we have the formula ρm+1,m(‹P ) = (ρm+1,m(P ))∼. Indeed, by

additivity of the logarithmic adjoint operator, we reduce to check the case where P = a∂
〈k〉(m)

] , with

a ∈ Γ(X,OX) and k ∈ Nd. By OX -bilinearity of ρm+1,m, we come down to the case where P = ∂
〈k〉(m)

] .

For any i ∈ Nd, we have ρm+1,m(∂
〈i〉(m)

] ) = γi∂
〈i〉(m+1)

] , with γi ∈ Z. Hence, using 3.4.1.2.2, we can

check that both terms ρm+1,m(‹∂]〈k〉(m)

) and (ρm+1,m(∂
〈k〉(m)

] )) ∼ are of the form
∑
i≤k αi∂

〈i〉(m)

] , with
αi ∈ Z. Hence, using the same arguments of the part 1.iii) of the proof, we reduce to the case where
u1, . . . , un ∈ O∗X , i.e., we can use the formula 3.4.1.3.1. Via the formula 3.4.1.3.1, we reduce to check
ρm+1,m(t∂〈k〉(m)) = t(ρm+1,m(∂〈k〉(m))), which is obvious.

3.4.2 PD stratification of level m
We keep notation 3.2.2 (resp. 3.3.3 and 3.3.4). Even if one might consider the étale topology, an
OX -module will mean an OX -module for the Zariski topology.

Definition 3.4.2.1. Let E be anOX -module. With notations 3.2.2.13 and 3.2.2.16, anm-PD-stratification
(or a PD-stratification of level m) relatively to X]/S] is the data of a family indexed by n ∈ N of
PnX]/S],(m)-linear homomorphisms

εEn : PnX]/S],(m) ⊗OX E → E ⊗OX P
n
X]/S],(m)

satisfying the following conditions:

(a) εE0 = idE and the family is compatible with respect to the exact closed immersion ψn+1,n
X]/S],(m)

(see
3.2.2.2.1 ), i.e. for any n′ ≥ n in N we have the commutative diagram:

ψn
′,n∗

X]/S],(m)
(Pn′X]/S],(m) ⊗OX E)

ψn
′,n∗

X]/S],(m)
(εE
n′ )
//

∼
��

ψn
′,n∗

X]/S],(m)
(E ⊗OX Pn

′

X]/S],(m))

∼
��

PnX]/S],(m) ⊗OX E
εEn // E ⊗OX PnX]/S],(m)

;
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(b) for any n, n′ in N, the diagram of PnX]/S],(m) ⊗OX P
n′

X]/S],(m)-modules:

PnX]/S],(m) ⊗OX P
n′

X]/S],(m) ⊗OX E
δn,n

′∗
(m)

(εE
n+n′ ) //

qn,n
′∗

1(m)
(εE
n+n′ ) ))

E ⊗OX PnX]/S],(m) ⊗OX P
n′

X]/S],(m)

PnX]/S],(m) ⊗OX E ⊗OX P
n′

X]/S],(m)

qn,n
′∗

0(m)
(εE
n+n′ )

55

is commutative.

Say an OX -linear homomorphism ϕ : E → F between modules equipped with m-PD stratifications
relatively to X]/S] is horizontal if it commutes with all εn.

3.4.2.2. Similarly to 2.1.1.2, with notation 3.2.2.12, this yields that the above condition 3.4.2.1.b is
equivalent to

∀ n ∈ N, qn∗02,(m)(εn) = qn∗01,(m)(εn) ◦ qn∗12,(m)(εn). (3.4.2.2.1)

Proposition 3.4.2.3. Let E be an OX-module together with an m-PD stratification (εEn) relative to
X]/S]. Then the homomorphisms εEn are PnX]/S],(m)-linear isomorphisms.

Proof. We can copy the proof of 2.1.1.3.

Example 3.4.2.4. For example, OX is endowed with the m-PD-stratification of OX given by the
isomorphisms εOXn making commutative the diagram

PnX]/S],(m) ⊗OX OX ∼
ε
OX
n //

∼

((

OX ⊗OX PnX]/S],(m)

∼

vv
PnX]/S],(m),

(3.4.2.4.1)

where the oblique arrows are the canonical ones. Indeed, we can check the cocycle conditions with the
following diagram

PnX]/S],(m) ⊗OX P
n′

X]/S],(m) ⊗OX OX
δn,n

′∗
(m)

(ε
OX
n+n′

)

∼
//

∼

**

OX ⊗OX PnX]/S],(m) ⊗OX P
n′

X]/S],(m)

∼
tt

PnX]/S],(m) ⊗OX P
n′

X]/S],(m)

PnX]/S],(m) ⊗OX P
n′

X]/S],(m) ⊗OX OX
qn,n

′∗
1(m)

(ε
OX
n+n′

)

∼ //

∼
44

PnX]/S],(m) ⊗OX OX ⊗OX P
n′

X]/S],(m)

qn,n
′∗

0(m)
(ε
OX
n+n′

)∼

OO

∼

jj

(3.4.2.4.2)
where the oblique arrows are the canonical ones and where the triangles (except the left one) are the
images under δn,n

′∗
(m) , qn,n

′∗
0(m) and qn,n

′∗
1(m) of the triangle 3.4.2.4.1.

Proposition 3.4.2.5. We have the following properties.

(I) Given an OX-module E. The following are equivalent.

(a) A left D(m)

X]/S]
-module structure on E extending its OX-module structure.

(b) A family of OX-linear homomorphisms θn : E → p1∗(E⊗OXPnX]/S],(m)) (the OX-module struc-
ture of this latter is induced by the right structure of PnX]/S],(m)) satisfying
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(i) θ0 = idE and for any n, n′ ∈ N, the diagram

E θn // E ⊗ PnX]/S],(m)

E
θn+n′

// E ⊗ Pn+n′

X]/S],(m)

id⊗ψn+n′,n
X]/S],(m)

OO
(3.4.2.5.1)

is commutative.
(ii) for all n, n′ we have commutative diagrams (cocycle condition)

E ⊗OX PnX]/S],(m)

id⊗δn,n
′

(m)// E ⊗OX PnX]/S],(m) ⊗OX P
n′

X]/S],(m)

E

θE
n+n′

OO

θE
n′ // E ⊗OX Pn

′

X]/S],(m)

θEn⊗id

OO
(3.4.2.5.2)

(c) An m-PD stratification ε = (εEn) on E.

(II) Let E be left D(m)

X]/S]
-module and let θE = (θEn), εE = (εEn) be the associated family or m-PD

stratification.

(a) We retrieve from θE (resp. εE) the action by a section P of D(m)

X]/S]
on E via the following

composition of the bottom (resp. top) horizontal morphisms of the commutative diagram:

E
pn1(m),E

3.2.2.13
// PnX]/S],(m) ⊗OX E

εEn // E ⊗OX PnX]/S],(m)

id⊗P // E

E
θEn // p1∗(E ⊗OX PnX]/S],(m))

id⊗P // E .

(3.4.2.5.3)

(b) Suppose X] → S] is endowed with logarithmic coordinates (uλ)λ=1,...,d. Conversely, with
notation 3.2.3.4, for any x ∈ E, we have the Taylor expansion formula

θEn(x) = εEn(1⊗ x) =
∑
|k|≤n

∂
〈k〉
] x⊗ τ{k}] . (3.4.2.5.4)

(III) An OX-linear morphism φ : E → F between two left D(m)

X]/S]
-modules is D(m)

X]/S]
-linear if and only

if φ is horizontal.

Proof. The proof is identical to that of 2.1.1.5 except that the inverse of εEn is given by the formula
3.4.5.3.1, formula which is computed later.

Example 3.4.2.6. For example, OX is endowed with a structure of left D(m)

X]/S]
-module structure via

its canonical m-PD-stratification defined at 3.4.2.4. Using 3.4.2.5.3, the action by a section P of D(m)

X]/S]

on OX is given by the composition:

OX
pn1(m)−→ PnX]/S],(m)

P−→ OX . (3.4.2.6.1)

The following proposition will be generalized with coefficients (see 4.2.3.1.1). However, in order to
define what is a coefficient and its properties (see Lemma 4.1.1.2), we need at least the case of a tensor
product of two left D-modules.
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Proposition 3.4.2.7. Let E, F be two left D(m)

X]/S]
-modules. There exists on the tensor product E⊗OX F

a unique structure of left ‹D(m)
X -module functorial in E and F such that, for any system of logarithmic

coordinates on an open subset U ⊂ X, and any k ∈ Nd, x ∈ Γ(U, E), y ∈ Γ(U,F), we have

∂
〈k〉
] (x⊗ y) =

∑
i≤k

¶
k
i

©
∂
〈i〉
] (x)⊗ ∂〈k−i〉] (y). (3.4.2.7.1)

Moreover, the following formula holds

∂̃
〈k〉
] (x⊗ y) =

∑
i≤k

¶
k
i

©
∂̃
〈i〉
] x⊗ ∂̃〈k−i〉] y. (3.4.2.7.2)

Proof. The proof is similar to that of Proposition 2.1.3.1.a: We endow the sheaf E ⊗OX F with the m-PD
stratification with coefficients in OX : εE⊗Fn := εEn⊗Pn

X]/S],(m)
εFn . By using the formulas 3.4.2.5.4, we get

3.4.2.7.1.
By replacing the use of the formula 3.4.2.5.4 by that of 3.4.5.3.1, instead of 3.4.2.7.1 we get the

formula 3.4.2.7.2 by symmetrical computations. More precisely, since (εE⊗Fn )−1 := (εEn)−1 ⊗ (εFn )−1,
then we compute

(εE⊗Fn )−1((x⊗y)⊗1) =

Ñ∑
|i|≤n

τ
{i}
] ⊗ ∂̃

〈i〉
] x

é
⊗

Ñ∑
|j|≤n

τ
{j}
] ⊗ ∂̃〈j〉] y

é
=
∑
|k|≤n

τ
{k}
] ⊗

Ñ∑
i≤k

¶
k
i

©
∂̃
〈k−i〉
] y ⊗ ∂̃〈i〉] x

é
,

Using again 3.4.5.3.1, we get 3.4.2.7.2.

Remark 3.4.2.8. With notation 3.4.2.7, if F is moreover a ‹D(m)
X -bimodule, then E ⊗OX F has a unique

structure of ‹D(m)
X -bimodule induced by functoriality from 3.4.2.7.

3.4.3 PD-costratifications of level m
Definition 3.4.3.1. An m-PD-costratification on M relatively to X]/S] on an OX -module M is the
data of a family of isomorphisms PX]/S](m)-linear

εn : HomOX (pn0∗PX]/S](m),M)→ HomOX (pn1∗PX]/S](m),M),

this ones satisfying the following conditions :

(a) ε0 = idM and for any n′ ≥ n in N, εn and ψn
′,n[

X/S,(m)(εn′) are canonically isomorphic, i.e. the following
diagram

ψn
′,n[

X]/S],(m)
(pn

′[
0,(m)(M))

ψn
′,n[

X]/S],(m)
(εn′ )
//

∼
��

ψn
′,n[

X]/S],(m)
(pn

′[
1,(m)(M))

∼
��

pn[0,(m)(M)
εn // pn[1,(m)(M)

, (3.4.3.1.1)

whose vertical isomorphisms are the canonical ones, is commutative ;

(b) For any n, n′, the diagram

HomOX (pn,n
′

0∗ (PnX]/S](m) ⊗OX P
n′

X]/S](m)),M)
δn,n

′[
(m)

(εn+n′ )//

qn,n
′[

0 (εn+n′ )

))

HomOX (pn,n
′

2∗ (PnX]/S](m) ⊗OX P
n′

X]/S](m)),M)

HomOX (pn,n
′

1∗ (PnX]/S](m) ⊗OX P
n′

X]/S](m)),M)

qn,n
′[

1 (εn+n′ )
55

(3.4.3.1.2)
is commutative.
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Say an OX -linear homomorphism ϕ :M→ N between OX -modules equipped with m-PD costratifica-
tions relatively to X]/S] is horizontal if it commutes with all εn.

3.4.3.2. With notation 3.2.2.12, similarly to 2.1.1.2, we check that the above condition 3.4.3.1.2 is
equivalent to

∀ n, qn[02,(m)(εn) = qn[01,(m)(εn) ◦ qn[12,(m)(εn). (3.4.3.2.1)

Proposition 3.4.3.3. LetM be an OX-module together with an m-PD costratification (εMn ) relative to
X]/S]. Then the homomorphisms εMn are PnX]/S],(m)-linear isomorphisms.

Proof. Copy the proof of 2.1.1.3.

Proposition 3.4.3.4. For any OX-moduleM, there is equivalence between the following data :

(a) A structure of right D(m)

X]/S]
-module onM extending its structure of OX-module ;

(b) An m-PD-costratification (εMn ) relatively to X]/S] onM.

A OX-linear homomorphism between two right D(m)

X]/S]
-modules is D(m)

X]/S]
-linear if and only if it is

horizontal. Finally, via the identification 2.1.2.6.1 and 2.1.2.6.2, in logarithmic coordinates, for each
section x ofM, we have the formula :

εMn (x⊗ ∂〈k〉(m)

] ) =
∑
h≤k

¶
k
h

©
∂
?〈h〉
] ⊗ x∂〈k−h〉] , (3.4.3.4.1)

where {∂?〈h〉] , |h| ≤ n} is the basis of HomOX (pn1∗PnX]/S](m),OX) which is the dual basis of the basis

{τ{h}] , |h| ≤ n} of PnX]/S](m).

Proof. By copying 2.1.2.8 and 2.1.2.9, we obtain the proposition.

3.4.4 On the preservation of D-module structures under pullbacks, base
change

Let
X] f //

��

Y ]

��
(S], aS , bS , αS)

φ // (T ], aT , bT , αT ),

(3.4.4.0.1)

be a commutative diagram where S] and T ] are nice fine log schemes over Spec(Z/pi+1Z) as defined in
3.1.1.1 (resp. S] and T ] are nice fine V-log formal schemes as defined in 3.3.1.10 endowed with quasi-
coherent (resp. coherent) m-PD-ideals, where the bottom arrow is an m-PD-morphism and where X]

is a log smooth S]-log scheme (resp. log smooth S]-log formal scheme) and Y ] is a log smooth T ]-log
scheme (resp. log smooth T ]-log formal scheme).

3.4.4.1. Let us now construct the inverse image of a D(m)

Y ]/T ]
-module We denote by (f, φ) : X]/S] →

Y ]/T ] the morphism of relative logarithmic schemes induced by the diagram 3.4.4.0.1. When φ : S] → T ]

in understood, by abuse of notation, we also simply denote (f, φ) by f . According to notation 3.2.2.2,
we denote by pn0,(m) and pn1,(m) : ∆n

X]/S](m) → X the left and right projections. According to notation
3.2.2.12, for any integer n and any integers 0 ≤ i < j ≤ 2, it follows from the universal property of
m-PD-envelopes of order n (see 3.2.1.1) that we get a unique m-PD-morphism qnij,(m) : ∆n

X]/S],(m)(2)→
∆n
X]/S],(m) making commutative the diagram 3.2.2.12.1. For any integer n ≥ 0 by using the universal

property of them-PD-envelopes of order n, we have them-PD-morphisms fn(m) : ∆n
X]/S](m) → ∆n

Y ]/T ](m)
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and fn(m)(2) : ∆n
X]/S](m)(2) → ∆n

Y ]/T ](m)(2) making commutative the diagram of logarithmic schemes
for any integers 0 ≤ i < j ≤ 2 and 0 ≤ k ≤ 1:

∆n
X]/S],(m)(2)

fn(m)(2)

��

qnij,(m) // ∆n
X]/S],(m)

fn(m)

��

pnk,(m) // X]

∆n
Y ]/S],(m)(2)

qnij,(m) // ∆n
Y ]/T ],(m)

pnk,(m) // Y ].

(3.4.4.1.1)

These homomorphisms are compatible when n varies, i.e., with notation 3.2.2.2.1, we have the equality
ψn
′,n

Y ]/T ],(m),γ
(r) ◦ fn(m)(r) = fn

′

(m)(r) ◦ ψ
n′,n
X]/S],(m),γ

(r), for any n′ ≥ n. Let n ∈ N. This yields the m-PD
ring homomorphism

f−1(PnY ]/T ](m)(r))→ P
n
X]/S(m)(r). (3.4.4.1.2)

which is f−1OY -linear for any structures (via the canonical ring homomorphism f−1OY → OX for
PnX]/S(m)). We get the OX -module f∗(pn0,(m)∗P

n
Y ]/T ](m)) := OX ⊗f−1OY f

−1(pn0,(m)∗P
n
Y ]/T ](m)) and the

homomorphism of OX -modules:

fn(m) : f∗(pn0,(m)∗P
n
Y ]/T ](m))→ pn0,(m)∗P

n
X]/S(m). (3.4.4.1.3)

3.4.4.2. Let E be a left D(m)

Y ]/T ]
-module and (εEn) its m-PD-stratification. The OX -module f∗E has a

canonical structure of left D(m)

X]/S]
-module. More precisely, the isomorphisms εf

∗E
n := fn∗(m)(ε

E
n) endow

f∗E with an m-PD-stratification (for the cocycle conditions, we use the commutativity of 3.4.4.1.1).
Let D be a sheaf of rings. When E is a (D(m)

Y ]/T ]
,D)-bimodule, then by functoriality f∗(E) is a

(D(m)

X]/S]
, f−1D)-bimodule. For instance we get the (D(m)

X]/S]
, f−1D(m)

Y ]/T ]
)-bimodule f∗(D(m)

Y ]/T ]
) that we

will denote by D(m)

X]/S]→Y ]/T ] .

3.4.4.3. Dualizing the morphisms 3.4.4.1.3, we get

fn∨(m) : D(m)

X]/S],n
= HomOX (PnX]/S(m),OX)→ HomOX (f∗(PnY ]/T ](m),OX)

∼−→
ι

f∗D(m)

Y ]/T ],n
, (3.4.4.3.1)

where ι is the canonical morphism. Passing to limit we get the canonical homomorphisms

D(m)

X]/S]
→ f∗D(m)

Y ]/T ]
. (3.4.4.3.2)

Proposition 3.4.4.4. The canonical homomorphism 3.4.4.3.2 sends 1 to 1⊗1 and is (D(m)

X]/S]
, f−1OY )-

bilinear.

Proof. Let P ∈ D(m)

X]/S],n
for some integer n. Since the lemma is local, we can suppose that Y ] → T ] is en-

dowed with logarithmic coordinates (uλ)λ=1,...,r. Put τ]λ := µn(m),γ(uλ)−1, where µn(m),γ : Mn
Y ]/T ],(m),γ →

ker(Pn∗Y ]/T ],(m),γ → O
∗
Y ) is the morphism defined as in 3.2.2.2.3. The elements {τ{k}(m)

] , |k| ≤ n} form

a basis of PnY ]/T ],(m) as OY -module. The corresponding dual basis of D(m)

Y ]/T ],n
will be denoted by

{∂〈k〉(m)

] , |k| ≤ n}. This induces the basis {1 ⊗ τ{k}(m)

] , |k| ≤ n} of f∗PnY ]/T ],(m) as OX -module and the

basis {1⊗ ∂〈k〉(m)

] , |k| ≤ n} of f∗D(m)

Y ]/T ],n
as OX -module.

By definition (see 3.4.4.3.1), fn∨(m)(P ) = ι(P ◦ fn(m)). Hence,

fn∨(m)(P ) =
∑
|k|≤n

P ◦ fn(m)(1⊗ τ
{k}(m)

] )⊗ (1⊗ ∂〈k〉(m)

] ). (3.4.4.4.1)

Let (εDn ) be them-PD-stratification associated with D(m)

Y ]/T ]
. Following 3.4.2.5.4, we have, εDn (1⊗1) =∑

|k|≤n ∂
〈k〉
] ⊗τ

{k}
] . This yields: fn∗(m)(ε

D
n )(1⊗(1⊗1)) =

∑
|k|≤n(1⊗∂〈k〉] )⊗fn(m)(1⊗τ

{k}
] ). Then following,

3.4.2.5.3, the action of P on 1⊗ 1 ∈ f∗D(m)

Y ]/T ],n
is

P (1⊗ 1) = (id⊗ P ) ◦ fn∗(m)(ε
D
n )(1⊗ (1⊗ 1)) =

∑
|k|≤n

P ◦ fn(m)(1⊗ τ
{k}
] )(1⊗ ∂〈k〉] ). (3.4.4.4.2)
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It follows from the equalities 3.4.4.4.1 and 3.4.4.4.2 that P (1 ⊗ 1) = fn∨(m)(P ). Since 1(1 ⊗ 1) = 1 ⊗ 1

then the canonical homomorphism 3.4.4.3.2 sends 1 to 1 ⊗ 1 and is D(m)

X]/S]
-linear. This yields the

(D(m)

X]/S]
, f−1OY )-bilinearity by an easy computation.

Proposition 3.4.4.5. We have the canonical isomorphism of left D(m)

X]/S]
-modules:

f∗E ∼−→ D(m)

X]/S]→Y ]/T ] ⊗f−1D(m)

Y ]/S]

f−1E . (3.4.4.5.1)

Proof. We have the isomorphism of (OX , f−1D(m)

Y ]/T ]
)-bimodules:

D(m)

X]/S]→Y ]/T ]
∼−→ OX ⊗f−1OY f

−1D(m)

Y ]/T ]
.

This yields the OX -linear isomorphism of the form 3.4.4.5.1 given by a⊗ x 7→ (a⊗ 1)⊗ x for any section
a of OX and section x of f−1E . It remains to check its D(m)

X]/S]
-linearity.

Let ρ : D(m)

Y ]/T ]
→ E be a D(m)

Y ]/T ]
-linear morphism and let x be the image of 1 via ρ. By applying

the functor f∗, this yields the D(m)

X]/S]
-linear morphism f∗(ρ) : D(m)

X]/S]→Y ]/T ] → f∗E , which is given by

a⊗Q 7→ a⊗(Q·x) for any section a ofOX and sectionQ of f−1D(m)

Y ]/T ]
. Hence, f∗(ρ)(P ·(a⊗1)) = P ·(a⊗x)

for any section P of D(m)

X]/S]
and any section a of OX .

By composing f∗(ρ) with 3.4.4.5.1, we get the morphism DX]/S] → D(m)

X]/S]→Y ]/T ] ⊗f−1D(m)

Y ]/S]

f−1E given by a ⊗ Q 7→ (a ⊗ 1) ⊗ (Q · x) = (a ⊗ Q) ⊗ x, which is the image of ρ by the functor
D(m)

X]/S]→Y ]/T ]⊗f−1D(m)

Y ]/S]

f−1(−) and therefore isD(m)

X]/S]
-linear. Hence, the map 3.4.4.5.1 sends P ·(a⊗x)

to P · ((a⊗ 1)⊗ x) for any section P of D(m)

X]/S]
and we are done.

3.4.4.6. Let BY be a commutative OY -algebra endowed with of a compatible structure of left D(m)

Y ]/T ]
-

module. Then the action of left D(m)

X]/S]
-module on f∗BY is compatible with its structure of OX -algebra.

3.4.5 Canonical right DX]/S]-module structure on ωX]/S] and an inverse for-
mula

Lemma 3.4.5.1. The sheaf ωX]/S] is a right DX]/S]-submodule of j∗ωY/S] . Suppose there exists loga-
rithmic coordinates u1, . . . , ud ∈MX] . The action of P ∈ D(m)

X]/S]
on the section a d log u1∧· · ·∧d log ud,

where a is section of OX is given by the formula

(a d log u1 ∧ · · · ∧ d log ud) · P = ‹P (a)d log u1 ∧ · · · ∧ d log ud. (3.4.5.1.1)

Proof. Since this can been checked locally, we can suppose there exists logarithmic coordinates u1, . . . , ud ∈
MX] . Let (tλ)λ=1,...,r be the induced coordinates of Y/S. Then ωX]/S] is a free OX -module of rank 1
and a basis is given by d log u1∧ · · ·∧d log ud. The map ωX]/S] → j∗ωY/S] sends d log u1∧ · · ·∧d log ud
to 1

t1···td d t1 ∧ · · · ∧ d td. Then this is an easy computation from 2.2.1.5 and 3.4.1.3.1.

Lemma 3.4.5.2. We suppose that X] → S] is endowed with logarithmic coordinates (uλ)λ=1,...,n. If
k 6= 0 then we have the formula:

0 =
∑
h≤k

¶
k
h

©
∂
〈h〉(m)

] ∂̃
〈k−h〉
] . (3.4.5.2.1)

Proof. Consider the diagram

pn[0 (ωX]/S] ⊗OX D
(m)

X]/S]
)

εn //

'
��

pn[1 (ωX]/S] ⊗OX D
(m)

X]/S]
)

'
��

pn[0 (ωX]/S])⊗Pn
X]/S],(m)

pn∗0 (D(m)

X]/S]
)

εn // pn[1 (ωX]/S])⊗Pn
X]/S],(m)

pn∗1 (D(m)

X]/S]
)

(3.4.5.2.2)
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Let e0 := d log t1 ∧ · · · ∧ d log td. It follows from 3.4.3.4.1 the formula

εn((e0 ⊗ P )⊗ ∂〈k〉(m)

] ) =
∑
j≤k

¶
k
j

©
∂
?〈j〉
] ⊗ (e0 ⊗ P )∂

〈k−j〉
] . (3.4.5.2.3)

The element (e0⊗P )⊗∂〈k〉(m)

] is sent via the left arrow of the diagram 3.4.5.2.2 to (e0⊗∂
〈k〉(m)

] )⊗(P⊗1).
This latter is sent via the bottom arrow to

εn(e0 ⊗ ∂
〈k〉(m)

] )⊗ ε−1
n (P ⊗ 1)

3.4.3.4.1
=

∑
h≤k

¶
k
h

©Ä
∂
?〈h〉
] ⊗ e0∂

〈k−h〉
]

ä
⊗ ε−1

n (P ⊗ 1).

Since e0∂
〈i〉
] = ∂̃

〈i〉
] (1)e0 = 0 if i 6= 0, then we get∑

h≤k

¶
k
h

©Ä
∂
?〈h〉
] ⊗ e0∂

〈k−h〉
]

ä
= ∂

?〈k〉
] ⊗ e0.

Hence,
εn(e0 ⊗ ∂

〈k〉(m)

] )⊗ ε−1
n (P ⊗ 1) = ∂

?〈k〉
] ⊗ e0 ⊗ ε−1

n (P ⊗ 1). (3.4.5.2.4)

Let us write ε−1
n (P ⊗ 1) =

∑
|i|≤n τ

{i}
] ⊗ ai, with ai ∈ D

(m)

X]
. This yields

εn(e0 ⊗ ∂
〈k〉(m)

] )⊗ ε−1
n (P ⊗ 1) =

∑
|i|≤n

∂
?〈k〉
] ⊗ e0 ⊗ τ

{i}
] ⊗ ai, (3.4.5.2.5)

which is sent via the right arrow of the diagram 3.4.5.2.2 to

τ
{j}
] 7→

∑
|i|≤n

∂
?〈k〉
] (τ

{j}
] τ

{i}
] )e0 ⊗ ai =

¶
k
j

©
e0 ⊗ ak−j , (3.4.5.2.6)

i.e. to
∑
j≤k

¶
k
j

©
∂
?〈j〉
] ⊗ (e0 ⊗ ak−j). By using the commutativity of the diagram 3.4.5.2.2, and the

formula 3.4.5.2.3, this yields e0 ⊗ ai = (e0 ⊗ P )∂
〈i〉
]

3.4.5.1.1
= e0 ⊗ ∂̃

〈i〉
] P . Hence,

ε−1
n (P ⊗ 1) =

∑
|i|≤n

τ
{i}
] ⊗ ∂̃

〈i〉
] P. (3.4.5.2.7)

From 3.4.2.5.4, this yields

P ⊗ 1 = εn ◦ ε−1
n (P ⊗ 1) = εn(

∑
|i|≤n

τ
{i}
] ⊗ ∂̃

〈i〉
] P ) =

∑
|i|≤n

τ
{i}
] εn(1⊗ ∂̃〈i〉] P )

=
∑
|i|≤n

τ
{i}
]

∑
|j|≤n

∂
〈j〉(m)

] ∂̃
〈i〉
] P ⊗ τ{j}](m) =

∑
|i|≤n

∑
|j|≤n

{
i+j

j

}
∂
〈j〉(m)

] ∂̃
〈i〉
] P ⊗ τ{j+i}](m)

=
∑
|k|≤n

∑
h≤k

¶
k
h

©
∂
〈h〉(m)

] ∂̃
〈k−h〉
] P ⊗ τ{k}](m) (3.4.5.2.8)

This yields, if k 6= 0,
0 =

∑
h≤k

¶
k
h

©
∂
〈h〉(m)

] ∂̃
〈k−h〉
] . (3.4.5.2.9)

Proposition 3.4.5.3. Let E (resp. M) be a left (resp. right) D(m)

X]/S]
-module. We suppose that X] → S]

is endowed with logarithmic coordinates (uλ)λ=1,...,n.

(a) Then we have the inverse formula of the Taylor formula 3.4.2.5.4 satisfied by E:

(εEn)−1(x⊗ 1) =
∑
|i|≤n

τ
{i}
] ⊗ ∂̃

〈i〉
] · x. (3.4.5.3.1)
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(b) We have the inverse formula of the Taylor formula 3.4.3.4.1 satisfied byM:

(εMn )−1(∂?〈k〉 ⊗ x) =
∑
h≤k

¶
k
h

©
x∂̃
〈k−h〉
] ⊗ ∂〈h〉] . (3.4.5.3.2)

Proof. a) Since, we have εEn(1⊗ y) =
∑
|i|≤n ∂

〈i〉
] · y⊗ τ

{i}
] , then the formula 3.4.5.3.1 is a consequence of

3.4.5.2.1 and of the computation 3.4.5.2.8.
b) Let us now check that the morphism ζMn defined by the formula 3.4.5.3.2 is the inverse of the

morphism εMn . We compute

εMn ◦ ζMn (∂?〈k〉 ⊗ x) = εMn

Ñ∑
h≤k

¶
k
h

©
x∂̃
〈h〉
] ⊗ ∂〈k−h〉]

é
=
∑
h≤k

∑
i≤k−h

¶
k
h

©¶
k−h
i

©
∂
?〈k−h−i〉
] ⊗ x∂̃〈h〉] ∂

〈i〉
] =

∑
j≤k

∑
i≤j

¶
k
j−i

©¶
k−j+i
i

©
∂
?〈k−j〉
] ⊗ x∂̃〈j−i〉] ∂

〈i〉
]

∑
j≤k

∑
i≤j

¶
k
j

©¶
j

i

©
∂
?〈k−j〉
] ⊗ x∂̃〈j−i〉] ∂

〈i〉
]

3.4.5.2.1
= ∂?〈k〉 ⊗ x. (3.4.5.3.3)

Similarly, we compute ζMn ◦ εMn (x⊗ ∂〈k〉(m)

] ) = x⊗ ∂〈k〉(m)

] .
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Chapter 4

Logarithmic differential modules with
coefficients

4.1 Sheaf of logarithmic differential operators of finite order with
coefficients

We keep notation 3.4.

4.1.1 Coefficients
We will need later to add overconvergent singularities to the sheaf of differential operators (see 8.7.3.1).
To do so, let us introduce the notion of coefficients of the sheaves of differential operators.

Definition 4.1.1.1. Let BX be a commutative OX algebra. We say that a left D(m)

X]/S]
-module structure

on BX is compatible with its OX -algebra structure, if

(a) the OX -module structure coming from the left D(m)

X]/S]
-module structure via the canonical inclusion

OX ⊂ D(m)

X]/S]
agrees with the one coming from its OX -algebra structure ;

(b) the isomorphisms εBXn : PnX]/S],(m) ⊗OX BX
∼−→ BX ⊗OX PnX]/S],(m) of the m-PD-stratification

coming from the D(m)

X]/S]
-module structure of B are isomorphisms of PnX]/S],(m)-algebras.

Such an OX algebra can be viewed as an extended version of OX which is the coefficient of D(m)

X]/S]
.

Lemma 4.1.1.2. Let BX be a commutative OX algebra endowed with a left D(m)

X]/S]
-module structure

such that the condition (a) of 4.1.1.1 holds. We endow BX⊗OX BX with its canonical left D(m)

X]/S]
-module

induced by that of BX (see 3.4.2.7). Then the following condition are equivalent:

(b) The condition (b) of 4.1.1.1 holds.

(c) For any open U ] such that U ]/S] has logarithmic coordinates, for any f, g ∈ Γ(U,BX) we have the
Leibnitz formula:

∂
〈k〉
] (fg) =

∑
h≤k

¶
k
h

©
∂
〈h〉
] (f)∂

〈k−h〉
] (g). (4.1.1.2.1)

(d) The multiplication map µ : BX ⊗OX BX → BX is D(m)

X]/S]
-linear.

122



Proof. Since the assertions are local, then we can suppose X]/S] has logarithmic coordinates. For any
f, g ∈ Γ(X,BX), for any x, y ∈ Γ(X,PnX]/S],(m)), we compute

εEn(x⊗ f)εEn(y ⊗ g)
3.4.2.5.4

=

Ñ∑
|i|≤n

∂
〈i〉
] (f)⊗ τ{i}] x

éÑ∑
|j|≤n

∂
〈j〉
] (g)⊗ τ{j}] y

é
1.2.4.5.3

=
∑
|k|≤n

∑
i+j=k

¶
k
i

©
∂
〈i〉
] (f)∂

〈j〉
] (g)⊗ τ{k}] xy (4.1.1.2.2)

Hence, we get the equivalence between (b) and (c) conditions. Finally, the equivalence between (c) and
(d) conditions follows from 3.4.2.7.1.

Example 4.1.1.3. For example, the canonical left D(m)

X]/S]
-module structure on OX (see 3.4.2.4) is

compatible with its OX -algebra structure. Indeed, since the oblique arrows of the diagram 3.4.2.4.1
are isomorphisms of PnX]/S],(m)-algebras, then so are the isomorphisms εOXn of the canonical m-PD-
stratification of OX .

4.1.1.4. Let BX be a commutative OX algebra equipped with a left D(m)

X]/S]
-module structure which is

compatible with its algebra structure. Let ρ : OX → BX be the structure algebra homomorphism. Then ρ
is D(m)

X]/S]
-linear. Indeed, since εBXn is a PnX]/S],(m)-algebra homomorphism, then for any section a of OX

we compute in BX ⊗OX PnX]/S](m) the equalities εBXn (1⊗ ρ(a)) = εBXn (pn1(m)(a)⊗ 1) = (1⊗ 1)pn1(m)(a) =

(ρ⊗ id)(1⊗ pn1(m)(a)) = (ρ⊗ id)(εBXn (1⊗ a)).

Remark 4.1.1.5. Let ρ : BX → B′X be a commutative algebra homomorphism. We suppose BX and B′X
are endowed with a compatible structure of left D(m)

X]/S]
-module such that ρ is D(m)

X]/S]
-linear. Since

ρ is D(m)

X]/S]
-linear, then CX := Im ρ is endowed with a structure of left D(m)

X]/S]
-module so that the

epimorphism BX � CX and the monomorphism CX ↪→ B′X are D(m)

X]/S]
-linear. We easily see (e.g. use

4.1.1.2.1) that this is a left D(m)

X]/S]
-module structure on CX which is compatible with its OX -algebra

structure.

Proposition 4.1.1.6. Let BX (resp. CX) be a commutative OX algebra endowed with a left D(m)

X]/S]
-

module structure which is compatible with its OX-algebra structure (see definition 4.1.1.1). Then the
natural left ‹D(m)

X]/S]
-module on the tensor product BX ⊗OX CX (see 3.4.2.7) is compatible with its OX-

algebra structure.

Proof. By construction, them-PD-stratification is given by εB⊗Cn := εBn⊗εCn and is indeed an isomorphism
of PnX]/S](m)-algebras.

4.1.2 Sheaf of logarithmic differential operators of finite order with coeffi-
cients

Let BX be a commutative OX algebra equipped with a left D(m)

X]/S]
-module structure which is compatible

with its algebra structure.

4.1.2.1. The canonical morphisms of BX -modules BX ⊗OX D
(m)

X]/S],n
→ HomOX (PnX]/S](m),BX) given

by b ⊗ P 7→ (τ 7→ P (τ)b) is an isomorphism for any n ∈ N. Via this identification, the product
P · P ′ ∈ BX ⊗OX D

(m)

X]/S],n+n′
of the operators P ∈ BX ⊗OX D

(m)

X]/S],n
and P ′ ∈ BX ⊗OX D

(m)

X]/S],n′
is by

definition the composition

Pn+n
′

X]/S](m)

δ
n,n′
(m)−→ PnX]/S](m)⊗OXP

n′

X]/S](m)

id⊗P ′−→ PnX]/S](m)⊗OXBX
ε
BX
n−→ BX⊗OXP

n
X]/S](m)

id⊗P−→ BX⊗OXBX
µ−→ BX ,

(4.1.2.1.1)
where µ is the canonical multiplication of BX .
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Proposition 4.1.2.2. The sheaf BX ⊗OX D
(m)

X]/S]
is a sheaf of rings with the product as defined in

4.1.2.1.1. This is the unique ring structure on BX ⊗OX D
(m)

X]/S]
such that

BX → BX ⊗OX D
(m)

X]/S]
: b 7→ b⊗ 1, (4.1.2.2.1)

D(m)

X]/S]
→ BX ⊗OX D

(m)

X]/S]
: P 7→ 1⊗ P (4.1.2.2.2)

are ring homomorphisms satisfying the formula (b⊗1)(1⊗P ) = b⊗P and for any logarithmic coordinates

(1⊗ ∂〈k〉] )(b⊗ 1) =
∑
h≤k

¶
k
h

©
∂
〈k−h〉
] (b)⊗ ∂〈h〉] . (4.1.2.2.3)

Proof. i) Let us check in this step that the sheaf BX ⊗OX D
(m)

X]/S]
is a sheaf of rings with the product as

defined in 4.1.2.1.1. Let P ∈ BX ⊗OX D
(m)

X]/S],n
, P ′ ∈ BX ⊗OX D

(m)

X]/S],n′
and P ′′ ∈ BX ⊗OX D

(m)

X]/S],n′′

be three operators. Consider the following diagram

Pn+n′+n′′

?

��

Pn+n′+n′′
δn,n

′+n′′
(m) //

δn+n′,n′′
(m)��

Pn ⊗O Pn
′+n′′

id⊗δn
′,n′′

(m)��
Pn ⊗O Pn

′+n′′

id⊗P ′P ′′

��

Pn+n′ ⊗O Pn
′′δ
n,n′
(m)
⊗id
//

id⊗P ′′��
Pn ⊗O Pn

′ ⊗O Pn
′′

id⊗ id⊗P ′′��
Pn+n′ ⊗O B

δn,n
′

(m) //

ε
BX
n+n′��

Pn ⊗O Pn
′ ⊗O B
δn,n

′∗
(m)

(ε
BX
n+n′

)��

id⊗εBX
n′ // Pn ⊗O B ⊗O Pn

′

B ⊗O Pn+n′

id⊗PP ′

��

B ⊗O Pn+n′
δn,n

′
(m) // B ⊗O Pn ⊗O Pn

′

id⊗P ′��

Pn ⊗O B ⊗O Pn
′

ε
BX
n ⊗id

oo

id⊗P ′��
B ⊗O Pn ⊗O B

id⊗εBXn��
Pn ⊗O B ⊗O B

εBn⊗id

oo

εB⊗Bn

rr µ ++
B ⊗O B
µ ��

B ⊗O B ⊗O B
µ ,,

µoo B ⊗O B ⊗O Pn
id⊗Poo

µ ,,

Pn ⊗O B

εBn
ss

B B ⊗O B
µoo B ⊗O Pn

id⊗P
oo

(4.1.2.2.4)
where the ? morphism is the one making commutative the top left rectangle. Following 3.2.2.18.1, the
top square (in the middle) is commutative. The commutativity of the right square of the third row comes
from the cocycle condition of the m-PD-stratification of B. The triangle is commutative by definition of
the m-PD-stratification of B ⊗OX B (see the proof of 3.4.2.7). The commutativity of the right rhombus
follows from the D(m)

X]/S]
-linearity of µ (see 4.1.1.2). The other squares or rhombus are commutative

by functoriality. The other parts of the diagram are commutative by definition. Hence, the diagram
4.1.2.2.4 is commutative. The composition of the left vertical arrows of the contour is equal to (PP ′)P ′′,
whereas the composition of the top,right bottom morphisms of the contour gives P (P ′P ′′). Hence, we
are done.

ii) Via the canonical isomorphisms BX
∼−→ BX ⊗OX D

(m)

X]/S],0

∼−→ HomOX (P0
X]/S](m),BX) =

HomOX (OX ,BX), by using the case where n = 0 and n′ = 0 in the definition of the product, we
check that the canonical map BX → BX ⊗OX D

(m)

X]/S]
is an injective ring homomorphism. Moreover,

to check that D(m)

X]/S]
→ BX ⊗OX D

(m)

X]/S]
is a ring homomomorphism, either we use 3.2.3.1.1 or we

use the local computations 3.2.3.7.2 and 4.1.2.2.3 (use also the fact that following 4.1.1.4 the canonical
homorphism ρ : OX → BX is D(m)

X]/S]
-linear).

Remark 4.1.2.3. When the log structure of X] and S] are trivial, then replacing logarithmic coordinates
the non-logarithmic version of 4.1.2.2.3 holds, i.e. we have

(1⊗ ∂〈k〉)(b⊗ 1) =
∑
h≤k

¶
k
h

©
∂〈k−h〉(b)⊗ ∂〈h〉. (4.1.2.3.1)

4.1.2.4. Let ρ : D(m)

X]/S]
→ BX ⊗OX D

(m)

X]/S]
be the canonical morphism (see 4.1.2.2.2).
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(a) The D(m)

X]/S]
-bimodule structure on BX ⊗OX D

(m)

X]/S]
induced by ρ is equal to the D(m)

X]/S]
-bimodule

structure induced by the tensor product from the left D(m)

X]/S]
-module structure of BX and the

canonical D(m)

X]/S]
-bimodule structure of D(m)

X]/S]
(see 3.4.2.8).

Indeed, the first equality of 4.1.2.2 implies (b⊗P )(1⊗P ′) = b⊗PP ′, i.e. (b⊗P )·P ′ = (b⊗P )(1⊗P ′),
where the action of P ′ on b ⊗ P is that given by the right D(m)

X]/S]
-module structure induced by

functoriality of the tensor product (see 3.4.2.8). Finally, via the formulas 4.1.2.2.3 and 3.4.2.7.1, we
get (1 ⊗ ∂〈k〉] )(b ⊗ 1) = ∂

〈k〉
] · (b ⊗ 1) where the action of ∂〈k〉] on b ⊗ 1 is that given by the tensor

product.

(b) It follows from (a) and 3.4.2.7.2 the formula:

∂̃
〈k〉
] × b = ∂̃

〈k〉
] (b⊗ 1) =

∑
i≤k

¶
k
i

©
∂̃
〈i〉
] (b)⊗ ∂̃〈k−i〉] =

∑
i≤k

¶
k
i

©
∂̃
〈i〉
] (b)× ∂̃〈k−i〉] , (4.1.2.4.1)

where × is the product given by the ring structure of BX ⊗OX D
(m)

X]/S]
.

Notation 4.1.2.5. We define a sheaf of PnX]/S](m)-algebras by setting ‹PnX]/S](m) := BX⊗OX PnX]/S](m).

The canonical morphism p̃n0(m) : BX → BX ⊗OX PnX]/S](m) endows the sheaf ‹PnX]/S](m) with a structure
of BX -algebra, that we will call left structure. Moreover, the morphism of BX -algebras

p̃n1(m) : BX → PnX]/S](m) ⊗OX BX
ε
BX
n−→ BX ⊗OX PnX]/S](m)

induces a second structure of BX -algebra on ‹PnX]/S](m), that we call the right structure. If there are no

risk of confusion, we can simply write p̃n0 and p̃n1 instead of p̃n0(m) and p̃n1(m). To sum-up ‹PnX]/S](m) is
canonically a (BX ,BX)-algebra (i.e. a BX ⊗Z BX -algebra).

Lemma 4.1.2.6. The canonical map

ρn : PnX]/S](m) → ‹PnX]/S](m) (4.1.2.6.1)

given by τ 7→ 1 ⊗ τ is a homomorphism of (OX ,OX)-algebras making cocartesian for any j = 0, 1 the
diagrams of algebras

OX

��

pnj(m) // PnX]/S](m)

ρn

��
BX

p̃nj(m) // ‹PnX]/S](m),

(4.1.2.6.2)

where the homomorphisms pnj(m) (resp. p̃nj(m)) are defined at 3.2.2.2 (resp. 4.1.2.5).

Proof. The commutativity and cocartesianity of 4.1.2.6.2 are clear for the case j = 0. Moreover, as
OX → BX is horizontal (see 4.1.1.4), then we obtain the commutative diagram which concludes the
proof:

BX // PnX]/S](m) ⊗OX BX
ε
BX
n

∼
// BX ⊗OX PnX]/S](m)

OX //

OO

PnX]/S](m) ⊗OX OX
ε
OX
n

∼
//

OO

∼
��

OX ⊗OX PnX]/S](m)

OO

∼
��

OX
pn1(m) // PnX]/S](m) PnX]/S](m).

(4.1.2.6.3)
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Notation 4.1.2.7. Let E be a BX -module. By convention, ‹PnX/S,(m)⊗BX E means pn1∗(‹PnX/S,(m))⊗BX E
and E⊗BX‹PnX/S,(m) means E⊗BXpn0∗(‹PnX/S,(m)). For instance, ‹PnX/S,(m)⊗BX‹Pn′X/S,(m) is p

n
1∗(
‹PnX/S,(m))⊗BX

pn
′

0∗(
‹Pn′X/S,(m)).

We have two structures of BX -module on the sheaf ‹PnX/S,(m) ⊗BX E : the “left structure” given by

functoriality from the left structure of ‹PnX/S,(m) and the “right structure” given by the internal tensor

product. We denote by p0∗(‹PnX/S,(m) ⊗BX E) (resp. p1∗(‹PnX/S,(m) ⊗BX E)) to clarify we are considering
the left structure (resp. right structure).

Similarly, we denote by p0∗(E⊗BX ‹PnX/S,(m)) (resp. p1∗(E⊗BX ‹PnX/S,(m))) the BX -module given by the

internal tensor product (resp. by functoriality from the right BX -module structure of ‹PnX/S,(m)) which
is called the left (resp. right) structure.

We denote by p̃n0,E : E → p0∗(E ⊗BX ‹PnX/S,(m)) the canonical BX -linear map given by x 7→ x⊗ 1, i.e.

is the composition of idE ⊗pn0 with the canonical isomorphism E ∼−→ E ⊗BX ‹P0
X/S,(m). We denote by

p̃n1,E : E → p1∗(‹PnX/S,(m)⊗BX E) the canonical map given by x 7→ 1⊗x, i.e. is the composition of p̃n1 ⊗ idE

with the canonical isomorphism E ∼−→ ‹P0
X/S,(m) ⊗BX E .

Notation 4.1.2.8. We denote by ‹PnX]/S](m)⊗BX ‹Pn′X]/S](m) the tensor product of BX -algebras with the

right structure of ‹PnX]/S](m) and the left structure of ‹Pn′X]/S](m). We endow ‹PnX]/S](m) ⊗BX ‹Pn′X]/S](m)

with three structures of locally free of finite type BX -algebra: the left one given by the left structure of‹PnX]/S],(m), the middle one given by the tensor product and the right one given by the right structure

of ‹Pn′X]/S],(m). This endows ‹PnX]/S](m) ⊗BX ‹Pn′X]/S](m) with a structure of (BX ,BX ,BX)-algebra, i.e. of
(BX⊗ZBX⊗ZBX)-algebra. When BX = OX , we retrieve the usual three structures (defined at 3.2.2.14).
With 4.1.2.6, we get the morphism of (OX ,OX ,OX)-algebras

ρn,n′ := ρn ⊗ ρn′ : PnX]/S](m) ⊗OX P
n′

X]/S](m) → ‹PnX]/S](m) ⊗BX ‹Pn′X]/S](m). (4.1.2.8.1)

4.1.2.9. With notation 3.2.2.16 we can endow BX ⊗OX PnX]/S](m) ⊗OX P
n′

X]/S](m) with three canonical
structures of BX -algebras as follows First, the left structure is induced by the canonical morphism
p̃n,n

′

0(m) : BX → BX ⊗OX PnX]/S](m) ⊗OX P
n′

X]/S](m) given by b 7→ b ⊗ 1 ⊗ 1. Next, we define the middle
structure via the morphism of BX -algebras

p̃n,n
′

1(m) : BX → PnX]/S](m) ⊗OX BX ⊗OX P
n′

X]/S](m)

qn,n
′∗

0 (ε
BX
n+n′

)
// BX ⊗OX PnX]/S](m) ⊗OX P

n′

X]/S](m) ,

where the first morphism is given by b 7→ 1⊗ b⊗ 1. Finally, the right structure can be built as follows :

p̃n,n
′

2(m) : BX → PnX]/S](m) ⊗OX P
n′

X]/S](m) ⊗OX BX
δn,n

′∗
(m)

(ε
BX
n+n′

)
// BX ⊗OX PnX]/S](m) ⊗OX P

n′

X]/S](m) ,

(4.1.2.9.1)
where the first morphism is given by b 7→ 1⊗ 1⊗ b.
Proposition 4.1.2.10. a) The canonical map

BX ⊗OX (PnX]/S](m) ⊗OX P
n′

X]/S](m))
∼−→ ‹PnX]/S](m) ⊗BX ‹Pn′X]/S](m), (4.1.2.10.1)

given by b ⊗ τ ⊗ τ ′ 7→ (b ⊗ τ) ⊗ (1 ⊗ τ ′), is an isomorphism of BX-algebras for the left (resp. middle,
resp. right) structures as defined respectively in 4.1.2.5 and 4.1.2.9. Hence, we still denote therefore by
p̃n,n

′

j(m) for j = 0, 1, 2 the corresponding ring homomorphisms BX → ‹PnX]/S](m) ⊗BX ‹Pn′X]/S](m).
b) Moreover, for any j = 0, 1, 2, we have the following canonical cocartesian diagram

OX

��

pn,n
′

j(m) // PnX]/S](m) ⊗OX P
n′

X]/S](m)

4.1.2.8.1ρn,n′

��
BX

p̃n,n
′

j(m) // ‹PnX]/S](m) ⊗BX ‹Pn′X]/S](m).

(4.1.2.10.2)
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Proof. a) i) By using the (OX ,OX)-linearity of the morphism ρn and ρn′ of 4.1.2.6.1, we get the well
defined isomorphism

BX ⊗OX PnX]/S](m) ⊗OX P
n′

X]/S](m)
∼−→ (BX ⊗OX PnX]/S](m))⊗BX (BX ⊗OX Pn

′

X]/S](m)) (4.1.2.10.3)

given by b⊗ τ ⊗ τ ′ 7→ (b⊗ τ)⊗ (1⊗ τ ′), which is the isomorphism 4.1.2.10.1.
ii) It remains to check the linearity. The BX -linearity for the respective left structures is obvious. By

using εBn ⊗ id = qn,n
′∗

0 (εBXn+n′), we get that 4.1.2.10.3 is BX -linear for the middle structures thanks to the
commutative diagram

BX // PnX]/S](m) ⊗OX BX ⊗OX P
n′

X]/S](m)

εBn⊗id

∼
// BX ⊗OX PnX]/S](m) ⊗OX P

n′

X]/S](m)

4.1.2.10.3
∼

**
BX // PnX]/S](m) ⊗OX BX

εBn⊗id

∼
//

id⊗ id⊗pn
′

0(m)

OO

BX ⊗OX PnX]/S](m)

OO

p̃n
′

0(m) //

id⊗ id⊗pn
′

0(m)

OO ‹PnX]/S](m) ⊗BX ‹Pn′X]/S](m)

where the left top arrow is given by b 7→ 1 ⊗ b ⊗ 1, the left bottom arrow is given by b 7→ 1 ⊗ b, the
homomorphisms pn

′

0(m) (resp. p̃n
′

0(m)) is defined at 3.2.2.2 (resp. 4.1.2.5).
Now, let us check the morphism 4.1.2.10.1 is a morphism of BX -algebras for the right structures. In

the following commutative diagram,

B // Pn′ ⊗O B

��

εB
n′

∼
// B ⊗O Pn

′ //

��

(Pn ⊗O B)⊗B (B ⊗O Pn
′
) ∼
εBn⊗id// (B ⊗O Pn)⊗B (B ⊗O Pn

′
)

B // Pn ⊗O Pn
′ ⊗O B

id⊗εB
n′

∼
// Pn ⊗O B ⊗O Pn

′

∼

55

∼
εBn⊗id // B ⊗O Pn ⊗O Pn

′

∼

44

B // Pn ⊗O Pn
′ ⊗O B

δn,n
′∗

(m)
(ε
BX
n+n′

)

∼
// B ⊗O Pn ⊗O Pn

′
,

(4.1.2.10.4)
where we omitted to indicate the indices "X]" or "X]/S](m)", that of ‹PnX]/S](m)⊗BX ‹Pn′X]/S](m) is equal
the composite morphism of the top, whereas that of BX ⊗OX PnX]/S](m)⊗OX P

n′

X]/S](m) is the composite

morphism of the bottom. By using the cocycle condition 3.4.2.1 (noticing that id⊗εBn′ = qn,n
′∗

1 (εBXn+n′)

and εBn ⊗ id = qn,n
′∗

0 (εBXn+n′)), p̃
n,n′

2 correspond to the path of 4.1.2.10.4 going through by the bottom.
Hence we are done.

b) Since the other cases are treated similarly, let us only prove the cocartesian diagram 4.1.2.10.2
when j = 2. We have the following commutative diagram

OX
pn,n

′
2(m) // PnX]/S](m) ⊗OX P

n′

X]/S](m) PnX]/S](m) ⊗OX P
n′

X]/S](m)

OX //

��

Ä
PnX]/S](m) ⊗OX P

n′

X]/S](m)

ä
⊗OX OX

δn,n
′∗

(m)
(ε
OX
n+n′

)
//

∼

OO

��

OX ⊗OX
Ä
PnX]/S](m) ⊗OX P

n′

X]/S](m)

ä∼

OO

��
BX //

Ä
PnX]/S](m) ⊗OX P

n′

X]/S](m)

ä
⊗OX BX

δn,n
′∗

(m)
(ε
BX
n+n′

)
// BX ⊗OX

Ä
PnX]/S](m) ⊗OX P

n′

X]/S](m)

ä
where the left bottom square and the bottom rectangle are cocartesian (and therefore so is the right
bottom square). Since the bottom composite morphism is p̃n,n

′

2(m), then we are done.
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4.1.2.11. We introduce the following BX -algebra homomorphisms

δ̃n,n
′

(m) : ‹Pn+n′

X]/S](m)

id⊗δn,n
′

(m)// BX ⊗OX (PnX]/S](m) ⊗OX P
n′

X]/S](m))
4.1.2.10.1
∼
// ‹PnX]/S](m) ⊗BX ‹Pn′X]/S](m) ,‹q0

n,n′
: ‹Pn+n′

X]/S](m)
−→ ‹PnX]/S](m) −→ ‹PnX]/S](m) ⊗BX ‹Pn′X]/S](m),‹q1

n,n′
: ‹Pn+n′

X]/S](m)
−→ ‹Pn′X]/S](m) −→ ‹PnX]/S](m) ⊗BX ‹Pn′X]/S](m).

We have the canonical cocartesian diagram :

Pn+n′

X]/S](m)

��

//
//// PnX]/S](m) ⊗OX P

n′

X]/S](m)

��‹Pn+n′

X]/S](m)

//
//// ‹PnX]/S](m) ⊗BX ‹Pn′X]/S](m),

(4.1.2.11.1)

where the top (resp. bottom) triple arrows are the morphisms qn,n
′

0 , qn,n
′

1 , δn,n
′

(m) (resp. q̃n,n
′

0 , q̃n,n
′

1 ,

δ̃n,n
′

(m) ). Moreover, these homomorphisms satisfy the analogous properties without the tildes. For instance,

the morphism δ̃n,n
′

(m) is BX -linear for the respective right structures. Indeed, this is by construction a
consequence of 4.1.2.9.1.

By applying the functor BX ⊗OX − to the commutative diagram 3.2.2.18.1, we get (up to canonical
isomorphism) the commutative diagram‹Pn+n′+n′′

X]/S](m)

δ̃n+n′,n′′
(m) //

δ̃n,n
′+n′′

(m)

��

‹Pn+n′

X]/S](m)
⊗BX ‹Pn′′X]/S](m)

δ̃n,n
′

(m)
⊗id

��‹PnX]/S](m) ⊗BX ‹Pn′+n′′X]/S](m)

id⊗δ̃n
′,n′′

(m) // ‹PnX]/S](m) ⊗BX ‹Pn′X]/S](m) ⊗BX ‹Pn′′X]/S](m).

(4.1.2.11.2)

To finish, we remark that the diagram similar to 4.1.2.11.2, with "δ̃(m)" replaced by "‹q0" (resp. "‹q1"),
is not commutative.

4.1.2.12. We will denote by ‹D(m)

X]/S], n
:= HomBX (p̃n0∗

‹PnX]/S](m),BX) the BX -linear dual for the left

structure of ‹PnX]/S](m). For n′ ≥ n, from the canonical projection ψn
′,n

X]/S],(m)
: Pn′X]/S](m) → P

n
X]/S](m)

(see 3.2.2.2.1 ), we get the canonical projections

ψ̃n
′,n

X]/S],(m)
:= idBX ⊗ψ

n′,n
X]/S],(m)

: ‹Pn′X]/S](m) → ‹PnX]/S](m). (4.1.2.12.1)

By construction, the map 4.1.2.12.1 is BX -linear for the left structure. In fact, since the m-PD stratifi-
cation of BX are compatible with respect to the morphism ψn

′,n
X]/S],(m)

(see 3.4.2.1.a) then we get that
4.1.2.12.1 is BX -linear for the right structure. By taking the duality of 4.1.2.12.1 with respect to the left
structures, this gives the monomorphisms‹D(m)

X]/S], n
↪→ ‹D(m)

X]/S], n′
.

We endow the sheaf ‹D(m)

X]/S]
:= ∪n∈N

‹D(m)

X]/S], n
with a ring structure by using the pairings‹D(m)

X]/S], n
× ‹D(m)

X]/S], n′
→ ‹D(m)

X]/S], n+n′
(4.1.2.12.2)

defined as follows: if P ∈ ‹D(m)

X]/S], n
, P ′ ∈ ‹D(m)

X]/S], n′
, then P · P ′ is the composition homomorphism‹Pn+n′

X]/S](m)

δ̃n,n
′

(m)−→ ‹PnX]/S](m) ⊗BX ‹Pn′X]/S](m)
id⊗P ′−→ ‹PnX]/S](m)

P−→ BX . (4.1.2.12.3)

Similarly to 3.2.3.3 (e.g. use the commutative diagram 4.1.2.11.2), we can check this law of composition
is associative and ‹D(m)

X]/S]
is therefore a ring.
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Remark 4.1.2.13. With the notations 4.1.2.11 and 4.1.2.12.1, we have the relation q̃n,n
′

i(m) = ‹$n,n′

i(m) ◦
ψ̃n+n′,n
X]/S],(m)

for i = 0, 1, where ‹$n,n′

0(m) : ‹PnX]/S],(m) → ‹PnX]/S],(m)⊗OX ‹Pn′X]/S],(m) and ‹$n,n′

1(m) : ‹Pn′X]/S],(m) →‹PnX]/S],(m) ⊗OX ‹Pn′X]/S],(m) are the homomorphisms corresponding to the projections.

4.1.2.14. From the canonical isomorphisms of BX -algebras

BX ⊗OX D
(m)
X,n

∼−→ HomOX (PnX]/S](m),BX)
∼−→ HomBX (‹PnX]/S](m),BX) = ‹D(m)

X]/S], n
, (4.1.2.14.1)

we get BX ⊗OX D
(m)
X

∼−→ ‹D(m)

X]/S]
. The proposition below means that these two structures of BX -algebra

are compatible.

Proposition 4.1.2.15. The canonical isomorphism BX ⊗OX D
(m)

X]/S]
∼−→ ‹D(m)

X]/S]
(see 4.1.2.14), is an

isomorphism of rings where the right (resp. left) term is endowed with the ring structure of 4.1.2.2 (resp.
4.1.2.12).

Proof. Let P ∈ HomOX (PnX]/S](m),BX) = BX ⊗OX D
(m)
X,n and of P ′ ∈ HomOX (Pn′X]/S](m),BX) =

BX⊗OXD
(m)
X,n′ . Let us denote byQ (resp. Q′) the operator ofHomBX (‹PnX]/S](m),BX) (resp. HomBX (‹Pn′X]/S](m),BX))

associated to P (resp. P ′) via the isomorphisms 4.1.2.14.1.
Since Q = µ ◦ (id⊗P ), we reduce to check the commutativity of the following diagram.

Pn+n′

X]/S](m)

δn,n
′

(m) //

��

PnX]/S](m) ⊗OX P
n′

X]/S](m)

id⊗P ′ //

��

PnX]/S](m) ⊗OX BX
ε
BX
n // BX ⊗OX PnX]/S](m)

‹Pn+n′

X]/S](m)

δ̃n,n
′

(m) // ‹PnX]/S](m) ⊗BX ‹Pn′X]/S](m)

id⊗Q′ // ‹PnX]/S](m) ⊗BX BX
∼

ι
// ‹PnX]/S](m)

(4.1.2.15.1)
where the isomorphism ι is the canonical one. It follows from 4.1.2.11.1 that the left square is commu-
tative.

Let τ ∈ PnX]/S](m) and τ ∈ Pn′X]/S](m). Since ε
BX
n is a morphism of PnX]/S](m)-algebras,

εBXn ◦ (id⊗P ′)(τ ⊗ τ ′) = εBXn (τ ⊗ P ′(τ ′)) = (1⊗ τ)× εBXn (1⊗ P ′(τ ′)).

We put τ̃ := 1⊗ τ ∈ ‹PnX]/S](m), τ̃
′ := 1⊗ τ ′ ∈ ‹Pn′X]/S](m). We have the relation

ι ◦ (id⊗Q′)(τ̃ ⊗ τ̃ ′) = τ̃ · P ′(τ ′),

the term P ′(τ ′) acting on τ̃ ′ for the right structure of BX -algebra of ‹PnX]/S](m). By definition, then we
have

τ̃ · P ′(τ ′) = τ̃ × εBXn (1⊗ P ′(τ ′)).
This yields the commutativity of the right rectangle of 4.1.2.15.1.

4.1.2.16 (Local description and notation). Suppose in this paragraph that X] → S] is endowed with
logarithmic coordinates (uλ)λ=1,...,r.

(a) For any λ = 1, . . . , r, put τ]λ(m) := µn(m)(uλ) − 1 (or simply τ]λ), where for any a ∈ MX] µ
n
(m)(a)

is the unique section of ker(O∗∆n

X]/S],(m)

→ O∗X) such that we get in Mn
X]/S],(m) the equality

pn∗1 (a) = pn∗0 (a)µn(m)(a). We still denote by τ]λ(m) its image via the canonical morphism PnX]/S],(m) →‹PnX]/S],(m). Taking the limits to 3.2.2.4, we get the isomorphism of m-PD-BX -algebras

BX〈T1, . . . , Tr〉(m),n
∼−→ ‹PnX]/S],(m)

Tλ 7→ τ]λ,(m), (4.1.2.16.1)

where the first term is defined as in 1.3.3.6. In particular, the elements {τ{k}(m)

] }|k|≤n form a BX -

basis of ‹PnX]/S],(m). The corresponding dual basis of ‹D(m)

X]/S],n
will still be denoted by {∂〈k〉(m)

] }|k|≤n.
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Let ε1, . . . , εr be the canonical basis of Nr, i.e. the coordinates of εi are 0 except for the ith term
which is 1. We put ∂]i := ∂

〈εi〉(m)

] . A section P ∈ Γ(X,BX ⊗OX
D(m)

X]/S]
) can uniquely be written of

the form
P =

∑
k∈Nd

bk∂
〈k〉(m)

] , (4.1.2.16.2)

where bk ∈ BX and the sum is finite.

(b) Let (tλ)λ=1,...,r be the coordinates of Y/S induced by (uλ)λ=1,...,r. Set BY := BX |Y . For any
λ = 1, . . . , r, set τλ := p∗1(tλ)−p∗0(tλ). We still denote by τλ its image in BY ⊗OY PnY/S,(m). It follows
from 1.3.3.11, the elements {τ{k}(m)}|k|≤n form a basis of the BY -module BY ⊗OY PnY/S,(m). The

corresponding dual basis of BY ⊗OY D
(m)
Y/S,n is denoted by {∂〈k〉(m)}|k|≤n. A section P ∈ Γ(X,BY ⊗OY

D(m)
Y/S) can uniquely be written of the form

P =
∑
k∈Nd

bk∂
〈k〉(m) , (4.1.2.16.3)

where bk ∈ BY and the sum is finite.

Proposition 4.1.2.17. Suppose m is finite. We have the following properties.

(a) The graded ring (associated to the order filtration) gr ‹D(m)

X]/S]
is a commutative ring. If X]/S]

is endowed with logarithmic coordinates, the relation ∂
〈k〉
] ∂

〈h〉
] =

¨
k+h
k

∂
∂
〈k+h〉
] becomes exact in

gr ‹D(m)

X]/S]
.

(b) Suppose X] is endowed with logarithmic coordinates. Then for any integers 1 ≤ i ≤ d and k ∈ N,

the operator ∂〈k〉(m)

]i belongs to the Z(p)-algebra generated by the m + 1 operators ∂[pj ]
]i = ∂

〈pj〉(m)

]i

where 0 ≤ j ≤ m. The operators ∂〈k〉(m)

]i and ∂〈k
′〉(m)

]i′ commutes and the sheaf ‹D(m)

X]/S]
is generated

as Z(p)-algebra by BX and by the operators ∂〈p
j〉(m)

]i , where 1 ≤ i, i′ ≤ d and 0 ≤ j ≤ m.

(c) For any affine open subscheme U ⊂ X, the canonical homomorphism

Γ(U,BX)⊗Γ(U,OX) Γ(U,D(m)

X]/S]
)→ Γ(U,BX ⊗OX D

(m)

X]/S]
) (4.1.2.17.1)

is an isomorphism.

(d) Suppose there exist a basis of affine opens B of X such that for any U ∈ B, the ring Γ(U,BX) is
noetherian. Then for any U ∈ B, the rings Γ(U, gr ‹D(m)

X]/S]
) and Γ(U, ‹D(m)

X]/S]
) (resp. gr ‹D(m)

X]/S],x

and ‹D(m)

X]/S],x
for any x ∈ X]) are right and left noetherian.

(e) Suppose that there exists a basis of affine opens B of X such that

(i) For any U ∈ B, the ring Γ(U,BX) is noetherian ;
(ii) For any U, V ∈ B such that V ⊂ U , the homomorphism Γ(U,BX)→ Γ(V,BX) is flat.

Then for any U, V ∈ B such that V ⊂ U , the canonical morphism Γ(U, ‹D(m)

X]/S]
) → Γ(V, ‹D(m)

X]/S]
) is

flat. Moreover, the sheaf of rings ‹D(m)

X]/S]
is right and left coherent.

Proof. We check (a) (resp. (b)) as 3.2.3.16.(a) (resp. 3.2.3.15). Let us check (c). Since D(m)

U]/S],n
is

a locally free OU -module of finite type, since U is affine, then D(m)

U]/S],n
is a direct summand of a free

OU -module of finite type. Replacing in 4.1.2.17.1 the sheaf D(m)

X]/S]
by a free OU -module of finite type

(and therefore by D(m)

X]/S],n
), we get an isomorphism. Since U is affine, then U is a coherent topological

space and Γ(U,−) commutes with filtered inductive limits (see [SGA4.2, VI.5.3]). Hence, we get (c).
Moreover, we can check (d) as 3.2.3.16.(b). Finally, by using (c), we get the flatness of the canonical
morphism Γ(U, ‹D(m)

X]/S]
)→ Γ(V, ‹D(m)

X]/S]
). With 1.4.5.2, we are done.
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4.1.3 Good filtrations, Theorems A and B for coherent D-modules
We keep notation 4.1.2 but we suppose the level is finite, i.e. m ∈ N. Let B be the category of affine
opens of X. We suppose

(i) For any U ∈ B, the ring Γ(U,BX) is noetherian ;

(ii) For any U, V ∈ B such that V ⊂ U , the homomorphism Γ(U,BX)→ Γ(V,BX) is flat.

Recall that it follows from 1.4.5.2 that BX is a coherent sheaf of rings. Moreover, we suppose that BX
satisfies theorems A and B for coherent modules in the sense 1.4.3.14 below (remark following 4.1.3.2
this is automatic in the algebraic case, i.e., when X is a scheme):

Remark 4.1.3.1. This subsection remains valid by replacing (left) modules by right modules. Moreover,
we can extend the results of this subsection in the case where B is replaced by a basis of affine opens of
X: in that case we need to replace everywhere “affine open of X” by “object of B”.

In the case of schemes, we have the well known following example.

Proposition 4.1.3.2 (Theorems A and B for quasi-coherent D-module over schemes). Suppose X is a
scheme. D be a sheaf of rings on X such that, for any affine open U ⊂ X, Γ(U,D) is a noetherian ring.
We suppose there is a morphism OX → D such that the left multiplication by the sections of OX makes
D a quasi-coherent OX-module. We have therefore the following properties.

(a) The sheaf D is a left coherent.

(b) For a left D-moduleM to be coherent, it is necessary and sufficient that both conditions are fulfilled

(i) M is quasi-coherent and that

(ii) there exists a covering (Uλ)λ∈Λ of X by affine opens such that for any λ ∈ Λ, Γ(Uλ,M) is a
left Γ(Uλ,D)-module of finite type.

(c) Suppose X is affine, and D := Γ(X,D).

(i) The functors M 7→ Γ(X,M) and M 7→ D ⊗D M are exact quasi-inverse equivalences of cate-
gories between coherent left D-modules and left D-modules of finite type (resp. quasi-coherent
left D-modules and left D-modules).

(ii) For any quasi-coherent D-moduleM, we have Hq(X,M) = 0 for all q ≥ 1.

Proof. The assertion (a) is a consequence of 1.4.5.2. We know that any quasi-coherent OX -module M
satisfyies Hq(X,M) = 0 for all q ≥ 1. Since D is quasi-coherent, then the functorsM 7→ Γ(X,M) and
M 7→ D ⊗DM are exact quasi-inverse equivalences of categories between quasi-coherent left D-modules
and left D-modules. Hence, by using the five lemma and their exactness, the functors M 7→ Γ(X,M)
and M 7→ D ⊗D M are exact quasi-inverse equivalences of categories between left D-modules having a
global finite presentation and left D-modules of finite type.

Suppose X = SpecA is affine and let M be a quasi-coherent left D-module such that there exists
a covering (Uλ)λ∈Λ of X by affine opens such that for any λ ∈ Λ, Γ(Uλ,M) is a left Γ(Uλ,D)-module
of finite type. To finish the proof, it remains to check that Γ(X,M) is a left D-modules of finite type,
which is standard (e.g. compare with [Har77, II.3.2]) and is proved as follows. Since X is noetherian, we
can suppose Λ = {1, 2, . . . , r} and that there exists fλ ∈ A such that Uλ = D(fλ). Set M := Γ(X,M),
Dfλ := Afλ ⊗AD, Mfλ := Dfλ ⊗DM . By hypothesis, Mfλ is a Dfλ -module of finite type. If N is a sub
D-module of M , then N = M if and only if for any λ we have Mfλ = Nfλ . Since Dfλ are noetherian,
we conclude that M is noetherian.

4.1.3.3. Let D be a sheaf of rings on X which satisfies theorems A and B for coherent modules. Suppose
X affine and set D := Γ(X,D). Then the quasi-inverse equivalences of categories Γ(X,−) and D ⊗D −
between the category of coherent D-modules and that of coherent D-modules are exact. Then, we have
the following (non-exhaustive) properties:
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(a) Let φ : E → F be a morphism of left coherent D-modules. Denote by D := Γ(X,D), E := Γ(X, E),
F := Γ(X,F) and by f : E → F the induced morphism of leftD-modules. Then Γ(X,Kerφ) = Ker f ,
Γ(X,Cokerφ) = Coker f . Moreover, f is a monomorphism (resp. epimorphism) if and only if φ is a
monomorphism (resp. epimorphism).

(b) Let E ,F be two coherent sub-D-modules of a coherent D-module G. Then E +F (resp. E ∩F , resp.
E ∪F) is a coherent sub-D-modules of G and Γ(X, E +F) = Γ(X, E) + Γ(X,F) (resp. Γ(X, E ∩F) =
Γ(X, E) ∩ Γ(X,F), resp. Γ(X, E ∪ F) = Γ(X, E) ∪ Γ(X,F)).

(c) Let E be a D-module, let (E)n∈N be an exhaustive increasing filtration of E by coherent left D-
module. Then the canonical morphism D ⊗D Γ(X, En) → En are isomorphisms and the morphisms
Γ(X, En) → Γ(X, En+1) are injective. Since filtered inductive limits commute to the global section
functor Γ(X,−), we then obtain the canonical isomorphisms lim−→n∈N

Γ(X, En)
∼−→ Γ(X, E) and the

canonical morphism Γ(X, En)→ Γ(X, E) is therefore injective. Hence, (Γ(X, En))n∈N is an exhaustive
filtration of E .

(d) Suppose D is commutative and let E ,F be two coherent D-modules. Then E ⊗D F is coherent
D-module and Γ(X, E ⊗D F) = Γ(X, E)⊗D Γ(X,F).

Notation 4.1.3.4. For any integers n and n′, we put ‹D(m)

X]/S],n
· ‹D(m)

X]/S],n′
as the image via the BX -

linear homomorphism ‹D(m)

X]/S],n
⊗BX ‹D(m)

X]/S],n′
→ ‹D(m)

X]/S],n+n′
. Since this is a morphism of coherent

BX -modules, then ‹D(m)

X]/S],n
· ‹D(m)

X]/S],n′
is a coherent BX -module.

Suppose X is affine. For any integers n, n′, set D(m)

X]/S],n
:= Γ(X, ‹D(m)

X]/S],n
) and define similarly

D
(m)

X]/S],n
·D(m)

X]/S],n′
. With 4.1.3.3 we get

Γ(X, ‹D(m)

X]/S],n
· ‹D(m)

X]/S],n′
) = ‹D(m)

X]/S],n
· ‹D(m)

X]/S],n′
. (4.1.3.4.1)

Proposition 4.1.3.5. For n < 0, we set ‹D(m)

X]/S],n
:= 0. For any couple (r, s) ∈ N2,

pm−1∑
j=0

‹D(m)

X]/S],r−j · ‹D(m)

X]/S],s+j
= ‹D(m)

X]/S],r+s
.

Proof. Since this is local, we can suppose X affine and endowed with logarithmic coordinates. Since
the sheaves ‹D(m)

X]/S],r−j , ‹D(m)

X]/S],s+j
et ‹D(m)

X]/S],r+s
are BX -coherent, then so is the sheaf ‹D(m)

X]/S],r−j ·‹D(m)

X]/S],s+j
. Hence, we have the inclusion of coherent BX -modules:

pm−1∑
j=0

‹D(m)

X]/S],r−j · ‹D(m)

X]/S],s+j
⊂ ‹D(m)

X]/S],r+s
.

Since Theorems A and B for coherent modules hold for BX , with 4.1.3.3, 4.1.3.4.1 and its notation, it
remains to prove that an element of ‹D(m)

X]/S],r+s
belongs to

∑pm−1
j=0

‹D(m)

X]/S],r−j · ‹D(m)

X]/S],s+j
. By BX -

linearity and since for any k ∈ Nd we have ∂〈k〉] =
∏
i=1,...,d ∂

〈ki〉
],i , we reduce to consider the differential

operators of the form ∂
〈k〉
]i , for some i with 0 ≤ k ≤ r + s. We proceed by induction on 0 ≤ k ≤ r + s to

check that

∂
〈k〉
]i ∈

pm−1∑
j=0

‹D(m)

X]/S],r−j · ‹D(m)

X]/S],s+j
.

When k ≤ r, this is a consequence of ∂〈k〉]i ∈ ‹D(m)

X]/S],r
and 1 ∈ ‹D(m)

X]/S],s
. Hence, we reduce to suppose

r ≤ k ≤ r+ s. Set k =
∑m−1
l=0 alp

l + apm, with 0 ≤ al < p. By using the induction hypothesis, it follows
from the formula 3.2.3.14.3 that we reduce to check(

m−1∏
l=0

(∂
[pl]
]i )al

)
(∂

[pm]
]i )a ∈

pm−1∑
j=0

‹D(m)

X]/S],r−j · ‹D(m)

X]/S],s+j
. (4.1.3.5.1)
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Let j be the rest of the euclidian division of r by pm and q be its quotient. The element (∂
[pm]
]i )q belongs

therefore to ‹D(m)

X]/S],r−j . Moreover, since r ≤ k ≤ r+s, then s+j ≥ k− (r−j) =
∑m−1
l=0 alp

l+(a−q)pm.

The element
(∏m−1

l=0 (∂
[pl]
]i )al

)
(∂

[pm]
]i )a−q belongs therefore to ‹D(m)

X]/S],s+j
. Hence, we are done.

Notation 4.1.3.6. LetM be a ‹D(m)

X]/S]
-module. LetM′ be a sub-BX -module ofM. For any integer r,

we denote by ‹D(m)

X]/S],r
· M′ is the image of the map ‹D(m)

X]/S],r
⊗BX M′ →M.

Définition 4.1.3.7. Let M be a ‹D(m)

X]/S]
-module. A filtration of M (as ‹D(m)

X]/S]
-module) is a family

(Mr)r∈N of sub-BX -modules ofM satisfying:

(a) For any r, s ∈ N : Mr ⊂Mr+1, and ‹D(m)

X]/S],r
· Ms ⊂Mr+s,

(b) M = ∪r∈NMr.

Définition 4.1.3.8. LetM be a left ‹D(m)

X]/S]
-module endowed with a filtration (Mr)r∈N. The filtration

(Mr)r∈N is good (resp. quasi-good) if the following two conditions hold (resp. the following first condition
holds):

(a) For any r ∈ N,Mr is BX -coherent ;

(b) There exists an integer r1 ∈ N such that for any integer r ≥ r1, we have

Mr =

pm−1∑
j=0

‹D(m)

X]/S],r−r1+j
· Mr1−j .

Example 4.1.3.9. The family (‹D(m)

X]/S],r
)r∈N is a good filtration of ‹D(m)

X]/S]
. Indeed, following proposition

4.1.3.5, the condition (b) is satisfied for any integer r1. The condition (a) being also valid, this filtration
is therefore good. We call it the order filtration.

Proposition 4.1.3.10. Suppose X is quasi-compact. LetM be a left ‹D(m)

X]/S]
-module endowed with two

good filtrations (Mr)r∈N and (M′r)r∈N. Then there exists k ∈ N such that for any r ≥ k we have

Mr−k ⊂M′r ⊂Mr+k. (4.1.3.10.1)

Proof. Since the filtrations are good, there exists r1 such that the condition (b) of 4.1.3.8 is satisfied for
both filtrations. Hence, we reduce to check the inclusions 4.1.3.10.1 for r ≤ r1 + pm for some k large
enough, which easily follows from the condition (a) of 4.1.3.8 and the quasi-compactness of X.

Proposition 4.1.3.11 (Theorem B). Suppose X affine and let M be a ‹D(m)

X]/S]
-module admitting a

quasi-good filtration. We have the following properties.

(a) For any U, V ∈ B such that V ⊂ U , the homomorphism Γ(U, ‹D(m)

X]/S]
)→ Γ(V, ‹D(m)

X]/S]
) is flat.

(b) For any integer i > 0, Hi(X,M) = 0.

Proof. Since filtered inductive limits commute to the functors Hi(X,−) for any i ≥ 0, since BX is a
sheaf of rings on X which satisfies theorems A and B for coherent modules, then we are done.

We will need the following lemmas to check Proposition 4.1.3.16.

Lemma 4.1.3.12. Let φ : (‹D(m)

X]/S]
)r → (‹D(m)

X]/S]
)s be a left ‹D(m)

X]/S]
-linear morphism. There exists an

integer n0 ≥ 0 such that for any l ∈ N we have

φ((‹D(m)

X]/S],l
)r) ⊂ (‹D(m)

X]/S],l+n0
)s. (4.1.3.12.1)
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Proof. Since this is local, we can suppose X is affine and X]/S] is endowed with logarithmic coordinates.
The data of a morphism (‹D(m)

X]/S]
)r → (‹D(m)

X]/S]
)s is equivalent to that of a family of global sections

(Pi,j)i=1,...r;i=1,...,s of ‹D(m)

X]/S]
. The integer n0 equal to the maximum order of the differential operators

(Pi,j)i=1,...r;i=1,...,s then fits.

Lemma 4.1.3.13. Let X be a coherent topological space. Let I be a small filtered category, let J be a
finite category and E : I × Jop → Sh(X) be a functor also denoted by (i, j) 7→ Ei,j. Then the canonical
morphism

lim−→
i∈I

lim←−
j∈J
Ei,j → lim←−

j∈J
lim−→
i∈I
Ei,j (4.1.3.13.1)

is an isomorphism. In other words, filtered inductive limits of sheaves on X of sets commute to finite
projective limits.

Proof. Let U be a coherent open subset of X. Let Ej := lim−→i∈I Ei,j , Ei,j := Γ(U, Ei,j) and Ej :=

lim−→i∈I Ei,j . We have the canonical maps αij : Ei,j → Ei and βij : Ei,j → Ej . Recall the morphism
4.1.3.13.1 that we will denote by α is the one induced by the family of morphisms

αi := lim←−
j∈J

αij : lim←−
j∈J
Ei,j → lim←−

j∈J
Ej

(use the universal property of the inductive limits indexed by I). Similarly, we set the family of morphisms
βi := lim←−j∈J βij : lim←−j∈J Ei,j → lim←−j∈J Ej which induces β : lim−→i∈I lim←−j∈J Ei,j → lim←−j∈J lim−→i∈I Ei,j . We
have the commutative diagram

Γ(U, lim←−j∈J Eij)
Γ(U,αi) //

∼
��

Γ(U, lim←−j∈J Ej)

∼
��

lim←−j∈J Γ(U, Eij)
lim←−j∈J Γ(U,αij)

// lim←−j∈J Γ(U, Ej)

(4.1.3.13.2)

Since U is coherent and I is filtered, then Γ(U,−) and lim−→i∈I commutes (see [SGA4.2, VI.5.2]) and this
yields the canonical commutative diagram

Γ(U, Eij)
Γ(U,αij) // Γ(U, Ej)

∼
��

Eij
βij // Ej .

(4.1.3.13.3)

By applying the functor lim←−j∈J to the square 4.1.3.13.3, we get a square whose composition with 4.1.3.13.2
is the following diagram:

Γ(U, lim←−j∈J Eij)
Γ(U,αi) //

∼
��

Γ(U, lim←−j∈J Ej)

∼
��

lim←−j∈J Eij
βi // lim←−j∈J Ej .

(4.1.3.13.4)

Next, we obtain from 4.1.3.13.4 the commutative bottom square of the diagram

Γ(U, lim−→i∈I lim←−j∈J Eij)
Γ(U,α) //

∼
��

Γ(U, lim←−j∈J lim−→i∈I Eij)

lim−→i∈I Γ(U, lim←−j∈J Eij)
//

∼
��

Γ(U, lim←−j∈J Ej)

∼
��

lim−→i∈I lim←−j∈J Eij
β // lim←−j∈J lim−→i∈I Ei,j ,

(4.1.3.13.5)
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where the top commutative square comes from the functoriality of the commutation of Γ(U,−) with
lim−→i∈I . Since the bottom morphism is an isomorphism (see [KS06, 3.1.6]), then we are done.

Lemma 4.1.3.14. Let M be a coherent BX-module, and (Ml)l∈N an increasing sequence of coherent
sub-BX-modules ofM. Then the sequenceMl is stationary.

Proof. Since X is quasi-compact, the proposition is local on X. We can therefore assume that X is
affine. The lemma then follows from the theorem A for coherent BX -modules and of the fact that the
ring Γ(X,BX) is noetherian.

Lemma 4.1.3.15. Let φ : E → F be a morphism of ‹D(m)

X]/S]
-modules. Let E ′ be a sub-BX-module of E.

Then we have the equality of BX-modules:

φ
Ä‹D(m)

X]/S],r
· E ′
ä

= ‹D(m)

X]/S],r
· φ(E ′) (4.1.3.15.1)

Proof. Since φ is ‹D(m)

X]/S]
-linear, we get the commutative square‹D(m)

X]/S],r
⊗BX E ′ //

����

E // F

‹D(m)

X]/S],r
⊗BX φ(E ′) // F

whose right arrow is surjective. Hence, we are done by definition (see notation 4.1.3.6).

Proposition 4.1.3.16. A ‹D(m)

X]/S]
-module having a global finite presentation admits a good filtration.

Proof. Choose a finite presentation of E of the form

(‹D(m)

X]/S]
)r

φ→ (‹D(m)

X]/S]
)s

ψ→ E → 0.

Set En := ψ((‹D(m)

X]/S],n
)s). By ‹D(m)

X]/S]
-linearity of ψ, by using 4.1.3.15.1 we get the first equality:‹D(m)

X]/S],n
· ψ
Ä
(‹D(m)

X]/S],n′
)s
ä

= ψ
Ä‹D(m)

X]/S],n
·
Ä
(‹D(m)

X]/S],n′
)s
ää

= ψ
ÄÄ‹D(m)

X]/S],n
· ‹D(m)

X]/S],n′

äsä
.

With 4.1.3.5, this yields that the family (En)n∈N is a filtration of E satisfying the condition (b) of the
definition 4.1.3.8 for any integer r1. As for condition (a), this is equivalent to saying that for any
integer n, the BX -modules Im(φ) ∩ (‹D(m)

X]/S],n
)s are coherent. Let n0 ≥ 0 be an integer satisfying the

inclusion 4.1.3.12.1 for any l ∈ N. Since BX is coherent, then the image of a BX -linear morphism between
two coherent BX -module is coherent. Hence, φ((‹D(m)

X]/S],l
)r) is BX -coherent. Since φ((‹D(m)

X]/S],l
)r) and

(‹D(m)

X]/S],n
)s are coherent sub-BX -modules of the coherent BX -module (‹D(m)

X]/S],l+n+n0
)s, then the BX -

module φ((‹D(m)

X]/S],l
)r) ∩ (‹D(m)

X]/S],n
)s is coherent. Since Imφ = ∪l∈Nφ((‹D(m)

X]/S],l
)r) and that filtered

inductive limits of sheaves on X commute to finite projective limits (see 4.1.3.13), we get

Imφ ∩ (‹D(m)

X]/S],n
)s =

⋃
l∈N

Ä
φ
Ä
(‹D(m)

X]/S],l
)r
ä
∩
Ä‹D(m)

X]/S],n

äsä
. (4.1.3.16.1)

By applying the lemma 4.1.3.14 toM = (‹D(m)

X]/S],n
)s andMl = φ((‹D(m)

X]/S],l
)r)∩ (‹D(m)

X]/S],n
)s, we obtain

an integer l0 such that⋃
l∈N

Ä
φ((‹D(m)

X]/S],l
)r) ∩ (‹D(m)

X]/S],n
)s
ä

= φ((‹D(m)

X]/S],l0
)r) ∩ (‹D(m)

X]/S],n
)s.

With 4.1.3.16.1, this implies that Imφ ∩ (‹D(m)

X]/S],n
)s is BX -coherent. Hence we are done.

In the algebraic case, we can improve 4.1.3.16:
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Proposition 4.1.3.17. Suppose we are in the algebraic case of 3.4. A coherent ‹D(m)

X]/S]
-module F admits

a good filtration.

Proof. Since F is a quasi-coherent OX -module, then it is the inductive limit of its coherent OX -
submodules (see [Gro60, 9.4.9]), there exists a coherent OX -submodule G of F such that the canonical‹D(m)

X]/S]
-linear map $ : ‹D(m)

X]/S]
⊗OX G � F is surjective. This yields the filtration (Fl)l∈N by setting

Fl = $(‹D(m)

X]/S],l
⊗OX G). It follows from 4.1.3.5 that this is a good filtration.

4.1.3.18. Suppose X is affine. Set ‹D(m)

X]/S]
:= Γ(X, ‹D(m)

X]/S]
), ‹D(m)

X]/S],n
:= Γ(X, ‹D(m)

X]/S],n
), BX :=

Γ(X,BX). Since the ring sheaf BX verifies theorem A and B for coherent modules, with 4.1.3.3, the
sequence (‹D(m)

X]/S],n
)n∈N endowed ‹D(m)

X]/S]
with a filtration (i.e., in the definition 4.1.3.7 we replace D

by D). Moreover, the canonical morphism Γ(X,BX ⊗B ‹D(m)

X]/S],n
) → ‹D(m)

X]/S],n
is an isomorphism. The

commutation of filtered inductive limits with Γ(X,−) and tensor products then gives us the isomorphisms:

BX ⊗BX ‹D(m)

X]/S]
∼−→ lim−→

n∈N

BX ⊗BX ‹D(m)

X]/S],n

∼−→ lim−→
n∈N

‹D(m)

X]/S],n

∼−→ ‹D(m)

X]/S]
. (4.1.3.18.1)

Theorem 4.1.3.19 (Theorem A). Suppose X is affine. Then the functors E 7→ Γ(X, E) and E 7→‹D(m)

X]/S]
⊗
D̃

(m)

X]/S]

E are canonical quasi-inverse equivalences between the category of left ‹D(m)

X]/S]
-modules

globally of finite presentation and the category of ‹D(m)

X]/S]
-modules of finite type.

Proof. 1) Let E be a ‹D(m)

X]/S]
-module of finite type. Since ‹D(m)

X]/S]
is a Noetherian ring (see 4.1.2.17),

then E is a ‹D(m)

X]/S]
-module of finite presentation. The ‹D(m)

X]/S]
-module ‹D(m)

X]/S]
⊗
D̃

(m)

X]/S]

E is therefore

globally of finite presentation, i.e., the second functor of the proposition is therefore well defined.
2) Let (‹D(m)

X]/S]
)r

ε−→ E be a surjective morphism of left ‹D(m)

X]/S]
-modules. We now show that the

canonical morphism
E → Γ(X, ‹D(m)

X]/S]
⊗
D̃

(m)

X]/S]

E).

is an isomorphism. Let us then note En the image of (‹D(m)

X]/S],n
)r by ε and B := Γ(X,BX). The

module E is therefore equal to the union of the B-modules En which are of finite type. As the ring
sheaf BX verifies theorem A, then the functorial in En canonical morphism En → Γ(X,BX ⊗B En) is an
isomorphism. Commutation of filtered inductive limits to tensor products and to the functor Γ(X,−)
then gives us the canonical isomorphisms

Γ(X,BX ⊗B E)
∼−→ Γ(X, lim−→

n∈N

BX ⊗B En)
∼−→ lim−→

n∈N

Γ(X,BX ⊗B En)
∼−→ lim−→

n∈N

En
∼−→ E. (4.1.3.19.1)

We deduce from the isomorphisms 4.1.3.18.1 than the canonical morphism

BX ⊗B E → ‹D(m)

X]/S]
⊗
D̃

(m)

X]/S]

E (4.1.3.19.2)

is an isomorphism. Using 4.1.3.19.1, this yields that the canonical morphism

E → Γ(X, ‹D(m)

X]/S]
⊗
D̃

(m)

X]/S]

E)

is an isomorphism.
3) Let E be a ‹D(m)

X]/S]
-module endowed with a finite presentation

(‹D(m)

X]/S]
)r

φ→ (‹D(m)

X]/S]
)s

ε→ E → 0. (4.1.3.19.3)

i) Let’s start by showing that Γ(X, E) is a ‹D(m)

X]/S]
-module of finite type. According to the lemma

4.1.3.12, there exists an integer n0 such that for any integer n, the composite morphism (‹D(m)

X]/S],n
)r ↪→
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(‹D(m)

X]/S]
)r

φ→ (‹D(m)

X]/S]
)s factorizes into a morphism φn: (‹D(m)

X]/S],n
)r → (‹D(m)

X]/S],n+n0
)s. The BX -modules

Mn := Im(φn) are then coherent. The family of BX -modules (Mn)n∈N endows therefore M := Im(φ)
with an exhaustive filtration by coherent BX -modules.

Moreover, it follows from 4.1.3.19.3 the exact sequence:

0→M→ (‹D(m)

X]/S]
)s

ε→ E → 0, (4.1.3.19.4)

where the morphism M → (‹D(m)

X]/S]
)s is the canonical injection. Since the functor H1(X,−) com-

mutes to filtered inductive limits, since BX satisfies theorems A and B for coherent modules, then
H1(X,M)

∼−→ lim−→n∈N
H1(X,Mn)

∼−→ lim−→n∈N
0
∼−→ 0. By applying the functor Γ(X,−) to the exact

sequence 4.1.3.19.4, we therefore get that the morphism Γ(X, ε): (‹D(m)

X]/S]
)s → Γ(X, E) is surjective. We

have therefore shown that the functor Γ(X,−) of the proposition is well defined.
ii) It remains to show that the canonical morphism ‹D(m)

X]/S]
⊗
D̃

(m)

X]/S]

Γ(X, E)→ E is an isomorphism.

Thanks to proposition 4.1.3.16, there is a good filtration (En)n∈N of E . Since the BX -modules En are
coherent, since BX satisfies the theorems A and B for coherent modules, then the canonical morphism
BX ⊗B Γ(X, En) → En are isomorphisms. Since filtered inductive limits commute to the global section
functors and tensor products, we then obtain the canonical isomorphisms

BX ⊗B Γ(X, E)
∼−→ lim−→

n∈N

BX ⊗B Γ(X, En)
∼−→ lim−→

n∈N

En
∼−→ E . (4.1.3.19.5)

The canonical isomorphism BX ⊗B Γ(X, E)
∼−→ ‹D(m)

X]/S]
⊗
D̃

(m)

X]/S]

Γ(X, E) (see 4.1.3.19.2) and 4.1.3.19.5

then provide us with the expected canonical isomorphism‹D(m)

X]/S]
⊗
D̃

(m)

X]/S]

Γ(X, E)
∼−→ E .

Remark 4.1.3.20. Suppose X] is a log-scheme and not a formal log-scheme, i.e. we consider the al-
gebraic case of 3.4. Suppose moreover X affine and BX is quasi-coherent. Let E be a coherent‹D(m)

X]/S]
-module. Then ‹D(m)

X]/S]
and E are quasi-coherent OX -modules and the canonical morphisms

OX ⊗Γ(X,OX) Γ(X, ‹D(m)

X]/S]
) → ‹D(m)

X]/S]
and OX ⊗Γ(X,OX) Γ(X, E) → E are isomorphisms. The first one

induces that the canonical morphism OX ⊗Γ(X,OX) Γ(X, E)→ ‹D(m)

X]/S]
⊗

Γ(X,D̃(m)

X]/S]
)
Γ(X, E) is an isomor-

phism. Hence, so is the canonical morphism ‹D(m)

X]/S]
⊗

Γ(X,D̃(m)

X]/S]
)

Γ(X, E)→ E is an isomorphism. This

yields that E is globally of finite presentation. Hence, 4.1.3.19, remain valid by replacing the hypothe-
sis “globally of finite presentation” by “coherent”. With 4.1.3.16 and 4.1.3.11, this implies that ‹D(m)

X]/S]

satisfies theorems A and B for coherent modules in the sense of 1.4.3.14.

Theorem 4.1.3.21. Let E be a ‹D(m)

X]/S]
-module. Then E is coherent if and only if it admits good filtrations

locally.

Proof. Since ‹D(m)

X]/S]
is coherent (see 4.1.2.17), then it follows from the proposition 4.1.3.16, that if E is

a coherent ‹D(m)

X]/S]
-module then it locally admits good filtrations. Let us show the converse.

The assertion being local, we are reduced to the case where X is an affine formal scheme above which
there is a good filtration (En)n∈N of E . By hypothesis, there therefore exists an integer r1 ∈ N such that
for any integer n ≥ r1, we have En =

∑pm−1
j=0

‹D(m)

X]/S],n−r1+j
· Er1−j . Since the sheaf of rings BX verifies

theorems A and B for coherent modules, then we get from 4.1.3.3 the equality

Γ(X, En) =

pm−1∑
j=0

‹D(m)

X]/S],n−r1+j
Γ(X, En1−j).

This yields that Γ(X, E) is generated as ‹D(m)

X]/S]
-module by Γ(X, En1

). It is thus a ‹D(m)

X]/S]
-module of

finite type.
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Since is E is equipped with a filtration (En)n∈N by coherent BX -modules, then it follows from 4.1.3.19.5
(to check this isomorphism, we only need a filtration by coherent BX -modules) that we have the canonical
isomorphism:

BX ⊗Γ(X,BX) Γ(X, E)
∼−→ E . (4.1.3.21.1)

Now, the proposition 4.1.3.19 gives us the isomorphism

BX ⊗Γ(X,BX) Γ(X, E)
∼−→ ‹D(m)

X]/S]
⊗

Γ(X,D̃(m)

X]/S]
)

Γ(X, E). (4.1.3.21.2)

By using 4.1.3.21.1 and 4.1.3.21.2, we obtain that the canonical morphism‹D(m)

X]/S]
⊗

Γ(X,D̃(m)

X]/S]
)

Γ(X, E)→ E .

is an isomorphism. The theorem 4.1.3.19 allows us to conclude.

4.1.3.22. The canonical order filtration (‹D(m)

X]/S],n
)n∈N of ‹D(m)

X]/S]
gives us a sheaf of rings

gr ‹D(m)

X]/S]
:= ⊕n∈N

‹D(m)

X]/S],n
/‹D(m)

X]/S],n−1
.

Also, the graduated ring associated with this filtration gr ‹D(m)

X]/S]
:= ⊕n∈N

‹D(m)

X]/S],n
/‹D(m)

X]/S],n−1
is

isomorphic to Γ(X, gr ‹D(m)

X]/S]
) (this results from the commutation of Γ(X,−) to filtered inductive limits

and from the fact that BX satisfies the theorems A and B for coherent -modules). Similarly to 4.1.3.18.1,
we have the canonical isomorphism

BX ⊗BX gr ‹D(m)

X]/S]
∼−→
Ä
⊕n∈NBX ⊗BX grn ‹D(m)

X]/S]

ä ∼−→ ⊕n∈N grn ‹D(m)

X]/S]
= ‹D(m)

X]/S]
. (4.1.3.22.1)

This yields that for any BX ⊗BX gr ‹D(m)

X]/S]
-module G, the canonical morphism

BX ⊗BX G→ gr ‹D(m)

X]/S]
⊗

gr D̃
(m)

X]/S]

G (4.1.3.22.2)

is an isomorphism.
When a left ‹D(m)

X]/S]
-module E is endowed with a filtration (Er)r∈N, if we take the convention that

Er = 0 for any integer r ≤ −1 and then writing for r ≥ 0, grr E := Er/Er−1 we can then associate its
graded ring with him:

gr(E) := ⊕r∈N grr E .

The sheaf gr(E) is then equipped with a canonical structure of gr ‹D(m)

X]/S]
-module.

Following 4.1.2.17.a, the sheaf of rings gr ‹D(m)

X]/S]
is commutative. Moreover, the canonical ring

morphism D(m)

X]/S]
→ ‹D(m)

X]/S]
(see 4.1.2.2) induces a commutative ring homomorphism grD(m)

X]/S]
→

gr ‹D(m)

X]/S]
. Also, as with all r ∈ N, grr ‹D(m)

X]/S]
is a locally free BX -module, we verify that the canonical

morphism BX ⊗O
X]/S]

grD(m)

X]/S]
→ gr ‹D(m)

X]/S]
is a ring isomorphism.

Proposition 4.1.3.23 (Theorem A). Suppose X is affine. Then the functors G 7→ Γ(X,G) and G 7→
gr ‹D(m)

X]/S]
⊗

gr D̃
(m)

X]/S]

G are quasi-inverse category equivalences between the category of left gr ‹D(m)

X]/S]
-

module globally of finite presentation and the category of gr ‹D(m)

X]/S]
-modules of finite type.

Proof. The proof is analogous to that of the theorem 4.1.3.19.

Remark 4.1.3.24. Suppose X] is a log-scheme and not a formal log-scheme, i.e. we consider the algebraic
case of 3.4. Suppose moreover X affine and BX is quasi-coherent. Similarly to 4.1.3.20, we can check
that a coherent gr ‹D(m)

X]/S]
-module is globally of finite presentation.

The following theorem gives us a characterization of the good filtrations among the filtrations.
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Theorem 4.1.3.25. Let E be a ‹D(m)

X]/S]
-module and (En)n∈N a filtration of E. The following two asser-

tions are equivalent:

(a) The filtration (En)n∈N is good.

(b) The gr ‹D(m)

X]/S]
-module gr E is coherent.

Proof. The proposition being of local nature, we are therefore reduced to assuming that X is affine and
that X]/S] is endowed with logarithmic coordinates.

1) Let us prove that (a) ⇒ (b). So let’s assume that the filtration (En)n∈N is good. By hypothesis,
there therefore exists an integer n1 ∈ N such that for any integer n ≥ n1, we have

En =

pm−1∑
j=0

‹D(m)

X]/S],n−n1+j
En1−j .

We deduce that the canonical morphism of coherent BX -modules

⊕p
m−1
j=0

‹D(m)

X]/S],n−n1+j
⊗BX En1−j → En,

is surjective. Since the sheaf of rings BX satisfies the theorem A and B for coherent modules, then it
follows from 4.1.3.3 that the canonical morphism of B := Γ(X,BX)-modules

Γ(X,⊕p
m−1
j=0

‹D(m)

X]/S],n−n1+j
⊗BX En1−j) = ⊕p

m−1
j=0

‹D(m)

X]/S],n−n1+j
⊗B Γ(X, En1−j)→ Γ(X, En),

is surjective. We therefore deduce the equality Γ(X, En) =
∑pm−1
j=0

‹D(m)

X]/S],n−n1+j
Γ(X, En1−j). More-

over, since the BX -modules En are coherent, using again 4.1.3.3, we obtain the equality Γ(X, gr E) =

⊕∞n=0Γ(X, En)/Γ(X, En−1). From these two formulas, we conclude that Γ(X, gr E) is generated as gr ‹D(m)

X]/S]
-

module by ⊕n=n1
n=0 Γ(X, gr En). Since ⊕n=n1

n=0 Γ(X, gr En) is a Γ(X,BX)-module of finite type, Γ(X, gr E) is
therefore a gr ‹D(m)

X]/S]
-module of finite type. Since gr ‹D(m)

X]/S]
is noetherian, then it is of finite presentation.

Since BX satisfies theorems A and B for coherent modules, then the canonical morphisms BX ⊗B
Γ(X, grn E)→ grn E are isomorphisms for any n ∈ N. The tensor product commuting to direct sums, we
deduce that the canonical morphism BX ⊗B Γ(X, gr E)→ gr E is an isomorphism. With 4.1.3.22.2, this
yields that the canonical morphism gr ‹D(m)

X]/S]
⊗

gr D̃
(m)

X]/S]

Γ(X, gr E)→ gr E is also an isomorphism.

We then deduce from the proposition 4.1.3.23 that gr E is a gr ‹D(m)

X]/S]
-module of finite presentation

and therefore a coherent gr ‹D(m)

X]/S]
-module.

2) Conversely, let us check (b)⇒ (a). So suppose gr E is gr ‹D(m)

X]/S]
-coherent.

i) By induction on n ∈ N, we find that the BX -coherence for all n of En is equivalent to the BX -
coherence for all n of grn E . Let us show this last assertion. Now, according to the proposition 4.1.3.23,
we have the canonical morphism:

BX ⊗B Γ(X, gr E)
∼−→ gr E

is an isomorphism. Since the functor Γ(X,−) commutes to filtered direct sums, then this yields that the
canonical morphisms

BX ⊗B Γ(X, grn E)→ grn E

are isomorphisms for all n ∈ N. It only remains for us to show that for all n the B-module Γ(X, grn E)
is of finite type. For this, according to the proposition 4.1.3.23, we use the fact that Γ(X, gr E) is a
gr ‹D(m)

X]/S]
-module of finite type. So there are homogeneous elements x1, ..., xr, of respective degree

n1, ..., nr generating Γ(X, gr E) and therefore we obtain by identification the equality for all n ∈ N:

Γ(X, grn E) =
r∑
l=1

grn−nl
‹D(m)

X]/S]
· xl. (4.1.3.25.1)

It therefore follows that Γ(X, grn E) is a B-module of finite type. We have therefore shown that for all
n, gr En is a coherent BX -module.
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ii) Also, since Γ(X, grn E) = Γ(X, En)/Γ(X, En−1) and in setting N0 = sup(n1, ..., nr), by using the
equality 4.1.3.25.1, we can check by induction on the integer n ≥ −N0 the following equality:

Γ(X, EN0+n) =
r∑
l=1

‹D(m)

X]/S],n+N0−nlxl. (4.1.3.25.2)

We further know that ‹D(m)

X]/S],n+N0−nl =
∑pm−1
j=0

‹D(m)

X]/S],n+j
‹D(m)

X]/S],N0−nl−j . By injecting this equality
into 4.1.3.25.2, we then obtain

Γ(X, EN0+n) =

pm−1∑
j=0

‹D(m)

X]/S],n+j
(
r∑
l=1

‹D(m)

X]/S],N0−nl−j .xl). (4.1.3.25.3)

However, the formula 4.1.3.25.2 applied to n equal to −j shows that the term placed between parentheses
of the sum of 4.1.3.25.3 is none other than Γ(X, EN0−j). We therefore obtain:

Γ(X, EN0+n) =

pm−1∑
j=0

‹D(m)

X]/S],n+j
Γ(X, EN0−j),

which completes the demonstration.

Corollary 4.1.3.26. Let 0→ E ′ → E → E ′′ ε→ 0 be an exact sequence of ‹D(m)

X]/S]
-coherent modules, and

(En)n∈N a good filtration of E. Then the filtrations of E ′, E ′′ defined by: E ′n := En ∩ E ′, E ′′n = ε(En) are
good.

Proof. The filtrations induce the exact sequence 0 → gr E ′ → gr E → gr E ′′ → 0. According to the
theorem 4.1.3.25, it then suffices to show that gr E ′ is gr ‹D(m)

X]/S]
-coherent. Since the assertion is local,

we are reduced to the case where X is affine.
As the functor Γ(X,−) is left exact, Γ(X, gr E ′) is a submodule of Γ(X, gr E). Since X is affine, then

Γ(X, gr ‹D(m)

X]/S]
) is Noetherian and Γ(X, gr E ′) is therefore of finite type. Show coherence of gr E ′ then

amounts to showing that the canonical morphism

gr ‹D(m)

X]/S]
⊗

Γ(X,gr D̃(m)

X]/S]
)

Γ(X, gr E ′)→ gr E ′,

is an isomorphism. By identifying the terms of the same degree, it is up to the same to show that, for all
n, the induced canonical morphisms grn ‹D(m)

X]/S]
⊗

Γ(X,grn D̃
(m)

X]/S]
)
Γ(X, grn E ′)→ grn E ′ are isomorphisms.

It suffices to show that the BX -modules En are coherent for any integer n. Since B := Γ(X,BX) is a
Noetherian ring and we have a canonical inclusion Γ(X, E ′n) ⊂ Γ(X, En), we deduce that Γ(X, E ′n) is of
finite type. Also, the extension B → BX being flat, we then have

BX⊗B Γ(X, E ′n)
∼−→ BX⊗B (Γ(X, En)∩Γ(X, E ′)) ∼−→ (BX⊗B Γ(X, En))∩ (BX⊗B Γ(X, E ′)) ∼−→ En∩E ′,

the last isomorphism comes from the fact that E ′ is a coherent ‹D(m)

X]/S]
-module (use 4.1.3.19) and that

En is a coherent BX -module.

Remark 4.1.3.27. This subsection (definitions and properties) still holds replacing left modules by right
modules. For instance, ifM is a right ‹D(m)

X]/S]
-module endowed with a filtration (Mr)r∈N, the filtration

(Mr)r∈N is said to be good (resp. quasi-good) if the following two conditions hold (resp. the following
first condition holds):

(a) For any r ∈ N,Mr is BX -coherent ;

(b) There exists an integer r1 ∈ N such that for any integer r ≥ r1, we have

Mr =

pm−1∑
j=0

Mr1−j · ‹D(m)

X]/S],r−r1+j
.
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Besides, the equivalence of categories 4.3.5.4 are compatible with this notion of good filtration, i.e., if
E is a left ‹D(m)

X]/S]
-module and M := ω̃X]/S] ⊗BX E is the corresponding right ‹D(m)

X]/S]
-module then

(Er)r∈N 7→ (ω̃X]/S] ⊗BX Er)r∈N is a bijection between (quasi-)good filtrations of E and (quasi-)good
filtrations ofM.

The following corollary will be useful later.

Corollary 4.1.3.28. We suppose BX = OX . Let E be a coherent D(m)

X]/S]
-module. There exists Y ⊂ X

open dense on which E is OY -locally free.

Proof. Since this is local, we can suppose X is affine and E has a global finite presentation. Hence,
E admits a good filtration (En)n∈N (see 4.1.3.16) and the induced grD(m)

X]/S]
-module gr E is coherent

(see 4.1.3.25). Hence, following theorem A of 4.1.3.19 and 4.1.3.23, since grD(m)

X]/S]
is a commutative

OX -algebra of finite type, then it follows from [Gro65, IV.6.9.1] (in the noetherian case) that there
exists a principal open subset Y of X such that gr E|Y is OY -free. Hence, for any n ∈ N, grn E|Y is a
projective OY -module and we get a section grn E|Y → En|Y of the canonical projection En|Y → grn E|Y .
Denote by αn : grn E|Y → En|Y ⊂ E|Y the composite morphism. By induction on n, we can check
that the morphism ⊕ni=0αi : ⊕ni=0 : ⊕ni=0 gri E|Y → E|Y in injective and its image is En. This yields the
isomorphism ⊕ni=0αi : ⊕∞i=0 : ⊕∞i=0 gri E|Y → E|Y .

4.2 Tensor products and internal homomorphism of D-modules

We keep notation 3.4. Let BX be a commutative OX algebra equipped with a left D(m)

X]/S]
-module

structure which is compatible with its algebra structure. We keep notation 4.1.2, in particular we set‹D(m)

X]/S]
:= BX ⊗OX D

(m)

X]/S]
.

4.2.1 PD-stratifications of level m with coefficients, nilpotence
Definition 4.2.1.1. An m-PD-stratification (or PD-stratification of level m) ε relatively to X]/S] with
coefficients in BX on a BX -module E is the data of a family of ‹PnX]/S](m)-linear homomorphisms

εn : ‹PnX]/S](m) ⊗BX E → E ⊗BX ‹PnX]/S](m),

where the tensor products are taken respectively for the right and left structures of ‹PnX]/S](m), these
isomorphisms satisfying the following conditions:

(a) εE0 = idE and the family is compatible with respect to the projections ψ̃n+1,n∗
X]/S],(m)

(see 4.1.2.12.1), i.e.
for any n′ ≥ n in N we have the commutative diagram:

ψ̃n
′,n∗

X]/S],(m)
(‹Pn′X]/S],(m) ⊗BX E)

ψ̃n
′,n∗

X]/S],(m)
(εn′ )
//

∼
��

ψ̃n
′,n∗

X]/S],(m)
(E ⊗BX ‹Pn′X]/S],(m))

∼
��‹PnX]/S],(m) ⊗BX E

εn // E ⊗BX ‹PnX]/S],(m)

;

(b) The cocycle condition is satisfied, i.e., for any n, n′, the diagram‹PnX]/S](m) ⊗ ‹Pn′X]/S](m) ⊗ E
δ̃n,n

′∗
(m)

(εn+n′ ) //

q̃n,n
′∗

1(m)
(εn+n′ )

**

E ⊗ ‹PnX]/S](m) ⊗ ‹Pn′X]/S](m)

‹PnX]/S](m) ⊗ E ⊗ ‹Pn′X]/S](m)

q̃n,n
′∗

0(m)
(εn+n′ )

44

(4.2.1.1.1)
is commutative.
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Say a BX -linear homomorphism ϕ : E → F between BX -modules equipped with m-PD stratifications
relatively to X]/S] with coefficients in BX is horizontal if it commutes with all εn.

4.2.1.2. With notation 3.2.2.12 (add some tildes), similarly to 2.1.1.2, we check that the above condition
4.2.1.1.1 is equivalent to

∀ n, q̃n∗02,(m)(εn) = q̃n∗01,(m)(εn) ◦ q̃n∗12,(m)(εn). (4.2.1.2.1)

Proposition 4.2.1.3. Let M be a BX-module together with an m-PD stratification (εMn ) relative to
X]/S] with coefficient in BX . Then the homomorphisms εMn are ‹PnX]/S],(m)-linear isomorphisms.

Proof. Copy the proof of 2.1.1.3.

Proposition 4.2.1.4. Let E be an OX-module together with an m-PD stratification (εEn) relative to
X]/S] with coefficients in BX . Then the homomorphisms εEn are PnX/S,(m)-linear isomorphisms.

Proof. We can copy word by word the proof of 2.1.1.3.

Proposition 4.2.1.5. We have the following properties.

(I) Given a BX-module E. The following are equivalent.

(a) A left ‹D(m)

X]/S]
-module structure on E extending its BX-module structure.

(b) A family of BX-linear homomorphisms θn : E → p1∗(E ⊗BX ‹PnX]/S],(m)) (the BX-module struc-

ture of this latter is induced by the right structure of ‹PnX]/S],(m)) satisfying

(i) θ0 = idE and for any n, n′ ∈ N, the diagram

E θn // E ⊗ ‹PnX]/S],(m)

E
θn+n′

// E ⊗ ‹Pn+n′

X]/S],(m)

id⊗ψ̃n+n′,n
X]/S],(m)

OO
(4.2.1.5.1)

is commutative.
(ii) for all n, n′ we have the commutative diagrams (cocycle condition)

E ⊗BX ‹PnX]/S],(m)

id⊗δn,n
′

(m)// E ⊗BX ‹PnX]/S],(m) ⊗BX ‹Pn′X]/S],(m)

E

θE
n+n′

OO

θE
n′ // E ⊗BX ‹Pn′X]/S],(m)

θEn⊗id

OO
(4.2.1.5.2)

(c) An m-PD stratification ε = (εEn) on E.

(II) Let E be left ‹D(m)

X]/S]
-module and let θE = (θEn), εE = (εEn) be the associated family or m-PD

stratification.

(a) The action by a section P of ‹D(m)

X]/S]
on E can be retrieved from θE (resp. εE) via the following

composition of the bottom (resp. top) horizontal morphisms of the commutative diagram:

E
p̃n1,(m),E

4.1.2.7
// ‹PnX]/S],(m) ⊗BX E

εEn // E ⊗BX ‹PnX]/S],(m)

id⊗P // E

E
θEn // p1∗(E ⊗BX ‹PnX]/S],(m))

id⊗P // E .

(4.2.1.5.3)
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(b) Suppose X] → S] is endowed with logarithmic coordinates (uλ)λ=1,...,d. Conversely, with
notation 4.1.2.16 for any x ∈ E, we have the Taylor expansion formula

θEn(x) = εEn(1⊗ x) =
∑
|k|≤n

∂
〈k〉
] (x)⊗ τ{k}] , (4.2.1.5.4)

where ∂〈k〉] (x) is the action of the operator ∂〈k〉] on x. The inverse of 4.2.1.5.4 can be described
via the formula:

(εEn)−1(x⊗ 1) =
∑
|k|≤n

τ
{k}
] ⊗ ∂̃〈k〉] x. (4.2.1.5.5)

(III) A BX-linear morphism φ : E → F between two left ‹D(m)

X]/S]
-modules is ‹D(m)

X]/S]
-linear if and only if

φ is horizontal.

Proof. We can copy the proof of the proposition without coefficients, i.e. when BX = OX (see 3.4.2.5).
We check 4.2.1.5.5 similarly to 3.4.5.3.1 by using 3.4.5.2.1.

Remark 4.2.1.6. Suppose X] → S] is endowed with logarithmic coordinates (bλ)λ=1,...,d. Let E be a
BX -module endowed with a family (as n varies) of ‹PnX,(m)-linear isomorphisms

εn : ‹PnX,(m) ⊗BX E = pn∗1(m)(E)
∼−→ pn∗0(m)(E) = E ⊗BX ‹PnX,(m),

satisfying the condition (a) of 4.2.1.1. For any x of E , for any k ∈ Nd, for any n ≥ |k|, let us denote by
∂
〈k〉
] (x) the section of E such that we get

εEn(1⊗ x) =
∑
|k|≤n

∂
〈k〉
] (x)⊗ τ{k}] .

First remark that these elements do not depend on the choice of n which justifies the notation. Moreover,
the cocycle condition is equivalent to the condition that the formula

i+j∑
k=sup{i,j}

k!

(i+ j − k)!(k − i)!(k − j)!

q(m)
i

!q(m)
j

!

q
(m)
k !

∂
〈k〉(m)

] (x) = ∂
〈i〉
] (∂

〈j〉
] (x)) (4.2.1.6.1)

holds for any section x of E , for any i, j ∈ Nd (to understand where this formula is coming from, recall
the formula 3.2.3.13.1).

Indeed, this is a consequence of the following computation: since δn,n
′

(m) (τ]i) = τ]i⊗τ]i+τ]i⊗1+1⊗τ]i
(see 3.2.3.10.1) and δn,n

′

(m) is an m-PD-morphism, then using the formula 1.2.4.5.2, we get

δ̃n,n
′∗

(m) (εn+n′)(1⊗ 1⊗ x) =
∑

|k|≤n+n′

∂
〈k〉
] (x)⊗ δn,n

′

(m) (τ
{k}
] ) =

∑
|k|≤n+n′

∑
|i|≤n

∑
|j|≤n′

α
k
i,j∂
〈k〉
] (x)⊗ τ{i}] ⊗ τ

{j}
]

(4.2.1.6.2)

where αki,j ∈ N. On the other hand, we have

q̃n,n
′∗

0(m) (εn+n′) ◦ q̃n,n
′∗

1(m) (εn+n′)(1⊗ 1⊗ x) = q̃n,n
′∗

0(m) (εn+n′)

Ñ ∑
|j|≤n′

∂
〈j〉
] (x)⊗ τ{j}]

é
=
∑
|j|≤n′

∑
|i|≤n

∂
〈i〉
] (∂

〈j〉
] (x))⊗ τ{i}] ⊗ τ

{j}
] (4.2.1.6.3)

The cocycle condition is satisfied if and only if the last terms of respectively 4.2.1.6.2 and 4.2.1.6.3 are
equal. When E ′ = ‹D(m)

X]/S]
, the cocycle condition is satisfied and since ‹D(m)

X]/S]
is a free BX -module, then

in the case x = 1 we get the first equality

∑
|k|≤n+n′

α
k
i,j∂
〈k〉
] = ∂

〈i〉
] ∂
〈j〉
]

3.2.3.13.1
=

i+j∑
k=sup{i,j}

k!

(i+ j − k)!(k − i)!(k − j)!

q(m)
i

!q(m)
j

!

q
(m)
k !

∂
〈k〉(m)

] .

Hence, we are done.
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Example 4.2.1.7. We denote by εBXn the m-PD-stratification induced by the left D(m)

X]/S]
-module struc-

ture of BX . We denote by εBXn/BX : ‹PnX]/S](m) ⊗BX BX
∼−→ BX ⊗BX ‹PnX]/S](m) the isomorphism making

commutative the diagram of ‹PnX]/S](m)-algebras‹PnX]/S](m)
‹PnX]/S](m) ⊗BX BX

ε
BX
n/BX

∼
��

∼
oo

‹PnX]/S](m) BX ⊗BX ‹PnX]/S](m)∼
oo

(4.2.1.7.1)

where the horizontal isomorphisms are the canonical ones. Similarly to 3.4.2.4, we can check that this is
an m-PD-stratification relatively to X]/S] with coefficients in BX . The induced canonical structure of‹D(m)

X]/S]
-module on BX is then described as follows : if P ∈ ‹D(m)

X]/S]
and b ∈ BX , the action of P on b is

the image of b via the composition morphism: BX
p̃n1−→ ‹PnX]/S](m)

P−→ BX . Since {∂〈k〉(m)

] , |k| ≤ n} is the

dual basis of {τ{k}(m)

] , |k| ≤ n} (for the left structure), this yields the Taylor formula:

p̃n1,(m)(b) =
∑
|k|≤n

p̃n0,(m)(∂
〈k〉
] (b))τ

{k}
] . (4.2.1.7.2)

Lemma 4.2.1.8. Let ρ : D(m)

X]/S]
→ ‹D(m)

X]/S]
be the canonical morphism (see 4.1.2.2.2). Then the left

D(m)

X]/S]
-module induced via ρ by this left ‹D(m)

X]/S]
-module structure on BX defined at 4.2.1.7 is equal to

the given left D(m)

X]/S]
-module structure of BX .

Proof. Since this is local, we can suppose X] → S] is endowed with logarithmic coordinates (bλ)λ=1,...,d.
Then by using the Taylor formula satisfied by εBXn (see 3.4.2.5.4) for any section b of BX we compute in‹PnX]/S](m)

(1⊗ 1) · p̃n1(m)(b) = (1⊗ 1) · εBXn (1⊗ b) =
∑
|k|≤n

∂
〈k〉
] (b)⊗ τ{k}]

where p̃n1(m)) is defined at 4.1.2.5. Since the top horizontal isomorphism of the diagram 4.2.1.7.1 sends

(1⊗ 1)⊗ b to (1⊗ 1) · p̃n1(m)(b) and the bottom horizontal isomorphism sends
∑
|k|≤n ∂

〈k〉
] (b)⊗ (1⊗ τ{k}] )

to
∑
|k|≤n ∂

〈k〉
] (b)⊗ τ{k}] , then we get

εBXn/BX ((1⊗ 1)⊗ b) =
∑
|k|≤n

∂
〈k〉
] (b)⊗ (1⊗ τ{k}] ).

Hence, we conclude thanks to the formula 4.2.1.5.4 (recall by abuse of notation 1⊗ τ{k}] = τ
{k}
] ).

4.2.1.9. We define a sheaf of PX]/S](m)-algebras by setting ‹PX]/S](m) := BX ⊗OX PX]/S](m).
We have the following BX -m-PD isomorphism

BX〈T1, . . . , Tr〉(m)
∼−→ ‹PX]/S],(m)

Tλ 7→ τ]λ, (4.2.1.9.1)

where the structure of BX -module of ‹PX]/S],(m),γ is given by the left structure or the right one.

Proposition 4.2.1.10. Suppose X] → S] is endowed with logarithmic coordinates (bλ)λ=1,...,d. Let E
be a left ‹D(m)

X]/S]
-module. The following conditions are equivalent:

(a) For any section e of E, locally there exists an integer N such that ∂〈k〉] (x) = 0 for any |k| ≥ N .

(b) The condition (a) holds for any local system of logarithmic coordinates on any open of X.
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(c) There exists an isomorphism

ε : ‹PX]/S](m) ⊗BX E → E ⊗BX ‹PX]/S](m),

satisfying the cocycle condition, and inducing by extension via the epimorphisms ‹PX]/S](m) →‹PnX]/S](m) the m-PD-stratification of E.

Proof. By using the Taylor formula 4.2.1.5.4 and its inverse 4.2.1.5.5 (use the formula 3.4.1.2.2 to check
the can be extended to an inverse of ε) and the description of 4.2.1.9.1, we can follow the proof of [Ber96c,
2.3.7].

Definition 4.2.1.11. Let E be a left ‹D(m)

X]/S]
-module. We say that E is “quasi-nilpotent” is locally on X

the ‹D(m)

X]/S]
-module E satisfies the conditions of the proposition 4.2.1.10. If moreover we can choose such

an integer N for any local section e of E , we say that E is “nilpotent”.

4.2.2 PD-costratifications of level m with coefficients
We define m-PD-costratifications relatively to X]/S] with coefficients in BX as follows.

Definition 4.2.2.1. An m-PD-costratification relatively to X]/S] with coefficients in BX on a BX -
moduleM is the data of a family of ‹PnX]/S], (m)-linear homomorphisms

εn : HomBX (p̃n0∗
‹PnX]/S], (m),M)→ HomBX (p̃n1∗

‹PnX]/S], (m),M),

this ones satisfying the following conditions :

(a) ε0 = idM and for any n′ ≥ n in N, εn and ψ̃n
′,n[

X/S,(m)(εn′) are canonically isomorphic, i.e. the following
diagram

ψ̃n
′,n[

X]/S],(m)
(pn

′[
0,(m)(M))

ψ̃n
′,n[

X]/S],(m)
(εn′ )
//

∼
��

ψ̃n
′,n[

X]/S],(m)
(pn

′[
1,(m)(M))

∼
��

p̃n[0,(m)(M)
εn // p̃n[1,(m)(M)

, (4.2.2.1.1)

whose vertical isomorphisms are the canonical ones, is commutative ;

(b) For any n, n′, with notation 2.1.2.1 the diagram

HomBX (p̃n,n
′

0∗ (‹PnX]/S](m) ⊗BX ‹Pn′X]/S](m)),M)
δ̃n,n

′[
(m)

(εn+n′ ) //

q̃n,n
′[

0 (εn+n′ )

**

HomBX (p̃n,n
′

2∗ (‹PnX]/S](m) ⊗BX ‹Pn′X]/S](m)),M)

HomBX (p̃n,n
′

1∗ (‹PnX]/S](m) ⊗BX ‹Pn′X]/S](m)),M)

q̃n,n
′[

1 (εn+n′ )
44

(4.2.2.1.2)
is commutative.

Say a BX -linear homomorphism ϕ : E → F between BX -modules equipped with m-PD costratifications
relatively to X]/S] with coefficients in BX is horizontal if it commutes with all εn.

4.2.2.2. With notation 3.2.2.12 (with some tildes), similarly to 2.1.1.2, we check that the above condition
4.2.2.1.2 is equivalent to

∀ n, q̃n[02,(m)(εn) = q̃n[01,(m)(εn) ◦ q̃n[12,(m)(εn). (4.2.2.2.1)

Proposition 4.2.2.3. Let M be a BX-module together with an m-PD costratification (εMn ) relative to
X]/S] with coefficient in BX . Then the homomorphisms εMn are ‹PnX]/S],(m)-linear isomorphisms.

145



Proof. Copy the proof of 2.1.1.3.

Notation 4.2.2.4. Let M be a BX -module. Since pi∗PnX,(m) is locally free as BX -modules, then the
canonical homomorphism

ιMn : M⊗BX ‹D(m)
X,n =M⊗BX HomBX (p̃n0∗

‹PnX]/S], (m),BX)→ HomBX (p̃n0∗
‹PnX]/S], (m),M) = p̃n[0,(m)(M)

(4.2.2.4.1)
given by x⊗ P 7→ (τ 7→ xP (τ)) is an isomorphism. Similarly, we have the canonical isomorphism

HomBX (p̃n1∗‹PnX]/S], (m),BX)⊗BX M
∼−→ HomBX (p̃n1∗‹PnX]/S], (m),M) = p̃n[1,(m)(M). (4.2.2.4.2)

Proposition 4.2.2.5. For any BX-moduleM, there is an equivalence between the following data :

(a) A structure of right BX ⊗OX D
(m)

X]/S]
-module onM extending its structure of BX-module ;

(b) An m-PD-costratification (εMn ) with coefficients in BX onM ;

A BX-linear homomorphism between two right BX ⊗OX D
(m)

X]/S]
-modules is BX ⊗OX D

(m)

X]/S]
-linear if and

only if it is horizontal.

Proof. Copy the proof of 2.1.2.8.

Lemma 4.2.2.6. LetM be a right BX ⊗OX D
(m)

X]/S]
-module. Let (εMn ) be the m-PD-costratification with

coefficients in BX associated withM.

(a) With notation 4.2.2.4.1, the action of P ∈ BX⊗OXD
(m)

X]/S]
on x ∈M is given from the costratification

by the formula
xP = ev1 ◦εn ◦ ιMn (x⊗ P ). (4.2.2.6.1)

(b) Suppose u1, . . . , ud are logarithmic coordinates of X]/S]. Let {∂?〈h〉] , |h| ≤ n} be the dual basis of

HomBX (p̃n1∗
‹PnX]/S](m),BX) of the basis {τ{h}] , |h| ≤ n} of ‹PnX]/S](m). Conversely, via the identifi-

cation 4.2.2.4.1 and 4.2.2.4.2, the costratification εn of M satisfies the following formula for any
x ∈M and any k ∈ Nd:

εMn (x⊗ ∂〈k〉(m)

] ) =
∑
h≤k

¶
k
h

©
∂
?〈h〉
] ⊗ x∂〈k−h〉] , (4.2.2.6.2)

We have the following formula for the inverse

(εMn )−1(∂?〈k〉 ⊗ x) =
∑
h≤k

¶
k
h

©
x∂̃
〈k−h〉
] ⊗ ∂〈h〉] . (4.2.2.6.3)

Proof. Copy the proof of 2.1.2.9 and 3.4.5.3.2.

Remark 4.2.2.7. Let M be a BX -module endowed with a family (as n varies) of PnX,(m)-linear isomor-
phisms

εn : p̃n[0,(m)(M)→ p̃n[1,(m)(M),

satisfying the condition (a) of 4.2.2.1. We remark that the cocycle condition is local. Let us give a local
description of this condition. Suppose X] → S] is endowed with logarithmic coordinates (bλ)λ=1,...,d.
For any x ofM, for any k ∈ Nd, for any n ≥ |k|, we set

x · ∂〈k〉 := ev1 ◦εn(x⊗ ∂〈k〉). (4.2.2.7.1)

First remark that these elements do not depend on the choice of n which justifies the notation. Moreover,
the cocycle condition is equivalent to the condition that the formula

i+j∑
k=sup{i,j}

k!

(i+ j − k)!(k − i)!(k − j)!

q(m)
i

!q(m)
j

!

q
(m)
k !

x · ∂〈k〉 = (x · ∂〈i〉) · ∂〈j〉 (4.2.2.7.2)
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holds for any section x of E , for any i, j ∈ Nd. Indeed, as for the proof of 2.1.2.8 the family (εn) is
equivalent to the family of BX -linear homomorphisms of the form µMn : p̃1∗(M⊗BXD

(m)
X,n)→M such that

µM0 = idM and the analogue (i.e. replace OX by BX and add some tildes) of the left square of 2.1.2.8.4
is commutative. Moreover, we have checked the cocycle condition is equivalent to the commutativity of
the analogue (i.e. replace OX by BX and add some tildes) of the right square of 2.1.2.8.4, i.e. of the
associativity of the definition 4.2.2.7.1 (recall by construction, x · ∂〈k〉 := µn(x⊗ ∂〈k〉). By BX -linearity
of µMn , we reduce to the case where the operators are of the form ∂〈i〉 and we are done thanks to the
formula 3.2.3.13.1

4.2.3 Internal tensor products and internal homomorphisms

Proposition 4.2.3.1. Let E and F be two left ‹D(m)

X]/S]
-modules.

(a) There exists on the tensor product E ⊗BX F a unique structure of left ‹D(m)

X]/S]
-module functorial in

E and F such that, for any system of logarithmic coordinates on an open subset U ⊂ X, and any
k ∈ Nd, x ∈ Γ(U, E), y ∈ Γ(U,F), we have

∂
〈k〉
] (x⊗ y) =

∑
i≤k

¶
k
i

©
∂
〈i〉
] x⊗ ∂〈k−i〉] y. (4.2.3.1.1)

Moreover, the following formula holds

∂̃
〈k〉
] (x⊗ y) =

∑
i≤k

¶
k
i

©
∂̃
〈i〉
] x⊗ ∂̃〈k−i〉] y. (4.2.3.1.2)

(b) There exists on the sheaf HomBX (E ,F) a unique structure of left ‹D(m)

X]/S]
-module functorial in E and

F such that, for any system of logarithmic coordinates on a open subset U ⊂ X, and any k ∈ Nd,
x ∈ Γ(U, E), φ : E|U → F|U , we have

(∂
〈k〉
] φ)(x) =

∑
i≤k

¶
k
i

©
∂
〈k−i〉
] (φ(∂̃

〈i〉
] x)), (4.2.3.1.3)

Moreover, the following formula holds

(∂̃
〈k〉
] φ)(x) =

∑
i≤k

¶
k
i

©
∂̃
〈k−i〉
] (φ(∂

〈i〉
] x)). (4.2.3.1.4)

(c) Let D be a sheaf of rings on X. Suppose that the structure of left ‹D(m)

X]/S]
-module of E or F extends to

a structure of (‹D(m)

X]/S]
,D)-bimodule. Then the structure of left ‹D(m)

X]/S]
-module of E⊗BX F extends to

a structure of (‹D(m)

X]/S]
,D)-bimodule where the structure of left ‹D(m)

X]/S]
-module is the tensor product

structure . In the same way, the sheaf HomBX (E ,F) is endowed with a canonical structure of
(‹D(m)

X]/S]
,D)-bimodule where the left structure is the internal homomorphism structure.

Proof. (a) The proof of (a) is similar to that of 2.1.3.1.(a): modulo the canonical isomorphisms of‹PnX]/S](m)-modules

p̃ni,(m)∗
‹PnX]/S](m) ⊗BX (E ⊗BX F)

∼−→ (p̃ni,(m)∗
‹PnX]/S](m) ⊗BX E)⊗P̃n

X]/S](m)

(p̃ni,(m)∗
‹PnX]/S](m) ⊗BX F),

(4.2.3.1.5)
we endow the sheaf E ⊗BX F with the m-PD stratification with coefficients in BX by setting

εE⊗Fn := εEn ⊗ εFn : ‹PnX]/S](m) ⊗BX (E ⊗BX F)
∼−→ (E ⊗BX F)⊗BX ‹PnX]/S](m).

By using the formulas 4.2.1.5.4, we get 4.2.3.1.1 similarly to 2.1.3.1.(a). By replacing the use of
the formula 4.2.1.5.4 by that of 4.2.1.5.5, instead of 4.2.3.1.1 similarly to 3.4.2.7.2, we get the formula
4.2.3.1.2 by symmetrical computations.
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(b) Similarly to 2.1.4.1.a, modulo the canonical isomorphisms of ‹PnX]/S](m)-modules

p̃ni,(m)∗
‹PnX]/S](m)⊗BXHomBX (E ,F)

∼−→ HomP̃n
X]/S](m)

(p̃ni,(m)∗
‹PnX]/S](m)⊗BXE , p̃

n
i,(m)∗

‹PnX]/S](m)⊗BXF),

we endow G := HomBX (E ,F) with a m-PD-structure with coefficients in BX by setting

εGn = HomP̃n
X]/S](m)

((εEn)−1, εFn ).

By copying (resp. doing symmetrical computations of that of) the proof of 2.1.4.1.a, we check then
the formula 4.2.3.1.3 (resp. 4.2.3.1.4) by using 4.2.1.5.4 and 4.2.1.5.5 (resp. and the equality (εGn)−1 =
HomP̃n

X]/S](m)

(εEn, (ε
F
n )−1)).

The functoriality in E and F of these structures of ‹D(m)

X]/S]
-modules is a consequence for instance of

formula 4.2.3.1.1 and 4.2.3.1.3. It follows from this functoriality that the part (c) is exact (we can also
prove it directly via the formula 4.2.3.1.1 and 4.2.3.1.3).

Remark 4.2.3.2. When the log structure of X] and S] are trivial, then replacing logarithmic coordinates
by coordinates, the formulas of Propositions 2.1.4.1 and 2.1.3.1 still holds with coefficients. Indeed, we
can either check it similarly or deduce them from 3.4.1.3.1.
Remark 4.2.3.3. Let f : X] → Y ] be a morphism of fine log smooth S]-schemes (resp. fine log smooth
formal S]-schemes). Similarly to 4.2.1.1, we define on a f−1BY -module E an m-PD-stratification as
being the data of a compatible family of f−1‹PnY ](m)-linear isomorphisms

εEn : f−1‹PnY ](m) ⊗f−1BY E
∼−→ E ⊗f−1BY f

−1‹PnY ](m)

satisfying two similar to 4.2.1.1 conditions. As for 4.2.1.5, if E is a f−1BY -module, then there is an
equivalence between the data of a structure of left f−1‹D(m)

Y ]
-module extending its structure of f−1BY -

module and the data of an m-PD-stratification. Moreover, if E and F are two left f−1‹D(m)

Y ]
-modules, we

endow the tensor product E ⊗f−1BY F (resp. Homf−1BY (E ,F)) with a structure of left f−1‹D(m)

Y ]
-module

taking the stratification εEn ⊗f−1P̃n
Y ](m)

εFn (resp. Hom
f−1P̃n

Y ](m)

((εEn)−1, εFn )).

Remark 4.2.3.4. The structures of ‹D(m)

X]/S]
-modules defined in the corollary above, does not depend of

the choice of the level. Let us clarify what it means. Let m′ ≤ m be a couple of nonnegative integers
and let us denote by then forgm′,m the forgetful functor from the category of ‹D(m)

X]/S]
-modules to that of‹D(m′)

X]/S]
-modules. If E and F are two ‹D(m)

X]/S]
-modules, then we have the equalities

forgm′,m(E ⊗BX F) = forgm′,m(E)⊗BX forgm′,m(F),

forgm′,mHomBX (E , F) = HomBX (forgm′,mE , forgm′,mF).

Indeed, this is a consequence of formula 4.2.3.1.1 and 4.2.3.1.3, as well as of the relation 1.4.2.5.2.

Proposition 4.2.3.5. Let E be a left ‹D(m)

X]/S]
-module,M, N be two right ‹D(m)

X]/S]
-modules.

(a) There exists on M⊗BX E (resp. HomBX (E ,M)) a unique structure of right ‹D(m)

X]/S]
-module which

is functorial inM and E such that, for any system of logarithmic coordinates we have open U ⊂ X,
and any k ∈ Nd, x ∈ Γ(U, E), y ∈ Γ(U,M) (resp. φ : E|U →M|U ), we have

(y ⊗ x)∂
〈k〉
] =

∑
h≤k

¶
k
h

©
y∂
〈k−h〉
] ⊗ ∂̃〈h〉] x, (4.2.3.5.1)

(φ∂
〈k〉
] )(x) =

∑
h≤k

¶
k
h

©
φ(∂
〈h〉
] x)∂

〈k−h〉
] . (4.2.3.5.2)

Moreover, the following formulas hold

(y ⊗ x)∂̃
〈k〉
] =

∑
h≤k

¶
k
h

©
y∂̃
〈k−h〉
] ⊗ ∂〈h〉] x, (4.2.3.5.3)

(φ∂̃
〈k〉
] )(x) =

∑
h≤k

¶
k
h

©
φ(∂̃
〈h〉
] x)∂̃

〈k−h〉
] . (4.2.3.5.4)
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(b) There exists on HomBX (N ,M) a unique structure of left ‹D(m)

X]/S]
-module functorial in N andM such

that, for any system of logarithmic coordinates we have open U ⊂ X, and any k ∈ Nd, z ∈ Γ(U,N ),
ψ : N|U →M|U , we have

(∂
〈k〉
] ψ)(z) =

∑
h≤k

¶
k
h

©
ψ(z∂

〈h〉
] )∂̃

〈k−h〉
] . (4.2.3.5.5)

Moreover, the following formula holds

(∂̃
〈k〉
] ψ)(z) =

∑
h≤k

¶
k
h

©
ψ(z∂̃

〈h〉
] )∂

〈k−h〉
] . (4.2.3.5.6)

(c) Let D be a sheaf of rings on X. If the structure of right (resp. left) ‹D(m)

X]/S]
-module of M (resp. E)

extends to a structure of (D, ‹D(m)

X]/S]
)-bimodule (resp. (‹D(m)

X]/S]
,D)-bimodule), then the structure of

right ‹D(m)

X]/S]
-module of M⊗BX E extends to a structure of (resp. right) (D, ‹D(m)

X]/S]
)-bimodule and

that of HomBX (E ,M) extends to a structure of (D, ‹D(m)

X]/S]
,D)-bimodule.

If the structure of right ‹D(m)

X]/S]
-module of N (resp. M) extends to a structure of (D, ‹D(m)

X]/S]
)-

bimodule, then the structure of left ‹D(m)

X]/S]
-module of HomBX (N ,M) extends to a structure of (resp.

left) (‹D(m)

X]/S]
,D)-bimodule.

In the same way, these structures of ‹D(m)

X]/S]
-module do not depend on the level m.

Proof. By copying the proof of 2.1.3.1 and 2.1.4.1, we get the formulas 4.2.3.5.1, 4.2.3.5.2 and 4.2.3.5.5
from by using 4.2.1.5.4 and 4.2.1.5.5. By doing some symmetrical computations (more precisely see the
part (a) of the proof of 4.2.3.1), we get the symmetrical formulas 4.2.3.1.4 and 4.2.3.1.2.

4.2.3.6. Let E ,F be two quasi-nilpotent left ‹D(m)

X]/S]
-modules, M, N be two quasi-nilpotent right‹D(m)

X]/S]
-modules. Then E ⊗BX F (resp. M⊗BX E , resp. HomBX (E ,F), resp. HomBX (E ,M), resp.

HomBX (M,N )) is a quasi-nilpotent left ‹D(m)

X]/S]
-module. Indeed, this is easily checked by using the

local formulas of 4.2.3.1 and 4.2.3.5.

Remark 4.2.3.7. Let E be a left ‹D(m)

X]/S]
-module and M a ‹D(m)

X]/S]
-bimodule. To avoid the risks of

confusions, we will keep the following convention : the tensor product structure of E ⊗BXM comes from
the structure of left ‹D(m)

X]/S]
-module ofM whereas that ofM⊗BX E can be computed via the structure

of right ‹D(m)

X]/S]
-module ofM.

Remark 4.2.3.8. Let CX (resp. C′X) be a BX -algebra commutative endowed with a compatible structure
of left D(m)

X]/S]
-module such that BX → CX (resp. BX → C′X) is D(m)

X]/S]
-linear. The tensor product

structure of left D(m)

X]/S]
-module on the BX -algebra CX ⊗BX C′X is compatible. We have moreover the

morphisms of algebras ‹D(m)

X]/S]
-linear CX → CX ⊗BX C′X and C′X → CX ⊗BX C′X .

Proposition 4.2.3.9. Let E and G be two left ‹D(m)

X]/S]
-modules and F be a right or left ‹D(m)

X]/S]
-module.

The following canonical isomorphisms

E ⊗BX G
∼−→ G ⊗BX E , E ⊗BX (F ⊗BX G)

∼−→ (E ⊗BX F)⊗BX G. (4.2.3.9.1)

are ‹D(m)

X]/S]
-linear.

Proof. This is a consequence of the formulas 4.2.3.5.1 and 4.2.3.1.1.
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4.2.4 Cartan isomorphisms and other relations between tensor products and
homomorphisms

Proposition 4.2.4.1. Let E, F , G be three left ‹D(m)

X]/S]
-modules andM,N be two right ‹D(m)

X]/S]
-modules.

The following canonical isomorphisms are ‹D(m)

X]/S]
-linear :

(E ⊗BX F)⊗BX G
∼−→ E ⊗BX (F ⊗BX G), (4.2.4.1.1)

(M⊗BX F)⊗BX G
∼−→ M⊗BX (F ⊗BX G), E ⊗BX F

∼−→ F ⊗BX E . (4.2.4.1.2)

Proof. We prove that these isomorphisms are horizontal which is straightforward by definition.

Notation 4.2.4.2. Let E ,F be two left ‹D(m)

X]/S]
-modules. LetM be a right ‹D(m)

X]/S]
-module.

(a) Let K be a (resp. left, resp. right) ‹D(m)

X]/S]
-bimodule. In both respective cases, usually, one ‹D(m)

X]/S]
-

module structure of K is called the “left structure” and the other one is called the “right one”. In
the non-respective case, the left (resp. right) structure is the structure of left (resp. right) ‹D(m)

X]/S]
-

module.
By convention, when we write E ⊗BX K (resp. K⊗BX E), we use the left (resp. right) structure of K
to compute the tensor product.

Moreover, E⊗BXK is endowed with a structure of (resp. left, resp. right) ‹D(m)

X]/S]
-bimodule as follow:

the “left structure” is by convention the structure given by tensor product (in the sense of 4.2.3.5)
from the left structure of ‹D(m)

X]/S]
-module of K and from the structure of ‹D(m)

X]/S]
-module of E , the

other one given by functoriality from the (resp. left, resp. right) ‹D(m)

X]/S]
-bimodule structure of K is

called the “ right structure”.

Similarly, K⊗BX E is endowed with a structure of (resp. left, resp. right) ‹D(m)

X]/S]
-bimodule: the left

structure is given by functoriality and the right one is given by the tensor product.

Similarly, in the case where K be a left ‹D(m)

X]/S]
-bimodule, M⊗BX K (resp. K ⊗BX M) is endowed

with a structure of ‹D(m)

X]/S]
-bimodule: the right (resp. left) structure is given by functoriality and

the left (resp. right) one is given by the tensor product.

(b) Let K be a right ‹D(m)

X]/S]
-bimodule. To distinguish which structure is used, we write

(K)r ⊗D̃(m)

X]/S]

E , (K)l ⊗D̃(m)

X]/S]

E (4.2.4.2.1)

where the symbole r (resp. l) means that the right (resp. left) structure is taken to compute the
tensor product. We keep the same notation in similar situation when a choice is needed in the
computation of tensor products. Remark that by bifunctoriality we have the canonical isomorphism:

((K)r ⊗D̃(m)

X]/S]

E)⊗D̃(m)

X]/S]

F ∼−→ ((K)l ⊗D̃(m)

X]/S]

F)⊗D̃(m)

X]/S]

E . (4.2.4.2.2)

Proposition 4.2.4.3 (Associativity of the tensor product). Let M be a right ‹D(m)

X]/S]
-module, N be a‹D(m)

X]/S]
-bimodule, E be a left ‹D(m)

X]/S]
-module. With notation 4.2.4.2, the canonical bijections

(M⊗BX N )r ⊗D̃(m)

X]/S]

E ∼−→ M⊗BX (N ⊗D̃(m)

X]/S]

E), (4.2.4.3.1)

M⊗D̃(m)

X]/S]

(N ⊗BX E)
∼−→ (M⊗D̃(m)

X]/S]

N )⊗BX E . (4.2.4.3.2)

given by associativity of the tensor product are isomorphism of right ‹D(m)

X]/S]
-modules.

Similarly, when E andM are two left ‹D(m)

X]/S]
-modules, N is a ‹D(m)

X]/S]
-bimodule (resp. right ‹D(m)

X]/S]
-

bimodule), then 4.2.4.3.1 is ‹D(m)

X]/S]
-linear. Similarly, whenM right ‹D(m)

X]/S]
-module, N is a left ‹D(m)

X]/S]
-

bimodule, and E is a left (resp. right) ‹D(m)

X]/S]
-module then 4.2.4.3.2 is ‹D(m)

X]/S]
-linear.
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Proof. 1) Let us prove the ‹D(m)

X]/S]
-linearity of the map 4.2.4.3.1. Since the other cases can be checked

similarly, we can only check the first case. a) By associativity of the tensor product, we have the canonical
isomorphisms of BX -modules

θ : (M⊗BX ‹D(m)

X]/S]
)⊗D̃(m)

X]/S]

E ∼−→ M⊗BX (‹D(m)

X]/S]
⊗D̃(m)

X]/S]

E)
∼−→ M⊗BX E (4.2.4.3.3)

given by (x ⊗ P ) ⊗ y 7→ x ⊗ Py where x, y, P are local sections of respectively M, E , ‹D(m)

X]/S]
. Let us

check θ is right ‹D(m)

X]/S]
-linear. Since this is local, we can suppose X]/S] has logarithmic coordinates.

By additivity, we reduce to check θ(((x⊗ 1)⊗ y) · ∂〈k〉] ) = (x⊗ y) · ∂〈k〉] . We compute

((x⊗ 1)⊗ y) · ∂〈k〉] =
Ä
(x⊗ 1) ·l ∂

〈k〉
]

ä
⊗ y 4.2.3.5.1

=

Ñ∑
h≤k

¶
k
h

©
x∂
〈k−h〉
] ⊗ ∂̃〈h〉]

é
⊗ y

where ·l means that we take the left structure of right ‹D(m)

X]/S]
-module of the right ‹D(m)

X]/S]
-bimodule

M⊗BX ‹D(m)

X]/S]
. This yields

θ(((x⊗ 1)⊗ y) · ∂〈k〉] ) =
∑
h≤k

¶
k
h

©
x∂
〈k−h〉
] ⊗ ∂̃〈h〉] y

4.2.3.5.1
= (x⊗ y) · ∂〈k〉] .

b) Replacing E by N in 4.2.4.3.3, we get by functoriality that the canonical map

(M⊗BX ‹D(m)

X]/S]
)⊗D̃(m)

X]/S]

N ∼−→ M⊗BX N (4.2.4.3.4)

is an isomorphism of right ‹D(m)

X]/S]
-bimodules. Replacing E by N ⊗D̃(m)

X]/S]

E in 4.2.4.3.3, we get the

canonical ‹D(m)

X]/S]
-linear isomorphism

(M⊗BX ‹D(m)

X]/S]
)⊗D̃(m)

X]/S]

(N ⊗D̃(m)

X]/S]

E)
∼−→ M⊗BX (N ⊗D̃(m)

X]/S]

E). (4.2.4.3.5)

This yields the general case via the isomorphisms:

(M⊗BX N )⊗D̃(m)

X]/S]

E ∼←−
4.2.4.3.4

(M⊗BX ‹D(m)

X]/S]
)⊗D̃(m)

X]/S]

N ⊗D̃(m)

X]/S]

E ∼−→
4.2.4.3.5

M⊗BX (N ⊗D̃(m)

X]/S]

E).

2) We proceed similarly to check the ‹D(m)

X]/S]
-linearity of 4.2.4.3.2.

Proposition 4.2.4.4. Let E be a left ‹D(m)

X]/S]
-module, F be a left (resp. right) ‹D(m)

X]/S]
-module. LetM,

N be two right ‹D(m)

X]/S]
-modules. The canonical isomorphism

HomBX (E ,F)
∼−→ HomD̃(m)

X]/S]

(‹D(m)

X]/S]
⊗BXE ,F), HomBX (M,N )

∼−→ HomD̃(m)

X]/S]

(M⊗BX‹D(m)

X]/S]
,N ),

are ‹D(m)

X]/S]
-linear.

Proof. Let us denote by θ the first isomorphism of 4.2.4.4. Let us consider the non-respective case. By
construction, this isomorphism is BX -linear. Hence, it is sufficient to prove that for any k ∈ Nd, for any
sections e of E , P of ‹D(m)

X]/S]
we have

θ(∂
〈k〉
] · φ)(P ⊗ e) = (∂

〈k〉
] · θ(φ))(P ⊗ e).

We compute

θ(∂
〈k〉
] · φ)(P ⊗ e) = P ·

Ä
(∂
〈k〉
] · φ)(e)

ä
4.2.3.1.3

= P ·
∑
i≤k

¶
k
i

©
∂
〈k−i〉
] (φ(∂̃

〈i〉
] e)), (4.2.4.4.1)
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Since (P ⊗ e)∂〈k〉]
4.2.3.5.1

=
∑
i≤k

¶
k
i

©
P∂
〈k−i〉
] ⊗ ∂̃〈i〉] e, then we get

(∂
〈k〉
] · θ(φ))(P ⊗ e) =

∑
i≤k

¶
k
i

©
P∂
〈k−i〉
] · (φ(∂̃

〈i〉
] e)).

Hence, we are done. The other and respective cases are checked similarly.

Proposition 4.2.4.5. Let E, F and G be three left or right ‹D(m)

X]/S]
-modules.

(a) We have the canonical isomorphism:

HomD̃(m)

X]/S]

(E ⊗BX F , G)
∼−→ HomD̃(m)

X]/S]

(E , HomBX (F , G)). (4.2.4.5.1)

(b) If the structure of ‹D(m)

X]/S]
-module of E, F or G extends to a structure of ‹D(m)

X]/S]
-bimodule or left

bimodule, then the isomorphism 4.2.4.5.1 is ‹D(m)

X]/S]
-linear.

Proof. The isomorphism 4.2.4.7.1 is equal to the composite ‹D(m)

X]/S]
-linear isomorphism:

HomBX (E ⊗BX F ,G)
4.2.4.4
∼−→ HomD̃(m)

X]/S]

(‹D(m)

X]/S]
⊗BX (E ⊗BX F),G)

4.2.4.3
∼−→ HomD̃(m)

X]/S]

((‹D(m)

X]/S]
⊗BX E)⊗D̃(m)

X]/S]

(‹D(m)

X]/S]
⊗BX F),G)

4.6.3.9
∼−→ HomD̃(m)

X]/S]

(‹D(m)

X]/S]
⊗BX E ,HomD̃(m)

X]/S]

(‹D(m)

X]/S]
⊗BX F ,G))

4.2.4.4
∼−→ HomD̃(m)

X]/S]

(‹D(m)

X]/S]
⊗BX E ,HomBX (F ,G))

4.2.4.4
∼−→ HomBX (E ,HomBX (F ,G)).

Corollary 4.2.4.6. Let F and G be two complex of left ‹D(m)

X]/S]
-modules. If F is a K-flat as complex of

BX-modules and that G is a K-injective object of K(l‹D(m)

X]/S]
), then HomBX (F ,G) is a K-injective object

of K(l‹D(m)

X]/S]
).

Proof. For any E ∈ K(l‹D(m)

X]/S]
), it follows from 4.2.4.5.1 that we have

HomD̃(m)

X]/S]

(E ⊗BX F , G)
∼−→ HomD̃(m)

X]/S]

(E , HomBX (F , G)) .

If E is acyclic, then it follows from the hypotheses on F and G that the left term is also acyclic. Hence,
we are done.

Proposition 4.2.4.7 (Cartan isomorphism bis). Let E, F , G three left ‹D(m)

X]/S]
-modules. The Cartan

isomorphism
HomD̃(m)

X]/S]

(E ⊗BX F ,G)
∼−→ HomD̃(m)

X]/S]

(E ,HomBX (F ,G)), (4.2.4.7.1)

is ‹D(m)

X]/S]
-linear.

Proof. When all modules are left modules, the isomorphism ?? is equal to the composite ‹D(m)

X]/S]
-linear

isomorphism:

HomD̃(m)

X]/S]

(E ⊗BX F ,G)
4.2.4.3
∼−→ HomD̃(m)

X]/S]

(E ⊗D̃(m)

X]/S]

(‹D(m)

X]/S]
⊗BX F),G)

4.6.3.9
∼−→ HomD̃(m)

X]/S]

(E ,HomD̃(m)

X]/S]

(‹D(m)

X]/S]
⊗BX F ,G))

4.2.4.4
∼−→ HomD̃(m)

X]/S]

(E ,HomBX (F ,G)).
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Proposition 4.2.4.8. Let E, F , G be three left or right ‹D(m)

X]/S]
-modules except the case where E is right

module and F is a left module. The canonical morphism:

HomBX (E ,F)⊗BX G → HomBX (E ,F ⊗BX G) (4.2.4.8.1)

is ‹D(m)

X]/S]
-linear.

Proof. When all modules are left modules, the morphism 4.2.4.8.1 is equal to the composite ‹D(m)

X]/S]
-linear

morphism:

HomBX (E ,F)⊗BX G
4.2.4.4
∼−→ HomD̃(m)

X]/S]

(‹D(m)

X]/S]
⊗BX E ,F)⊗BX G

4.2.4.3
∼−→ HomD̃(m)

X]/S]

(‹D(m)

X]/S]
⊗BX E ,F)⊗D̃(m)

X]/S]

(‹D(m)

X]/S]
⊗BX G)

→ HomD̃(m)

X]/S]

(‹D(m)

X]/S]
⊗BX E ,F ⊗D̃(m)

X]/S]

(‹D(m)

X]/S]
⊗BX G))

4.2.4.3
∼−→ HomD̃(m)

X]/S]

(‹D(m)

X]/S]
⊗BX E ,F ⊗BX G)

4.2.4.4
∼−→ HomBX (E ,F ⊗BX G).

The other cases are treated similarly.

Proposition 4.2.4.9. Let E and G be two left or right ‹D(m)

X]/S]
-modules and F be a ‹D(m)

X]/S]
-bimodule.

The canonical morphism

HomlD̃(m)

X]/S]

(E ,F)⊗BX G → HomlD̃(m)

X]/S]

(E ,F ⊗BX G), (4.2.4.9.1)

is ‹D(m)

X]/S]
-linear.

Proof. Since the other cases are similar, we can suppose E and G are left modules. The inverse of the
isomorphism 4.2.4.3.1 applied toM = HomlD̃(m)

X]/S]

(E ,F), N = ‹D(m)
X and E = G is written

HomlD̃(m)

X]/S]

(E ,F)⊗BX G
∼−→ HomlD̃(m)

X]/S]

(E ,F)⊗D̃(m)

X

(‹D(m)

X]/S]
⊗BX G).

Moreover, we have the canonical morphism

HomlD̃(m)

X]/S]

(E ,F)⊗D̃(m)

X]/S]

(‹D(m)

X]/S]
⊗BX G)→ HomlD̃(m)

X]/S]

(E ,F ⊗D̃(m)

X]/S]

(‹D(m)
X ⊗BX G)).

Finally, by using 4.2.4.3.1, we obtain:

HomlD̃(m)

X]/S]

(E ,F ⊗D̃(m)

X]/S]

(‹D(m)

X]/S]
⊗BX G))

∼−→ HomlD̃(m)

X]/S]

(E ,F ⊗BX G).

By composing these three morphisms, we obtain 4.2.4.9.1.

Proposition 4.2.4.10. Let E and G be two left ‹D(m)

X]/S]
-modules,M and N be two right ‹D(m)

X]/S]
-modules

and F be a ‹D(m)

X]/S]
-bimodule. The canonical morphism

HomBX (E ,F)⊗D̃(m)

X]/S]

G → HomBX (E ,F ⊗D̃(m)

X]/S]

G), (4.2.4.10.1)

N ⊗D̃(m)

X]/S]

HomBX (M,F)→ HomBX (M,N ⊗D̃(m)

X]/S]

F), (4.2.4.10.2)

is ‹D(m)

X]/S]
-linear.
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Proof. The map 4.2.4.10.1 is built by composing the following morphisms:

HomBX (E ,F)⊗D̃(m)

X]/S]

G
4.2.4.4
∼−→ HomD̃(m)

X]/S]

(‹D(m)

X]/S]
⊗BX E ,F)⊗D̃(m)

X]/S]

G (4.2.4.10.3)

→ HomD̃(m)

X]/S]

(‹D(m)

X]/S]
⊗BX E ,F ⊗D̃(m)

X]/S]

G)
4.2.4.4
∼−→ HomBX (E ,F ⊗D̃(m)

X]/S]

G). (4.2.4.10.4)

We proceed similarly for 4.2.4.10.2.

Corollary 4.2.4.11. Let E, F , G be three left ‹D(m)

X]/S]
-modules andM,N be two right ‹D(m)

X]/S]
-modules.

The following canonical morphisms are ‹D(m)

X]/S]
-linear :

ev : E ⊗BX HomBX (E ,F)→ F , ev : M⊗BX HomBX (M,N )→ N (4.2.4.11.1)
E → HomBX (F ,F ⊗BX E), E → HomBX (M,M⊗BX E). (4.2.4.11.2)

Proof. The first (resp. second) isomorphism of 4.2.4.11.1 corresponds via the Cartan isomorphism to the
identity of HomBX (E ,F) (resp. HomBX (M,N )). Since the identity is ‹D(m)

X]/S]
-linear then we conclude

with 4.2.4.5.1. The first (resp. second) isomorphism of 4.2.4.11.2 correspond via the Cartan isomorphism
to the identity of F ⊗BX E (resp. M⊗BX E). Since the identity is ‹D(m)

X]/S]
-linear then we conclude with

4.2.4.5.1.

4.2.5 Logarithmic transposition isomorphisms
We will need the following proposition to get the isomorphism 18.2.3.2.2 which will allow us to prove
18.2.3.12.

Proposition 4.2.5.1. Let E be a left ‹D(m)

X]/S]
-module, E ⊗BX ‹D(m)

X]/S]
and ‹D(m)

X]/S]
⊗BX E the sheaves

obtained by computing the tensor product via respectively the left and right structure of BX-algebra of‹D(m)

X]/S]
. There exists a unique isomorphism of ‹D(m)

X]/S]
-bimodules

γE : ‹D(m)

X]/S]
⊗BX E

∼−→ E ⊗BX ‹D(m)

X]/S]
(4.2.5.1.1)

such that for each section e of E, γE(1 ⊗ e) = e ⊗ 1. In logarithmic coordinates, we have the following
formulas

γE(∂
〈k〉
] ⊗ e) =

∑
h≤k

¶
k
h

©
∂
〈h〉
] e⊗ ∂〈k−h〉] , γ−1

E (e⊗ ∂〈k〉] ) =
∑
h≤k

¶
k
h

©
e∂
〈k−h〉
] ⊗ ∂̃〈h〉] . (4.2.5.1.2)

Proof. 1) The unicity of such a homomorphism γE follows from its linearity as left ‹D(m)

X]/S]
-module. By

left ‹D(m)

X]/S]
-linearity of γE (resp. by right ‹D(m)

X]/S]
-linearity of γ−1

E ), the left (resp. right) formula of
4.2.5.1.2 is a consequence of 4.2.3.1.1 (resp. 4.2.3.5.1).

2) i) We construct the map as follows γE : from the homomorphism of BX -modules E → E⊗BX ‹D(m)

X]/S]

given by x 7→ x⊗ 1 we get by extension the homomorphism of left ‹D(m)

X]/S]
-modules γE . By construction,

γE(P ⊗ e) = P (e⊗ 1), where P ∈ D(m)

X]/S]
and e ∈ E .

ii) Let us check now the right D(m)

X]/S]
-linearity of γE . Since this is local, we can suppose X] → S] is

endowed with logarithmic coordinates u1, . . . , ur and keep notation 4.3.5.2. It is therefore sufficient to
establish, for any k ∈ Nr,

γE((1⊗ e)∂̃
〈k〉
] ) = (e⊗ 1)∂̃

〈k〉
] . (4.2.5.1.3)
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In regards to the right term of 4.2.5.1.3, we have (e⊗ 1)∂̃
〈k〉
] = e⊗ ∂̃〈k〉] . As for the left term, we compute

γE
Ä
(1⊗ e)∂̃〈k〉]

ä
4.2.3.5.3

= γE

Ñ∑
h≤k

¶
k
h

©
∂̃
〈h〉
] ⊗ ∂〈k−h〉] e

é
=
∑
h≤k

¶
k
h

©
∂̃
〈h〉
] (∂

〈k−h〉
] e⊗ 1).

4.2.3.1.2
=

∑
h≤k

∑
i≤h

¶
k
h

©¶
h
i

©
∂̃
〈h−i〉
] ∂

〈k−h〉
] e⊗ ∂̃〈i〉]

=
∑
i≤k

Ñ ∑
i≤h≤k

¶
k
h

©¶
h
i

©
∂̃
〈h−i〉
] ∂

〈k−h〉
] e

é
⊗ ∂̃〈i〉] .

To get the formula 4.2.5.1.3, it is therefore sufficient to establish the equality∑
i≤h≤k

¶
k
h

©¶
h
i

©
∂̃
〈h−i〉
] ∂

〈k−h〉
] = δi,k, (4.2.5.1.4)

where in the sum i and k are fixed and δi,k is the Kronecker symbol. For this purpose, let us proceed as
follows.

Suppose E is equal to D(m)

X]/S]
(to avoid confusion between the two D(m)

X]/S]
, it is still written E). We

have the commutative diagram:

D(m)

X]/S]
⊗OX E

γE 4.2.5.1.1��

� � // j∗(D(m)
Y ⊗OY E|Y )

j∗(γE|Y ) ∼��
E ⊗OX D

(m)

X]/S]
� � // j∗(E|Y ⊗OY D

(m)
Y ).

(4.2.5.1.5)

where γE|Y is the (non-logarithmic) transposition isomorphism of E|Y (see 2.2.2.1.1) and where horizontal
morphisms are injective (this is an consequence of 3.1.1.3 and of the fact that E is free as OX -module).
Indeed, horizontal morphisms are D(m)

X]/S]
-bilinear, vertical arrows are left D(m)

X]/S]
-linear and 1⊗e 7→ e⊗1

via both paths. Moreover, it follows from 2.2.2.1, that the morphism j∗γE|Y is right D(m)

X]/S]
-linear.

Hence, γE is right D(m)

X]/S]
-linear. Since E = D(m)

X]/S]
is a free OX -module, then this implies that the

desired formula 4.2.5.1.4 holds.
It remains to check that γE is an isomorphism. It is sufficient to construct similarly the unique

morphism of D(m)

X]/S]
-bimodules E ⊗OX D

(m)

X]/S]
→ D(m)

X]/S]
⊗OX E which sends, for each section e of E ,

e⊗ 1 on 1⊗ e.

Example 4.2.5.2. We have the commutative diagram whose oblique isomorphisms are the canonical
ones: ‹D(m)

X]/S]
⊗BX BX

γBX // BX ⊗BX ‹D(m)

X]/S]

‹D(m)

X]/S]

∼
88

∼

ff
(4.2.5.2.1)

4.2.5.3. For any E be a left ‹D(m)

X]/S]
-module, we have the isomorphism of left ‹D(m)

X/S-bimodules

(‹D(m)

X]/S]
⊗OX ω−1

X]/S]
)

l
⊗BX E

∼−→ E
r
⊗BX (‹D(m)

X]/S]
⊗OX ω−1

X]/S]
), (4.2.5.3.1)

where the symbole “l” or “r” means that we use respectively the left and right structure of left ‹D(m)
X/S

of ‹D(m)

X]/S]
⊗OX ω−1

X]/S]
to compute the ‹D(m)

X/S structure given by − ⊗BX −. making commutative the
following diagram commutative:

(E ⊗BX ‹D(m)

X]/S]
)⊗OX ω−1

X ∼
// E ⊗BX (‹D(m)

X]/S]
⊗OX ω−1

X )

(‹D(m)

X]/S]
⊗BX E)⊗OX ω−1

X ∼
//

∼ γE⊗OXω
−1
X

OO

(‹D(m)

X]/S]
⊗OX ω−1

X )⊗BX E .

OO
(4.2.5.3.2)
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In order to give a complement of the first remark of 4.3.2.7, let us give the following lemma.

Lemma 4.2.5.4. Suppose X] → S] is endowed with logarithmic coordinates u1, . . . , ur. For any k ∈ Nr,
we have the formula in BX ⊗OX D

(m)

X]/S]
:

b⊗ ∂〈k〉(m)

] =
∑
h≤k

¶
k
h

©Ä
1⊗ ∂〈k−h〉]

ä
·
Å
∂̃
〈h〉
] (b)⊗ 1

ã
, (4.2.5.4.1)

b⊗ ∂̃
〈k〉(m)

] =
∑
h≤k

¶
k
h

©Å
1⊗ ∂̃

〈k−h〉
]

ã
·
Ä
∂
〈h〉
] (b)⊗ 1

ä
. (4.2.5.4.2)

When log structures are trivial, for any k ∈ Nr, we have the formula in BX ⊗OX D
(m)
X/S:

b⊗ ∂〈k〉(m) =
∑
h≤k

(−1)|h|
¶
k
h

©Ä
1⊗ ∂〈k−h〉

ä
·
Ä
∂〈h〉(b)⊗ 1

ä
. (4.2.5.4.3)

Proof. Since the formula 4.2.5.4.3 is checked similarly, let us focus on 4.2.5.4.1. It follows from (the version
without coefficient of) 4.2.5.1 that we have the transposition isomorphism γBX : D(m)

X]/S]
⊗OX BX

∼−→
BX⊗OX D

(m)

X]/S]
. By right D(m)

X]/S]
-linearity of γBX we compute γBX ((1⊗b)∂〈k〉] ) = (b⊗1) ·∂〈k〉] = b⊗∂〈k〉] .

From (the version without coefficient of) 4.2.3.5.1, we get (1⊗ b)∂〈k〉] =
∑
h≤k

¶
k
h

©
∂
〈k−h〉
] ⊗ ∂̃〈h〉] (b). By

left D(m)

X]/S]
-linearity of γBX this yields γBX ((1⊗b)∂〈k〉] ) =

∑
h≤k

¶
k
h

©Ä
1⊗ ∂〈k−h〉]

ä
·
Ä
∂̃
〈h〉
] (b)⊗ 1

ä
. Hence,

we are done. We get the formula 4.2.3.5.3 instead of 4.2.3.5.1.

Proposition 4.2.5.5. LetM be a right ‹D(m)

X]/S]
-module,M⊗BX ‹D(m)

X]/S]
the sheaf obtained by computing

the tensor product via the left structure of BX-algebra of ‹D(m)

X]/S]
. There exists a unique involution of

right ‹D(m)

X]/S]
-bimodules

δM : M⊗BX ‹D(m)

X]/S]
∼−→ M⊗BX ‹D(m)

X]/S]
(4.2.5.5.1)

exchanging the two structures of right ‹D(m)

X]/S]
-modules and such that, for each section m ofM, δM(m⊗

1) = m⊗ 1. In logarithmic coordinates, we have the following formula

δM(m⊗ ∂〈k〉] ) =
∑
h≤k

m∂
〈k−h〉
] ⊗ ∂̃

〈h〉
] . (4.2.5.5.2)

Proof. We have the canonical BX -linear morphismM→M⊗BX ‹D(m)

X]/S]
given by x 7→ x⊗ 1 where the

structure of BX -module onM⊗BX ‹D(m)

X]/S]
comes from its right structure of ‹D(m)

X]/S]
-module. This yields

by extension the canonical ‹D(m)

X]/S]
-linear morphism

δM : M⊗BX ‹D(m)

X]/S]
→M⊗BX ‹D(m)

X]/S]
, (4.2.5.5.3)

for the right (resp. left) structure of right ‹D(m)

X]/S]
-module of the left (resp. right) term. Such a morphism

is the unique one so that δM(x ⊗ 1) = x ⊗ 1. By ‹D(m)

X]/S]
-linearity, we get the formula 4.2.5.5.2 from

4.2.3.5.1.
By an easy computation, doing a similar to 4.2.5.1 computation, we can check the second right‹D(m)

X]/S]
-linearity (i.e. for the left structure for the source and the right structure for the target) from

2.2.2.1 and the local formula. Hence, δM ◦ δM = id.

4.2.5.6. We get from 4.2.5.5 the transposition isomorphism

δ̃X]/S] := δ
ω̃
X]/S]

: ω̃X]/S] ⊗BX ‹D(m)

X]/S]
∼−→ ω̃X]/S] ⊗BX ‹D(m)

X]/S]
. (4.2.5.6.1)
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exchanging left and right structure. By applying to this isomorphism the functor −⊗BX ω̃−1
X]/S]

to the
right (resp. left) structure from the source (resp. target), we get the isomorphism

α̃X]/S] : ω̃X]/S] ⊗BX ‹D(m)

X]/S]
⊗BX ω̃−1

X]/S]
∼−→ ‹D(m)

X]/S]
, (4.2.5.6.2)

where ω̃X]/S]⊗OX ‹D(m)

X]/S]
⊗OX ω̃−1

X]/S]
= (ω̃X]/S]⊗OX ‹D(m)

X]/S]
)

r
⊗OX ω̃−1

X]/S]
= ω̃X]/S]

l
⊗OX (‹D(m)

X]/S]
⊗OX

ω̃−1
X]/S]

), where the symbol l or r means we choose respectively the left or right structure of the corre-

sponding (left or right) bimodule in order to compute the ‹D(m)

X]/S]
-module structure given by the internal

tensor product −⊗OX − (see 4.2.3.1 or 4.2.3.5).
By applying to this isomorphism the functor − ⊗BX ω̃X]/S] to the left (resp. right) structure from

the source (resp. target), this yields the isomorphism

β̃X]/S] : ‹D(m)

X]/S]
⊗BX ω̃−1

X]/S]
∼−→ ‹D(m)

X]/S]
⊗BX ω̃−1

X]/S]
. (4.2.5.6.3)

exchanging the two structures of left ‹D(m)

X]/S]
-modules.

Proposition 4.2.5.7. We endow the sheaf D(m)

X]/S]
⊗OX BX with a ring structure via the transposition

isomorphism γBX : D(m)

X]/S]
⊗OXBX

∼−→ BX⊗OXD
(m)

X]/S]
. This is the unique ring structure on D(m)

X]/S]
⊗OX

BX such that

BX → D(m)

X]/S]
⊗OX BX : b 7→ 1⊗ b, (4.2.5.7.1)

D(m)

X]/S]
→ D(m)

X]/S]
⊗OX BX : P 7→ P ⊗ 1 (4.2.5.7.2)

are ring homomorphisms such that for any b ∈ BX and P ∈ D(m)

X]/S]
we have the formula (P ⊗1)(1⊗b) =

P ⊗ b and for any logarithmic coordinates

(1⊗ b)(∂〈k〉] ⊗ 1) =
∑
h≤k

¶
k
h

©
∂
〈k−h〉
] ⊗ ∂̃〈h〉] b. (4.2.5.7.3)

Proof. a) Since εBX (1 ⊗ b) = b ⊗ 1, then it follows from 4.1.2.2.1 that the map 4.2.5.7.1 is a ring
homomorphism.

b) Since εBX are isomorphisms of PnX]/S],(m)-algebras, then ∂̃
〈h〉
] (1BX ) = 0 if h 6= 0 (here 1BX is the

unity of BX , usually simply denoted 1). Hence, it follows from the left equality of 4.2.5.1.2 that we get
εBX (P ⊗ 1) = 1⊗ P . By using 4.1.2.2.2, this yields that the map 4.2.5.7.2 is a ring homomorphism.

c) Since εBX is a ring homomorphism, we get the equality εBX ((P ⊗ 1)(1 ⊗ b)) = (1 ⊗ P )(b ⊗ 1) =

P · (b⊗ 1) (see also 4.1.2.4) for the last one). Since εBX is a homomorphism of left D(m)

X]/S]
-module, we

get the equality εBX (P ⊗ b) = εBX (P · (1⊗ b)) = P · (b⊗ 1). Hence, P ⊗ b = (P ⊗ 1)(1⊗ b).
d) Since γ−1

BX (b⊗ ∂〈k〉] ) = γ−1
BX ((b⊗ 1)(1⊗ ∂〈k〉] )) = (1⊗ b)(∂〈k〉] ⊗ 1), then we get the formula 4.2.5.7.3

from the right formula of 4.2.5.1.2.

4.2.5.8. The D(m)

X]/S]
-bimodule structure on D(m)

X]/S]
⊗OX BX induced by the canonical ring homomor-

phism D(m)

X]/S]
→ D(m)

X]/S]
⊗OX BX (see 4.2.5.7.2) is equal to the D(m)

X]/S]
-bimodule structure induced

by the tensor product from the left D(m)

X]/S]
-module structure of BX and the canonical D(m)

X]/S]
-bimodule

structure of D(m)

X]/S]
(see 4.2.3.5). Indeed, this comes from the formulas 4.2.5.7.3 (compare with 4.2.3.5.1)

and (P ′ ⊗ 1)(P ⊗ b) = P ′P ⊗ b.

4.2.6 An isomophism switching B and D in tensor products
We give an application of the logarithmic transposition isomorphism.
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Proposition 4.2.6.1 (Switching B and ‹D). LetM be a right ‹D(m)

X]/S]
-module (resp. ‹D(m)

X]/S]
-bimodule),

E ,F be two left ‹D(m)

X]/S]
-modules. We have the functorial in E, F , M canonical isomorphism of OS-

modules (resp. left ‹D(m)

X]/S]
-modules):

(M⊗BX E)⊗D̃(m)

X]/S]

F ∼−→ M⊗D̃(m)

X]/S]

(E ⊗BX F), (4.2.6.1.1)

which is given by (m⊗ e)⊗ f 7→ m⊗ (e⊗ f) for any local section e, f,m of E ,F ,M.

Proof. We have the ‹D(m)

X]/S]
-linear isomorphism

M⊗BX E
∼−→ (M⊗D̃(m)

X]/S]

‹D(m)

X]/S]
)⊗BX E

∼−→
4.2.4.3.2

M⊗D̃(m)

X]/S]

(‹D(m)

X]/S]
⊗BX E) (4.2.6.1.2)

We get from the transposition isomorphism:

(M⊗BX E)⊗D̃(m)

X]/S]

F ∼−→
4.2.6.1.2

M⊗D̃(m)

X]/S]

(‹D(m)

X]/S]
⊗BX E)⊗D̃(m)

X]/S]

F (4.2.6.1.3)

∼−→
4.2.5.1.1

M⊗D̃(m)

X]/S]

(E ⊗BX ‹D(m)

X]/S]
)⊗D̃(m)

X]/S]

F ∼−→ M⊗D̃(m)

X]/S]

(E ⊗BX F). (4.2.6.1.4)

4.3 Coefficients extension of the ring of differential operators
We keep notation 3.4. Let ρ : BX → B′X be a homomorphism of commutative OX -algebras. We suppose
BX and B′X are endowed with a structure of left D(m)

X]/S]
-module which is compatible to its underlying

OX -algebra structure such that BX → B′X is D(m)

X]/S]
-linear.

4.3.1 Some homomorphisms of rings of differential operators
Before considering the case where the level is fixed, let us give some preliminary ring homomorphism
constructions. Let m′ ≥ m be a second integer. Let σ : BX → CX be a homomorphism of commutative
OX -algebras. We suppose CX is endowed with a structure of left D(m′)

X]/S]
-module which is compatible to

its underlying OX -algebra structure. We suppose moreover that BX → CX is D(m)

X]/S]
-linear where CX is

viewed as a left D(m)

X]/S]
-module via the canonical homomorphism D(m)

X]/S]
→ D(m′)

X]/S]
.

Proposition 4.3.1.1. We generalize with some coefficients the homomorphisms of 3.2.3.5.1 as follows.

(a) The canonical BX-linear morphism

BX ⊗OX D
(m)

X]/S]
→ CX ⊗OX D

(m′)

X]/S]
(4.3.1.1.1)

given by b⊗ P 7→ σ(b)⊗ ρm′,m(P ) is a ring homomorphism.

(b) The canonical BX-linear morphism we have the canonical map

D(m)

X]
⊗OX BX → D

(m′)

X]
⊗OX CX (4.3.1.1.2)

given by P ⊗ b 7→ ρm′,m(P ) ⊗ σ(b) is a ring homomorphism. Moreover, we have the commutative
diagram

BX ⊗OX D
(m)

X]
4.3.1.1.1// CX ⊗OX D

(m′)

X]

D(m)

X]
⊗OX BX

4.3.1.1.2//

γBX 4.2.5.1.1

OO

D(m′)

X]
⊗OX CX .

γCX 4.2.5.1.1

OO
(4.3.1.1.3)
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Proof. a) Removing /S] in the notation, consider the diagram:

Pn+n′

X](m′)

δn,n
′

(m′) //

ψn+n′

m,m′
��

PnX](m′) ⊗OX P
n′

X](m′)

id⊗P ′ //

ψn
m,m′⊗ψ

n′
m,m′

��

PnX](m′) ⊗OX BX
ε
BX
n //

ψn
m,m′⊗σ

��

BX ⊗OX PnX](m′)
id⊗P //

σ⊗ψn
m,m′

��

BX ⊗OX BX

σ⊗σ

��

µ // BX

σ

��
Pn+n′

X](m)

δn,n
′

(m) // PnX](m) ⊗OX P
n′

X](m)

id⊗P ′ // PnX](m) ⊗OX CX
ε
CX
n // CX ⊗OX PnX](m)

id⊗P // CX ⊗OX CX
ν // CX

(4.3.1.1.4)
where ν is the multiplication of CX , ψnm,m′ are the canonical morphisms (see notation 3.2.2.10). Since σ is
D(m)

X]/S]
-linear then the middle square is commutative. Since so are the other square by functoriality, then

the diagram 4.3.1.1.4 is commutative. Since the composition of the top or bottom horizontal arrows is
by definition the product law (see 4.1.2.1.1), then the canonical BX -linear morphism BX ⊗OX D

(m)

X]/S]
→

CX ⊗OX D
(m′)

X]/S]
is a ring homomorphism.

b) Via an easy computation using the left formula of 4.2.5.1.2, we can check the commutativity of the
diagram 4.3.1.1.3. Since 4.3.1.1.1 and the transposition isomorphisms are ring homomorphisms, then so
is 4.3.1.1.2.

Proposition 4.3.1.2. Using respectively the ring homomorphisms of 4.3.1.1.1 and 4.3.1.1.2, we have
the following isomorphisms of bimodules.

(a) The canonical morphism of (CX ⊗OX D
(m)

X]/S]
,BX ⊗OX D

(m′)

X]/S]
)-bimodules

(CX ⊗OX D
(m)

X]/S]
)⊗BX⊗OXD(m)

X]/S]

(BX ⊗OX D
(m′)

X]/S]
)→ CX ⊗OX D

(m′)

X]/S]
, (4.3.1.2.1)

given by (c⊗ P )⊗ (b⊗ P ′) 7→ (c⊗ ρm′,m(P ))(σ(b)⊗ P ′), is an isomorphism.

(b) The canonical morphism of (D(m′)

X]/S]
⊗OX BX ,D

(m)

X]/S]
⊗OX CX)-bimodules,

(D(m′)

X]/S]
⊗OX BX)⊗D(m)

X]/S]
⊗OXBX

(D(m)

X]/S]
⊗OX CX)→ D(m′)

X]/S]
⊗OX CX , (4.3.1.2.2)

given by (P ′ ⊗ b)⊗ (P ⊗ c) 7→ (P ′ ⊗ σ(b))(ρm′,m(P )⊗ c), is an isomorphism.

Proof. a) From the ring homomorphism BX ⊗OX D
(m′)

X]/S]
→ CX ⊗OX D

(m′)

X]/S]
(see 4.3.1.1.1), we get by

extension the homomorphism of (CX⊗OXD
(m)

X]/S]
,BX⊗OXD

(m′)

X]/S]
)-bimodules 4.3.1.2.1. Since the canon-

ical homomorphism CX ⊗BX (BX ⊗OX D
(m)

X]/S]
) → CX ⊗OX D

(m)

X]/S]
of (CX ,BX ⊗OX D

(m)

X]/S]
)-bimodules

is an isomorphism, then the canonical homomorphism of (CX ,BX ⊗OX D
(m′)

X]/S]
)-bimodules:

CX ⊗BX (BX ⊗OX D
(m′)

X]/S]
)→ (CX ⊗OX D

(m)

X]/S]
)⊗BX⊗OXD(m)

X]/S]

(BX ⊗OX D
(m′)

X]/S]
). (4.3.1.2.3)

is an isomorphism. By composing 4.3.1.2.3 with 4.3.1.2.1, we get the canonical homomorphism

CX ⊗BX (BX ⊗OX D
(m′)

X]/S]
)→ CX ⊗OX D

(m′)

X]/S]
(4.3.1.2.4)

which is an isomorphism. Hence, so is 4.3.1.2.1.
b) We proceed similarly to check the map 4.3.1.2.2 is an isomorphism.

Proposition 4.3.1.3. We have the following isomorphisms of bimodules.

(a) The canonical morphism of (BX ⊗OX D
(m′)

X]/S]
, CX ⊗OX D

(m)

X]/S]
)-bimodules

(BX ⊗OX D
(m′)

X]/S]
)⊗BX⊗OXD(m)

X]/S]

(CX ⊗OX D
(m)

X]/S]
)→ CX ⊗OX D

(m′)

X]/S]
, (4.3.1.3.1)

given by (b⊗ P ′)⊗ (c⊗ P ) 7→ (σ(b)⊗ P ′)(c⊗ ρm′,m(P )), is an isomorphism.
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(b) The canonical morphism of (D(m)

X]/S]
⊗OX CX ,D

(m′)

X]/S]
⊗OX BX)-bimodules,

(D(m)

X]/S]
⊗OX CX)⊗D(m)

X]/S]
⊗OXBX

(D(m′)

X]/S]
⊗OX BX)→ D(m′)

X]/S]
⊗OX CX , (4.3.1.3.2)

given by (P ⊗ c)⊗ (P ′ ⊗ b) 7→ (ρm′,m(P )⊗ c)(P ′ ⊗ σ(b)), is an isomorphism.

Proof. Consider the following diagram:

(BX ⊗OX D
(m′)

X]/S]
)⊗BX⊗OXD(m)

X]/S]

(CX ⊗OX D
(m)

X]/S]
)

4.3.1.3.1
// CX ⊗OX D

(m′)

X]/S]

(D(m′)

X]/S]
⊗OX BX)⊗D(m)

X]/S]
⊗OXBX

(D(m)

X]/S]
⊗OX CX)

∼
4.3.1.2.2

//

∼γBX⊗γCX

OO

D(m′)

X]/S]
⊗OX CX .

∼γCX

OO
(4.3.1.3.3)

whose left vertical arrow is well defined thanks to 4.3.1.1.3. Since the arrows of the square 4.3.1.3.3 are
left D(m′)

X]/S]
-linear, then to check its commutativity, we reduce to compute that the image of the element

(1⊗b)⊗(1⊗c) of the bottom left term of the square is sent via both maps to the same element of the top
right term, which is the case (more precisely, we compute (σ(b)c⊗1). Via the commutativity of 4.3.1.3.3,
we obtain that the canonical morphism 4.3.1.3.1 is an isomorphism. Similarly, via the transposition
isomorphisms, since 4.3.1.2.1 is an isomorphism, then so is 4.3.1.3.2.

4.3.2 Semi-linear PD-stratifications of level m
Lemma 4.3.2.1. We suppose B′X is endowed with a compatible structure of left D(m)

X]/S]
-module such that

BX → B′X is D(m)

X]/S]
-linear. We still denote by ρ : ‹D(m)

X]/S]
→ B′X ⊗OX D

(m)

X]/S]
the canonical ring homo-

morphism induced by ρ (see 4.3.1.1.a). From 3.4.2.5, let (εBXn ) (resp. (ε
B′X
n )) be the m-PD-stratification

with coefficients in OX of BX (resp. of B′X). The left ‹D(m)

X]/S]
-module structure of B′X induced via ρ by

its left B′X ⊗OX D
(m)

X]/S]
-module structure gives an m-PD-stratification with coefficients in BX of B′X that

we denote by (ε
B′X
n/BX ).

(a) The isomorphism ε
B′X
n/BX is the one making commutative the diagram of commutative PnX]/S](m)-

algebras‹PnX]/S](m) ⊗BX B
′
X

ε
B′
X
n/BX

∼

��

(PnX]/S](m) ⊗OX
BX)⊗BX B′X ∼

α //
ε
BX
n ⊗id

∼oo PnX]/S](m) ⊗OX
B′X

ε
B′
X
n∼
��

B′X ⊗B′X
‹PnX]/S](m) ∼

β // B′X ⊗OX
PnX]/S](m),

(4.3.2.1.1)

where α (resp. β) is given by (τ ⊗ b)⊗ b′ 7→ τ ⊗ ρ(b)b′ (resp. by b′ ⊗ (b⊗ τ) 7→ ρ(b)b′ ⊗ τ).

(b) The map εB
′
X

n/BX are isomorphisms of ‹PnX]/S](m)-algebras.

Proof. Since this is local, we can suppose X] → S] is endowed with logarithmic coordinates (bλ)λ=1,...,d.
Since εBXn (1⊗ 1) = 1⊗ 1, then by using the Taylor formula satisfied by εB

′
X
n (see 3.4.2.5.4) we compute

the morphism ε
B′X
n/BX making commutative the diagram 4.3.2.1.1 should satisfied in B′X ⊗B′X

‹PnX]/S](m)

the formula
ε
B′X
n/BX ((1⊗ 1)⊗ b′) =

∑
|k|≤n

∂
〈k〉
] (b′)⊗ (1⊗ τ{k}] ),

for any section b′ of B′X . Hence, since 4.3.2.1.1 is a diagram of PnX]/S](m)-algebras, since ‹PnX]/S](m)⊗BXB
′
X

is generated as PnX]/S](m)-module by the elements of the form (1⊗ 1)⊗ b′ with b′ a section of B′X , then
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we conclude thanks to the formula 4.2.1.5.4 (where by abuse of notation 1 ⊗ τ{k}] = τ
{k}
] ). Finally, via

the commutative diagram 4.3.2.1.1, we get that the isomorphism ε
B′X
n/BX are more precisely isomorphisms

of ‹PnX]/S](m)-algebras.

Remark 4.3.2.2. Taking the case where BX (resp. B′X) is replaced in 4.3.2.1 by OX (resp. by BX) we
retrieve the lemma 4.2.1.7 from 4.3.2.1.

Lemma 4.3.2.3. Let ρ : BX → B′X be an algebra homomorphism. We suppose B′X is endowed with a
structure of left D(m)

X]/S]
-module which is compatible to its underlying OX-algebra structure. We suppose

moreover that BX → B′X is D(m)

X]/S]
-linear. Let E ′ be a left B′X⊗OXD

(m)

X]/S]
-module. We denote by (εE

′

n/B′
X

)

the m-PD-stratification with coefficients in B′X associated with E ′ (see 4.2.1.5). Following 4.3.1.1, we
get the ring homomorphism BX ⊗OX D

(m)

X]/S]
→ B′X ⊗OX D

(m′)

X]/S]
given by b⊗P 7→ ρ(b)⊗P that we still

denote by ρ. Let us denote by ρ∗(E ′) the sheaf E ′ viewed as a left BX ⊗OX D
(m)

X]/S]
-module via ρ∗. Let

(εE
′

n/BX ) be the m-PD-stratification with coefficients in BX associated with ρ∗(E ′) (see 4.2.1.5). Let us

denote by ‹Pn := ‹PnX]/S](m) and ‹P ′n := B′X ⊗OX PnX]/S](m). Then we get the commutative diagram of‹Pn-modules: ‹P ′n ⊗B′
X
E ′

εE
′
n/B′

X
∼

��

(‹Pn ⊗
BX
B′X)⊗B′

X
E ′ ∼

//
ε
B′
X
n/BX

⊗id

∼oo ‹Pn ⊗
BX
E ′

εE
′
n/BX∼
��

E ′ ⊗B′
X

‹P ′n ∼
// E ′ ⊗
BX
‹Pn.

(4.3.2.3.1)

Proof. Since this is local, we can suppose X] → S] is endowed with logarithmic coordinates (uλ)λ=1,...,d.
Since εB

′
X

n/BX are isomorphisms of ‹PnX]/S](m)-algebras, then ε
B′X
n/BX (1 ⊗ 1) = 1 ⊗ 1. Hence, by using the

Taylor formula satisfied by εE
′

n/BX (see 3.4.2.5.4) we compute the morphism ε : ‹P ′n⊗B′
X
E ′ → E ′⊗B′

X

‹P ′n
making commutative the diagram 4.3.2.3.1 (i.e. ε is the composition of the top, right, bottom morphisms
of the diagram 4.3.2.3.1) should satisfied in E ′ ⊗B′

X

‹P ′n the formula

ε((1⊗ 1)⊗ x′) =
∑
|k|≤n

∂
〈k〉
] (x′)⊗ (1⊗ τ{k}] ),

for any section x′ of E ′. Hence, since the morphisms of the diagram 4.3.2.3.1 are ‹Pn-linear, since‹P ′n ⊗B′
X
E ′ is generated as ‹Pn-module by the elements of the form (1 ⊗ 1) ⊗ x′, then thanks to the

formula 4.2.1.5.4, we get ε = εE
′

n/B′
X
.

Remark 4.3.2.4. Let ρ : BX → CX be a commutative algebra homomorphism. We suppose CX is endowed
with a structure of left ‹D(m)

X]/S]
-module such that BX → CX is ‹D(m)

X]/S]
-linear. Following 4.3.2.3.1 (where

we replace B′X by BX , BX by OX and E ′ by CX), we have the commutative diagram‹PnX]/S] ⊗BX CX
ε
CX
n/BX

∼

��

(PnX]/S] ⊗OX
BX)⊗BX CX ∼

//
ε
BX
n ⊗id

∼oo PnX]/S] ⊗OX
CX

ε
CX
n∼

��
CX ⊗BX ‹PnX]/S] ∼

// CX ⊗
OX
PnX]/S] .

(4.3.2.4.1)

Hence, the isomorphisms of the m-PD-stratification with coefficients in OX , denoted by εCXn , are iso-
morphisms of PnX]/S](m)-algebras if and only if the εCXn/BX are isomorphisms of ‹PnX]/S](m)-algebras. If

we define the notion of BX-algebras compatible with its structure of ‹D(m)

X]/S]
-module by asking that the

isomorphisms εCXn/BX are isomorphisms of ‹Pn-algebras, it amounts to demanding that the structure of

OX -algebra is compatible with its structure of D(m)

X]/S]
-module.

161



Definition 4.3.2.5. Let ρ : BX → B′X be a commutative algebra homomorphism. We suppose B′X
is endowed with a structure of left D(m)

X]/S]
-module which is compatible to its underlying OX -algebra

structure. We suppose moreover that BX → B′X is D(m)

X]/S]
-linear. We keep notation 4.3.2.1. Let E ′ be a

left BX ⊗OX D
(m)

X]/S]
-module. Let us denote by (εE

′

n/BX ) the m-PD-stratification with coefficients in BX
associated with E ′. We suppose the underlying structure of BX -module of E ′ extends to a structure of
B′X -module. Set ‹Pn := ‹PnX]/S](m) and ‹P ′n := B′X ⊗OX PnX]/S](m). Let us denote by

εE
′

n/B′
X

: ‹P ′n ⊗B′
X
E ′ ∼−→ E ′ ⊗B′

X

‹P ′n
the isomorphism making commutative the diagram of ‹Pn-modules‹P ′n ⊗B′

X
E ′

εE
′
n/B′

X
∼

��

(‹Pn ⊗
BX
B′X)⊗B′

X
E ′ ∼

//
ε
B′
X
n/BX

⊗id

∼oo ‹Pn ⊗
BX
E ′

εE
′
n/BX∼
��

E ′ ⊗B′
X

‹P ′n ∼
// E ′ ⊗
BX
‹Pn.

(4.3.2.5.1)

We say that the isomorphisms εE
′

n/BX are “semi-linear with respect to εB
′
X

n/BX ” if the isomorphisms εE
′

n/B′
X

are ‹P ′n-linear.
Proposition 4.3.2.6. Let B′X be a commutative BX-algebra endowed with a compatible structure of
left D(m)

X]/S]
-module such that BX → B′X is D(m)

X]/S]
-linear. Let E ′ be a left BX ⊗OX D

(m)

X]/S]
-module.

We suppose the underlying structure of BX-module of E ′ extends to a structure of B′X-module. Let
(εE
′

n/BX ) be the m-PD-stratification with coefficients in BX associated with E ′. The following assertions
are equivalent.

(a) Both structures of left BX ⊗OX D
(m)

X]/S]
-module and B′X-module of E ′ extend (uniquely) to a structure

of left B′X ⊗OX D
(m)

X]/S]
-module.

(b) The isomorphisms εE
′

n/BX are semi-linear with respect to the isomorphisms εB
′
X

n/BX for any n ∈ N.

Proof. (a)→ (b). Suppose E ′ is endowed with a structure of left B′X⊗OX D
(m)

X]/S]
-module extending both

structures of BX ⊗OX D
(m)

X]/S]
-module and B′X . Then following 4.3.2.3, since the isomorphisms (εE

′

n/B′
X

)

are equal to them-PD-stratification with coefficients in B′X associated with E ′, then they are in particular
B′X ⊗OX PnX]/S](m)-linear which means the isomorphisms (εE

′

n/BX ) are semi-linear with respect to εB
′
X

n/BX .

(b)→ (a). Suppose the isomorphisms εE
′

n/BX are semi-linear with respect to the isomorphisms εB
′
X

n/BX .
Let εE

′

n/B′
X

be the isomorphism making commutative the diagram 4.3.2.5.1. By hypothesis, εE
′

n/B′
X

are

B′X ⊗OX PnX]/S](m)-linear. In order to check that the data (εE
′

n/B′
X

) is an m-PD-stratification with
coefficients in B′X of E ′, it remains to prove the cocycle condition. Following the remark 4.2.1.6, this is
equivalent to check the formula 4.2.1.6.1. By using the commutative diagram 4.3.2.5.1, since εB

′
X

n/BX (1) =

1, then we have
εE
′

n/B′
X

((1⊗ 1)⊗ x′) =
∑
|k|≤n

∂
〈k〉
] (x′)⊗ (1⊗ τ{k}] )

for any section x′ of E ′. Since E ′ is a left BX ⊗OX D
(m)

X]/S]
-module, this yields the formula 4.2.1.6.1 holds.

Hence, we are done.

Remark 4.3.2.7. Suppose X] → S] is endowed with logarithmic coordinates (uλ)λ=1,...,d. With its
notation, both conditions of 4.3.2.6 hold if and only if we have the formula

b′ ·
(
∂
〈k〉(m)

] · x′
)

=
∑
h≤k

¶
k
h

©
∂
〈k−h〉
] ·

Ä
∂̃
〈h〉
] (b′) · x′

ä
. (4.3.2.7.1)
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for any b′ ∈ B′X , x′ ∈ E ′, k ∈ Nd.
Indeed, let εE

′

n/B′
X

be the isomorphism making commutative the diagram 4.3.2.5.1. Since εE
′

n/B′
X

is BX ⊗OX PnX]/S](m)-linear then it is B′X ⊗OX PnX]/S](m)-linear if and only if we have the formula
b′εE

′

n/B′
X

((1⊗ 1)⊗ x′) = εE
′

n/B′
X

((b′ ⊗ 1)⊗ x′) for any sections b′ of B′X and x′ of E ′. We compute(
(ε
B′X
n/BX )−1 ⊗ id

)
((b′ ⊗ 1)⊗ x′) 4.2.1.5.5

=
∑
|i|≤n

Ä
τ
{i}
] ⊗ ∂̃

〈i〉
] (b′)

ä
⊗ x′;

εE
′

n/BX

Ñ∑
|i|≤n

τ
{i}
] ⊗ ∂̃

〈i〉
] (b′) · x′

é
4.2.1.5.4

=
∑
|i|≤n

∑
|j|≤n

∂
〈j〉
] (∂̃

〈i〉
] (b′) · x′)⊗ τ{j}] τ

{i}
]

=
∑
|k|≤n

Ñ∑
h≤k

¶
k
h

©
∂
〈k−h〉
] ·

Ä
∂̃
〈h〉
] (b′) · x′

äé
⊗ τ{k}.

This yields

εE
′

n/B′
X

((b′ ⊗ 1)⊗ x′) =
∑
|k|≤n

Ñ∑
h≤k

¶
k
h

©
∂
〈k−h〉
] ·

Ä
∂̃
〈h〉
] (b′) · x′

äé
⊗ (1⊗ τ{k}).

On the other hand, we compute

b′ · εE
′

n/B′
X

((1⊗ 1)⊗ x′) = b′

Ñ∑
|k|≤n

∂
〈k〉
] (x′)⊗ (1⊗ τ{k}] )

é
=
∑
|k|≤n

b′(∂
〈k〉
] (x′))⊗ (1⊗ τ{k}] ),

Hence, we are done.

4.3.3 Semi-linear PD-costratifications of level m
Proposition 4.3.3.1. Let M′ be a right B′X ⊗OX D

(m)

X]/S]
-module. We denote by (εM

′

n/B′
X

) the m-PD-
costratification with coefficients in B′X associated with M′ (see 4.2.2.5). Following 4.3.1.1, we get the
ring homomorphism BX ⊗OX D

(m)

X]/S]
→ B′X ⊗OX D

(m′)

X]/S]
given by b⊗ P 7→ ρ(b)⊗ P that we still denote

by ρ. We denote by ρ∗(M′) the sheafM′ viewed as a left BX ⊗OX D
(m)

X]/S]
-module via ρ∗. Let (εM

′

n/BX ) be
the m-PD-costratification with coefficients in BX associated with ρ∗(M′) (see 4.2.2.5). Let us denote by‹Pn := ‹PnX]/S](m) and ‹P ′n := B′X ⊗OX PnX]/S](m). Then we get the commutative diagram of ‹Pn-modules:

HomBX (p̃n0∗
‹Pn,M′)
εM
′

n
∼
��

∼
α // HomB′

X
(p̃′n0∗

‹P ′n,M′)
ε′M

′
n

∼
��

HomBX (p̃n1∗
‹Pn,M′) ∼

β // HomB′
X

(‹Pn ⊗BX B′X ,M′) HomB′
X

(p̃′n1∗
‹P ′n,M′),

ε
B′
X
n/BX

∼oo

(4.3.3.1.1)

where α and β are the canonical isomorphisms.

Proof. We easily compute that the following diagram

M′ ⊗BX HomBX (p̃n0∗
‹Pn,BX)

4.2.2.4.1 //

∼
��

HomBX (p̃n0∗
‹Pn,M′)

∼ α

��

M′ ⊗B′
X

Ä
B′X ⊗BX HomBX (p̃n0∗

‹Pn,BX)
ä

∼
��

M′ ⊗B′
X
HomB′

X
(p̃′n0∗

‹P ′n,B′X)
4.2.2.4.1 // HomB′

X
(p̃′n0∗

‹P ′n,M′)
(4.3.3.1.2)
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where the bottom arrow is constructed as for 4.2.2.4.1 with BX replaced by B′X , where the vertical
isomorphism is the canonical ones, is commutative. To distinguish them, let {∂〈h〉] , |h| ≤ n} (resp.

{∂′〈h〉] , |h| ≤ n}) be the dual basis of HomBX (p̃n0∗
‹PnX]/S](m),BX) (resp. HomB′

X
(p̃′n0∗

‹P ′n,B′X)) of the

basis {1⊗τ{h}] , |h| ≤ n} of ‹PnX]/S](m) (resp. ‹P ′nX]/S](m)). We compute the composition of the left vertical

isomorphisms of 4.3.3.1.2 is given by for any x′ ∈M′ and any k ∈ Nd by x′ ⊗ ∂〈k〉(m)

] 7→ x′ ⊗ ∂′〈k〉(m)

]

Consider the commutative diagram

HomBX (p̃n1∗
‹Pn,BX)⊗BX M′

4.2.2.4.2 //

∼
��

HomBX (p̃n1∗
‹Pn,M′)

∼
��

HomB′
X

(‹Pn ⊗BX B′X ,B′X)⊗B′
X
M′ HomB′

X
(‹Pn ⊗BX B′X ,M′)

HomB′
X

(p̃′n1∗
‹P ′n,B′X)⊗B′

X
M′

ε
B′
X
n/BX

∼

OO

4.2.2.4.2 // HomB′
X

(p̃′n1∗
‹P ′n,M′)ε

B′
X
n/BX

∼

OO

(4.3.3.1.3)

where both top vertical isomorphism are the canonical ones. To distinguish them, let {∂?〈h〉] , |h| ≤ n}
(resp. {∂′?〈h〉] , |h| ≤ n}) be the dual basis of HomBX (p̃n1∗

‹PnX]/S](m),BX) (resp. HomB′
X

(p̃′n1∗
‹P ′n,B′X)) of

the basis {1 ⊗ τ{h}] , |h| ≤ n} of ‹PnX]/S](m) (resp. ‹P ′nX]/S](m)). We compute the composition of the left

vertical isomorphisms of 4.3.3.1.3 is given by for any x′ ∈M′ and any k ∈ Nd by ∂?〈k〉⊗x′ 7→ ∂′?〈k〉⊗x′.
Henc, we conclude by using the local formula 4.2.2.6.2.

Definition 4.3.3.2. Let ρ : BX → B′X be a commutative algebra homomorphism. We suppose B′X
is endowed with a structure of left D(m)

X]/S]
-module which is compatible to its underlying OX -algebra

structure. We suppose moreover that BX → B′X is D(m)

X]/S]
-linear. We keep notation 4.3.2.1. Let

E ′ be a left BX ⊗OX D
(m)

X]/S]
-module. Let us denote by (εE

′

n/BX ) the m-PD-stratification with coeffi-
cients in BX associated with E ′. We suppose the underlying structure of BX -module of E ′ extends to
a structure of B′X -module. Set ‹Pn := ‹PnX]/S](m) and ‹P ′n := B′X ⊗OX PnX]/S](m). Let us denote by

εM
′

n/B′
X

: HomB′(p̃′n0∗‹P ′n,M′) ∼−→ HomB′(p̃′n1∗‹P ′n,M′) the isomorphism making commutative the dia-

gram of ‹Pn-modules

HomBX (p̃n0∗
‹Pn,M′)
εM
′

n/BX
∼
��

∼
// HomB′

X
(p̃′n0∗

‹P ′n,M′)
εM
′

n/B′
X

∼
��

HomBX (p̃n1∗
‹Pn,M′) ∼

// HomB′
X

(‹Pn ⊗BX B′X ,M′) HomB′
X

(p̃′n1∗
‹P ′n,M′)

ε
B′
X
n/BX

∼oo

(4.3.3.2.1)

We say that the isomorphisms εM
′

n/BX are “semi-linear with respect to (ε
B′X
n/BX )−1” if the isomorphisms

εM
′

n/B′
X

are ‹P ′n-linear.
Proposition 4.3.3.3. Let B′X be a commutative BX-algebra endowed with a compatible structure of left
D(m)

X]/S]
-module such that BX → B′X is D(m)

X]/S]
-linear. Let M′ be a right BX ⊗OX D

(m)

X]/S]
-module. We

suppose the underlying structure of BX-module ofM′ extends to a structure of B′X-module. Let (εM
′

n/BX )

be the m-PD-costratification with coefficients in BX associated with M′. The following assertions are
equivalent.

(a) Both structures of right BX ⊗OX D
(m)

X]/S]
-module and B′X-module ofM′ extend (uniquely) to a struc-

ture of right B′X ⊗OX D
(m)

X]/S]
-module.

(b) The isomorphisms εM
′

n/BX are semi-linear with respect to the isomorphisms (ε
B′X
n/BX )−1 for any n ∈ N.

164



Proof. The proof is analogous to that of 4.3.2.6: this is a consequence of the formula 4.2.2.6.2 used by
composing it with the evaluation at 1 morphism (recall also the diagram 4.3.3.2.1 and the fact that εB

′
X

n/BX
sends 1 to 1).

4.3.4 Coefficients extension
4.3.4.1. We will write ‹D′(m)

X := B′X ⊗OX D
(m)

X]
and ‹P ′nX]/S](m) := B′X ⊗OX Pn

′

X]/S](m). Let us denote

simply by ρ : ‹PnX]/S](m) → ‹PnX]/S](m) the homomorphism ρ ⊗ id. Similarly to 4.1.2.5, the canonical

morphism p̃′n0(m) : B′X → B′X ⊗OX PnX]/S](m) endows the sheaf ‹P ′nX]/S](m) with a structure of B′X -algebra,
that we will call left structure. Moreover, the morphism of B′X -algebras

p̃′n1(m) : B′X → P ′nX]/S](m) ⊗OX B
′
X

ε
B′
X
n−→ B′X ⊗OX P ′nX]/S](m)

induces a second structure of B′X -algebra on ‹P ′nX]/S](m), that we call the right structure. Let j = 0 or 1.
Since ρ is horizontal, then we can check the commutativity of the diagram in the case j = 1 (the case
j = 0 is obvious):

BX

ρ

��

p̃nj // ‹PnX]/S](m)

ρn(m)

��
B′X

p̃′nj // ‹P ′nX]/S](m).

(4.3.4.1.1)

This means that ρn(m) : ‹PnX]/S](m) → ‹P ′nX]/S](m) is BX -linear for both left and right structures. This
yields the homomorphism

ρn(m) ⊗ ρ
n′

(m) : ‹PnX]/S](m) ⊗BX ‹Pn′X]/S](m) → ‹P ′nX]/S](m) ⊗BX ‹P ′n′X]/S](m) (4.3.4.1.2)

Similarly to 4.1.2.11, we define the homomorphisms

δ̃′n,n
′

(m) ,‹q0
′n,n′

,‹q1
′n,n′

: ‹P ′n+n′

X]/S](m)
→ ‹P ′nX]/S](m) ⊗BX ‹P ′n′X]/S](m).

We can also write the m-PD-algebras homomorphism δ̃n,n
′

(m) (resp. q̃n,n
′

0(m), resp. q̃
n,n′

1(m)) by p̃n,n
′

02,(m) (resp.

p̃n,n
′

01,(m), resp. p̃
n,n′

12,(m)) ; and similarly with some primes (see the notation 3.2.2.14). Then for 0 ≤ i < j ≤ 2,
we have the commutative diagram of commutative rings:‹Pn+n′

X]/S](m)

��

p̃n,n
′

ij,(m) //

ρn+n′
(m)

��

‹PnX]/S](m) ⊗BX ‹Pn′X]/S](m)

ρn(m)⊗ρ
n′
(m)

��‹P ′n+n′

X]/S](m)

p̃′n,n
′

ij,(m) // ‹P ′nX]/S](m) ⊗B′X
‹P ′n′X]/S](m).

(4.3.4.1.3)

4.3.4.2. We keep notation 4.3.4.2. Let E be a left ‹D(m)

X]
-module. We will write E ′ := B′X⊗BX E . Let (εEn)

be the m-PD-stratification with coefficients in BX associated with E . Let εE
′

n be the ‹P ′nX]/S](m)-linear
homomorphism induced by extension from εEn, i.e. making commutative the diagram‹P ′nX]/S](m) ⊗B′X E

′
∼
α //

εE
′
n

��

‹P ′nX]/S](m) ⊗P̃n
X]/S](m)

(‹PnX]/S](m) ⊗BX E)

P̃′n
X]/S]

⊗
P̃n
X]/S]

εEn∼
��

E ′ ⊗B′
X

‹P ′nX]/S](m) (E ⊗BX ‹PnX]/S](m))⊗P̃n
X]/S](m)

‹P ′nX]/S](m),
∼
β
oo

(4.3.4.2.1)

so that α and β are the canonical isomorphisms.
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Lemma 4.3.4.3. We keep notation 4.3.4.2. Suppose X] → S] is endowed with logarithmic coordinates
u1, . . . , ur. Let b′ ∈ B′X , x ∈ E. We have the formula

εE
′

n ((1⊗ 1)⊗ (b′ ⊗ x)) =
∑
|k|≤n

∂
〈k〉
] (b′ ⊗ x)⊗ τ{k}] , (4.3.4.3.1)

where (by abuse of notation) {τ{k}] , |k| ≤ n} with |k| ≤ n is the basis of ‹P ′nX]/S](m) induced by the basis

{τ{k}] , |k| ≤ n} of PnX]/S](m) and where ∂〈k〉] (b′ ⊗ x) is given by the action of left ‹D(m)

X]/S]
-module of

B′X ⊗BX E via the tensor product (see 4.2.3.1.(a)).

Proof. With the notation 4.3.4.2.1, α (resp. β) is the homomorphism given by τ ′⊗(b′⊗x) 7→ τ ′p̃′n1(m)(b
′)⊗

((1 ⊗ 1) ⊗ x) (resp. (x ⊗ τ) ⊗ τ ′ 7→ (1 ⊗ x) ⊗ ρ(τ)τ ′) where (1 ⊗ 1) is the unit of ‹P ′nX]/S](m), b
′ ∈ B′X ,

x ∈ E , τ ∈ ‹PnX]/S](m) and τ ′ ∈ ‹P ′nX]/S](m). Hence, we compute

εE
′

n ((1⊗ 1)⊗ (b′ ⊗ x)) = β
Ä
εEn((1⊗ 1)⊗ x)⊗ p̃′n1(m)(b

′)
ä

4.2.1.5.4
= β

Ñ
(
∑
|i|≤n

(∂
〈i〉
] x⊗ τ{i}] )⊗ p̃′n1(m)(b

′)

é
=
∑
|i|≤n

(1⊗ ∂〈i〉] x)⊗ τ{i}] p̃′n1(m)(b
′)

4.2.1.7.2
=

∑
|i|≤n

∑
|j|≤n

(1⊗ ∂〈i〉] x)⊗ p̃′n0,(m)(∂
〈j〉
] (b′))τ

{j}
] τ

{i}
]

=
∑
|i|≤n

∑
|j|≤n

(∂
〈j〉
] (b′)⊗ ∂〈i〉] x)⊗ τ{j}] τ

{i}
]

1.2.4.5.3
=

∑
|k|≤n

∑
i≤k

¶
k
i

©
(∂
〈k−i〉
] (b′)⊗ ∂〈i〉] x)⊗ τ{k}]

4.2.3.1.1
=

∑
|k|≤n

∂
〈k〉
] (b′ ⊗ x)⊗ τ{k}] .

Proposition 4.3.4.4. The family (εE
′

n ) is an m-PD-stratification with coefficients in B′X on E ′. This
yields a canonical structure of left ‹D′(m)

X -module on E ′, which is named the structure induced by extension
from the structure of left ‹D(m)

X -module of E.

Proof. Since this is local, we can suppose X] → S] is endowed with logarithmic coordinates. It follows
from the formula 4.3.4.3.1 that the formula 4.2.1.6.1 holds. Hence, following 4.2.1.6 the cocycle condition
holds for (εE

′

n ).

Lemma 4.3.4.5. We keep notation 4.3.4.2. We still denote by ρ : ‹D(m)

X]/S]
→ ‹D′(m)

X]/S]
the canonical ring

homomorphism induced by ρ (see 4.3.1.1.a). Let ρ∗(E ′) be the sheaf E ′ endowed with the left ‹D(m)

X]/S]
-

module structure induced via ρ by its left ‹D′(m)

X]/S]
-module structure. Since B′X and E are both left ‹D(m)

X -

modules, then there exists on B′X ⊗BX E another structure of left ‹D(m)

X]/S]
-module given by the tensor

product (see 4.2.3.1.(a)). In fact, these two left ‹D(m)

X]/S]
-module structures on E ′ are equal.

Proof. Since this is local, we can suppose X] → S] is endowed with logarithmic coordinates. Then this
is a consequence of Taylor formula 4.2.1.5.4 and of the formula 4.3.4.3.1.

Lemma 4.3.4.6. If E is a left ‹D(m)

X]
-module. The canonical homomorphism

B′X ⊗BX E → (B′X ⊗BX D
(m)

X]
)⊗D̃(m)

X]

E , (4.3.4.6.1)

given by b′ ⊗ x 7→ (b′ ⊗ 1) ⊗ x, is an isomorphism of left B′X ⊗OX D
(m)

X]/S]
-modules, where the structure

of the left term B′X ⊗BX E is defined at 4.3.4.2.
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Proof. Since the canonical homomorphism B′X ⊗BX ‹D(m)

X]
→ B′X ⊗OX D

(m)

X]/S]
induced by the ring homo-

morphism ‹D(m)

X]
→ B′X ⊗OX D

(m)

X]/S]
(see 4.3.1.1.1) is an isomorphism, then by associativity of the tensor

product the map 4.3.4.6.1 is therefore an isomorphism of B′X -modules. It remains to check 4.3.4.6.1
is D(m)

X]
-linear. Since this is local, we can suppose X] → S] is endowed with logarithmic coordinates

u1, . . . , ur and keep notation 4.3.5.2. Let k ∈ Nr. It follows from the formula 4.2.3.1.1 and Lemma 4.3.4.5
that we have

∂
〈k〉
] · (b

′ ⊗ x) =
∑
i≤k

¶
k
i

©
∂
〈i〉
] b′ ⊗ ∂〈k−i〉] x.

Hence, ∂〈k〉] · (b′ ⊗ x) is sent via the homomorphism 4.3.4.6.1 to∑
i≤k

¶
k
i

©
(∂
〈i〉
] b′ ⊗ 1)⊗ ∂〈k−i〉] x =

∑
i≤k

¶
k
i

©
(∂
〈i〉
] b′ ⊗ 1)(1⊗ ∂〈k−i〉] )⊗ x

=
∑
i≤k

¶
k
i

©
(∂
〈i〉
] b′ ⊗ ∂〈k−i〉] )⊗ x 4.1.2.2.3

=
Ä
(1⊗ ∂〈k〉] )(b′ ⊗ 1)

ä
⊗ x = ∂

〈k〉
] · ((b

′ ⊗ 1)⊗ x) .

4.3.4.7. We keep notation 4.3.4.2. Let M be a left ‹D(m)

X]
-module. We will write M′ := ρ[(M) =

HomBX (B′X ,M). Let (εMn ) be the m-PD-costratification with coefficients in BX associated withM. Let
εM

′

n be the ‹P ′nX]/S](m)-linear homomorphism induced by εMn , i.e. making commutative the diagram

p̃′n[0(m)(M) ∼
α //

εM
′

n

��

ρn[(m)(p̃
n[
0(m)(M))

ρn[(m)(ε
M
n )∼

��
p̃′n[1(m)(M) ρn[(m)(p̃

n[
1(m)(M)),

∼
β
oo

(4.3.4.7.1)

so that α and β are the canonical isomorphisms. The family (εM
′

n ) is an m-PD-costratification with
coefficients in B′X onM′. This yields a canonical structure of left ‹D′(m)

X -module onM′, which is named
the structure induced by extension from the structure of left ‹D(m)

X -module of M. We still denote by
ρ : ‹D(m)

X]/S]
→ ‹D′(m)

X]/S]
the canonical ring homomorphism induced by ρ (see 4.3.1.1.a). Let ρ∗(M′) be the

sheaf M′ endowed with the right ‹D(m)

X]/S]
-module structure induced via ρ by its right ‹D′(m)

X]/S]
-module

structure. There exists on HomBX (B′X ,M) another structure of right ‹D(m)
X -module given by the internal

homomorphism structure (see 4.2.3.5). Similarly to 4.3.4.5, we can check that these two right ‹D(m)
X -

module structures onM′ are equal.

4.3.4.8. LetM be a right D(m)

X]
⊗OX BX -module. Via the transposition isomorphism γBX : D(m)

X]/S]
⊗OX

BX
∼−→ BX⊗OXD

(m)

X]/S]
(see 4.2.5.7),M can be viewed as a right D(m)

X]
⊗OXBX -module. By associativity

of the tensor product, we can check that the canonical homomorphism

M⊗BX B′X →M⊗D(m)

X]
⊗OXBX

(D(m)

X]
⊗OX B′X), (4.3.4.8.1)

given by x⊗b′ 7→ x⊗(1⊗b′) is an isomorphism of B′X -modules. It follows from the commutative diagram
4.3.1.1.3 that we have the canonical isomorphism

id⊗γBX γB′X : M⊗D(m)

X]/S]
⊗OXBX

(D(m)

X]/S]
⊗OX B′X)→M⊗BX⊗OXD(m)

X]/S]

(B′X ⊗OX D
(m)

X]/S]
) (4.3.4.8.2)

By composing 4.3.4.8.1 and 4.3.4.8.2, we get the canonical homomorphism

M⊗BX B′X →M⊗BX⊗OXD(m)

X]/S]

(B′X ⊗OX D
(m)

X]/S]
) (4.3.4.8.3)

167



given by x⊗b′ 7→ x⊗ (b′⊗1), which is therefore a B′X -linear isomorphism. Via the formulas 4.2.3.5.1 and
4.2.5.7.3, we compute that 4.3.4.8.3 is right BX ⊗OX D

(m)

X]
-linear, where the structure of the left term is

given by 4.2.3.5. Hence both structures of right BX ⊗OX D
(m)

X]/S]
-module and B′X -module ofM⊗BX B′X

extend to a structure of right B′X ⊗OX D
(m)

X]/S]
-module. In other words, following 4.3.3.3, this means that

the tensor product m-PD-costratification εMn ⊗ (ε
B′X
n/BX )−1 ofM⊗BX B′X is semi-linear with respect to

(ε
B′X
n/BX )−1.

Proposition 4.3.4.9. Let E be a left ‹D(m)

X]/S]
-module, F a left B′X ⊗OX D

(m)

X]/S]
-module and E → F be

a ‹D(m)

X]/S]
-linear morphism. The canonical morphism

ρ : B′X ⊗BX E → F ,

is B′X ⊗OX D
(m)

X]/S]
-linear.

Proof. Since the morphism ρ is equal to the composition morphism

B′X ⊗BX E
∼−→

4.3.4.6.1

Ä
B′X]/S] ⊗OX D

(m)

X]/S]

ä
⊗BX⊗OXD(m)

X]/S]

E → F ,

then ρ is B′X ⊗OX D
(m)

X]/S]
-linear.

Corollary 4.3.4.10. Let E be a left ‹D(m)

X]/S]
-module and F be a left B′X ⊗OX D

(m)

X]/S]
-module. There

exists a canonical isomorphism

HomD̃
X]/S]

(E ,F)
∼−→ HomB′

X
⊗OXD

(m)

X

(B′X ⊗BX E ,F). (4.3.4.10.1)

Proof. By using 6.3.2.4, we construct the homomorphism 4.3.4.10.1. Since the canonical morphism
E → B′X ⊗BX E is ‹D(m)

X]/S]
-linear, we construct the inverse homomorphism of 4.3.4.10.1 via this one.

Proposition 4.3.4.11. Let E be a left ‹D(m)

X]/S]
-modules, M,N be two right ‹D(m)

X]/S]
-module and G be a

left or a right ‹D(m)

X]/S]
-module.

(a) The canonical isomomorphism

B′X ⊗BX (E ⊗BX G)
∼−→ (B′X ⊗BX E)⊗B′

X
(B′X ⊗BX G), (4.3.4.11.1)

is B′X ⊗OX D
(m)

X]/S]
-linear.

(b) The canonical homomorphisms

B′X ⊗BX HomBX (E ,G)→ HomB′
X

(B′X ⊗BX E ,B′X ⊗BX G) (4.3.4.11.2)

B′X ⊗BX HomBX (M,N )→ HomB′
X

(B′X ⊗BX M,B′X ⊗BX N ) (4.3.4.11.3)

are B′X ⊗OX D
(m)

X]/S]
-linear.

Proof. By definition, we get the B′X -linearity of the isomorphisms. It remains to check the D(m)

X]/S]
-

linearity. Since this is local we can suppose X]/S] has logarithmic coordinates. Via the formulas
of 4.2.3.1 and 4.2.3.5, we check the isomorphisms commute with the action of ∂〈k〉] and then we are
done.

Proposition 4.3.4.12. Let E, F be two left ‹D(m)

X]/S]
-modules, E ′ be a left B′X ⊗OX D

(m)

X]/S]
-module, M

be a right ‹D(m)

X]/S]
-module andM′ a right B′X ⊗OX D

(m)

X]/S]
-module.
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(a) The canonical isomorphisms

(B′X ⊗BX E)⊗B′
X
E ′ ∼−→ E ⊗BX E ′, HomBX (E , E ′) ∼−→ HomB′

X
(B′X ⊗BX E , E ′), (4.3.4.12.1)

are ‹D(m)

X]/S]
-linear. Hence, by structure transport, we can endow E ⊗BX E ′ and HomBX (E , E ′) with a

canonical structure of left B′X⊗OXD
(m)

X]/S]
-module which extends its structure of left BX⊗OXD

(m)

X]/S]
-

module. For instance, the canonical structure (see 4.2.3.1) of left ‹D(m)

X]/S]
-module on B′X ⊗BX E

extends to a structure of left B′X ⊗BX D
(m)

X]/S]
-module.

(b) In the same way, we obtain a canonical structure of left (resp. right) B′X ⊗OX D
(m)

X]/S]
-module on

HomBX (M,M′) (resp. M⊗BX E ′, M′ ⊗BX E, HomBX (E ,M′)) which extends its structure of left
(resp. right) B′X ⊗OX D

(m)

X]/S]
-module.

Proof. Use the same arguments than for the proof of 4.3.4.11.

4.3.5 Switch left to right D-module structures, (log) adjoint operators
We keep notations and hypotheses of 4.2.

Notation 4.3.5.1. Let us denote by ω̃X]/S] := BX ⊗OX ωX]/S] , BY := BX |Y , ‹D(m)
Y := BY ⊗OY D

(m)
Y

and ω̃Y := BY ⊗OY ωY/S] . Recall that ωX]/S] is a right D(m)

X]/S]
-submodule of j∗ωY (see 3.4.5.1). Hence,

by using 4.3.4.8, this yields a canonical structure of right ‹D(m)

X]/S]
-module on ω̃X]/S] .

4.3.5.2 (Adjoint operator with or without logarithmic structure). Suppose in this paragraph that X] →
S] is endowed with logarithmic coordinates (uλ)λ=1,...,r. Let (tλ)λ=1,...,r be the induced coordinates of
Y/S.

(a) Set ‹D(m)
Y := Γ(Y, ‹D(m)

Y ). With notation 4.1.2.16.3, the adjoint operator 2.2.1.2 extends to a map‹D(m)
Y → ‹D(m)

Y given by

P =
∑
k∈Nd

bk∂
〈k〉(m) ∈ ‹D(m)

Y 7→ tP =
∑
k

(−1)|k|∂〈k〉bk,

where bk is a finite sequence of elements of Γ(Y,BX).

(b) Set ‹D(m)

X]/S]
:= Γ(X, ‹D(m)

X]/S]
). With notation 4.1.2.16, via the local description 4.1.2.16.2, the loga-

rithmic adjoint operator (see 3.4.1.2.3) extends to a map ‹D(m)

X]/S]
→ ‹D(m)

X]/S]
given by

P =
∑
k∈Nd

bk∂
〈k〉(m)

] 7→ ‹P :=
∑
k

∂̃
〈k〉(m)

] bk,

where bk is a finite sequence of elements of Γ(X,BX).

Proposition 4.3.5.3 (Comparison between adjoint operator with or without logarithmic structure).
Suppose X] → S] is endowed with logarithmic coordinates u1, . . . , ur and keep notation 4.3.5.2. Let P,Q
be two differential operators of ‹D(m)

X]/S]
. With notation 4.3.5.2, the following properties hold.

(a) We have t(tP ) = P , ‹‹P = P , t(PQ) = tQtP and P̃Q = ‹Q‹P .
(b) Suppose u1, . . . , ur ∈ O∗X . We have the equality

ρ(‹P ) = ρ

Å
t tP

1

t

ã
, (4.3.5.3.1)

where t = t1 = t1 · · · tn and where ρ is the canonical map ‹D(m)

X]/S]
→ ‹D(m)

Y .
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Proof. (a) Let b ∈ Γ(X,BX) and k ∈ Nr and P := b∂
〈k〉(m)

] ∈ Γ(X, ‹D(m)

X]/S]
). Following 4.1.2.4.1, we get‹P = ∂̃

〈k〉
] b =

∑
i≤k

¶
k
i

©
∂̃
〈i〉
] (b)× ∂̃〈k−i〉] . Since ˜̃∂〈k−i〉] = ∂

〈k−i〉
] , then we get‹‹P =

∑
i≤k

¶
k
i

©
∂
〈k−i〉
] × ∂̃〈i〉] (b).

Hence, the equality ‹‹P = P follows from the computations:∑
i≤k

¶
k
i

©
∂
〈k−i〉
] × ∂̃〈i〉] (b)

3.2.3.7.2
=

∑
i≤k

∑
j≤k−i

¶
k
i

©¶
k−i
j

©
∂
〈k−i−j〉(m)

] (∂̃
〈i〉
] (b))∂

〈j〉(m)

]

=
∑
j≤k

¶
k
j

©Ñ ∑
i≤k−j

¶
k−j
i

©
∂
〈k−i−j〉(m)

] ∂̃
〈i〉
] (b)

é
∂
〈j〉(m)

]
3.4.5.2.1

= b∂
〈k〉(m)

] .

We compute similarly the equality P̃Q = ‹Q‹P , whereas the equalities involving the adjoint operators are
obvious.

(b) By using 4.1.1.5 and replacing BX by the image of the morphism BX → j∗BY if necessary, to
check the assertion (b) we can suppose that ρ is injective. Similar to 2.2.1.3, 3.4.1.3 and 3.4.1.5, we can
therefore conclude the proposition.

4.3.5.4. Let E (resp. M) be a left (resp. right) ‹D(m)

X]/S]
-module.

(a) It follows from 4.2.4.3.1 that we have the canonical isomorphism of right ‹D(m)

X]/S]
-modules:

(ω̃X]/S] ⊗BX ‹D(m)

X]/S]
)r ⊗D̃(m)

X]/S]

E ∼−→ ω̃X]/S] ⊗BX E . (4.3.5.4.1)

(b) Since ω̃X]/S] is locally free (of rank one), the canonical BX -linear morphism

ω̃X]/S] ⊗BX HomBX (ω̃X]/S] ,M)
∼−→ M (4.3.5.4.2)

is an isomorphism. Following 4.2.4.11.1, this isomorphism is moreover ‹D(m)

X]/S]
-linear. Similarly, it

follows from 4.2.4.11.2 that we have the canonical ‹D(m)

X]/S]
-linear isomorphism:

E ∼−→ HomBX (ω̃X]/S] , ω̃X]/S] ⊗BX E). (4.3.5.4.3)

(c) Following 4.3.4.12, HomBX (ω̃X]/S] ,−) andHomOX (ωX]/S] ,−) (resp. ω̃X]/S]⊗BX− and ωX]/S]⊗OX
−) are canonically isomorphism on the category of right (resp. left) ‹D(m)

X]/S]
-modules.

(d) This yields that the functors −⊗BX ω̃−1
X]/S]

= HomBX (ω̃X]/S] ,−) and ω̃X]/S] ⊗BX − (resp. −⊗OX
ω−1
X]/S]

= HomOX (ωX]/S] ,−) and ωX]/S] ⊗OX −) induce quasi-inverse equivalences between the

category of left ‹D(m)

X]/S]
-modules and that of right ‹D(m)

X]/S]
-modules.

4.3.5.5 (Local description). Let E (resp. M) be a left (resp. right) ‹D(m)

X]/S]
-module. Suppose in this

paragraph that X] → S] is endowed with logarithmic coordinates (uλ)λ=1,...,r. Let (tλ)λ=1,...,r be the
induced coordinates of Y/S.

(a) The element d log u1 ∧ · · · ∧ d log ud is a basis of the free BX -module ω̃X]/S] . For any section
P ∈ ‹D(m)

X]/S]
and e ∈ E , we have the formula in ω̃X]/S] ⊗BX E :

(d log u1 ∧ · · · ∧ d log ud ⊗ e)P = d log u1 ∧ · · · ∧ d log ud ⊗ ‹Pe. (4.3.5.5.1)

Indeed, by BX -linearity, it is sufficient to check it for P = ∂̃
〈k〉
] . Moreover, via 4.3.4.12.1, the

canonical isomomorphism ω̃X]/S] ⊗BX E
∼−→ ωX]/S] ⊗OX E is D(m)

X]/S]
-linear. It follows from 3.4.5.1,

(d log u1 ∧ · · · ∧ d log ud) · ∂̃
〈k〉
] = 0 is k 6= 0. By using the formula 4.2.3.5.3, this yields that 4.3.5.5.1

holds for P = ∂̃
〈k〉
] . Hence, we are done.
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(b) This yields that, by identifying as above ω̃X]/S] and BX the left action of P ∈ ‹D(m)

X]/S]
on m ∈M in

M⊗BX ω̃−1
X]/S]

is equal to m · ‹P . These structures are called “twisted” structures.

(c) We get the analogous description for ω̃Y ⊗BY E|Y andM|Y ⊗BY ω̃−1
Y by exchanging ‹P by t

P , i.e. by
replacing the logarithmic adjoint by the adjoint.

Lemma 4.3.5.6. Let E (resp. M) be a left (resp. right) ‹D(m)

X]/S]
-module. We have the following

isomorphism of OS-modules:

M⊗D̃
X]/S]

E ∼−→ (ωX]/S] ⊗OX E)⊗D̃
X]/S]

(M⊗OX ω−1
X]/S]

). (4.3.5.6.1)

Proof. We construct the isomorphism 4.3.5.6.1 as follows:

M⊗D̃
X]/S]

E ∼←−
4.3.5.4.2

(
ω̃X]/S] ⊗BX HomBX (ω̃X]/S] ,M)

)
⊗D̃

X]/S]
E

∼←−
4.3.5.4.1

Å
(ω̃X]/S] ⊗BX ‹D(m)

X]/S]
)r ⊗D̃(m)

X]/S]

HomBX (ω̃X]/S] ,M)

ã
⊗D̃(m)

X]/S]

E

∼−→
4.2.4.2.2

Å
(ω̃X]/S] ⊗BX ‹D(m)

X]/S]
)l ⊗D̃(m)

X]/S]

E
ã
⊗D̃(m)

X]/S]

HomBX (ω̃X]/S] ,M)

∼−→
4.2.5.6.1

Å
(ω̃X]/S] ⊗BX ‹D(m)

X]/S]
)r ⊗D̃(m)

X]/S]

E
ã
⊗D̃(m)

X]/S]

HomBX (ω̃X]/S] ,M)

∼−→
4.3.5.4.1

(
ωX]/S] ⊗OX E

)
⊗D̃(m)

X]/S]

HomBX (ω̃X]/S] ,M).

Lemma 4.3.5.7. The functors − ⊗BX ω̃−1
X]/S]

= HomBX (ω̃X]/S] ,−) and ω̃X]/S] ⊗BX − are exact and
induce quasi-inverse equivalences between the category of (resp. coherent, resp. flat, resp. locally projec-
tive of finite type) left ‹D(m)

X]/S]
-modules and that of (resp. coherent, resp. flat, resp. locally projective of

finite type) right ‹D(m)

X]/S]
-modules.

Proof. The exactness is obvious. With regards to the coherence and the local projectivity of finite type, it
is sufficient to use the descriptions of 4.3.5.5 on the twisted structures (and recalling that the arrows that
associates the logarithmic adjoint to a differential operator are isomorphisms). Finally, for the flatness,
this is a consequence of the following fact: for any left ‹DX]/S] -module E and right ‹DX]/S] -moduleM,
we have the canonical isomorphism 4.3.5.6.1.

Proposition 4.3.5.8. Let E, F of left ‹D(m)

X]/S]
-modules and M, N of right ‹D(m)

X]/S]
-modules. The

following canonical isomorphisms

ωX]/S] ⊗OX (E ⊗BX F)
∼−→ (ωX]/S] ⊗OX E)⊗BX F ,

(M⊗BX E)⊗OX ω−1
X]/S]

∼−→ (M⊗OX ω−1
X]/S]

)⊗BX E

(ωX]/S] ⊗OX E)⊗BX (M⊗OX ω−1
X]/S]

)
∼−→ M⊗BX E ,

ωX]/S] ⊗OX HomBX (E ,F)
∼−→ HomBX (E , ωX]/S] ⊗OX F),

HomBX (E ,M)⊗OX ω−1
X]/S]

∼−→ HomBX (E ,M⊗OX ω−1
X]/S]

),

HomBX (E ,F)
∼−→ HomBX (ωX]/S] ⊗OX E , ωX]/S] ⊗OX F).

are ‹D(m)

X]/S]
-linear.

Proof. The ‹D(m)

X]/S]
-linearity being local, we reduce to suppose X affine and X]/S] endowed with log-

arithmic coordinates. The formulas 4.2.3.1.1, 4.2.3.5.1, 4.2.3.1.3, 4.2.3.5.2 and 4.2.3.5.5 allow us to
conclude.
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Proposition 4.3.5.9. The functor ωX]/S] ⊗OX − of the category of left ‹D(m)

X]/S]
-modules in that of right‹D(m)

X]/S]
-modules is canonically isomorphic to the functor (ωX]/S] ⊗OX ‹D(m)

X]/S]
)⊗D̃(m)

X]/S]

−.

Proof. By takingM = ωX]/S] ⊗OX BX and N = ‹D(m)

X]/S]
, this is a consequence of 4.2.4.3.2.

4.3.5.10. Let E ,F (resp. M,N ) be two left (resp. right) ‹D(m)

X]/S]
-module. It follows from 4.3.5.6 and

4.3.5.7 that we have the following isomorphism of OS-modules:

(ω̃X]/S] ⊗BX F)⊗D̃
X]/S]

E ∼−→ (ω̃X]/S] ⊗BX E)⊗D̃
X]/S]

F , (4.3.5.10.1)

M⊗D̃
X]/S]

(N ⊗BX ω̃−1
X]/S]

)
∼−→ N ⊗D̃

X]/S]
(M⊗BX ω̃−1

X]/S]
). (4.3.5.10.2)

4.4 On the preservation of D-module structures under pullbacks,
base change

4.4.1 Relative ringed topoi
Definition 4.4.1.1. We will need the following definition.

(a) We define the category of “ringed logarithmic schemes” as follows: a ringed logarithmic scheme
consists in pairs (U ],BU ) where U ] is a logarithmic scheme and BU is a commutative OU -algebra.
A “morphism of ringed logarithmic schemes” α̃ : (U ],BU ) → (V ],BV ) is the data of a morphism of
log schemes of the form U ] → V ] (denoted by α) and of a morphism of commutative OU -algebras
α∗BV → BU (denoted by ρα). We compose such morphisms in the obvious way.

(b) We define the category of “relative ringed logarithmic schemes” as follows: a “relative ringed logarith-
mic schemes” (U ],BU )/(V ],BV ) is a morphism of ringed logarithmic schemes (U ],BU )→ (V ],BV ).
A morphism of relative ringed logarithmic schemes (U ],BU )/(V ],BV ) → (U ′],BU ′)/(V ′],BV ′) is a
commutative square of the form

(U ],BU )
f̃ //‹α′

��

(U ′],BU ′)‹α′
��

(V ],BV )
g̃ // (V ′],BV ′),

(4.4.1.1.1)

such that all the arrows are morphisms of ringed logarithmic schemes.

(c) Similarly, we define the categories of “(relative) ringed V-log formal schemes” and (resp. of “(relative)
ringed topoi”, resp. “(relative) ringed spaces”) by replacing logarithmic schemes by V-log formal
schemes (resp. topoi, resp. topological spaces).

Example 4.4.1.2. A scheme or log scheme can be viewed as a ringed logarithmic scheme via the
faithfully flat functor given by Z] 7→ (Z],OZ).

Definition 4.4.1.3. We complete the definitions of the categories of 4.4.1.1 by introducing the following
notion of (strongly) quasi-flatness as follow.

(a) A morphism of ringed logarithmic schemes (resp. a morphism of ringed V-log formal schemes) of the
form φ̃ : (U ],BU ) → V ] is said to be “quasi-flat” if BU is a quasi-flat φ−1OV -algebra (see definition
3.1.1.5 or resp. 3.3.1.11).

(b) A morphism of ringed V-log formal schemes (U],BU)/V] is “strongly quasi-flat” if there exists a
morphism V→ T of V-formal schemes such that the induced morphism of ringed spaces (U,BU)→ T
is flat and such that, denoting by IT an ideal of definition of T, the sheaf OT0

(resp. gr•ITOT) has
finite tor dimension on OT (resp. OT0).

172



(c) A morphism of relative ringed logarithmic schemes (resp. a morphism of relative ringed V-log formal
schemes) of the form (U ],BU )/V ] → (U ′],BU ′)/V ′] is said to be “quasi-flat” if there exists a morphism
of schemes (resp. a morphism of V-formal schemes) V ′ → T such that both induced morphisms of
ringed spaces (U ′,BU ′) → T and (U,BU ) → T are flat. Remark that in both (U ],BU )/V ] and
(U ′],BU ′)/V ′] are quasi-flat in the sense of (a).

(d) Let α̃ : (U],BU)/V] → (U′],BU′)/V′] be a morphism of relative ringed V-log formal schemes. We say
that α̃ is “strongly quasi-flat” if there exists a morphism V′ → T of V-formal schemes such that both
induced morphisms of ringed spaces (U′,BU′)→ T and (U,BU)→ T are flat and such that denoting
by IT an ideal of definition of T the sheaf OT0

(resp. gr•ITOT) has finite tor dimension on OT (resp.
OT0

). Remark that in both (U],BU)/V] and (U′],BU′)/V′] are strongly quasi-flat in the sense of (b).

Example 4.4.1.4. We will give later that in the case of overconvergent singularities, we do have strongly
quasi-flat morphisms (7.3.2.11.b).

4.4.1.5. Let us explain a bit the purpose of these notions of (strongly) quasi-flatness of 4.4.1.3.

(a) The quasi-flatness will be useful to be able to define correctly extraordinary pullbacks or pushforwards
(see 5.1.1.3).

(b) Let (U],BU)/V] be a strongly quasi-flat morphism of ringed V-log formal schemes. Then denoting
by I an ideal of definition of U, the sheaf OU0

(resp. gr•IOU) has finite tor dimension on OU (resp.
OU0

). Hence, we will be able to use 7.3.2.9, 7.3.2.10 and 7.3.3.3.

4.4.2 Pullbacks
Let

X] f //

��

Y ]

��
S] // T ],

(4.4.2.0.1)

be a commutative diagram where S] and T ] are nice fine log schemes over Spec(Z/pi+1Z) as defined in
3.1.1.1 where i is an integer, (resp. S] and T ] are nice fine V-log formal schemes as defined in 3.3.1.10)
where X] is a log smooth S]-log scheme (resp. log smooth S]-log formal scheme) and Y ] is a log
smooth T ]-log scheme (resp. log smooth T ]-log formal scheme). Let BX (resp. BY ) be a commutative
OX -algebra (resp. OY -algebra) endowed with a compatible structure of D(m)

X]/S]
-module (resp. D(m)

Y ]/T ]
-

module). Let us recall that f∗BY is endowed with a structure of left D(m)

X]/S]
-module (see 3.4.4.2) which

is compatible with its structure of OX -algebra (see 3.4.4.6). We suppose finally that we have a morphism
of algebras f∗BY → BX which is moreover D(m)

X]/S]
-linear. We will denote by ‹D(m)

X]/S]
= BX ⊗OX D

(m)

X]/S]

and ‹D(m)

Y ]/T ]
= BY ⊗OY D

(m)

Y ]/T ]
.

We denote by ‹X] (resp. ‹Y ]) the ringed logarithmic scheme (X], BX) (resp. (Y ], BY )), and by
f̃ : ‹X]/S] → ‹Y ]/T ] the morphism of relative ringed logarithmic schemes induced by the diagram 4.4.2.0.1
and by f∗BY → BX . When S] → T ] in understood, by abuse of notation, we also denote by f̃ the induced
morphism ‹X] → ‹Y ] of ringed logarithmic schemes.

Notation 4.4.2.1. We have the following notation that can be also used by replacing respectively S
and X] by T and Y ].

For j = 0, 1, recall the morphisms pnj,(m) : ∆n
X]/S](m) → X are finite and are homeomorphisms.

We get a sheaf of rings on ∆n
X]/S](m) by setting B∆n

X]/S](m)
:= pn∗0,(m)(BX), i.e. pn0,(m)∗B∆n

X]/S](m)
=

BX ⊗OX PnX]/S(m) = ‹PnX]/S](m). We get the ringed logarithmic (V-formal) scheme‹∆n
X]/S](m) := (∆n

X]/S](m),B∆n

X]/S](m)
).
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We denote by p̃n0,(m) : ‹∆n
X]/S](m) → ‹X] the morphism induced by the morphism of log (formal) schemes

pn0,(m) and by the ring homomorphism (pn0,(m))
−1(BX)→ B∆n

X]/S](m)
. By applying pn0,(m)∗ to (pn0,(m))

−1(BX)→

B∆n

X]/S](m)
we get p̃n0,(m) : BX → ‹PnX]/S](m) (see notation 4.1.2.5).

We denote by p̃n1,(m) : ‹∆n
X]/S](m) → ‹X] the morphism induced by the morphism of log (formal)

schemes pn1,(m) and by the ring homomorphism (pn1,(m))
−1(BX)→ pn∗1,(m)(BX)

∼−→
ε
BX
n

pn∗0 (BX) = B∆n

X]/S](m)
.

Since pn1,(m)∗ = pn0,(m)∗ (see remark 3.2.2.6), then by applying pn0,(m)∗ to this latter map, we get the

homomorphism p̃n1,(m) : BX → ‹PnX]/S](m) (see notation 4.1.2.5).
According to notation 3.2.2.12, for any integer n and any integers 0 ≤ i < j ≤ 2, it follows from

the universal property of m-PD-envelopes of order n (see 3.2.1.1) that we get a unique m-PD-morphism
qnij,(m) : ∆n

X]/S],(m)(2)→ ∆n
X]/S],(m) making commutative the diagram 3.2.2.12.1. For any 0 ≤ i ≤ 2, we

denote by pni,(m)(2) : ∆n
X]/S](m)(2)→ X] the homomorphism equal to the composition of ∆n

X]/S](m)(2)→
X
]3
/S] with the ith projection. Similarly to the remark 3.2.2.6, pni,(m)(2) are finite homeomorphisms such

that pni,(m)(2)∗ = pn0,(m)(2)∗. We set ‹PnX]/S(m)(2) := BX ⊗OX pn0,(m)(2)∗PnX]/S(m)(2). We get a sheaf
of rings on ∆n

X]/S](m)(2) by setting B∆n

X]/S](m)
(2) := (pn0,(m)(2))∗(BX), i.e. (pn0,(m)(2))n∗ (B∆n

X]/S](m)
) =‹PnX]/S(m)(2). We get the ring homomorphism p̃n0,(m)(2) : (pn0,(m)(2))−1(BX)→ (pn0,(m)(2))∗(BX).

For j = 1, 2, via the identifications (qn0j,(m))
∗ ◦ pn∗0,(m) = (pn0,(m)(2))∗ and (qn0j,(m))

∗ ◦ pn∗1,(m) =

(pnj,(m)(2))∗, we get the ring isomorphism (qn0j,(m))
∗(εBXn ) : (pnj,(m)(2))∗(BX)

∼−→ (pn0,(m)(2))∗(BX). By
composing with (pn0,(m)(2))−1(BX) = (pnj,(m)(2))−1(BX) → (pnj,(m)(2))∗(BX), we get the ring homomor-
phism p̃nj,(m)(2) : (pn0,(m)(2))−1(BX)→ (pn0,(m)(2))∗(BX).

We set the ringed logarithmic (V-formal) scheme‹∆n
X]/S](m)(2) := (∆n

X]/S](m)(2),B∆n

X]/S](m)
(2)).

We denote by p̃nj,(m)(2) : ‹∆n
X]/S](m)(2) → ‹X] the morphism induced by the morphism of log (formal)

schemes pnj,(m)(2) and by the ring homomorphism p̃nj,(m)(2) : (pn0,(m)(2))−1(BX)→ (pnj,(m)(2))∗(BX).
For j = 1, 2, we set q̃n0j,(m) : (qn0j,(m))

−1(B∆n

X]/S](m)
) → (qn0j,(m))

∗(B∆n

X]/S](m)
) = B∆n

X]/S](m)
(2). We

have moreover, q̃n12,(m) : (qn12,(m))
−1(B∆n

X]/S](m)
)→ (qn12,(m))

∗(B∆n

X]/S](m)
) = (pn1,(m)(2))∗(BX) = (qn01,(m))

∗◦

pn∗1,(m)(BX)
∼−→
ε
BX
n

(qn01,(m))
∗◦pn∗0,(m)(BX) = B∆n

X]/S](m)
(2). For any integer n and any integers 0 ≤ i < j ≤ 2,

we denote by q̃nij,(m) : ‹∆n
X]/S](m)(2)→ ‹∆n

X]/S](m) the morphism induced by the morphism of log (formal)
schemes qnij,(m) and by the ring homomorphism q̃nij,(m) : (qnij,(m))

−1(B∆n

X]/S](m)
) → (pn0,(m)(2))−1(BX) →

B∆n

X]/S](m)
(2). We have by construction the equality of morphism of ringed logarithmic (V-formal)

schemes:
p̃n0,(m) ◦ q̃

n
ij,(m) = p̃ni,(m)(2), p̃n1,(m) ◦ q̃

n
ij,(m) = p̃nj,(m)(2). (4.4.2.1.1)

4.4.2.2. It follows from the ring homomorphisms of 3.4.4.1.2 and from f−1BY → BX that we get the
ring homomorphisms

f−1(BY ⊗OY PnY ]/T ](m))→ BX ⊗OX P
n
X]/S](m); (4.4.2.2.1)

f−1(PnY ]/T ](m) ⊗OY BY )→ PnX]/S](m) ⊗OX BX . (4.4.2.2.2)

The fact that the homomorphism f∗BY → BX is D(m)

X]/S]
-linear is equivalent to the commutativity of the

following diagram:

f−1(PnY ]/T ](m) ⊗OY BY )
4.4.2.2.2//

∼f−1(ε
BY
n )

��

PnX]/S](m) ⊗OX BX

∼ε
BX
n

��
f−1(BY ⊗OY PnY ]/T ](m))

4.4.2.2.1// BX ⊗OX PnX]/S](m).

(4.4.2.2.3)
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With notation 4.1.2.5, it follows from the commutative diagram 4.4.2.2.3, the commutativity of the
diagram in the case j = 1 (the case j = 0 is obvious):

f−1(BY )

��

f−1p̃nj,(m) // f−1‹PnY ]/T ](m)

4.4.2.2.1

��
BX

p̃nj,(m) // ‹PnX]/S](m).

(4.4.2.2.4)

According to notation 3.4.4.1, we have the canonical morphism fn(m) : ∆n
X]/S](m) → ∆n

Y ]/T ](m). We

denote by f̃n(m) : ‹∆n
X]/S](m) → ‹∆n

Y ]/T ](m) the morphism of ringed logarithmic (V-formal) schemes given
by the morphism of log (formal) schemes fn(m) and by 4.4.2.2.1. For any couple of integers n ≥ n′, for
any integer r ≥ 0, we denote by

ψ̃n,n
′

X]/S],(m)
(r) : ‹∆n′

X]/S],(m)(r)→ ‹∆n
X]/S],(m)(r) (4.4.2.2.5)

the canonical exact closed immersion induced by 4.1.2.12.1. We get from the commutativity of the right
square of 3.4.4.1.1 and of 4.4.2.2.4 that of‹∆n′

X]/S](m)

f̃n
′

(m)

��

� �
ψ̃n,n

′

X]/S],(m) // ‹∆n
X]/S](m)

f̃n(m)

��

p̃nj,(m) // ‹X]

f̃

��‹∆n′

Y ]/T ](m)
� �

ψ̃n,n
′

Y ]/T],(m) // ‹∆n
Y ]/T ](m)

p̃nj,(m) // ‹Y ].
(4.4.2.2.6)

4.4.2.3. It follows from the ring homomorphisms of 3.4.4.1.2 and from f−1BY → BX that we get the
ring homomorphisms

f−1(BY ⊗OY pn0,(m)(2)∗PnY ]/T ](m)(2)→ BX ⊗OX pn0,(m)(2)∗PnX]/S](m)(2). (4.4.2.3.1)

We denote by f̃n(m)(2) : ‹∆n
X]/S](m)(2) → ‹∆n

Y ]/T ](m)(2) the morphism of ringed logarithmic (V-formal)
schemes given by the morphism of log (formal) schemes fn(m)(2) and by 4.4.2.3.1. These homomorphisms

are compatible when n varies, i.e., with notation 3.2.2.2.1, we have the equality ψ̃n
′,n

Y ]/T ],(m)
(2)◦ f̃n(m)(2) =

f̃n
′

(m)(2) ◦ ψ̃n
′,n

X]/S],(m)
(2), for any n′ ≥ n. We have the commutative diagram:‹∆n

X]/S],(m)(2)

f̃n(m)(2)

��

q̃nij,(m) // ‹∆n
X]/S],(m)

f̃n(m)

��‹∆n
Y ]/T ],(m)(2)

q̃nij,(m) // ‹∆n
Y ]/T ],(m).

(4.4.2.3.2)

4.4.2.4. Let us now construct the inverse image of a left ‹D(m)

Y ]/T ]
-module within the terminology of

m-PD-stratifications with coefficients in BY .
Let E be a left ‹D(m)

Y ]/T ]
-module and (εEn) its m-PD-stratification with coefficients in BY . The BX -

module f̃∗E has a canonical structure of left ‹D(m)

X]/S]
-module. Indeed, it is a consequence of the commu-

tative diagram 4.4.2.2.6 that the isomorphisms εf̃
∗E
n := f̃n∗(m)(ε

E
n) endow f̃∗E with an m-PD-stratification

with coefficients in BY (for the cocycle conditions, we use the commutativity of 4.4.2.3.2 and the equali-
ties 4.4.2.1.1). Let D be a sheaf of rings. When E is a (‹D(m)

Y ]/T ]
,D)-bimodule, then by functoriality f̃∗(E)

is a (‹D(m)

X]/S]
, f−1D)-bimodule. For instance we get the (‹D(m)

X]/S]
, f−1‹D(m)

Y ]/T ]
)-bimodule f̃∗(‹D(m)

Y ]/T ]
) that

we will denote by ‹D(m)

X]/S]→Y ]/T ] .
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Example 4.4.2.5. Let us consider the morphism of ringed logarithmic (V-formal) schemes : (X],BX)
ĩd−→

(X],OX) (and S] = T ]). If E is a left D(m)

X]/S]
-module, it is a consequence of 4.3.4.2.1, that the struc-

ture of ‹D(m)

X]/S]
-module on (‹id)∗(E) defined by inverse image is equal to the structure of ‹D(m)

X]/S]
-module

defined by extension.

4.4.2.6. We get the BX -algebra f̃∗(p̃n0,(m)∗
‹PnY ]/T ](m)) := BX ⊗f−1BY f

−1(p̃n0,(m)∗
‹PnY ]/T ](m)). The mor-

phism 4.4.2.2.1 factors throught (by abuse of notation): the homomorphism of BX -algebras:

f̃n(m) : f̃∗(p̃n0,(m)∗
‹PnY ]/T ](m))→ p̃n0,(m)∗

‹PnX]/S](m). (4.4.2.6.1)

Dualizing the formula 4.4.2.6.1, we obtain the homomorphism of BX -modules

f̃n∨(m) : ‹D(m)

X]/S],n
→ f̃∗‹D(m)

Y ]/T ],n
. (4.4.2.6.2)

Passing to the limit, we get the canonical homomorphism of BX -modules:‹D(m)

X]/S]
→ ‹D(m)

X]/S]→Y ]/T ] . (4.4.2.6.3)

Example 4.4.2.7. Suppose f = id. Then we get from 4.4.2.6.3

ρ? : ‹D(m)

X]/S]
→ ‹D(m)

X]/S]→X]/T ] = ‹D(m)

X]/T ]
, (4.4.2.7.1)

which is by construction induced by the BX -linear dual of the natural maps ρn := ‹idn(m) : ‹PnX]/T ](m) →‹PnX]/S](m). Then it follows from the commutativity of 4.4.2.3.2 that for any P ∈ ‹D(m)

X]/S], n
, P ′ ∈‹D(m)

X]/S], n′
, we get the commutative diagram‹Pn+n′

X]/T ](m)

δ̃n,n
′

(m) //

ρn+n′

��

‹PnX]/T ](m) ⊗BX ‹Pn′X]/S](m)

id⊗ρ?(P ′)//

ρn⊗ρn′
��

‹PnX]/T ](m)

ρ?(P ) //

ρn

��

BX

‹Pn+n′

X]/S](m)

δ̃n,n
′

(m) // ‹PnX]/S](m) ⊗BX ‹Pn′X]/S](m)

id⊗P ′ // ‹PnX]/S](m)

P // BX

(4.4.2.7.2)

whose horizontal bottom (resp. top) morphisms is then P · P ′ (resp. ρ?(P ) · ρ?(P ′)). This yields that
4.4.2.7.1 is a ring homomorphism. Besides, the structure of left ‹DX]/S] on ‹D(m)

X]/S]→X]/T ] is given by
this ring homomorphism. When S] → T ] is log-smooth, we will make some local commutations (see
below 5.3.1).

Proposition 4.4.2.8. The canonical homomorphism 4.4.2.6.3 sends 1 to 1⊗1 and is (‹D(m)

X]/S]
, f−1BY )-

bilinear.

Proof. We can copy 3.4.4.4.

Proposition 4.4.2.9. Let F be a left ‹D(m)

Y ]/T ]
-module. We have the canonical isomorphism of left ‹D(m)

X]/S]
-

modules:
f̃∗F ∼−→ ‹D(m)

X]/S]→Y ]/T ] ⊗f−1D̃(m)

Y ]/S]

f−1F . (4.4.2.9.1)

Proof. We can copy the proof of 3.4.4.5.1.

Corollary 4.4.2.10. Let F be a left ‹D(m)

Y ]/T ]
-module. If F is quasi-nilpotent, then so is the ‹D(m)

X]/S]
-

module ‹D(m)

X]/S]→Y ]/T ] ⊗f−1D̃(m)

Y ]/S]

f−1F .

Proof. By functoriality of the m-PD-envelope, it follows from the characterization 4.2.1.10.(c) of the
quasi-nilpotence that f̃∗F is quasi-nilpotent.
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4.4.2.11. Denote by ρ : f−1BY → BX the given algebra homomorphism. Let P ∈ ‹D(m)

X]/S],n
, Q ∈‹D(m)

Y ]/T ],n
such that f̃n∨(m)(P ) = 1 ⊗ Q where 1 ⊗ Q is the BX -linear map making commutative the top

right square of the following diagram:

f−1(BY )

ρ

��

f−1p̃n1,(m) // f−1‹PnY ]/T ](m)

��

f−1Q // f−1(BY )

ρ

��
f̃∗(p̃n0,(m)∗

‹PnY ]/T ](m))
1⊗Q //

f̃n(m) 4.4.2.6.1

��

BX

BX
p̃n1,(m) // ‹PnX]/S](m)

P // BX .

(4.4.2.11.1)

The equality f̃n∨(m)(P ) = 1⊗Q means that the bottom right square of 4.4.2.11.1 is commutative. Following
4.4.2.2.4, the left rectangle is commutative. Hence, with 4.2.1.5.3, this commutativity of the whole
diagram 4.4.2.11.1 implies that for any b ∈ BY , the following formula holds:

ρ(Q · b) = P · ρ(b), (4.4.2.11.2)

where Q · b means the action of Q on b given by the structure of left ‹D(m)

Y ]/T ]
-module on BY and P · ρ(b)

means the action of P on ρ(b) via the left ‹D(m)

X]/S]
-module on BX .

4.4.2.12. We can extend the formula 4.4.2.11.2 as follows. Let P ∈ ‹D(m)

X]/S],n
, Q1, . . . , Qr ∈ ‹D(m)

Y ]/T ],n

a1, . . . , ar ∈ OX such that f̃n∨(m)(P ) =
∑r
j=1 ar ⊗ Qr. Let F be a left ‹D(m)

Y ]/T ]
-module. The morphism

4.4.2.2.1 factors throught the homomorphism of BX -algebras:

f̃n(m),r : f̃∗(p̃n1,(m)∗
‹PnY ]/T ](m))→ p̃n1,(m)∗

‹PnX]/S](m), (4.4.2.12.1)

where we add the symbol r to distinguish it from 4.4.2.6.1. Consider the diagram:

f̃−1(p̃n1,(m)∗
‹PnY ]/T ](m) ⊗BY F)

f̃−1εFn //

��

f̃−1(F ⊗BY p̃n0,(m)∗
‹PnY ]/T ](m)

∑r

j=1
arQr

//

��

f̃∗F

f̃∗(p̃n1,(m)∗
‹PnY ]/T ](m))⊗BX f̃

∗F

f̃n∗(m)r��

f̃∗F ⊗BX f̃∗(p̃n0,(m)∗
‹PnY ]/T ](m))

id⊗
∑r

j=1
ar⊗Qr

//

f̃n∗(m)��

f̃∗F‹PnX]/S],(m) ⊗BX f̃
∗F

εf̃
∗F
n // f̃∗F ⊗BX ‹PnX]/S],(m)

id⊗P // f̃∗F
(4.4.2.12.2)

By definition of the stratification of the inverse image, the left rectangle is commutative. Moreover,
the equality f̃n∨(m)(P ) =

∑r
j=1 ar ⊗Qr means that the right square is commutative. Hence, the diagram

4.4.2.12.2 is commutative. By composing 4.4.2.12.2 with the following commutative diagram

f̃−1F
f̃−1p̃n1,(m),F

4.1.2.7
//

��

f̃−1(p̃n1,(m)∗
‹PnY ]/T ](m) ⊗BY F)

��
f̃∗F

f̃∗p̃n1,(m),F

4.1.2.7
// f̃∗(p̃n1,(m)∗

‹PnY ]/T ](m))⊗BX f̃
∗F

f̃n∗(m)r��
f̃∗F

p̃n

1,(m),f̃∗F

4.1.2.7
// ‹PnX]/S],(m) ⊗BX f̃

∗F

(4.4.2.12.3)

we get a commutative diagram which can be translated by the formula (recall 4.2.1.5.3): for any x ∈ F ,
we have

P (1⊗ x) =
r∑
j=1

aj ⊗Qj(x). (4.4.2.12.4)
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Suppose Y ] → T ] is endowed with logarithmic coordinates (uλ)λ=1,...,d. Then, it follows from
4.4.2.12.4 that for any x ∈ F , we have the formula

P (1⊗ x) =
∑
|k|≤n

P ◦ f̃n(m)(τ
{k}
] )⊗ ∂〈k〉] (x). (4.4.2.12.5)

For instance, if P ∈ ‹D(m)

X]/S],1
is exactly of order 1 (i.e. P (1) = 0), then we compute

P (1⊗ x) =
d∑
i=1

P (f̃∗(ti))⊗ ∂]i(x). (4.4.2.12.6)

4.4.2.13 (What about right D-modules ?). Suppose f is finite. Let M be a right ‹D(m)

Y ]/T ]
-module.

Following 4.2.2.5, this means that M is endowed with a PD-costratification of level m with coefficient
in BY . Similarly to 4.4.2.4 (we just have to replace functors of the form f̃∗ by functors of the form
f̃ [), by applying the functors of the form f̃ [ to the PD-costratification of level m of M, we get a PD-
costratification of level m structure on f̃ [(M), i.e. f̃ [(M) is canonically endowed with a structure of
right ‹D(m)

X]/S]
-module (we copy word by word 4.4.2.4). By functoriality, viewing ‹D(m)

Y ]/T ]
as a ‹D(m)

Y ]/T ]
-

bimodule, we get a structure of (f−1‹D(m)

Y ]/T ]
, ‹D(m)

X]/S]
)-bimodule on f̃ [(‹D(m)

Y ]/T ]
). When f is an exact

closed immersion, this will be studied more thoroughly (see 5.2.5.1).

4.4.3 Log étale case
We keep notation 4.4.2. We suppose the morphism f is log étale and that the bottom arrow of 4.4.2.0.1
is the identity.

Lemma 4.4.3.1. We have the following properties.

(a) The following canonical homomorphism of BX-algebras (see 4.4.2.6.1)

f̃n(m) : f̃∗(p̃n0,(m)∗
‹PnY ]/S](m))→ p̃n0,(m)∗

‹PnX]/S](m) (4.4.3.1.1)

is an isomorphism.

(b) The canonical homomorphism of left ‹D(m)

X]/S]
-modules (see 4.4.2.6.3)‹D(m)

X]/S]
→ ‹D(m)

X]/S]→Y ]/S] (4.4.3.1.2)

is an isomorphism.

(c) The canonical composition map

ρ
f̃

: f−1‹D(m)

Y ]/T ]
→ f̃∗‹D(m)

Y ]/T ]
= ‹D(m)

X]/S]→Y ]/T ]
∼←−

4.4.3.1.2
‹D(m)

X]/S]
(4.4.3.1.3)

is a ring homomorphism which fits into the commutative diagram

f−1‹D(m)

Y ]/T ]
4.4.3.1.3// ‹D(m)

X]/S]

f−1BY

OO

// BX ,

OO
(4.4.3.1.4)

where the vertical arrows are the canonical embeddings and the bottom arrow is given by the morphism
f̃ .

(d) The canonical morphism 4.4.3.1.2 is in fact an isomorphism of (‹D(m)

X]/S]
, f−1‹D(m)

Y ]/T ]
)-bimodules,

where the structure of right f−1‹D(m)

Y ]/T ]
-module on ‹D(m)

X]/S]
is given via 4.4.3.1.3.
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Proof. 0) Since the lemma is local we can suppose that Y ] → T ] is endowed with logarithmic coordinates
(uλ)λ=1,...,r. By composing it with f this yields the logarithmic coordinates (u′λ)λ=1,...,r of X] → T ].
For any λ = 1, . . . , r, put τ]λ := µn(m)(uλ) − 1 where for any a ∈ MY ] µ

n
(m)(a) is the unique section of

ker(O∗∆n

Y ]/T],(m)

→ O∗Y ) such that we get in Mn
Y ]/T ],(m) the equality pn∗1 (a) = pn∗0 (a)µn(m)(a). We still

denote by τ] its image via the canonical morphism PnY ]/T ],(m) → ‹PnY ]/T ],(m). Similarly, replacing Y ]/T ]

by X]/S] we get the elements τ ′]λ := µn(m)(u
′
λ)− 1 of PnX]/S],(m) or ‹PnX]/S],(m).

a) Following 4.1.2.16.1, we get the isomorphism of m-PD-BY -algebras

BY 〈T1, . . . , Tr〉(m),n
∼−→ ‹PnY ]/T ],(m)

Tλ 7→ τ]λ,(m), (4.4.3.1.5)

where the first term is defined as in 1.3.3.6. Then f̃n(m)(1 ⊗ τ]λ) = τ ′]λ for any λ = 1, . . . , r. Indeed,
we reduce to check it on PnX]/S](m), i.e that fn(m)(1 ⊗ τ]λ) = τ ′]λ. Since X] is nice (see 3.1.1.2), then
the canonical morphism PnX]/S](m) → j∗Pn(X])∗/S](m) is injective, where j : (X])∗ ↪→ X] is the open
immersion (this is a consequence of 3.1.1.3). Hence, we reduce to the case where the logarithmic structures
are trivial. By using the left equality of 3.2.3.9.5 and with the corresponding notation, we reduce to
check fn(m)(1 ⊗ τλ) = τ ′λ, which is easy (use the right commutative square of the diagram 3.4.4.1.1).

Since 3.4.4.1.2 is an m-PD morphism, then f̃n(m)(1⊗ τ
{k}(m)

] ) = τ
′{k}(m)

] . This yields that 4.4.3.1.1 is an
isomorphism.

b) By duality and passing to the limit, we get the part b) form the part a).
c) From the part a) of the proof, with the similar to 4.1.2.16.2 notation, we get ρ

f̃
(∂
〈k〉(m)

] ) = ∂
′〈k〉(m)

] .
Denote by ρ : f−1BY → BX the given algebra homomorphism. By f−1BY -linearity, we get for any
section b of f−1BY , the equality ρ

f̃
(b∂
〈k〉(m)

] ) = ρ(b)∂
′〈k〉(m)

] . Let Q1, Q2 be two sections of f−1‹D(m)

Y ]/T ]
.

We have to check ρ
f̃
(Q1 ·Q2) = ρ

f̃
(Q1) · ρ

f̃
(Q2). By additivity, it follows from the description 4.1.2.16.2

that we reduce to the case where Q1 and Q2 are of the form b∂
〈k〉(m)

] with b a section of f−1BY .
Following 4.4.2.11.2, ρ(Q ·b) = ρ

f̃
(Q) ·ρ(b) for any section Q of f−1‹D(m)

Y ]/T ]
. In particular, ρ(∂

〈k〉(m)

] (b)) =

∂
′〈k〉(m)

] (ρ(b)). Hence, we can conclude thanks to 3.2.3.13.1, 4.1.2.2.3.

Proposition 4.4.3.2. We have the canonical isomorphism of left ‹D(m)

X]/S]
-modules:

f̃∗E ∼−→ ‹D(m)

X]/S]
⊗
f−1D̃(m)

Y ]/S]

f−1E . (4.4.3.2.1)

Proof. This is a consequence of 4.4.2.9.1 and 4.4.3.1.(d).

Lemma 4.4.3.3. The canonical homomorphism of BX-modules:

f̃∗(ω̃Y ]/S])→ ω̃X]/S] (4.4.3.3.1)

is an isomorphism.
Let us denote by ρω

f̃
: f−1(ω̃Y ]/S])→ ω̃X]/S] the canonical homomorphism. With notation 4.4.3.1.3,

let
f−1

Ä
ω̃Y ]/S] ⊗BY ‹D(m)

Y ]/S]

ä
→ ω̃X]/S] ⊗BX ‹D(m)

X]/S]
, (4.4.3.3.2)

be the map given by ω⊗P 7→ ρω
f̃

(ω)⊗ρ
f̃
(P ). The map 4.4.3.3.2 is a homomorphism of right f−1‹D(m)

Y ]/S]
-

bimodules, where the right structure (resp. the left structure i.e. the twisted one) of right f−1‹D(m)

Y ]/S]
-

module of ω̃X]/S]⊗BX ‹D(m)

X]/S]
comes from its right structure (resp. left structure) of right ‹D(m)

X]/S]
-module

via the ring homomorphism 4.4.3.1.3.

Proof. By construction, the map 4.4.3.3.2 is a homomorphism of right (f−1BY , f−1‹D(m)

Y ]/S]
)-bimodules.

It remains to check the f−1‹D(m)

Y ]/S]
-linearity for the left structure. Since this is local we can suppose
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that Y ] → S] is endowed with logarithmic coordinates (uλ)λ=1,...,r. By composing with f this yields
logarithmic coordinates (u′λ)λ=1,...,r of X] → S]. Then d log u1 ∧ · · · ∧ d log ur is a basis of ω̃Y ]/S]
and d log u′1 ∧ · · · ∧ d log u′r is a basis of ω̃X]/S] . We compute ρω

f̃
(d log u1 ∧ · · · ∧ d log ur) = d log u′1 ∧

· · · ∧ d log u′r. Moreover, since ρ
f̃
(∂
〈k〉(m)

] ) = ∂
′〈k〉(m)

] (see the proof of 4.4.3.1), then by using the local

description of the twisted structure (see 4.3.5.5) of ‹D(m)

Y ]/S]
and of ‹D(m)

X]/S]
, we compute that 4.4.3.3.2 is

f−1‹D(m)

Y ]/S]
-linearity for the respective twisted structures.

4.4.3.4. By using the same computation than that of the proof of 4.4.3.3, we can check the following
diagram

f−1
Ä
ω̃Y ]/S] ⊗BY ‹D(m)

Y ]/S]

ä
4.4.3.3.2 //

4.2.5.5.1

��

ω̃X]/S] ⊗BX ‹D(m)

X]/S]

4.2.5.5.1

��
f−1

Ä
ω̃Y ]/S] ⊗BY ‹D(m)

Y ]/S]

ä
4.4.3.3.2 // ω̃X]/S] ⊗BX ‹D(m)

X]/S]
,

(4.4.3.4.1)

where the vertical maps are the transposition isomorphisms, is commutative. This yields the isomorphism
of right (‹D(m)

X]/S]
, f−1‹D(m)

Y ]/S]
)-bimodules

f−1
Ä
ω̃Y ]/S] ⊗BY ‹D(m)

Y ]/S]

ä
l
⊗
f−1D̃(m)

Y ]/S]

‹D(m)

X]/S]
∼−→ ω̃X]/S] ⊗BX ‹D(m)

X]/S]
, (4.4.3.4.2)

where the index l means that in the tensor product we use the left structure of right f−1‹D(m)

Y ]/S]
-module,

where the structure of right ‹D(m)

X]/S]
-module (resp. right f−1‹D(m)

Y ]/S]
-module) of ω̃X]/S] ⊗BX ‹D(m)

X]/S]
is

its left structure of right ‹D(m)

X]/S]
-module (resp. comes from its structure of right ‹D(m)

X]/S]
-module via the

ring homomorphism ρ
f̃
of 4.4.4.1.2). For any left ‹D(m)

Y ]/S]
-module E , we get the isomorphisms of right‹D(m)

X]/S]
-modules:

f−1
(
ω̃Y ]/S] ⊗BY E

)
⊗
f−1D̃(m)

Y ]/S]

‹D(m)

X]/S]

∼−→
4.3.5.4.1

(f−1(ω̃Y ]/S] ⊗BY ‹D(m)

Y ]/S]
)r ⊗f−1D̃(m)

Y ]/S]

f−1E)⊗
f−1D̃(m)

Y ]/S]

‹D(m)

X]/S]

∼−→
4.2.4.2.2

(f−1(ω̃Y ]/S] ⊗BY ‹D(m)

Y ]/S]
)l ⊗f−1D̃(m)

Y ]/S]

‹D(m)

X]/S]
)⊗

f−1D̃(m)

Y ]/S]

f−1E

∼−→
4.4.3.4.2

(ω̃X]/S] ⊗BX ‹D(m)

X]/S]
)r ⊗f−1D̃(m)

Y ]/S]

E ∼−→ ω̃X]/S] ⊗BX (‹D(m)

X]/S]
⊗
f−1D̃(m)

Y ]/S]

E). (4.4.3.4.3)

4.4.3.5. Using 4.4.3.1.4, we get the canonical homomorphism of (f−1‹D(m)

Y ]/S]
,BX)-bimodules

f−1‹D(m)

Y ]/S]
⊗f−1BY BX → ‹D(m)

X]/S]
. (4.4.3.5.1)

We can check by making a local computation that 4.4.3.5.1 is an isomorphism. For any right ‹D(m)

Y ]/S]
-

moduleM, this yields that the canonical morphism of BX -modules

f̃∗M := f−1M⊗f−1BY BX → f−1M⊗
f−1D̃(m)

Y ]/S]

‹D(m)

X]/S]
(4.4.3.5.2)

is an isomorphism. Hence, we can endow f̃∗M with a structure of right ‹D(m)

X]/S]
-module which extends

its structure of BX -module by transport structure via 4.4.3.5.2. We can check by a local computation
that the canonical isomophism

f̃∗(ω̃Y ]/S])
∼−→ ω̃X]/S] (4.4.3.5.3)

of 4.4.3.3.1 is an isomorphism of right ‹D(m)

X]/S]
-modules. Moreover, modulo the canonical isomorphism

4.4.3.2.1 and 4.4.3.5.2, for any left ‹D(m)

Y ]/S]
-module E , the isomorphism 4.4.3.4.3 can be rewritten of the

form:

f̃∗
(
ω̃Y ]/S] ⊗BY E

) ∼−→ ω̃X]/S] ⊗BX f̃∗(E).
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4.4.4 Base change
We keep notation 4.4.2. We suppose in this subsection that the diagram 4.4.2.0.1 is cartesian and the
morphism f∗BY → BX is an isomorphism. In that case, we say that f̃∗ is the base change via S → T .

Proposition 4.4.4.1 (Base change). We have the following properties.

(a) The morphism f̃n(m) : f̃∗(‹PnY ]/T (m))→ ‹PnX]/S](m) of 4.4.2.6.1 is an isomorphism (and then the right
square of the diagram 4.4.2.2.6 is cartesian).

(b) The canonical morphism (see 4.4.2.6.3)‹D(m)

X]/S]
→ ‹D(m)

X]/S]→Y ]/T ] . (4.4.4.1.1)

is an isomorphism.

(c) The composite map

ρ
f̃

: f−1‹D(m)

Y ]/T ]
→ f∗‹D(m)

Y ]/T ]
= ‹D(m)

X]/S]→Y ]/T ]
∼←− ‹D(m)

X]/S]
. (4.4.4.1.2)

is a homomorphism of sheaves of rings which fits into the commutative diagram

f−1‹D(m)

Y ]/T ]
4.4.4.1.2// ‹D(m)

X]/S]

f−1BY
?�

OO

// BX .
?�

OO
(4.4.4.1.3)

The canonical morphism of left ‹D(m)

X]/S]
-modules 4.4.4.1.1 is in fact an isomorphism of (‹D(m)

X]/S]
, f−1‹D(m)

Y ]/T ]
)-

bimodules, where the structure of right f−1‹D(m)

Y ]/T ]
-module on ‹D(m)

X]/S]
is given via 4.4.4.1.2.

(d) For any left ‹D(m)

Y ]/T ]
-module F we have a canonical isomorphism of left ‹D(m)

X]/S]
-modules‹D(m)

X]/S]
⊗
f−1D̃(m)

Y ]/T]

f−1F ∼−→ f̃∗F . (4.4.4.1.4)

Proof. Let us check (a). Since this is local we can suppose there exist logarithmic coordinates (uλ)λ=1,...,r

of Y ]/T ]. This induces the logarithmic coordinates (u′λ = f̃∗(uλ))λ=1,...,r of X]/S]. For any λ = 1, . . . , r,
put τ]λ := µn(m)(uλ)− 1 where for any a ∈MY ] µ

n
(m)(a) is the unique section of ker(O∗∆n

Y ]/T],(m)

→ O∗Y )

such that we get in Mn
Y ]/T ],(m) the equality pn∗1 (a) = pn∗0 (a)µn(m)(a). We still denote by τ] its image

via the canonical morphism PnY ]/T ],(m) → ‹PnY ]/T ],(m). Similarly, replacing Y ]/T ] by X]/S] we get the

elements τ ′]λ := µn(m)(u
′
λ)− 1 of PnX]/S],(m) or ‹PnX]/S],(m). Similarly to the proof of 4.4.3.1, we compute

f̃n(m)(1 ⊗ τ
{k}(m)

] ) = τ
′{k}(m)

] . This yields that f̃n(m) is an isomorphism. By copying the proof of 4.4.3.1,
we get (b) and (c). The statement (d) is a consequence of 4.4.2.9.1 and of (c).

Lemma 4.4.4.2. The canonical homomorphism of BX-modules:

f̃∗(ω̃Y ]/T ])→ ω̃X]/S] (4.4.4.2.1)

is an isomorphism. Let us denote by ρω
f̃

: f−1(ω̃Y ]/T ]) → ω̃X]/S] the canonical homomorphism. With
4.4.4.1.2, this yields the map

f−1
Ä
ω̃Y ]/T ] ⊗BY ‹D(m)

Y ]/T ]

ä
→ ω̃X]/S] ⊗BX ‹D(m)

X]/S]
, (4.4.4.2.2)

given by ω⊗P 7→ ρω
f̃

(ω)⊗ ρ
f̃
(P ). The map 4.4.4.2.2 is a homomorphism of right f−1‹D(m)

Y ]/T ]
-bimodules,

where the right structure (resp. the left structure i.e. the twisted one) of right f−1‹D(m)

Y ]/T ]
-module of

ω̃X]/S] ⊗BX ‹D(m)

X]/S]
comes from its right structure (resp. left structure) of right ‹D(m)

X]/S]
-module via the

ring homomorphism 4.4.4.1.2.
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Proof. The lemma follows from analogous to that of the proof of 4.4.3.3 local computations.

4.4.4.3. Similarly to 4.4.3.4, we can check the following diagram

f−1
Ä
ω̃Y ]/S] ⊗BY ‹D(m)

Y ]/S]

ä
4.4.4.2.2 //

4.2.5.5.1

��

ω̃X]/S] ⊗BX ‹D(m)

X]/S]

4.2.5.5.1

��
f−1

Ä
ω̃Y ]/S] ⊗BY ‹D(m)

Y ]/S]

ä
4.4.4.2.2 // ω̃X]/S] ⊗BX ‹D(m)

X]/S]
,

(4.4.4.3.1)

where the vertical maps are the transposition isomorphisms, is commutative. This yields the isomorphism
of right (‹D(m)

X]/S]
, f−1‹D(m)

Y ]/S]
)-bimodules

f−1
Ä
ω̃Y ]/S] ⊗BY ‹D(m)

Y ]/S]

ä
l
⊗
f−1D̃(m)

Y ]/S]

‹D(m)

X]/S]
∼−→ ω̃X]/S] ⊗BX ‹D(m)

X]/S]
, (4.4.4.3.2)

where the index l means that in the tensor product we use the left structure of right f−1‹D(m)

Y ]/S]
-module,

where the structure of right ‹D(m)

X]/S]
-module (resp. right f−1‹D(m)

Y ]/S]
-module) of ω̃X]/S] ⊗BX ‹D(m)

X]/S]
is

its left structure of right ‹D(m)

X]/S]
-module (resp. comes from its structure of right ‹D(m)

X]/S]
-module via the

ring homomorphism ρ
f̃
of 4.4.4.1.2). Similarly to 4.4.3.4.3, for any left ‹D(m)

Y ]/S]
-module, this implies the

isomorphism of right ‹D(m)

X]/S]
-modules:

f−1
(
ω̃Y ]/S] ⊗BY E

)
⊗
f−1D̃(m)

Y ]/S]

‹D(m)

X]/S]
∼−→ ω̃X]/S] ⊗BX (‹D(m)

X]/S]
⊗
f−1D̃(m)

Y ]/S]

E). (4.4.4.3.3)

4.4.4.4. Using 4.4.4.1.3, we get the canonical homomorphism of (f−1‹D(m)

Y ]/S]
,BX)-bimodules

f−1‹D(m)

Y ]/S]
⊗f−1BY BX → ‹D(m)

X]/S]
. (4.4.4.4.1)

We can check by making a local computation that it is an isomorphism. For any right ‹D(m)

Y ]/S]
-module

M, this yields that the canonical morphism of BX -modules

f̃∗M := f−1M⊗f−1BY BX → f−1M⊗
f−1D̃(m)

Y ]/S]

‹D(m)

X]/S]
(4.4.4.4.2)

is an isomorphism. Hence, we can endow f̃∗M with a structure of right ‹D(m)

X]/S]
-module which extends

its structure of BX -module by transport structure via 4.4.4.4.2. Via a local computation we can check
the canonical isomophism

f̃∗(ω̃Y ]/S])
∼−→ ω̃X]/S] (4.4.4.4.3)

of 4.4.4.2.1 is an isomorphism of right ‹D(m)

X]/S]
-modules. Moreover, modulo the canonical isomorphisms

4.4.4.1.4 and 4.4.4.4.2, for any left ‹D(m)

Y ]/S]
-module E , the isomorphism 4.4.4.3.3 can be rewritten of the

form:

f̃∗
(
ω̃Y ]/S] ⊗BY E

) ∼−→ ω̃X]/S] ⊗BX f̃∗(E). (4.4.4.4.4)

4.4.4.5. Suppose (uλ)λ=1,...,r are logarithmic coordinates of Y ]/T ]. This induces the logarithmic co-
ordinates (u′λ = f̃∗(uλ))λ=1,...,r of X]/S]. By using theses fixed logarithmic coordinates, we get the
logarithmic adjoint operator tlog : ‹D(m)

Y ]/T ]
→ ‹D(m)

Y ]/T ]
and : ‹D(m)

X]/S]
→ ‹D(m)

X]/S]
. It follows from the

commutativity of 4.4.4.3.1 that the square‹D(m)

Y ]/T ]

tlog //

4.4.4.1.2

��

‹D(m)

Y ]/T ]

4.4.4.1.2

��‹D(m)

X]/S]

tlog // ‹D(m)

X]/S]

(4.4.4.5.1)

is commutative.
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4.4.5 Compatibility with composition, extension or forgetful of the coeffi-
cients, glueing, homorphisms, tensor products

We keep notation 4.4.2. We suppose that the bottom arrow of 4.4.2.0.1 is the identity.

Notation 4.4.5.1. We denote by “forg” the forgetful functor from the category of left ‹D(m)

Y ]/T ]
-modules

to that of left D(m)

Y ]/T ]
-modules ; and similarly by replacing Y by X.

Lemma 4.4.5.2. We suppose that f∗BY → BX is an isomorphism. Let F be a left ‹D(m)

Y ]/T ]
-module and

forg(F) (or simply F) be the induced left D(m)

Y ]/T ]
-module. Let G ∈ D(l‹D(m)

Y ]/T ]
).

(a) The canonical OX-linear homomorphism

f∗(forg(F))→ f̃∗(F) (4.4.5.2.1)

is an isomorphism of left D(m)

X]/S]
-modules.

(b) The canonical homomorphism

D(m)

X]/S]→Y ]/T ] ⊗f−1D(m)

Y ]/T]

f−1F → ‹D(m)

X]/S]→Y ]/T ] ⊗f−1D̃(m)

Y ]/T]

f−1F , (4.4.5.2.2)

is an isomorphism of left D(m)

X]/S]
-modules.

(c) If f−1OY and OX are tor independent over f−1BY , then the canonical morphisms

D(m)

X]/S]→Y ]/T ] ⊗
L
f−1D(m)

Y ]/T]

f−1G → ‹D(m)

X]/S]→Y ]/T ] ⊗
L
f−1D̃(m)

Y ]/T]

f−1G, (4.4.5.2.3)

is an isomorphism of D(l‹D(m)

X]/S]
).

Proof. 1) Since f∗BY → BX is an isomorphism, then the canonical homomorphism 4.4.5.2.1 is an iso-
morphism. Let us now check that this canonical OX -linear isomorphism f∗(F)

∼−→ f̃∗(F) is horizontal.
Let (ε̃Fn )n be the m-PD-stratification with coefficient in BY of F associated to its structure of left‹D(m)

Y ]/T ]
-module. Let (εFn )n be the corresponding m-PD-stratification semi-linear with respect to (εBYn ).

Since OX ⊗f−1OY f−1BY → BX is a ring isomorphism, since ‹PnY ]/T ](m) = BY ⊗OY PnY ]/T ](m) and‹PnX]/S](m) = BX ⊗OX PnX]/S](m) (see 4.4.2.6.1), then the following square of commutative rings

f−1PnY ]/T ](m))
3.4.4.1.2 //

��

PnX]/S](m)

��
f−1(‹PnY ]/T ](m))

4.4.2.2.1 // ‹PnX]/S](m)

(4.4.5.2.4)

is cocartesian. Set fn∗(m) := PnX]/S](m)⊗f−1Pn
Y ]/T](m)

f−1(−) and f̃n∗(m) := ‹PnX]/S](m)⊗f̃−1P̃n
Y ]/T](m)

f̃−1(−).

Let forgn be the forgetful functor from the category of ‹PnY ]/T ](m)-modules to that of PnY ]/T ](m)-modules,
and similarly for X]/S] instead of Y ]/T ]. The cocartesianity of 4.4.5.2.4 means that the functors
forgn ◦ f̃n∗(m) and fn∗(m) ◦ forgn are canonically isomorphic. Recall, following 4.3.2.5.1, the diagram of
PnY ]/T ](m)-modules‹PnY ]/T ](m) ⊗BY F

∼ ε̃Fn
��

(PnY ]/T ](m) ⊗OY BY )⊗BY F
ε
BY
n ⊗id

∼oo ∼
can

// PnY ]/T ](m) ⊗OY F

εFn∼

��
F ⊗BY ‹PnY ]/T ](m) F ⊗OY PnY ]/T ](m)can

∼oo

(4.4.5.2.5)
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is commutative. By applying the functor forgn ◦ f̃n∗(m) (resp. fn∗(m)) to the left arrow of 4.4.5.2.5 (resp.
to the other ones), by using the commutative diagram 4.4.2.2.3 we get the commutative diagram of
PnX]/S](m)-modules:‹PnX]/S](m) ⊗BX f̃

∗(F)

∼ f̃n∗(m)(ε̃n)

��

(PnX]/T ](m) ⊗OX BX)⊗BX f̃∗(F)
ε
BX
n ⊗id

∼oo ∼ // PnX]/S](m) ⊗OX f
∗(F)

fn∗(m)(ε
F
n )∼

��
f̃∗(F)⊗BX ‹PnX]/S](m) f∗(F)⊗OX PnX]/S](m)can

∼oo

(4.4.5.2.6)
Hence, the m-PD-stratification (fn∗(m)(ε

F
n )) is semi-linear with respect to the isomorphisms (εBXn ) and its

corresponding m-PD-stratification with coefficients in BX is f̃n∗(m)(ε̃n). Hence we are done.

2) Suppose f−1OY andOX are tor independent over f−1BY . Let P be a K-flat complex ofK(l‹D(m)

Y ]/T ]
)

representing G. Then f−1P is both a K-flat complex of K(lf−1‹D(m)

Y ]/T ]
) and a complex of K(lf−1D(m)

Y ]/T ]
)

which is a K-flat complex of K(f−1OY ). This yields the canonical morphism of Lf∗(forg(G))→ Lf̃∗(G)

is an isomorphism of D(l‹D(m)

X]/S]
) from the part 1).

3) We conclude the Lemma by using 4.4.2.9.

Proposition 4.4.5.3. We only consider here the non-respective case, i.e. the non-formal case. Let
(aS , bS , αS) be a quasi-coherent m-PD-ideal of OS. We denote by S0 = V (aS), by X]

0 := X] ×S S0

and by f0 : X]
0 → Y ] the induced morphism. Let f ′ : X] → Y ] be a second morphism of T ]-log schemes

inducing the same restriction f0 : X]
0 → Y ]. Suppose the m-PD-ideal aS is m-PD-nilpotent.

(a) Let F be a left D(m)

Y ]/T ]
-module. Then, we have a canonical isomorphism of left D(m)

X]/S]
-modules of

the form
τf,f ′ : f

′∗(F)
∼−→ f∗(F) (4.4.5.3.1)

such that τf,f = id, and, for any third morphism f ′′ : X] → Y ] inducing the same restriction
f0 : X]

0 → Y ], we have τf,f ′′ = τf,f ′ ◦ τf ′,f ′′ .

(b) Suppose that f is finite. LetM be right D(m)

Y ]/T ]
-module. Then, we have a canonical isomorphism of

right D(m)

X]/S]
-modules of the form

σf,f ′ : f
′[(M)

∼−→ f [(M) (4.4.5.3.2)

such that σf,f = id, and, for any third morphism f ′′ : X] → Y ] inducing the same restriction
f0 : X]

0 → Y ], we have σf,f ′′ = σf,f ′ ◦ σf ′,f ′′ .

Proof. Set g := (f, f ′) : X] → Y ] ×T ] Y ]. Since the m-PD-ideal aS is m-PD-nilpotent, then for s large
enough, there exists a factorisation gs(m) making commutative the diagram:

X]

gs(m)

//

g

++
∆s
Y ]/T ](m) can

// Y ] ×T ] Y ]

X]
0

//
?�

OO

Y ].
?�

OO

S3

ff
(4.4.5.3.3)

Since pn1,(m) ◦ g
s
(m) = f ′ and pn0,(m) ◦ g

s
(m) = f , then we construct the isomorphism 4.4.5.3.1 by setting

τf,f ′ := gs∗(m)(ε
F
s ). This isomorphism does not depend on the such of the large enough integer s. It follows

from the cocycle condition that we have the transitivity formula τf,f ′′ = τf,f ′ ◦ τf ′,f ′′ .
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Set E ′ := f ′∗(F) and E := f∗(F). It remains to check that τf,f ′ is horizontal, i.e. that we have the
commutative diagram

pn∗1(m)(E
′)

εE
′
n

��

pn∗1(m)(τf,f′ ) // pn∗1(m)(E)

εEn
��

pn∗0(m)(E
′)

pn∗0(m)(τf,f′ ) // pn∗0(m)(E),

(4.4.5.3.4)

for any integer n. It follows from 3.4.2.1.a, that it is sufficient to check it for n ≥ s. Since τf,f ′ does not
depend on the choice of s, then we can suppose n = s.

Set h := (f2, f ′2) : X
]2
/S] → Y

]2
/T ] ×T ] Y

]2
/T ] = Y

]4
/T ] and for any i, j ∈ {0, 1, 2, 3} such that i < j,

let qij : Y
]4
/T ] → Y

]2
/T ] be the projection on the ith and jth factors. It follows from 3.2.2.5.a that the

m-PD structure of the exact closed immersion X] ↪→ ∆s
X]/S](m) is compatible with αS . This implies

that we the closed immersion X]
0 ↪→ ∆s

X]/S](m) is an m-PD-immersion. By universal property of the
m-PD-envelope, there exist two factorisations hs(m) and qsij(m) making commutative the diagram

X
]2
/S]

h // Y
]4
/T ]

qij // Y
]2
/T ]

∆s
X]/S](m)

can

OO

hs(m) // ∆s
Y ]/T ](m)(3)

can

OO

qsij(m) // ∆s
Y ]/T ](m)

can

OO

X]
0

f0 //
?�

OO

Y ]
?�

OO

Y ].
?�

OO

(4.4.5.3.5)

Since q02 ◦h = g ◦ p0 (resp. q13 ◦h = g ◦ p1), then by using the universal property of the m-PD-envelope,
we get qs02(m) ◦ h

s
(m) = gs(m) ◦ p

s
0(m) (resp. qs13(m) ◦ h

s
(m) = gs(m) ◦ p

s
1(m)). This yields

ps∗0(m)(τf,f ′) = hs∗(m) ◦ q
s∗
02(m)(ε

F
s ), ps∗1(m)(τf,f ′) = hs∗(m) ◦ q

s∗
13(m)(ε

F
s ).

Similarly, with notation 3.4.4.1, since q01 ◦ h = f × f (resp. q23 ◦ h = f ′ × f ′) then qs01(m) ◦ h
s
(m) = fs(m)

(resp. qs23(m) ◦ h
s
(m) = f ′s(m)). This yields

εEs := fs∗(m)(ε
F
s ) = hs∗(m) ◦ q

s∗
01(m)(ε

F
s ), εE

′

s := f ′s∗(m)(ε
F
s ) = hs∗(m) ◦ q

s∗
23(m)(ε

F
s ).

We conclude the proof of (a) by using the cocycle condition which yields the identifications:

qs∗01(m)(ε
F
s ) ◦ qs∗13(m)(ε

F
s ) = qs∗03(m)(ε

F
s ) = qs∗02(m)(ε

F
s ) ◦ qs∗23(m)(ε

F
s ).

For the second one, we can copy this proof above by replacing the functor f 7→ f∗ by f 7→ f [ (and by
replacing the use of m-PD-stratifications by that of m-PD-costratifications).

4.4.5.4. We keep notation 4.4.5.3. We can add coefficients to Proposition 4.4.5.3 as follows. The
isomorphism of left D(m)

X]/S]
-modules τf,f ′ : f∗(BY )

∼−→ f ′∗(BY ) of 4.4.5.3.1 is also a ring homomorphism
(because so are the isomorphisms given by the stratification of BY ). Denote by ρf : f∗BY → BX the
given homomorphism and by ρf ′ : f ′∗BY → BX the map so that ρf ′ ◦ τf,f ′ = ρf . Then it follows from
4.3.1.1.1 that the map

τf,f ′ ⊗ id : f ′∗(BY )⊗OX D
(m)

X]/S]
∼−→ f∗(BY )⊗OX D

(m)

X]/S]
(4.4.5.4.1)

is a ring isomorphism. We set ‹X]
0 := (X]

0, f
∗
0BY ), ‹Y ] := (Y ],BY ), ‹X] := (X],BX), f̃ : ‹X] → ‹Y ] and

f̃ ′ : ‹X] → ‹Y ] the morphisms induced respectively by (f, ρf ) and by (f ′, ρf ′).
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Set g̃ := (f̃ , f̃ ′) : ‹X] → ‹Y ] ×T ] ‹Y ]. It follows from 4.4.5.3.3 that for s large enough, there exists a
factorisation g̃s(m) making commutative the diagram:

‹X]

g̃s(m)

//

g̃

++‹∆s
Y ]/T ](m) can

// ‹Y ] ×T ] ‹Y ]
‹X]

0
//

?�

OO

‹Y ].?�
OO

S3

ff
(4.4.5.4.2)

Since p̃n1,(m) ◦ g̃
s
(m) = f̃ ′ and p̃n∗0,(m) ◦ g̃

s
(m) = f̃ , then we get the BX -linear isomorphism:

τ
f̃ ,f̃ ′

:= g̃s(m)(ε
F
s ) : f̃ ′∗(F)

∼−→ f̃∗(F). (4.4.5.4.3)

This is clear that τ
f̃ ,f̃

= id. We prove via the following two steps that τ
f̃ ,f̃ ′

is an an isomorphism of

left ‹D(m)

X]/S]
-modules that we have the transitivity formula τ

f̃ ,f̃ ′′
= τ

f̃ ,f̃ ′
◦ τ

f̃ ′,f̃ ′′
for any third morphism

f ′′ : X] → Y ] inducing the same restriction f0 : X]
0 → Y ].

1) Suppose ρf = id. It follows from 4.4.5.2 and 4.4.5.3.1 that 4.4.5.4.3 is also an isomorphism of left
D(m)

X]/S]
-modules such that, with notation 4.4.5.1, we have moreover forg(τ

f̃ ,f̃ ′
) = τf,f ′ . Hence, 4.4.5.4.3

is an isomorphism of left ‹D(m)

X]/S]
-modules. This implies the transitivity formula from 4.4.5.3.

2) In general, let af : ‹X → (X], f∗BY ) be the morphism induced by ρf . The morphism f induces
ã : (X], f∗BY ) → ‹Y . Let ã′ be the composition ã′ : (X], f∗BY )

∼−→ (X], f ′∗BY ) → ‹Y ], where the last
map is induced by f ′ and the first map is given by the isomorphism τf,f ′ : f

∗(BY )
∼−→ f ′∗(BY ). We have

af ◦ ã = f̃ , af ◦ ã′ = f̃ ′ and τ
f̃ ,f̃ ′

= a∗f (τ
ã,̃a′

). This yields from 1) that τ
f̃ ,f̃ ′

is an an isomorphism of left‹D(m)

X]/S]
-modules and that the formula τ

f̃ ,f̃ ′′
= τ

f̃ ,f̃ ′
◦ τ

f̃ ′,f̃ ′′
holds.

4.4.5.5. To check that the inverse image behaves well by composition, let moreover be the commutative
diagram

Y ]
g //

��

Z]

��
T ] // U ]

(4.4.5.5.1)

where U ] is nice fine log scheme over Spec(Z/pi+1Z) as defined in 3.1.1.1 (resp. U ] is nice fine V-log
formal scheme as defined in 3.3.1.10), where Z] is a log smooth U ]-log scheme (resp. log smooth U ]-log
formal scheme). Moreover, let BZ be an OZ-algebra endowed with a compatible structure of D(m

Z]/U]
-

module and a morphism of algebras g∗BZ → BY which is moreover D(m

Z]/U]
-linear. Set Z̃] := (Z],BZ).

Let g̃ : ‹Y ] → Z̃] and fig ◦ f : : ‹X] → Z̃] be the induced morphisms. We set ‹D(m)

Z]/U]
:= BZ ⊗OZ D

(m)

Z]/U]
.

Proposition 4.4.5.6. With notation 4.4.5.5, let G be a ‹D(m)

Z]/U]
-module. The canonical isomorphism

f̃∗ ◦ g̃∗(G)
∼−→ fig ◦ f∗(G)

is ‹D(m)

X]/S]
-linear.

Proof. Let h be the composition morphism g◦f . According to notation 3.4.4.1, for any r = 1, 2, we denote
by fn(m)(r) : ∆n

X]/S](m)(r) → ∆n
Y ]/T ](m)(r) the canonical m-PD-morphism given by using the universal

property of m-PD-envelopes of order n (see 3.2.1.1). We get similarly gn(m)(r) and hn(m)(r). It follows
from the universal property of m-PD-envelopes of order n the equality gn(m)(r)◦f

n
(m)(r) = hn(m)(r). With

notation 4.4.2.2, by adding coefficients, we get the morphism f̃n(m)(r) : ‹∆n
X]/S](m)(r) → ‹∆n

Y ]/T ](m)(r),

and similarly g̃n(m)(r), h̃
n
(m)(r). We have g̃n(m)(r) ◦ f̃

n
(m)(r) = h̃n(m)(r). Hence we are done.
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Corollary 4.4.5.7. Let E be a D(m)

Y ]/T ]
-module. The canonical isomorphism

BX ⊗OX f∗E → f̃∗(BY ⊗OY E),

is ‹D(m)

X]/S]
-linear.

Proof. This is a consequence of the example 4.4.2.5 and of the proposition 4.4.5.6.

Proposition 4.4.5.8. Let E and F be two left ‹D(m)

Y ]/T ]
-modules. The canonical isomorphism

f̃∗(E ⊗BY F)
∼−→ f̃∗E ⊗BX f̃∗F (4.4.5.8.1)

is ‹D(m)
X -linear. Moreover we have the following diagram

f̃ ′∗(E ⊗BY F)

τ
f̃,f̃′

��

∼
4.4.5.14.1

// f̃ ′∗E ⊗BX f̃ ′∗F
τ
f̃,f̃′
⊗τ

f̃,f̃′

��
f̃∗(E ⊗BY F)

∼
4.4.5.14.1

// f̃∗E ⊗BX f̃∗F

(4.4.5.8.2)

where τ
f̃ ,f̃ ′

is the glueing isomorphism of 4.4.5.4.2, is commutative.

Proof. Left to the reader.

The glueing isomorphisms are compatible with composition:

Proposition 4.4.5.9. With notation 4.4.5.5, we only consider the non-respective case, i.e. the non-
formal case. Let (aS , bS , αS) be a quasi-coherent m-PD-ideal of OS, (aT , bT , αT ) be a quasi-coherent
m-PD-ideal of OT such that we get the m-PD-morphism (S, aS , bT , αT ) → (T, aT , bT , αT ). Suppose the
m-PD-ideals aS and aT arem-PD-nilpotent.

We denote by S0 = V (aS), by X]
0 := X] ×S S0, and by f0 : X]

0 → Y ] the induced morphism ; by
T0 = V (aT ), by Y ]0 := Y ] ×T T0, and by g0 : Y ]0 → Z] the induced morphism. Let f ′ : X] → Y ] be a
second morphism of T ]-log schemes inducing the same restriction f0 : X]

0 → Y ]. Let g′ : Y ] → Z] be a
second morphism of U ]-log schemes inducing the same restriction g0 : Y ]0 → Z].

We suppose BX = f∗(BY ) and BY = g∗(BZ). We set B′X := f ′∗(BY ), B′Y := g′∗(BZ), ‹X ′] :=

(X],B′X), ‹Y ′] := (Y ],B′Y ), f̃ ′ : ‹X ′] → ‹Y ] and g̃′ : ‹Y ′] → Z̃] the morphisms induced respectively by f ′
and g′.

(a) We have a canonical isomorphism of functors from the category of left ‹D(m)

Z]/U]
-modules to that of left‹D(m)

X]/S]
-modules of the form

(g̃ ◦ f̃ ′)∗
τg̃◦f̃,g̃◦f̃′

∼
//

∼
��

(g̃ ◦ f̃)∗

∼
��

f̃ ′∗ ◦ g̃∗
τf̃,f̃′◦g̃

∗

∼
// f̃∗ ◦ g̃∗

(g̃′ ◦ f̃)∗

∼
��

∼

τg̃◦f̃,g̃′◦f̃// (g̃ ◦ f̃)∗

∼
��

f̃∗ ◦ g̃∗
f̃∗◦τg̃,g̃′
∼
// f̃∗ ◦ g̃′∗

(4.4.5.9.1)

Modula the above canonical vertical isomorphisms, this can be written τg̃◦f̃,g̃◦f̃ ′ = τf̃,f̃ ′ ◦ g̃∗ and
f̃∗ ◦ τg̃,g̃′ = τg̃◦f̃,g̃′◦f̃ .

(b) Suppose that f and g are finite. Then we have the equality σg̃◦f̃,g̃◦f̃ ′ = σf̃,f̃ ′ ◦ g̃∗ and f̃∗ ◦ σg̃,g̃′ =
σg̃◦f̃,g̃′◦f̃

Proof. We set ‹X]
0 := (X]

0, f
∗
0BY ), ‹Y ]0 := (Y ]0 , g

∗
0BZ). We denote by τf,f ′ : ‹X] → ‹X ′] the morphism

induced by τf,f ′ (and similarly for τg,g′) The proposition is a consequence of the following commutative
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diagram for n large enough‹X]
0

f̃0��

// ‹X]

f̃��‹Y ]0 //

��

‹Y ]
δn
g̃,g̃′ ��

g̃ //

g̃′◦τg,g′
// Z̃]

Z̃] // ‹∆n
Z]/U](m)

p̃1 //
p̃2

// Z̃],

‹X]
0

��

// ‹X]
f̃ //

f̃ ′◦τf,f′
//

δn
f̃,f̃′ ��

Z̃]‹Y ] //

g̃��

‹∆n
Y ]/T ](m)

��

p̃1 //
p̃2

// ‹Y ]
g̃��

Z̃] // ‹∆n
Z]/U](m),

p̃1 //
p̃2

// Z̃,

(4.4.5.9.2)

where we have denoted by δng̃,g̃′ and δ
n
f̃,f̃ ′

the morphisms making commutative the diagram (see 4.4.5.4.2).

4.4.5.10 (Non-lifted case notation). To highlight the “crystalline nature” of the pullback operation, we
consider here an extension of 4.4.2 to the case where the morphism f0 is not the reduction of a morphism
f as follows: Let S] and T ] be nice fine log schemes over Spec(Z/pi+1Z) as defined in 3.1.1.1 where i is
an integer (resp. S] and T ] are nice fine V-log formal schemes as defined in 3.3.1.10). Let X] be a log
smooth S]-log scheme (resp. log smooth S]-log formal scheme) and Y ] be a log smooth T ]-log scheme
(resp. log smooth T ]-log formal scheme). We suppose that S has a quasi-coherent m-PD-nilpotent-ideal
(aS , bS , αS) ⊂ OS . Let S]0 the exact closed logarithmic subscheme of S] defined by aS , X

]
0 the reduction

of X] to S]0. Let BX (resp. BY ) be a commutative OX -algebra (resp. OY -algebra) endowed with a
compatible structure of left D(m)

X]/S]
-module (resp. left D(m)

Y ]/T ]
-module).

Let f0 : X]
0 → Y ] be a T ]-morphism, F a left D(m)

Y ]/T ]
-module. Any point x ∈ X] has a neighbourhood

V ] and a f : V ] → Y ] such that its restriction to X0 ∩V equals to f0 (use [CV17, 1.24]). By Proposition
4.4.5.3 the left D(m)

U]/S]
-module f∗F is independent, up to canonical linear D(m)

U]/S]
isomorphism of the

form τf,f ′ , of the choice of f . Hence, we can glue the locally defined D(m)

X]/S]
-module and obtain a

canonical D(m)

X]/S]
-module starting from the data of F and f0. We, by abuse of notation, denote this

module by f∗0F ; when f0 lifts to f we have a canonical isomorphism f∗0F
∼−→ f∗F .

Since the isomorphism of left D(m)

X]/S]
-modules τf,f ′ : f∗(BY )

∼−→ f ′∗(BY ) is a ring isomorphism (see

4.4.5.4), then the left D(m)

X]/S]
-module f∗0BY is endowed with a compatible structure of OX -algebra.

We suppose moreover that we have a morphism of algebras ρ : f∗0BY → BX which is moreover D(m)

X]/S]
-

linear. We will denote by ‹D(m)

X]/S]
= BX⊗OXD

(m)

X]/S]
and ‹D(m)

Y ]/T ]
= BY ⊗OY D

(m)

Y ]/T ]
. Any point x ∈ X] has

a neighbourhood U ] and a f : U ] → Y ] such that its restriction to X]
0∩U ] equals to f0, which yields (with

ρ) the homomorphism of ringed logarithmic (V-formal) schemes f̃ : (U ],BX ∩U)→ (Y ],BY ). Following
4.4.5.4.2 the left ‹D(m)

U]/S]
-module f̃∗F is independent, up to canonical linear ‹D(m)

U]/S]
isomorphism of the

form τ
f̃ ,f̃ ′

, of the choice of f . Hence, we can glue the locally defined ‹D(m)

X]/S]
-module and obtain a

canonical ‹D(m)

X]/S]
-module starting from the data of F , f0 and ρ. We, by abuse of notation, denote this

module by f̃∗0F ; when f0 lifts to f we have a canonical isomorphism f̃∗0F
∼−→ f̃∗F .

Suppose f0 finite. Similarly, by glueing (via isomorphisms of the form σf,f ′ : f
′[ of 4.4.5.3.2), we get

the functor f̃ [0 from the category of right ‹D(m)

Y ]/T ]
-modules to that of right ‹D(m)

X]/S]
-modules ; when f0 lifts

to f we have a canonical isomorphism f̃ [0
∼−→ f̃ [.

Notation 4.4.5.11. We keep notation and hypotheses of 4.4.5.10. By functoriality, we get a (‹D(m)

X]/S]
, f−1

0
‹D(m)

Y ]/T ]
)-

bimodule by setting ‹D(m)

X]/S]→Y ]/T ] := f̃∗0 ‹D(m)

Y ]/T ]
.

Then for any left ‹D(m)

Y ]/T ]
-module F we again have a canonical isomorphism of left ‹D(m)

Y ]/T ]
-modules‹D(m)

X]/S]→Y ]/T ] ⊗f−1
0 D̃

(m)

Y ]/T]

f−1
0 F

∼−→ f̃∗0F .
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4.4.5.12. We suppose that S has a quasi-coherent m-PD-nilpotent-ideal (aS , bS , αS) ⊂ OS . Let S]0 the
exact closed logarithmic subscheme of S] defined by aS , X

]
0 the reduction of X] to S]0. Let BX be a

commutative OX -algebra endowed with a compatible structure of left D(m)

X]/S]
-module. Set ‹D(m)

X]/S]
=

BX ⊗OX D
(m)

X]/S]
. It follows from 4.4.5.10 that the category of left ‹D(m)

X]/S]
-modules only depend, up to

canonical equivalence, to quasi-coherent m-PD-nilpotent-ideal (aS , bS , αS) ⊂ OS .

4.4.5.13. We keep notation and hypotheses of 4.4.5.10. Let U ] be a nice fine log scheme over Spec(Z/pi+1Z)
where i is an integer (resp. S] and T ] are nice fine V-log formal schemes). Let Z] be a log smooth U ]-log
scheme (resp. log smooth U ]-log formal scheme).

Suppose that T has a quasi-coherent m-PD-nilpotent-ideal (aT , bT , αT ) such that S] → T ] is a m-
PD-morphism. Let T ]0 be the exact closed log subscheme defined by aT , Y

]
0 the reduction of Y ] on

T0. Let BZ be a commutative OZ-algebra endowed with a compatible structure of D(m)

Z]/U]
-module. Set‹D(m)

Z]/U]
= BZ ⊗OZ D

(m)

Z]/U]
. Let g0 : Y ]0 → Z] be a T ]-morphism and σ : g∗0BZ → BY be a morphism of

algebras which is moreover D(m)

Y ]/T ]
-linear. We get the functor g̃∗0 : M(‹D(m)

Z]/U]
)→M(‹D(m)

Y ]/T ]
). Denoting

g0 ◦ f0 : X]
0 → Z] the composition of g0 with the morphism X]

0 → Y ]0 induced by f0, we get the functor‡g0 ◦ f0

∗
: Mod(‹D(m)

Z]/U]
)→M(‹D(m)

X]/S]
) induced by g0 ◦ f0 and ρ ◦ σ as above. It follows from 4.4.5.9 that

the functor ‡g0 ◦ f0

∗
is canonically isomorphic to ‹f0

∗
◦ ‹g0

∗.

Proposition 4.4.5.14. Let E and F be two left ‹D(m)

Y ]/T ]
-modules. The canonical morphism

f̃∗(HomBY (E ,F))→ HomBX (f̃∗E , f̃∗F) (4.4.5.14.1)

is ‹D(m)
X -linear.

Proof. We set ‹Pn := ‹PnY ]/S]/(m). By functoriality, the following diagram

f̃n(m)(HomP̃n(‹Pn ⊗BY E , ‹Pn ⊗BY F))

∼
��

// HomP̃n(f̃n(m)(
‹Pn ⊗BY E), f̃n(m)(

‹Pn ⊗BY F))

∼
��

f̃n(m)(HomP̃n(E ⊗BY ‹Pn,F ⊗BY ‹Pn)) // HomP̃n(f̃n(m)(E ⊗BY ‹Pn), f̃∗n(F ⊗BY ‹Pn)),

(4.4.5.14.2)

where the horizontal arrows are the canonical homomorphisms and the vertical ones are induced by
the isomorphisms εEn and εFn , is commutative. Moreover, by definition, the left morphism of the dia-
gram 4.4.5.14.2 is the morphism defining the m-PD-stratification of f̃∗(HomBY (E ,F)) whereas the right
one comes from the m-PD-stratification of HomBX (f̃∗E , f∗F). The morphism 4.4.5.14.1 is therefore
horizontal.

4.5 D-modules in the case of relative strict normal crossing divi-
sors

4.5.1 Semi-logarithmic coordinates
Let T ] be a noetherian nice (see definition 3.1.1.1) fine log scheme over Spec(Z/pi+1Z) with i an integer
(resp. T ] be a p-torsion free noetherian nice fine V-log formal scheme as defined in 3.3.1.10). Let X] be
a log smooth T ]-log schemes (resp. a p-torsion free log smooth T ]-log formal schemes). Let Y := X]∗

be the open of X where MX] is trivial and j : Y ↪→ X] be the canonical open immersion. Let BX be
a commutative OX algebra equipped with a left D(m)

X]/T ]
-module structure which is compatible with its

algebra structure. We set ‹D(m)

X]/T ]
:= BX ⊗OX D

(m)

X]/T ]
.

4.5.1.1 (Notations). Let d ≥ r ≥ 0 be two integers. Let Ad,r be the log-scheme whose underlying space
is AdZ = Spec Z[t1, . . . , td] and such that a pre-log-structure is given by Nr → Z[t1, . . . , td] defined by
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ei 7→ ti for i = 1, . . . , r. In other words, Ad,r = ANr × Ad−rZ . We set Bd,r = AZr × Ad−rZ = (Ad,r)∗. Let
Ad,r be the formal Zp-scheme equal to the p-adic completion of Ad,r. We get D(m)

Ad,r/Z = D(m)
ANr/Z�D

(m)

Ad−rZ /Z

where by abuse of notation Z means Spec Z.
We set Ad,r

T ]
:= Ad,r ×Spec Z T . If T ] is a nice fine V-log formal scheme, we set Ad,r

T ]
:= Ad,r ×Spf Zp T

]

or Ad,r
T ]

:= Ad,r ×Spf Zp T
].

We have the canonical exact closed immersions: Ar,r
T ]

↪→ Ad,r
T ]

given by tr+1 = 0, . . . , td = 0.
Let m ∈ N ∪ {∞}. We have the inclusions D(m)

Ad,0
T]
/T ]
⊂ D(m)

Ad,r
T]
/T ]
⊂ D(m)

Ad,d
T]
/T ]

. Since t1, . . . , td

are coordinates of Ad,0
T ]/T ]

, then the sheaf of rings D(m)

Ad,0
T]
/T ]

is a free OAd
T]
-module (for both right or

left structures) with the basis {∂〈k〉(m) , k ∈ Nd} (for both structures). Since t1, . . . , td are logarithmic
coordinates of Ad,d

T ]
/T ], then the sheaf of rings D(m)

Ad,d
T]
/T ]

is is a free OAd
T]
-module (for both right or left

structures) with the basis {∂〈k〉(m)

] , k ∈ Nd} (for both structures). The canonical inclusion D(m)

Ad,0
T]
/T ]
⊂

D(m)

Ad,d
T]
/T ]

sends ∂〈k〉(m)

] to tk∂〈k〉(m) , which is abusively written by the relation ∂〈k〉(m) = tk∂
〈k〉(m)

] , where

tk := tk1
1 · · · t

kd
d for (k1, . . . , kd) = k. For any (k1, . . . , kd) = k ∈ Nd, we get an element of D(m)

Ad,r
T]
/T ]

by

setting

∂
〈k〉(m)

(r) := ∂
〈(k1,...,kr,0,...,0)〉(m)

] ∂〈(0,...,0,kr+1,...,kd)〉(m) = ∂
〈(i,0)〉(m)

] ∂〈(0,j)〉(m) . (4.5.1.1.1)

Moreover, the OAd
T]
-module (for both right or left structures) D(m)

Ad,r
T]
/T ]

is free with the base ∂〈k〉(m)

(r) ,

k ∈ Nd.
Let k ∈ Nd with i ∈ Nr and j ∈ Nd−r. By using the tautological formula 3.4.1.2.2, the logarithmic

adjoint operator ∂̃〈(k1,...,kr,0,...,0)〉(m)

] = ∂̃
〈(i,0)〉(m)

] of ∂〈(i,0)〉(m)

] belongs to D(m)

Ad,r
T]
/T ]

. The adjoint opera-

tor t∂〈(0,...,0,kr+1,...,kd)〉(m) of ∂〈(0,j)〉(m) is an element of D(m)

Ad,0
T]
/T ]

. We get the semi-logarithmic adjoint

operator of ∂〈k〉(m)

(r) by setting:

τ∂
〈k〉(m)

(r) := ∂̃
〈k〉(m)

(r) := ∂̃
〈(i,0)〉(m)

]
t∂〈(0,j)〉(m) . (4.5.1.1.2)

Lemma 4.5.1.2. Let f : X] → Y ] a morphism of log smooth T ]-log-schemes (resp. p-torsion free fine
log smooth T ]-log-formal schemes). The morphism f is log-étale if and only if the canonical morphism
f∗Ω1

Y ]/T ] → Ω1
X] is an isomorphism.

Proof. It follows from 3.3.2.7 that we reduce to the non-respective case. Following [Ogu18, IV.3.2.3.2
and IV.3.1.3], if the canonical morphism f∗Ω1

Y ]/T ] → Ω1
X]/T ] is an isomorphism then f is log-étale.

Conversely, if f is log-étale then f is log-smooth and therefore (by using [Ogu18, IV.3.2.3.1]) f∗Ω1
Y ]/T ] →

Ω1
X]/T ] is injective. Since f is unramified then Ω1

X]/Y ] = 0 (see [Ogu18, IV.3.1.3]). This yields that
f∗Ω1

Y ]/T ] → Ω1
X]/T ] is surjective.

Lemma 4.5.1.3. With notation 4.5.1.1, let f : X] → Ad,r
T ]

be a morphism of log smooth T ]-log-(formal)
schemes given by the global sections e1, . . . , er of MX] and ar+1, . . . , ad of OX . The morphism f is
log-étale if and only if the OX-module Ω1

X]/T ] is free and if (d log e1, . . . , d log er, dar+1, . . . , dad) is a
basis.

Proof. Following 4.5.1.2, f is log-étale if and only if the canonical morphism f∗Ω1
Ad,r
T]
/T ]
→ Ω1

X]/T ] is

an isomorphism. This last property is equivalent to the fact that the OX -module Ω1
X]/T ] is free and

that (d log e1, . . . , d log er, dar+1, . . . , dad) is a base (to compute explicitly Ω1
Ad,r
T]
/T ]

, it is better to use the

remark [Ogu18, IV.1.1.8]).
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Definition 4.5.1.4 (Semi-logarithmic coordinates). A T ]-morphism of the form f : X] → Ad,r
T ]

is equiv-
alent to the data of global sections t1, . . . , tr of MX] and tr+1, . . . , td of OX . If f is log-étale then we
say that t1, . . . , td are semi-logarithmic coordinates (of type d, r) of X]/T ]. In that case the canonical
morphism D(m)

X]/T ]
→ f∗D(m)

Ad,r
T]
/T ]

is an isomorphism. This yields a map f−1D(m)

Ad,r
T]
/T ]
→ D(m)

X]/T ]
, which

is in fact a ring homomorphism (see 4.4.3.1.3). We still write by ∂〈i〉(m)

(r) the global sections of ‹D(m)

X]/T ]

equal to the image of ∂〈i〉(m)

(r) via the composite morphism f−1D(m)

Ad,r
T]
/T ]
→ D(m)

X]/T ]
→ ‹D(m)

X]/T ]
. Moreover,

the BX] -module (for both right or left structures) ‹D(m)

X]
is free with the base ∂〈k〉(m)

(r) , k ∈ Nd.

When m =∞, we rather write ∂[i]

(r) := ∂
〈i〉(∞)

(r) . Finally, we have ΩX]/T ]
∼−→ f∗ΩAd,r

T]
/T ] .

4.5.1.5 (Semi-logarithmic adjoint operator). Let f : X] → Ad,r
T ]

be a log-étale T ]-morphism given by
semi-logarithmic coordinates (of type d, r) t1, . . . , td of X]/T ]. Set ‹D(m)

X]/T ]
:= Γ(X, ‹D(m)

X]/T ]
) and BX :=

Γ(X,BX). Let k ∈ Nd. We still denote by τ∂
〈k〉(m)

(r) the image of the operator τ∂〈k〉(m)

(r) defined at 4.5.1.1.2

via the ring homomorphism f−1D(m)

Ad,r
T]
/T ]
→ ‹D(m)

X]/T ]
.

Let P =
∑
k∈Nd bk∂

〈k〉(m)

(r) ∈ ‹D(m)

X]/T ]
, with bk ∈ BX . We define the “semi-logarithmic adjoint operator”

of P by setting τP :=
∑
k
τ∂
〈k〉(m)

(r) bk, which is a mixed version of the logarithmic and non-logarithmic
adjoint operator.

Let P,Q be two differential operators of ‹D(m)

X]/T ]
. Similarly to 4.3.5.3, we can check that the following

properties hold:

(a) We have τ (τP ) = P and τ (PQ) = τQτP

(b) We have the equality

ρ(τP ) = ρ

Ç
t(r)

tP
1

t(r)

å
, (4.5.1.5.1)

where t(r) = t1 · · · tr and where ρ is the canonical map ‹D(m)

X]/T ]
→ ‹D(m)

Y/T ]
(which is an inclusion when

BX = OX).

Hence, τ : (‹D(m)

X]/T ]
)o → ‹D(m)

X]/T ]
is an involution of OT -algebras, which is called the semi-logarithmic

adjoint automorphism. Beware that this depends on the choice of the semi-logarithmic coordinates
t1, . . . , td.

Lemma 4.5.1.6. Suppose X]/T ] has semi-logarithmic coordinates t1, . . . , td of type d, r. The sheaf
ω̃X]/T ] is a free BX-module of rank one with the basis ẽ0 := d log t1 ∧ · · · ∧ d log tr ∧ dtr+1 ∧ · · · ∧ td and
ω̃Y/T ] is a free BY -module of rank one with the basis dt1 ∧ · · · ∧ dtd.

The sheaf ω̃X]/T ] is a right ‹D(m)

X]/T ]
-submodule of j∗ω̃Y/T ] . More precisely, the action of P ∈ ‹D(m)

X]/S]

on the section b ẽ0, where b is section of BX is given by the formula

(b ẽ0) · P = τP (b) ẽ0. (4.5.1.6.1)

Proof. Using 4.5.1.2, we reduce to the case where X]/T ] = Ad,r
T ]
/T ]. By base change, we can suppose

T ] = Spec Z or T ] = Spf Zp. Since ωAd,r/Z = ωANr/Z � ωAd−rZ /Z then we conclude using 3.4.5.1 and its
non-logarithmic version 2.2.1.4.

Lemma 4.5.1.7. Consider the isomorphism

δM : M⊗BX ‹D(m)

X]/T ]
∼−→ M⊗BX ‹D(m)

X]/T ]

of 4.2.5.5.1. Suppose X]/T ] has semi-logarithmic coordinates t1, . . . , td of type d, r. Then, we have the
following formula

δM(x⊗ τ∂
〈k〉
(r) ) =

∑
h≤k

xτ∂
〈k−h〉
(r) ⊗ ∂〈h〉(r) . (4.5.1.7.1)
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Proof. Similar to 4.2.5.5.

4.5.1.8 (Left to right D-module). Suppose X]/T ] has semi-logarithmic coordinates t1, . . . , td of type
d, r. Let E be a left ‹D(m)

X]/T ]
-module. LetM be a right ‹D(m)

X]/T ]
-module. We denote by ẽ0 := d log t1∧· · ·∧

d log tr∧dtr+1∧· · ·∧dtd a basis of the free BX -module ω̃X]/T ] has the basis, and by ẽ∨0 its corresponding
dual basis of the free BX -module ω̃−1

X]/T ]
.

(a) Similarly to 4.3.5.5, we compute that the right ‹D(m)

X]/T ]
-module structure on ω̃X]/T ] ⊗BX E is given

by the formula
(ẽ0 ⊗ x)P = ẽ0 ⊗ τPx, (4.5.1.8.1)

for any local section x of E and P of ‹D(m)

X]/T ]
.

(b) The left ‹D(m)

X]/T ]
-module structure onM⊗BX ω̃−1

X]/T ]
is given by the formula

P (y ⊗ ẽ∨0 ) = yτP ⊗ ẽ∨0 , (4.5.1.8.2)

for any local section y ofM and P of ‹D(m)

X]/T ]
.

4.5.1.9. The formulas 4.2.3.1, 4.2.3.5 and 4.2.5.4 remain valid replacing by ∂〈k〉(m) by ∂〈k〉(m)

(r) and ∂̃〈k〉]

by ∂̃
〈k〉(m)

(r) .

4.5.2 Log structures associated with relative strict normal crossing divisor
We remind first the notion of strict normal crossing divisor and then of relative strict normal cross-
ing divisor. We give some details in the case where the base is geometrically unibranch (and locally
noetherian).

Definition 4.5.2.1. Let X → S be a morphism of schemes or a morphism of formal schemes. Following
[KM85, 1.1.1] (resp. [Sta22, 01WR]), an effective Cartier divisor D in X/S (resp. an effective Cartier
divisor D in X) is a closed (formal) subscheme D ⊂ X satisfying both conditions (resp. the second one):

(i) D is flat over S,

(ii) the ideal sheaf I(D) ⊂ OX is an invertible OX -module, i.e., it is a locally free OX -module of rank
one.

We denote by Div(X/S)≥0 (resp. Div(X)≥0) the integral monoid of effective Cartier divisors in X/S
(resp. in X). We say that a family {Ei}i∈I of nonzero elements in Div(X/S)≥0 has a locally finite
intersection if, for any point x ∈ X, there exists a Zariski open neighborhood U of x such that the set
{i ∈ I |Ei ∩ V 6= ∅} is finite.

Lemma 4.5.2.2. Let X be a locally Noetherian scheme. Let D ⊂ X be an effective Cartier divisor. Let
x ∈ D. The following (1) and (2) conditions are equivalent:

1. The local ring OX,x is regular and there exist a regular system of parameters t1, . . . , td ∈ mX,x and
an integer 1 ≤ r ≤ d such that D is cut out by t1 . . . tr in OX,x.

2. Let D1, . . . , Dr be the irreducible components of D passing through x (viewed as reduced closed
subschemes of X). There exists an open subset U of X containing x such that

(i) the scheme D ∩ U is reduced,

(ii) each Di ∩ U is an effective Cartier divisor in U ,

(iii) for any J ⊂ {1, . . . , r} the scheme theoretic intersection DJ := ∩j∈JDj is a regular scheme
at x and the irreducible component of U ∩DJ containing x has codimension |J | in X.
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Proof. The proof can be found at [Sta22, 0BI9,0BIA]. For the reader convenience, let us recall the
link between (1) and (2). Suppose the local ring OX,x is regular and there exist a regular system of
parameters t1, . . . , td ∈ mx and 1 ≤ r ≤ d such that D is cut out by t1 . . . tr in OX,x. Then the
irreducible components D1, . . . , Dr of D passing through x corresponds 1-to-1 to the Cartier divisors
V (t1), . . . , V (tr). Conversely, let t1, . . . , tr be some local equations ofD1, . . . , Dr. Set Z be the irreducible
component of D1 ∩ · · · ∩ Dr containing x. By choosing additional tr+1, . . . , td ∈ mX,x which map to a
minimal system of generators of mZ,x, we get the regular system of parameters t1, . . . , td ∈ mX,x such
that D is cut out by t1 . . . tr in OX,x.

Definition 4.5.2.3. Let X be a locally Noetherian scheme. Let D ⊂ X be an effective Cartier divisor.
Let x ∈ D. We say that D is a “strict normal crossing divisor on X at x” if one of the following equivalent
conditions of 4.5.2.2 holds. We say that D is a “strict normal crossing divisor on X” if D is a strict normal
crossing divisor on X at x for any x ∈ D.

4.5.2.4. Let X be a locally Noetherian scheme. Let D ⊂ X be an effective Cartier divisor. Let Di ⊂ D,
i ∈ I be its irreducible components viewed as reduced closed subschemes of X. We have the following
equivalent conditions :

(a) D is a strict normal crossing divisor on X,

(b) D is a strict normal crossing divisor on X at any closed point x of D,

(c) D is reduced, each Di is an effective Cartier divisor, and for any J ⊂ I finite the scheme theoretic
intersectionDJ := ∩j∈JDj is a regular scheme each of whose irreducible components has codimension
|J | in X (e.g. when DJ is empty this is automatic).

Indeed, a proof of the equivalence between (a) and (c) can be found at [Sta22, 0BI9,0BIA] (this is also
a consequence of 4.5.2.2). Following [?, 0.17.3.2], to check that ODJ is regular we reduce to check that
ODJ ,x is regular for any closed point x of DJ . Hence, it follows from 4.5.2.2 that we get the equivalence
between (b) and (c).

Example 4.5.2.5. Let X be a locally of finite type scheme over S = Spec k with k a perfect field.
Following [Gro67, 17.15.1], a scheme locally of finite type over S is smooth at x if and if it is regular at
x. Let x ∈ X be a closed point, d = dimxX and t1, . . . , td be sections of OX on X. Following [Gro67,
17.15.4], since the extension k(x)/k is finite and étale, then the morphism X → Ad induced by t1, . . . , td
is étale at x if and only if the sheaf OX,x is regular and (t1)x, . . . , (td)x is a regular system of parameter
for OX,x. Let D ⊂ X be an effective Cartier divisor. It follows from the above reminder that D is a
strict normal crossing divisor on X if one of the following equivalent conditions holds:

(d) for every x ∈ D, there exists an open U of X containing x so that U/S is endowed with coordinates
t1, . . . , td such that D ∩ U is cut out by t1 . . . tr in U ,

(e) for every closed point x ∈ D, there exists an open U of X containing x so that U/S is endowed with
coordinates t1, . . . , td such that D ∩ U is cut out by t1 . . . tr in U ,

(f) D is reduced, and if (Di ⊂ D)i∈I is the family of the irreducible components of D (viewed as reduced
closed subschemes of X), each Di is an effective Cartier divisor, and for any J ⊂ I finite the scheme
theoretic intersectionDJ := ∩j∈JDj is a smooth scheme over S each of whose irreducible components
has codimension |J | in X (e.g. when DJ is empty this is automatic).

Definition 4.5.2.6. Let X → S be a morphism of schemes or a morphism of formal schemes. Let
D ⊂ X be an effective Cartier divisor.

(a) We say that D admits a “decomposition by smooth components” if there exist effective Cartier
divisors (Di)i∈I in X/S which are smooth over S such that we have D =

∑
i∈I Di in Div(X/S)≥0.

(b) We say that D admits a decomposition by “irreducible smooth components” if there exist effective
Cartier divisors (Di)i∈I in X/S which are smooth over S, whose underlying topological space is
irreducible and such that D =

∑
i∈I Di in Div(X/S)≥0.

We recall below the following definition given by Y. Nakkajima and A. Shiho in [NS, 2.1.7] (it is
called “relative simple normal crossing divisor”).
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Definition 4.5.2.7. Let X → S be a morphism of schemes or a morphism of formal schemes. Let
D ⊂ X be an effective Cartier divisor.

1. Let x ∈ D. We say that D is a “relative to X/S strict normal crossing divisor at x” if there exists
an open U of X containing x so that U/S is endowed with coordinates t1, . . . , td such that D ∩ U
is cut out by t1 . . . tr in U .

2. We say that D is a “relative to X/S strict normal crossing divisor” if D is a relative to X/S strict
normal crossing divisor at any x ∈ D and if D admits a decomposition by smooth components.

Remark 4.5.2.8. We keep notation 4.5.2.7.

(a) When there exists an open U of X containing x so that U/S is endowed with coordinates t1, . . . , td
such that D ∩ U is cut out by t1 . . . tr in U , then D ∩ U admits a decomposition by the smooth
components given by t1, . . . , tr and D ∩ U is an effective Cartier divisor in U/S. However, since
this is not clear that we can glue theses S-smooth closed subschemes, the hypothesis that D has a
decomposition by smooth components is not useless in the notion of relative to X/S strict normal
crossing divisor.

(b) A relative to X/S strict normal crossing divisor is necessarily an effective Cartier divisor in X/S.

(c) Contrary to the notion of strict normal crossing divisor, the definition 4.5.2.7 is relative. However,
if S is the spectrum of a perfect field, then both notion of strict normal crossing divisor of X and of
relative to X/S strict normal crossing divisor are equal (see 4.5.2.5).

Remark 4.5.2.9. Let X → S be a smooth morphism of schemes such that S is geometrically unibranch
(see [Gro65, 6.15.1]). Then following [Gro67, 17.5.7], X is geometrically unibranch. In particular, for
any x ∈ X, OX,x is irreducible. Hence, when S is moreover locally noetherian, it follows from [Gro60,
6.1.10] that the irreducible components of X are equal to its connected components.

Let X→ S be a smooth morphism of V-formal schemes.We say thatS is geometrically unibranch if Si
is geometrically unibranch for any i ∈ N. Hence, if S is geometrically unibranch and locally noetherian,
then the irreducible components of X are equal to its connected components.

Proposition 4.5.2.10. Let X → S be a morphism of schemes or V-formal schemes. Suppose S is
geometrically unibranch and locally noetherian. Let D ⊂ X be an effective Cartier divisor in X/S. Let
x ∈ D. The following (a) and (b) conditions are equivalent:

(a) There exists an open U of X containing x so that U/S is endowed with coordinates t1, . . . , td such
that D ∩ U is cut out by t1 . . . tr in U .

(b) There exists an open U of X containing x, a positive integer r and effective Cartier divisors
E1, . . . , Er in U/S such that:

(i) D ∩ U =
∑r
i=1Ei in Div(U/S)≥0,

(ii) D ∩ U is the scheme theoretic union of E1, . . . , Er (see definition [Sta22, 0C4H]),

(iii) The underlying topological spaces of E1, . . . , Er corresponds 1-to-1 to the irreducible components
of D ∩ U ,

(iv) For any J ⊂ {1, . . . , r}, denoting by EJ := ∩j∈JEj the scheme theoretic intersection, EJ is a
smooth scheme over S each of whose irreducible components has codimension |J | in X.

Proof. Suppose the property (a) holds. By hypothesis, there exists an open U of X containing x so that
U/S is endowed with coordinate t1, . . . , td such that D ∩U is cut out by t1 . . . tr in U . This implies that
U/S and V (t1), . . . , V (tr) are smooth over S. With the remark 4.5.2.9, this yields that the irreducible
components of V (t1), . . . , V (tr) are respectively equal to their connected components. Shrinking U if
necessary, we can therefore suppose V (t1), . . . , V (tr) are irreducible. We denote by Ei := V (ti) the
effective Cartier divisors in U/S for i = 1, . . . , r. The fact that D ∩ U is cut out by t1 . . . tr in U can be
translated by the equality D∩U =

∑r
i=1Ei in Div(U/S)≥0. Moreover, for any J ⊂ {1, . . . , r}, EJ is étale

over Ad−|J|S and therefore smooth over S. This implies the codimension formula thanks to [Gro67, 17.6.4].
Hence, the underlying topological spaces of E1, . . . , Er correspond 1-to-1 to the irreducible components
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of D ∩ U . We remark also that Ei ∩ EJ is an effective Cartier divisor of Ei/S. Hence, using [Sta22,
0C4R and 01WW], this yields that D ∩ U is the scheme theoretic union of E1, . . . , Er.

Conversely, suppose the property (b) holds. Let U be an open of X containing x and let E1, . . . , Er
be some effective Cartier divisors in U/S satisfying the conditions of (b). Since E1, . . . , Er are effective
Cartier divisors, shrinking U if necessary, we can suppose there exist sections t1, . . . , tr of OX on U which
are nonzerodivisors and such that Ei = V (ti) for any i = 1, . . . , r. Hence, the closed immersion E1 ↪→ U
is regular. Since E1 is smooth at x, this yields that U is smooth at x (see [Gro67, 17.12.1]). Let I be the
ideal given by the closed immersion E1∩ · · ·∩Er ↪→ U . Then (t1)x, . . . , (tr)x is a system of generators of
Ix whose cardinal is the smallest possible (because the irreducible component of E1∩ · · ·∩Er containing
x has codimension r in X and because of Krull’s height theorem). Moreover, since E1 ∩ · · · ∩ Er and
U are smooth at x, shrinking U if necessary, it follows from [Gro67, 17.12.2] that there exist sections
tr+1, . . . , td of OX on U such that t1, . . . , td are coordinates of U/S. Hence, we are done.

Proposition 4.5.2.11. Let X → S be a morphism of schemes or V-formal schemes. Suppose S is
geometrically unibranch and locally noetherian. Let D ⊂ X be an effective Cartier divisor in X/S. The
following (a) and (b) conditions are equivalent:

(a) The divisor D is a relative to X/S strict normal crossing divisor.

(b) There exists a unique family of effective Cartier divisors (Di)i∈I in X/S with Di irreducible and
smooth over S such that:

(i) D =
∑
i∈I Di in Div(X/S)≥0 ;

(ii) D is the scheme theoretic union of the (Di)i∈I (see definition [Sta22, 0C4H]) ;

(iii) The underlying topological spaces of (Di)i∈I corresponds 1-to-1 to the irreducible components
of D ;

(iv) For any J ⊂ I finite the scheme theoretic intersection DJ := ∩j∈JDj is a smooth scheme over
S each of whose irreducible components has codimension |J | in X (e.g. when DJ is empty this
is automatic).

Proof. Suppose (a) holds. Then, if follows from the remark 4.5.2.9 that D has a decomposition by
irreducible smooth components (see definition 4.5.2.6). Since S is locally noetherian, the unicity of such
a decomposition is a consequence of [NS, A.0.3]. Since the other points to be checked are local, then we
get (b) from 4.5.2.10. With 4.5.2.10, the converse is obvious.

Definition 4.5.2.12. Let X → S be a morphism of schemes or V-formal schemes. Suppose S is
geometrically unibranch and locally noetherian. Let D is a relative to X/S strict normal crossing
divisor. The elements of the unique family (Di)i∈I of effective Cartier divisors in X/S satisfying the
conditions of (b) are called the “irreducible S-smooth components of D”.

Remark 4.5.2.13. Because of the nice description of 4.5.2.11, even if it might not be always useful later,
when we will consider relative strict normal crossing divisors, by convenience we will only consider the
case where the base is geometrically unibranch.

4.5.2.14. Let X → S be a morphism of schemes (resp. V-formal schemes). Suppose S is geometrically
unibranch and locally noetherian. Let D ⊂ X be a relative to X/S strict normal crossing divisor and
Y = X \D.

(a) Let x ∈ D. Choose an open U of X containing x so that U/S is endowed with coordinates t1, . . . , td
such that D ∩ U is cut out by t1 . . . tr in U . Shrinking U if necessary, it follows from (the proof of)
4.5.2.10 that we can suppose the underlying spaces of V (t1), . . . , V (tr) are equal to the irreducible
components of D∩U . We remark then that the submonoid tN1 · · · tNrO×U ⊂ OU does not depend on the
choice of t1, . . . , td such that V (t1), . . . , V (tr) are equal to the irreducible components of D ∩ U . As
the projective limits of monoids are well defined, this yields therefore by glueing (see [Gro60, 3.3]), a
sheaf of monoids on X denoted by M(D) and a canonical injection M(D) ↪→ OX . This submonoid
M(D) of OX is characterized by the properties M(D)|Y = O×Y and M(D)|U = tN1 · · · tNrO×U for any
x ∈ D and U such as above.
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(b) The log (formal) scheme (X,M(D)) is smooth over S. Indeed, let x ∈ D. Since the formal case is
checked identically we can consider the non-respective case. Choose an open U of X containing x
so that U/S is endowed with coordinates t1, . . . , td such that D ∩ U is cut out by t1 . . . tr in U and
the underlying spaces of V (t1), . . . , V (tr) are equal to the irreducible components of D ∩ U . Then
M(D)|U = tN1 · · · tNrO×U and we have the cartesian diagram of S-morphisms

(U,M(D)|U )

f

��

t //

�

ANr ×Spec Z Ad−rS

��

//

�

ANr

��
U

t //// AdS // Ar

(4.5.2.14.1)

where the right vertical arrow is induced by the canonical morphism, the bottom left arrow is induced
by the coordinates (tλ)λ=1,...,d.

(c) When r < d, shrinking if necessary the open subset U containing x (and changing if necessary
the elements tr+1, . . . , td), we can suppose U = U \ V (tr+1, . . . , td), i.e., the tr+1, . . . , td are invert-
ible, i.e. the top right horizontal morphism of 4.5.2.14.1 factors through the strict log étale mor-
phism (X,M(D))→ ANr ×Spec Z Gd−rm ×Spec Z S. Hence, t1, . . . , td induce the log étale S-morphism
(X,M(D))→ ANd ×Spec Z S.

Definition 4.5.2.15. Let X → S be a morphism of schemes (resp. formal schemes). Suppose S is
geometrically unibranch and locally noetherian. Let D ⊂ X be a relative to X/S strict normal crossing
divisor. Let t1, . . . , td be some sections of OX on an open subset U of X. Let r be the number of
irreducible components of D ∩ U (r = 0 means D ∩ U is empty). We say that “t1, . . . , td are semi-nice
(resp. nice) coordinates of (U,M(D)|U )/S” if the first two (resp. the three) properties are satisfied:

(a) t1, . . . , td are coordinates of U/S,

(b) either D ∩ U is empty or D ∩ U is cut out by
∏

1≤j≤r tj in U for some r ≥ 1 and the underlying
spaces of the family {V (tj)}1≤j≤r correspond 1-to-1 to the irreducible components of D ∩ U ,

(c) tl are invertible for any integer satisfying d ≥ l > r.

4.5.2.16. Let X → S be a smooth morphism of schemes (resp. formal schemes). Suppose S is geo-
metrically unibranch and locally noetherian. Let D ⊂ X be a relative to X/S strict normal crossing
divisor.

(a) Let x ∈ X. It follows from 4.5.2.14 (and remark the case x 6∈ D is obvious) that there exist an
open subset U of X containing x, some sections t1, . . . , td such that t1, . . . , td are nice coordinates
of (U,M(D)|U )/S. Then t1, . . . , td are coordinates of U/S and also are logarithmic coordinates of
(U,M(D)|U )/S.

(b) Let U be an open subset ofX such that there exists semi-nice coordinates t1, . . . , td of (U,M(D)|U )/S.
Let r be the number of irreducible components of D∩U . Then M(D)|U = tN1 · · · tNrO×U (when r = 0,
this means M(D)|U = O×U ). It follows from 4.5.2.14.1 that t1, . . . , td induces the strict log-étale
map (U,M(D)|U ) → Ad,rS (see notation 4.5.1.1), i.e. t1, . . . , td are semi-logarithmic coordinates of
(U,M(D)|U )/S (see definition 4.5.1.4).

Example 4.5.2.17. Let V be a complete discrete valuation ring of characteristic (0, p) with perfect
residue field k, S = Spf V and S = Spec k. Let X be a smooth k-scheme et D ⊂ X be a strict normal
crossing divisor onX (see 4.5.2.5). In that case, we can checkM(D) = {g ∈ OX ; g is invertible outside D}.

Locally the smooth S-log scheme (X,M(D)) lifts to a smooth S-log formal scheme of the form
(X,M(D)), with X a smooth S-formal scheme and D ⊂ X be a relative to X/S strict normal crossing di-
visor on X. Indeed, we can supposeX is affine and there exists nice coordinates t1, . . . , td of (X,M(D))/S
such that D is cut out by

∏
1≤j≤r tj in D for some r ≥ 1. Following [SGA1, III.6.10], there exists an

affine smooth S-formal scheme which is a lifting of X. The étale morphism of the form X → AdS given
by t1, . . . , td lifts to an étale morphism of the form X→ ÂdS. Let D := V (

∏
1≤j≤r tj). Then D ⊂ X is a

relative to X/S strict normal crossing divisor on X so that (X,M(D)) is a lifting of (X,M(D)).
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Let f : X ′ → X be a morphism of smooth k-schemes, D ⊂ X (resp. D′ ⊂ X ′) be a strict normal
crossing divisor on X (resp. X ′). With the description of M(D) and M(D′), if X ′ \D′ ⊂ f−1(X \D)
then f canonically induces a morphism of log-schemes (X ′,M(D′))→ (X,M(D)).

Let X (resp. X′) be a smooth S-formal scheme and D ⊂ X (resp. D′ ⊂ X′) be a relative to
X/S (resp. X′/S) strict normal crossing divisor. Beware we do not have the equality M(D) = {g ∈
OX; g is invertible outside D}. However, if f : X′ → X is a morphism of smooth S-formal schemes such
that the closed immersion f−1(D)red ↪→ X′ factors through f−1(D)red ↪→ D′, then f induces (uniquely)
a morphism of log-smooth S-log formal schemes (X,M(D))→ (X′,M(D′))

Suppose there exists f0 : X ′ → X such that X ′ \D′ ⊂ f−1(X \D) and X′ is affine. Then it follows
from [Kat89, 3.11], that the morphism of smooth S-log-formal schemes f ]0 : (X ′,M(D′)) → (X,M(D))
lifts to a morphism of smooth S-log-formal schemes of the form f ] : (X′,M(D′))→ (X,M(D)).

4.5.2.18. Let X → S be a smooth morphism of schemes (resp. formal schemes). Suppose S is geo-
metrically unibranch and locally noetherian. Let D ⊂ X be a relative to X/S strict normal crossing
divisor. Set X] := (X,M(D)). Let f : X] → X be the canonical morphism. Remark f∗ is the identity
in the category of OX -modules. Let BX be a commutative OX algebra equipped with a left D(m)

X]/T ]
-

module structure which is compatible with its algebra structure. We set ‹D(m)

X]/S
:= BX ⊗OX D

(m)

X]/S
,‹PnX]/S](m) := BX ⊗OX PnX]/S(m) and similarly without the symbol ].

(a) Suppose there exist nice coordinates t1, . . . , td of X]/S. Let τi = 1⊗ ti− ti⊗1 ∈ OX×X , the τi forms
a regular system of generators of I. We still denote by τi the image of τi in PnX/S,(m) or in ‹PnX/S,(m).
Then following 1.4.2.3, PnX/S,(m) is isomorphic to an m-PD polynomial algebra with coefficients in

OX of order n in d variables given by τ1, . . . , τd (see 1.4.1.5 and 1.4.1.9). Hence, ‹PnX/S,(m) is a free

BX -module with basis {τ{k}(m) : |k| ≤ n}. Let {∂〈k〉(m) : |k| ≤ n} be the dual basis for ‹D(m)
X/S,n. By

taking the union, we get the basis {∂〈k〉(m) : k ∈ Nd} of ‹D(m)
X/S .

Let τ ](m) and ∂]〈k〉(m) be the elements constructed from (tλ)λ=1,...,r as defined in 4.1.2.16. Following
3.2.3.9.3, the canonical BX -algebras (for left or right structures) morphism ‹PnX/S,(m) → ‹PnX]/S,(m)

(see 3.2.3.17) is explicitly described by

τ{k}(m) 7→ tkτ
{k}(m)

] , (4.5.2.18.1)

where the action of tk is induced by the left structure of BX -algebra of ‹PnX]/S,(m). By duality, we

get ρ : ‹D(m)

X]/S
→ ‹D(m)

X/S is explicitly described by

∂
〈k〉(m)

] 7→ tk∂〈k〉(m) . (4.5.2.18.2)

The morphism ρ : ‹D(m)

X]/S
→ ‹D(m)

X/S is a ring morphism. Indeed, let P ∈ DX]/S],n, P ′ ∈ DX]/S],n′ .
Consider the diagram:

Pn+n′

X/S

δn,n
′
//

��

PnX/S ⊗OX P
n′

X/S

id⊗ρ(P ′)//

��

PnX/S
ρ(P ) //

��

OX

��
Pn+n′

X]/S

δn,n
′
// PnX]/S ⊗OX P

n′

X]/S

id⊗P ′ // PnX]/S
P // OX

. (4.5.2.18.3)

Using the universal property of 3.1.4.1 (or use the formula 4.5.2.18.2), we get the commutativity of
the left square. The other squares are commutative by definition of the map ρ. By definition (see
3.1.4.3.1), ρ(P )ρ(P ′) (resp. ρ(PP ′)) is the top (resp. bottom) composite morphism of 4.5.2.18.3.

Since t1, . . . , td are nonzero divisors, then via the description 4.5.2.18.1 and 4.5.2.18.2 we get that
PnX/S,(m) → P

n
X]/S,(m) and ‹D(m)

X]/S
→ ‹D(m)

X/S]
are injective. By abuse of notation, we get therefore the

equality:
∂
〈k〉(m)

] = tk∂〈k〉(m) . (4.5.2.18.4)
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(b) Suppose there exist semi-nice coordinates t1, . . . , td of X]/S. With notation 4.5.1.4, we have the
basis {∂〈k〉(m)

(r) : k ∈ Nd} of ‹D(m)

X]/S
. The map ‹D(m)

X]/S
→ ‹D(m)

X/S is explicitly described by

∂
〈k〉(m)

(r) 7→ t(k1,...,kr,0,...,0)∂〈k〉(m) . (4.5.2.18.5)

Since ‹D(m)

X]/S
→ ‹D(m)

X/S is injective, then we can write ∂〈k〉(m)

(r) = t(k1,...,kr,0,...,0)∂〈k〉(m) .

(c) Let E and F be two left ‹D(m)
X/S-modules. Then the tensor product E ⊗BX F and HomBX (E ,F)

are canonically endowed with a structure of left ‹D(m)
X/S-module functorial in E and F (see 4.2.3.1

in the case where the log structure are trivial). Denoting by f∗ the forgetful functor from the
category of left ‹D(m)

X/S-modules to that of left ‹D(m)

X]/S
-modules (via the canonical monomorphism‹D(m)

X]/S
⊂ ‹D(m)

X]/S
given by f), we get on f∗(E) ⊗BX f∗(F) and HomBX (f∗(E), f∗(F)) a structure of

left ‹D(m)

X]/S
-module (see 4.2.3.1). Either by making a local computation or by identifying the m-PD-

stratifications, we can easily check that we have the equalities f∗(E)⊗BX f∗(F) = f∗(E ⊗BX F) and
HomBX (f∗(E), f∗(F)) = f∗(HomBX (E ,F)). We have similar results when E and F are right or left
left ‹D(m)

X/S-modules (when this has a meaning).

4.5.3 An associativity isomorphism
Let X → S be a smooth morphism of schemes (resp. formal schemes). Let D ⊂ X be a relative
to X/S strict normal crossing divisor (see definition 4.5.2.7). Set X] := (X,M(D)). Suppose S is
geometrically unibranch and locally noetherian (see the remark 4.5.2.13). Let E ⊂ D be a subdivisor
of D and set X[ := (X,M(E)). Moreover, let d = dimX. Let BX be a commutative OX algebra
equipped with a left D(m)

X[/S
-module structure which is compatible with its algebra structure. We set‹D(m)

X[/S
:= BX⊗OX D

(m)

X[/S
and ‹D(m)

X]/S
:= BX⊗OX D

(m)

X]/S
. Using a similar to 4.5.2.18.3 diagram, we easily

check that the map ‹D(m)

X]/S
→ ‹D(m)

X[/S
is a ring morphism.

We prove in this section the associativity isomorphism 4.5.3.2.2. This corresponds to a level m
variation of [CMNM05, 2.3.4]. We get similarly 4.5.3.9 (we remark that the meaning of “ associativity ”
can be better understood for 4.5.3.9). Finally, we deduce from 4.5.3.2.2 the isomorphism 4.5.3.8.1 which
will be used to establish 18.2.1.21.

4.5.3.1 (Local description). Suppose there exist nice coordinates t1, . . . , td of X]/S so that D is empty
or D is cut out by

∏
1≤j≤r tj in U for some r ≥ 1, which is always locally possible (see 4.5.2.14). Hence,

E is either empty of cut out by
∏

1≤j≤s tj in U for some r ≥ s ≥ 1. Then t1, . . . , td of X]/S are semi-nice
coordinates of X[/S (because when r > s, tr is not invertible). We get the description 4.5.2.18.(b).
We get the bases {∂〈k〉(m)

(r) : k ∈ Nd} of D(m)

X]/S
and {∂〈k〉(m)

(s) : k ∈ Nd} of D(m)

X[/S
. According to 4.5.1.9,

in the computations of the subsection, when we refer to some logarithmic formulas, we will mean its
semi-logarithmic avatar.

4.5.3.2. Let E] be a left ‹D(m)

X]/S
-module and M[ be a right ‹D(m)

X[/S
-module. We have the canonical

morphism of left ‹D(m)

X]/S
-modules : E] → ‹D(m)

X[/S
⊗D̃(m)

X]/S

E]. By functoriality of the tensor product of

4.2.3.5, this yields the morphism of right ‹D(m)

X]/S
-modules :

M[ ⊗BX E] →M[ ⊗BX (‹D(m)

X[/S
⊗D̃(m)

X]/S

E]). (4.5.3.2.1)

The morphism 4.5.3.2.1 induces by extension the canonical ‹D(m)

X[/S
-linear morphism:

(M[ ⊗BX E])⊗D̃(m)

X]/S

‹D(m)

X[/S
→M[ ⊗BX (‹D(m)

X[/S
⊗D̃(m)

X]/S

E]). (4.5.3.2.2)

Theorem 4.5.3.3. Let E] be a left ‹D(m)

X]/S
-module and M[ be a right ‹D(m)

X[/S
-module. The morphism

4.5.3.2.2 is an isomorphism of right ‹D(m)

X[/S
-modules.
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Proof. We can compare with the proof of the complex case given in [CMNM05, A.1]. The fact that the
arrow 4.5.3.2.2 is an isomorphism is local. Let us suppose then X]/S endowed with nice coordinates
t1, . . . , td (see definition 4.5.2.15) and let us keep the notations of 4.5.2.18. It is about proving that for
any right ‹D(m)

X[/S
-module N , for any ‹D(m)

X]/S
-linear morphism α : M[ ⊗BX E] → N , there exists a unique

morphism of right ‹D(m)

X[/S
-modules β : M[⊗BX (‹D(m)

X[/S
⊗D̃(m)

X]/S

E])→ N making commutative the diagram

M[ ⊗BX E]
4.5.3.2.1//

α

55M[ ⊗BX (‹D(m)

X[/S
⊗D̃(m)

X]/S

E])
∃!β // N .

I) Let us treat first the uniqueness of β. For this purpose, we check by induction on N ∈ N that for any
m ∈M[, e ∈ E], P ∈ ‹D(m)

X[,N
, α uniquely determines the element β(m⊗ (P ⊗ e)). When N = 0, we have

necessarily β(m⊗ (b⊗ e)) = β(mb⊗ (1⊗ e)) = α(mb⊗ e), for any b ∈ BX . By linearity, we can suppose
P of the form ∂

〈k〉
(s) . The following formula that β has to check (because β is ‹D(m)

X[/S
-linear and we use

the formula 4.2.3.5.3)

β(m⊗ (∂
〈k〉
(s) ⊗ e)) = β(m⊗ (1⊗ e))∂̃

〈k〉
(s) −

∑
h〈k

¶
k
h

©
β(m∂̃

〈k−h〉
(s) ⊗ (∂

〈h〉
(s) ⊗ e))

allow us to conclude the induction.
II) Now let us establish the existence of β. By induction on N ∈ N, we construct a Z-trilinear

morphism vN : M[ × ‹D(m)

X[,N
× E] → N inducing vN−1 as follows : for any m ∈ M[, e ∈ E], b ∈ BX ,

we set v0(m, b, e) := α(mb ⊗ e). Suppose vN is defined. For any k ∈ Nd such that |k| = N + 1, for any
m ∈M[, e ∈ E], we set

vN+1(m, ∂
〈k〉
(s) , e) :=

Ñ
vN (m, 1, e)∂̃

〈k〉
(s) −

∑
h〈k

¶
k
h

©
vN (m∂̃

〈k−h〉
(s) , ∂

〈h〉
(s) , e)

é
. (4.5.3.3.1)

Next, for any P ∈ ‹D(m)

X[,N
, Q =

∑
|l|=N+1 bl∂

〈l〉
(s) ∈ ‹D(m)

X[,N+1
where the sum runs over l ∈ Nd such that

|l| = N + 1 and where bl ∈ BX , we set

vN+1(m,P +Q, e) := vN (m,P, e) +
∑
l

vN+1(mbl, ∂
〈l〉
(s), e). (4.5.3.3.2)

In particular, for any P ∈ ‹D(m)

X[,N
, we have vN+1(m,P, e) = vN (m,P, e). Moreover, since vN is Z-trilinear

then so is vN+1. The morphisms vN induce therefore the Z-trilinear morphism v : M[×‹D(m)

X[/S
×E] → N .

To end the proof of the theorem, we will need the lemmas below.

Lemma 4.5.3.4. For any b ∈ BX , P ∈ ‹D(m)

X[/S
, m ∈M[, e ∈ E], v(mb, P, e) = v(m, bP, e) = v(m,P, e)b.

Proof. The left equality of 4.5.3.4 is checked by induction on the order of the operator P from the
formula 4.5.3.3.2. By additivity, to check that the right one holds, it is sufficient to establish that
ε := v(m, ∂

〈k〉
(s) , e)b− v(mb, ∂

〈k〉
(s) , e) is null. We proceed by induction on N := |k|. We get by BX -linearity

of α the equality v(m, 1, e)b = v(mb, 1, e), i.e. the case N = 0. Now, let us suppose the formula true for
N − 1 ≥ 0. Following 4.5.3.3.1 and next by induction hypothesis, we compute :

v(m, 1, e)∂̃
〈k〉
(s) b =

∑
i≤k

¶
k
i

©
v(m∂̃

〈k−i〉
(s) , ∂

〈i〉
(s), e)b = ε+

∑
i≤k

¶
k
i

©
v(m∂̃

〈k−i〉
(s) b, ∂

〈i〉
(s), e). (4.5.3.4.1)
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On the other side, following 4.1.2.4.1, ∂̃
〈k〉
(s) b =

∑
h≤k

¶
k
h

©
∂̃
〈k−h〉
(s) (b)∂̃

〈h〉
(s) . Hence :

v(m, 1, e)∂̃
〈k〉
(s) b =

∑
h≤k

¶
k
h

©
v(m∂̃

〈k−h〉
(s) (b), 1, e)∂̃

〈h〉
(s)

=
4.5.3.3.1

∑
h≤k

∑
i≤h

¶
k
h

©¶
h
i

©
v(m∂̃

〈k−h〉
(s) (b)∂̃

〈h−i〉
(s) , ∂

〈i〉
(s), e)

=
∑
i≤k

¶
k
i

© ∑
i≤h≤k

¶
k−i
k−h

©
v(m∂̃

〈k−h〉
(s) (b)∂̃

〈h−i〉
(s) , ∂

〈i〉
(s), e)

=
4.1.2.4.1

∑
i≤k

¶
k
i

©
v(m∂̃

〈k−i〉
(s) b, ∂

〈i〉
(s), e). (4.5.3.4.2)

By comparing 4.5.3.4.1 and 4.5.3.4.2, we obtain ε = 0.

Lemma 4.5.3.5. For any b ∈ BX , P ∈ ‹D(m)

X[/S
, m ∈M[, e ∈ E], v(m,P, be) = v(m,Pb, e).

Proof. By using the relation 4.5.3.4, we reduce to the case where P is of the form ∂
〈k〉
(s) , with k ∈ Nd. We

have to establish that ε := v(m, ∂
〈k〉
(s) , be) − v(m, ∂

〈k〉
(s) b, e) is null. We proceed by induction on N := |k|.

When N = 0, this comes from v(m, 1, be) := α(m ⊗ be) = α(mb ⊗ e) =: v(m, b, e). Now, let us suppose
the formula true for N − 1 ≥ 0 (i.e. HN−1 holds). We compute:

v(m, 1, be)∂̃
〈k〉
(s) =

4.5.3.3.1

∑
l≤k

¶
k
l

©
v(m∂̃

〈k−l〉
(s) , ∂

〈l〉
(s), be)

=
HN−1

ε+
∑
l≤k

¶
k
l

©
v(m∂̃

〈k−l〉
(s) , ∂

〈l〉
(s)b, e)

=
4.1.2.4.1

ε+
∑
l≤k

∑
h≤l

¶
k
l

©¶
l
h

©
v(m∂̃

〈k−l〉
(s) , ∂

〈l−h〉
(s) (b)∂

〈h〉
(s) , e)

=
4.5.3.4

ε+
∑
l≤k

∑
h≤l

¶
k
l

©¶
l
h

©
v(m∂̃

〈k−l〉
(s) (∂

〈l−h〉
(s) (b)), ∂

〈h〉
(s) , e)

= ε+
∑
h≤k

¶
k
h

©
v

Ñ
m
∑
h≤l≤k

¶
k−h
k−l

©
∂̃
〈k−l〉
(s) (∂

〈l−h〉
(s) (b)), ∂

〈h〉
(s) , e

é
=

4.2.5.4.2
ε+

∑
h≤k

¶
k
h

©
v(mb∂̃

〈k−h〉
(s) , ∂

〈h〉
(s) , e)

=
4.5.3.3.1

ε+ v(mb, 1, e)∂̃
〈k〉
(s) = ε+ v(m, 1, be)∂̃

〈k〉
(s) .

Lemma 4.5.3.6. Let a ∈ Nd such that ai = 0 if 1 ≤ i ≤ s or r + 1 ≤ i ≤ d. For any m ∈ M[, e ∈ E],
k ∈ Nd, the following formula is satisfied:

v(m, ∂
〈a〉
(s) , e)∂̃

〈k〉
(s) =

∑
h≤k

¶
k
h

©
v(m∂̃

〈k−h〉
(s) , ∂

〈h〉
(s) ∂

〈a〉
(s) , e). (4.5.3.6.1)

Proof. Let us check the lemma by induction on N := |a|. For N = 0, this is a consequence of 4.5.3.3.1.
Let us suppose HN true, i.e., the equality is satisfied for N . Let us check it for N + 1. Set ε :=

v(m, ∂
〈a〉
(s) , e)∂̃

〈k〉
(s) −

∑
h≤k

¶
k
h

©
v(m∂̃

〈k−h〉
(s) , ∂

〈h〉
(s) ∂

〈a〉
(s) , e). We have to check ε = 0. We compute

v(m, 1, e)∂
〈a〉
(s)∂

〈k〉
(s) =

4.5.3.3.1

∑
b≤a

¶
a
b

©
v(m∂̃

〈a−b〉
(s) , ∂

〈b〉
(s), e)∂̃

〈k〉
(s)

=
HN

ε+
∑
b≤a

∑
h≤k

¶
k
h

©¨
h+b
b

∂¶
a
b

©
v(m∂̃

〈a−b〉
(s) ∂̃

〈k−h〉
(s) , ∂

〈h+b〉
(s) , e). (4.5.3.6.2)
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On the other side, by using three times the formula 2.1.3.1.2 (see the remark 4.2.3.2), we compute in
M[ ⊗BX ‹D(m)

X[/S
(by default we take the left structure of right ‹D(m)

X[/S
-module) :∑

b≤a

∑
h≤k

¶
k
h

©¨
h+b
b

∂¶
a
b

©
m∂̃
〈a−b〉
(s) ∂̃

〈k−h〉
(s) ⊗ ∂〈h+b〉

(s) =
∑
b≤a

¶
a
b

©
(m∂̃

〈a−b〉
(s) ⊗ ∂〈b〉(s))∂

〈k〉
(s)

= (m⊗ 1)∂
〈a〉
(s)∂

〈k〉
(s) =

¨
a+k
k

∂
(m⊗ 1)∂

〈a+k〉
(s) =

∑
l≤a+k

¨
a+k
k

∂¶
a+k
l

©
m∂̃
〈a+k−l〉
(s) ⊗ ∂〈l〉(s). (4.5.3.6.3)

Since ‹D(m)

X[/S
is a free BX -module (for the left or right structure) with the basis consisting of the elements

∂
〈n〉
(s) with n going through Nd, then by Z-multilinearity of v it follows from 4.5.3.6.3 the first equality in
N : ∑

b≤a

∑
h≤k

¶
k
h

©¨
h+b
b

∂¶
a
b

©
v(m∂̃

〈a−b〉
(s) ∂̃

〈k−h〉
(s) , ∂

〈h+b〉
(s) , e) =

∑
l≤a+k

¨
a+k
k

∂¶
a+k
l

©
v(m∂̃

〈a+k−l〉
(s) , ∂

〈l〉
(s), e)

=
4.5.3.3.1

¨
a+k
k

∂
v(m, 1, e)∂

〈a+k〉
(s) = v(m, 1, e)∂

〈a〉
(s)∂

〈k〉
(s) . (4.5.3.6.4)

Hence, by using 4.5.3.6.2 and 4.5.3.6.4 we get ε = 0, i.e. 4.5.3.6.1 is therefore satisfied.

Lemma 4.5.3.7. For any P ] ∈ ‹D(m)

X]/S
, P ∈ ‹D(m)

X[/S
, m ∈M[, e ∈ E], v(m,P, P ]e) = v(m,PP ], e).

Proof. 1) At first, let us suppose P = 1, i.e., let us check the equality v(m, 1, P ]e) = v(m,P ], e).
i) By induction on |k|, let us establish the formula : v(m, 1, ∂

〈k〉
(r)e) = v(m, ∂

〈k〉
(r) , e). By multiplying the

equality 4.5.3.6.1 by tk = tk1
1 . . .kdd , by using the equality 4.5.2.18.4 and thanks to the formula 4.5.3.4, we

obtain:
v(m, 1, e)∂̃

〈k〉
(r) =

∑
h≤k

¶
k
h

©
v(m∂̃

〈k−h〉
(r) , ∂

〈h〉
(r) , e). (4.5.3.7.1)

Moreover, by ‹D(m)

X]/S
-linearity of α, it follows from 4.2.3.5.1 the equality:

(α(m⊗ e))∂̃
〈k〉
(r) =

∑
h≤k

¶
k
h

©
α(m∂̃

〈k−h〉
(r) ⊗ ∂〈h〉(r) e). (4.5.3.7.2)

By induction hypothesis, for any h〈k, v(m∂̃
〈k−h〉
(r) , ∂

〈h〉
(r) , e) = v(m∂̃

〈k−h〉
(r) , 1, ∂

〈h〉
(r) e) = α(m∂̃

〈k−h〉
(r) ⊗ ∂〈h〉(r) e).

Since v(m, 1, e)∂̃
〈k〉
(r) = (α(m ⊗ e))∂̃

〈k〉
(r) , by comparing the formulas 4.5.3.7.1 and 4.5.3.7.2, this yields

v(m, ∂
〈k〉
(r) , e) = α(m⊗ ∂〈k〉(r)e) = v(m, 1, ∂

〈k〉
(r)e).

ii) Finally, if P ] is of the form
∑
k bk∂

〈k〉
(r) , where bk ∈ BX , we compute v(m, 1, P ]e) = α(m⊗ P ]e) =∑

k α(mbk ⊗ ∂
〈k〉
(r)e) =

∑
k v(mbk, 1, ∂

〈k〉
(r)e) =

∑
k v(mbk, ∂

〈k〉
(r) , e) =

4.5.3.4
v(m,P ], e).

2) Let us treat now the general case. Since ‹D(m)

X]/S
is a right ‹D(m)

X[/S
-module generated by the elements

of the form ∂〈k〉, with k ∈ Nd such that ki = 0 if 1 ≤ i ≤ s or r + 1 ≤ i ≤ d, then it is sufficient to check
4.5.3.7 when P = ∂〈k〉 for such k. We proceed by induction on the integer N := |k|. For N = 0, this
is the step 1). Let us suppose the lemma holds for N ≥ 0 and let us suppose |k| = N + 1. Following
4.5.3.3.1:

v(m, ∂〈k〉, P ]e) =

Ñ
v(m, 1, P ]e)∂̃

〈k〉
−
∑
h〈k

¶
k
h

©
v(m∂̃

〈k−h〉
, ∂〈h〉, P ]e)

é
. (4.5.3.7.3)

Moreover, it comes from 4.5.3.6.1 the formula :

v(m, ∂〈k〉P ], e) =

Ñ
v(m,P ], e)∂̃

〈k〉
−
∑
h〈k

¶
k
h

©
v(m∂̃

〈k−h〉
, ∂〈h〉P ], e)

é
. (4.5.3.7.4)

Via 4.5.3.7.3, 4.5.3.7.4 and by induction hypothesis, we get v(m, ∂〈k〉, P ]e) = v(m, ∂〈k〉P ], e).
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Let us now conclude the proof of the theorem. It follows from the formulas 4.5.3.4 and 4.5.3.7 that
the morphism v induces a morphism of BX -modules β : M[⊗BX (‹D(m)

X[/S
⊗D̃(m)

X]/S

E])→ N . Finally, using

the formula of 4.5.3.6.1 and that of 4.2.3.2 ( i.e. more precisely the generalization with coefficients of the
formula 2.1.3.1.2) we conclude that β is ‹D(m)

X[/S
-linear.

Corollary 4.5.3.8. Let E] be a left ‹D(m)

X]/S
-module, F [ be a left ‹D(m)

X[/S
-module (resp. a ‹D(m)

X[/S
-bimodule).

We have the isomorphism:

(ω̃X[ ⊗BX E])⊗D̃(m)

X]/S

F [ ∼−→ (ω̃X[ ⊗BX F [)⊗D̃(m)

X]/S

E]. (4.5.3.8.1)

Proof. It follows from 4.5.3.3 the canonical isomorphism

(ω̃X[ ⊗BX E])⊗D̃(m)

X]/S

‹D(m)

X[/S

∼−→ ω̃X[ ⊗BX (‹D(m)

X[/S
⊗D̃(m)

X]/S

E]). (4.5.3.8.2)

By applying to it the functor −⊗D̃(m)

X[/S

F [, this gives the first isomorphism:

(ω̃X[ ⊗BX E])⊗D̃(m)

X]/S

F [ ∼−→
Å
ω̃X[ ⊗BX (‹D(m)

X[/S
⊗D̃(m)

X]/S

E])
ã
⊗D̃(m)

X[/S

F [

∼−→
4.3.5.10.1

Ä
ω̃X[ ⊗BX F [

ä
⊗D̃(m)

X[/S

(‹D(m)

X[/S
⊗D̃(m)

X]/S

E]) ∼−→ (ω̃X[ ⊗BX F [)⊗D̃(m)

X]/S

E].

Theorem 4.5.3.9. Let E] be a left ‹D(m)

X]/S
-module and F [ be a left ‹D(m)

X[/S
-module. We have the morphism

of left ‹D(m)

X]/S
-modules E] ⊗BX F [ → (‹D(m)

X[/S
⊗D̃(m)

X]/S

E]) ⊗BX F [, sending e ⊗ f on (1 ⊗ e) ⊗ f where

e ∈ E], f ∈ F [. The ‹D(m)

X[/S
-linear morphism induced by extension:‹D(m)

X[/S
⊗D̃(m)

X]/S

(E] ⊗BX F [)→ (‹D(m)

X[/S
⊗D̃(m)

X]/S

E])⊗BX F [ (4.5.3.9.1)

is an isomorphism of left ‹D(m)

X[/S
-modules.

Proof. Switching from left to right D-modules, this is a consequence of 4.5.3.3. More precisely, by using
4.3.5.7, we get 4.5.3.9.1 from the canonical composite isomorphism

ω̃X[ ⊗BX
Å‹D(m)

X[/S
⊗D̃(m)

X]/S

(E] ⊗BX F [)
ã

∼←−
4.5.3.3

(ω̃X[ ⊗BX (E] ⊗BX F [))⊗D̃(m)

X]/S

‹D(m)

X[/S

∼−→
4.5.2.18.c

((ω̃X[ ⊗BX F [)⊗BX E])⊗D̃(m)

X]/S

‹D(m)

X[/S

∼−→
4.5.3.3

(ω̃X[ ⊗BX F [)⊗BX (‹D(m)

X[/S
⊗D̃(m)

X]/S

E])

∼−→ ω̃X[ ⊗BX
Å

(‹D(m)

X[/S
⊗D̃(m)

X]/S

E])⊗BX F [
ã
. (4.5.3.9.2)

4.6 Complexes of D-modules, first properties

4.6.1 Pseudo-coherent complexes, Theorems A and B
Let X be a scheme or a V-formal scheme (e.g. see 3.4). We explain how to get Theorems A and B for
pseudo-coherent complexes from Theorem A and B for coherent modules. First, let us recall the notion
of pseudo-coherent complexes.

4.6.1.1. Let D be a ring. We denote by D−coh(lD) the full subcategory of D−(D) of pseudo-coherent
complexes in the sense of [Sta22, 064Q], i.e. of complexes which are quasi-isomorphic to a bounded above
complex of finite free left D-modules.

Suppose D is noetherian (resp. coherent). It follows from [Sta22, 066E] (resp. [Sta22, 0EWZ]) that
a complex E• of D−(D) is pseudo-coherent if and only if Hn(E•) is a left D-module of finite type (resp.
coherent left D-module) for any n ∈ Z.
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Lemma 4.6.1.2. Let D be a coherent ring. Then the natural map

D−(Coh(D))→ D−coh(D) (4.6.1.2.1)

is an equivalence of categories.

Proof. Following [Sta22, 0EWZ] (see 4.6.1.1), the functor is well defined. The essential surjectivity is
obvious by definition. It remains to check this is fully faithful. Let E•, F • ∈ D−(Coh(D)). Viewing
E• as a object of D−coh(D), there exists P • ∈ K−(D) such that Pn are finite free left D-modules for
any n ∈ Z and endowed with a quasi-isomorphism E•

∼−→ P • in K−(D). In fact, this is also a quasi-
isomorphism of K−(Coh(D)) Since a finite free left D-module is a projective object in Coh(D) and in
M(D), then following [Sta22, 064B-13.19.8] we have

HomD(Coh(D))(P
•, F •) = HomK(Coh(D))(P

•, F •) = HomK(D)(P
•, F •) = HomD(D)(P

•, F •).

Hence we are done.

4.6.1.3. Let D be a coherent sheaf of rings on X.

(a) With notation 1.4.3.27, it follows from [Sta22, 08FX] that if E• ∈ D−coh(D), then Hn(E•) is a coherent
left D-module for any n ∈ Z. We will see the converse below (see 4.6.1.8) under some hypotheses.

(b) Let E• ∈ Db(D). By devissage, we check the converse of (a) is satisfied, i.e. that the following
conditions are equivalent:

(i) Hn(E•) is a coherent left D-module for any n ∈ Z ;

(ii) E• is pseudo-coherent.

Definition 4.6.1.4 (Bounded cohomological dimension). Let F : A → B be a left (resp. right) exact
functor of abelian categories. Let n ∈ N. We say that F has “cohomological dimension ≤ n” or “bounded
by n cohomological dimension” if

(i) every object of A is a subobject (resp. quotient) of an object which is right acyclic (resp. left
acyclic) for F ,

(ii) Rn+1F = 0 (resp. Ln+1F = 0).

We say that F has“bounded cohomological dimension” if there exists n ∈ N such that F has cohomological
dimension ≤ n.

Notation 4.6.1.5. Let A be an abelian category. Let a ≤ b be two integers.

(i) We denote by K≤a(A) (resp. K≥a(A), resp. K [a,b](A)) the full subcategory of K(A) consisting
of complexes Y • ∈ K(A) such that Y i = 0 for any i > a (resp. for any i < a, resp. i 6∈ [a, b]).
By taking the union over a ∈ Z (resp. and b ∈ Z), we get K+(A) (resp. K−(A), resp. Kb(A)),
the strictly full subcategory of K(A) consisting of bounded above (resp. bounded below, resp.
bounded) complexes.

(ii) We denote by D≤a(A) (resp. D≥a(A), resp. D[a,b](A)) the full subcategory of D(A) consisting of
complexes Y • ∈ D(A) such that Hi(Y •) = 0 for any i > a (resp. for any i < a, resp. i 6∈ [a, b]).
By taking the union over a ∈ Z (resp. and b ∈ Z), we get D+(A) (resp. D−(A), resp. Db(A)),
the strictly full subcategory of D(A) consisting of bounded above (resp. bounded below, resp.
bounded) complexes.

4.6.1.6. Let F : A→ B be a left exact functor of abelian categories which has cohomological dimension
≤ n for some integer n.

(a) The functor F is exact if and only if we can choose n = 0. The functor F has cohomological
dimension ≤ N for any N ≥ n. Hence, we can suppose n ≥ 1 in the rest of this paragraph 4.6.1.6.
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(b) Let a ≤ b be two integers. Since F is left exact, then we have the functor RF : D≥a(A)→ D≥a(B).
Following [Sta22, 07K7], since F has moreover cohomological dimension ≤ n, then 1) RF : D(A)→
D(B) exists, 2) any complex consisting of right acyclic objects for F computes RF and 3) any
complex is the source of a quasi-isomorphism into a complex consisting of right acyclic objects or F .

Let us now complete these results by giving the bounded above version. Let Y • ∈ K≤b(A) (resp.
Y • ∈ K [a,b](A)). Then there exists X• ∈ K≤b+n(A) (resp. X• ∈ K [a,b+n](A)) with Xi ∈ P for any
i together with a quasi-isomorphism of K(A) of the form Y • → X•. Indeed, let P be the collection
of all the objects of A which are right acyclic for F . Then we can check easily that the following
conditions are fulfilled:

(i) Every object of A is a subobject of an object which is right acyclic for F ,
(ii) If 0→ X → Y → Z → 0 is a short exact sequence of A, with X ∈ P , then Y ∈ P ⇔ Z ∈ P .
(iii) If

X0 → X1 → · · · → Xn−1 → Y n → 0

is an exact sequence of A, and X0, . . . , Xn−1 ∈ P, then Y n ∈ P .

Recall that following [Har66, Lemma I.4.6.2], we retrieve the above property 3), i.e. that for any
collection P of objects of A satisfying the properties (bi), (bii) and (biii), for any complex Y • ∈ K(A)
there exists a complex X• ∈ K(A) with Xi ∈ P for any i together with a quasi-isomorphism of K(A)
of the form Y • → X•.

There exists Z• ∈ K(A) (resp. Z• ∈ K≥a(A)) together with a quasi-isomorphism of K(A) of the
form Y • → Z• with Zi ∈ P for any i ∈ Z. Let Xb+n be the image of Zb+n−1 → Zb+n. By
applying the condition (biii), since Z• is acyclic in degree > b, we get that Xb+n ∈ P . For any
i > b+ n, set Xi := 0 and for any i < b+ n, set Xi := Zi. In particular, Xi ∈ P for any i ∈ Z and
X• ∈ K≤b+n(A) (resp. X• ∈ K [a,b+n](A)). Moreover, since Y i = 0 for any i > b, since b + n > b,
then the quasi-isomorphism Y • → Z• induces the quasi-isomorphism Y • → X•. Hence we are done.

This yields that the functor RF : D(A)→ D(B) induces RF : D≤b(A)→ D≤b+n(B) and RF : D[a,b](A)→
D[a,b+n](B).

(c) We clarify below the meaning of the statement: since F has bounded cohomological dimension then
for any Y • ∈ D(A) we have the converging spectral sequence

Er,s2 = RrF (Hs(Y •))⇒ Hr+sRF (Y •). (4.6.1.6.1)

By shifting if necessary, we reduce to the case where r + s = 0. Remark, we have Er,s2 = 0 when
r 6∈ [0, n]. Considering the long exact sequence induced by the exact triangle of D(B)

RF (τ≤0Y
•)→ RF (Y •)→ RF (τ≥1Y

•)→ RF (τ≤0Y
•)[1],

where τ≤0 and τ≥1 are the canonical truncations (see notation [Sta22, 0118]), we get that the mor-
phism H0RF (τ≤0Y

•)→ H0RF (Y •) is an isomorphism. Considering the long exact sequence induced
by the exact triangle of D(B)

RF (τ≤−n−1Y
•)→ RF (τ≤0Y

•)→ RF (τ≥−nτ≤0Y
•)→ RF (τ≤−n−1Y

•)[1],

since RF (τ≤−n−1Y
•) ∈ D≤−1(B), then we get that the morphismH0RF (τ≤0Y

•)→ H0RF (τ≥−nτ≤0Y
•)

is an isomorphism. Set Z• := τ≥−nτ≤0Y
•. Since Z• ∈ D+(A) and since F is left exact, then we get

the spectral sequence (see [Sta22, 015J]):‹Er,s2 = RrF (Hs(Z•))⇒ Hr+sRF (Z•). (4.6.1.6.2)

When s ∈ [−n, 0], we have ‹Er,s2 = Er,s2 . Hence, the spectral sequence 4.6.1.6.1 for r + s = 0 is by
definition the spectral sequence 4.6.1.6.2. In other words, we can build “locally in (r, s) ∈ [0, n]× Z”
the spectral sequence 4.6.1.6.1 by using Cartan-Eilenberg resolutions.

Similarly, we get the spectral sequence

Er,s1 = RsF (Y r))⇒ Hr+sRF (Y •). (4.6.1.6.3)
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Proposition 4.6.1.7. Suppose X is affine and noetherian. Let D be a sheaf of rings on X satisfying
theorems A and B for coherent modules (see definition 1.4.3.14). Let ] ∈ {∅,−,+,b}

a) Denote by D]
ccoh(D) (resp. D]

ccoh(D)) the full subcategory of D](D) (resp. D](D)) consisting of
complexes E• such that Hn(E•) is a coherent left D-module (resp. coherent left D-module) for any
n ∈ Z. Then the functors RΓ(X,−) and D ⊗D − induce canonically quasi-inverse equivalences of
categories between D]

ccoh(D) and D]
ccoh(D).

b) Let E• ∈ D−(D). The following conditions are equivalent

(i) E• ∈ D−coh(D) ;

(ii) E• ∈ D−ccoh(D) ;

(iii) E• is quasi-isomorphic to a bounded above complex of finite free left D-modules.

c) Suppose moreover X is a scheme and D is a quasi-coherent OX-module. We denote by D]
qc(D) the full

subcategory of D](D) consisting of complexes E• such that Hn(E•) is quasi-coherent as OX-modules
for any n ∈ Z. Then the functors RΓ(X,−) and D⊗D− induce canonically quasi-inverse equivalences
of categories between D](D) and D]

qc(D) (resp. between D]
tdf(D) and D]

qc,tdf(D)).

Proof. a) 0) We denote by $X,∗ := Γ(X,−) and $∗X := D⊗D−. Since D → D is flat, since D be a sheaf
of rings on X satisfying theorems A and B for coherent modules, then the functor $∗X factors through
$∗X : D]

ccoh(D)→ D]
ccoh(D).

1) Let E• ∈ D]
ccoh(D). We can suppose E• ∈ K](D). Since X is noetherian, then $X,∗ has bounded

cohomological dimension. Hence, then there exist a complex I• ∈ K](D) consisting of $X,∗-acyclic
D-modules and a quasi-isomorphism E• → I• of K](D) (see the whole paragraph 4.6.1.6.b). Following
[Sta22, 07K7], we have the isomorphism of D](D): $X,∗(I•)

∼−→ R$X,∗(I•)
∼←− R$X,∗(E•). Since I• ∈

K](D), then I• := $X,∗(I•) ∈ K](D). Since $X,∗ has bounded cohomological dimension, then following
4.6.1.6.1 we have the spectral sequence Er,s2 = Rr$X,∗(H

s(I•))⇒ Hr+sR$X,∗(I•). Since Hs(I•) is D-
coherent for all s ∈ Z, thenHs(I•) is$X,∗-acyclic (see 1.4.3.14.(iii)). Hence, the canonical mapHn(I•) =
Hn$X,∗(I•)→ $X,∗H

n(I•) (coming from the above spectral sequence) is an isomorphism ofD-modules.
Since Hn(I•) is a coherent D-module, since D satisfies the condition 1.4.3.14.(iii), then this implies that
Hn(I•) is a coherent D-module (and then R$X,∗(E•)

∼−→ I• is an object of D]
ccoh(D), i.e. we get the

factorisation R$X,∗ : D]
ccoh(D)→ D]

ccoh(D)) and that the canonical morphism D ⊗D Hn(I•)→ Hn(I•)
is an isomorphism. Since D → D is flat, then from the latter isomorphism we get that the canonical
map D ⊗D I• → I• is a quasi-isomorphism. Hence, the canonical morphism $∗X ◦ R$X,∗(E•) → E• is
an isomorphism in D]

ccoh(D).
2) Let E• ∈ D]

ccoh(D). Since D⊗DE• is a complex of $X,∗-acyclic modules (see the remark 1.4.3.16),
then we can check as above that the canonical map E• → R$X∗(D ⊗D E•) is a quasi-isomorphism.

b) The implication bi)⇒ bii) is always true (see 4.6.1.3). Let us now prove the implication bii)⇒ biii).
Let E• ∈ D−ccoh(D). From the part a) of the proof, the canonical morphism $∗X ◦ R$X,∗(E•)→ E• is an
isomorphism in D−ccoh(D) and E• := R$X,∗(E•) ∈ D−ccoh(D). Since D−ccoh(D) = D−coh(D) (see 4.6.1.1),
then E• ∈ D−coh(D). Recall that by definition this means that E• is quasi-isomorphic to a bounded above
complex of finite free left D-modules (see 4.6.1.1). Since D → D is flat, then $∗XE

• is quasi-isomorphic
to a bounded above complex of finite free left D-modules, and we have therefore proved the implication
bii) ⇒ biii). Since the implication biii) ⇒ bi) is obvious, then we get the equivalence between the
conditions of b.

c) To check the non-respective case, we proceed similarly to a) by using theorems of type A and B
for quasi-coherent OX -modules (see 4.1.3.2), which is only valid when X is a scheme. Concerning the
respective case, this easily follows from the following property: a quasi-coherent D-module E on X is
flat if and only if $X∗(E) is a flat D-module. Let us check this last property. Let E be a quasi-coherent
D-module and set E := $X∗(E). Then E is flat if and only if Ex is a flat DX -module for any x ∈ X.
Moreover, E is a flat D-module if and only if Ex is a flat Dx-module for any x ∈ X. Since Ex

∼−→ Ex,
then we are done.

Corollary 4.6.1.8. Suppose X is locally noetherian. Let D be a sheaf of rings on X. Suppose there
exists a covering {Ui}i∈I of X by affine opens such that D|Ui satisfies theorems A and B for coherent
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modules (see definition 1.4.3.14) for any i ∈ I. Let E• ∈ D−(D). Then the following conditions are
equivalent:

(i) Hn(E•) is a coherent left D-module for any n ∈ Z ;

(ii) E• is pseudo-coherent.

Corollary 4.6.1.9. Suppose X is affine and noetherian. Let D be a sheaf of rings on X satisfying
theorems A and B for coherent modules (see definition 1.4.3.14). The canonical functor

D−(Coh(D))→ D−coh(D) (4.6.1.9.1)

is an equivalence of categories.

Proof. Consider the commutative diagram

D−(Coh(D)) // D−coh(D)

D−(Coh(D)) //

D⊗D−

OO

D−coh(D)

D⊗D−

OO
(4.6.1.9.2)

whose horizontal maps are respectively induced by the inclusions Coh(D) → M(D) and Coh(D) →
M(D), where the vertical arrows are induced by the exact functor D ⊗D −. Since D is coherent, then
the bottom arrow is an equivalence of categories (see 4.6.1.2). Following 4.6.1.7.a, the right arrow of the
diagram 4.6.1.9.2 is an equivalence of categories. Since the exact functor D⊗D− induces an equivalence
of categories between Coh(D) and Coh(D) then so is the left arrow of the diagram 4.6.1.9.2. We conclude
by commutativity of 4.6.1.9.2.

4.6.2 Review on topoi, internal homomorphism
In this subsection, we fix some notation on topos, recall some facts on open subtopoi. This will be useful
to understand better the (crucial in the theory of arithmetic D-modules) topos of the form Top(X)I ,
where I is a partially ordered set and X is a topological space (7.1.2.12). We also recall the internal
homomorphism functor.

4.6.2.1 (Sieves, opens of a site). Let C be a site. We denote by PSh(C) (resp. Sh(C)) the category of
presheaves (resp. sheaves) of set on C. Since the following notions are not well known, let us recall them.

(a) A “sieve” of C is a full subcategory D of C such that for any morphism X → Y of C if Y is an object
of D then so is X (see [SGA4.1, I.4.1]).

(b) We have a bijection between the set of sieves of C and the set of subobjects of the final object e
of P Sh(C) described as follows. If D is a sieve of C, then we get the subobject RD of e by setting
RD(Y ) := e(Y ) if Y ∈ Ob(D) and RD(Y ) is empty otherwise. Conversely, if R is a subobject of e,
then we get the full subcategory C/R of C (the inclusion is given by (Y, u : Y → R) 7→ Y ).

(c) An “open” of C is a “sieve of local nature”, i.e. is a sieve D such that for any covering (Xi → X)i∈I
of C, if the Xi are an object of D for any i then X is an object of D. As above, we have a bijection
between opens of C and subobjects in Sh(C) of its final object e (see [SGA4.1, IV.8.3]).

4.6.2.2. Let C be a site. Let U ∈ Ob(C). We turn C/U into a site by declaring a family of morphisms
{Vj → V } of objects over U to be a covering of C/U if and only if it is a covering in C. Consider the
forgetful functor jU : C/U → C. Since jU is cocontinuous and continuous, then we obtain a morphism of
topoi jU : Sh(C/U)→ Sh(C) given by j−1

U and jU∗, as well as a functor jU !.

Definition 4.6.2.3. Let C be a site. Let U ∈ Ob(C).

1. The site C/U is called the localization of the site C at the object U .

2. The morphism of topoi jU : Sh(C/U)→ Sh(C) is called the localization morphism.
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3. The functor jU∗ is called the direct image functor.

4. For a sheaf F on C the sheaf j−1
U F is called the restriction of F to C/U . For any object X/U of

C/U we have j−1
U F(X/U) = F(X).

5. For a sheaf G on C/U the sheaf jU !(G) is called the extension of G by the empty set.

4.6.2.4. Let C be a site. Let U ∈ Ob(C). Let ? be the final object of Sh(C/U). Since jU !(?) = h]U (use
[Sta22, 03CD]), then for any G ∈ Sh(C/U) we get the functorial in G map jU !(G) → jU !(?), i.e. we get
the functor Sh(C/U)→ Sh(C)/h]U making commutative the diagram of categories

Sh(C/U)

jU! &&

// Sh(C)/h]U

j
h
]
U

!

��
Sh(C)

(4.6.2.4.1)

where jh]
U

! : Sh(C)/h]U → Sh(C) is by definition the forgetful functor. In fact, following [Sta22, 00Y1]

the functor Sh(C/U) → Sh(C)/h]U is an equivalence of categories. Hence, we get a morphism of topoi
jh]
U

: Sh(C)/h]U → Sh(C) such that jh]
U

!, j
−1

h]
U

and jh]
U
∗ correspond (via the equivalence of categories

Sh(C/U) ∼= Sh(C)/h]U ) to jU !, j−1
U and jU∗, i.e., we get the commutative diagram of topoi

Sh(C/U)

jU &&

∼= // Sh(C)/h]U

j
h
]
U

��
Sh(C).

(4.6.2.4.2)

4.6.2.5. Let C be a site. Let F be a sheaf on C. We can extend the localisation process 4.6.2.4 to
F as follows. Then following [Sta22, 04GZ] the category Sh(C)/F is a topos and there is a canonical
morphism of topoi jF : Sh(C)/F → Sh(C) such that

(i) the functor j−1
F is the functor H 7→ H×F/F ,

(ii) and the functor jF ! is the forgetful functor G/F 7→ G.

The topos Sh(C)/F is called the localization of the topos Sh(C) at F . The morphism of topoi jF : Sh(C)/F)→
Sh(C) is called the localization morphism. We can simply write F|F := j−1

F .
Let A be a sheaf of rings on C. We get the ringed topos (Sh(C),A). Then we get from the localization

of the topos Sh(C) at F the morphism of ringed topoi jF : (Sh(C)/F ,A|F )→ (Sh(C),A).

4.6.2.6. Let C be a site. Following [Sta22, 08LW], the following assertions are equivalent for any sheaf
F on C:

(a) The sheaf F is an open of Sh(C), i.e. F is a subobject of the final object of Sh(C).

(b) The morphism jF is an embedding, i.e. jF∗ : Sh(C)/F → Sh(C) is fully faithful.

A strictly full subcategory E ⊂ Sh(C) is by definition an “open subtopos of Sh(C)” if there exists a
subsheaf F of the final object of Sh(C) such that E is the essential image of jF (see Definition [Sta22,
08LX]). Finally, a morphism of topoi f : Sh(D) → Sh(C) is said to be an “open immersion” if f is an
embedding (i.e. f∗ is fully faithful) and the essential image of f∗ is an open subtopos. We will use the
open immersion given at 7.1.2.18.3.

4.6.2.7. Let C be a site. Let A,B be two (not necessarily commutative) sheaves of rings on C. Writing
T := Sh(C). We denote by ZT be the sheaf of T associated with the constant presheaf of T with value
Z.

(a) Let e be a final object of Sh(C). The global sections functor Γ(T,−) : T → Sets, also denoted by
Γ(C,−) : Sh(C)→ Sets, is defined by setting for any object K of T,

Γ(T,K) := HomT(e,K). (4.6.2.7.1)
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(b) Following [SGA4.1, IV.10.1], for any objects E,F of T, Grothendieck has constructed an object of
T that we will denote by HomT(E,F ) which is characterized by the property: for any object K of
T,

HomT(K,HomT(E,F )) = HomT|K (E|K , F |K)). (4.6.2.7.2)

With 4.6.2.7.1, in the case where K is a final object, this yields

Γ(T,HomT(E,F )) = HomT(E,F ). (4.6.2.7.3)

(c) Following [SGA4.1, IV.12.1], for any left (resp. right) A-modules E and F , Grothendieck has con-
structed an abelian sheaf on T that we will denote by HomA(E ,F) which is characterized by the
property: with notation 4.6.2.5, for any object K of T,

HomT(K,HomA(E ,F)) = HomA|K (E|K ,F|K)). (4.6.2.7.4)

With 4.6.2.7.1, in the case where K is a final object, this yields

Γ(T,HomA(E ,F)) = HomA(E ,F). (4.6.2.7.5)

When F is injective, then HomA(E ,F) is flasque (see [SGA4.2, V.4.10.2)]) and then is acyclic for
the functor Γ(T,−). Hence, this yields from [Sta22, 05TA-13.16.8] that for any E• ∈ D−(A),
F• ∈ D+(A) we have the isomorphism

RΓ(T,RHomA(E•,F•)) = RHomA(E•,F•). (4.6.2.7.6)

Following [SGA4.1, IV.12.6], for any object K of T and left A-module F , we have the isomorphism
of left A-modules:

HomT(K,F)
∼−→ HomA(jK!j

∗
KA,F), (4.6.2.7.7)

where jK : T/K → T is the localisation morphism and the functors jK! and j∗K are explicitely
defined at [SGA4.1, IV.5.2]. Hence, if F is injective then HomT(K,F) is flasque. This yields from
[Sta22, 05TA-13.16.8] that for any K ∈ T, F• ∈ D+(A) we have the isomorphism

RΓ(T,RHomT(K,F•)) = RHomT(K,F•). (4.6.2.7.8)

(d) Let E be an abelian sheaf on T. The data of a left (A,B)-bimodule on E (extending its structure of
abelian sheaf) is equivalent to that of a left A⊗Z B-module. Let E ,F be two left (A,B)-bimodules.
We denote by Hom(lA,lB)(E ,F) = HomA⊗ZB(E ,F) the set of (A,B)-bilinear homomorphism. We
denote by Hom(lA,lB)(E ,F) := HomA⊗ZB(E ,F), which is characterized by the property: with
notation 4.6.2.5, for any object K of T,

HomT(K,Hom(lA,lB)(E ,F)) = Hom(lA|K ,lB|K)(E|K ,F|K)). (4.6.2.7.9)

We have similar notation for (A,B)-bimodules or right (A,B)-bimodules.

4.6.3 Derived tensor products, derived homomorphism functors, Cartan iso-
morphisms in general

Notation 4.6.3.1. Let A,A′, B, C be four sheaves of rings (not necessarily commutative) on some topos
T.

Following [SGA4.1, IV.12.1], for any left (resp. right) A-modules E and F , Grothendieck has con-
structed an abelian sheaf on T that we will denote by HomA(E ,F) which is characterized by the
property: with notation 4.6.2.5, for any object K of T,

HomT(K,HomA(E ,F)) = HomA|K (E|K ,F|K)). (4.6.3.1.1)

When the topos T it the topos associated with a topological space, then we prefer to write Hom instead
of Hom. When E is a (C,A)-bimodule and F is a (B,A)-bimodule, then HomA(E ,F) is endowed with a
canonical structure of (C,B)-bimodule (see [SGA4.1, IV.12.5]). For any ∗ ∈ {l, r}, we define the bifunctor

Hom•A(−,−) : K(lC, ∗A)×K(lB, ∗A)→ K(lB, Cr). (4.6.3.1.2)
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by setting for any E• ∈ K(lC,Ar) , F• ∈ K(lB,Ar), for any integer n ∈ Z setting:

Homn
A(E•, F•) :=

∏
p∈Z

HomA(Ep, Fp+n) (4.6.3.1.3)

and the transition morphisms are given by the formula d = dE + (−1)ndF . We have the relation:

Hn(Γ(T,Hom•A(E ,F))) = HomK(A)(E ,F [n]). (4.6.3.1.4)

For any (C,A)-bimodule E and (A,B)-bimodule F , the abelian sheaf E⊗AF is fact a (C,B)-bimodule.
We define the bifunctor

−⊗A − : K(∗B,Ar)×K(lA, ∗∗C)→ K(∗B, ∗∗C), (4.6.3.1.5)

by setting for any E• ∈ K(∗B,Ar) , F• ∈ K(lA, ∗∗C), for any integer n ∈ Z setting:

(E• ⊗A F•)n :=
∑
p∈Z

Ep ⊗A Fn−p (4.6.3.1.6)

and the transition morphisms are given by the formula d = dE + (−1)ndF . We have similar bifunctors
by changing the indices l and r.

4.6.3.2. Let A, B, C be three sheaves of rings on some site T. In this paragraph, e.g. in order to get
some associativity of the tensor product, we would like to extend the functor

RHomA(−,−) : D(lB, ∗A)×D(∗A)→ D(rB), (4.6.3.2.1)

−⊗L
A − : D(∗B,Ar)×D(lA)→ D(∗B). (4.6.3.2.2)

Let E ∈ K(lB,Ar), let F ∈ K(lA, Cr), G ∈ K(lC,Ar).

(a) Consider the functor −⊗A F : K(lB,Ar)→ D(lB, Cr) defined by E ′ 7→ E ′ ⊗A F . In general, it is not
clear that the left derived functor (localizing by quasi-isomorphisms) of −⊗A F is defined at E (see
Definition [Sta22, 05S9]). Indeed, this is not clear that there exists a complex of (B,A)-bimodules
representing E which is moreover a K-flat complex of A-modules.

Similarly, since the existence of a complex of (B,A)-bimodules representing E which is moreover
a K-injective complex of A-modules is not clear then it seems problematic to assert the functor
HomA(G,−) : K(lB,Ar)→ D(lB, Cr) has a right derived functor at E .

(b) However, under Berthelot’s practical hypotheses below, theses derived functors can be computed as
follows. Let us introduce the following definition. A commutative ring R is said to be a left solving
ring (resp. right solving ring, resp. solving ring) of (A,B) if the following conditions are satisfied:

(i) There exist ring homomorphisms R → A and R → B such that R is sent to the center of A
and of B (in other words the ring structures of A and B are induced by a unital and associative
R-algebra structure) ;

(ii) B is flat on R (resp. A is flat on R, resp. A and B are flat on R).

In that case, we say that the pair of rings (A,B) is left solvable (resp. right solvable, resp. solvable).

Let E• ∈ K(lB,Ar). Let R be a left solving ring (resp. right solving ring, resp. solving ring) of
(A,B). Then the following properties are equivalent

(1) The structures of R-module induced on the (B,A)-bimodules En by the structure of right A-
module and by that of left B-module coincide for any n ∈ Z ;

(2) E• ∈ K(lB ⊗R Ao).

The complex E is then said to be left solvable by R (resp. right solvable by R, resp. solvable by R)
as object of K(lB,Ar). The complex E is then said to be left solvable (resp. right solvable, resp.
solvable) as object of K(lB,Ar) if there exists an left solving ring R (resp. right solving ring, resp.
solving ring) of (A,B) such that E• ∈ K(lB ⊗R Ao).
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Let R be a left or right solving ring of (A,B). We denote by D(lB,R,Ar) the strictly full subcategory
of D(lB,Ar) consisting of complexes isomorphic in D(lB,Ar) to a complex which is also an object
of K(lB ⊗R Ao). We denote by Dl−sol(

lB,Ar) (resp. Dr−sol(
lB,Ar), resp. Dsol(

lB,Ar)) the strictly
full subcategory of D(lB,Ar) consisting of complexes isomorphic to some left solvable (resp. right
solvable, resp. solvable) complex.
�

Beware that the sheaf D(m)

X]
i
/S]

is solvable as (D(m)

X]
i
/S]

,D(m)

X]
i
/S]

)-bimodule but is not (a priori)

solvable as (D(m)

X]
i
/S]

,D(m)

X]/S]
)-bimodule.

(c) Assume E• ∈ K(lB,Ar) has a right solving ring R and we can view E as a complex of left B ⊗R Ao-
modules (where Ao is the ring A with the opposite multiplication). By using (bi), B ⊗R Ao can
be endowed with a canonical ring structure. It follows from (bii) that the ring homomorphism
A0 → B ⊗R A0 is flat. Hence, a K-flat complex of left B ⊗R A0-modules representing E , is also a
K-flat complex of right A-modules representing E . This implies the functor L(−⊗A F) is defined at
E and we write E ⊗L

A F := L(−⊗A F)(E) ∈ D(lB, Cr).
Moreover, a K-injective complex of left B ⊗R A0-modules representing E (see definition [Sta22,
070H]) is also a K-injective complex of right A-modules because A0 → B ⊗R A0 is flat. Hence,
RHomA(G,−) is defined at E and we set RHomA(G, E) := RHomA(G,−)(E).

(d) A commutative ring R on T is said to be a solving ring of A if it is a solving ring of A as a
(A,A)-bimodule, i.e. if the ring structure of A comes from a structure of unital and associative
R-algebra.

(e) Suppose there exists a left solving ring R of (A,B). For any ∗, ∗∗ ∈ {r, l}, we obtain the bifunctors

RHomA(−,−) : D(lC, ∗A)×D(∗∗B,R, ∗A)→ D(∗∗B, rC), (4.6.3.2.3)

−⊗L
A − : D(∗B,R,Ar)×D(lA, ∗∗C)→ D(∗B, ∗∗C). (4.6.3.2.4)

If moreover (A, C) is right or left solvable by R, then we get the functors

RHomA(−,−) : D(lC ⊗R A)×D(lB ⊗R A)→ D(lB ⊗R Co), (4.6.3.2.5)

−⊗L
A − : D(lB ⊗R Ao)×D(lA⊗R C)→ D(lB ⊗R C), (4.6.3.2.6)

RHomA(−,−) : D(lC,R, ∗A)×D(∗∗B,R, ∗A)→ D(∗∗B,R, rC), (4.6.3.2.7)

−⊗L
A − : D(∗B,R,Ar)×D(lA,R, ∗∗C)→ D(∗B,R, ∗∗C). (4.6.3.2.8)

Example 4.6.3.3. We will use essentially in this book the following cases.

(a) Suppose X] → S] is quasi-flat (see Definition 3.1.1.5 or respectively 3.3.1.11). Then D(m)

X]/S]
is a

solvable ring. More precisely, choose a morphism of schemes S → B such that the composition
morphism g : X → S → B is flat (see 3.1.1.5). Then g−1OB is a solving ring of D(m)

X]/S]
. This yields

the bifunctors:

RHomlD(m)

X]/S]

(−,−) : D(lD(m)

X]/S]
,D(m)

X]/S]
r)×D(lD(m)

X]/S]
, g−1OB ,D(m)

X]/S]
r)→ D(lD(m)

X]/S]
,D(m)

X]/S]
r),

(4.6.3.3.1)

−⊗L
D(m)

X]/S]

− : D(∗D(m)

X]/S]
,D(m)

X]/S]
r)×D(lD(m)

X]/S]
, g−1OB , ∗D(m)

X]/S]
)→ D(∗D(m)

X]/S]
, ∗D(m)

X]/S]
).

(4.6.3.3.2)

(b) More generally, suppose that BX is a quasi-flat OS-algebra (see Definition 3.1.1.5 or respectively
3.3.1.11). Then BX ⊗OX D

(m)

X]/S]
is a solvable ring. More precisely, choose a morphism of schemes

S → B such that the composition morphism g̃ : (X,BX)→ B is flat. Then g̃−1OB is a solving ring
of BX ⊗OX D

(m)

X]/S]
.

For example, suppose X] is a p-torsion free log smooth S]-formal log scheme. For any integer
i ≥ 0, set X]

i := X] ×Spf V Spec(V/πi+1V). Let Z be a divisor of X0. Then it follows from 8.7.4.2
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that we can choose V/πi+1V as a solving ring of BXi(Z, r) ⊗OXi D
(m)

X]
i
/S]
i

and V as a solving ring of

lim←−i BXi(Z, r)⊗OXi D
(m)

X]
i
/S]
i

.

(c) To get nice properties of pullbacks and pushforwards in the theory of arithmetic D-modules, we will
see later in 5.1.1.3 other important cases.

4.6.3.4. Let A, B be two sheaves of rings on some site T. Suppose there exists a right solving ring
R of (A,B). For any ? ∈ {tdf,perf, coh}, we denote by D.,?(lB,R,Ar) (resp. D.,?(lB,Ar)) the strictly
full subcategory of D(lB,R,Ar) (resp. Dr−sol(

lB,Ar)) consisting of complexes E whose image in D(Ar)
belongs to D?(Ar). We use similar notation when ? is on the left etc.

Concerning finite tor dimension complexes, we have the following remark: if E ∈ D.,tdf(
lB,R,Ar),

then E is isomorphism in D(lB,Ar) to a complex which is also an object of Kb(lB⊗RAo) whose term are
flat as right A-modules (moreover, except the first nonzero term, the other terms are flat left B ⊗R Ao-
modules).

Proposition 4.6.3.5. Let A, B, C, D be four sheaves of rings on some topos T. Let ∗, ∗∗ ∈ {r, l}.
Let E• ∈ Dr−sol(

∗B,Ar), F• ∈ D(lA, rC), G• ∈ Dl−sol(
lC, ∗∗D). The associativity of the derived tensor

product holds, i.e. we have the isomorphism in D(∗B, ∗∗D):(
E• ⊗L

A F•
)
⊗L
C G•

∼−→ E• ⊗L
A
(
F• ⊗L

C G•
)
. (4.6.3.5.1)

Proof. Let R be a right solving ring of E . Then we can choose a K-flat complex (of left B⊗RA0-modules
if ∗ = l and of left B0⊗RA0-modules if ∗ = r) representing E•. Similarly, by choosing a left solving ring
R′ of G• and a K-flat complex representing G•, we reduce to the case of the non-derived associativity
isomorphism of the tensor product, which is well known.

Proposition 4.6.3.6. Let A, B, C and D be sheaves of rings on some topos T. Let R be either a left
solving ring of (A,B), (B, C) and (C,D) or, only in the case where C = D = ZT, let R be a left solving
ring of (A,B). Let E ∈ D(lA), F ∈ D(lA,R,Br), and G ∈ D(lB,R, Cr) (or G ∈ D(lB) in the case
C = ZT).

(i) Then there exists a canonical functorial in E, F and G homomorphism in D(∗C):

RHomlA(E ,F)⊗L
B G → RHomlA(E ,F ⊗L

B G). (4.6.3.6.1)

This one is an isomorphism if E ∈ Dperf(
lA).

(ii) The isomorphism of i) is transitive, i.e., if H ∈ D(lC,R,Dr), we have the commutative diagram

RHomlA(E ,F)⊗L
B G ⊗L

C H //

++

RHomlA(E ,F ⊗L
B G ⊗L

C H)

RHomlA(E ,F ⊗L
B G)⊗L

C H.

33

Proof. For the first part, it is sufficient to choose a K-injective complex representing F and a K-flat
complex representing G. The transitivity of this morphism is straightforward.

Proposition 4.6.3.7. Let A and B be some sheaves of rings on some topos T. Let E ∈ Dperf(
lA),

F ∈ Db
l−sol(

lA, ∗B). Suppose T is coherent. We have :

(a) RHomlA(E ,F) ∈ Db(∗B),

(b) If F ∈ D(.,perf)(
lA, ∗B) (resp. D(.,tdf)(

lA, ∗B)), then RHomlA(E ,F) ∈ Dperf(
∗B) (resp. RHomlA(E ,F) ∈

Dtdf(
∗B)).

Proof. This is checked by localisation and devissage (and use 4.6.3.6.1 to check the finiteness of the tor
dimension).
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Remark 4.6.3.8. In proposition 4.6.3.7, ifT is not coherent, then we have to replace "bounded complexes"
by "locally bounded complexes" and "complexes of finite tor-dimension" by "complexes locally of finite
tor-dimension".

The following lemma is obvious.

Lemma 4.6.3.9 (Cartan isomorphism). Let A, B and C be three sheaves of rings on some topos T.

(a) Let E be a (A,B)-bimodule, F be a left (B, C)-bimodule and G be a left (A, C)-bimodule. We have the
functorial isomorphisms:

Hom(lA,lC)(E ⊗B F ,G)
∼−→ Hom(lB,lC)(F ,HomlA(E ,G))

Hom(lA,lC)(E ⊗B F ,G)
∼−→ Hom(lB,lC)(F ,HomlA(E ,G)). (4.6.3.9.1)

(b) Let R be a commutative sheaf of rings on T endowed with ring morphisms R → A, R → B and
R → C whose respective images are included in the center of A, B and C. Let E be a left A⊗R Bo-
bimodule, F be a left B ⊗R C-bimodule and G be a left A ⊗R C-module. We have the functorial
isomorphisms:

HomA⊗RC(E ⊗B F ,G)
∼−→ HomB⊗RC(F ,HomlA(E ,G))

HomA⊗RC(E ⊗B F ,G)
∼−→ HomB⊗RC(F ,HomlA(E ,G)). (4.6.3.9.2)

Lemma 4.6.3.10. Let A, B be two sheaves of rings on some topos T, P• ∈ K(lA, rB), I• ∈ K(lA). If
P• is K-flat as an object of K(rB) and I• is K-injective as a complex of K(lA), then Hom•A(P•, I•) is
K-injective as an object of K(lB).

Proof. For any acyclic complex F ∈ K(lB), we get the isomorphisms

HomK(B) (F•,Hom•A(P•, I•)) ∼−→
4.6.3.1.4

H0Γ (T,Hom•B (F•,Hom•A(P•, I•)))
4.6.3.9.1
∼−→ H0Γ (T,Hom•A (P• ⊗B F•, I•))

∼−→
4.6.3.1.4

HomA (P• ⊗B F•, I•) ,

where 4.6.3.9.1 is used in the case C = Z. Since P• is K-flat as an object of K(rB), since F is acyclic,
then P• ⊗B F• is an acyclic object of K(lA). Since I• is K-injective as a complex of K(lA), then
HomK(A) (P• ⊗B F•, I•) = 0 and we are done.

Proposition 4.6.3.11 (Cartan isomorphisms). Let A, B be two sheaves of rings on some topos T,
E ∈ Dr−sol(

lA,Br), F ∈ D(lB) and G ∈ D(lA). We have the functorial isomorphisms:

RHomA(E ⊗L
B F ,G)

∼−→ RHomB(F ,RHomlA(E ,G))

RHomA(E ⊗L
B F ,G)

∼−→ RHomB(F ,RHomlA(E ,G))

HomD(A)(E ⊗L
B F ,G)

∼−→ HomD(B)(F ,RHomlA(E ,G)). (4.6.3.11.1)

Proof. Let us choose R, a right solving ring of E (see 4.6.3.2). Let P be a K-flat complex of left
A ⊗R Bo-modules representing E and I be a K-injective complex of left A-modules representing G.
These resolutions allow us to compute the left terms of the isomorphisms of the proposition. Moreover,
since P• is K-flat as an object of K(rB) and I• is K-injective as a complex of K(A), then it follows
from 4.6.3.10 that HomlA(P, I) is a K-injective complex of left B-modules. Hence, these two resolutions
compute also the right terms of the isomorphisms of the proposition.

Corollary 4.6.3.12. Let A, B be two sheaves of rings on some topos T. Let E ∈ Dr−sol(
lA,Br),

F ∈ D(lB) and G ∈ D(lA). We have the functorial in E and G morphism of D(lA) :

E ⊗L
B RHomlA(E ,G)→ G. (4.6.3.12.1)

Proof. The arrow 4.6.3.12.1 is the map associated with the identity via the bijection:

HomD(lA)(E ⊗L
B RHomlA(E ,G),G)

∼−→ HomD(lB)(RHomlA(E ,G),RHomlA(E ,G)).
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Lemma 4.6.3.13. Let A, B and C be three sheaves of rings on some topos T such that there exists a
left solving ring R of both (B,A) and (A, C). Let P• ∈ K(lA,R, lB), I• ∈ K(lA,R, lC). If P• is K-flat
as an object of K(lA⊗R B) and I• is K-injective as a complex of K(lA⊗R C), then Hom•A(P•, I•) is
K-injective as an object of K(lB ⊗R C).

Proof. For any acyclic complex F ∈ K(lB ⊗R C), we get the isomorphisms

HomK(B⊗RC) (F•,Hom•A(P•, I•)) ∼−→
4.6.3.1.4

H0Γ
(
T,Hom•B⊗RC (F•,Hom•A(P•, I•))

)
4.6.3.9.2
∼−→ H0Γ

(
T,Hom•A⊗RC (P• ⊗B F•, I•)

) ∼−→
4.6.3.1.4

HomK(A⊗RC) (P• ⊗B F•, I•) .

Since P• is also K-flat as an object of K(lB), since F• is acyclic, then P• ⊗B F• is an acyclic object of
K(lA⊗R C). Since I• is K-injective as a complex of K(lA⊗R C), then HomK(A⊗RC) (P• ⊗B F•, I•) = 0
and we are done.

Proposition 4.6.3.14 (Cartan isomorphisms). Let A, B and C be three sheaves of rings on some
topos T such that there exists a left solving ring R of both (B,A) and (A, C). Let E ∈ D(lA ⊗R Bo),
F ∈ D(lB ⊗R C) and G ∈ D(lA⊗R C). We have the functorial isomorphisms:

RHomlA⊗RC(E ⊗
L
B F ,G)

∼−→ RHomlB⊗RC(F ,RHomlA(E ,G))

RHomlA⊗RC(E ⊗
L
B F ,G)

∼−→ RHomlB⊗RC(F ,RHomlA(E ,G))

HomD(lA⊗RC)(E ⊗
L
B F ,G)

∼−→ HomD(lB⊗RC)(F ,RHomlA(E ,G)). (4.6.3.14.1)

Proof. Let P be a K-flat complex of left A⊗RBo-modules representing E and I be a K-injective complex
of left A ⊗R C-modules representing G. These resolutions allow us to compute the left terms of the
isomorphisms of the proposition. Moreover, it follows from 4.6.3.13 that HomlA(P, I) is a K-injective
complex of left B ⊗R C-modules. Hence, these two resolutions compute also the right terms of the
isomorphisms of the proposition. Hence, we conclude by using 4.6.3.9.2.

Corollary 4.6.3.15. Let A, B and C be three sheaves of rings on some topos T such that there exists a
left solving ring R of both (B,A) and (A, C). Let E ∈ D(lA,R,Br) (resp. E ∈ D(A⊗RBo)), F ∈ D(lB, lC)
(resp. F ∈ D(lB ⊗R lC)) and G ∈ D(lA,R, lC) (resp. G ∈ D(lA ⊗R lC)). We have the functorial in E
and G morphism of D(lA,R, lC) (resp. D(lA⊗R C)):

E ⊗L
B RHomlA(E ,G)→ G. (4.6.3.15.1)

Proof. Since the canonical functor D(lA ⊗R C) → D(lA,R, lC) is essentially surjective, it is sufficient
to construct the morphism in the respective case. The arrow 4.6.3.15.1 is the map associated with the
identity via the bijection:

HomD(lA⊗RC)(E ⊗
L
B RHomlA(E ,G),G)→ HomD(lB⊗RC)(RHomlA(E ,G),RHomlA(E ,G)).

4.6.4 Extension by a ring homomorphism, duality : commutation, biduality
Let A → B → C be two ring homomorphisms. We suppose that there exists two ring homomorphisms
R → R′ → R′′ so that R (resp. R′, resp. R′′) is a ring of resolution A (resp. B, resp. C).

Lemma 4.6.4.1. Let E ∈ D(lA), G ∈ D(lB). Let f : E → G be a morphism of D(lA). Then, there exists
a unique morphism g : B ⊗L

A E → G of D(lB) making commutative the diagram:

B ⊗L
A E

g // G

E

OO
f

<< (4.6.4.1.1)

The functor B ⊗L
A − : D(lA) → D(lB) is a left adjoint to the forgetful functor. Similarly, we have the

left adjoint functor −⊗L
A B : D(rA)→ D(rB) is a left adjoint to the forgetful functor.
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Proof. The morphism f is represented by a quasi-isomorphism E ′ ∼−→ E of K(lA) and a morphism
E ′ → G of K(lA). We can suppose that E ′ is a K-flat complex of K(lA). Hence, B ⊗L

A E = B ⊗A E ′
and E → B ⊗L

A E is represented by E ∼←− E ′ → B ⊗A E ′. Finally let g : B ⊗A E ′ → G be the morphism
of K(lB) induced by extension from E ′ → G. This is the unique morphism making commutative the
diagram 4.6.4.1.1.

4.6.4.2. Let E ∈ D(lA), G ∈ D(lB, ,R′, rB). Let I → J be a quasi-isomorphism of K-injective complexes
of K(lB ⊗R′ B0). Then, the morphism HomA(E , I) → HomA(E , J ) is a quasi-isomorphism of K(rB)
because it is canonically isomorphic to HomlB(B ⊗A E , I) → HomlB(B ⊗A E ,J ). Hence, following
[Sta22, 13.14.15], we get the functor RIIHomA(E , −) : D(lB,R′,Br) → D(rB), i.e. the right derived
functor (with respect to quasi-isomophisms of K(lB)) of HomA(E , −) : K(lB ⊗R′ B0) → D(rB) exists
and is computed by K-injective complexes. Moreover, the functor K(lA) → D(rB), given by E 7→
RIIHomA(E , G) has a derived functor (with respect to quasi-isomophisms of K(lA)). Indeed, following
[Sta22, 13.14.15], it is sufficient to check that if P → P ′ is a quasi-isomorphism of K-flat complexes of
K(lA), then RIIHomA(P ′, G)→ RIIHomA(P, G) is an isomorphism. Let I be a K-injective complex of
K(lB ⊗R′ B0) representing G. Then, the map RIIHomA(P ′, G)→ RIIHomA(P, G) corresponds to the
map HomA(P ′, I) → HomA(P, I) induced by the quasi-isomorphism P → P ′. Moreover, this latter
is canonically isomorphic to HomB(B ⊗A P ′, I) → HomB(B ⊗A P, I). Since B ⊗A P → B ⊗A P ′ is a
quasi-isomorphism of K(lB), since I is a K-injective complex of K(lB⊗R′B0) then HomB(B⊗AP ′, I)→
HomB(B⊗A P, I) is an isomorphism. We denote by RIRIIHomA(−,G) : D(lA)op → D(rB) the derived
functor. Since this is functorial in G, this yields the bifunctor

RIRIIHomA(−,−) : D(lA)op ×D(lB,R′,Br)→ D(rB). (4.6.4.2.1)

We remark that RIRIIHomA(E ,G) could have been directly defined by setting RIRIIHomA(E ,G) =
HomA(P, I) where P is a K-flat complex representing E and I is a K-injective complex representing G
and by checking its independence relatively to the choices (it is a way of defining analogous to the one
of [Sta22, 20.38.7]). By using [Sta22, 13.14.16], we check that we have the 2-commutative diagram

D(lA)op ×D(lB,R′,Br)
RIRIIHomA(−,−) // D(rB)

D(lA)op ×D(lA,R,Ar)

OO

RHomA(−,−) // D(rA).

(4.6.4.2.2)

Hence, this is not confusing to simply denote by RHomA(−,−) : D(lA)op ×D(lB) → D(rB), instead of
RIRIIHomA(−,−).

Lemma 4.6.4.3. Let E ∈ D(lA), G ∈ D(lB,R′, rB). We have the canonical isomorphism of D(rB):

RHomA(E , G)
∼−→ RHomB(B ⊗L

A E , G) (4.6.4.3.1)

This isomorphism is transitive, i.e. for any H ∈ D(lC,R′′, rC) we have the commutative diagram

RHomA(E , H)

4.6.4.3.1

��

4.6.4.3.1 // RHomB(B ⊗L
A E , H)

4.6.4.3.1

��
RHomC(C ⊗L

A E , H)
∼ // RHomC(C ⊗L

B (B ⊗L
A E), H)

(4.6.4.3.2)

Proof. We construct the morphism by choosing a K-flat complex of K(lA) representing E and a K-
injective complex of K(lB ⊗R′ B0) representing G. The transitivity is left to the reader as an easy
exercice.

Lemma 4.6.4.4. For any E ∈ D(lA), F ∈ D(lA,R,Ar) such that F ⊗L
A B is “canonically” in the image

of the forgetful functor D(lB,R′,Br) → D(lA,Br) (see 4.6.4.5 for some examples). Still denoting by
F ⊗L

A B the object of D(lB,R′,Br), we have the canonical morphism of D(rB):

RHomA(E , F)⊗L
A B → RHomA(E , F ⊗L

A B). (4.6.4.4.1)
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This one is an isomorphism if E ∈ Dperf(
lA). Moreover, this is transitive: if F ⊗L

A C is canonically
in the image of the forgetful functor D(lC,R′′, Cr)→ D(lA, Cr) then we have the following commutative
diagram :

(RHomA(E , F)⊗L
A B)⊗L

B C
4.6.4.4.1
∼

//

∼
��

RHomA(E , F ⊗L
A B)⊗L

B C

4.6.4.4.1∼
��

RHomA(E , F)⊗L
A C

4.6.4.4.1
∼

// RHomA(E , F ⊗L
A C).

Proof. It follows from (the right version of) 4.6.4.1.1 that the morphism RHomA(E , F)→ RHomA(E , F⊗L
A

B) of D(rA) induces canonically 4.6.4.4.1.

Examples 4.6.4.5. The condition “F⊗L
AB is canonically in the image of the forgetful functorD(lB,R′,Br)→

D(lA,Br)” of lemma 4.6.4.4 holds

(i) if F = A ;

(ii) if A and B are commutative;

(iii) if B = A ⊗R R′. Indeed let F ∈ D(lA,Ar) and P be a K-flat complex of A ⊗R A0-modules
representing F . Since B ⊗A (A ⊗R A0)

∼−→ B ⊗R′ B0 ∼−→ (A ⊗R A0) ⊗A B
∼−→ , then we get

the isomorphisms of K-flat complex of B ⊗R′ B0-modules: B ⊗A P
∼−→ (B ⊗R′ B0) ⊗(A⊗RA0) P

and P ⊗A B
∼−→ P ⊗(A⊗RA0) (B ⊗R′ B0). This yields the isomorphism B ⊗L

A F
∼−→ F ⊗L

A B of
D(lB,R′,Br).

For instance with notation 3.3, A = “D(m)

X]/S]
or D(m)

X]
i+1

/S]
i+1

and B = D(m)

X]
i
/S]
i

.

Proposition 4.6.4.6 (biduality). For any E ∈ D(lA), we have the morphism

E → RHomA(RHomA(E ,A),A) (4.6.4.6.1)

which is an isomorphism when E ∈ Db
perf(

lA).

Proof. The construction is standard: let I be a K-injective complex of K(l(A ⊗R A)) representing A.
Then

RHomA(RHomA(E ,A),A)
∼−→ HomA(HomA(E , I), I).

The morphism E → D(D(E)) is simply the evaluation morphism

E → HomA(HomA(E , I), I).

When E is perfect, to check that this is an isomorphism we are reduced by dévissage to the case E = A,
in which case it is clear.

Proposition 4.6.4.7. Let E ∈ D(lA), F ∈ D(lA,R,Ar) such that F ⊗L
A B is canonically in the image

of the forgetful functor D(lB,R′,Br) → D(lA,Br) (see the examples 4.6.4.5). Still denoting by F ⊗L
A B

the object of D(lB,R′,Br), we have the canonical morphism of D(rB):

α : RHomA(E , F)⊗L
A B → RHomB(B ⊗L

A E , F ⊗L
A B), (4.6.4.7.1)

which is an isomorphism when E ∈ Dperf(
lA). Moreover, they are transitive, i.e., if F⊗L

AC is canonically
in the image of the forgetful functor D(lC,R′′, Cr)→ D(lA, Cr) then we have the following commutative
diagram :

RHomA(E , F)⊗L
A B ⊗L

B C
α⊗L
BC //

∼
��

RHomB(B ⊗L
A E , F ⊗L

A B)⊗L
B C

α

��
RHomA(E , F)⊗L

A C
α // RHomC(C ⊗L

A E , F ⊗L
A C).

Proof. This follows by composition from 4.6.4.3.1 4.6.4.4.1:

α : RHomA(E , F)⊗L
A B

4.6.4.4.1−→ RHomA(E , F ⊗L
A B)

4.6.4.3.1
∼−→ RHomB(B ⊗L

A E , F ⊗L
A B).
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4.6.5 Morphisms of ringed topoi, adjunction, internal homomorphism
In this subsection, we give some links between internal homorphism, pushforward and pullbacks induces
by a ringed topoi homomorphism. Moreover, we check the acyclicity Lemma 4.6.5.2 which extends
[SGA4.2, V.4.10.2)] and which will be a key ingredient (see 7.1.3.21).

4.6.5.1 (Adjunction). Let f : (T,A)→ (T′,A′) be a morphism of ringed topoi.

(a) It follows from [Sta22, 09T5] that the functors Rf∗ : D(A) → D(A′) and Lf∗ : D(A′) → D(A) are
adjoint:

HomD(A)(Lf
∗(E ′•), E•) = HomD(A′)(E ′•,Rf∗(E•)) (4.6.5.1.1)

for any E• ∈ D(A) and any E ′• ∈ D(A′).

(b) Let B′ be a sheaf of rings on T′ such that there exists an left solving ring R′ of (A′,B′) (in the sense
of 4.6.3.2.(b)) such that the image of the composition f−1R′ → f−1A′ → A is included in the center
of A. Then f−1R′ is a left solving ring of (f−1A′, f−1B′) and of (A, f−1B′).
We have the functor f∗ := A ⊗f−1A′ f

−1(−) from the category of (A′,B′)-bimodules (resp. left,
resp. right (A′,B′)-bimodules) to that of (A, f−1B′)-bimodules (resp. left, resp. right (A, f−1B′)-
bimodules) which is a left adjoint of f∗ (use the remark of 4.6.2.7.(d)). The derived functor
Lf∗ : D(A′,R′,B′) → D(A, f−1R′, f−1B′) is well defined: for any E ′ ∈ D(A′,R′,B′), by choos-
ing a K-flat complex P ′• of K(A′ ⊗R′ B′) representing E ′, we get Lf∗(E ′) = f∗(P ′•). Since
A → A ⊗f−1R′ f

−1B′ is flat, then the functor Lf∗ commutes with the forgetful functor, i.e., we
have the commutative diagram (up to canonical isomorphism)

D(A′ ⊗R′ B′)

Lf∗

��

// D(A′,R′,B′)

Lf∗

��

// D(A′)

Lf∗

��
D(A⊗f−1R′ f

−1B′) // D(A, f−1R′, f−1B′) // D(A).

The derived functor Rf∗ : D(A, f−1R′, f−1B′)→ D(A′,R′,B′) is well defined: for any E ∈ D(A, f−1R′, f−1B′),
by choosing a K-injective complex I• of K(A⊗f−1R′ f

−1B′) representing E , we get Rf∗(E) = f∗(I•).
Since A → A ⊗f−1R′ f

−1B′ is flat, then this functor corresponds modulo the forgetful functor to
Rf∗ : D(A)→ D(A′).
It follows from [Sta22, 09T5] that the above functors Lf∗ : D(A′,R′,B′)→ D(A, f−1R′, f−1B′) and
Rf∗ : D(A, f−1R′, f−1B′)→ D(A′,R′,B′) are adjoint:

HomD(A,f−1R′,f−1B′)(Lf
∗(E ′•), E•) = HomD(A′,R′,B′)(E ′•,Rf∗(E•)) (4.6.5.1.2)

for any E• ∈ D(A, f−1R′, f−1B′) and any E ′• ∈ D(A′,R′,B′). Similarly, we get

HomD(A⊗f−1R′f
−1B′)(Lf

∗(E ′•), E•) = HomD(A′⊗R′B′)(E
′•,Rf∗(E•)) (4.6.5.1.3)

for any E• ∈ D(A⊗f−1R′ f
−1B′) and any E ′• ∈ D(A′ ⊗R′ B′).

Lemma 4.6.5.2. Let f : (T,A) → (T′,A′) be a morphism of ringed topoi. Let P ′ be a left A′-module
and I be an injective left A-module.

(a) The abelian sheaf HomA′(P ′, f∗I) is flasque.

(b) If P ′ is a flat left A′-module, then the left A′-module f∗I is right acyclic for the functorsHomA′(P ′,−)
and HomA′(P ′,−).

Proof. It follows from the isomorphism HomA′(P ′, I) = f∗HomA′(f
∗P ′, I) that HomA′(P ′, I) is

flasque (use [SGA4.2, V.4.9.1 and V.4.10.2)]).
Let I ↪→ J be a monomorphism of sheaves on T of Z-modules such that J is an injective sheaf on T

of Z-modules. This yields by adjointness (see [SGA4.1, IV.12.8)]) the injective morphism of A-modules
I ↪→ HomZ(A,J ). Since HomZ(A,J ) is an injective left A-module (this follows by using the adjoint
formula [SGA4.1, IV.12.8)]), since this latter injection splits (because I is an injective A-module), then
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we reduce to check the acyclity in the case where I = HomZ(A,J ) with J an injective sheaf on T of
Z-modules.

LetM• be a resolution of A by flat right f−1A′-modules. For any n ∈ Z, via the adjoint formula

HomZ(Mn ⊗f−1A′ E ,J )
∼−→ Homf−1A′(E ,HomZ(Mn,J ))

which holds for any left f−1A′-module E (see [SGA4.1, IV.12.8)]), we get that HomZ(Mn,J ) is an
injective right f−1A′-modules. Since J is an injective sheaf on T of Z-modules, this yields that
HomZ(M•,J ) is resolution of I by injective right f−1A′-modules. Since the morphism of f : (T, f−1A′)→
(T′,A′) of ringed topos induced by f is flat, then the functor f∗ from the category of right f−1A′-
modules to that of right A′-module preserves injective objects. Hence, f∗HomZ(Mn,J ) is an injective
A′-module for any n ∈ Z. Since I and HomZ(Mn,J ) are f∗-acyclic (because I is an injective A-module
and HomZ(Mn,J ) is an injective f−1A′-module), this implies that f∗HomZ(M•,J ) is a resolution
of f∗I by injective A′-modules. Hence, ExtnA′(P ′, f∗I) is equal to the nth cohomological space of the
complex

HomA′(P ′, f∗HomZ(M•,J ))
∼−→

[SGA4.1,IV.13.4.2)]
f∗Homf−1A′(f

−1P ′,HomZ(M•,J ))

∼−→ f∗HomZ(M• ⊗f−1A′ f
−1P ′,J ).

Since f−1P ′ is a flat left f−1A′-module and J is an injective Z-module, then f∗HomZ(M• ⊗f−1A′

f−1P ′,J ) is acyclic in positive degree. Hence, ExtnA′(P ′, f∗I) = 0 for any n ≥ 1, i.e. the left A′-module
f∗I is right acyclic for the functor HomA′(P ′,−). By using 4.6.2.7.6, this yields f∗I is right acyclic for
the functor HomA′(P ′,−).

4.6.5.3. Let f : (T,A) → (T′,A′) be a morphism of ringed topoi. We denote by ftop : (T,ZT) →
(T′,ZT′) be the induced morphism of ringed topoi, where ZT (resp. ZT′) is the constant abelian sheaf
of T (resp. T′) associated with Z.

(a) Let E ′• ∈ D−(A′) and E• ∈ D+(A). We have the canonical isomorphism:

Rftop∗RHomA(Lf∗(E ′•), E•) ∼−→ RHomA′(E ′•,Rf∗(E•)). (4.6.5.3.1)

Indeed, choose I• a bounded below complexe of injective left A-modules together with a quasi-
isomorphism E• → I• of K+(A) , P ′• a bounded above complexe of flat left A′-modules together
with a quasi-isomorphism P ′• → E ′• of K−(A′), then it follows from 4.6.5.2 that the map 4.6.5.3.1
is canonically isomorphic to the isomorphism

f∗Hom•A(f∗(P ′•), I•) ∼−→
[SGA4.1,IV.13.4.2)]

Hom•A′(P ′•, f∗(I•)).

(b) Let E ′• ∈ D−(A′) and F ′• ∈ D+(A′). We have the canonical morphism of D(ZT):

f−1
topRHomA′(E ′•,F ′•)→ RHomA(Lf∗(E ′•),Lf∗(F ′•)). (4.6.5.3.2)

Indeed, via the adjunction equality 4.6.5.1.1, the map 4.6.5.3.2 corresponds to the composition

RHomA′(E ′•,F ′•)
4.6.5.1.1−→ RHomA′(E ′•,Rf∗Lf∗(F ′•))

4.6.5.3.1
∼−→ Rftop∗RHomA(Lf∗(E ′•),Lf∗(F ′•)).

We have the unbounded version of 4.6.5.3.2 (but we do not know if this is the case for 4.6.5.3.1).

Lemma 4.6.5.4. Let f : (T,A) → (T′,A′) be a morphism of topoi. Let B′ and C′ be two sheaves of
rings on T′. Let ∗, ∗∗ ∈ {l, r}.

(a) Suppose there exists a solving ring R′ of both (A′,B′) and (A′, C′) such that the composition f−1R′ →
f−1A′ → A is flat and its image is included in the center of A. Let F ′ ∈ D(∗A′,R′, lB′) (resp.
F ′ ∈ D(lA′ ⊗R′ B′)) and E ′ ∈ D(∗∗C′,R′, lB′) (resp. E ′ ∈ D(lC′ ⊗R′ B′)). We have the canonical
morphism of D(∗A, f−1R′, ∗∗f−1C′o) (resp. D(lA⊗f−1R′ f

−1C′o)):

Lf∗ (RHomB′(E ′,F ′))→ RHomf−1B′(f
−1(E ′),Lf∗(F ′)). (4.6.5.4.1)
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(b) Suppose there exists a left solving ring R′ of both (A′,B′) and (A′, C′) such that the image of the
composition f−1R′ → f−1A′ → A is included in the center of A. Let E ′ ∈ D(lA′,R′, ∗B′) (resp.
E ′ ∈ D(lA′ ⊗R′ B′)) and F ′ ∈ D(lA′,R′, ∗∗C′) (resp. F ′ ∈ D(lA′ ⊗R′ C′)). We have the canonical
morphism of D(∗f−1B′o, f−1R′, ∗∗f−1C′) (resp. D(lf−1B′o ⊗f−1R′ f

−1C′)):

f−1RHomA′(E ′,F ′)→ RHomA(Lf∗(E ′),Lf∗(F ′)). (4.6.5.4.2)

(c) Suppose there exists a left solving ring R′ of (A′,B′) such that the image of the composition f−1R′ →
f−1A′ → A is included in the center of A. Let E ′ ∈ D(lA′,R′, ∗B′) and F ′ ∈ D(lA′). We have the
canonical morphism of D(∗f−1B′o):

f−1RHomA′(E ′,F ′)→ RHomA(Lf∗(E ′),Lf∗(F ′)). (4.6.5.4.3)

Proof. a) Let us check 4.6.5.4.1. It is sufficient to treat the respective case. Since R′ is a left solving ring
of (B′,A′) then RHomB′(E ′,F ′) ∈ D(lA′o ⊗R′ C′) (see 4.6.3.2.3). Hence, the left term of 4.6.5.4.1 is an
object of D(lA ⊗f−1R′ f

−1C′o). Moreover, f−1R′ is a left solving ring of (f−1B′,A). Hence, the right
term of 4.6.5.4.1 is also an object of D(lA⊗f−1R′ f

−1C′o). Let P ′ be a K-flat complex of K(lB′ ⊗R′ C′)
representing E ′ and Q′ be a K-flat complex of K(lA′ ⊗R′ C′) representing RHomB′(E ′,F ′). Similarly to
[Sta22, 0G7E], we check that f−1(P ′) is a K-flat complex of K(lf−1B′ ⊗f−1R′ f

−1C′). Since Q′ ⊗C′ P ′
is K-flat as a complex of K(lA′), we get therefore the canonical isomorphisms of D(lA⊗f−1R′ f

−1B′):

Lf∗ (RHomB′(E ′,F ′))⊗L
f−1C′ f

−1E ′

∼
��

∼ // Lf∗
(
RHomB′(E ′,F ′)⊗L

C′ E ′
)

∼
��

f∗(Q′)⊗f−1C′ f
−1P ′ ∼ // f∗(Q′ ⊗C′ P ′).

(4.6.5.4.4)

Following 4.6.3.15.1, we have the morphism RHomB′(E ′,F ′)⊗L
C′ E ′ → F ′ of D(lA′⊗R′ B′). By applying

Lf∗ to this latter map and by composition with 4.6.5.4.4, we get the morphism of D(lA⊗f−1R′ f
−1B′)

Lf∗RHomB′(E ′,F ′)⊗L
f−1C′ f

−1(E ′)→ Lf∗(F ′). (4.6.5.4.5)

By using the Cartan isomorphism (see 4.6.3.14.1), we can conclude.
b) The check of 4.6.5.4.2 is analogous: It is sufficient to treat the respective case. Moreover, since

f−1R′ is a left solving ring of (A, f−1C′) then the objects of 4.6.5.4.2 are well defined. SinceR′ is a solving
ring of (B′, C′) and f−1R′ is a solving ring of (f−1B′, f−1C′), then we get the the first (iso)morphism of
D(lA⊗f−1R′ f

−1C′):

f−1RHomA′(E ′,F ′)⊗L
f−1B′ Lf∗(E ′) ∼−→ Lf∗

(
RHomA′(E ′,F ′)⊗L

B′ (E ′)
) 4.6.3.15.1−→ Lf∗F ′. (4.6.5.4.6)

By using the Cartan isomorphism (see 4.6.3.14.1), we can conclude.
c) The proof is the same than the one of b).

Remark 4.6.5.5. Since (A′,ZT′) is not necessarily right solvable, then the Lemma 4.6.5.4 does not give
a morphism of the form 4.6.5.3.2. However, suppose there exists a sheaf of commutative rings R′ on
T′ endowed with a flat morphism of rings R′ → A′ whose image is included in the center of A′ and
whose composition f−1R′ → f−1A′ → A is included in the center of A. Then (A′,R′) is solvable by
R′. For any E ′,F ′ ∈ D(lA′), we get therefore from 4.6.5.4.3 (in the case B′ = R′) the homomorphism of
D(f−1R′):

f−1RHomA′(E ′,F ′)→ RHomA(Lf∗(E ′),Lf∗(F ′)). (4.6.5.5.1)

Lemma 4.6.5.6. Let f : (T,A) → (T′,A′) be a morphism of topoi. Let B′, C′ be two sheaves of rings
on T′. Suppose there exists a solving ring R′ of (A′,B′) which is a left solving ring of (A′, C′) such that
the image of the composition f−1R′ → f−1A′ → A is included in the center of A. Let ∗, ∗∗ ∈ {l, r}. For
any E ∈ D(∗A, f−1R′, rf−1B′) (resp. E ∈ D(lA⊗f−1R′ f

−1B′o)) and F ∈ D(lf−1B′⊗f−1R′ f
−1C′) (resp.

F ∈ D(lf−1B′⊗f−1R′f
−1C′)), there exists a canonical morphism of D(∗A′,R′, ∗∗C′) (resp. D(lA′⊗R′C′))

of the form:
Rf∗(E)⊗L

B′ Rf∗(F)→ Rf∗(E ⊗L
f−1B′ F). (4.6.5.6.1)
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Proof. It is sufficient to treat the respective case. By adjunction (see 4.6.5.1.3), we have the map
Lf∗Rf∗(E) → E of D(lA ⊗f−1R′ f

−1B′o) and the map f−1Rf∗(F) of D(lf−1B′ ⊗f−1R′ f
−1C′). This

yields the second morphism of D(lA⊗f−1R′ f
−1C′):

Lf∗
(
Rf∗(E)⊗L

B′ Rf∗(F)
) ∼−→ Lf∗Rf∗(E)⊗L

f−1B′ f
−1Rf∗(F)→ E ⊗L

f−1B′ F , (4.6.5.6.2)

the first isomorphism being checked by choosing a K-flat representation of Rf∗(E) and of Rf∗(E) (similarly
to 4.6.5.4.4). Again by adjunction adjunction (see 4.6.5.1.3), we get 4.6.5.6.1 from 4.6.5.6.2.

Lemma 4.6.5.7. Let f : (T,A) → (T′,A′) be a morphism of topoi. Let B′, C′ be two sheaves of rings
on T′. Suppose there exists a solving ring R′ of (A′,B′) which is a left solving ring of (A′, C′) such that
the image of the composition f−1R′ → f−1A′ → A is included in the center of A.

Let ∗, ∗∗ ∈ {l, r}, E ∈ D(lA, f−1R′, ∗f−1B′) (resp. E ∈ D(lA⊗f−1R′f
−1B′)) and F ∈ D(lA, f−1R′, f−1C′)

(resp. F ∈ D(lA ⊗f−1R′ f
−1C′)). We have the canonical morphism of D(∗(B′)o,R′, ∗∗C′) (resp.

D(l(B′)o ⊗R′ C′)):
Rf∗RHomA(E ,F)→ RHomA′(Rf∗(E),Rf∗(F)). (4.6.5.7.1)

Proof. It is sufficient to treat the respective case. We have the morphisms

Rf∗RHomA(E ,F)⊗L
B′ Rf∗(E)

4.6.5.6.1−→ Rf∗
Ä
RHomA(E ,F)⊗L

f−1B′ E
ä

4.6.3.15.1−→ Rf∗(F), (4.6.5.7.2)

where the first one is a symmetric version of 4.6.5.6.1. By using the Cartan isomorphism (see 4.6.3.14.1),
we can conclude.

We will need (see 7.3.1.22.1) the (non-commutative) projection formula stated as below:

Lemma 4.6.5.8. Let f : (T,A) → (T′,A′) be a morphism of ringed topoi. Let M′• ∈ D(rA′) and
E• ∈ D(lA). We have the projection map of D(ZT′):

M′• ⊗L
A Rf∗(E•)→ Rf∗(f

−1(M′•)⊗L
f−1A′ E

•)
∼−→ Rf∗(Lf

∗(M′•)⊗L
A E•) (4.6.5.8.1)

constructed by adjointness from 4.6.5.1.1. The morphism 4.6.5.8.1 is an isomorphism ifM′• is perfect.
When A and A′ are commutative, we construct similarly a map of the form 4.6.5.8.1 in D(A′).

Proof. Using the ringed topoi morphism (T,ZT) → (T′,ZT′) induced by f , it follows by adjunction
from 4.6.5.1.1 that the data of the left morphism of 4.6.5.8.1 is equivalent to the data of a morphism of
the form f−1(M′• ⊗L

A Rf∗(E•)) → f−1(M′•) ⊗L
f−1A′ E

•. This latter one is constructed by adjunction
from 4.6.5.1.1 as follows:

f−1(M′• ⊗L
A Rf∗(E•))

∼−→ f−1(M′•)⊗L
f−1A f

−1Rf∗(E•)→ f−1(M′•)⊗L
f−1A′ E

•.

The fact that this morphism becomes an isomorphism is standard (e.g., we can copy the proof of [Sta22,
0944] which still works with non-commutative rings).

4.6.6 Derived internal tensor products, derived internal homomorphism func-
tors, Cartan isomorphisms, derived coefficients extensions and pull-
backs for D-modules

We keep notations and hypotheses of 4.2.

4.6.6.1. We have the canonical bifunctors

HomBX (−,−) : K(l‹D(m)

X]/S]
)×K(l‹D(m)

X]/S]
)→ K(l‹D(m)

X]/S]
), (4.6.6.1.1)

−⊗BX − : K(l‹D(m)

X]/S]
)×K(l‹D(m)

X]/S]
)→ K(l‹D(m)

X]/S]
), (4.6.6.1.2)

and similarly by replacing some l by r (when this has a meaning). Beware that for some authors, if
E and F are complexes of left ‹D(m)

X]/S]
-modules, then E ⊗BX F is a bicomplex and what we denote by

E ⊗BX F is denoted by Tot(E ⊗BX F), where Tot means the total complex induced by the commutative
bicomplex.
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Since BX → ‹D(m)

X]/S]
is flat, then a K-injective (resp. K-flat) complex of left ‹D(m)

X]/S]
-modules is a

K-injective (resp. K-flat) complex of BX -modules. Hence, we obtain by derivation

RHomBX (−,−) : D(l‹D(m)

X]/S]
)×D(l‹D(m)

X]/S]
)→ D(l‹D(m)

X]/S]
), (4.6.6.1.3)

−⊗L
BX − : D(l‹D(m)

X]/S]
)×D(l‹D(m)

X]/S]
)→ D(l‹D(m)

X]/S]
), (4.6.6.1.4)

and similarly by replacing l by r.
By functoriality, we have bimodule versions of theses bifunctors, for instance:

RHomBX (−,−) : D(l‹D(m)

X]/S]
, ‹D(m)

X]/S]
r)×D(l‹D(m)

X]/S]
)→ D(l‹D(m)

X]/S]
, ‹D(m)

X]/S]
l);

RHomBX (−,−) : D(l‹D(m)

X]/S]
)×D(l‹D(m)

X]/S]
, ‹D(m)

X]/S]
r)→ D(l‹D(m)

X]/S]
, ‹D(m)

X]/S]
r) etc. (4.6.6.1.5)

Proposition 4.6.6.2 (Associativity). Let E ∈ D(l‹D(m)

X]/S]
), N ∈ D(l‹D(m)

X]/S]
, r‹D(m)

X]/S]
),M∈ D(r‹D(m)

X]/S]
).

We have the following isomorphisms of D(r‹D(m)

X]/S]
):

M⊗L
D̃(m)

X]/S]

(N ⊗L
BX E)

∼−→ (M⊗L
D̃(m)

X]/S]

N )⊗L
BX E , (4.6.6.2.1)

M⊗L
BX (N ⊗L

D̃(m)

X]/S]

E)
∼−→ (M⊗L

BX N )⊗L
D̃(m)

X]/S]

E . (4.6.6.2.2)

Proof. It is sufficient to choose K-flat complexes representing E and N and then to use 4.2.4.3.1 and
4.2.4.3.2.

Proposition 4.6.6.3 (Switching B and D). Let M be a complex of D(l‹D(m)

X]/S]
, ‹D(m)

X]/S]
r), E and F be

two complexes of D(l‹D(m)

X]/S]
). Then we have a canonical isomorphism of D(l‹D(m)

X]/S]
) :

(M⊗L
BX F)⊗L

D̃(m)

X]/S]

E ∼−→ M⊗L
D̃(m)

X]/S]

(F ⊗L
BX E). (4.6.6.3.1)

Proof. This is a consequence of 4.2.6.1.

Proposition 4.6.6.4. Let E ∈ D(l‹D(m)

X]/S]
) F ∈ D(l‹D(m)

X]/S]
, ‹D(m)

X]/S]
r) and G ∈ D(l‹D(m)

X]/S]
). There exists

a canonical morphism in D(‹D(m)

X]/S]
r) of the form:

RHomlD̃(m)

X]/S]

(E ,F)⊗L
BX G → RHomlD̃(m)

X]/S]

(E ,F ⊗L
BX G). (4.6.6.4.1)

The morphism 4.6.6.4.1 is an isomorphism when E ∈ Dperf(
l‹D(m)

X]/S]
).

Proof. By choosing a K-injective complex representing F and a K-flat complex representing G, this is a
consequence of 4.2.4.9.

Proposition 4.6.6.5. Let E ∈ D(l‹D(m)

X]/S]
), F ∈ D(l‹D(m)

X]/S]
) and G ∈ D(l‹D(m)

X]/S]
, ∗‹D(m)

X]/S]
). We have

the ‹D(m)

X]/S]
-linear isomorphism

RHomD̃(m)

X]/S]

(E
L
⊗BX F ,G)

∼−→ RHomD̃(m)

X]/S]

(E ,RHomBX (F ,G)).

Proof. Let P be a K-flat complex of left ‹D(m)

X]/S]
-modules representing F and I be a K-injective complex

of right (resp. left if ∗ = l) ‹D(m)

X]/S]
-bimodule representing G. We compute in D(∗‹D(m)

X]/S]
):

RHomD̃(m)

X]/S]

(E
L
⊗BX F ,G)

∼−→ RHomD̃(m)

X]/S]

(E ⊗BX P,G)
∼−→ HomD̃(m)

X]/S]

(E ⊗BX P, I)

4.2.4.5
∼−→ HomD̃(m)

X]/S]

(E ,HomBX (P, I))
4.2.4.6
∼−→ RHomD̃(m)

X]/S]

(E ,HomBX (P, I))
∼−→ RHomD̃(m)

X]/S]

(E ,RHomBX (F ,G)).
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Corollary 4.6.6.6 (Cartan isomorphism). Let E ∈ D(l‹D(m)

X]/S]
), F ∈ D(l‹D(m)

X]/S]
) and G ∈ D(l‹D(m)

X]/S]
).

The canonical isomorphism

RHomBX (E ⊗L
BX F ,G)

∼−→ RHomBX (E ,RHomBX (F ,G)),

is ‹D(m)

X]/S]
-linear.

Proof. We choose a K-flat complex of left ‹D(m)

X]/S]
-modules representing F and a K-injective complex of

left ‹D(m)

X]/S]
-modules representing G. The corollary 4.2.4.6 and the proposition ?? allow us to conclude.

Proposition 4.6.6.7. Let E ∈ D(‹D(m)

X]/S]
), F ∈ D(‹D(m)

X]/S]
) and G ∈ D(‹D(m)

X]/S]
). We have a canonical

homomorphism of D(‹D(m)

X]/S]
) of the form:

RHomBX (E ,F)⊗L
BX G → RHomBX (E ,F ⊗L

BX G). (4.6.6.7.1)

If E is moreover in Dperf(BX), this morphism is an isomorphism.

Proof. We construct the morphism 4.6.6.7.1 by choosing a K-injective complex of ‹D(m)

X]/S]
-modules rep-

resenting F and a K-flat complex of ‹D(m)

X]/S]
-modules representing G. By using 4.2.4.8, this one is‹D(m)

X]/S]
-linear and compatible with Frobenius.

Since a K-injective (resp. K-flat) complex of left ‹D(m)

X]/S]
-modules is a K-injective (resp. K-flat)

complex of BX -modules, then if E ∈ Dperf(BX), using 4.6.3.6.1 (with A = B = C = BX) that 4.6.6.7.1 is
an isomorphism in D(BX) and then in D(‹D(m)

X]/S]
).

4.6.6.8 (Coefficient extensions). Let ρ : BX → B′X be a homomorphism of commutative OX -algebras.
We suppose BX and B′X are endowed with a structure of left D(m)

X]/S]
-module which is compatible to its

underlying OX -algebra structure such that BX → B′X is D(m)

X]/S]
-linear. Since ‹D(m)

X]/S]
:= BX⊗OX D

(m)

X]/S]

is a flat BX -module, then for any E ∈ D(l‹D(m)

X]/S]
), a K-flat complex of left ‹D-modules representing E is

also a K-flat complex BX -modules representing E . This yields a canonical isomorphism in D(l‹D(m)

X]/S]
)

B′X ⊗L
BX E

∼−→ (B′X ⊗OX D
(m)

X]/S]
)⊗L
D̃(m)

X]/S]

E . (4.6.6.8.1)

Moreover, ifM∈ D(rD(m)

X]/S]
⊗OX BX), then any K-flat complex of right D(m)

X]/S]
⊗OX BX -modules repre-

sentingM is also a K-flat complex of BX -modules representingM. We get therefore in D(rD(m)

X]/S]
⊗OX

B′X) the canonical isomorphism:

M⊗L
BX B

′
X
∼−→ M⊗L

D(m)

X]/S]
⊗OXBX

(D(m)

X]/S]
⊗OX B′X). (4.6.6.8.2)

4.6.6.9 (Pullbacks). With notation 4.4.2, let ? ∈ {∅,−,b}. In the case where ? = b, we suppose moreover
f−1BY → BX has finite tor dimension, i.e. we suppose the functor f̃∗ = BX ⊗f−1BY f

−1− from the
category of BY -modules to that of BX -modules has bounded cohomological dimension (see definition
4.6.1.4).

Since BX → ‹D(m)

X]/S]
is flat, then a K-flat complex of left ‹D(m)

X]/S]
-modules is a K-flat complex of BX -

modules. Hence, it follows from 4.4.2.4 that the functor Lf̃∗ = BX ⊗L
f−1BY f

−1− : D?(BX) → D?(BY )

induces the functor Lf̃∗ : D?(l‹D(m)

X]/S]
)→ D?(l‹D(m)

Y ]/T ]
) making commutative the diagram:

D?(l‹D(m)

Y ]/T ]
)

��

Lf̃∗ // D?(l‹D(m)

X]/S]
)

��
D?(BY )

Lf̃∗ // D?(BX)

(4.6.6.9.1)
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where the vertical functors are the forgetful ones. Following 4.4.2.9.1, for any E ∈ D?(l‹D(m)

Y ]/T ]
), we get

the canonical isomorphism of D?(l‹D(m)

X]/S]
):

Lf̃∗E ∼−→ ‹D(m)

X]/S]→Y ]/T ] ⊗
L
f−1D̃(m)

Y ]/S]

f−1E . (4.6.6.9.2)

4.6.7 Comparison between B-linear duality and D-linear duality
We keep notations and hypotheses of 4.2.

Proposition 4.6.7.1. Let F ∈ Db(‹D(m)

X]/S]
). The following assertions hold.

(a) There exists a canonical morphism of D(‹D(m)

X]/S]
);

RHomD̃(m)

X]/S]

(BX , ‹D(m)

X]/S]
⊗OX ω−1

X )⊗L
BX RHomBX (F , BX)→ RHomD̃(m)

X]/S]

(F , ‹D(m)

X]/S]
⊗OX ω−1

X ).

(b) If BX ∈ Dperf(‹D(m)

X]/S]
) and F ∈ Dperf(BX), then this one is an isomorphism.

Proof. We will write ⊗ω−1 for ⊗OXω−1
X , ‹D for ‹D(m)

X]/S]
and B for BX . It follows from the proposition

4.6.6.4 (valid by replacing "r" by "l") the arrow :

RHomD̃(B, ‹D ⊗ ω−1)⊗L
B RHomB(F , B)→ RHomD̃(B, ‹D ⊗ ω−1 ⊗B RHomB(F , B)). (4.6.7.1.1)

The transposition isomorphism 4.2.5.3.1 of RHomB(F ,B) induces the isomorphism :

RHomD̃(B, ‹D ⊗ ω−1 ⊗B RHomB(F , B))
∼−→ RHomD̃(B,RHomB(F ,B)⊗B ‹D ⊗ ω−1). (4.6.7.1.2)

Via 4.6.6.7, we have by functoriality a morphism in D(l‹D, l‹D):

RHomB(F ,B)⊗B ‹D ⊗ ω−1 → RHomB(F , ‹D ⊗ ω−1). (4.6.7.1.3)

By applying to 4.6.7.1.3 the functor RHomD̃ (B,−), we get in D(l‹D) the morphism :

RHomD̃(B,RHomB(F ,B)⊗B ‹D ⊗ ω−1)→ RHomD̃(B,RHomB(F , ‹D ⊗ ω−1)). (4.6.7.1.4)

We have the isomorphism of Cartan (4.6.6.5):

RHomD̃(B,RHomB(F , ‹D ⊗ ω−1))←̃RHomD̃(F , ‹D ⊗ ω−1). (4.6.7.1.5)

By composing 4.6.7.1.1, 4.6.7.1.2, 4.6.7.1.4 and 4.6.7.1.5, we get the morphism of 6.3.4.15.(i).
Finally, when BX ∈ Dperf(‹D(m)

X]/S]
) (resp. F ∈ Dperf(B)), the morphism 4.6.7.1.1 (resp. 4.6.7.1.3,

and then 4.6.7.1.4) becomes an isomorphism.

Example 4.6.7.2. In order to get the comparison isomorphism, we need the hypothesis BX ∈ Dperf(‹D(m)

X]/S]
).

However, when m = 0, we have BX ∈ Dperf(‹D(0)

X]/S]
) (see 4.7.3.7.4). After tensorising with Q, see also

4.7.3.15 for other examples.

4.7 Level 0 case
We keep notations and hypotheses of 4.2.
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4.7.1 Stratifications of order ≤ 1 and logarithmic connections
Definition 4.7.1.1. Let E be a BX -module. With notations 3.2.2.2, an m-PD stratification rela-
tive to X]/S] of order ≤ 1 with coefficients in BX is the data of a ‹P1

X]/S],(m)-linear isomorphism

ε1 : ‹P1
X]/S],(m) ⊗BX E → E ⊗BX ‹P1

X]/S],(m) such that the following diagram

ψ̃1,0∗
X]/S],(m)

(‹P1
X]/S],(m) ⊗BX E)

ψ̃1,0∗
X]/S],(m)

(ε1)

��

∼ // ‹P0
X]/S],(m) ⊗BX E

∼
��

∼ // E

ψ̃n
′,n∗

X]/S],(m)
(E ⊗BX ‹P1

X]/S],(m))
∼ // E ⊗BX ‹P0

X]/S],(m)

∼ // E

, (4.7.1.1.1)

whose horizontal isomorphisms are the canonical ones, is commutative. When m = ∞, we simply say
stratification relative to X]/S] of order ≤ 1 with coefficients in BX .

Remark 4.7.1.2. We have a canonical map from the set of m-PD stratifications relative to X]/S] with
coefficients in BX of E (see 3.4.2.1) to that of m-PD stratifications relative to X]/S] of order ≤ 1 with
coefficients in BX given by (εn)n∈N 7→ ε1.

Proposition 4.7.1.3. Given a BX-module E. The following are equivalent.

(a) A BX-linear homomorphism θ1 : E → p1∗(E ⊗BX ‹P1
X]/S],(m)) (the BX-module structure of this latter

is induced by the right structure of ‹P1
X]/S],(m)) making commutative the diagram

E ∼ //

θ1
%%

E ⊗BX ‹P0
X]/S],(m)

E ⊗BX ‹P1
X]/S],(m)

idE ⊗ψ̃1,0

X]/S],(m)

OO
(4.7.1.3.1)

whose top isomorphism is the canonical one (recall ‹P0
X]/S],(m) = BX).

(b) An m-PD stratification ε = (εEn) of order ≤ 1 with coefficients in BX on E.

The bijection between both data is given by ε1 7→ ε1 ◦ p̃1
1,(m),E = θ1 (see notation 4.1.2.7).

Proof. This comes from the proof of 4.2.1.5.

4.7.1.4. Thanks to the local description 4.1.2.16.1 and the local computation of 3.2.2.10.1, we can check
that the homomorphism ψ̃1

m := idBX ⊗ψ1
m : ‹P]1

X]/S]
→ ‹P]1

X]/S],(m)
is an isomorphism. Hence, the data of

a stratification relative to X]/S] of order ≤ 1 with coefficients in BX on E is equivalent to that of an m-
PD stratification relative to X]/S] of order ≤ 1 with coefficients in BX on E . In other words, the integer
m has no importance and by default we simply consider stratifications relative to X]/S] of order ≤ 1
with coefficients in BX . Moreover, denoting by I1

X]/S],(m) the ideal of the closed immersion ∆1
X]/S],(m)

and setting Ω1
X]/S],(m) := (∆1

X]/S],(m))
−1(I1

X]/S],(m)), the isomorphism ψ1
m induces the isomorphism

ψ1
m : Ω1

X]/S]
∼−→ Ω1

X]/S],(m). We can therefore simply write Ω1
X]/S] instead of Ω1

X]/S],(m).

4.7.1.5. We have the following proprieties making some links between the sheaf of relative differentials
and the sheaf of principal parts of order ≤ 1 of X]/S] with coefficients in BX .

(a) We set Ω1
X]/S] := BX ⊗OX Ω1

X]/S] . Denoting by j̃ := idBX ⊗j : Ω̃1
X]/S] → p0∗‹P1

X]/S] , where j is the
canonical inclusion (see notation 3.1.3.2), by applying the functor BX ⊗OX − to the exact sequence
3.1.3.2.1, we get the exact sequence of BX -modules

0→ Ω̃1
X]/S]

j̃−→ p0∗‹P1
X]/S]

ψ̃1,0

X]/S]−→ BX → 0. (4.7.1.5.1)
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The exact sequence 4.7.1.5.1 splits via the section p̃1
0 : BX → p0∗‹P1

X]/S] (see notation 4.1.2.7), which
yields the isomorphism of BX -modules

(p̃1
0, j̃) : BX ⊕ Ω̃1

X]/S]
∼−→ p0∗‹P1

X]/S] . (4.7.1.5.2)

In particular, since p0∗‹P1
X]/S] is a locally free BX -module, then so is Ω̃1

X]/S] .

(b) Via the isomorphism 4.7.1.5.2, we get the BX -linear epimorphism‹$X]/S] : p0∗‹P1
X]/S] � Ω̃1

X]/S] (4.7.1.5.3)

which is a left inverse of the inclusion j̃ : Ω̃1
X]/S] ⊂ p0∗‹P1

X]/S] . We compute ‹$X]/S] = id−p̃1
0◦ψ̃

1,0
X]/S]

.

(c) We define the map dBX : BX → Ω̃1
X]/S] by setting dBX := ‹$X]/S] ◦ p̃n1 (see notation 4.1.2.5). Since

ψ̃1,0
X]/S]

◦ p̃1
i = id for i = 0, 1 (see just after 4.1.2.12.1), then p̃1

1(b)− p̃1
0(b) ∈ Ω̃1

X]/S] for any section b
of BX . Since ‹$X]/S] ◦ p̃n0 = 0, this yields dBX = p̃1

1 − p̃1
0.

Definition 4.7.1.6. We can extend the definition 3.1.3.3 as follows: Let E ,F be two BX -modules,
n ≥ 0 be an integer. We say that a f−1OS-linear homomorphism D : E → F is a “differential operator of
order ≤ n (relatively to X]/S]) with coefficient in BX ” if there exists a homomorphism of BX -modules
u : pn0∗(

‹PnX]/S] ⊗BX E) → F such that D = u ◦ p̃n1,E (see notation 4.1.2.7). Beware that this is not clear
that such a u is unique. Hence one might prefer to call such a u (instead of D) a differential operator of
order ≤ n relatively to X]/S] with coefficients in BX .

4.7.1.7 (Local computation). Suppose X]/S] has logarithmic coordinates (uλ)λ=1,...,d. We still denote
by d log uλ its image in Ω̃1

X]/S] in Ω̃1
X]/S] . Let τ]λ,1 := µ1(uλ) − 1 in ‹P1

X]/S] for λ = 1, . . . , d. It

follows from 3.1.3.5 that τ]λ,1 = d log uλ. Moreover, following 4.1.2.16.1, ‹P1
X]/S] is BX -free with the

basis 1, τ]1,1, . . . , τ]d,1. Since ψ̃1,0
X]/S]

(τ]λ,1) = 0 and ψ̃1,0
X]/S]

(1) = 1, then Ω̃1
X]/S] is BX -free with the

basis τ]1,1, . . . , τ]d,1, i.e. d log u1, . . . , d log ud. Moreover, ‹$X]/S](1) = 0 (and ker‹$X]/S] = BX) and‹$X]/S](τ],λ,1) = τ]λ,1.

Definition 4.7.1.8. Let E be a BX -module. A “(logarithmic) connection relative to X]/S] with coeffi-
cients in BX ” on E is an additive map ∇ : E → E ⊗BX Ω̃1

X]/S] such that for any open U ⊆ X, the map

∇U : E(U)→ (E ⊗BX Ω̃1
X]/S])(U) satisfies the condition : for x ∈ E(U), b ∈ BX(U) we have

∇(bx) = b∇(x) + x⊗ dBX (b).

Proposition 4.7.1.9. Let E be a BX-module. The map ε1 7→ (id⊗$) ◦ ε1 ◦ p̃1
1,E , where p̃

1
1,E is defined

at 4.1.2.7, gives a bijection between the set of connections relative to X]/S] with coefficients in BX on
E to that of stratifications relative to X]/S] of order ≤ 1 with coefficients in BX on E.

Proof. We copy the proof of 2.3.1.6.

4.7.2 Integrable connections and D-modules of level 0
4.7.2.1. Let ΩiX]/S] = ∧iOXΩX]/S] for i ≥ 0 be the ith exterior power. For any nonnegative integers
i, j, denote by ci,j : ΩiX]/S] ⊗OX Ωj

X]/S]
→ Ωi+j

X]/S]
the canonical projection. Recall (e.g. see [Ogu18,

V.2.1.1]), for any integer i ≥ 0, there is a unique collection of homomorphisms of f−1OS-modules

diX]/S] : ΩiX]/S] → Ωi+1
X]/S]

called the exterior derivative, such that:

(a) d0
X]/S] = dX]/S] ,

(b) d1
X]/S]d logm = 0 if m is any section of MX] ,
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(c) diX]/S]d
i−1
X]/S]

ω = 0 if ω is any section of Ωi−1
X]/S]

,

(d) di+j
X]/S]

(ω ∧ ω′) = (diX]/S]ω) ∧ ω′ + (−1)iω ∧ (dj
X]/S]

ω′) if ω ∈ ΩiX]/S] and ω
′ ∈ Ωj

X]/S]
.

In particular, we get the formula: diX]/S](ad log m1∧ · · ·∧d log mi) = dX]/S]a∧d log m1∧ · · ·∧d log mi

for any sections a of OX and m1, . . . ,mi of MX] . We get the complex of f−1OS-modules

0→ Ω0
X]/S] → Ω1

X]/S] → Ω2
X]/S] → . . .

which is called the de Rham complex of X]/S].
Let i ≥ 0 be an integer. The map diX]/S] is a differential operator of order 1 with respect to

X]/S] (see definition 3.1.3.3). More precisely, we construct a canonical OX -linear homomorphism
$i
X]/S] : P1

X]/S]⊗OXΩiX]/S] → Ωi+1
X]/S]

whose composition with p1
1,Ωi

X]/S]

: ΩiX]/S] → P
1
X]/S]⊗OXΩiX]/S]

is equal to diX]/S] as follows. Consider the following commutative diagram:

ΩiX]/S]

di
X]/S]

��

p1

1,Ωi

X]/S] // P1
X]/S] ⊗OX ΩiX]/S] P1

X]/S] ⊗OX ΩiX]/S]

$i
X]/S]

��

Ä
OX ⊕ Ω1

X]/S]

ä
⊗OX ΩiX]/S]

∼ (p1
1,j)⊗id

OO

∼
��

ΩiX]/S] ⊕
Ä
Ω1
X]/S] ⊗OX ΩiX]/S]

ä
(di
X]/S]

,c1,i)

��
Ωi+1
X]/S]

Ωi+1
X]/S]

Ωi+1
X]/S]

(4.7.2.1.1)

where (p1
1, j) is the isomorphism 3.1.3.2.5, where $i

X]/S] is by definition the map making commutative
the right rectangle of the diagram 4.7.2.1.1. When i = 0, we remark $X]/S] = $0

X]/S] . Let us check the
OX -linearity of $i. For any sections a, b of OX , for any section ω of Ω1

X]/S] , for any section ωi of ΩiX]/S] ,
the map $i

X]/S] sends (p1
1(a) +ω)⊗ωi to diX]/S](aωi) +ω ∧ωi = dX]/S](a)∧ωi + adiX]/S](ωi) +ω ∧ωi.

We compute in the ring P1
X]/S] the equalities p1

0(b)(p1
1(a) + ω) = (p1

1(b) − dX]/S](b))(p
1
1(a) + ω) =

p1
1(ab)− adX]/S](b) + bω, the first one coming from 4.7.1.5.c and the second one following from the fact

that ∆1
X]/S] is a closed immersion of order 1. This yields p1

0(b)
(
(p1

1(a) + ω)⊗ ωi
)
is sent via $i

X]/S] to
dX]/S](ab) ∧ ωi + abdiX]/S](ωi) + (−adX]/S](b) + bω) ∧ ωi = bdX]/S](a) ∧ ωi + abdiX]/S](ωi) + bω ∧ ωi.
Hence, we are done.

This implies (via the canonical morphism P1
X/S → P

1
X]/S] which is OX -linear for both structures)

that the map diX]/S] is also a differential operator of order 1 with respect to X/S (see definition 1.1.3.2).
In fact, we compute diX]/S](aw) − adiX]/S](ω) = dX]/S]a ∧ ω for any section a of OX and section ω of
ΩiX]/S] , and we retrieve the fact that ω 7→ diX]/S](aw)− adiX]/S](ω) is linear (see 1.1.3.4.1).

Notation 4.7.2.2. Let εBX = (εBn) be the m-PD stratification on BX , and let θBX = (εBXn ) be the
corresponding family (see notation of 3.4.2.5). We define the map diBX : BX⊗OX ΩiX]/S] → B⊗OX Ωi+1

X]/S]

by composition as follows

B ⊗OX ΩiX]/S]

p1

1,B⊗Ωi **

θ
BX
1 ⊗id

Ωi

X]/S] // B ⊗OX P1
X]/S] ⊗OX ΩiX]/S]

idB ⊗$i
X]/S] // B ⊗OX Ωi+1

X]/S]
.

P1
X]/S] ⊗OX B ⊗OX ΩiX]/S]

ε
BX
1 ⊗id

OO
(4.7.2.2.1)

We remark dBX = d0
BX .
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Notation 4.7.2.3. We set Ω̃iX]/S] := BX ⊗OX ΩiX]/S] for any integer i ≥ 0. When i is equal to the
rank d of ΩX]/S] , we set ωX]/S] := ΩdX]/S] and ω̃X]/S] := BX ⊗OX ωX]/S]

Notation 4.7.2.4. Let E be a BX -module and i, j ≥ 0 be two integers. Let y (resp. z) be a section
of E ⊗BX Ω̃iX]/S] (resp. Ω̃iX]/S] ⊗BX E) and ω be a section of Ω̃j

X]/S]
. Then we denote by y ∧ ω (resp.

ω ∧ z) the image of y ⊗ ω (resp. ω ⊗ z) via idE ⊗ci,j (resp. ci,j ⊗ idE). Denote by y 7→ ty the canonical
isomorphism E ⊗BX Ω̃iX]/S]

∼−→ Ω̃iX]/S] ⊗BX E . Beware
t(y ∧ ω) = (−1)ijω ∧ ty.

4.7.2.5 (Integrable connection, de Rham complex). Let E be a BX -module endowed with a connection
relative to X]/S] with coefficients in BX . Denote by ε1 the associated relative to X]/S] stratification of
order ≤ 1 with coefficients in BX on E (see 4.7.1.9). Following 4.7.1.3, let θ1 : E → p1∗(E ⊗BX ‹P1

X]/S])

be the corresponding BX -linear homomorphism making commutative the diagram 4.7.1.3.1. We get the
map ∇i : E ⊗BX Ω̃iX]/S] → E ⊗BX Ω̃i+1

X]/S]
from θ1 and di by composition as follows

E ⊗BX Ω̃iX]/S]

p̃1

1,E⊗Ω̃i
**

θ1⊗id
Ω̃i

X]/S] // E ⊗BX ‹P1
X]/S] ⊗BX Ω̃iX]/S]

idE ⊗$i
X]/S] // E ⊗BX Ω̃i+1

X]/S]
,

‹P1
X]/S] ⊗BX E ⊗BX Ω̃iX]/S]

ε1⊗id

OO
(4.7.2.5.1)

where the triangle is commutative. Beware that the terms ‹P1
X]/S] ⊗BX E ⊗BX Ω̃iX]/S] and E ⊗BX‹P1

X]/S] ⊗BX Ω̃iX]/S] have two structures of BX -modules: the left one and the right one. The morphisms
p̃1

1,E⊗Ω̃i
and θ1 ⊗ id

Ω̃i
X]/S]

are BX -linear for the right one, whereas idE ⊗$i
X]/S] is BX -linear for the

left one. The composition ∇i is not BX -linear but since ε1 ⊗ id is BX -linear for both structure (an in
particular for the left structure), then ∇i : E ⊗BX Ω̃iX]/S] → E ⊗BX Ω̃i+1

X]/S]
is a differential operator of

order ≤ 1 with coefficients in BX .
For any sections yi of E ⊗BX Ω̃iX]/S] and ωj of Ω̃j

X]/S]
, with notation 4.7.2.4, as for 2.3.2.3.3, we get

the formula:
∇i+j(yi ∧ ωj) = ∇i(yi) ∧ ωj + (−1)iyi ∧ djBX (ωj). (4.7.2.5.2)

We say that the connection ∇ of E is integrable if ∇1 ◦ ∇ = 0. In that case ∇i+1 ◦ ∇i = 0 for any i
and we get the complex

0→ E → E ⊗BX Ω̃1
X]/S] → E ⊗BX Ω̃2

X]/S] → · · · → E ⊗BX Ω̃dX]/S] → 0, (4.7.2.5.3)

which is called the de Rham complex.

4.7.2.6 (de Rham complex: exchanging the position). Let E be a BX -module endowed with a connection.
To define the map ∇i : E ⊗BX Ω̃iX]/S] → E ⊗BX Ω̃i+1

X]/S]
(see 4.7.2.5.1), it was more natural to put E on

the left. However, we can define ∇i : Ω̃iX]/S] ⊗BX E → Ω̃i+1
X]/S]

⊗BX E to be the OS-linear map making
commutative the diagram

Ω̃iX]/S] ⊗BX E
∇i //

∼
��

Ω̃i+1
X]/S]

⊗BX E

∼
��

E ⊗BX Ω̃iX]/S]
∇i

4.7.2.5.1
// E ⊗BX Ω̃i+1

X]/S]
,

(4.7.2.6.1)

where the vertical isomorphism are the canonical ones. Via the formulas given at 4.7.2.4 and 4.7.2.5.2,
for any sections zi of Ω̃iX]/S] ⊗BX E and ωj of Ω̃j

X]/S]
, with notation 4.7.2.4, we get

∇i+j(ωj ∧ zi) = (−1)jωj ∧∇i(zi) + djBX (ωj) ∧ zi. (4.7.2.6.2)

When the connection is integrable, we denote by DR(E) the de Rham complex, by convention with E on
the right side.
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4.7.2.7. Let E be a BX -module endowed with a connection relative toX]/S] with coefficients in BX . Sup-
poseX]/S] has logarithmic coordinates u1, . . . , ud. For any section x of E , we denote by ∂]1(x), . . . , ∂]d(x)
the elements of E such that

∇(x) =
d∑
i=1

∂]i(x)⊗ d log ui. (4.7.2.7.1)

Using 4.7.2.5.2, we compute:

∇1 ◦ ∇(x) = ∇1(
d∑
i=1

∂]i(x)⊗ d log ui) =
d∑
j=1

d∑
i=1

∂]j(∂]i(x))⊗ d log uj ∧ d log ui.

Hence, the connection is integral is equivalent to saying that the maps ∂]i ∈ EndOS (E) commute two by
two, i.e., for any i, j ∈ {1, . . . , d}, for any section x of E we have the equality:

∂]j(∂]i(x)) = ∂]i(∂]j(x)).

For any k ∈ Nd, we get the OS-linear map ∂
k
] : E → E by setting ∂

k
] = ∂k1

]1 ◦ · · · ◦ ∂
kd
]d . When, the

connection is integrable, for any k, l ∈ Nd, we get the equality

∂
l
] ◦ ∂

k
] = ∂

k
] ◦ ∂

l
] = ∂

k+l
] . (4.7.2.7.2)

Theorem 4.7.2.8. Let E be a BX-module. The following are equivalent.

(a) An integrable connection relative to X]/S] with coefficients in BX on E.

(b) A structure of left ‹D(0)

X]/S]
-module on E extending its structure of BX-module.

Proof. We copy the proof of 2.3.2.6

The following proposition states that the equivalence of Theorem 4.7.2.8 is in fact an equivalence of
categories.

Proposition 4.7.2.9. Let E ,F be two left ‹D(0)

X]/S]
-modules and f : E → F be a BX-linear homomor-

phism. The following are equivalent.

(a) The morphism f is ‹D(0)

X]/S]
-linear.

(b) The square below is commutative:

E

f

��

∇ // E ⊗BX Ω̃1
X]/S]

f⊗id

��
F ∇ // F ⊗BX Ω̃1

X]/S] ,

(4.7.2.9.1)

where the connections are the ones associated via 4.7.2.8 with the left ‹D(0)

X]/S]
-module structures.

Proof. Since the proposition is local, then we can suppose X]/S] has logarithmic coordinates u1, . . . , ud.
By using the formula 4.7.2.7.1, we compute that the square 4.7.2.9.1 is commutative if and only if
∂]i(f(x)) = f(∂]i(x)) for any i = 1, . . . , r. Since the ring ‹D(0)

X]/S]
is generated as OS-algebra by BX and

by ∂]1, . . . , ∂]d, then we are done.

4.7.2.10. Let φ : E → F be a homomorphism of left ‹D(0)

X]/S]
-modules. It follows from 4.7.2.6.2 that the

commutativity of 4.7.2.9.1 implies that of

E ⊗BX Ω̃iX]/S]

φ⊗id

��

∇i // E ⊗BX Ω̃i+1
X]/S]

φ⊗id

��
F ⊗BX Ω̃iX]/S]

∇i // F ⊗BX Ω̃i+1
X]/S]

.

(4.7.2.10.1)

Hence, we get the morphism of C(f−1OS) of the form DR(E)→ DR(F) (see notation 4.7.2.6).
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4.7.2.11. Let E be a left ‹D(0)

X]/S]
-module. We get the integrable connection ∇ : E → Ω̃1

X]/S] ⊗BX E (see
4.7.2.8 and 4.7.2.6). This yields (see the construction of 4.7.2.5 and 4.7.2.6) the OS-linear map

∇n−1 : Ω̃n−1
X]/S]

⊗BX E → Ω̃nX]/S] ⊗BX E . (4.7.2.11.1)

Suppose now X]/S] has logarithmic coordinates u1, . . . , ud. Let {i1, . . . , in−1} be n − 1 elements of
{1, . . . , d}. Let {j1, . . . , jd−n+1} be the complementary. For any section x of E , the formula 4.7.2.6.2
yields

∇n−1((d log ui1 ∧ · · · ∧ d log uin−1
)⊗ x) = (−1)n−1d log ui1 ∧ · · · ∧ d log uin−1

∧∇(x)

= (−1)n−1
d−n+1∑
a=1

(d log ui1 ∧ · · · ∧ d log uin−1 ∧ d log uja)⊗ ∂]ja(x). (4.7.2.11.2)

4.7.2.12. Viewing ‹D(0)

X]/S]
as a left ‹D(0)

X]/S]
-module, we get from 4.7.2.11.1 the OS-linear map:

∇n−1 : Ω̃n−1
X]/S]

⊗BX ‹D(0)

X]/S]
→ Ω̃nX]/S] ⊗BX ‹D(0)

X]/S]
. (4.7.2.12.1)

In fact, since ‹D(0)

X]/S]
as a ‹D(0)

X]/S]
-bimodule then we get by functoriality (see 4.7.2.9) that 4.7.2.12.1 is a

homomorphism of right ‹D(0)

X]/S]
-modules.

Let E be a left ‹D(0)

X]/S]
-module. Similarly to 2.3.2.10.3, we get the commutative diagram:

(Ω̃n−1
X]/S]

⊗BX ‹D(0)

X]/S]
)⊗D̃(0)

X]/S]

E

∼
��

∇n−1⊗id // (Ω̃n−1
X]/S]

⊗BX ‹D(0)

X]/S]
)⊗D̃(0)

X]/S]

E

∼
��

Ω̃n−1
X]/S]

⊗BX E
∇n−1

// Ω̃nX]/S] ⊗BX E ,

(4.7.2.12.2)

where the vertical isomorphisms are the canonical ones. Hence we have the canonical isomorphism of
C(r‹D(0)

X]/S]
) of the form DR(E)

∼−→ DR(‹D(0)

X]/S]
)⊗D̃(0)

X]/S]

E .

4.7.3 Tangent sheaf, homological dimension, Spencer resolutions

4.7.3.1 (Tangent sheaf). When E is a BX -module, we write E∨ := HomBX (E ,BX). We set ‹TX]/S] :=

(Ω̃1
X]/S])

∨, the tangent sheaf relative to X]/S] with coefficients in BX . From the canonical inclusion

j̃ : Ω̃1
X]/S] ↪→ ‹P1

X]/S] , we obtain by duality the canonical epimorphism ‹DX]/S],1 � ‹TX]/S] whose kernel

is ‹DX]/S],0 = BX . From the canonical epimorphism ‹$X]/S] : p0∗‹P1
X]/S] � Ω̃1

X]/S] (see 4.7.1.5.3), we get

by duality the BX -linear monomorphism ‹$∨X]/S] : ‹TX]/S] ↪→ ‹DX]/S],1 (for the left structure of ‹DX]/S],1).
The morphisms ‹P1

X]/S] → ‹P1
X]/S],(m) and ‹D(m)

X]/S],1
→ ‹DX]/S],1 are isomorphisms for any m ∈ N.

This yields gr1
‹D(m)

X]/S]
∼−→ ‹TX]/S] . Moreover, we get the BX -linear monomorphism

ι(m) : ‹TX]/S] $̃∨X]/S]↪→ ‹DX]/S],1 ∼←− ‹D(m)

X]/S],1
↪→ ‹D(m)

X]/S]
. (4.7.3.1.1)

Suppose X]/S] has logarithmic coordinates (uλ)λ=1,...,d. Following the local description given at 4.7.1.7,
ι(m)(‹TX]/S]) is equal to the free BX -submodule (for the left or the right structure) of ‹D(m)

X]/S]
generated

by elements ∂]1, . . . , ∂]d.

Proposition 4.7.3.2. The homomorphism ι(0) : ‹TX]/S] → ‹D(0)

X]/S]
(see 4.7.3.1.1) induces the isomor-

phism of graded BX-algebras:
S(‹TX]/S]) ∼−→ gr ‹D(0)

X]/S]
.
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Proof. Since this is local, we can suppose X]/S] has logarithmic coordinates (uλ)λ=1,...,d. Following
4.7.3.1, ι(0) identifies ‹TX]/S] with the free BX -submodule of ‹D(0)

X]/S]
generated by elements ∂]1, . . . , ∂]d.

Denote by ξ]i the image of ∂]i in gr1
‹D(0)

X]/S]
. Then it follows from 4.1.2.17.a that gr ‹D(0)

X]/S]
is equal to

the commutative polynomial BX -algebra with the variable ξ]1, . . . , ξ]d.

We suppose from now f : X → S has pure relative dimension d.

Notation 4.7.3.3. We sometimes remove the canonical inclusion ι(0) in the notation, i.e. we might
canonically identify ‹TX]/S] with a sub-BX -module of D(0)

X]/S]
. For any sections v1, v2 of ‹TX]/S] , we denote

by [v1, v2] the section of ‹TX]/S] which corresponds to the section v1v2−v2v1 (we use the ring structure of‹D(0)

X]/S]
and we remark v1v2−v2v1 ∈ ‹TX]/S]). The f−1OS-bilinear map [−,−] : ‹TX]/S]×‹TX]/S] → ‹TX]/S]

satisfies the Jacobi identity, i.e. we get a Lie bracket on the tangent space with coefficients in BX .

Definition 4.7.3.4. Let E = (En)n∈N be a filtered left ‹D(0)

X]/S]
-module, i.e a left ‹D(0)

X]/S]
-module endowed

with an exhaustive filtration (En)n∈N by BX -submodules so that ‹D(0)

X]/S],n′
· En ⊂ En+n′ .

For any sections v1, v2 of ‹TX]/S] and b of BX , we compute v1b− bv1 = v1(b) and [bv1, v2] = b[v1, v2]−
v2(b)v1. Hence, similarly to [Kas95, 1.6], we can check that the morphism of left ‹D(0)

X]/S]
-modules

δ : ‹D(0)

X]/S]
⊗BX ∧i‹TX]/S] ⊗BX Ej−1 → ‹D(0)

X]/S]
⊗BX ∧i−1‹TX]/S] ⊗BX Ej (4.7.3.4.1)

given by

δ (P ⊗ (v1 ∧ · · · ∧ vi)⊗ u) =
i∑

a=1

(−1)a−1Pva ⊗ (v1 ∧ · · · ∧ “va ∧ · · · ∧ vi)⊗ u
−

i∑
a=1

(−1)a−1P ⊗ (v1 ∧ · · · ∧ “va ∧ · · · ∧ vi)⊗ vau
+

∑
1≤a<b≤i

(−1)a+bP ⊗ ([va, vb] ∧ v1 ∧ · · · ∧ “va ∧ · · · ∧ “vb ∧ · · · ∧ vi)⊗ u
is well defined. Moreover, we compute easily that we get the following complex of left ‹D(0)

X]/S]
-modules

0→ ‹D(0)

X]/S]
⊗BX∧d‹TX]/S]⊗BX En−d · · · −→

δ

‹D(0)

X]/S]
⊗BX∧‹TX]/S]⊗BX En−1 −→

δ

‹D(0)

X]/S]
⊗BX En → E → 0.

(4.7.3.4.2)
We call 4.7.3.4.2 the first Spencer sequence of degree n of E and denote it by Sp

n,D̃(0)

X]/S]

(E) or Spn(E).

Remark 4.7.3.5. With the notations of 4.7.3.4, we putM := ω̃X]/S] ⊗BX E andMs := ω̃X]/S] ⊗BX Es.
We define a homomorphism of right ‹D(0)

X]/S]
-modules Ms−1 ⊗BX ∧r‹TX]/S] ⊗BX ‹D(0)

X]/S]
→ Ms ⊗BX

∧r−1‹TX]/S] ⊗BX ‹D(0)

X]/S]
by applying the functor ω̃X]/S] ⊗BX − to 4.7.3.4.1 and by functoriality of

the transposition isomorphism δX] : ω̃X]/S] ⊗BX ‹D(0)

X]/S]
∼−→ ω̃X]/S] ⊗BX ‹D(0)

X]/S]
(see 4.2.5.5). We

get therefore a complex denoted by Sp•
s,D̃(0)

X]/S]

(M) and inducing by construction the isomorphism

ω̃X]/S] ⊗BX Sp•
s,D̃(0)

X]/S]

(E)
∼−→ Sp•

s,D̃(0)

X]/S]

(M).

Theorem 4.7.3.6. With the notations of 4.7.3.4, let us suppose moreover that the filtration of E is good.
Hence, for s large enough, Sp•

s,D̃(0)

X]/S]

(E) is exact.

Proof. This is checked similarly to [Kas95, 1.6.1]. More precisely, the proof has the following two steps.
Step 1. We check by induction on the integer s ≥ 0 that Sp•

s,D̃(0)

X]/S]

(‹D(0)

X]/S
) is an exact sequence when‹D(0)

X]/S
is endowed with its order filtration. When s = 0, this is straightforward since Sp•

0,D̃(0)

X]/S]

(‹D(0)

X]/S
)
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is equal to the exact sequence

0→ 0
δ→ · · · δ→ 0

δ→ ‹D(0)

X]/S
⊗BX ‹D(0)

X]/S,0

∼−→ ‹D(0)

X]/S
→ 0, (4.7.3.6.1)

Suppose now Sp•
s−1,D̃(0)

X]/S]

(‹D(0)

X]/S
) is an exact sequence for s ≥ 1 and consider the commutative diagram

where we have removed /S in the notation

0

��

0

��

0

��

0

��
0 // D̃(0)

X]
⊗BX ∧

dT̃X]/S ⊗BX D̃
(0)

X],s−1−d · · ·
δ //

��

D̃(0)

X]
⊗BX T̃X]/S ⊗BX D̃

(0)

X],s−2

δ //

��

D̃(0)

X]
⊗BX D̃

(0)

X],s−1
//

��

D̃(0)

X]
//

��

0

0 // D̃(0)

X]
⊗BX ∧

dT̃X]/S ⊗BX D̃
(0)

X],s−d · · ·
δ //

��

D̃(0)

X]
⊗BX T̃X]/S ⊗BX D̃

(0)

X],s−1

δ //

��

D̃(0)

X]
⊗BX D̃

(0)

X],s
//

��

D̃(0)

X]
//

��

0

0 // D̃(0)

X]
⊗BX ∧

dT̃X]/S ⊗BX grs−d D̃
(0)

X]
· · ·

id⊗β//

��

D̃(0)

X]
⊗BX T̃X]/S ⊗BX grs−1 D̃

(0)

X]

id⊗β//

��

D̃(0)

X]
⊗BX grs D̃

(0)

X]
//

��

0

0 0 0
(4.7.3.6.2)

where the first row (resp. second row) is Sp•
s−1,D̃(0)

X]/S]

(‹D(0)

X]/S
) (resp. Sp•

s,D̃(0)

X]/S]

(‹D(0)

X]/S
)), where β : ∧i‹TX]/S ⊗BX grj−1

‹D(0)

X]/S]
→ ∧i−1‹TX]/S ⊗BX grj ‹D(0)

X]/S]
is given by the formula

β ((v1 ∧ · · · ∧ vi)⊗ u) =
i∑

a=1

(−1)a(v1 ∧ · · · ∧ “va ∧ · · · ∧ vi)⊗ vau.
The fact that the sequence

0 // ∧d‹TX]/S ⊗BX grs−d ‹D(0)

X]/S]
· · ·

β // ‹TX]/S ⊗BX grs−1
‹D(0)

X]/S]
β // grs ‹D(0)

X]/S]
// 0

(4.7.3.6.3)
is exact is local. Hence, we can suppose X]/S] has logarithmic coordinates (uλ)λ=1,...,d that we fix.
This yields gr ‹D(0)

X]/S]
is a ring of polynomial with coefficients over BX with coordinates ξ]1, . . . , ξ]d the

elements induced by ∂]1, . . . , ∂]d (see 4.1.2.17). Moreover, we see that the exact sequence 4.7.3.6.3 is equal
to the s-graded part of the Koszul complex of gr ‹D(0)

X]/S]
associated with the regular elements ξ]1, . . . , ξ]d.

Hence, 4.7.3.6.3 is exact. We conclude by noticing that the forth row of the diagram 4.7.3.6.2 is equal
to the image of 4.7.3.6.3 by the exact functor ‹D(0)

X]/S]
⊗BX −.

Step 2. We conclude therefore similarly to the end of the proof of [Kas95, 1.6.1].

Example 4.7.3.7. Let E be a left ‹D(0)

X]/S]
-module which is BX -coherent. Then its trivial filtration,

i.e. the filtration (En)n∈N with En = E , is a good filtration. Hence, we get the exact sequence of left‹D(0)

X]/S]
-modules

0→ ‹D(0)

X]/S]
⊗BX ∧d‹TX]/S] ⊗BX E · · · −→

δ

‹D(0)

X]/S]
⊗BX ∧‹TX]/S] ⊗BX E −→

δ

‹D(0)

X]/S]
⊗BX E → E → 0,

(4.7.3.7.1)
that we denote by Sp•

D̃(0)

X]/S]

(E). In particular, taking the trivial filtration of BX , we get the exact

sequence of left ‹D(0)

X]/S]
-modules

0→ ‹D(0)

X]/S]
⊗BX ∧d‹TX]/S] · · · −→

δ

‹D(0)

X]/S]
⊗BX ∧‹TX]/S] −→

δ

‹D(0)

X]/S]
→ BX → 0 (4.7.3.7.2)
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where the map
δ : ‹D(0)

X]/S]
⊗BX ∧i‹TX]/S] → ‹D(0)

X]/S]
⊗BX ∧i−1‹TX]/S] (4.7.3.7.3)

is given by the formula

δ (P ⊗ (v1 ∧ · · · ∧ vi)) =
i∑

a=1

(−1)a−1Pva ⊗ (v1 ∧ · · · ∧ “va ∧ · · · ∧ vi)
+

∑
1≤a<b≤i

(−1)a+bP ⊗ ([va, vb] ∧ v1 ∧ · · · ∧ “va ∧ · · · ∧ “vb ∧ · · · ∧ vi).
In particular, we get

BX ∈ Db
perf(‹D(0)

X]/S]
). (4.7.3.7.4)

Remark 4.7.3.8. Let us denote by S̃p
(0)

X]/S]
:= Sp•

D̃(0)

X]/S]

(BX) and Sp
(0)

X]/S]
:= Sp•D(0)

X]/S]

(OX). Then by

construction we have the canonical isomorphism of C(l‹D(0)

X]/S]
):‹D(0)

X]/S]
⊗D(0)

X]/S]

Sp
(0)

X]/S]
∼−→ S̃p

(0)

X]/S]
. (4.7.3.8.1)

Since S̃p
(0)

X]/S]
∼−→ BX and Sp

(0)

X]/S]
∼−→ OX (see 4.7.3.7.2), this yields the well known (e.g. use 4.3.4.6.1)

isomorphism ‹D(0)

X]/S]
⊗D(0)

X]/S]

OX
∼−→ BX . (4.7.3.8.2)

Conversely, from the 4.7.3.8.2 and Sp
(0)

X]/S]
∼−→ OX we get S̃p

(0)

X]/S]
∼−→ BX (i.e. Spencer resolution with

constant coefficients implies Spencer resolution with coefficients, which was not obvious since D(0)

X]/S]
→‹D(0)

X]/S]
is not flat).

4.7.3.9. We can construct the map 4.7.2.12.1 in a second way by duality from the Spencer morphisms
as follows. Since ‹D(0)

X]/S]
is a locally free BX -module for its left structure (in particular), since Ω̃iX]/S]

is locally free of finite type for any integer 0 ≤ i ≤ d, then we get the canonical isomorphism of
(BX , ‹D(0)

X]/S]
)-bimodules:

Ω̃iX]/S] ⊗BX ‹D(0)

X]/S]
∼−→ ∧i(‹T ∨X]/S])⊗BX ‹D(0)

X]/S]
∼−→

2.3.3.7.1
∧i(‹TX]/S])∨ ⊗BX ‹D(0)

X]/S]
∼−→

∼−→ HomBX
Ä
∧i‹TX]/S] , ‹D(0)

X]/S]

ä ∼−→ HomD̃(0)

X]/S]

Ä‹D(0)

X]/S]
⊗BX ∧i‹TX]/S] , ‹D(0)

X]/S]

ä
. (4.7.3.9.1)

Hence, for any integer 0 ≤ n ≤ d, we get the morphism of right ‹D(0)

X]/S]
-modules δ?n making commutative

the diagram

Ω̃n−1
X]/S]

⊗BX ‹D(0)

X]/S]

4.7.3.9.1∼
��

δ?n // Ω̃nX]/S] ⊗BX ‹D(0)

X]/S]

4.7.3.9.1∼
��

HomD̃(0)

X]/S]

Ä‹D(0)

X]/S]
⊗BX ∧n−1‹TX]/S] , ‹D(0)

X]/S]

ä δ∨n // HomD̃(0)

X]/S]

Ä‹D(0)

X]/S]
⊗BX ∧n‹TX]/S] , ‹D(0)

X]/S]

ä
,

(4.7.3.9.2)
where δ∨n is the image under the functor HomD̃(0)

X]/S]

(−, ‹D(0)

X]/S]
) of the Spencer morphism of left ‹D(0)

X]/S]
-

modules 4.7.3.7.3.

Lemma 4.7.3.10. Both maps 4.7.2.12.1 and 4.7.3.9.2 are equal, i.e. δ?n = ∇n−1.

Proof. We copy the proof of 2.3.3.9.
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4.7.3.11. By applying the functor HomD̃(0)

X]/S]

(−, ‹D(0)

X]/S]
) to the complex of left ‹D(0)

X]/S]
-modules‹D(0)

X]/S]
⊗BX ∧d‹TX]/S] −→

δd
· · · −→

δ

‹D(0)

X]/S]
⊗BX ∧‹TX]/S] −→

δ1

‹D(0)

X]/S]
(4.7.3.11.1)

via the canonical isomorphisms 4.7.3.9.1, we get the complex of right ‹D(0)

X]/S]
-modules‹D(0)

X]/S]
−→
∇0

Ω̃1
X]/S] ⊗BX ‹D(0)

X]/S]
−→
∇1
· · · −→

∇
Ω̃d−1
X]/S]

⊗BX ‹D(0)

X]/S]
−→
∇d−1

Ω̃X]/S] ⊗BX ‹D(0)

X]/S]
. (4.7.3.11.2)

It follows from 4.7.3.10 that the complex of C(r‹D(0)

X]/S]
) defined at 4.7.3.11.2 is the de Rham complex of‹D(0)

X]/S]
and is denoted by DR(‹D(0)

X]/S]
) (see 4.7.2.5).

If E ∈ D(l‹D(0)

X]/S]
), we define the de Rham complex of E to be the complex

DR(E) := DR(‹D(0)

X]/S]
)⊗D̃(0)

X]/S]

E .

Remark, when E is a left ‹D(0)

X]/S]
-module, following 4.7.2.12 we retrieve the usual de Rham complex (up

to canonical isomorphisms) as defined at 4.7.2.5.

4.7.3.12. By applying the functor ω̃X]/S] ⊗BX − to the morphism of left ‹D(0)

X]/S]
-modules 4.7.3.7.3, we

get the morphism of right ‹D(0)

X]/S]
-modules:

ω̃X]/S] ⊗BX (‹D(0)

X]/S]
⊗BX ∧n‹TX]/S])→ ω̃X]/S] ⊗BX (‹D(0)

X]/S]
⊗BX ∧n−1‹TX]/S]). (4.7.3.12.1)

We have moreover the isomorphism of right ‹D(0)

X]/S]
-modules

Ω̃d−n
X]/S]

⊗BX ‹D(0)

X]/S]
∼−→

2.3.3.7.5
(∧n‹TX]/S] ⊗BX ω̃X]/S])⊗BX ‹D(0)

X]/S]

∼−→
δ̃
X]/S]

⊗id
∧nT̃

X]/S]

ω̃X]/S] ⊗BX (‹D(0)

X]/S]
⊗BX ∧n‹TX]/S]), (4.7.3.12.2)

where δ̃X]/S] is the transposition isomorphism (see 4.2.5.6.1)

Lemma 4.7.3.13. For any integer 0 ≤ n ≤ d, the following square of right ‹D(0)

X]/S]
-modules

Ω̃d−n
X]/S]

⊗BX ‹D(0)

X]/S]

4.7.2.12.1(−1)d−n+1∇d−n

��

∼
4.7.3.12.2

// ω̃X]/S] ⊗BX (‹D(0)

X]/S]
⊗BX ∧n‹TX]/S])

4.7.3.12.1 id⊗δn
��

Ω̃d−n+1
X]/S]

⊗BX ‹D(0)

X]/S]
∼

4.7.3.12.2
// ω̃X]/S] ⊗BX (‹D(0)

X]/S]
⊗BX ∧n−1‹TX]/S]),

(4.7.3.13.1)

is commutative.

Proof. We can copy the proof of 2.3.3.12.

Proposition 4.7.3.14. We have the following properties.

(i) The map ω̃X]/S] ⊗BX ‹D(0)

X]/S]
β→ ω̃X]/S] given by the structure of a right ‹D(0)

X]/S]
-module on ω̃X]/S]

induces a ‹D(0)

X]/S]
-linear resolution DR(‹D(0)

X]/S]
)[d]

∼−→ ω̃X]/S] of ω̃X]/S] .

(ii) Exti
D̃(0)

X]/S]

(BX , ‹D(0)

X]/S]
) = 0 for i 6= d. There is a canonical isomorphism of right ‹D(0)

X]/S]
-modules

Extd
D̃(0)

X]/S]

(BX , ‹D(0)

X]/S]
)
∼−→ ω̃X]/S] .
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Proof. By applying the functor ω̃X]/S] ⊗BX − to the exact sequence 4.7.3.7.2, with 4.7.3.13, we get that

DR(‹D(0)

X]/S]
)[d] is a resolution of ω̃X]/S] . Moreover, we compute that the map ω̃X]/S] ⊗BX ‹D(0)

X]/S]
β→

ω̃X]/S] of the resolution DR(‹D(0)

X]/S]
)[d]

∼−→ ω̃X]/S] is given by the structure of a right ‹D(0)

X]/S]
-module

on ω̃X]/S] .

Remark 4.7.3.15 (Level m case). We get the level m ∈ N∪{∞} of the formal case when we tensor by Q.
More precisely, suppose we are of the formal case and write X]/S] by X]/S]. Suppose that BX → BX,Q
is an isomorphism. The extension BX⊗OX

D(0)

X]/S]
→ BX,Q⊗OX

D(0)

X]/S]
∼−→ BX,Q⊗OX

D(m)

X]/S]
is therefore

an isomorphism. Hence denoting ‹D(m)

X]/S]
:= BX,Q ⊗OX

D(m)

X]/S]
, we get BX ∈ Db

perf(
‹D(m)

X]/S]
) and 4.7.3.6

and 4.7.3.14 are still valid by replacing 0 by m.

Corollary 4.7.3.16 (Homological dimension). Suppose S is affine, X is affine and regular, and f : X] →
S]. Let r := sups∈f(X) dimOS,s. Then the ring D(0)

X]/S]
:= Γ(X,D(0)

X]/S]
) has homological global dimen-

sion equal to 2d+ r.

Proof. We can copy the proof of 2.3.4.5.
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Chapter 5

Operations on differential of level m of
finite order modules

5.1 Definitions of the functors and first properties
This section deals with cohomological operations at fixed level m ∈ N. Over C we have in the theory of
D-modules four operations basing on which we can deduce the others: the direct image f+, extraordinary
inverse image f !, dual, external tensor product. In the arithmetic theory, it is also necessary to consider
two supplementary operations:

- the base change, the base scheme is not necessarily the spectrum of a field;
- the extension of ring of differential operators via ring homomorphisms of the form BX⊗OXD

(m)

X]/S]
→

B′X ⊗OX D
(m′)

X]/S]
. with m ≤ m′ and induced by coefficient homomorphisms BX → B′X .

5.1.1 Extraordinary inverse image of complexes of D-modules, base change
Unless otherwise stated, we use in this subsection the notation of 5.1.1.1.

5.1.1.1. Let
X] f //

p
X]

��

Y ]

p
Y ]

��
S]

b // T ],

(5.1.1.1.1)

be a commutative diagram where S] and T ] are nice fine log schemes over Spec(Z/pi+1Z) as defined in
3.1.1.1 with i an integer (resp. S] and T ] are nice fine V-log formal schemes as defined in 3.3.1.10), where
X] is a log smooth S]-log-scheme (resp. log smooth S]-log formal scheme) and Y ] is a log smooth T ]-log
scheme (resp. a log smooth T ]-log formal scheme). Let BX (resp. BY ) be a commutative OX -algebra
(resp. OY -algebra) endowed with a compatible structure of D(m)

X]/S]
-module (resp. D(m)

Y ]/T ]
-module). Let

us recall that the action of left D(m)

X]/S]
-module on f∗BY is compatible with its structure of OX -algebra

(see 3.4.4.6). We suppose finally that we have a morphism of algebras f∗BY → BX which is moreover
D(m)

X]/S]
-linear. We will again denote by ‹D(m)

X]/S]
= BX ⊗OX D

(m)

X]/S]
and ‹D(m)

Y ]/T ]
= BY ⊗OY D

(m)

Y ]/T ]
.

We denote by ‹X] (resp. ‹Y ]) the ringed logarithmic (V-formal) scheme (X],BX) (resp. (Y ],BY )), and
by f̃ : ‹X]/S] → ‹Y ]/T ] the morphism of relative ringed logarithmic (V-formal) schemes induced by the
diagram 5.1.1.1.1 and by f∗BY → BX . When S] → T ] in understood, by abuse of notation, we sometimes
also denote by f̃ the induced morphism ‹X] → ‹Y ] of ringed logarithmic (V-formal) schemes.

Let U := X]∗ be the open of X where MX] is trivial and jU : U ↪→ X] be the canonical open
immersion. Let V := Y ]∗ be the open of Y where MY ] is trivial and jV : V ↪→ X] be the canonical open
immersion.
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Notation 5.1.1.2. We deduce by functoriality from 4.4.2.4 that we get a structure of (‹D(m)

X]/S]
, f−1‹D(m)

Y ]/T ]
)-

bimodule on ‹D(m)

X]/S]→Y ]/T ] := f̃∗‹D(m)

Y ]/T ]
. When S] → T ] is the identity, we can simply write ‹D(m)

X]→Y ]/T ]

and when moreover there is no doubt about S we write ‹D(m)

X]→Y ] . When BX = OX and BY = OY , we
denote this bimodule by D(m)

X]/S]→Y ]/T ] , and when b = id, we simply write D(m)

X]→Y ]/T ] or D
(m)

X]→Y ] .

We deduce by functoriality from 4.4.2.4 and 4.3.5.7, we get a structure of (f−1‹D(m)

Y ]/T ]
, ‹D(m)

X]/S]
)-

bimodule on ‹D(m)

Y ]/T ]←X]/S] := ω̃X]/S] ⊗BX f̃∗r
Ä‹D(m)

Y ]/T ]
⊗BY ω̃−1

Y ]/T ]

ä
,

where the index “r” means that we have chosen the right (i.e. the twisted) structure of left ‹D(m)

Y ]/T ]
on‹D(m)

Y ]/T ]
⊗BY ω̃−1

Y ]/T ]
to compute structure of left ‹D(m)

X]/S]
via the functor f̃∗.

When S → T is the identity, we can simply write ‹D(m)

Y ]←X]/S] and when moreover there is no doubt

about S we write ‹D(m)

Y ]←X] . When BX = OX and BY = OY , we denote this bimodule by D(m)

Y ]/T ]←X]/S] ,

and when b = id, we simply write D(m)

X]→Y ]/T ] or D
(m)

Y ]←X] .

We have the isomorphism of left (f−1‹D(m)

Y ]/T ]
, ‹D(m)

X]/S]
)-bimodules

f̃∗r
Ä‹D(m)

Y ]/T ]
⊗BY ω̃−1

Y ]/T ]

ä ∼−→
f̃∗(4.2.5.6.3)

f̃∗l
Ä‹D(m)

Y ]/T ]
⊗BY ω̃−1

Y ]/T ]

ä
,

where the index “l” means that we have chosen the left structure. By tensoring this latter isomorphism
with ω̃X]/S] ⊗BX −, we get the isomorphism of (f−1‹D(m)

Y ]/T ]
, ‹D(m)

X]/S]
)-bimodules‹D(m)

Y ]/T ]←X]/S]
∼−→ ω̃X]/S] ⊗BX ‹D(m)

X]/S]→Y ]/T ] ⊗f−1BY f
−1ω̃−1

Y ]/T ]
. (5.1.1.2.1)

Lemma 5.1.1.3. Suppose f̃ is quasi-flat (see Definition 4.4.1.3). Then ‹D(m)

X]/S]→Y ]/T ] (resp. ‹D(m)

Y ]/T ]→X]/S])

is solvable in the sense of 4.6.3.2.b as a complex of C(‹D(m)

X]/S]
, f−1‹D(m)

Y ]/T ]
) (resp. C(‹D(m)

X]/S]
, f−1‹D(m)

Y ]/T ]
)).

Proof. By definition, there exists a morphism of schemes (resp. of V-formal schemes) of the form T → U
such that both induced morphisms of ringed spaces g : (X,BX)→ U and h : (Y,BY )→ U are flat. Since‹D(m)

Y ]/T ]
/BY is flat, since h is flat we get that ‹D(m)

Y ]/T ]
/h−1(OU ) is flat. Moreover, h−1(OU ) is sent into the

center of ‹D(m)

Y ]/T ]
. Hence, f−1‹D(m)

Y ]/T ]
/g−1(OU ) is flat and g−1(OU ) is sent in the center of f−1‹D(m)

Y ]/T ]
.

Since ‹D(m)

X]/S]
/BX is flat, since g is flat, we get that ‹D(m)

X]/S]
/g−1(OU ) is flat. Hence, g−1(OU ) is a solving

ring of ‹D(m)

X]/S]→Y ]/T ] . Similarly, we check that g−1(OU ) is a solving ring of ‹D(m)

Y ]/T ]←X]/S] .

Definition 5.1.1.4. We keep notation 5.1.1.2. Set df := δX]/S] − δY ]/T ] ◦ f , where δX]/S] , δY ]/T ] are
respectively the rank (as a locally constant function on X ′ or X respectively) of the locally free modules
ΩX]/S] and ΩY ]/T ] .

(a) The (left version of the) extraordinary inverse image functor of levelm by f̃ is the functor f̃ (m)! : D(l‹D(m)

Y ]/T ]
)→

D(l‹D(m)

X]/S]
) which is defined by setting for any F ∈ D(‹D(m)

Y ]/T ]
):

f̃ (m)!(F) := ‹D(m)

X]/S]→Y ]/T ] ⊗
L
f−1D̃(m)

Y ]/T]

f−1F [df ].

(b) The (right version of the) extraordinary inverse image functor of level m by f̃ is the functor
f̃ (m)! : D(r‹D(m)

Y ]/T ]
)→ D(l‹D(m)

X]/S]
) which is defined by setting

f̃ (m)!(M) := f−1M⊗L
f−1D̃(m)

Y ]/T]

‹D(m)

Y ]/T ]←X]/S] [df ],

whereM∈ D(r‹D(m)

Y ]/T ]
).
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5.1.1.5 (Left to right). The left and the right versions of the extraordinary inverse image functors of
level m by f̃ of 5.1.1.4 are compatible with the quasi-inverse exact functors of 4.3.5.7 exchanging left
and right ‹D(m)

X]/S]
-module structures (resp. left and right ‹D(m)

Y ]/T ]
-module structures). More precisely, for

anyM∈ D(r‹D(m)

Y ]/T ]
), we have the isomorphisms:

f̃ (m)!(M⊗BY ω̃−1
Y ]/T ]

)
∼−→ ‹D(m)

X]/S]→Y ]/T ] ⊗
L
f−1D̃(m)

Y ]/T]

Ä
f−1(M)⊗f−1BY f

−1ω̃−1
Y ]/T ]

)
ä

[df ]

∼−→ f−1(M)⊗L
f−1D̃(m)

Y ]/T]

Ä‹D(m)

X]/S]→Y ]/T ] ⊗f−1BY f
−1ω̃−1

Y ]/T ]
)
ä

[df ]

∼−→
5.1.1.2.1

f̃ (m)!(M)⊗BX ω̃−1
X]/S]

. (5.1.1.5.1)

5.1.1.6. Let PY ]/T ] be the collection of complexes of K(‹D(m)

Y ]/T ]
) which are K-flat as a complex of

K(BY ).

(a) Following 4.4.2.4, we have the functor f̃∗ := BX ⊗f−1BY f
−1− : K(l‹D(m)

Y ]/T ]
) → K(l‹D(m)

X]/S]
). More-

over, for any G ∈ K(‹D(m)

Y ]/T ]
), it follows from 4.4.2.9.1 that the canonical morphism

f̃∗(G) := BX ⊗f−1BY f
−1G → ‹D(m)

X]/S]→Y ]/T ] ⊗f−1D̃(m)

Y ]/T]

f−1G (5.1.1.6.1)

is an isomorphism of K(‹D(m)

X]/S]
). When the coefficients are constant, i.e. BX = OX and BY = OY ,

we simply write f∗ this functor.

(b) The collection PY ]/T ] satisfies the conditions (1) and (2) of [Sta22, 13.14.15] with respect to the
functor ‹D(m)

X]/S]→Y ]/T ] ⊗f−1D̃(m)

Y ]/T]

f−1− : K(‹D(m)

Y ]/T ]
)→ D(‹D(m)

X]/S]
),

which implies that for any quasi-isomorphism P ∼−→ E of K(‹D(m)

Y ]/T ]
) such that P is an object of P,

(in that case we say that P is representing E), then‹D(m)

X]/S]→Y ]/T ] ⊗f−1D̃(m)

Y ]/T]

f−1P ∼−→ ‹D(m)

X]/S]→Y ]/T ] ⊗
L
f−1D̃(m)

Y ]/T]

f−1E .

Indeed, since PY ]/T ] contains the collection of K-flat complexes of K(‹D(m)

Y ]/T ]
) then we get the

condition (1). Moreover, let u : P → P ′ be a quasi-isomorphism between two objects of PY ]/T ] . It
follows from 5.1.1.6.1 that the morphism

id⊗ u : ‹D(m)

X]/S]→Y ]/T ] ⊗f−1D̃(m)

Y ]/T]

f−1P → ‹D(m)

X]/S]→Y ]/T ] ⊗f−1D̃(m)

Y ]/T]

f−1P ′

is canonically isomorphic to id⊗u : BX⊗f−1BY f
−1P → BX⊗f−1BY f

−1P ′. Since P and P ′ are K-flat
in K(BY ), then it follows from [Sta22, 20.26.13] that this latter morphism is a quasi-isomorphism.

(c) Similarly, since PY ]/T ] satisfies also the condition (1) and (2) of [Sta22, 13.14.15] with respect to
the functor f̃∗, then f̃∗ is left derivable. Let Lf̃∗ : D(l‹D(m)

Y ]/T ]
) → D(l‹D(m)

X]/S]
) be the left derived

functor of f̃∗. For any F ∈ D(l‹D(m)

Y ]/T ]
), we have the canonical isomorphism of D(l‹D(m)

X]/S]
):

Lf̃∗(F)[df ]
∼−→ f̃ (m)!(F). (5.1.1.6.2)

(d) Since 5.1.1.6.1 is an isomorphism then for any P ∈ PY ]/T ] , we have‹D(m)

X]/S]→Y ]/T ] ⊗f−1D̃(m)

Y ]/T]

f−1P ∈ PX]/S] . (5.1.1.6.3)

236



Lemma 5.1.1.7. For E and F two objects of D−(
l‹D(m)

Y ]/T ]
), with notation 5.1.1.6, we have the isomor-

phisms of D(
l‹D(m)

X]/S]
):

Lf̃∗(E)⊗L
BX Lf̃∗(F)

∼−→ Lf̃∗(E ⊗L
BY F), Lf̃ (m)!(E)⊗L

BX Lf̃ (m)!(F)
∼−→ Lf̃ (m)!(E ⊗L

BY F)[df ].
(5.1.1.7.1)

Proof. We choose a complex P (resp. Q) of PY ]/T ] (see notation of 5.1.1.6) representing E (resp. F).
Following 4.4.5.14.1, we get an isomorphism of C(

l‹D(m)

X]/S]
) of the form

f̃∗(P)⊗BX f̃∗(Q)
∼−→ f̃∗(P ⊗BY Q).

Hence, we are done.

Proposition 5.1.1.8. Suppose BX = f∗BY . Suppose f−1OY and OX are tor independent over f−1BY .
Let ∗ ∈ {l, r}, let F ∈ D(∗‹D(m)

Y ]/T ]
) and forg(F) (or simply F) be the induced object of D(∗D(m)

Y ]/T ]
). The

canonical homomorphism
f (m)!(forg(F))→ f̃ (m)!(F) (5.1.1.8.1)

is an isomorphism of D(∗‹D(m)

X]/S]
).

Proof. When ∗ = l, the proposition was checked at 4.4.5.2. By using 5.1.1.5.1 (and 4.3.5.4.(c)), this
yields the case ∗ = r.

Remark 5.1.1.9. By functoriality, it follows from 4.4.5.2 and 5.1.1.5.1 (and exactness of the functors
of 4.3.5.4.(c) that the canonical top (resp. bottom) homomorphism of (D(m)

X]/S]
, f−1‹D(m)

Y ]/T ]
)-bimodules

(resp. (f−1‹D(m)

Y ]/T ]
,D(m)

X]/S]
)-bimodules)

D(m)

X]/S]→Y ]/T ] ⊗f−1D(m)

Y ]/T]

f−1‹D(m)

Y ]/T ]
∼−→ ‹D(m)

X]/S]→Y ]/T ] , (5.1.1.9.1)

f−1‹D(m)

Y ]/T ]
⊗
f−1D(m)

Y ]/T]

D(m)

Y ]/T ]←X]/S] → ‹D(m)

Y ]/T ]←X]/S] (5.1.1.9.2)

is an isomorphism. When f−1OY and OX are tor independent over f−1BY , then then we can replace
the tensor product by the derived tensor product (e.g. this follows by functoriality from 5.1.1.8).

Proposition 5.1.1.10. Suppose f−1BY → BX has finite tor dimension, i.e. the functor f̃∗ = BX⊗f−1BY
f−1− from the category of BY -modules to that of BX-modules has bounded cohomological dimension (see
definition 4.6.1.4). Then the functor f̃ (m)! : D(∗‹D(m)

Y ]/S]
) → D(∗‹D(m)

X]/S]
) where ∗ ∈ {r, l} is way-out in

both direction.

Proof. This follows from 5.1.1.6.2.

Lemma 5.1.1.11. We keep notation 4.4.5.5.

(a) We have the canonical isomorphism of (‹D(m)

X]/S]
, (g ◦ f)−1‹D(m)

Z]/U]
)-bimodules:‹D(m)

X]/S]→Y ]/T ] ⊗f−1D̃(m)

Y ]/T]

f−1‹D(m)

Y ]/T ]→Z]/U]
∼−→ ‹D(m)

X]/S]→Z]/U] . (5.1.1.11.1)

(b) We have the canonical isomorphism of ((g ◦ f)−1‹D(m)

Z]/U]
, ‹D(m)

X]/S]
)-bimodules:

f−1‹D(m)

Z]/U]←Y ]/T ] ⊗f−1D̃(m)

Y ]/T]

‹D(m)

Y ]/T ]←X]/S]
∼−→ ‹D(m)

Z]/U]←X]/S] . (5.1.1.11.2)

Proof. a) Let us check 5.1.1.11.1. We have the isomorphism of leftD(m)

X]/S]
-modules ‹D(m)

X]/S]→Y ]/T ]⊗f−1D̃(m)

Y ]/T]

f−1‹D(m)

Y ]/T ]→Z]/U]
∼−→ f̃∗g̃∗‹D(m)

Z]/U]
and ‹D(m)

X]/S]→Y ]/T ]
∼−→ (g̃ ◦ f̃)∗‹D(m)

Z]/U]
. It follows from 4.4.5.6 that

we get the canonical isomorphism of left D(m)

X]/S]
-modules‹D(m)

X]/S]→Y ]/T ] ⊗f−1D̃(m)

Y ]/T]

f−1‹D(m)

Y ]/T ]→Z]/U]
∼−→ ‹D(m)

X]/S]→Z]/U] .
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We get by functoriality the fact that this isomorphism is an isomorphism of (‹D(m)

X]/S]
, (g ◦ f)−1‹D(m)

Z]/U]
)-

bimodules.
b) Finally, we get the isomorphism 5.1.1.11.2 from 5.1.1.11.1 by twisting.

Lemma 5.1.1.12. Suppose f̃ is quasi-flat (see Definition 4.4.1.3). We keep notation 4.4.5.5.

(a) We have the canonical isomorphism of D(‹D(m)

X]/S]
, (g ◦ f)−1‹D(m)

Z]/U]
):‹D(m)

X]/S]→Y ]/T ] ⊗
L
f−1D̃(m)

Y ]/T]

f−1‹D(m)

Y ]/T ]→Z]/U]
∼−→ ‹D(m)

X]/S]→Z]/U] . (5.1.1.12.1)

(b) We have the canonical isomorphism of D((g ◦ f)−1‹D(m)

Z]/U]
, ‹D(m)

X]/S]
):

f−1‹D(m)

Z]/U]←Y ]/T ] ⊗
L
f−1D̃(m)

Y ]/T]

‹D(m)

Y ]/T ]←X]/S]
∼−→ ‹D(m)

Z]/U]←X]/S] . (5.1.1.12.2)

Proof. a) By quasi-flatness of f̃ , it follows from 5.1.1.3 that the morphisms are well defined. Moreover,
since ‹D(m)

Z]/U]
is BZ-flat, and g̃∗‹D(m)

Z]/U]
is BY -flat then Lf̃∗

Ä
g̃∗‹D(m)

Z]/U]

ä ∼−→ f̃∗
Ä
g̃∗‹D(m)

Z]/U]

ä
. Hence,‹D(m)

X]/S]→Y ]/T ] ⊗
L
f−1D̃(m)

Y ]/T]

f−1‹D(m)

Y ]/T ]→Z]/U]
∼−→ ‹D(m)

X]/S]→Y ]/T ] ⊗f−1D̃(m)

Y ]/T]

f−1‹D(m)

Y ]/T ]→Z]/U] .

b) Finally, we get the isomorphism 5.1.1.12.2 from 5.1.1.12.1 by twisting (use 5.1.1.2.1 and 4.3.5.6.1).

Proposition 5.1.1.13. With notation 4.4.5.5, let G be a complex of D(l‹D(m)

Z]/U]
). We have the canonical

isomorphism of D(l‹D(m)

X]/S]
):

f̃ (m)! ◦ g̃(m)!(G)
∼−→ fig ◦ f (m)!

(G).

Proof. This is a consequence of 5.1.1.6.3 and 5.1.1.12.

5.1.1.14. By functoriality, it follows from 5.1.1.13, 4.3.4.6.1 and 4.3.4.8.1 that the canonical top (resp.
bottom) homomorphism of K(‹D(m)

X]/S]
, f−1D(m)

Y ]/T ]
) (resp. K(f−1D(m)

Y ]/T ]
, ‹D(m)

X]/S]
))‹D(m)

X]/S]
⊗L
D(m)

X]/S]

D(m)

X]/S]→Y ]/T ] → ‹D(m)

X]/S]→Y ]/T ] , (5.1.1.14.1)

D(m)

Y ]/T ]←X]/S] ⊗
L
D(m)

X]/S]

‹D(m)

X]/S]
→ ‹D(m)

Y ]/T ]←X]/S] (5.1.1.14.2)

is an isomorphism. Remark that contrary to 5.1.1.9, we do not need flatness condition with the derived
tensor products version.

5.1.1.15 (Base change). Suppose the diagram 5.1.1.1.1 is cartesian and the morphism f∗BY → BX is
an isomorphism (such case is called the base change one). Then it follows from 4.4.4.1.a that we have
the homomorphism of sheaves of rings

f−1‹D(m)

Y ]/T ]
→ ‹D(m)

X]/S]
(5.1.1.15.1)

such that the canonical morphism ‹D(m)

X]/S]
→ ‹D(m)

X]/S]→Y ]/T ] is an isomorphism of (‹D(m)

X]/S]
, f−1‹D(m)

Y ]/T ]
)-

bimodules. Let F ∈ D(l‹D(m)

Y ]/T ]
). Since d

f̃
= 0, this yields the canonical isomorphism of D(l‹D(m)

X]/S]
):‹D(m)

X]/S]
⊗L
f−1D̃(m)

Y ]/T]

f−1F ∼−→ f̃ (m)!(F). (5.1.1.15.2)

Remark that if p−1
X]
OS and f−1BY are tor independent over f−1p−1

Y ]
OT , then the canonical morphism

p−1
X]
OS ⊗L

f−1p−1

Y ]
OT

f−1F → ‹D(m)

X]/S]
⊗L
f−1D̃(m)

Y ]/T]

f−1F (5.1.1.15.3)
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is an isomorphism. By abuse of notation, under this flatness condition we can simply denote by OS ⊗L
OT

F := ‹D(m)

X]/S]
⊗L
f−1D̃(m)

Y ]/T]

f−1F .

LetM∈ D(r‹D(m)

Y ]/T ]
). It follows from 4.4.4.4.4 and 5.1.1.5.1 that we have the canonical isomorphism

of D(r‹D(m)

X]/S]
):

f−1M⊗L
f−1D̃(m)

Y ]/T]

‹D(m)

X]/S]
∼−→ f̃ (m)!(M), (5.1.1.15.4)

where the structure of left f−1‹D(m)

Y ]/T ]
-module on ‹D(m)

X]/S]
is given via 5.1.1.15.1. By functoriality,

this implies that we have the canonical isomorphism of (f−1‹D(m)

Y ]/T ]
, ‹D(m)

X]/S]
)-bimodules of the form‹D(m)

Y ]/T ]←X]/S]
∼−→ ‹D(m)

X]/S]
.

As for the left case, when p−1
X]
OS and f−1BY are tor independent over f−1p−1

Y ]
OT , the canonical

morphism
f−1M⊗L

f−1p−1

Y ]
OT

p−1
X]
OT → f−1M⊗L

f−1D̃(m)

Y ]/T]

‹D(m)

X]/S]

is an isomorphism and we can simply set in this case OS ⊗L
OT M := f−1M⊗L

f−1D̃(m)

Y ]/T]

‹D(m)

X]/S]
.

Remark 5.1.1.16. We can split the diagram 5.1.1.1.1 as follows

X] g //

p
X]

��

Z]
h //

p
Z]

��
�

Y ]

p
Y ]

��
S] S] // T ],

(5.1.1.16.1)

where the right square is cartesian. Let BZ := h∗BY , Z̃] be the ringed logarithmic (V-formal) scheme
(Z],BZ), and h̃ : Z̃]/T ] → ‹Y ]/T ] be the morphism of relative ringed logarithmic (V-formal) schemes
induced by the cartesian square of the diagram 7.5.6.7.1 and by BZ = h∗BY . Hence, since g̃(m)!◦h̃(m)! ∼−→
f̃ (m)! (see 5.1.1.13), then to study the extraordinary pullback functor (for instance), we reduce to the
case of the base change or to the case where the bottom morphism of 5.1.1.1.1 is the identity.

5.1.1.17. Suppose we are in the non-respective case. To highlight the “crystalline nature” of the opera-
tions such as f ! and f+, we suppose in this paragraph we are in the context of 4.4.5.10, i.e. we generalize
their construction to the case where S] is equipped with a quasi-coherent m-PD-ideal (a, b, α), which
we suppose to be m-PD-nilpotent, and where the morphisms are only defined modulo a. According to
4.4.5.11, we get a (‹D(m)

X]/S]
, f−1

0
‹D(m)

Y ]/T ]
)-bimodule by setting‹D(m)

X]/S]→Y ]/T ] := f̃∗0 ‹D(m)

Y ]/T ]
. (5.1.1.17.1)

We deduce by functoriality from 4.4.2.4 and 4.3.5.7, we get a structure of (f−1
0
‹D(m)

Y ]/T ]
, ‹D(m)

X]/S]
)-bimodule

on ‹D(m)

Y ]/T ]←X]/S] := ω̃X]/S] ⊗BX f̃∗0r
Ä‹D(m)

Y ]/T ]
⊗BY ω̃−1

Y ]/T ]

ä
, (5.1.1.17.2)

where the index “r” means that we have chosen the right (i.e. the twisted) structure of left ‹D(m)

Y ]/T ]

on ‹D(m)

Y ]/T ]
⊗BY ω̃−1

Y ]/T ]
to compute structure of left ‹D(m)

X]/S]
via the functor f̃∗. For any ∗ ∈ {l, r}, via

these above bimodules we can define the pullback f̃ (m)!
0 : D(∗‹D(m)

Y ]/T ]
) → D(∗‹D(m)

X]/S]
) as in 5.1.1.4. The

properties of the subsection extends to this context.

5.1.2 Quasi-coherence, projection formula as B-modules
Suppose we are in the non-respective case of 5.1.1.1.

Definition 5.1.2.1. We extend the notion of quasi-coherence as follows.
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(a) Let E be a BX -module. We say that E is BX -quasi-coherent if and only if locally in X we have an
exact sequence of the form B(I)

X → B(J)
X → E → 0.

(b) Let E be a left (resp. right) ‹D(m)

X]/S]
-module. We say that E is ‹D(m)

X]/S]
-quasi-coherent if and only if

locally in X we have an exact sequence of the form (‹D(m)

X]/S]
)(I) → (‹D(m)

X]/S]
)(J) → E → 0.

Remark that since ‹D(m)

X]/S]
is a locally free BX -module (for both structures), then the ‹D(m)

X]/S]
-quasi-

coherence implies the BX -quasi-coherence. When BX is not OX -quasi-coherent, the converse is not
clear.

Lemma 5.1.2.2. Suppose here BX is OX-quasi-coherent. Let E be a left (resp. right) ‹D(m)

X]/S]
-module.

(i) The following assertion are equivalent.

(a) E is OX-quasi-coherent ;
(b) E is BX-quasi-coherent ;

(c) E is ‹D(m)

X]/S]
-quasi-coherent.

(ii) Suppose X is affine and E is quasi-coherent. Then the canonical morphism

C ⊗Γ(X,C) Γ(X, E)→ E

where C either equal to ‹D(m)

X]/S]
or BX or OX .

Proof. Since the notion of quasi-coherence is local, then we reduce to check the part (ii). Suppose X
is affine. The case where C = OX is already known. Since ‹D(m)

X]/S]
is a locally free BX -module (for

both structures), then ‹D(m)

X]/S]
is also OX -quasi-coherent. Let A be either BX or ‹D(m)

X]/S]
. Since A is

OX -quasi-coherent, then the canonical morphism OX ⊗Γ(X,OX) Γ(X,A)→ A is an isomorphism. Hence,
we get (ii).

Notation 5.1.2.3. Let ? ∈ {∅,b,−,+} and ∗ ∈ {r, l}. We denote by D?
qc(∗‹D(m)

X]/S]
) (resp. D?

qc(BX))

the full subcategory of D?(∗‹D(m)

X]/S]
) (resp. D?(BX)) consisting of complexes E such that, for any j ∈ Z,

Hj(E) is ‹D(m)

X]/S]
-quasi-coherent. We have the fully faithful forgetful functor D?

qc(∗‹D(m)

X]/S]
)→ D?

qc(BX).
Beware this is not clear that we have the factorization D?

qc(BX) → D?
qc(OX), except when BX is OX -

quasi-coherent.

5.1.2.4 (Properties of the functor Rf∗). Assume that T is a noetherian scheme of finite Krull dimension;
and f is quasi-compact and quasi-separated.

(i) Following [Gro57, 3.6.5], since Y is noetherian of finite Krull dimension dY , then for i > dY , for
every sheaf E of abelian groups we have Hi(Y, E) = 0. Then, following [Gro61, 12.2.1], we get that
Rif∗(E) = 0 for i > dY and every sheaf E of abelian groups. In particular, by definition (see [Gro61,
12.1.1] or 4.6.1.4), the functor f∗ has bounded by dY cohomological dimension on Mod(f−1OY ),
the category of f−1OY -modules, or on Mod(f−1‹D(m)

Y ]/T ]
).

Let P be the subset of all the objects of Mod(f−1‹D(m)

Y ]/T ]
) which are f∗-acyclic. Remark that P con-

tains injective f−1‹D(m)

Y ]/T ]
-modules. Using the cohomological dimension finiteness of f∗, following

4.6.1.6.b if
G0 → G1 → · · · → GdY −1 → E → 0 (5.1.2.4.1)

is an exact sequence of Mod(f−1OY ), and G0, . . . ,GdY −1 ∈ P , then E ∈ P (see 4.6.1.6). This
implies that for any complex E ∈ K(f−1‹D(m)

Y ]/T ]
) (resp. E ∈ K+(f−1‹D(m)

Y ]/T ]
)) there exists a

quasi-isomorphism E ∼−→ I where I ∈ K(f−1‹D(m)

Y ]/T ]
) (resp. I ∈ K+(f−1‹D(m)

Y ]/T ]
)) is a complex

whose modules belong to P . This yields by truncation (and using the above property involving
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the exact sequence) that for any E ∈ K−(f−1‹D(m)

Y ]/T ]
) (resp. E ∈ Kb(f−1‹D(m)

Y ]/T ]
)) there ex-

ists a quasi-isomorphism E ∼−→ I where I ∈ K−(f−1‹D(m)

Y ]/T ]
) (resp. I ∈ Kb(f−1‹D(m)

Y ]/T ]
)) is

a complex whose modules belong to P . We get the functor Rf∗ : D(f−1‹D(m)

Y ]/T ]
) → D(‹D(m)

Y ]/T ]
)

(resp. Rf∗ : D−(f−1‹D(m)

Y ]/T ]
) → D−(‹D(m)

Y ]/T ]
), resp. Rf∗ : D+(f−1‹D(m)

Y ]/T ]
) → D+(‹D(m)

Y ]/T ]
), resp.

Rf∗ : Db(f−1‹D(m)

Y ]/T ]
)→ Db(‹D(m)

Y ]/T ]
)) which is computed by taking a resolution with objects in P .

Moreover, following [Har66, II.2.1] Rf∗ takes D?
qc(OX) into D?

qc(OY ) with ? ∈ {∅,+,−,b}.

(ii) Since f is quasi-compact and quasi-separated, then it follows from [SGA4.2, VI.5.1] that the functors
Rif∗ for any i ≥ 0 commute with filtered inductive limits of abelian groups (or see [FK18, 0.3.1.17]
for a less general reference).

Proposition 5.1.2.5. Let F ∈ D(r‹D(m)

Y ]/T ]
) and G ∈ D(

l
f−1‹D(m)

Y ]/T ]
).

(i) We have the canonical morphism in D(ZY ):

F ⊗L
D̃(m)

Y ]/T]

Rf∗(G)→ Rf∗

Ç
f−1F ⊗L

f−1D̃(m)

Y ]/T]

G
å
. (5.1.2.5.1)

Let D be a sheaf of rings such that (D, ‹D(m)

Y ]/T ]
) is right solvable and let F ∈ Dr−sol(D, ‹D(m)

Y ]/T ]
) (see

definition and notation 4.6.3.2). Then the morphism 5.1.2.5.1 can also be viewed as a morphism of
D(D).

(ii) Suppose f is quasi-compact and quasi-separated. Suppose moreover one of the following conditions:

(a) either F ∈ Db
qc(r‹D(m)

Y ]/T ]
), and G ∈ D(

l
f−1‹D(m)

Y ]/T ]
),

(b) or T is a noetherian scheme of finite Krull dimension, and F ∈ D−qc(r‹D(m)

Y ]/T ]
), and G ∈

D−(
l
f−1‹D(m)

Y ]/T ]
).

Then the morphism 5.1.2.5.1 is an isomorphism.

Proof. In the bimodule case, let R be a right solving ring of (D, ‹D(m)

Y ]/T ]
) such that F ∈ D(D,R, ‹D(m)

Y ]/T ]
).

Choosing a K-flat complex P of K(r‹D(m)

Y ]/T ]
) (resp. K(‹D(m)

Y ]/T ]
⊗R D)) representing F , a K-injective

complex I of K(f−1l‹D(m)

Y ]/T ]
) representing G, we get

F ⊗L
D̃(m)

Y ]/T]

Rf∗(G)
∼−→ P ⊗D̃(m)

Y ]/T]

f∗(I)→ f∗

Å
f−1P ⊗

f−1D̃(m)

Y ]/T]

I
ã

→ Rf∗

Å
f−1P ⊗

f−1D̃(m)

Y ]/T]

I
ã
∼−→ Rf∗

Ç
f−1F ⊗L

f−1D̃(m)

Y ]/T]

G
å
, (5.1.2.5.2)

the last isomorphism coming from the fact that f−1P a K-flat complex of K(rf−1‹D(m)

Y ]/T ]
) representing

f−1F .
To check that this is an isomorphism, using the remark 5.1.2.1 and using [Har66, I.7.1 (ii), (iii) and

(iv)] and 5.1.2.4, we reduce to the case where F = ‹D(m)

Y ]/T ]
, which is obvious.

Remark 5.1.2.6. Inverting r and l, similarly to 5.1.2.5, for any F ∈ D(l‹D(m)

Y ]/T ]
) and G ∈ D(

r
f−1‹D(m)

Y ]/T ]
),

we get the morphism

Rf∗(G)⊗L
D̃(m)

Y ]/T]

F → Rf∗

Ç
G ⊗L

f−1D̃(m)

Y ]/T]

f−1F
å
, (5.1.2.6.1)

which is an isomorphism under the same corresponding hypotheses.
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5.1.2.7. Let ∗, ∗∗ ∈ {l, r} such that both are not equal to r. Let F ∈ D−(∗‹D(m)

Y ]/T ]
) and G ∈

D−(
∗∗
f−1‹D(m)

Y ]/T ]
). Then f−1F ⊗L

f−1BY G ∈ D
−(

?
f−1‹D(m)

Y ]/T ]
) where ? = l if ∗ = ∗∗ = l and otherwise

? = r. Indeed, for instance, let us treat the case ∗∗ = l. This follows from the canonical isomorphisms

f−1(F ⊗L
BY
‹D(m)

Y ]/T ]
)⊗L

f−1D̃(m)

Y ]/T]

G ∼−→ f−1F ⊗L
f−1BY G (5.1.2.7.1)

Corollary 5.1.2.8. Let ∗, ∗∗ ∈ {l, r} such that both are not equal to r. Suppose f is quasi-compact and
quasi-separated and ‹Y ]/T ] is quasi-flat (see Definition 4.4.1.3). Suppose moreover one of the following
conditions:

(a) either F ∈ Db
qc(∗‹D(m)

Y ]/T ]
), and G ∈ D(

∗∗
f−1‹D(m)

Y ]/T ]
),

(b) or T is a noetherian scheme of finite Krull dimension, and F ∈ D−qc(∗‹D(m)

Y ]/T ]
), and G ∈ D−(

∗∗
f−1‹D(m)

Y ]/T ]
).

Then we have the following isomorphism of D−(
∗∗‹D(m)

Y ]/T ]
) (see 5.1.2.7 for the right term):

F ⊗L
BY Rf∗(G)

∼−→ Rf∗
Ä
f−1F ⊗L

f−1BY G
ä
. (5.1.2.8.1)

Proof. For instance, let us treat the case ∗∗ = l. Following 4.6.3.3, since ‹Y ]/T ] is quasi-flat then ‹D(m)

Y ]/T ]

is solvable. Since F ⊗L
BY
‹D(m)

Y ]/T ]
∈ D(‹D(m)

Y ]/T ]
, ‹D(m)

Y ]/T ]
), we get

F ⊗L
BY Rf∗(G)

∼−→ (F ⊗L
BY
‹D(m)

Y ]/T ]
)⊗L
D̃(m)

Y ]/T]

Rf∗(G)

∼−→
5.1.2.5.1

Rf∗

Ç
f−1(F ⊗L

BY
‹D(m)

Y ]/T ]
)⊗L

f−1D̃(m)

Y ]/T]

G
å
∼−→ Rf∗

Ä
f−1F ⊗L

f−1BY G
ä
.

5.1.3 Direct image

Unless otherwise stated, we keep notation and hypotheses of 5.1.2 and we suppose f̃ is quasi-flat (see
Definition 4.4.1.3). Assume that T is a noetherian scheme of finite Krull dimension and f is quasi-
compact and quasi-separated.

Definition 5.1.3.1. We keep notation 5.1.1.2.

(a) The (left version of the) direct image functor of level m by f̃ is the functor f̃ (m)
+ : D(l‹D(m)

X]/S]
) →

D(l‹D(m)

Y ]/T ]
) which is defined by setting

f̃
(m)
+ (E) := Rf∗

Ç‹D(m)

Y ]/T ]←X]/S] ⊗
L
D̃(m)

X]/S]

E
å
,

where E ∈ D(l‹D(m)

X]/S]
).

(b) The (right version of the) direct image functor of level m by f̃ is the functor f̃ (m)
+ : D(r‹D(m)

X]/S]
) →

D(r‹D(m)

Y ]/T ]
) which is defined by setting

f̃
(m)
+ (M) := Rf∗

Ç
M⊗L

D̃(m)

X]/S]

‹D(m)

X]/S]→Y ]/T ]

å
,

whereM∈ D(r‹D(m)

X]/S]
).

If there is no ambiguity with the level, we might simply write f̃ (m)
+ .
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5.1.3.2. The left and the right versions of the direct image functor of level m by f̃ of 5.1.3.1 are
compatible with the quasi-inverse exact functors of 4.3.5.7 exchanging left and right ‹D(m)

X]/S]
-module

structures (resp. left and right ‹D(m)

Y ]/T ]
-module structures). More precisely, for any E ∈ D(l‹D(m)

Y ]/T ]
) we

have the canonical isomorphism

ω̃Y ]/T ] ⊗BY f̃
(m)
+ (E)

∼−→ f̃
(m)
+ (ω̃X]/S] ⊗BX E), (5.1.3.2.1)

which is constructed as follows:

ω̃Y ]/T ] ⊗BY Rf∗

Ç‹D(m)

Y ]/T ]←X]/S] ⊗
L
D̃(m)

X]/S]

E
å

∼−→
5.1.2.8.1

Rf∗

Ç
f−1ω̃Y ]/T ] ⊗f−1BY (‹D(m)

Y ]/T ]←X]/S] ⊗
L
D̃(m)

X]/S]

E)

å
∼−→ Rf∗

Ç
(f−1ω̃Y ]/T ] ⊗f−1BY

‹D(m)

Y ]/T ]←X]/S])⊗
L
D̃(m)

X]/S]

E
å

4.3.5.6.1
∼−→ Rf∗

Ç
(ω̃X]/S] ⊗BX E)⊗L

D̃(m)

X]/S]

(f−1ω̃Y ]/T ] ⊗f−1BY
‹D(m)

Y ]/T ]←X]/S] ⊗BX ω̃
−1
X]/S]

)

å
∼−→

5.1.1.2.1
Rf∗

Ç
(ω̃X]/S] ⊗BX E)⊗L

D̃(m)

X]/S]

‹D(m)

X]/S]→Y ]/T ]

å
.

Proposition 5.1.3.3. Let ∗ ∈ {l, r}, let E ∈ D(l‹D(m)

X]/S]
) and forg(E) (or simply E) be the induced object

of D(∗D(m)

X]/S]
). We have the canonical isomorphism of D(∗‹D(m)

Y ]/T ]
).

f
(m)
+ (forg(E))

∼−→ f̃
(m)
+ (E). (5.1.3.3.1)

Proof. Since the other case is checked similarly, we can suppose ∗ = l.

f
(m)
+ (E) = Rf∗

Ç
D(m)

Y ]/T ]←X]/S] ⊗
L
D(m)

X]/S]

E
å
∼−→ Rf∗

Ç
D(m)

Y ]/T ]←X]/S] ⊗
L
D(m)

X]/S]

‹D(m)

X]/S]
⊗L
D̃(m)

X]/S]

E
å

5.1.1.14.2
∼−→ Rf∗

Ç‹D(m)

Y ]/T ]←X]/S] ⊗
L
D̃(m)

X]/S]

E
å

= f̃
(m)
+ (E)

Proposition 5.1.3.4. Suppose BY is OY -quasi-coherent and BX = f∗BY . Suppose f−1OY and OX are
tor independent over f−1BY . Let ∗ ∈ {l, r}, let E ∈ D(lD(m)

X]/S]
) and forg(E) (or simply E) be the induced

object of D(∗D(m)

X]/S]
). We have the canonical isomorphism of D(∗‹D(m)

Y ]/T ]
)

BY ⊗L
OY f

(m)
+ (E))

∼−→ f̃
(m)
+ (BX ⊗L

OX E). (5.1.3.4.1)

Proof. Since the other proof is similar, we can suppose ∗ = l.

BY ⊗L
OY f

(m)
+ (E)) = BY ⊗L

OY Rf∗

Ç
D(m)

Y ]/T ]←X]/S] ⊗
L
D(m)

X]/S]

E
å

∼−→ ‹D(m)

Y ]/T ]
⊗L
D(m)

Y ]/T]

Rf∗

Ç
D(m)

Y ]/T ]←X]/S] ⊗
L
D(m)

X]/S]

E
å

5.1.2.5
∼−→ Rf∗

Ç
f−1‹D(m)

Y ]/T ]
⊗L
f−1D(m)

Y ]/T]

D(m)

Y ]/T ]←X]/S] ⊗
L
D(m)

X]/S]

E
å

5.1.1.9.2
∼−→ Rf∗

Ç‹D(m)

Y ]/T ]←X]/S] ⊗
L
D(m)

X]/S]

E
å
∼−→ Rf∗

Ç‹D(m)

Y ]/T ]←X]/S] ⊗
L
D̃(m)

X]/S]

‹D(m)

X]/S]
⊗L
D(m)

X]/S]

E
å

= f̃
(m)
+ (‹D(m)

X]/S]
⊗L
D(m)

X]/S]

E)
∼−→ f̃

(m)
+ (BX ⊗L

OX E).
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Proposition 5.1.3.5. For any ∗ ∈ {r, l}, for any E ∈ D−qc(∗‹D(m)

X]/S]
), we have f̃ (m)

+ (E) ∈ D−qc(∗‹D(m)

Y ]/T ]
).

Proof. Recall that since f is quasi-compact and quasi-separated, then f∗ preserves O-quasi-coherence
(see [Sta22, 26.24.1]). We conclude by using 5.1.2.2.

5.1.3.6. Suppose the bottom square of 5.1.1.1.1 is the identity and f is log-étale. Let (u′λ)λ=1,...,r be
logarithmic coordinates of Y ]/S]. This induces (uλ = f̃∗(u′λ))λ=1,...,r be logarithmic coordinates of
X]/S]. Put τ]λ(m),γ,n := µ(m),γ(uλ) − 1, and τ ′]λ(m),γ,n := µ(m),γ(u′λ) − 1. The canonical morphism

f̃∗‹PnY ]/S],(m),γ → ‹PnX]/S],(m),γ sends τ ′]λ(m),γ,n to τ]λ(m),γ,n. Hence, by using the local description

3.2.2.4, we check that f̃∗‹PnY ]/S],(m),γ → ‹PnX]/S],(m),γ is an isomorphism. By duality, this yields that the

canonical morphism ‹D(m)

X]/S]
→ f̃∗‹D(m)

Y ]/S]
is an isomorphism. Moreover, we check (e.g. by computation

in local coordinates) that the induced composition morphism f̃−1‹D(m)

Y ]/S]
→ f̃∗‹D(m)

Y ]/S]
∼←− ‹D(m)

X]/S]
is a

homomorphism of rings. Hence, for anyM∈ D(r‹D(m)

X]/S]
) we get the canonical isomorphism

f̃
(m)
+ (M)

∼−→ Rf∗(M). (5.1.3.6.1)

Similarly, the canonical morphism of right ‹D(m)

X]/S]
-modules ‹D(m)

X]/S]
→ ‹D(m)

Y ]←X]/S] is an isomorphism

and for any E ∈ D(l‹D(m)

X]/S]
)

f̃
(m)
+ (E)

∼−→ Rf∗(E). (5.1.3.6.2)

In both cases the functor f̃ (m)
+ preserves the boundedness of the cohomology, i.e. we have the induced

functors f̃ (m)
+ : D?(∗‹D(m)

X]/S]
)→ D?(∗‹D(m)

Y ]/T ]
) with ∗ ∈ {r, l}, and ? ∈ {+,−,b}.

5.1.3.7. It follows from 5.1.2.4.i , that we get the factorization f̃ (m)
+ : D−(∗‹D(m)

X]/S]
)→ D−(∗‹D(m)

Y ]/T ]
).

Proposition 5.1.3.8. With notation 4.4.5.5, let E be a complex of D(∗‹D(m)

X]/S]
), with ∗ ∈ {r, l}. We

have the canonical isomorphism of D(∗‹D(m)

Z]/U]
):

g̃
(m)
+ ◦ f̃ (m)

+ (E)
∼−→ fig ◦ f (m)

+ (E). (5.1.3.8.1)

Proof. We can suppose ∗ = l. Since ‹D(m)

Z]/U]←Y ]/T ] ∈ D
b
qc(r‹D(m)

Y ]/T ]
), we get the projection isomorphism‹D(m)

Z]/U]←Y ]/T ] ⊗
L
D̃(m)

Y ]/T]

Rf∗

Ç‹D(m)

Y ]/T ]←X]/S] ⊗
L
D̃(m)

X]/S]

E
å

∼−→
5.1.2.5

Rf∗

Ç
f−1‹D(m)

Z]/U]←Y ]/T ] ⊗
L
f−1D̃(m)

Y ]/T]

‹D(m)

Y ]/T ]←X]/S] ⊗
L
D̃(m)

X]/S]

E
å
.

By applying Rf∗, we get the first isomorphism

g̃
(m)
+ ◦ f̃ (m)

+ (E)
∼−→ Rg∗Rf∗

Ç
f−1‹D(m)

Z]/U]←Y ]/T ] ⊗
L
f−1D̃(m)

Y ]/T]

‹D(m)

Y ]/T ]←X]/S] ⊗
L
D̃(m)

X]/S]

E
å

∼−→
5.1.1.12.2

R(g ◦ f)∗

Ç‹D(m)

Z]/U]←X]/S] ⊗
L
D̃(m)

X]/S]

E
å

= fig ◦ f (m)

+ (E).

5.1.3.9 (Base change case). Suppose the diagram 5.1.1.1.1 is cartesian and the morphism f∗BY → BX
is an isomorphism, i.e. suppose we are in the base change case. Let ∗ ∈ {r, l}. It follows from 5.1.1.15
that for any E ∈ D(∗‹D(m)

X]/S]
), we have the canonical isomorphism

f̃
(m)
+ (E)

∼−→ Rf∗(E). (5.1.3.9.1)

Following 5.1.2.4, in that case the functor f̃ (m)
+ preserves the boundedness of the cohomology, i.e. we

have the induced functors f̃ (m)
+ : D?(∗‹D(m)

X]/S]
)→ D?(∗‹D(m)

Y ]/T ]
), with ? ∈ {+,−,b}.
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5.1.3.10. We suppose in this paragraph we are in the context of the non-respective case of 4.4.5.10.
Assume that T is a noetherian scheme of finite Krull dimension and f0 is quasi-compact and quasi-
separated. For any ∗ ∈ {l, r}, via the bimodules 5.1.1.17.1 and 5.1.1.17.2, we can define the pushforward
f̃

(m)
0+ : D(∗‹D(m)

X]/S]
)→ D(∗‹D(m)

Y ]/T ]
) as in 5.1.3.1. The properties of the subsection extends to this context.

5.1.4 Duality
We keep notation 5.1.2. Suppose that BX is quasi-flat over OS (see Definition 3.1.1.5). From 4.6.3.3.b,
we get the following dual functors.

Definition 5.1.4.1. The dual functor of level m on ‹X]/S] is the functor D(m)

X̃]/S]
: D(l‹D(m)

X]/S]
) →

D(l‹D(m)

X]/S]
) which is defined by setting for any E ∈ D(l‹D(m)

X]/S]
)

D(m)

X̃]/S]
(E) := RHomD̃(m)

X]/S]

(E , ‹D(m)

X]/S]
)⊗BX ω̃−1

X]/S]
[δX]/S] ].

Recall, the functor is computed by choosing a K-injective complex ofK(l(‹D(m)

X]/S]
⊗OS ‹D(m) op

X]/S]
)) represent-

ing ‹D(m)

X]/S]
(copy [Sta22, 20.39]). We have the factorization D(m)

X̃]/S]
: Db

perf(
l‹D(m)

X]/S]
)→ Db

perf(
l‹D(m)

X]/S]
).

Similarly, we have the right version one: the dual functor of level m on ‹X]/S] is the functor
D(m)

X̃]/S]
: D(r‹D(m)

X]/S]
)→ D(r‹D(m)

X]/S]
) which is defined by setting for anyM∈ D(r‹D(m)

X]/S]
)

D(m)

X̃]/S]
(M) := ω̃X]/S] ⊗BX RHomD̃(m)

X]/S]

(M, ‹D(m)

X]/S]
) [δX]/S] ].

5.1.4.2. We have for any E ∈ D(l‹D(m)

X]/S]
) the isomorphism

D(m)

X̃]/S]
(E)

∼−→
4.6.6.4.1

RHomD̃(m)

X]/S]

(E , (‹D(m)

X]/S]
⊗BX ω̃−1

X]/S]
)l)[δX]/S] ], (5.1.4.2.1)

where the index “l” means that we use the left structure of left ‹D(m)

X]/S]
-module of ‹D(m)

X]/S]
⊗BX ω̃−1

X]/S]
to

compute RHomD̃(m)

X]/S]

.

D(m)

X̃]/S]
(M)

∼−→
4.6.6.4.1

RHomD̃(m)

X]/S]

(M, (ω̃X]/S] ⊗BX ‹D(m)

X]/S]
)r) [δX]/S] ], (5.1.4.2.2)

where the index r in (ω̃X]/S] ⊗BX ‹D(m)

X]/S]
)r) means that we take the right structure of right ‹D(m)

X]/S]
-

module to compute RHomD̃(m)

X]/S]

..

5.1.4.3 (Right and left dual functors). We have the isomorphisms

ω̃X]/S] ⊗BX D(m)

X̃]/S]
(E)

∼−→ RHomD̃(m)

X]/S]

(E , ‹D(m)

X]/S]
) [δX]/S] ]

∼−→ RHomD̃(m)

X]/S]

(ω̃X]/S] ⊗BX E , (ω̃X]/S] ⊗BX ‹D(m)

X]/S]
)l) [δX]/S] ]

∼−→
4.2.5.5

RHomD̃(m)

X]/S]

(ω̃X]/S] ⊗BX E , (ω̃X]/S] ⊗BX ‹D(m)

X]/S]
)r) [δX]/S] ]

∼−→
5.1.4.2.2

D(m)

X̃]/S]
(ω̃X]/S] ⊗BX E),

(5.1.4.3.1)

where the index r (resp. l) added to ω̃X]/S] ⊗BX ‹D(m)

X]/S]
means that we take the right structure (resp.

left structure) of right ‹D(m)

X]/S]
-module.

Lemma 5.1.4.4 (Biduality). Let E ∈ D(l‹D(m)

X]/S]
). We have the morphism E → D(m)

X̃]/S]
◦ D(m)

X̃]/S]
(E),

which is an isomorphism when E ∈ Db
perf(

l‹D(m)

X]/S]
).
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Proof. We copy the proof of 4.6.4.6 : let I be a K-injective complex of K(l(‹D(m)

X]/S]
⊗OS ‹D(m)

X]/S]
))

representing ‹D(m)

X]/S]
⊗BX ω̃−1

X]/S]
[δX]/S] ]. Then

D(m)

X̃]/S]
◦ D(m)

X̃]/S]
(E)

∼−→ HomD̃(m)

X]/S]

(HomD̃(m)

X]/S]

(E , I), I).

The morphism E → D(D(E)) is simply the evaluation morphism

E → HomD̃(m)

X]/S]

(HomD̃(m)

X]/S]

(E , I), I).

When E is perfect, to check that this is an isomorphism we are reduced, by dévissage, to the case
E = ‹D(m)

X]/S]
, in which case it is clear.

5.1.5 Exterior tensor product
Let S] be a nice fine log schemes over Spec(Z/pr+1Z) as defined in 3.1.1.1 with r ∈ N. Since the base
scheme S] is fixed, so we can remove it in the notation concerning relative object with base S]. If
p : X] → S] is a morphism, by abuse of notation, we sometimes denote p−1OS simply by OS .

For i = 1, . . . , n, let X]
i is a log smooth and log integral S]-log-scheme. Set X] := X]

1 ×S] X
]
2 ×S]

· · · ×S] X]
n. For i = 1, . . . , n, let pri : X

] → X]
i , be the projections. We denote by $ : X] → S] and

$i : X
]
i → S] the structural morphisms.

For i = 1, . . . , n, let BXi be a commutative OXi-algebra endowed with a compatible structure of left
D(m)

X]
i
/S]

-module. Let us recall that the action of left D(m)

X]/S]
-module on Bi := pr∗i BXi is compatible with

its structure of OX -algebra (see 3.4.4.6). Following 4.1.1.6, the OX -algebra BX := B1 ⊗OX · · · ⊗OX Bn
is endowed with a structure of left D(m)

X]/S]
-module a compatible its structure of OX -algebra.

We will denote by ‹D(m)

X]
= BX⊗OXD

(m)

X]/S]
and ‹D(m)

X]
i

= BXi⊗OXiD
(m)

X]
i
/S]

. We denote by ‹X] (resp. ‹X]
i )

the ringed logarithmic scheme (X],BX) (resp. (X]
i ,BXi)), and by ‹pri : ‹X]/S] → X̃i

]
/S] the morphism

of relative ringed logarithmic schemes induced by by pri and by pr∗i BXi → BX . We also denote by ‹pri
the induced morphism ‹X] → ‹X]

i of ringed logarithmic schemes.

5.1.5.1. It follows from 5.1.1.15.1 the canonical morphism pr−1
i (BXi ⊗OXi D

(m)

X]
i
/S]

)→ Bi ⊗OX D
(m)

X]/X]
ǐ

,

where X]

ǐ
:=
∏
j 6=iX

]
j is a ring homomorphism. From 4.4.2.7.1, the natural morphism Bi⊗OX D

(m)

X]/X]
ǐ

→

BX ⊗OX D
(m)

X]/S]
is an isomorphism. By composition, this yields the ring homomorphism

pr−1
i
‹D(m)

X]
i

→ ‹D(m)

X]
(5.1.5.1.1)

5.1.5.2. (a) For i = 1, . . . , n, let Ei be a sheaf of $−1
i OS-module. We get the $−1OS-module by setting

�
i

topEi := pr−1
1 E1 ⊗OS pr−1

2 E2 ⊗OS · · · ⊗OS pr−1
n En.

(b) For i = 1, . . . , n, let Ei be an BXi-module. The sheaf �
i

topEi has a canonical structure of �
i

topBXi-

module. We put ‹�
i
Ei := BX⊗�

i
topBXi �i topEi. When BXi = OXi holds for any i = 1, . . . , n, we simply

write �
i
Ei. Moreover, by commutativity and associativity of tensor products, we get the canonical

isomorphism of �
i

topBXi-modules

�
i

topEi
∼−→
(

pr−1
1 E1 ⊗pr−1

1 BX1
�
i

topBXi
)
⊗�

i
topBXi · · · ⊗�

i
topBXi

(
pr−1
n En ⊗pr−1

n BXn
�
i

topBXi
)
.

(5.1.5.2.1)
Using the isomorphism 5.1.5.2.1, we get the isomorphism of BX -modules‹�

i
Ei

∼−→ ‹pr
∗
1E1 ⊗BX · · · ⊗BX ‹pr

∗
nEn. (5.1.5.2.2)
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(c) Since pr−1
i
‹D(m)

X]
i

are OS-algebras, we get a canonical structure of OS-algebra on �
i

top
‹D(m)

X]
i

. Using

5.1.5.1.1, we get the canonical homomorphism of OS-algebras �
i

top
‹D(m)

X]
i

→ ‹D(m)

X]
. Via a local compu-

tation, we can check that the induced morphism of (BX ,�
i

top
‹D(m)

X]
i

)-bimodules (resp. (�
i

top
‹D(m)

X]
i

,BX)-

bimodules)‹�
i

‹D(m)

X]
i

= BX ⊗�
i

topBXi �i top
‹D(m)

X]
i

→ ‹D(m)

X]
, (resp. �

i
top
‹D(m)

X]
i

⊗�
i

topBXi BX →
‹D(m)

X]
) (5.1.5.2.3)

is an isomorphism.

(d) For i = 1, . . . , n, let Fi be a left ‹D(m)

X]
i

-module (resp. Gi be a right ‹D(m)

X]
i

-module). Then �
i

topFi

(resp. �
i

topGi) has a canonical structure of left (resp. right) �
i

top
‹D(m)

X]
i

-module. It follows from

the left (resp. right) isomophism of 5.1.5.2.3 that we get the isomorphism of BX -modules ‹�
i
Fi

∼−→‹D(m)

X]
⊗

�
i

topD̃(m)

X
]
i

‹�
i

topFi (resp. ‹�
i
Gi

∼−→ �
i

topFi ⊗�
i

topD̃(m)

X
]
i

‹D(m)

X]
). Via this isomorphism, we endowed‹�

i
Fi (resp. ‹�

i
Gi) with a structure of left (resp. right) ‹D(m)

X]
-module.

(e) For i = 1, . . . , n, let Fi be a left ‹D(m)

X]
i

-module. Then ‹pr
∗
1F1 ⊗BX · · · ⊗BX ‹pr

∗
nFn has a canonical

structure of left ‹D(m)

X]
-module (see 4.2.3.1). We check that the isomorphism 5.1.5.2.2 is in fact an

isomorphism of left ‹D(m)

X]
-modules.

Lemma 5.1.5.3. Let R be a commutative sheaf on X. By convention, R-algebras are always unital and
associative. For i = 1, . . . , n, let Di be R-algebras, Ei be a flat left Di-module. Then E1⊗RE2⊗R · · ·⊗REn
is a flat left D1 ⊗R D2 ⊗R · · · ⊗R Dn-module.

Proof. By proceeding by induction we reduce to the case n = 2. From the structure of left D1-module of
E1 and of D2-bimodule of D2, we endow the sheaf E1⊗RD2 with a structure of (D1⊗RD2,D2)-bimodule.
Since the canonical isomorphisme E1⊗RD2

∼−→ (D1⊗RD2)⊗D1
E1 is D1⊗RD2-linear, then E1⊗RD2 is flat

as left D1⊗RD2-module. Since E2 is flat as D2-module, this implies that E1⊗RE2
∼−→ (E1⊗RD2)⊗D2

E2
is a flat left D1 ⊗R D2-module.

5.1.5.4. (a) Since the extension �
i

topOXi → OX is flat, since OX⊗�
i

topOXi�i topBXi
∼−→

5.1.5.2.2
pr∗i BX1⊗OX

· · · ⊗OX pr∗n BXn = BX , then we get the flatness of the extension �
i

topBXi → BX . By using 5.1.5.2.3,

this implies that �
i

top
‹D(m)

X]
i

→ ‹D(m)

X]
are right and left flat.

(b) When S is the spectrum of a field, the multi-functor �
i

top is exact. Hence, it follows from (a) that

the multi-functor ‹�
i
is exact.

(c) When S is not the spectrum of a field, the multi-functor �
i

top is not necessarily exact. Set Btop
X :=

�
i

topBXi . We get the multi-functor ‹�
i

L
top : D−(BX1)× · · ·×D−(BXn)→ D−(Btop

X ) by setting for any

Ei ∈ D−(BXi)‹�
i

L
topEi :=

(
pr−1

1 E1 ⊗L
pr−1

1 BX1

Btop
X

)
⊗L
Btop
X

· · · ⊗L
Btop
X

(
pr−1
n En ⊗L

pr−1
n BXn

Btop
X

)
. (5.1.5.4.1)

Remark when Bi is flat over OS for any i, then we get the isomorphism of D−(Btop
X ):‹�

i

L
topEi

∼−→ pr−1
1 E1 ⊗L

OS pr−1
2 E2 ⊗L

OS · · · ⊗
L
OS pr−1

n En. (5.1.5.4.2)

(d) We have the multi-functor ‹�
i

L
: D−(BX1

) × · · · × D−(BXn) → D−(BX) by setting for any Ei ∈
D−(BXi) ‹�

i

L
Ei := BX ⊗Btop

X

‹�
i

L
topEi

∼−→ L‹pr
∗
1E1 ⊗L

BX · · · ⊗
L
BX L‹pr

∗
nEn, (5.1.5.4.3)
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where the last isomorphism is, after using flat resolutions, a consequence of 5.1.5.2.2. Beware that
pri is flat but ‹pri might not be flat.

(e) Let ∗ ∈ {l, r}. For any i = 1, . . . , n, let Fi ∈ D−(∗‹D(m)

X]
i

),Mi ∈ D−(l‹D(m)

X]
i

). Set ‹Dtop
X]

:= �
i

top
‹D(m)

X]
i

.

Then the functor 5.1.5.4.1 induces the functor ‹�
i

L
top : D−(∗‹D(m)

X]1
)× · · · ×D−(∗‹D(m)

X]n
) → D−(∗‹Dtop

X]
).

Indeed, since BXi → ‹D(m)

X]
i

is flat, by using ‹D(m)

X]
i

-flat resolution Pi of Ei, by commutativity and
associativity of tensor products, we get therefore the canonical isomorphism‹�

i

L
topEi

∼−→ pr−1
1 P1 ⊗OS pr−1

2 P2 ⊗OS · · · ⊗OS pr−1
n Pn ∈ C(l‹Dtop

X]
), (5.1.5.4.4)

whose terms of the right side are even flat left ‹Dtop
X]

(see 5.1.5.3).

We set ‹�
i

L
Fi := ‹D(m)

X]
⊗D̃top

X]

‹�
i

L
topFi and ‹�

i

L
Mi := ‹�

i

L
topMi⊗D̃top

X]

‹D(m)

X]
, which defines the multi-functor‹�

i

L
: D−(∗‹D(m)

X]1
)× · · · ×D−(∗‹D(m)

X]n
)→ D−(∗‹D(m)

X]
). (5.1.5.4.5)

It follows from 5.1.5.2.3 that the functors 5.1.5.4.3 and 5.1.5.4.5 are compatible.

Proposition 5.1.5.5. Let ∗ ∈ {l, r}. Suppose ? ∈ {tdf,perf} (resp. suppose ? = coh and S is locally
noetherian).

(a) The functor 5.1.5.4.1 induces the functor ‹�
i

L
top : D−? (∗‹D(m)

X]1
)× · · · ×D−? (∗‹D(m)

X]n
)→ D−? (∗‹Dtop

X]
).

(b) The functor 5.1.5.4.5 preserves the finite tor-dimension and perfectness (resp. bounded above coher-
ent complexes), i.e. induces‹�

i

L
: D−? (∗‹D(m)

X]1
)× · · · ×D−? (∗‹D(m)

X]n
)→ D−? (∗‹D(m)

X]
). (5.1.5.5.1)

Proof. The first assertion is clear from the isomorphism 5.1.5.4.4. The second one is an obvious conse-
quence.

Lemma 5.1.5.6. Let R be a commutative sheaf on X. By convention, R-algebras are always unital and
associative. For i = 1, . . . , n, let Ai, Bi be R-algebras,Mi be a (Ai,Bi)-bimodule, Ei be a left Bi-module.
Set ⊗

i
Ai := A1 ⊗R A2 ⊗R · · · ⊗R An, and similarly replacing Ai by R-modules. We have the canonical

isomorphism of left ⊗
i
Ai-modules of the form

⊗i (Mi ⊗Bi Ei)
∼−→ ⊗i(Mi)⊗⊗i(Bi) ⊗i(Ei). (5.1.5.6.1)

Proof. We check that the morphism 5.1.5.6.1 is well defined by the formula ⊗i(yi ⊗ xi) 7→ (⊗i(yi)) ⊗
(⊗i(xi)) and its inverse by the formula (⊗i(yi))⊗(⊗i(xi)) 7→ ⊗i(yi⊗xi) for any yi ∈Mi and xi ∈ Ei.

Lemma 5.1.5.7. For i = 1, . . . , n, let Di be a sheaf of rings such that (Di,BXi) has the ring of resolution
R. For i = 1, . . . , n, letMi ∈ D−(Di,R,BXi), Ei ∈ D−(BXi), Ni ∈ D−(Di,R, ‹D(m)

X]
i

) (recall our notation

4.6.3.2), Fi ∈ D−(‹D(m)

X]
i

).

(a) We have the canonical isomorphism of D−(�
i

topDi,R,Btop
X )‹�

i

L
top(Mi ⊗L

BXi
Ei)

∼−→ ‹�
i

L
topMi ⊗L

Btop
X

‹�
i

L
topEi. (5.1.5.7.1)

(b) We have the canonical isomorphism of �
i

topDi-modules‹�
i

L
top(Ni ⊗L

D̃(m)

X
]
i

Fi)
∼−→ ‹�

i

L
topNi ⊗L

D̃top

X]

‹�
i

L
topFi. (5.1.5.7.2)
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Proof. By using flat resolutions, we remove L (use also 5.1.5.3 for 5.1.5.7.2. Then, this is a consequence
of Lemma 5.1.5.6.

Lemma 5.1.5.8. For i = 1, . . . , n, let Di be a sheaf of rings such that (Di,BXi) has the ring of resolution
R.

(a) For i = 1, . . . , n, let Mi ∈ D−(Di,R,BXi), Ei ∈ D−(BXi). We have the isomorphism of the form‹�
i

L
(Mi ⊗L

BXi
Ei)

∼−→ ‹�
i

L
Mi ⊗L

BX
‹�
i

L
Ei of D−(�

i
topDi,R,BX) fitting into the commutative up to

isomorphism following diagram of D−(�
i

topDi,R,�
i

topBXi):‹�
i

L
top(Mi ⊗L

BXi
Ei)

∼
5.1.5.7.1

//

��

‹�
i

L
topMi ⊗L

Btop
X

‹�
i

L
topEi

��‹�
i

L
(Mi ⊗L

BXi
Ei)

∼ // ‹�
i

L
Mi ⊗L

BX
‹�
i

L
Ei.

(5.1.5.8.1)

(b) For i = 1, . . . , n, let Mi ∈ D−(lDi,R, l‹D(m)

X]
i

), Ei ∈ D−(‹D(m)

X]
i

). Then, the above isomorphism‹�
i

L
(Mi ⊗L

BXi
Ei)

∼−→ ‹�
i

L
Mi ⊗L

BX
‹�
i

L
Ei of (a) is in fact an isomorphism of D−(�

i
topDi,R, lD(m)

X]
).

Proof. We construct the isomorphism of the form ‹�
i

L
(Mi ⊗L

BXi
Ei)

∼−→ ‹�
i

L
Mi ⊗L

BX
‹�
i

L
Ei as follows:‹�

i

L
(Mi ⊗L

BXi
Ei)

∼−→
5.1.5.4.3

‹pr
∗
1(M1 ⊗L

BX1
E1)⊗L

BX · · · ⊗
L
BX ‹pr

∗
n(Mn ⊗L

BXn En)

∼−→
(‹pr
∗
1M1 ⊗L

BX · · · ⊗
L
BX ‹pr

∗
nMn

)
⊗L
BX
(‹pr
∗
1E1 ⊗L

BX · · · ⊗
L
BX ‹pr

∗
nEn

) ∼−→
5.1.5.4.3

‹�
i

L
Mi ⊗L

BX
‹�
i

L
Ei.

(5.1.5.8.2)

We check by an easy computation the commutativity of the diagram 5.1.5.8.1. Finally, when Mi ∈
D−(Di,R, ‹D(m)

X]
i

), Ei ∈ D−(‹D(m)

X]
i

), the isomorphisms of 5.1.5.8.2 are D(m)

X]
-linear.

5.1.5.9. We have the splitting of BX -modules ⊕ni=1Ω1
X]
i

∼−→ Ω1
X] . By applying determinants, this yields

the isomorphism of BX -modules ‹�
i
ω̃X]

i

∼−→ ω̃X] . Using the canonical structure of right D(m)

X]
i

-module on

ω̃X]
i
, we get a structure of right ‹D(m)

X]
-module on ‹�

i
ω̃X]

i
. By local computations, we check the canonical

isomorphism ‹�
i
ω̃X]

i

∼−→ ω̃X] is in fact an isomorphism of right ‹D(m)

X]
-modules.

For i = 1, . . . , n, Ei be left ‹D(m)

X]
i

-module, and Fi be a right ‹D(m)

X]
i

-module. Then we have the canonical

morphism of right ‹D(m)

X]
-modules (resp. left ‹D(m)

X]
-modules) ‹�

i
(ω̃X]

i
⊗BXi Ei)

∼−→ ωX] ⊗BX ‹�
i
Ei (resp.‹�

i
(Ei ⊗BXi ω̃

−1

X]
i

)
∼−→ ‹�

i
Ei ⊗BX ω−1

X]
). Taking flat resolutions, we have similar isomorphisms in derived

categories.

5.2 Exact closed immersion of log (formal) smooth schemes
The study of closed immersions is an important bootstrapping step in the proof of general results.

Let T ] be a noetherian nice (see definition 3.1.1.1) fine log scheme over Spec(Z/pi+1Z) with i an
integer (resp. T ] be a p-torsion free noetherian nice fine V-log formal scheme as defined in 3.3.1.10).
Moreover, let u : Z] ↪→ X] be an exact closed immersion of log smooth T ]-log schemes (resp. of p-torsion
free log smooth T ]-log formal schemes) such that the underlying closed immersion of schemes of u (resp.
of u0) is regular (for example, this is the case when Z] and X] are regular in the sense of log schemes: see
[GR, 12.5.14], to get example of regular log schemes, recall that a log smooth fine saturated log scheme
over a (log) regular log scheme is (log) regular: see [Ogu18, IV.3.5.3]). Let I be the ideal defining u.
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The level m ∈ N is fixed. Let BX be a commutative OX algebra equipped with a left D(m)

X]/T ]
-module

structure which is compatible with its algebra structure. We suppose OZ and u−1BX are tor independent
over u−1OX and we set BZ := u∗(BX). We keep similar notation than 4.1.2 (we replace S by T , and
X] by Z if necessary), in particular we set ‹D(m)

X]/T ]
:= BX ⊗OX D

(m)

X]/T ]
, ‹D(m)

Z]/T ]
:= BZ ⊗OZ D

(m)

Z]/T ]
.

We denote by ‹X] (resp. Z̃]) the ringed logarithmic (V-formal) scheme (X],BX) (resp. (Z],BZ)), and
by ũ : Z̃]/T ] → ‹X]/T ] the morphism of relative ringed logarithmic (V-formal) schemes induced by the
diagram 5.1.1.1.1 and by u∗BX

∼−→ BZ . We suppose ũ is quasi-flat (see Definition 4.4.1.3). We set
Ĩ := BX ⊗OX I.

5.2.1 Charts subordinate to an exact closed immersion of log smooth schemes
We will work with the following charts subordinate to u:

Proposition 5.2.1.1. Let z be a point of |Z|. Then, replacing X] by an open set containing z if
necessary, there exist some integers n ≥ r and the left (resp. right) cartesian diagram of morphisms of
T ]-log-schemes (resp. T ]-log-formal schemes) of the form:

X] //

�

Ad,r
T ]

Z]
?�

u

OO

// Ar,r
T ]
,

?�

OO

such that the horizontal morphisms are log-étale and the right morphism is the canonical exact closed
immersion (see notation 4.5.1.1).

Proof. Since the respective case is a consequence of the non-respective one, let us check this latter case.
The proof is analogous to that of theorem [SGA1, II.4.10]: Since u is an exact closed immersion, denoting
by I the ideal given by u, following [Ogu18, IV.3.2.2] we get the exact sequence

0→ I/I2 → u∗Ω1
X]/T ] → Ω1

Z]/T ] → 0. (5.2.1.1.1)

Since Z] and X] are log-smooth over T ], following [Ogu18, IV.3.2.1], Ω1
X]/T ] and Ω1

Z]/T ] are locally
free. Following [Ogu18, IV,1.2.11], by replacing X] by an open set containing X] if necessary (and Z]
by the trace of this open set on Z]), we check that Ω1

Z]/T ] is generated as DZ-module by the elements of
the form d log a with a a global section of MZ] . Hence, (by replacing X] by an open set containing X]

if necessary) we get some global sections a1, . . . , ar of MX] such that d log a1, . . . , d log ar is a basis of
Ω1
Z]/T ] , a means the image of a via the surjection u−1MX] →MZ] . Via the exact sequence 5.2.1.1.1, we

get some global sections ar+1, . . . , ad of I such that 1⊗d log a1, . . . , 1⊗d log ar, 1⊗dar+1, . . . , 1⊗dad form
a basis of u∗Ω1

X]/T ] . Since Ω1
X]/T ] is a locally free OX -module, replacing X] by an open set containing

X] if necessary, we can therefore suppose that d log a1, . . . , 1⊗d log ar, dar+1, . . . , dad is a basis of Ω1
X]/T ] .

The sections a1, . . . , ad (resp. a1, . . . , ar) induce a morphism of log smooth T ]-log-schemes of the form
f : X] → Ad,r

T ]
(resp. f ′ : Z] → Ar,r

T ]
). Following 4.5.1.3, f and f ′ are log-étale. Consider the diagram

X] f //

�

Ad,r
T ]

Z]
/�

u

??

//

f ′

44Z ′]
?�

OO

// Ar,r
T ]

?�

OO

where the three closed immersions are strict and where the square is cartesian. Since f ′ and f are log-
étale, then so is Z] → Z ′]. Since the closed immersions are exact, the morphism Z] → Z ′] is moreover
strict. The underlying morphism of schemes of Z → Z ′ is therefore an étale closed immersion, and
therefore an open immersion. By shrinking X] if necessary, we can therefore conclude.
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5.2.2 Preliminaries: some computations in local coordinates
In this subsection, with notation 4.5.1.1, we suppose X] is affine and there exist some integers r, s, d ≥ 0
such that r + s ≤ d and a cartesian diagram of morphisms of nice fine T ]-log-schemes (resp. p-torsion
free nice fine log smooth T ]-log-formal schemes) of the form:

X] α //

�

Ad,r
T ]

Z]
?�

u

OO

// Ar+s,r
T ]

?�

OO

such that the horizontal morphisms are log-étale and the right morphism is the canonical exact closed
immersion given by tr+s+1, . . . , td. Recall following 5.2.1.1, this is Zariski locally possible to suppose
s = 0, but we will need the computation of this section when s is not necessarily 0 (see the condition (?)
of 5.2.4). Moreover, without structures, we can similarly suppose r = 0.

Let Y := α−1(Bn,r
T ]

) be the open T ]-(formal) subscheme of X] with trivial log-structure (see [Ogu18,
III.1.2.8]). Let t1, . . . , tr ∈ MX] and tr+1, . . . , td ∈ Γ(X,OX) be the element given by α. Then
tr+s+1, . . . , td generate I := Γ(X, I), t1, . . . , tr+s are semi-logarithmic coordinates of Z] over T ], and
tr+s+1, . . . , td is a basis of I/I2, where t1, . . . , tr ∈ Γ(Z,MZ]) (resp. tr+1, . . . , td ∈ Γ(X,OZ)) are the
images of t1, . . . , tr (resp. tr+1, . . . , td) via Γ(X,MX]) → Γ(Z,MZ]) (resp. Γ(X, I) → Γ(Z,OZ)). Re-
mark that since the closed immersion u is regular then it follows from [Gro67, 16.9.3] that tr+s+1, . . . , td
is a quasi-regular sequence of I := Γ(X, I) and then by noetherianity (see [Gro67, 16.9.10]) is a regular
sequence of I.

Since the level m is fixed, we simply write τi] := µn(m),γ(ti) − 1 ∈ ‹PnX]/T ],(m) for i = 1, . . . , r (see

notation 3.2.2.4), τj := 1⊗ tj − tj ⊗ 1 ∈ ‹PnX]/T ],(m) for j = r+ 1, . . . , d. We write τ i] := µn(m),γ(ti)− 1 ∈‹PnZ]/T ],(m) for i = 1, . . . , r, τ j := 1 ⊗ tj − tj ⊗ 1 ∈ ‹PnZ]/T ],(m) for j = r + 1, . . . , r + s. The sheaf of

BX -algebras ‹PnX]/T ],(m) is a free BX -module with the basis {τ (r)
{(i,j)}(m) := τ ]

{(i,0)}(m)τ{(0,j)}(m) | i ∈

Nr, j ∈ Nd−r such that |i|+ |j| ≤ n}, and ‹PnZ]/T ],(m) is a free BZ-module with the basis {τ{(i,j)}(m)

(r) :=

τ
{(i,0)}(m)

] τ{(0,j)}(m) | i ∈ Nr, j ∈ Ns such that |i|+ |j| ≤ n}. According to 4.5.1.1, the corresponding dual

basis of ‹D(m)

X]/T ],n
is denoted {∂〈k〉(m)

(r) | k ∈ Nd, |k| ≤ n} and the corresponding dual basis of ‹D(m)

Z]/T ],n
is

denoted by {∂〈i〉(m)

(r) | i ∈ Nr+s, |i| ≤ n} (we hope the similar notation is not too confusing). The sheaf‹D(m)

X]/T ]
is a free BX -module with the basis {∂〈k〉(m)

(r) | k ∈ Nd}, and ‹D(m)

Z]/T ]
is a free BZ-module with the

basis {∂〈i〉(m)

(r) | i ∈ Nr+s}.
We denote by straight letter, the global section of a sheaf on X, e.g. ‹D(m)

X]/T ]
:= Γ(X, ‹D(m)

Z]/T ]
).

5.2.2.1. We compute the canonical homomorphism ũ∗‹PnX]/T ],(m) → ‹PnZ]/T ],(m) sends τ
{(i,j)}(m)

(r) (where

i ∈ Nr+s, j ∈ Nd−r−s) to τ{i}(m)

(r) if j = (0, . . . , 0) and to 0 otherwise.

We denote by θ : ‹D(m)

Z]/T ]
→ u∗‹D(m)

Z]→X]/T ] the canonical homomorphism of left ‹D(m)

Z]/T ]
-modules (which

is build by duality from the canonical homomorphisms ũ∗‹PnX]/T ],(m) → ‹PnZ]/T ],(m)) and which sends 1

to 1⊗ 1. For any P ∈ ‹D(m)

X]/T ]
, we denote by [P ]Z its image via the canonical morphism of left ‹D(m)

X]/T ]
-

modules ‹D(m)

X]/T ]
→ ‹D(m)

X]/T ]
/I‹D(m)

X]/T ]
= u∗‹D(m)

Z]→X]/T ] . We set ξ〈k〉(m)

(r) := [∂
〈k〉(m)

(r) ]Z . By duality, we

compute θ(∂〈i〉(m)

(r) ) = ξ
〈(i,0)〉(m)

(r) , for any i ∈ Nr+s.

Notation 5.2.2.2. By abuse of notations, we write OT for the sheaf deduced from OT by topo-
logical inverse image (e.g. p−1

X OT is denoted by OT where pX : X] → T ] is the map induced by
α). We denote by OT {∂r+s+1, . . . , ∂d}(m) the sub-OT -algebra of D(m)

X]/T ]
generated by the elements

{∂〈j1〉(m)

r+s+1 , ∂
〈j2〉(m)

r+s+2 , . . . , ∂
〈jd−r−s〉(m)

d | j1, . . . , jd−r−s ∈ N}. It is equal to the free OT -module whose basis

is given by {∂〈(0,j)〉(m)

(r) | j ∈ Nd−r−s}, where 0 := (0, . . . , 0) ∈ Nr+s. Beware that this commutative
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OT -algebra has not to be confused with the partial divided powers of level m polynomial OT -algebra in
the variables ∂r+s+1, . . . , ∂d of 1.3.3.6 which was denoted by OT 〈∂r+s+1, . . . , ∂d〉(m).

Notation 5.2.2.3. We denote by ‹D(m)

X],Z],t/T ]
the free BX -module with the basis {∂〈(i,0)〉(m)

(r) | i ∈ Nr+s},
where 0 := (0, . . . , 0) ∈ Nd−r−s. The sheaf ‹D(m)

X],Z],t/T ]
is equal to the sub-OT -algebra of ‹D(m)

X]/T ]
which

is generated by BX , by ∂〈p
h〉(m)

],i and ∂
〈ph〉(m)

j for any 1 ≤ i ≤ r, r + 1 ≤ j ≤ r + s and 0 ≤ h ≤ pm.
Since there is no ambiguity concerning the local coordinates (resp. and T ]), we might sometimes simply
denote ‹D(m)

X],Z],t/T ]
by ‹D(m)

X],Z]/T ]
(resp. ‹D(m)

X],Z]
).

5.2.2.4. Since ‹D(m)

X]/T ]
is a free left ‹D(m)

X],Z]/T ]
-module with the basis {∂〈(0,h)〉(m) | h ∈ Nd−r−s}, where

0 := (0, . . . , 0) ∈ Nr+s. This means that the canonical homomorphism of OT -algebras

µ : ‹D(m)

X],Z],t/T ]
⊗OT OT {∂r+s+1, . . . , ∂d}(m) ∼−→ ‹D(m)

X]/T ]
(5.2.2.4.1)

given by P ⊗Q 7→ PQ is also an isomorphism of left ‹D(m)

X],Z],t/T ]
-modules.

Since tr+s+1, . . . , td generate I and are in the center of ‹D(m)

X],Z],t/T ]
, then we compute I‹D(m)

X],Z],t/T ]
=‹D(m)

X],Z],t/T ]
I. Hence, we get a canonical OT -algebra structure on ‹D(m)

X],Z],t/T ]
/I‹D(m)

X],Z],t/T ]
induced by

that of ‹D(m)

X],Z],t/T ]
. Since I‹D(m)

X],Z],t/T ]
= ‹D(m)

X],Z],t/T ]
∩ I‹D(m)

X]/T ]
, we get the inclusion‹D(m)

X],Z],t/T ]
/I‹D(m)

X],Z],t/T ]
↪→ ‹D(m)

X]/T ]
/I‹D(m)

X]/T ]
.

The morphism 5.2.2.4.1 induces the isomorphism of left ‹D(m)

X],Z],t/T ]
/I‹D(m)

X],Z],t/T ]
-modules:

(‹D(m)

X],Z]/T ]
/I‹D(m)

X],Z]/T ]
)⊗OT OT {∂r+s+1, . . . , ∂d}(m) ∼−→ ‹D(m)

X]/T ]
/I‹D(m)

X]/T ]
= u∗‹D(m)

Z]→X]/T ] .

(5.2.2.4.2)

Notation 5.2.2.5. Let ι : ‹D(m)

Z]/T ]
↪→ ‹D(m)

Z]/T ]
⊗OT OT {∂r+s+1, . . . , ∂d}(m) be the canonical homomor-

phism of OT -algebra. Taking the structure of BX -module induced by the structure of left ‹D(m)

X]/T ]
-module

on ‹D(m)

X]/T ]
(resp. induced by the structure of left ‹D(m)

Z]/T ]
-module on ‹D(m)

Z]/T ]
⊗OT OT {∂r+s+1, . . . , ∂d}(m)),

we denote by
σ

(m)

X] ,̃t
: ‹D(m)

X]/T ]
→ u∗‹D(m)

Z]/T ]
⊗OT OT {∂r+s+1, . . . , ∂d}(m) (5.2.2.5.1)

the BX -linear map given by σ(m)

X] ,̃t
(∂
〈(i,0)〉(m)

(r) ) = ∂
〈i〉(m)

(r) ⊗ ∂〈(0,j)〉(m) , for any i ∈ Nr+s and j ∈ Nd−r−s.

Moreover, σ(m)

X] ,̃t
is surjective with kernel equal to I‹D(m)

X]/T ]
. We write

σ
(m)

X] ,̃t
: ‹D(m)

X]/T ]
/I‹D(m)

X]/T ]
∼−→ u∗‹D(m)

Z]/T ]
⊗OT OT {∂r+s+1, . . . , ∂d}(m) (5.2.2.5.2)

the induced BZ-linear isomorphism characterized by the formula σ(m)

X] ,̃t
(ξ
〈(i,j)〉(m)

(r) ) = ∂
〈i〉(m)

(r) ⊗ ∂〈(0,j)〉(m) ,

for any i ∈ Nr+s and j ∈ Nd−r−s. In fact, we will show this isomorphism is even u∗‹D(m)

Z]/T ]
-linear (see

5.2.2.9).
Taking the structure of BX -module induced by the structure of left ‹D(m)

X]/T ]
-module on ‹D(m)

X],Z],t/T ]

(resp. induced by the structure of left ‹D(m)

Z]/T ]
-module on ‹D(m)

Z]/T ]
), we denote by

σ
(m)

Z],X] ,̃t
: ‹D(m)

X],Z],t/T ]
→ u∗‹D(m)

Z]/T ]
, (5.2.2.5.3)

the BX -linear morphism given by σ
(m)

Z],X] ,̃t
(∂
〈(i,0)〉(m)

(r) ) = ∂
〈i〉(m)

(r) , for any i ∈ Nr+s. In other words,

ι ◦ σ(m)

Z],X] ,̃t
is the restriction of σ(m)

X] ,̃t
on ‹D(m)

X],Z],t/T ]
.
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The kernel of σ(m)

Z],X] ,̃t
is I‹D(m)

X],Z],t/T ]
and we get therefore the BZ-linear isomorphism (for the left

structures):

σ
(m)

Z],X] ,̃t
: ‹D(m)

X],Z],t/T ]
/I‹D(m)

X],Z],t/T ]
= ‹D(m)

X],Z],t/T ]
/‹D(m)

X],Z],t/T ]
I ∼−→ ‹D(m)

Z]/T ]
. (5.2.2.5.4)

which satisfies the formula σ(m)

Z],X] ,̃t
(ξ
〈(i,0)〉(m)

(r) ) = ∂
〈i〉(m)

(r) , for any i ∈ Nr+s.

Moreover, for any P ∈ ‹D(m)

X],Z]/T ]
, Q ∈ OT {∂r+s+1, . . . , ∂d}(m), we have the formula

σ
(m)

X] ,̃t
(PQ) = σ

(m)

X] ,̃t
([PQ]Z) = σ

(m)

Z],X] ,̃t
(P )⊗Q = σ

(m)

Z],X] ,̃t
([P ]Z)⊗Q. (5.2.2.5.5)

By construction we have the commutative diagram‹D(m)

X]/T ]
/I‹D(m)

X]/T ]

σ
(m)

X],̃t

∼
// u∗‹D(m)

Z]/T ]
⊗OT OT {∂r+s+1, . . . , ∂d}(m)

u∗‹D(m)

Z]→X]/T ] (‹D(m)

X],Z]/T ]
/I‹D(m)

X],Z]/T ]
)⊗OT OT {∂r+s+1, . . . , ∂d}(m).

5.2.2.4.2

∼oo

σ
(m)

Z],X],̃t

⊗id ∼

OO
(5.2.2.5.6)

Since θ(∂〈i〉(m)

(r) ) = ξ
〈(i,0)〉(m)

(r) for any i ∈ Nr+s, since BZ = u∗(BX), then we have the following

BZ-linear homomorphism ϑ : u∗‹D(m)

Z]/T ]
→ ‹D(m)

X],Z],t/T ]
/I‹D(m)

X],Z],t/T ]
making commutative the diagram:‹D(m)

X],Z],t/T ]

[−]Z // //

σ
(m)

Z],X],̃t
5.2.2.5.3

��

‹D(m)

X],Z],t/T ]
/I‹D(m)

X],Z],t/T ]
� � // ‹D(m)

X]/T ]
/I‹D(m)

X]/T ]

u∗‹D(m)

Z]/T ]
u∗θ //

∼
ϑ

66

u∗‹D(m)

Z]→X]/T ] .

(5.2.2.5.7)

Hence, ϑ = (σ
(m)

Z],X] ,̃t
)−1 and then σ(m)

Z],X] ,̃t
do not depend on the choice of the semi logarithmic coordinates

(contrary to σ(m)

Z],X] ,̃t
or σ(m)

X] ,̃t
).

Lemma 5.2.2.6. Let E be a left ‹D(m)

X]/T ]
-module, x ∈ E, P ∈ ‹D(m)

X],Z],t/T ]
, [−]Z the canonical surjection

E → E/IE. With notation 5.2.2.5.4, the structure of left u∗‹D(m)

Z]/T ]
-module of E/IE is characterized by

the formula:
σ

(m)

Z],X] ,̃t
(P ) · [x]Z = σ

(m)

Z],X] ,̃t
([P ]Z) · [x]Z = [P · x]Z . (5.2.2.6.1)

Proof. Let Q := σ
(m)

Z],X] ,̃t
(P ) = σ

(m)

Z],X] ,̃t
([P ]Z) ∈ ‹D(m)

Z]/T ]
. Since [P ]Z = ϑ(Q) (see 5.2.2.5.7), then this is

a consequence of 4.4.2.11.2.

Lemma 5.2.2.7. The map σ(m)

Z],X] ,̃t
(see 5.2.2.5.3) is a morphism of OT -algebras. The maps σ(m)

Z],X] ,̃t

and ϑ (see 5.2.2.5.4) are isomorphisms of OT -algebras.

Proof. Since the canonical morphism ‹D(m)

X],Z],t/T ]
→ ‹D(m)

X],Z],t/T ]
/‹D(m)

X],Z],t/T ]
I is a morphism of BX -rings

(i.e. this is BX -linear and this is an homomorphism of rings), since ϑ = (σ
(m)

Z],X] ,̃t
)−1, then we reduce to

check ϑ is an isomorphism of OT -algebras.
By BZ-linearity of this map, we reduce to check that ϑ(∂

〈k〉(m)

(r) b∂
〈l〉(m)

(r) ) = ϑ(∂
〈k〉(m)

(r) )ϑ(b)ϑ(∂
〈l〉(m)

(r) ), for
any b ∈ Γ(X,BX), k, l ∈ Nr+s. By using the formula 3.2.3.7.2 where ∂] is replaced by ∂(r), we get the

formula ϑ(∂
〈l〉(m)

(r) ) = ξ
〈(l,0)〉(m)

(r) and by ‹D(m)

Z]/T ]
-linearity of ϑ we get the equality

ϑ(∂
〈k〉(m)

(r) [b]Z∂
〈l〉(m)

(r) ) =
∑

k′′+k′=k

¶
k

k′

©
(m)

∂
〈k′〉(m)

(r) ([b]Z)∂
〈k′′〉(m)

(r) · ξ〈(l,0)〉(m)

(r)
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By using 5.2.2.6.1 in the case where E = BX , since σ
(m)

Z],X] ,̃t
(∂
〈(k′,0)〉(m)

(r) ) = ∂
〈k′〉(m)

(r) then we get:

∂〈k
′〉(m)([b]Z) = [∂

〈(k′,0)〉(m)

(r) (b)]Z . Since σ
(m)

Z],X] ,̃t
is BX -linear (for the left structures), then we get

σ
(m)

Z],X] ,̃t
(∂
〈(k′,0)〉(m)

(r) (b)∂
〈(k′′,0)〉(m)

(r) ) = ∂〈k
′〉(m)([b]Z)∂

〈k′′〉(m)

(r) .

Since ξ〈(l,0)〉(m)

(r) = [∂
〈(l,0)〉(m)

(r) ]Z , then using 5.2.2.6.1 in the case where E = ‹D(m)

X]/T ]
, we get the first

equality:∑
k′′+k′=k

¶
k

k′

©
(m)

∂〈k
′〉(m)([b]Z)∂

〈k′′〉(m)

(r) · ξ〈(l,0)〉(m)

(r)

5.2.2.6.1
=

∑
k′′+k′=k

¶
k

k′

©
(m)

[∂
〈(k′,0)〉(m)

(r) (b)∂
〈(k′′,0)〉(m)

(r) ∂
〈(l,0)〉(m)

(r) ]Z

= [∂
〈(k,0)〉(m)

(r) b∂
〈(l,0)〉(m)

(r) )]Z = [∂
〈(k,0)〉(m)

(r) ]Z [b]Z [∂
〈(l,0)〉(m)

(r) )]Z = ϑ(∂
〈k〉(m)

(r) )ϑ([b]Z)ϑ(∂
〈l〉(m)

(r) ),

the third one being a consequence of the fact that []Z : ‹D(m)

X],Z],t/T ]
→ ‹D(m)

X],Z],t/T ]
/I‹D(m)

X],Z],t/T ]
is a ring

homomorphism.

5.2.2.8. Since u∗‹D(m)

Z]→X]/T ] = ‹D(m)

X]/T ]
/I‹D(m)

X]/T ]
, then ‹D(m)

X]/T ]
/I‹D(m)

X]/T ]
is a (u∗‹D(m)

Z]/T ]
, ‹D(m)

X]/T ]
)-bimodule.

Using the formula 5.2.2.6.1 applied to the case E = ‹D(m)

X]/T ]
, we compute that ‹D(m)

X],Z],t/T ]
/I‹D(m)

X],Z],t/T ]

is also a left u∗‹D(m)

Z]/T ]
-submodule of ‹D(m)

X]/T ]
/I‹D(m)

X]/T ]
, and then a (u∗‹D(m)

Z]/T ]
, ‹D(m)

X],Z],t/T ]
)-sub-bimodule

of ‹D(m)

X]/T ]
/I‹D(m)

X]/T ]
.

Since u∗θ : u∗‹D(m)

Z]/T ]
→ u∗‹D(m)

Z]→X]/T ] is a homomorphism of left u∗‹D(m)

Z]/T ]
-modules, then via the

commutativity of 5.2.2.5.7, this implies that the bijection ϑ : u∗‹D(m)

Z]/T ]
∼−→ ‹D(m)

X],Z],t/T ]
/I‹D(m)

X],Z],t/T ]

(and its inverse σ(m)

Z],X] ,̃t
) is an isomorphism of left u∗‹D(m)

Z]/T ]
-modules.

Proposition 5.2.2.9. Taking the structure of left u∗‹D(m)

Z]/T ]
-module induced by the (u∗‹D(m)

Z]/T ]
, ‹D(m)

X]/T ]
)-

bimodule structure of ‹D(m)

X]/T ]
/I‹D(m)

X]/T ]
(see 5.2.2.8), the isomorphism σ

(m)

X] ,̃t
(see 5.2.2.5.2) is ‹D(m)

Z]/T ]
-

linear.

Proof. Let P ∈ ‹D(m)

X]/T ]
. The element P can be written (uniquely) in the form

∑
j∈Nd−r−s Pj∂

〈(0,j)〉(m)

(r) ,

with Pj ∈ ‹D(m)

X],Z],t/T ]
zero except for a finite number of terms. Then, we compute

σ
(m)

X] ,̃t
([P ]Z) =

∑
j∈Nd−r−s

σ
(m)

Z],X] ,̃t
(Pj)⊗ ∂〈(0,j)〉(m) . (5.2.2.9.1)

Hence, we compute the ‹D(m)

Z]/T ]
-linearity of σ(m)

Z],X] ,̃t
follows from the fact that σ(m)

Z],X] ,̃t
is a morphism of

OT -algebras (see 5.2.2.7) and from the formula 5.2.2.6.1 applied to the case E = ‹D(m)

X]/T ]
.

5.2.2.10. It follows from 5.2.2.9 that ‹D(m)

Z]→X]/T ] is a free left ‹D(m)

Z]/T ]
-module with the basis {ξ〈(0,h)〉(m)

(r) | h ∈
Nd−r−s}, where 0 := (0, . . . , 0) ∈ Nr+s.

5.2.2.11. It follows from 5.2.2.9 that via the isomorphism σ
(m)

X] ,̃t
we equip u∗‹D(m)

Z]/T ]
⊗OTOT {∂r+s+1, . . . , ∂d}(m)

with a structure of (u∗‹D(m)

Z]/T ]
, ‹D(m)

X]/T ]
)-bimodule extending its structure of left u∗‹D(m)

Z]/T ]
-module. The

right ‹D(m)

X]/T ]
-module structure is given later by the explicit formula 5.2.2.20. Remark, the morphism

σ
(m)

X] ,̃t
is also ‹D(m)

X]/T ]
-linear.

5.2.2.12 (Semi-logarithmic adjoint operator). The semi-logarithmic adjoint automorphism τ : (‹D(m)

X]/T ]
)o →‹D(m)

X]/T ]
(see 4.5.1.5) induces τ : ‹D(m)

X],Z],t/T ]
→ ‹D(m)

X],Z],t/T ]
such that τ (I‹D(m)

X],Z],t/T ]
) = I‹D(m)

X],Z],t/T ]
.

This yields the automorphism τ : ‹D(m)

X],Z],t/T ]
/I‹D(m)

X],Z],t/T ]
→ ‹D(m)

X],Z],t/T ]
/I‹D(m)

X],Z],t/T ]
. On the other

hand, via the local logarithmic coordinates t1, . . . , tr+s of Z] over T ], we get the logarithmic adjoint oper-
ator automorphism τ : ‹D(m)

Z]/T ]
→ ‹D(m)

Z]/T ]
given by Q =

∑
i∈Nr+s bi∂

〈i〉(m)

(r) 7→ τ (Q) :=
∑
i∈Nr+s

τ∂
〈i〉(m)

(r) bi.
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Since ϑ(∂
〈i〉(m)

(r) ) = ∂
〈(i,0)〉(m)

(r) , ϑ(τ∂
〈i〉(m)

(r) ) = τ∂
〈(i,0)〉(m)

(r) (use the formula 3.4.1.2.2) for any i ∈ Nr+s,
then the following diagram‹D(m)

X],Z],t/T ]

∼ τ

��

σ
(m)

Z],X],̃t// ‹D(m)

Z]/T ]
∼
ϑ
//

∼ τ

��

‹D(m)

X],Z],t/T ]
/I‹D(m)

X],Z],t/T ]

∼ τ

��‹D(m)

X],Z],t/T ]

σ
(m)

Z],X],̃t// ‹D(m)

Z]/T ]
,
∼
ϑ
// ‹D(m)

X],Z],t/T ]
/I‹D(m)

X],Z],t/T ]

(5.2.2.12.1)

is commutative.

5.2.2.13. For any left (resp. right) ‹D(m)

X]/T ]
-module E (resp. M), we denote by [−]Z : E → E/IE (resp.

[−]′Z : M → M/MI) the canonical surjection. Remark we add a prime to avoid some confusion in the
case of a bimodule, e.g. see 5.2.2.14. We denote by ẽ0 := d log t1 ∧ · · · ∧ d log tr ∧ dtr+1 ∧ · · · ∧ dtd a basis
of the free BX -module ω̃X]/T ] and by ẽ∨0 its corresponding dual basis of the free BX -module ω̃−1

X]/T ]
. We

denote by f̃0 := d log t1 ∧ · · · ∧ d log tr ∧ dtr+1 ∧ · · · ∧ dtr+s the basis of the free BZ-module ω̃Z]/T ] , and
by f̃∨0 its dual basis.

Following 4.5.1.8, the functors ω̃Z]/T ]⊗BZ− and ⊗BZ ω̃−1
Z]/T ]

induce quasi-inverse equivalence between

the category of left ‹D(m)

Z]/T ]
-modules and of right ‹D(m)

Z]/T ]
-modules, with explicit computation involving the

semi-logarithmic adjoint operator via the identification of ω̃Z]/T ] (resp. ω̃
−1
Z]/T ]

) with BZ via the choice

of the basis f̃0 (resp. f̃∨0 ). LetM be a quasi-coherent right ‹D(m)

X]/T ]
-module. We have the isomorphism

of abelian groups:
ι̃
t
: Γ(Z, ũ∗(M⊗BX ω̃−1

X]/T ]
)⊗BZ ω̃Z]/T ])

∼−→ M/MI (5.2.2.13.1)

given by f̃0 ⊗ [y ⊗ ẽ∨0 ]Z 7→ [y]′Z . Via this map ι̃
t
, M/MI is equipped with a structure of right ‹D(m)

Z]/T ]
-

module. The structure of right ‹D(m)

Z]/T ]
-module of M/MI is characterized by the formula,

[y]′Z · σ
(m)

Z],X] ,̃t
(P ) = [y]′Z · σ

(m)

Z],X] ,̃t
([P ]Z) = [y · P ]′Z , (5.2.2.13.2)

for any y ∈M and P ∈ ‹D(m)

X]/T ]
. Indeed, setQ := σ

(m)

Z],X] ,̃t
(P ). Following 4.5.1.8.1, we have

Ä
f̃0 ⊗ [y ⊗ ẽ∨0 ]Z

ä
Q =

f̃0 ⊗ τQ ([y ⊗ ẽ∨0 ]Z). Since τQ = σ
(m)

Z],X] ,̃t
(τP ) (see 5.2.2.12.1), then following 5.2.2.6.1 we get the first

equality

τQ ([y ⊗ ẽ∨0 ]Z) = [τP (y ⊗ ẽ∨0 )]Z
4.5.1.8.2

= [yP ⊗ ẽ∨0 ]′Z .

Hence, we are done.
SinceM/MI is quasi-coherent and Γ(X,M/MI)

∼−→ M/MI, this yieldsM/MI is equipped with
a structure of right u∗‹D(m)

Z]/T ]
-module so that

ι̃
t
: u∗ũ

∗(M⊗BX ω̃−1
X]/T ]

)⊗BZ ω̃Z]/T ]
∼−→ M/MI (5.2.2.13.3)

is an isomorphism of right u∗‹D(m)

Z]/T ]
-modules.

5.2.2.14. Following 5.2.2.13.3 and with its notation, we get the isomorphism of abelian sheaves:

ι̃
t
: u∗‹D(m)

X]←Z]/T ]
∼−→ ‹D(m)

X]/T ]
/‹D(m)

X]/T ]
I. (5.2.2.14.1)

Via this map, we get a structure of (‹D(m)

X]/T ]
, u∗‹D(m)

Z]/T ]
)-bimodule on ‹D(m)

X]/T ]
/‹D(m)

X]/T ]
I. By functoriality

of the construction of the structure of (u−1‹D(m)

X]/T ]
, ‹D(m)

Z]/T ]
)-bimodule of ‹D(m)

X]←Z]/T ] , we check that

the underlying structure of left ‹D(m)

X]/T ]
-module on ‹D(m)

X]/T ]
/‹D(m)

X]/T ]
I is equal to its natural structure.

The structure of right ‹D(m)

Z]/T ]
-module is given by the formula 5.2.2.13.2 applied to the case where

M = ‹D(m)

X]/T ]
. Moreover, we compute that ‹D(m)

X],Z],t/T ]
/I‹D(m)

X],Z],t/T ]
is also a left u∗‹D(m)

Z]/T ]
-submodule

of ‹D(m)

X]/T ]
/I‹D(m)

X]/T ]
, and therefore a (u∗‹D(m)

Z]/T ]
, ‹D(m)

X],Z],t/T ]
)-sub-bimodule of ‹D(m)

X]/T ]
/I‹D(m)

X]/T ]
.
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5.2.2.15. We denote by

µ′ : OT {∂r+s+1, . . . , ∂d}(m) ⊗OT ‹D(m)

X],Z],t/T ]
∼−→ ‹D(m)

X]/T ]
(5.2.2.15.1)

the canonical homomorphism of OT -algebras given by Q⊗P 7→ QP , which is also an isomorphism of right‹D(m)

X],Z]/T ]
-modules. The morphism 5.2.2.15.1 induces the isomorphism of right ‹D(m)

X],Z],t/T ]
/I‹D(m)

X],Z],t/T ]
-

modules:

OT {∂r+s+1, . . . , ∂d}(m) ⊗OT (‹D(m)

X],Z]/T ]
/‹D(m)

X],Z]/T ]
I)

∼−→ ‹D(m)

X]/T ]
/‹D(m)

X]/T ]
I. (5.2.2.15.2)

Notation 5.2.2.16. Taking the BX -module structure induced by the structure of right ‹D(m)

X]/T ]
-module

on ‹D(m)

X]/T ]
(resp. induced by the structure of right ‹D(m)

Z]/T ]
-module on OT {∂r+s+1, . . . , ∂d}(m) ⊗OT‹D(m)

Z]/T ]
), we denote by

ς
(m)

X] ,̃t
: ‹D(m)

X]/T ]
→ OT {∂r+s+1, . . . , ∂d}(m) ⊗OT u∗‹D(m)

Z]/T ]
(5.2.2.16.1)

the BX -linear map given by ς(m)

X] ,̃t
(∂
〈(i,j)〉(m)

(r) ) = ∂〈(0,j)〉(m) ⊗ ∂〈i〉(m)

(r) , for any i ∈ Nr+s and j ∈ Nd−r−s.

Moreover, ς(m)

X] ,̃t
is surjective with kernel equal to ‹D(m)

X]/T ]
I and we denote by

ς
(m)

X] ,̃t
: ‹D(m)

X]/T ]
/‹D(m)

X]/T ]
I ∼−→ OT {∂r+s+1, . . . , ∂d}(m) ⊗OT u∗‹D(m)

Z]/T ]
(5.2.2.16.2)

the induced BZ-linear isomorphism characterized by the formula ς(m)

X] ,̃t
(ξ
〈(i,j)〉(m)

(r) ) = ∂〈(0,j)〉(m) ⊗ ∂〈i〉(m)

(r) ,

for any i ∈ Nr+s and j ∈ Nd−r−s. For any P ∈ ‹D(m)

X],Z]/T ]
, Q ∈ OT {∂r+s+1, . . . , ∂d}(m), we have the

formula
ς
(m)

X] ,̃t
(QP ) = ς

(m)

X] ,̃t
([QP ]′Z) = Q⊗ σ(m)

Z],X] ,̃t
(P ) = Q⊗ σ(m)

Z],X] ,̃t
([P ]Z). (5.2.2.16.3)

We have the commutative diagram‹D(m)

X]/T ]
/‹D(m)

X]/T ]
I

ς
(m)

X],̃t

∼
// OT {∂r+s+1, . . . , ∂d}(m) ⊗OT u∗‹D(m)

Z]/T ]

‹D(m)

X]/T ]
/‹D(m)

X]/T ]
I OT {∂r+s+1, . . . , ∂d}(m) ⊗OT (‹D(m)

X],Z]/T ]
/I‹D(m)

X],Z]/T ]
).

5.2.2.15.2

∼oo

id⊗σ(m)

Z],X],̃t
∼

OO
(5.2.2.16.4)

where σ(m)

Z],X] ,̃t
is the isomorphism 5.2.2.5.4.

5.2.2.17. By using the commutativity of 5.2.2.12.1, we can check that the semi-logarithmic adjoint
operator (see 5.2.2.12) induces the bijection

τ : ‹D(m)

X]/T ]
/I‹D(m)

X]/T ]
∼−→ ‹D(m)

X]/T ]
/‹D(m)

X]/T ]
I,

making commutative the diagram

u∗‹D(m)

Z]/T ]
⊗OT OT {∂r+s+1, . . . , ∂d}(m) ∼

α
// OT {∂r+s+1, . . . , ∂d}(m) ⊗OT u∗‹D(m)

Z]/T ]

‹D(m)

X]/T ]
/I‹D(m)

X]/T ]
τ
∼

//

σ
(m)

X],̃t
∼

OO ‹D(m)

X]/T ]
/‹D(m)

X]/T ]
I

ς
(m)

X],̃t
∼

OO

(‹D(m)

X],Z]/T ]
/I‹D(m)

X],Z]/T ]
)⊗OT OT {∂r+s+1, . . . , ∂d}(m)

5.2.2.4.2 ∼

OO

∼
β
// OT {∂r+s+1, . . . , ∂d}(m) ⊗OT (‹D(m)

X],Z]/T ]
/‹D(m)

X],Z]/T ]
I).

5.2.2.15.2 ∼

OO

(5.2.2.17.1)
where α is given by PZ ⊗Q 7→ tQ⊗ τPZ and where β is given by [PX ]Z ⊗Q 7→ tQ⊗ [τPX ]′Z .
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Proposition 5.2.2.18. Taking the structure of right u∗‹D(m)

Z]/T ]
-module induced by the (‹D(m)

X]/T ]
, u∗‹D(m)

Z]/T ]
)-

bimodule structure of ‹D(m)

X]/T ]
/I‹D(m)

X]/T ]
(see 5.2.2.14), the isomorphism ς

(m)

X] ,̃t
(see 5.2.2.16.2) is ‹D(m)

Z]/T ]
-

linear.

Proof. Let P ∈ ‹D(m)

X]/T ]
. The element P can be written (uniquely) in the form

∑
j∈Nd−r−s ∂

〈(0,j)〉(m)

(r) Pj ,

with Pj ∈ ‹D(m)

X],Z],t/T ]
zero except for a finite number of terms. Then, following 5.2.2.16.3 we have the

formula
ς
(m)

X] ,̃t
([P ]′Z) =

∑
j∈Nd−r−s

∂〈(0,j)〉(m) ⊗ σ(m)

Z],X] ,̃t
(Pj). (5.2.2.18.1)

Hence, we compute the ‹D(m)

Z]/T ]
-linearity of ς(m)

Z],X] ,̃t
follows from the fact that σ(m)

Z],X] ,̃t
is a morphism of

OT -algebras (see 5.2.2.7) and from the formula 5.2.2.13.2 applied to the caseM = ‹D(m)

X]/T ]
.

5.2.2.19. It follows from 5.2.2.18 that via the isomorphism ς
(m)

X] ,̃t
we equip OT {∂r+s+1, . . . , ∂d}(m) ⊗OT

u∗‹D(m)

Z]/T ]
with a structure of (u∗‹D(m)

Z]/T ]
, ‹D(m)

X]/T ]
)-bimodule extending its structure of left u∗‹D(m)

Z]/T ]
-

module. The left ‹D(m)

X]/T ]
-module structure is given below by the explicit formula 5.2.2.20. Finally,

remark the morphism ς
(m)

X] ,̃t
is also ‹D(m)

X]/T ]
-linear.

Lemma 5.2.2.20. Let P ∈ ‹D(m)

X],Z],t/T ]
, R ∈ ‹D(m)

Z]/T ]
, and Q,Q′ ∈ OT {∂r+s+1, . . . , ∂d}(m). Then we get

respectively in ‹D(m)

Z]/T ]
⊗OT OT {∂r+s+1, . . . , ∂d}(m) and OT {∂r+s+1, . . . , ∂d}(m)⊗OT ‹D(m)

Z]/T ]
the formulas

(R⊗Q) · PQ′ = Rσ
(m)

Z],X] ,̃t
(P )⊗QQ′, Q′P · (Q⊗R) = Q′Q⊗ σ(m)

Z],X] ,̃t
(P )R. (5.2.2.20.1)

Proof. Choose anyRX ∈ ‹D(m)

X],Z],t/T ]
such that ϑ(R) = [RX ]Z (see 5.2.2.5.7). σ(m)

X] ,̃t
([PQ]Z) = σ

(m)

X] ,̃t
([PQ]Z).

By using the formula 5.2.2.5.5 and the ‹D(m)

X]/T ]
-linearity of σ(m)

X] ,̃t
, we get (R⊗Q) ·PQ′ = σ

(m)

X] ,̃t
([RXQ]Z ·

PQ′). Since [RXQ]Z · PQ′ = [RXPQQ
′]Z , using again formula 5.2.2.5.5, we get σ(m)

X] ,̃t
([RXQ]Z · PQ′) =

σ
(m)

Z],X] ,̃t
([RXP ]Z)⊗QQ′ 5.2.2.7

= σ
(m)

Z],X] ,̃t
([RX ]Z)σ

(m)

Z],X] ,̃t
([P ]Z)⊗QQ′ = Rσ

(m)

Z],X] ,̃t
(P )⊗QQ′.

The second equality of 5.2.2.20.1 follows similar from the formula 5.2.2.16.3 and the Lemma 5.2.2.7.

5.2.2.21 (Base change and change of level). Suppose we are in the non-respective case of log-schemes of
5.2. Take an integerm′ ≥ m. Let T ′] → T ] be a morphism of noetherian affine nice fine log-schemes. Put
X ′] := X]×T ]T ′], Z ′] := Z]×T ]T ′], and let u′ : Z ′] ↪→ X ′ be the induced closed immersion and f : X ′] →
X], g : Z ′] → Z] be the canonical projection. We set BX′ := f∗(BX), BZ′ := g∗(BZ). We keep similar
notation than 4.1.2, in particular we set ‹D(m)

X′]/T ]
:= BX′ ⊗OX ‹D(m)

X′]/T ]
, ‹D(m)

Z′]/T ]
:= BZ′ ⊗OZ′ ‹D(m)

Z′]/T ]
.

We denote by ‹X ′] (resp. Z̃ ′]) the ringed logarithmic scheme (X ′],BX′) (resp. (Z ′],BZ′)), and by
ũ′ : Z̃ ′]/T ′] → ‹X ′]/T ′] the morphism of relative ringed logarithmic schemes induced by the diagram
5.1.1.1.1 and by u′∗BX′

∼−→ BZ′
We have ring homomorphisms f−1‹D(m)

X]/T ]
→ f∗‹D(m)

X]/T ]
∼←− ‹D(m)

X′]/T ′]
→ ‹D(m′)

X′]/T ′]
(see 4.4.4.1). Thus

we get the ring homomorphism ‹D(m)

X]/T ]
→ ‹D(m′)

X′]/T ′]
. Similarly, we get ‹D(m)

Z]/T ]
→ ‹D(m′)

Z′]/T ′]
.

The semi-logarithmic coordinates t1, . . . , td of X]/T ] (see 4.5.1.4) induces canonically the semi-
logarithmic coordinates t′1, . . . , t′d on X ′]/T ′]. Denote by ∂

′〈k〉(m)

i for i = r + 1, . . . , d and k ∈ N the
associated operators of ‹D(m′)

X′]/T ′]
.

WriteOT ′]{∂′r+s+1, . . . , ∂
′
d}(m

′) for the sub-OT ′] -algebra ofD
(m′)

X′]/T ′]
generated by the elements ∂

′〈k〉(m′)
i

for r + s + 1 ≤ i ≤ r and k ∈ N. Since the homomorphism ‹D(m)

X]/T ]
→ ‹D(m′)

X′]/T ′]
carries ∂〈k〉(m)

i to
q
(m)

k
!

q
(m′)
k

!
∂
′〈k〉(m′)
i for r + s + 1 ≤ i ≤ r and k ∈ N (use formula 1.4.2.5.2), then it induces the factoriza-

tion OT {∂r+s+1, . . . , ∂d}(m) → OT ′]{∂′r+s+1, . . . , ∂
′
d}(m

′). We compute that the maps σ(m)

X] ,̃t
and ς(m)

X] ,̃t
of
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5.2.2.5.1 commute with base change and with change of level, i.e. the canonical diagram (and similarly
for ς(m)

X] ,̃t
) is commutative:‹D(m)

Z]→X]/T ]

σ
(m)

X],t

∼
//

��

‹D(m)

Z]/T ]
⊗OT OT {∂r+s+1, . . . , ∂d}(m)

��‹D(m)

Z′→X′]/T ′]

σ
(m′)
X′],t′

∼
// ‹D(m′)

Z′]/T ′]
⊗O

T ′]
OT ′]{∂′r+s+1, . . . , ∂

′
d}(m

′).

(5.2.2.21.1)

5.2.2.22. Suppose we are in the non-respective case of log-schemes of 5.2. Let F be a left ‹D(m)

Z]/T ]
-module.

We get the isomorphisms

ũ
(m)
+ (F) = u∗(‹D(m)

X]←↩Z]/T ] ⊗u∗D̃(m)

Z]/T]

u∗F)
∼−→

ι
t̃
⊗id

(‹D(m)

X]/T ]
/‹D(m)

X]/T ]
I)⊗

u∗D̃(m)

Z]/T]

u∗F
∼−→

ς
(m)

X],̃t

⊗id

(OT {∂r+s+1, . . . , ∂d}(m) ⊗OT u∗‹D(m)

Z]/T ]
)⊗

u∗D̃(m)

Z]/T]

u∗F
∼−→ OT {∂r+s+1, . . . , ∂d}(m) ⊗OT u∗F .

(5.2.2.22.1)

Let x ∈ M, P ∈ ‹D(m)

X],Z],t/T ]
, and Q,Q′ ∈ OT {∂r+s+1, . . . , ∂d}(m). By using the right formula of

5.2.2.20.1, we can check that the structure of left ‹D(m)

X]/T ]
-module of OT {∂r+s+1, . . . , ∂d}(m) ⊗OT M is

given by the formula:
Q′P · (Q⊗ x) = Q′Q⊗ (σ

(m)

Z],X] ,̃t
(P ) · x). (5.2.2.22.2)

LetM be a right ‹D(m)

Z]/T ]
-module. We have the isomorphisms

ũ
(m)
+ (M) = u∗(M⊗D̃(m)

Z]/T]

‹D(m)

Z]→X]/T ])
∼−→ u∗M⊗u∗D̃(m)

Z]/T]

‹D(m)

X]/T ]
/I‹D(m)

X]/T ]
)

∼−→
id⊗σ(m)

X],̃t

u∗M⊗u∗D̃(m)

Z]/T]

(u∗‹D(m)

Z]/T ]
⊗OT OT {∂r+s+1, . . . , ∂d}(m))

∼−→ u∗M⊗OT OT {∂r+s+1, . . . , ∂d}(m).

(5.2.2.22.3)

Let x ∈M, P ∈ ‹D(m)

X],Z],t/T ]
, and Q,Q′ ∈ OT {∂r+s+1, . . . , ∂d}(m). By using the left formula of 5.2.2.20.1,

we can check that the structure of right ‹D(m)

X]/T ]
-module of M⊗OT OT {∂r+s+1, . . . , ∂d}(m) is given by

the formula:
(x⊗Q) · PQ′ = (x · σ(m)

Z],X] ,̃t
(P ))⊗QQ′. (5.2.2.22.4)

5.2.3 Exactness of the pushforward by a closed immersion
Proposition 5.2.3.1. Suppose the hypotheses and notations of 5.1.1.1 hold. We suppose f is a (not
necessarily exact) closed immersion and b is the identity

(a) The bimodule ‹D(m)

X]↪→Y ] is a locally free as left ‹D(m)

X]
-module. The bimodule ‹D(m)

Y ]←↩X] is a locally free
as right ‹D(m)

X]
-module.

(b) Suppose we are in the non-respective case of 5.1.1.1. For any ∗ ∈ {r, l}, the functor f̃ (m)
+ : D(∗‹D(m)

X]
)→

D(∗‹D(m)

Y ]
) is exact.

Proof. 0) Since f is a closed immersion, then the functor f∗ is exact. Hence, we reduce to check the part
a). By twisting, we reduce to check that the bimodule ‹D(m)

X]↪→Y ] is a locally free as left ‹D(m)

X]
-module.

Since the morphism f̃ is the composition (X],BX)→ (X], f∗BY )→ (Y ],BY ), then by transitivity (see
5.1.1.12), we reduce to the case where f = id and to the case where the morphism f∗BY → BX is an
isomorphism Since the first case is clear, let us suppose the morphism f∗BY → BX is an isomorphism.
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1) When f is an exact closed immersion, then following 5.2.2.10, ‹D(m)

X]↪→Y ] is a locally free right‹D(m)

X]
-modules.

2) Let us prove the general case. Let x be a geometric point of X]. Following 3.1.1.14 (resp. 3.3.3.2),
there exists a commutative diagram of the form‹Y ] u // Y ′]

v //

�

Y ]

X ′]
� ?

f ′

OO

P0

g

aa

w // X]
?�

f

OO

such that the square is cartesian, u is log étale, u is affine, v is étale, g is an exact closed S]-immersion
and v is an étale neighborhood of x in X]. By étale descent, we reduce to the case where g = id. Since
f is log-étale, then it follows from 5.1.3.6 that the canonical ‹D(m)

Ỹ ]
-linear morphism ‹D(m)

Ỹ ]
→ ‹D(m)

Ỹ ]→Y ]

is an isomorphim. By using 5.1.1.11.1 this yields the isomorphism of left ‹D(m)

X]
-modules of the form‹D(m)

X]↪→Ỹ ]
∼−→ ‹D(m)

X]↪→Y ] . From the case 1), we get that ‹D(m)

X]↪→Ỹ ]
is a locally free as left ‹D(m)

X]
-module.

Hence, we are done.

5.2.4 On some base change of an exact closed immersion by an exact closed
immersion

Suppose we are in the non-respective case of log-schemes of 5.2. Let T ′] → T ] be a morphism of nice
fine log scheme over Spec(Z/pi+1Z), where i is an integer (see definition 3.1.1.1). Let I and J be two
ideals of OX , let a : X ′] ↪→ X] and u : Z] ↪→ X] be the respective associated exact closed immersions.
We set Z ′] := X ′] ×X] Z]. We get both cartesian squares

Z] �
� u // X]

Z ′]
� � u′ //
?�

b

OO

X ′],
?�

a

OO Z]
T ′]
� � uT ′] // X]

T ′]

Z ′]
T ′]
� �
u′
T ′] //

?�

b
T ′]

OO

X ′T ′] ,
?�

a
T ′]

OO
(5.2.4.0.1)

whose morphisms of the left square are the canonical exact closed immersions, and whose right square is
the induced square by base change via T ′] → T ]. We suppose Zariski locally in X the following property
holds:

(?) There exist three integers d, r, s ≥ 1 such that r + s ≤ d, a log-étale homomorphism of affine T ]-
log-schemes α : X] → Ad,r

T ]
such that, denoting by t1, . . . , tr ∈ MX] and tr+1, . . . , td ∈ OX the elements

given by α, we have X ′] = V (tr+s+1, . . . , td) and Z] = V (tr+1, . . . , tr+s).
Let BX be a commutative OX algebra equipped with a left D(m)

X]/T ]
-module structure which is

compatible with its algebra structure. We set BZ := u∗(BX). We keep similar notation than 4.1.2
(we replace S] by T ], and X] by Z] if necessary), in particular we set ‹D(m)

X]/T ]
:= BX ⊗OX ‹D(m)

X]/T ]
,‹D(m)

Z]/T ]
:= BZ ⊗OZ ‹D(m)

Z]/T ]
. We denote by ‹X] (resp. Z̃]) the ringed logarithmic scheme (X],BX) (resp.

(Z],BZ)), and by ũ : Z̃]/T ] → ‹X]/T ]. the morphism of relative ringed logarithmic schemes induced
by the diagram 5.2.4.0.1. Let f : X]

T ′]
→ X] be the projection and BX]

T ′]
:= f∗(BX). We keep similar

notation by adding the index T ′]. We suppose ũ, ã, b̃, ũ′ are quasi-flat (see Definition 4.4.1.3).

5.2.4.1. To lighten the notation, we forget indicating the functors u∗ and also u−1 for objects in the
essential image of u∗ ; and similarly for the other exact closed immersions. By applying the functor b̃∗

to the canonical ‹D(m)

Z]/T ]
-linear morphism θ : ‹D(m)

Z]/T ]
→ ‹D(m)

X]/T ]
/J ‹D(m)

X]/T ]
(given by 1 7→ [1]Z), we get

the ‹D(m)

Z′]/T ]
-linear morphism:

b̃∗(θ) : ‹D(m)

Z]/T ]
/I‹D(m)

Z]/T ]
→ ‹D(m)

X]/T ]
/(I + J )‹D(m)

X]/T ]
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given by [1]Z′ 7→ [1]Z′ . By composing the later morphism with the ‹D(m)

Z′]/T ]
-linear morphism θ : ‹D(m)

Z′]/T ]
→‹D(m)

Z]/T ]
/I‹D(m)

Z]/T ]
we get the canonical morphism θ : ‹D(m)

Z′]/T ]
→ ‹D(m)

X]/T ]
/(I +J )‹D(m)

X]/T ]
. When we are in

the (?) local situation, this yields the isomorphisms ϑ are transitive (see the notation 5.2.2.6.1), i.e. the
composition ‹D(m)

Z′]/T ]
∼−→
ϑ

‹D(m)

Z],Z′]/T ]
/I‹D(m)

Z],Z′]/T ]
∼−→
ϑ

‹D(m)

X],Z′]/T ]
/(I + J )‹D(m)

X],Z′]/T ]
is ϑ.

Lemma 5.2.4.2. Suppose we are in the (?) local situation. We have the equalities

(‹D(m)

X′]
⊗OT OT {∂r+s+1, . . . , ∂d}(m))J = ‹D(m)

X′]
J ⊗OT OT {∂r+s+1, . . . , ∂d}(m) (5.2.4.2.1)

I(OT {∂r+1, . . . , ∂r+s}(m) ⊗OT ‹D(m)

Z]/T ]
) = OT {∂r+1, . . . , ∂r+s}(m) ⊗OT I‹D(m)

Z]/T ]
. (5.2.4.2.2)

Proof. The equality 5.2.4.2.1 (resp. 5.2.4.2.2) comes from the left (resp. right) formula 5.2.2.20.1

Lemma 5.2.4.3. Let F be a left ‹D(m)

Z]
-module. We have the canonical isomorphism of left ‹D(m)

X′]
-modules:

ã∗ ◦ ũ(m)
+ (F)

∼−→ ũ′
(m)

+ ◦ b̃∗(F). (5.2.4.3.1)

Moreover, this one commutes with morphisms of change of level and of base, i.e., for any m′ ≥ m, for
any ‹D(m′)

Z
T ′]/T

]-module F ′, for any ‹D(m)

Z]/T ]
-linear morphism of the form OT ′ ⊗OT F → F ′, the canonical

diagram

OT ′ ⊗OT (ã∗ ◦ ũ(m)
+ (F))

∼ //

∼
��

ã∗T ′] ◦ ũ
(m)

T ′]+
(OT ′ ⊗OT F)

∼
��

// ã∗T ′] ◦ ũ
(m′)

T ′]+
(F ′)

∼
��

OT ′ ⊗OT (ũ′
(m)

+ ◦ b̃∗(F))
∼ // ũ′

(m)

T ′]+ ◦ b̃
∗
T ′](OT ′ ⊗OT F) // ũ′

(m′)

T ′]+ ◦ b̃
∗
T ′](F

′),

(5.2.4.3.2)

where vertical isomorphisms are that of the form 5.2.4.3.1 and where the horizontal morphisms follows
from 5.2.5.11.2, is commutative.

Proof. By using 5.2.2.14.1 (still valid for arbitrary exact closed immersion), we get the isomorphisms:

ã∗ ◦ ũ(m)
+ (F)

∼−→ (‹D(m)

X]/T ]
/I‹D(m)

X]/T ]
)⊗D̃(m)

X]/T]

(‹D(m)

X]/T ]
/‹D(m)

X]/T ]
J )⊗D̃(m)

Z]/T]

F (5.2.4.3.3)

ũ
′(m)
+ ◦ b̃∗(F)

∼−→ (‹D(m)

X′]
/‹D(m)

X′]
J )⊗D̃(m)

Z′]
(‹D(m)

Z]/T ]
/I‹D(m)

Z]/T ]
)⊗D̃(m)

Z]/T]

F . (5.2.4.3.4)

Hence, it is sufficient to check that we have an isomorphism of (‹D(m)

X′]
, ‹D(m)

Z]/T ]
)-bimodules of the form

(‹D(m)

X]/T ]
/I‹D(m)

X]/T ]
)⊗D̃(m)

X]/T]

(‹D(m)

X]/T ]
/‹D(m)

X]/T ]
J )

∼−→ (‹D(m)

X′]
/‹D(m)

X′]
J )⊗D̃(m)

Z′]
(‹D(m)

Z]/T ]
/I‹D(m)

Z]/T ]
).

(5.2.4.3.5)
which sends [1]X′ ⊗ [1]′Z to [1]′Z′ ⊗ [1]Z′ . Since this is local, we can suppose we are in the (?) local
situation. We denote by tX′ := (tr+s+1, . . . , td) and tZ = (tr+1, . . . , tr+s). With notation 5.2.2.5.2 and
5.2.2.16.2, we get the ‹D(m)

X′]
-linear isomorphisms:

(‹D(m)

X]/T ]
/I‹D(m)

X]/T ]
)⊗D̃(m)

X]/T]

(‹D(m)

X]/T ]
/‹D(m)

X]/T ]
J )

∼−→
σ

(m)

X],̃t
X′
⊗id

(‹D(m)

X′]
⊗OT OT {∂r+s+1, . . . , ∂d}(m))⊗D̃(m)

X]/T]

(‹D(m)

X]/T ]
/‹D(m)

X]/T ]
J )

∼−→ (‹D(m)

X′]
⊗OT OT {∂r+s+1, . . . , ∂d}(m))/(‹D(m)

X′]
⊗OT OT {∂r+s+1, . . . , ∂d}(m))J

∼−→ (‹D(m)

X′]
/‹D(m)

X′]
J )⊗OT OT {∂r+s+1, . . . , ∂d}(m), (5.2.4.3.6)
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the last isomorphism resulting from the equality 5.2.4.2.1. We have the ‹D(m)

Z]/T ]
-linear isomorphisms:

(‹D(m)

X]/T ]
/I‹D(m)

X]/T ]
)⊗D̃(m)

X]/T]

(‹D(m)

X]/T ]
/‹D(m)

X]/T ]
J )

∼−→
id⊗ς(m)

X],̃tZ

(‹D(m)

X]/T ]
/I‹D(m)

X]/T ]
)⊗D̃(m)

X]/T]

(OT {∂r+1, . . . , ∂r+s}(m) ⊗OT ‹D(m)

Z]/T ]
)

∼−→ OT {∂r+1, . . . , ∂r+s}(m) ⊗OT ‹D(m)

Z]/T ]
/I‹D(m)

Z]/T ]
, (5.2.4.3.7)

whose last isomorphism follows from the equality 5.2.4.2.2. This yields the following square:

(‹D(m)

X]/T ]
/I‹D(m)

X]/T ]
)⊗D̃(m)

X]/T]

(‹D(m)

X]/T ]
/‹D(m)

X]/T ]
J )

∼
5.2.4.3.6

//

∼5.2.4.3.7
��

(‹D(m)

X′]
/‹D(m)

X′]
J )⊗OT OT {∂r+s+1, . . . , ∂d}(m)

∼ς
(m)

X′],̃tZ
⊗id

��
OT {∂r+1, . . . , ∂r+s}(m) ⊗OT ‹D(m)

Z]/T ]
/I‹D(m)

Z]/T ]
∼

id⊗σ(m)

Z],̃t
X′

// OT {∂r+1, . . . , ∂r+s}(m) ⊗OT ‹D(m)

Z′]
⊗OT OT {∂r+s+1, . . . , ∂d}(m).

(5.2.4.3.8)
It follows by transitivity of the isomorphisms of the type ϑ (see 5.2.4.1) that the square 5.2.4.3.8 is a
commutative diagram.

Let us now consider the canonical diagram:

(‹D(m)

X′]
/‹D(m)

X′]
J )⊗D̃(m)

Z′]
(‹D(m)

Z]/T ]
/I‹D(m)

Z]/T ]
)

∼

id⊗σ(m)

Z],̃t
X′

//

∼ς
(m)

X′],̃tZ
⊗id

��

(‹D(m)

X′]
/‹D(m)

X′]
J )⊗OT OT {∂r+s+1, . . . , ∂d}(m)

∼ς
(m)

X′],̃tZ
⊗id

��
OT {∂r+1, . . . , ∂r+s}(m) ⊗OT ‹D(m)

Z]/T ]
/I‹D(m)

Z]/T ]
∼

id⊗σ(m)

Z],̃t
X′

// OT {∂r+1, . . . , ∂r+s}(m) ⊗OT ‹D(m)

Z′]
⊗OT OT {∂r+s+1, . . . , ∂d}(m).

(5.2.4.3.9)
This square 5.2.4.3.9 is commutative diagram by functoriality.

Since the right arrows (resp. of the bottom) of the squares 5.2.4.3.8 and 5.2.4.3.9 are identical, since
the left (resp. top) arrows of the squares 5.2.4.3.8 and 5.2.4.3.9 are ‹D(m)

Z]/T ]
-linear (resp. ‹D(m)

X′]
-linear), this

yields the canonical isomorphism of (‹D(m)

X′]
, ‹D(m)

Z]/T ]
)-bimodules of the form 5.2.4.3.5. We easily compute

that it sends [1]X′ ⊗ [1]′Z to [1]′Z′ ⊗ [1]Z′ . Hence the isomorphism 5.2.4.3.1 is proved.
Now let us check its commutation to the change of levels, i.e. suppose T ′] → T ] is the identity. By

functoriality of the isomorphism 5.2.4.3.1, it is a question of checking the commutativity of the diagram

ã∗ ◦ ũ(m)
+ (F) //

∼
��

ã∗ ◦ ũ(m′)
+ (F)

∼
��

ũ′
(m)

+ ◦ b̃∗(F) // ũ′
(m′)

+ ◦ b̃∗(F).

(5.2.4.3.10)

For that, it is sufficient to notice that the isomorphisms of the squares 5.2.4.3.8 and 5.2.4.3.9 commute
with the change of levels. This check comes from the commutation with level change of the isomorphisms
of the form σ (i.e., we have the commutative square 5.2.2.21.1) and of that of the form ϑ of 5.2.2.18.
Likewise, we easily compute that it commutes with base changes, i.e. we validate the commutativity of
the left square of 5.2.4.3.2.

Lemma 5.2.4.4. Let F be a flat ‹D(m)

Z]
-module. Then we have the vanishing:

∀n 6= 0, HnLã∗ũ(m)
+ (F) = 0. (5.2.4.4.1)

Proof. Since this is local, we are in the (?) local situation. We proceed by induction on N := d− r − s
the cardinal of the elements tr+s+1, . . . , td defining X ′]. At first, suppose N = 1, i.e. X ′ = V (td). In

261



this case, for n 6∈ {−1, 0}, HnLã∗ũ(m)
+ (F) = 0. Moreover, H−1Lã∗ũ(m)

+ (F) = ker(ũ
(m)
+ (F) −→

td
ũ

(m)
+ (F)).

However, following 5.2.2.22.1, ũ(m)
+ (F)

∼−→ OT {∂r+1, . . . , ∂r+s}(m)⊗OT F . Since F is td torsion free, the
lemma 5.2.2.20 allows us to conclude (indeed td commutes with the elements of OT {∂r+1, . . . , ∂r+s}(m).

Suppose now N ≥ 2 and denote by X ′′ = V (tr+s+2, . . . , td) and Z ′] = Z ∩ X ′′], b′ : Z ′′] ↪→ Z,
ã′ : X ′′] ↪→ X], ã′′ : X ′] ↪→ X ′′], u′′ : Z ′′] ↪→ X ′′] the induced closed immersions. By induction hypothesis
and following 5.2.4.3.1, we get: Lã′∗◦ũ(m)

+ (F)
∼−→ ã′∗◦ũ(m)

+ (F)
∼−→ ũ′′+◦b′∗(F). Following the caseN = 1

and following 5.2.4.3.1, we check also Lã′′∗◦ ũ′′+◦b′∗(F)
∼−→ ã′′∗◦ ũ′′+◦b′∗(F)

∼−→ ã′′∗◦ ã′∗◦ ũ(m)
+ (F). This

yields the isomorphism Lã′′∗ ◦Lã′∗ ◦ ũ(m)
+ (F)

∼−→ ã′′∗ ◦ ã′∗ ◦ ũ(m)
+ (F)

∼−→ ã∗ ◦ ũ(m)
+ (F). The isomorphism

Lã∗
∼−→ Lã′′∗ ◦ Lã′∗ allows us to conclude.

Proposition 5.2.4.5. We have for any F ∈ D−(‹D(m)

Z]
) the isomorphism

a! ◦ ũ(m)
+ (F)

∼−→ ũ′+ ◦ b!(F). (5.2.4.5.1)

Proof. Let P be a resolution of F by flat ‹D(m)

Z]
-modules. Since the functors ũ(m)

+ and ũ′+ are exact, by
5.2.4.4, we get Lã∗ũ(m)

+ (F)
∼−→ ã∗ũ

(m)
+ (P) and ũ′+ ◦ Lb̃∗(F)

∼−→ ũ′+ ◦ b̃∗(P). The lemma 5.2.4.3 allows
us to conclude.

5.2.5 The fundamental isomorphism for schemes
In this subsection, by the local situation 5.2.1.1, we mean the local situation of 5.2.2 in the case where
s = 0.

5.2.5.1. We can clarify 4.4.2.13 as follows in the context of an exact closed immersion. We have the
commutative diagram ‹∆n

X]/T ],(m)(2)

p12 //
p02 //
p01 //

‹∆n
X]/T ],(m)

p1 //

p0

// ‹X
‹∆n
X]/T ],(m)(2)

p12 //
p02 //
p01 //

?�
∆̃n(u)(2)

OO ‹∆n
Z]/T ],(m)

p1 //

p0

//
?�

∆̃n(u)

OO

Z̃
?�̃

u

OO (5.2.5.1.1)

where p0, p1 correspond to the homomorphisms BX → ‹PnX(m) given by respectively the left and right

structures of BX -algebra on ‹PnX(m). Using the local description of the homomorphism ũ∗‹PnX]/T ],(m) →‹PnZ]/T ],(m) given in 5.2.2, we check that ũ∗‹PnX]/T ],(m) → ‹PnZ]/T ],(m).
We denote u : (Z,BZ) → (X,u∗BZ) the morphism of ringed spaces induced by u. We remark that

u is flat and that u∗ = u−1 : D+(u∗BZ) → D+(BZ). Recall that for any M ∈ D+(BX), by definition
ũ[(M) := u−1RHomBX (u∗BZ ,M) (see [Har66, III.6]).

IfM is a right ‹D(m)

X]/T ]
-module, we denote by

ũ[0(M) := u−1HomBX (u∗BZ ,M).

To simplify notation, we will write sometimes ũ[0(M) := HomBX (BZ ,M). By definition, the right‹D(m)

Z]/T ]
-module structure of ũ[0(M) is given by the following m-PD-costratification ε

ũ[0(M)
n making
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commutative the diagram:

HomBZ (pn0∗
‹PnZ],(m), HomBX (BZ ,M))

∼
��

∼

εũ
[0(M)
n

// HomBZ (pn1∗
‹PnZ],(m), HomBX (BZ ,M))

∼
��

HomBX (pn0∗
‹PnZ],(m),M) HomBX (pn1∗

‹PnZ],(m),M)

HomP̃n
X],(m)

(‹PnZ],(m), HomBX (pn0∗
‹PnX],(m),M))

∼

OO

� _

ev1

��

∼

εMn

// HomP̃n
X],(m)

(‹PnZ],(m), HomBX (pn1∗
‹PnX],(m),M))

∼

OO

� _

ev1

��
HomBX (pn0∗

‹PnX],(m),M)
∼

εMn

// HomBX (pn1∗
‹PnX],(m),M).

(5.2.5.1.2)
Both left (resp. right) top vertical isomorphisms correspond the Cartan isomorphisms p[00 ◦ ũ[0

∼−→
(u ◦ p0)[0 = (p0 ◦ ‹∆n(u))[0

∼←− (‹∆n(u))[0 ◦ p[00 (resp. p[01 ◦ ũ[0
∼−→ (u ◦ p1)[0 = (p1 ◦ ‹∆n(u))[0

∼←−
(‹∆n(u))[0 ◦ p[01 ). The bottom vertical arrows are monomorphisms because u−1‹PnX]/T ],(m) → ‹PnZ]/T ],(m)

is surjective. We check the cocycle conditions via similar isomorphisms.
Since ‹D(m)

X]/T ]
is a flat BX -module, then an injective right ‹D(m)

X]/T ]
-module is an injective BX -module.

Hence, taking an injective resolution of a complex of D+(r‹D(m)

X]/T ]
), we check the functor ũ[ sends

D+(r‹D(m)

X]/T ]
) to D+(r‹D(m)

Z]/T ]
), i.e. it induces

ũ[ : D+(r‹D(m)

X]/T ]
)→ D+(r‹D(m)

Z]/T ]
). (5.2.5.1.3)

When the level m is ambiguous, we denote it more specifically by ũ[(m).
Since X] is locally noetherian, then ũ[ preserves the quasi-coherence and sends D+

qc(r‹D(m)

X]/T ]
) to

D+
qc(r‹D(m)

Z]/T ]
).

Lemma 5.2.5.2. Suppose we are in the local situation 5.2.1.1. Let M be a right ‹D(m)

X]/T ]
-module. Let

x ∈ Γ(Z, ũ[0(M)) and Q ∈ ‹D(m)

Z]/T ]
. Choose any QX ∈ ‹D(m)

X],Z],t/T ]
such that ϑ(Q) = [QX ]Z (see

5.2.2.5.7). We have the formula
ev1(x ·Q) = ev1(x) ·QX , (5.2.5.2.1)

where ev1 : Γ(Z, ũ[0(M)) ↪→ Γ(X,M) is the evaluation at 1 homomorphism.

Proof. Let l ∈ Nr and x ∈ Γ(Z, ũ[0(M)). Let us consider the case where Q = ∂
〈l〉(m)

(r) and QX = ∂
〈(l,0)〉(m)

(r) .
Consider the commutative diagram

HomBZ (pn0∗
‹PnZ],(m), HomBX (BZ ,M))

��

∼

εũ
[0(M)
n

// HomBZ (pn1∗
‹PnZ],(m), HomBX (BZ ,M))

��

� � ev1 // HomBX (BZ ,M)

��

� _

ev1

��
HomBX (pn0∗

‹PnX],(m),M)
∼

εMn

// HomBX (pn1∗
‹PnX],(m),M)

� � ev1 //M,

(5.2.5.2.2)
where the right square is constructed at 5.2.5.1.2. Modulo the isomorphisms 4.2.2.4.1, we identify
x⊗∂〈l〉(m)

(r) with a global section of HomBZ (pn0∗
‹PnZ]/T ],(m), HomBX (BZ ,M)) and ev1(x)⊗∂〈(l,0)〉(m)

(r) with a

global section ofHomBX (pn0∗
‹PnX],(m),M). We compute the left vertical arrows of 5.2.5.2.2 sends x⊗∂〈l〉(m)

(r)

to ev1(x)⊗ ∂〈(l,0)〉(m)

(r) . Using the formula 4.2.2.6.2, the image of ev1(x)⊗ ∂〈(l,0)〉(m)

(r) via the composition

of εMn with the evaluation at 1 homomorphism HomBX (pn1∗
‹PnX]/T ],(m),M) → M is equal to ev1(x) ·
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∂
〈(l,0)〉(m)

(r) ∈ Γ(X,M). Using agaof the formula 4.2.2.6.2, we compute the image of x⊗∂〈l〉(m)

(r) via the com-

position of εũ
[0M
n with the evaluation at 1 homomorphism HomBZ (pn1∗

‹PnZ]/T ],(m), HomBX (BZ ,M)) →

HomBX (BZ ,M) is x · ∂〈l〉(m)

(r) . Hence, by using the commutativity of the diagram 5.2.5.1.2 we get

ev1(x · ∂〈l〉(m)

(r) ) = ev1(x) · ∂〈(l,0)〉(m)

(r) . (5.2.5.2.3)

Finally, we check easily the formula 5.2.5.2.1 from 5.2.5.2.3.

5.2.5.3 (Local description of the right ‹D(m)

X]/T ]
-module structure of ũ[0(M)). Suppose we are in the

local situation of 5.2.1.1. Let M be a right ‹D(m)

X]/T ]
-module. Since ϑ : u∗BZ ⊗BX ‹D(m)

X],Z],t/T ]
∼−→‹D(m)

X],Z],t/T ]
/I‹D(m)

X],Z],t/T ]
, we have the isomorphism

ũ[0(M)
∼−→ u−1HomD̃(m)

X],Z],t/T]

(‹D(m)

X],Z],t/T ]
/I‹D(m)

X],Z],t/T ]
,M). (5.2.5.3.1)

Following 5.2.2.7, we have the isomorphism of OT -algebras ϑ : u∗‹D(m)

Z]
∼−→ ‹D(m)

X],Z],t/T ]
/I‹D(m)

X],Z],t/T ]
(see

notation 5.2.2.5.7). Hence, we get from 5.2.5.3.1 the isomorphism

ũ[0(M)
∼−→ u−1HomD̃(m)

X],Z],t/T]

(u∗‹D(m)

Z]
,M) (5.2.5.3.2)

By using Lemma 5.2.5.2, we compute that this isomorphism 5.2.5.3.2 is an isomorphism of right u∗‹D(m)

Z]
-

modules, and 5.2.5.3.1 is therefore an isomorphism of right ‹D(m)

X],Z],t/T ]
/I‹D(m)

X],Z],t/T ]
-modules. If there

is no ambiguity, we can avoid writing u−1 pr u∗, e.g. we can simply write HomD̃(m)

X],Z],t/T]

(‹D(m)

Z]
,M) =

u−1HomD̃(m)

X],Z],t/T]

(u∗‹D(m)

Z]
,M).

5.2.5.4. Suppose we are in the local situation of 5.2.2. LetM be a right ‹D(m)

X]/T ]
-module.

(a) By derivating 9.3.1.6.1, we get the isomorphism of Db(r‹D(m)

X],Z],t/T ]
) of the form

ũ[(M)
∼−→ RHomD̃(m)

X],Z],t/T]

(‹D(m)

X],Z],t/T ]
/I‹D(m)

X],Z],t/T ]
,M). (5.2.5.4.1)

Let s := d − r, and f1 = tr+1, . . . , fT := td. Let K•(f) be the Koszul complex of OX -free modules
given by the sequence of global section f = (f1, . . . , fs) of OX . Let e1, . . . , es be the canonical basis
of OsX . Recall Ki(f) = ∧i(OsX) and di,f : Ki(f) → Ki−1(f) (or simply di) is the OX -linear map
defined by

di(en1 ∧ · · · ∧ eni) =
i∑

j=1

(−1)j−1fnjen1 ∧ · · · ∧ ênj ∧ · · · ∧ eni .

We set ‹K•(f) := BX ⊗OX K•(f).

The canonical projection OX → OX/I induces the quasi-isomorphism K•(f) → u∗OZ = OX/I.
Since f1, . . . , fs is a regular sequence of I, since u∗OZ and BX are tor independent over OZ , then
the canonical morphism ‹K•(f)→ BX/IBX (given by the canonical map ‹K0(f) = BX → BX/IBX)
is a quasi-isomorphism. Hence, we get the isomorphism of Db(BX)

φf : ũ[(M)
∼−→ HomBX (‹K•(f),M).

Since f1, . . . fs are in the center of ‹D(m)

X],Z],t/T ]
and since ‹D(m)

X],Z],t/T ]
is a flat BX -algebra, then the

quasi-isomorphism ‹D(m)

X],Z],t/T ]
⊗BX ‹K•(f)

∼−→ ‹D(m)

X],Z],t/T ]
/I‹D(m)

X],Z],t/T ]
in the category of com-
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plexes of ‹D(m)

X],Z],t/T ]
-bimodules. We get the commutativity of diagram

ũ[(M)
φf

∼
//

∼5.2.5.4.1

��

φt

,,

HomBX (‹K•(f),M)

∼

��
RHomD̃(m)

X],Z],t/T]

(‹D(m)

X],Z],t/T ]
/I‹D(m)

X],Z],t/T ]
,M) HomD̃(m)

X],Z],t/T]

(‹D(m)

X],Z],t/T ]
⊗BX ‹K•(f),M),∼

oo

(5.2.5.4.2)
where φt is the homomorphism making commutative the upper triangle. By commutativity of
5.2.5.4.2, φt is an isomorphism ofDb(r‹D(m)

X],Z],t/T ]
). Hence, we get the isomorphism of right ‹D(m)

X],Z],t/T ]
-

modules

φst := Hs(φt) : Rsũ[0(M)
∼−→ HsHomD̃(m)

X],Z],t/T]

(‹D(m)

X],Z],t/T ]
⊗BX ‹K•(f),M). (5.2.5.4.3)

We have the homomorphism of right ‹D(m)

X],Z],t/T ]
-modulesHomD̃(m)

X],Z],t/T]

(‹D(m)

X],Z],t/T ]
⊗BX ‹Ks(f),M)→

M (the structure of right ‹D(m)

X],Z],t/T ]
-module onM comes from its structure of ‹D(m)

Z]/T ]
via ϑ) given

by φ 7→ φ(e1∧· · ·∧es). SinceM→M/IM is a morphism of right ‹D(m)

X],Z],t/T ]
-modules, then this in-

duces the morphism of complex of right ‹D(m)

X],Z],t/T ]
-modules of the formHomD̃(m)

X],Z],t/T]

(‹D(m)

X],Z],t/T ]
⊗BX‹K•(f),M)→M/IM. This yields the isomorphism of right ‹D(m)

X],Z],t/T ]
-modules

HsHomD̃(m)

X],Z],t/T]

(‹D(m)

X],Z],t/T ]
⊗BX ‹K•(f),M)

∼−→ M/IM. (5.2.5.4.4)

(b) Varying the coordinates. Make a second choice: Suppose there exist a second cartesian diagram of
morphisms of T ]-log-(formal) schemes of the form:

X] α′ //

�

Ad,r
T ]

Z]
?�

u

OO

// Ar,r
T ]

?�

OO

such that the horizontal morphisms are log-étale and the right morphism is the canonical exact
closed immersion. Let t′1, . . . , t′r ∈ MX] and t′r+1, . . . , t

′
d ∈ Γ(X, I) be the element given by α′.

Let A := Γ(X,BX) and B := Γ(Z,BZ). Set f ′1 = t′r+1, . . . , f
′
s := t′d. Let ‹K•(f ′) be the Koszul

complex of f ′ = (f ′1, . . . , f
′
s). Let MI = (cij) ∈MT (A) be the matrix such that

∑s
i=1 f

′
icij = fj . Let

ϕ : As → As be the morphism associated withMI . It corresponds to a morphism ϕ : ‹K1(f)→ ‹K1(f ′).
We compute that the composition of ϕ with d1,f : ‹K1(f ′)→ ‹K0(f ′) = A is equal to d1,f ′ : ‹K1(f)→‹K0(f) = A. Since ‹K•(f) = ∧‹K1(f) this yields the morphism of complexes ∧ϕ : ‹K•(f) → ‹K•(f ′).
Hence, we get the commutative diagram

ũ[(M) ∼

φf
//

∼
φf′ ''

HomBX (‹K•(f),M)

HomBX (‹K•(f ′),M).

∧ϕ

OO
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This yields the commutativity of the top square of the diagram

Rsũ[0(M)

φst

))

∼Hsφf

��

Rsũ[0(M)

φs
t′]

uu

∼ Hsφf′

��
HsHomBX (‹K•(f),M)

∼

��

HsHomBX (‹K•(f ′),M)
detϕ

oo

∼

��
HsHomD̃(m)

X],Z],t/T]

(‹D(m)

X],Z],t/T ]
⊗BX ‹K•(f),M)

∼ 5.2.5.4.4
��

HsHomD̃(m)

X],Z],t′/T]
(‹D(m)

X],Z],t′/T ]
⊗BX ‹K•(f ′),M)

∼ 5.2.5.4.4
��

M/IM M/IM,
detϕ

oo

(5.2.5.4.5)
whose compositions of vertical morphisms are ‹D(m)

X],Z],t/T ]
-linear. Hence, the diagram 5.2.5.4.5 is

commutative.

Notation 5.2.5.5. Following 4.6.6.9.2, for any E ∈ D(l‹D(m)

X]/T ]
), the canonical morphism

Lũ∗(E)→ ‹D(m)

Z]→X]/T ] ⊗
L
u−1D̃(m)

X]/T]

u−1E (5.2.5.5.1)

is an isomorphism, which yields Lũ∗(E)[dZ/X ]
∼−→ ũ!(E).

Suppose now we are in the local situation of 5.2.1.1. Let Q ∈ ‹D(m)

Z]/T ]
. Choose QX ∈ ‹D(m)

X],Z],t/T ]

such that [QX ]Z = ϑ(Q). From 5.2.2.6.1, for any section x of E , we have the formula in ũ∗(E):

Q(ũ∗(x)) = ũ∗(QX · x)). (5.2.5.5.2)

Via the monomorphism of rings ‹D(m)

X],Z],t
↪→ ‹D(m)

X]/T ]
, we check the canonical homorphism‹D(m)

Z]
⊗L
u−1D̃(m)

X],Z],t

u−1E → Lũ∗(E)

is an isomorphism of D(l‹D(m)

Z]
). This yields the isomorphism of D(‹D(m)

X],Z],t
):

(‹D(m)

X],Z],t
⊗BX ‹K•(f))⊗

u−1D̃(m)

X],Z],t

u−1E ∼−→ Lũ∗(E).

Proposition 5.2.5.6. Let E be a left ‹D(m)

X]/T ]
-module (resp. a ‹D(m)

X]/T ]
-bimodule). We have the canonical

isomorphism of right ‹D(m)

Z]/T ]
-modules (resp. of right (‹D(m)

Z]/T ]
, u−1‹D(m)

X]/T ]
)-bimodules):

R−dZ/X ũ[0(ω̃X]/T ] ⊗BX E)
∼−→ ω̃Z]/T ] ⊗BZ ũ∗(E). (5.2.5.6.1)

Proof. By functoriality, we reduce to check the non-respective case. Set r := −dZ/X ∈ N.
0) First, let us suppose the conditions of 5.2.1.1 are satisfied, i.e. suppose X] is affine and there exist

some integers d ≥ r and a cartesian diagram of morphisms of T ]-log-(formal) schemes of the form:

X] α //

�

Ad,r
T ]

Z]
?�

u

OO

// Ar,r
T ]

?�

OO

such that the horizontal morphisms are log-étale and the right morphism is the canonical exact closed
immersion. Let t1, . . . , tr ∈ MX] and tr+1, . . . , td ∈ Γ(X, I) be the element corresponding via α to the
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coordinates x1, . . . , xd of Ad,r
T ]
/T ]. In that case ω̃Z]/T ] is a free BZ-module with the basis d log t1 ∧ · · · ∧

d log tr, and ω̃X]/T ] is a free BX -module with the basis d log t1 ∧ · · · ∧ d log tr ∧ dtr+1 ∧ · · · ∧ dtd.
1) Since the isomorphism ϑ : ‹D(m)

Z]/T ]
∼−→ ‹D(m)

X],Z],t/T ]
commutes with the adjoint operator automor-

phisms (see 5.2.2.12.1), by using 4.3.5.5 and 4.5.1.8, we get the isomorphism of right ‹D(m)

X],Z],t/T ]
-modules

ψt : (ω̃X]/T ] ⊗BX E)/(ω̃X]/T ] ⊗BX E)I ∼−→ ω̃Z]/T ] ⊗BZ (E/IE),

which is given by ẽ0⊗x mod I 7→ f̃0⊗ (x mod I), where ẽ0 := d log t1 ∧ · · · ∧ d log tr ∧ dtr+1 ∧ · · · ∧ dtd
and f̃0 := d log t1 ∧ · · · ∧ d log tr.

2) Let s := d− r, and f1 = tr+1, . . . , fT := td. Using the isomorphism φst constructed in 5.2.5.4.3, we

get by composition the isomorphism of right ‹D(m)

Z]
-modules

Rsũ[0(ω̃X]/T ] ⊗BX E)
∼−→
φst

HsHomD̃(m)

X],Z],t/T]

(‹D(m)

X],Z],t/T ]
⊗BX ‹K•(f), ω̃X]/T ] ⊗BX E)

∼−→
5.2.5.4.4

(ω̃X]/T ] ⊗BX E)/(ω̃X]/T ] ⊗BX E)I ∼−→
ψt

ω̃Z]/T ] ⊗BZ (E/IE). (5.2.5.6.2)

3) It remains to check that the composition of the isomorphisms of 5.2.5.6.2 does not depend on the
choice of the coordinates. Make some second choice: Suppose there exist a second cartesian diagram of
morphisms of T ]-log-(formal) schemes of the form:

X] α′ //

�

Ad,r
T ]

Z]
?�

u

OO

// Ar,r
T ]

?�

OO

such that the horizontal morphisms are log-étale and the right morphism is the canonical exact closed
immersion. Let t′1, . . . , t′r ∈ MX] and t′r+1, . . . , t

′
d ∈ Γ(X, I) be the element given by α′. Let A :=

Γ(X,BX), B := Γ(Z,BZ), R := Γ(T,BT ). Set f ′1 = t′r+1, . . . , f
′
s := t′d. Let (cij) ∈ MT (A) be the matrix

such that
∑s
i=1 f

′
icij = fj . We denote by δi = d log ti if i = 1, . . . , r and δi = d ti if i = r+ 1, . . . , d (resp.

δ′i = d log t′i if i = 1, . . . , r and δ′i = d t′i if i = r+ 1, . . . , d). Let ϕ : As → As be the morphism associated
with (cij). Let (dij) ∈Md(A) be the matrix such that δ′i =

∑d
j=1 dijδj . Let D = (dij)1≤i,j≤d ∈Md(B),

D1 = (dij)1≤i,j≤r ∈Mr(B), and D2 = (dij)r+1≤i,j≤d ∈MT (B). We denote by δi and δ′i the image of δi
and δ′i in ũ∗ω̃X]/T ] . We get δ′1 ∧ · · · ∧ δ′d = (detD)

(
δ1 ∧ · · · ∧ δd

)
.

When i ≥ r + 1, we write d log ti = 0 and d log t′i = 0. By considering the images via the canonical
morphism ũ∗ω̃X]/T ] → ω̃Z]/T ] which sends δi (resp. δ′i) to d log ti (resp. d log t′i), we get the equality
d log t′i =

∑d
j=1 dijd log tj for any i = 1, . . . , d. Since d log t1, . . . , d log tr is a basis of ω̃Z]/T ] , then dij = 0

for any i ≥ r + 1 and j ≤ r and then d log t′i =
∑r
j=1 dijd log tj for any i = 1, . . . , r. This yields both

equalities detD = detD1detD2 and d log t′1 ∧ · · · ∧ d log t′r = (detD1)d log t1 ∧ · · · ∧ d log tr.
For any i ≥ r + 1, we have dti = fi−r and dt′i = f ′i−r in Ĩ/Ĩ2. Since for any i ≥ r + 1, we

have δ′i =
∑d
j=r+1 dij δj , this means that D2 is the inverse of the transposition matrix of (cij). Hence,

detϕ = (detD2)−1. This implies the commutativity of the following diagram:

(ω̃X]/T ] ⊗BX E)/(ω̃X]/T ] ⊗BX E)I
ψt

∼
// ω̃Z]/T ] ⊗BZ (E/IE)

(ω̃X]/T ] ⊗BX E)/(ω̃X]/T ] ⊗BX E)I

detϕ

OO

ψt′

∼
// ω̃Z]/T ] ⊗BZ (E/IE).

(5.2.5.6.3)

By composing the commutative diagram 5.2.5.4.5 for M = ω̃X]/T ] ⊗BX E with 5.2.5.6.3, we get the
independence on the choice of the coordinates of the composition of the isomorphisms of 5.2.5.6.2.
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Theorem 5.2.5.7. Let E ∈ D(l‹D(m)

X]/T ]
) (resp. E ∈ D(l‹D(m)

X]/T ]
, r‹D(m)

X]/T ]
)). We have the canonical

isomorphism of D(r‹D(m)

Z]/T ]
) (resp. D(r‹D(m)

Z]/T ]
, ru−1‹D(m)

X]/T ]
))

ω̃Z]/T ] ⊗BZ ũ!(E)
∼−→ ũ[(ω̃X]/T ] ⊗BX E). (5.2.5.7.1)

The functors ũ[ and ũ! are way-out in both direction.

Proof. We already know that there exists an isomorphism of the form 5.2.5.7.1 in the categoryD(OZ) (see
[Har66, III.7.3]), i.e. after applying the forgetful functor D(r‹D(m)

Z]/T ]
) → D(OZ) we have the canonical

isomorphism
ωZ]/T ] ⊗OZ u!(E)

∼−→ u[(ωX]/T ] ⊗OX E) (5.2.5.7.2)

whose left (resp. right) terms are canonically isomorphic to the left (resp. right) terms of 5.2.5.7.1.This
yields that if E is a flat left ‹D(m)

X]/T ]
-module, then for any i 6= s, Hiũ[(ω̃X]/T ] ⊗BX E) = 0. Using [Har66,

I.7.4], we conclude using 5.2.5.6.

Corollary 5.2.5.8. LetM∈ D(r‹D(m)

X]/T ]
). We have the canonical isomorphism of D(r‹D(m)

Z]/T ]
)

ũ!(E)
∼−→ ũ[(E). (5.2.5.8.1)

Proof. This is a consequence of the left to right isomorphism 5.1.1.5.1 and of Theorem 5.2.5.7.

Corollary 5.2.5.9. We have the canonical isomorphism of right (‹D(m)

Z]/T ]
, u−1‹D(m)

X]/T ]
)-bimodules of the

form
ω̃Z]/T ] ⊗BZ ‹D(m)

Z]→X] [dZ/X ]
∼−→ ũ[(ω̃X]/T ] ⊗BX ‹D(m)

X]/T ]
). (5.2.5.9.1)

Proof. We apply Theorem 5.2.5.7 in the case E = ‹D(m)

X]/T ]
.

5.2.5.10. Suppose we are in the local situation of 5.2.1.1. Let E be a left ‹D(m)

X]/T ]
-module. Following

5.2.5.7.1 we have the isomorphism of right ‹D(m)

Z]/T ]
-modules:

ω̃Z]/T ] ⊗BZ H0ũ!(E)
∼−→ ũ[0(ω̃X]/T ] ⊗BX E). (5.2.5.10.1)

The sheaf ω̃X]/T ] is a free BX -module of rank one with the basis d log t1 ∧ · · · ∧ d log tr ∧ dtr+1 ∧ · · · ∧ td
and ω̃Y/T ] is a free BY -module of rank one with the basis dt1 ∧ · · · ∧ dtd (see 4.5.1.6). Using these bases,
we get the isomorphism of BZ-modules:

u∗H
0ũ!(E)

∼−→ HomBX (BX/IBX , E) = ∩ds=r+1 ker(E ts−→ E). (5.2.5.10.2)

This yields on HomBX (BX/IBX , E) a structure of left ‹D(m)

Z]
-module extending its structure of BX (be-

ware this structure depends a priori on the choice of the semi-logarithmic coordinates). Let us de-
note by ev1 : HomBX (BX/IBX , E) ↪→ E the canonical inclusion (this is the evaluation at 1) and by
ev1 : H0ũ!(E) ↪→ E its composition with 5.2.5.10.2. Let x ∈ Γ(Z,H0u!(E)), y ∈ HomBX (BX/IBX , E)

and Q ∈ ‹D(m)

Z]/T ]
. Choose any QX ∈ ‹D(m)

X],Z],t/T ]
such that ϑ(Q) = [QX ]Z (see 5.2.2.5.7). It follows from

5.2.5.2.1 that we have the formula

ev1(Q · x) = QX · ev1(x), ev1(Q · y) = QX · ev1(y). (5.2.5.10.3)

Let us finish the subsection with the following result.

5.2.5.11 (Commutation of pushforwards with base and level change). Suppose we are in the non-
respective case of log-schemes of 5.2. Take an integer m′ ≥ m. Let T ′] → T ] be a morphism of
noetherian affine schemes. PutX ′] := X]×T ]T ′], Z ′] := Z]×T ]T ′], and let u′ : Z ′] ↪→ X ′] be the induced
closed immersion, I ′ be the underlying ideal of OX′ and f : X ′] → X], g : Z ′] → Z] be the canonical
projection. We set BX′ := f∗(BX), BZ′ := g∗(BZ). We keep similar notation than 4.1.2, in particular
we set ‹D(m)

X′]/T ]
:= BX′ ⊗OX ‹D(m)

X′]/T ]
, ‹D(m)

Z′]/T ]
:= BZ′ ⊗OZ′ ‹D(m)

Z′]/T ]
. We denote by ‹X ′] (resp. Z̃ ′]) the
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ringed logarithmic scheme (X ′],BX′) (resp. (Z ′],BZ′)), and by ũ′ : Z̃ ′]/T ′] → ‹X ′]/T ′] the morphism of
relative ringed logarithmic schemes induced by the diagram 5.1.1.1.1 and by u′∗BX′

∼−→ BZ′
For any right ‹D(m)

Z]/T ]
-moduleM, we have the isomorphism:

f−1

Å
u∗M⊗u∗D̃(m)

Z]/T]

‹D(m)

X]/T ]
/I‹D(m)

X]/T ]

ã
⊗
f−1D̃(m)

X]/T]

‹D(m′)

X′]/T ′]

∼−→ f−1u∗M⊗f−1u∗D̃(m)

Z]/T]

‹D(m′)

X′]/T ′]
/I ′‹D(m′)

X′]/T ′]

∼−→ u′∗

Å
g−1M⊗

g−1D̃(m)

Z]/T]

‹D(m′)

Z′]/T ′]

ã
⊗
u∗D̃(m′)

Z′]/T ′]

‹D(m′)

X′]/T ′]
/I ′‹D(m′)

X′]/T ′]
. (5.2.5.11.1)

In the case where m′ = m, the isomorphism 5.2.5.11.1 is the commutation of pushforward with base
change ũ(m)

+ (M)⊗OTOT ′
∼−→ ũ

′(m)
+ (M⊗OTOT ′). When T ′] → T ] is the identity, this is the commutation

of pushforward with level change ũ(m)
+ (M) ⊗D̃(m)

X]/T]

‹D(m′)

X]/T ]
∼−→ ũ

′(m′)
+ (M⊗D̃(m)

Z]/T]

‹D(m′)

Z]/T ]
). Similarly,

for any left ‹D(m)

Z]/T ]
-module F , we get the isomorphisms

OT ′ ⊗OT ũ
(m)
+ (F)

∼−→ ũ
′(m)
+ (OT ′ ⊗OT F), ‹D(m′)

X]/T ]
⊗D̃(m)

X]/T]

ũ
(m)
+ (F)

∼−→ ũ
′(m′)
+ (‹D(m′)

Z]/T ]
⊗D̃(m)

Z]/T]

F).

(5.2.5.11.2)
One might compare with the construction of 5.3.3.3 (remark this latter needs some quasi-coherence
hypotheses), but since this is useless here, this is left to the reader.

Suppose we are in the local situation of 5.2.1.1. Via an easy computation (e.g. use 5.2.2.21.1), for
any D(m)

Z′]/T ′]
-linear morphism of the form OT ′ ⊗OT F → F ′, we get the commutative diagram

OT ′ ⊗OT ũ
(m)
+ (F)

∼ ��

5.2.2.22.1
∼
// OT ′ ⊗OT (OT {∂r+s+1, . . . , ∂d}(m) ⊗OT F)

∼ ��
ũ
′(m)
+ (OT ′ ⊗OT F)

��

5.2.2.22.1
∼
// OT ′{∂′r+s+1, . . . , ∂

′
d}(m) ⊗OT ′ (OT ′ ⊗OT F)

��
ũ
′(m′)
+ (F ′) 5.2.2.22.1

∼
// OT ′{∂′r+s+1, . . . , ∂

′
d}(m

′) ⊗OT ′ (F ′).

(5.2.5.11.3)

Remark 5.2.5.12. The derived version of the base change can be found later at 5.3.3.3.

5.2.6 Adjointness, stability of the perfectness under pushforward, relative
duality isomorphism for schemes

Suppose we are in the non-respective case of log-schemes of 5.2.

Proposition 5.2.6.1. Let M be a right (resp. left) ‹D(m)

X]/T ]
-module, N be a right (resp. left) ‹D(m)

Z]/T ]
-

module.

(a) There exists a canonical functorial ‹D(m)

X]/T ]
-linear morphism adj : ũ

(m)
+ H0ũ!(M)→M and a canoni-

cal functorial ‹D(m)

Z]/T ]
-linear morphism adj : N → H0ũ!ũ

(m)
+ (N ) so that the compositions H0ũ!(M)

adj−→

H0ũ!ũ
(m)
+ H0ũ!(M)

adj−→ H0ũ!(M) and ũ(m)
+ (N )

adj−→ ũ
(m)
+ H0ũ!ũ

(m)
+ (N )

adj−→ ũ
(m)
+ (N ) are the identity.

(b) Using the above adjoint morphisms, we construct maps

HomD̃(m)

X]/T]

(ũ
(m)
+ (N ),M)→ u∗HomD̃(m)

Z]/T]

(N , H0ũ!(M)),

u∗HomD̃(m)

Z]/T]

(N , H0ũ!(M))→ HomD̃(m)

X]/T]

(ũ
(m)
+ (N ),M),

which are inverse of each other.

(c) IfM is an injective right (resp. left) ‹D(m)

X]/T ]
-module, then H0ũ!(M) is an injective right (resp. left)‹D(m)

Z]/T ]
-module.
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Proof. I) Let us check the non-respective case. 0) Following 5.2.5.8.1, we reduce to check the proposition
with “H0ũ!” replaced by “ũ[0”. 1) Let us check the first assertion.

a) Since the construction of the canonical morphism adj : ũ
(m)
+ ũ[0(M) → M is local, then we can

suppose the local conditions of 5.2.1.1 are satisfied (and we use notations 5.2.2 and 5.2.2.3). We have

ũ
(m)
+ ũ[0(M) := u∗

Å
u−1HomBX (u∗BZ ,M)⊗D̃(m)

Z]/T]

‹D(m)

Z]→X]

ã
= HomBX (u∗BZ ,M)⊗

u∗D̃(m)

Z]/T]

‹D(m)

X]
/I‹D(m)

X]
.

Let B := Γ(X,BX). We reduce to construct a canonical morphism of the form HomB(B/IB,M)⊗
D̃

(m)

Z]‹D(m)

X]
/I‹D(m)

X]
→M .

i) Let us check that the canonical map adj : HomB(B/IB,M) ⊗
D̃

(m)

Z]

‹D(m)

X]
/I‹D(m)

X]
→ M , defined by

setting x⊗ [P ]Z 7→ ev1(x)P for any x ∈ HomB(B/IB,M), P ∈ ‹D(m)

X]
, is well defined. The independence

in the choice of P lifting [P ]Z is clear. Let x ∈ HomB(B/IB,M), P ∈ ‹D(m)

X]
, Q ∈ ‹D(m)

Z]/T ]
. Choose QX ∈‹D(m)

X],Z],t/T ]
such that ϑ(Q) = [QX ]Z . Using the formula 5.2.5.2.1, we get ev1(x · Q)P = ev1(x) · QXP .

Following 5.2.2.6.1, we have Q · [P ]Z = [QXP ]Z , and then we get the equality x ·Q⊗ [P ]Z = x⊗ [QXP ]Z
in HomB(B/IB,M)⊗

D̃
(m)

Z]

‹D(m)

X]
/I‹D(m)

X]
. Hence, we have checked the map is well defined.

ii) The ‹D(m)

X]
-linearity of the canonical map adj of the part i) is obvious.

b) The restriction of [−]Z or [−]′Z on B induces the canonical map B → B/IB which can sometimes
be denoted by b 7→ b. Similarly, to construct the morphism adj : N → ũ[0ũ

(m)
+ (N ), we reduce to

the case where the assumptions of 5.2.2 are satisfied and to check that the morphism of the form
N → HomB(B/IB,N ⊗

D̃
(m)

Z]

‹D(m)

X]
/I‹D(m)

X]
) given by y 7→ (b 7→ y ⊗ b) is ‹D(m)

Z]/T ]
-linear. Let y ∈ N ,

Q ∈ ‹D(m)

Z]/T ]
. Let x be the element of HomB(B/IB,N ⊗

D̃
(m)

Z]

‹D(m)

X]
/I‹D(m)

X]
) given by (b 7→ y⊗ b). Choose

QX ∈ ‹D(m)

X],Z],t/T ]
such that ϑ(Q) = [QX ]Z . Using 5.2.5.2.1, ev1(x ·Q) = ev1(x) ·QX = y⊗ [QX ]Z

5.2.2.6.1
=

y ·Q⊗ 1. This yields that the canonical map N → HomB(B/IB,N ⊗
D̃

(m)

Z]

‹D(m)

Z]→X]) is ‹D(m)

Z]/T ]
-linear.

c) Reducing to the local context 5.2.2, we compute easily that both compositions are the identity
maps.

2) The fact that the first statement of the proposition implies the second one is standard. Finally,
since the functor ũ(m)

+ is exact, we get the last statement from the second one.
II) By using the right to left isomorphisms 5.1.3.2.1 and 5.1.1.5.1, the respective case follows from

5.2.6.1.

5.2.6.2 (Local computation of the adjunction morphisms in the left case). Let E be a let ‹D(m)

X]/T ]
-

module, F be a left ‹D(m)

Z]/T ]
-module. Suppose the local conditions of 5.2.1.1 are satisfied (and we use

notations 5.2.2 and 5.2.2.3). We denote by ẽ0 := d log t1 ∧ · · · ∧ d log tr ∧ dtr+1 ∧ · · · ∧ dtd a basis of the
free BX -module and by ẽ∨0 its corresponding dual basis of the free BX -module ω̃−1

X]/T ]
. We denote by

f̃0 := d log t1 ∧ · · · ∧ d log tr ∧ dtr+1 ∧ · · · ∧ dtr+s the basis of the free BZ-module ω̃Z]/T ] , and by f̃∨0 its
dual basis. By using these bases, we can identify ω̃X]/T ] and ω̃

−1
X]/T ]

with BX (resp. ω̃Z]/T ] and ω̃
−1
Z]/T ]

with BZ), which yields the (non-canonical) isomorphisms (see 5.2.2.14.1 and from 5.2.5.10.2):

ũ
(m)
+ H0ũ!(E)

∼−→ ‹D(m)

X]
/‹D(m)

X]
I ⊗

u∗D̃(m)

Z]/T]

HomBX (u∗BZ , E), (5.2.6.2.1)

u∗H
0ũ!ũ

(m)
+ (F)

∼−→ HomBX (BX/IBX , ‹D(m)

X]
/I‹D(m)

X]
⊗
u∗D̃(m)

Z]

u∗F). (5.2.6.2.2)

Let B := Γ(X,BX). The restriction of [−]Z or [−]′Z on B induces the canonical map B → B/IB which
can sometimes be denoted by b 7→ b.

a) The adjunction morphism adj : ũ
(m)
+ H0ũ!(E)→ E of 5.2.6.1 corresponds via the bijection 5.2.6.2.1

to a canonical morphism of the form ‹D(m)

X]
/‹D(m)

X]
I ⊗

D̃
(m)

Z]

HomB(B/IB,E) → E, which is given by

[P ]′Z ⊗ x 7→ P ev1(x) for any x ∈ HomB(B/IB,E), P ∈ ‹D(m)

X]
. Moreover, modulo this isomorphism

5.2.2.22.1, the map corresponds to a morphism of the form

OT {∂r+s+1, . . . , ∂d}(m) ⊗OT HomB(B/IB,E)→ E (5.2.6.2.3)
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given by Q⊗ x 7→ Q · x, for any Q ∈ OT {∂r+s+1, . . . , ∂d}(m) and x ∈ HomB(B/IB,E).
b) The adjunction morphism adj : F → H0ũ!ũ

(m)
+ (F), corresponds to a canonical morphism of the

form F → HomB(B/IB, ‹D(m)

X]
/I‹D(m)

X]
⊗
D̃

(m)

Z]

F ) which is given by y 7→ (b 7→ b ⊗ y), for any y ∈ F and

b ∈ B. Moreover, modulo this isomorphism 5.2.2.22.1, the map corresponds to a morphism of the form

F → HomB(B/IB,OT {∂r+s+1, . . . , ∂d}(m) ⊗OT F ) ⊂ OT {∂r+s+1, . . . , ∂d}(m) ⊗OT F (5.2.6.2.4)

given by y 7→ 1⊗ y for any y ∈ F .

Corollary 5.2.6.3. Let ∗ ∈ {r, l},M∈ D(∗‹D(m)

X]/T ]
), N ∈ D(∗‹D(m)

Z]/T ]
). We have the isomorphisms

RHomD̃(m)

X]/T]

(ũ
(m)
+ (N ),M)

∼−→ u∗RHomD̃(m)

Z]/T]

(N , ũ!(M)).

Proof. Taking an injective resolution ofM, this is a consequence of 5.2.6.1.(b–c).

Before giving another corollary, let us check the stability of the perfectness as follows.

Lemma 5.2.6.4. Let ∗ ∈ {r, l}. For any N ∈ Dperf(
∗‹D(m)

Z]/T ]
), we have ũ(m)

+ (N ) ∈ Dperf(
∗‹D(m)

X]/T ]
).

Proof. By using 5.1.4.3.1 and 5.1.3.2.1, we reduce to the case ∗ = r. Since the perfectness is local, then
we can suppose the local conditions of 5.2.1.1 are satisfied (and we use notations 5.2.2). By devissage,
we reduce to the case where N is a projective right ‹D(m)

Z]/T ]
module of finite type. Since ũ(m)

+ is exact,

we reduce to check that ũ(m)
+ (‹D(m)

Z]/T ]
) = u∗‹D(m)

Z]→X]/T ] is a projective right ‹D(m)

X]/T ]
of finite type. Let

s := d − r, and f1 = tr+1, . . . , fT := td and K•(f) be the Koszul complex of free OX -modules given
by the sequence of global section f = (f1, . . . , fs) of OX . We set ‹K•(f) := BX ⊗OX K•(f). We get
u∗‹D(m)

Z]→X]/T ]
∼−→ ‹K•(f)⊗BX ‹D(m)

X]/T ]
. Hence, we are done.

Remark 5.2.6.5. We will check later the a version of the stability of the perfecness under pushforward
by a proper morphism (more precisely, see 5.3.2.13).

Corollary 5.2.6.6. Let ∗ ∈ {r, l}. Let N ∈ Dperf(
∗‹D(m)

Z]/T ]
). We have the isomorphism of Dperf(

∗‹D(m)

X]/T ]
):

D̃(m)

X]/T ]
◦ ũ(m)

+ (N )
∼−→ ũ

(m)
+ ◦ D̃(m)

Z]/T ]
(N ). (5.2.6.6.1)

Proof. By using 5.1.4.3.1 and 5.1.3.2.1, we reduce to the case ∗ = r. In this case, the isomorphism
5.2.6.6.1 is the composition of the following isomorphisms:

RHomD̃(m)

X]/T]

(ũ
(m)
+ (N ), ω̃X]/T ] ⊗BX ‹D(m)

X]/T ]
)[dX ]

5.2.6.3
∼−→ u∗RHomD̃(m)

Z]/T]

(N , ũ[(ω̃X]/T ] ⊗BX ‹D(m)

X]T ]
))[dX ]

5.2.5.9
∼−→

u∗RHomD̃(m)

Z]/T]

(N , ω̃Z]/T ] ⊗BZ ‹D(m)

Z]→X])[dZ ]
∼−→

4.6.3.6.1
u∗

Å
RHomD̃(m)

Z]/T]

(N , ω̃Z]/T ] ⊗BZ ‹D(m)

Z]/T ]
[dZ ])⊗D̃(m)

Z]/T]

‹D(m)

Z]→X]

ã
.

5.3 Commutations and relations between functors

5.3.1 Extraordinary inverse image, direct image: varying log-smoothly the
basis

Let S] be a nice fine log schemes over Spec(Z/pi+1Z), where i is an integer (resp. S] is a nice fine V-log
formal schemes as defined in 3.3.1.10) Let α : Z] → S] be a log smooth morphism. Let h : X] → Y ]

be a morphism of log smooth Z]-log-scheme (resp. log smooth Z]-log formal scheme). We denote by
g : Y ] → Z] and f : X] → Z] the structural morphisms.

Let BZ be an OZ-algebra endowed with a compatible structure of left D(m)

Z]/S]
-module. Set ‹D(m)

Z]/S]
:=

BZ ⊗OZ D
(m)

Z]/S]
, and for any n ∈ N, ‹D(m)

Z]/S],n
:= BZ ⊗OZ D

(m)

Z]/S],n
, ‹PnZ]/S],(m) := BZ ⊗OZ PnZ]/S],(m).
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Let BY be a g∗(BZ)-algebra which is endowed with a compatible structure of left D(m)

Y ]/S]
-module

such that the structural homomorphism g∗BZ → BY is D(m)

Y ]/S]
-linear. Since D(m)

Y ]/Z]
→ D(m)

Y ]/S]
is in fact

a morphism of rings, then BY is also an g∗(BZ)-algebra which is endowed with a compatible structure of
left D(m)

Y ]/Z]
-module. Set ‹D(m)

Y ]/S]
:= BY ⊗OY D

(m)

Y ]/S]
, and for any n ∈ N, ‹D(m)

Y ]/S],n
:= BY ⊗OY D

(m)

Y ]/S],n
,‹PnY ]/S],(m) := BY ⊗OY PnY ]/S],(m). Set ‹D(m)

Y ]/Z]
:= BY ⊗OY D

(m)

Y ]/Z]
, and for any n ∈ N, ‹D(m)

Y ]/Z],n
:=

BY ⊗OY D
(m)

Y ]/Z],n
, ‹PnY ]/Z],(m) := BY ⊗OY PnY ]/Z],(m).

Let BX be a h∗(BY )-algebra which is endowed with a compatible structure of left D(m)

X]/S]
-module

such that the structural homomorphism h∗(BY )→ BX is D(m)

X]/S]
-linear. Set ‹D(m)

X]/S]
:= BX⊗OX D

(m)

X]/S]
,

and for any n ∈ N, ‹D(m)

X]/S],n
:= BX ⊗OX D

(m)

X]/S],n
, ‹PnX]/S],(m) := BY ⊗OX PnX]/S],(m). Set ‹D(m)

X]/Z]
:=

BX ⊗OX D
(m)

X]/Z]
, and for any n ∈ N, ‹D(m)

X]/Z],n
:= BX ⊗OX D

(m)

X]/Z],n
, ‹PnX]/Z],(m) := BY ⊗OX PnX]/Z],(m).

We denote by ‹X] (resp. ‹Y ]) the ringed logarithmic (V-formal) scheme (X],BX) (resp. (Y ],BY )), and
by h̃/S] : ‹X]/S] → ‹Y ]/S] and by h̃/Z] : ‹X]/Z] → ‹Y ]/Z] the morphism of relative ringed logarithmic (V-
formal) schemes induced by h and by f∗BY → BX . We denote by f̃ : ‹X]/S] → Z]/S] (resp. g̃ : ‹Y ]/S] →
Z]/S]) the morphism of relative ringed logarithmic (V-formal) schemes induced by f (resp. g) and by
f∗BZ → BX (resp. g∗BZ → BY ). We suppose g̃ and h̃/S] (and then f̃ and h̃/Z]) are quasi-flat (see
Definition 4.4.1.3).

5.3.1.1. Following 4.4.2.7.1, the canonical homomorphism D(m)

Y ]/Z]
→ D(m)

Y ]/S]
is in fact a ring homomor-

phism. We denote by forgY ]/Z]/S] the forgetful functor (via the canonical morphism ‹D(m)

Y ]/Z]
→ ‹D(m)

Y ]/S]
)

from the category of left (resp. right) ‹D(m)

Y ]/S]
-modules to that of left (resp. right) ‹D(m)

Y ]/Z]
-modules ; and

similarly by replacing Y ] by X].
We have the functor h̃∗/S] := BX ⊗h−1BY h

−1(−) from the category of left ‹D(m)

Y ]/S]
-modules to that

of left ‹D(m)

X]/S]
-modules and the functor h̃∗/Z] := BX ⊗h−1BY h

−1(−) from the category of left ‹D(m)

Y ]/Z]
-

modules to that of left ‹D(m)

X]/Z]
-modules. From the commutative diagram 4.4.2.3.2 (still valid with some

tildes), we get the commutation

forgX]/Z]/S] ◦ h̃∗/Z]
∼−→ h̃∗/S] ◦ forgY ]/Z]/S] . (5.3.1.1.1)

By functoriality, we get the (‹D(m)

X]/S]
, h−1‹D(m)

Y ]/S]
)-bimodule ‹D(m)

X]→Y ]/S] := h̃∗/S]
‹D(m)

Y ]/S]
and the (‹D(m)

X]/Z]
, h−1‹D(m)

Y ]/Z]
)-

bimodule ‹D(m)

X]→Y ]/Z] := h̃∗/Z]
‹D(m)

Y ]/Z]
.

Lemma 5.3.1.2. We have the isomorphism of (‹D(m)

X]/Z]
, h−1‹D(m)

Y ]/S]
)-bimodules‹D(m)

X]→Y ]/Z] ⊗h−1D̃(m)

Y ]/Z]

h−1‹D(m)

Y ]/S]
∼−→ ‹D(m)

X]→Y ]/S] . (5.3.1.2.1)

Proof. By functoriality, this is a consequence of 5.3.1.1.1.

Notation 5.3.1.3 (Local description of ‹D(m)

Y ]/Z]
). Suppose Y ]/Z] is endowed with logarithmic coordi-

nates (uλ)λ=1,...,d. Since the levelm is fixed (even if n is not fixed), we simply write τ]λ := µn(m),γ(uλ)−1 ∈‹PnY ]/Z],(m) for λ = 1, . . . , d. For any i = (i1, · · · , id) ∈ Nd, let τ{i}(m)

] := τ1]
{i1}(m) · · · τd]{id}(m) . Fol-

lowing 3.2.3.4 or 3.3.4.5, we get the basis of the free BY -module ‹PnY ]/Z],(m) given by τ ]
{i}(m) , where

i = (i1, · · · , id) ∈ Nd satisfy |i| ≤ n. By taking the dual basis and taking the inverse limits, we get a basis
on the free (for the left or right structure) BY -module ‹D(m)

Y ]/Z]
(for its left structure this is by definition

but this is also the case its right structure) which is denoted by {∂〈i〉(m)

] | i ∈ Nd}. Hence, a section of‹D(m)

Y ]/Z]
can uniquely be written as a finite sum of the form

∑
i∈Nd ai∂

〈i〉(m)

] (resp.
∑
i∈Nd ∂

〈i〉(m)

] ai) with
ai ∈ BY .
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Notation 5.3.1.4 (Local description of ‹D(m)

Z]/S]
). Suppose Z]/S] is endowed with logarithmic coordinates

ũ1, · · · , ũr. Since the level m is fixed (even if n is not fixed), we simply write τ̃j] := µn(m),γ(ũj) − 1 ∈‹PnY ]/Z],(m) for j = 1, . . . , r. For any j = (j1, · · · , jr) ∈ Nr, let τ̃
{j}(m)

] := τ̃
{j1}(m)

1] · · · τ̃{jr}(m)

r] ∈ ‹PnZ]/S],(m).

We get the basis of the free BZ-module ‹PnZ]/S],(m) given by τ̃ ]
{j}(m) , with |j| ≤ n. By taking the dual

basis and taking the inverse limits, we get a basis on the free (for the left or right structure) BZ-module‹D(m)

Z]/S]
which is denoted by {∂̃]〈j〉(m) | j ∈ Nr}. Hence, a section of ‹D(m)

Z]/S]
can uniquely be written as a

finite sum of the form
∑
j∈Nr aj ∂̃]

〈j〉(m) (resp.
∑
j∈Nr ∂̃]

〈j〉(m)aj) with aj ∈ BZ .

Notation 5.3.1.5 (Local description of ‹D(m)

Y ]/S]
). Suppose Z]/S] is endowed with logarithmic coordi-

nates ũ1, · · · , ũr and suppose moreover that Y ]/Z] is endowed with logarithmic coordinates u1, · · · , ud.
We denote by ũ1, · · · , ũr the element of Γ(Y,MY ]) induced by ũ1, · · · , ũr via g. We get the logarithmic
coordinates ũ1, · · · , ũr, u1, · · · , ud of Y ]/S].

We set τ]λ := µn(m),γ(uλ) − 1 ∈ ‹PnY ]/S],(m) for λ = 1, . . . , d, τ̃j] := µn(m),γ(ũj) − 1 ∈ ‹PnY ]/S],(m)

for any j = 1, · · · , r. For any i = (i1, · · · , id) ∈ Nd, let τ ]{i}(m) := τ1]
{i1}(m) · · · τd]{id}(m) ; for

any j = (j1, · · · , jr) ∈ Nr, let τ̃ ]
{j}(m) := τ̃1]

{j1}(m) · · · τ̃r]{jr}(m) ∈ ‹PnY ]/S],(m). We get the ba-

sis of the free BY -module ‹PnY ]/S],(m) given by τ ]
{i}(m) τ̃ ]

{j}(m) , with |i| + |j| ≤ n. We denote by

{∂〈i〉(m)

] ∂̃]
〈j〉(m) , with |i|+ |j| ≤ n} the corresponding dual basis of ‹D(m)

Y ]/S],n
. By taking the inductive

limits, this yields the basis {∂〈i〉(m)

] ∂̃]
〈j〉(m) , with i ∈ Nd and j ∈ Nr} of the free BY -module ‹D(m)

Y ]/S]
.

In other words, a section of the sheaf ‹D(m)

Y ]/S]
can uniquely be written as a finite sum of the form∑

i∈Nd,j∈Nr ai,j∂
〈i〉(m)

] ∂̃]
〈j〉(m) (resp.

∑
i∈Nd,j∈Nr ∂

〈i〉(m)

] ∂̃]
〈j〉(m)ai,j) with ai,j ∈ BY .

We hope this is not too confusing that ∂]〈i〉(m) (resp. ∂̃]〈j〉(m)) is either a global section of D(m)

Y ]/S]
or

of D(m)

Y ]/Z]
(resp. of D(m)

Z]/S]
).

5.3.1.6. We keep notations and hypotheses of 5.3.1.5.

(a) We compute the natural ring homomorphism ‹PnY ]/S],(m) → ‹PnY ]/Z],(m) sends τ ]{i}(m) to τ ]{i}(m) ,

which justifies why we took the same notation. Hence, the morphism ‹D(m)

Y ]/Z]
→ ‹D(m)

Y ]/S]
corresponds

to the inclusion given by ∑
i∈Nd

ai∂
〈i〉(m)

] 7→
∑
i∈Nd

ai∂
〈i〉(m)

] ,

where ai are global sections of BY . Since ‹PnY ]/S],(m) → ‹PnY ]/Z],(m) is a homomorphism of BY -algebras
for the right structure (and also for the left one, but this is useless here), then the action of ‹D(m)

Y ]/Z]

on BY and of ‹D(m)

Y ]/S]
on BY are compatible with the canonical inclusion ‹D(m)

Y ]/Z]
→ ‹D(m)

Y ]/S]
. This

implies the homomorphism ‹D(m)

Y ]/Z]
→ ‹D(m)

Y ]/S]
is also given by the formula∑

i∈Nd

∂
〈i〉(m)

] ai 7→
∑
i∈Nd

∂
〈i〉(m)

] ai,

where ai are global sections of BY .

(b) Using the universal property ofm-PD-envelopes, we get the homomorphisms of rings g̃∗‹PnZ]/S],(m) →‹PnY ]/S],(m). We compute this map sends 1 ⊗ τ̃ ]
{j}(m) to τ̃ ]

{j}(m) , which justifies a bit why we took

the same notation. This yields that the homomorphism ‹D(m)

Y ]/S]
→ g̃∗‹D(m)

Z]/S]
is given by∑

i∈Nd,j∈Nr

αi,j∂
〈i〉(m)

] ∂̃]
〈j〉(m) 7→

∑
j∈Nr

α0,j ⊗ ∂̃]〈j〉(m) ,

where αi,j ∈ BY . In particular, ‹D(m)

Y ]/S]
→ g̃∗‹D(m)

Z]/S]
is an epimorphism.
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(c) The left ‹D(m)

Y ]/Z]
-module (resp. right ‹D(m)

Y ]/Z]
-module) ‹D(m)

Y ]/S]
canonically splits as follows:‹D(m)

Y ]/S]
= ⊕j∈Nr

‹D(m)

Y ]/Z]
∂̃]
〈j〉(m) , ‹D(m)

Y ]/S]
= ⊕j∈Nr ∂̃]

〈j〉(m)‹D(m)

Y ]/Z]
, (5.3.1.6.1)

where ‹D(m)

Y ]/Z]
∂̃]
〈j〉(m) (resp. ∂̃]〈j〉(m)‹D(m)

Y ]/Z]
) is the left (resp. right) free ‹D(m)

Y ]/Z]
-submodule of ‹D(m)

Y ]/S]

generated by ∂̃]〈j〉(m) . We get the exhausted filtration of ‹D(m)

Y ]/S]
by left ‹D(m)

Y ]/Z]
-submodules (resp.

right ‹D(m)

Y ]/Z]
-submodules) F l

n
‹D(m)

Y ]/S]
:= ⊕|j|≤n‹D(m)

Y ]/Z]
∂̃]
〈j〉(m) (resp. F r

n
‹D(m)

Y ]/S]
:= ⊕|j|≤n∂̃]〈j〉(m)‹D(m)

Y ]/Z]
).

5.3.1.7. From 5.3.1.6.c, we have that ‹D(m)

Y ]/S]
is a left (resp. right) flat ‹D(m)

Y ]/Z]
-module. This yields from

5.3.1.2.1 the isomorphism‹D(m)

X]→Y ]/Z] ⊗
L
h−1D̃(m)

Y ]/Z]

h−1‹D(m)

Y ]/S]
∼−→ ‹D(m)

X]→Y ]/S] . (5.3.1.7.1)

5.3.1.8. For any E ∈ D(
l‹D(m)

Y ]/Z]
), we have the extraordinary inverse images h̃(m)!

/Z]
(E) := ‹D(m)

X]→Y ]/Z]⊗
L
h−1D̃(m)

Y ]/Z]

h−1E [dh], and for any E ∈ D(
l‹D(m)

Y ]/S]
), we will write h̃(m)!

/S]
(E) := ‹D(m)

X→Y ⊗L
h−1D̃(m)

Y ]/S]

h−1E [dh]. We denote

by forgY ]/Z]/S] : D(
l‹D(m)

Y ]/S]
) → D(

l‹D(m)

Y ]/Z]
) the canonical forgetful functor (and similarly by replacing

Y with X).

Proposition 5.3.1.9. For any E ∈ D(
l‹D(m)

Y ]/S]
), we get the isomorphism

forgX]/Z]/S] ◦ h̃
(m)!

/S]
(E)

∼−→ h̃
(m)!

/Z]
◦ forgY ]/Z]/S](E). (5.3.1.9.1)

Proof. By associativity of the tensor product, this is a consequence of 5.3.1.7.1.

5.3.1.10. Consider the diagram of left ‹D(m)

X]/S]
-modules‹D(m)

X]/S]
//

��

h̃∗‹D(m)

Y ]/S]

��
f̃∗‹D(m)

Z]/S]
h̃∗g̃∗‹D(m)

Z]/S]
,∼

4.4.5.6oo

(5.3.1.10.1)

where except the natural bottom isomorphism, the morphisms are given by 4.4.2.6.3. We compute that
both paths ‹D(m)

X]/S]
→ f̃∗‹D(m)

Z]/S]
send 1 to 1⊗ 1. Hence, the diagram 5.3.1.10.1 is commutative.

Suppose Z]/S] is endowed with logarithmic coordinates ũ1, · · · , ũr. Suppose moreover that Y ]/Z] is
endowed with logarithmic coordinates u1, · · · , ud. By abuse of notation, we denote by ũ1, · · · , ũr the ele-
ment of Γ(Y,MY ]) induced by ũ1, · · · , ũr via g. We get the logarithmic coordinates ũ1, · · · , ũr, u1, · · · , ud
of Y ]/S]. We keep notation 5.3.1.5: we get the basis {∂〈i〉(m)

] ∂̃]
〈j〉(m) , with i ∈ Nd and j ∈ Nr} of the

free BY -module ‹D(m)

Y ]/S]
.

Suppose moreover that X]/Z] is endowed with logarithmic coordinates u′1, · · · , u′d′ . We denote by
ũ′1, · · · , ũ′r the elements of Γ(X,MX]) induced by ũ1, · · · , ũr via f (we add some prime to avoid any
confusion). We get the logarithmic coordinates ũ′1, · · · , ũ′r, u′1, · · · , u′d′ of Y ]/S]. Similarly to notation
5.3.1.5, we get the basis {∂′]〈i

′〉(m) ∂̃′]
〈j〉(m) , with i′ ∈ Nd

′
and j ∈ Nr} of the free BX -module ‹D(m)

X]/S]
.

Let n ∈ N. Fix l ∈ Nr such that |l| = n.
i) The morphism of left ‹D(m)

X]/S]
-modules ‹D(m)

X]/S]
→ h̃∗(‹D(m)

Y ]/S]
) factors through ‹D(m)

X]/S],n
→ h̃∗(‹D(m)

Y ]/S],n
).

This yields ∂̃′]
〈l〉(m) · (1⊗ 1) ∈ h̃∗(‹D(m)

Y ]/S],n
). Hence, we can write in h̃∗(‹D(m)

Y ]/S]
) the equality:

∂̃′]
〈l〉(m) · (1⊗ 1) =

∑
i∈Nd,j∈Nr,|i|+|j|≤n

ai,j ⊗ ∂
〈i〉(m)

] ∂̃]
〈j〉(m) , (5.3.1.10.2)

where the sum is finite and where ai,j ∈ BX are uniquely determined.
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ii) Let us denote by ψ the composition ψ : h̃∗‹D(m)

Y ]/S]
→ h̃∗g̃∗‹D(m)

Z]/S]
∼−→ f̃∗‹D(m)

Z]/S]
. By using 5.3.1.6.b

we compute in f̃∗‹D(m)

Z]/S]
the equality:

ψ

Ñ ∑
i∈Nd,j∈Nr

ai,j ⊗ ∂
〈i〉(m)

] ∂̃]
〈j〉(m)

é
=
∑
j∈Nr

a0,j ⊗ ∂̃]〈j〉(m) . (5.3.1.10.3)

iii) The maps ‹D(m)

X]/S]
→ f̃∗‹D(m)

Z]/S]
and ‹D(m)

X]/S]
→ h̃∗‹D(m)

Y ]/S]
send ∂̃′]

〈l〉(m) to ∂̃′]
〈l〉(m) · (1 ⊗ 1). Since

ψ is ‹D(m)

X]/S]
-linear, by commutativity of 5.3.1.10.1, we have ψ(∂̃′]

〈l〉(m) · (1 ⊗ 1)) = ∂̃′]
〈l〉(m) · ψ(1 ⊗ 1) =

∂̃′]
〈l〉(m) · (1 ⊗ 1). By using the computation of 5.3.1.6.b (applied to ‹X]/S] instead of ‹X]/S]), we get

∂̃′]
〈l〉(m) · (1⊗ 1) = 1⊗ ∂̃]〈l〉(m) . Hence, we get in f̃∗‹D(m)

Z]/S]
the equality:

ψ(∂̃′]
〈l〉(m) · (1⊗ 1)) = 1⊗ ∂̃]〈l〉(m) . (5.3.1.10.4)

iv) It follows from 5.3.1.10.2, 5.3.1.10.3 and 5.3.1.10.4 that we have in f̃∗‹D(m)

Z]/S]
the formula:∑

j∈Nr

a0,j ⊗ ∂̃]〈j〉(m) = 1⊗ ∂̃]〈l〉(m) .

This yields a0,l = 1 and a0,j = 0 if j 6= l. Hence, we have in h̃∗(‹D(m)

Y ]/S],n
) the equality:

∂̃′]
〈l〉(m) · (1⊗ 1) = 1⊗ ∂̃]〈l〉(m) +

∑
i∈Nd,j∈Nr,|i|+|j|≤n,|i|6=0

ai,j ⊗ ∂
〈i〉(m)

] ∂̃]
〈j〉(m) . (5.3.1.10.5)

Hence, we have in h̃∗(‹D(m)

Y ]/S],n
) the congruence:

∂̃]
〈l〉(m) · (1⊗ 1) ≡ 1⊗ ∂̃]〈l〉(m) mod h̃∗(F l

n−1
‹D(m)

Y ]/S]
), (5.3.1.10.6)

where (F l
n
‹D(m)

Y ]/S]
)n is the filtration defined at 5.3.1.6.c.

Lemma 5.3.1.11. The canonical morphism of (‹D(m)

X]/S]
, h−1‹D(m)

Y ]/Z]
)-bimodules‹D(m)

X]/S]
⊗D̃(m)

X]/Z]

‹D(m)

X]→Y ]/Z] → ‹D(m)

X]→Y ]/S] (5.3.1.11.1)

is an isomorphism.

Proof. The canonical homomorphism 5.3.1.11.1 is constructed as follows. By applying the functor h̃∗

to the homomorphism ‹D(m)

Y ]/Z]
→ ‹D(m)

Y ]/S]
, we get the homomorphism of (‹D(m)

X]/Z]
, h−1‹D(m)

Y ]/Z]
)-bimodules‹D(m)

X]→Y ]/Z] = h̃∗‹D(m)

Y ]/Z]
→ h̃∗‹D(m)

Y ]/S]
= ‹D(m)

X]→Y ]/S] . This yields the homomorphism of (‹D(m)

X]/S]
, h−1‹D(m)

Y ]/Z]
)-

bimodules
φ : ‹D(m)

X]/S]
⊗D̃(m)

X]/Z]

‹D(m)

X]→Y ]/Z] → ‹D(m)

X]→Y ]/S] .

We have to check that this is an isomorphism. Since this is local, we can suppose Suppose Z]/S]
is endowed with logarithmic coordinates ũ1, · · · , ũr, Y ]/Z] is endowed with logarithmic coordinates
u1, · · · , ud, X]/Z] is endowed with logarithmic coordinates u′1, · · · , u′d′ . We follow notation 5.3.1.10.

Let P ∈ ‹D(m)

X]/S]
⊗D̃(m)

X]/Z]

‹D(m)

X]→Y ]/Z] . By using 5.3.1.3 and by using 5.3.1.6.c for X]/S] instead of

Y ]/S], we can uniquely write P of the form

P =
∑

i∈Nd,j∈Nr

∂̃′]
〈j〉(m) ⊗ (ai,j ⊗ ∂

〈i〉(m)

] )
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where the sum is finite and ai,j ∈ BX . We get

φ(P ) =
∑

i∈Nd,j∈Nr

∂̃′]
〈j〉(m)ai,j · (1⊗ ∂

〈i〉(m)

] ) =
∑

i∈Nd,j∈Nr

∂̃′]
〈j〉(m)ai,j · (1⊗ 1) · ∂〈i〉(m)

] .

Let n := max{k ∈ N | ∃j ∈ Nr,∃i ∈ Nd, such that |j| = k and ai,j 6= 0}. Let l ∈ Nr be such that |l| = n.

For any integer s, we denote by D(m)

X,Z]/S],s
the free BX -submodule (for both structure) of D(m)

X]/S]
whose

basis is given by ∂̃′]
〈j〉(m) for any j ∈ Nr such that |j| ≤ s. We remark that ∂̃′]

〈l〉(m)ai,l − ai,l∂̃′]〈l〉(m) ∈
D(m)

X,Z]/S],n−1
. Hence, by using 5.3.1.10.6, we compute

∂̃′]
〈l〉(m)ai,l · (1⊗ 1) ≡ ai,l∂̃′]〈l〉(m) · (1⊗ 1) ≡ ai,l ⊗ ∂̃]〈l〉(m) mod h̃∗(F l

n−1
‹D(m)

Y ]/S]
).

Since the action of ∂〈i〉(m)

] via the right h−1‹D(m)

Y ]/S]
-module structure of h̃∗‹D(m)

Y ]/S]
preserves h̃∗(F l

n−1
‹D(m)

Y ]/S]
)

(because ∂〈i〉(m)

] and ∂̃]〈j〉(m) commute), we get

∂̃′]
〈l〉(m)ai,l · (1⊗ 1) · ∂〈i〉(m)

] ≡ ai,l ⊗ ∂̃]〈l〉(m)∂
〈i〉(m)

] mod h̃∗(F l
n−1

‹D(m)

Y ]/S]
).

Since h̃∗‹D(m)

Y ]/S]
is a free BX -module with the basis {∂〈i〉(m)

] ∂̃]
〈j〉(m) | i ∈ Nd, j ∈ Nr} then from this

latter congruence, we check easily by induction on n the injectivity and the surjectivity of φ.

Proposition 5.3.1.12. For any E ∈ D(
l‹D(m)

Y ]/Z]
), we get the isomorphism of D(

l‹D(m)

X]/S]
)‹D(m)

X]/S]
⊗D̃(m)

X]/Z]

h̃
(m)!

/Z]
(E)

∼−→ h̃
(m)!

/S]
(‹D(m)

Y ]/S]
⊗D̃(m)

Y ]/Z]

E). (5.3.1.12.1)

Proof. By associativity of the tensor product, we get‹D(m)

X]/S]
⊗D̃(m)

X]/Z]

h̃
(m)!

/Z]
(E) = ‹D(m)

X]/S]
⊗D̃(m)

X]/Z]

Ç‹D(m)

X]→Y ]/Z] ⊗
L
h−1D̃(m)

Y ]/Z]

h−1E
å

[dh]

∼−→
5.3.1.11.1

‹D(m)

X]→Y ]/S] ⊗
L
h−1D̃(m)

Y ]/Z]

h−1E [dh]

∼−→ ‹D(m)

X]→Y ]/S] ⊗
L
h−1D̃(m)

Y ]/S]

h−1

Ç‹D(m)

Y ]/S]
⊗L
D̃(m)

Y ]/Z]

E
å

[dh] = h̃
(m)!

/S]
(‹D(m)

Y ]/S]
⊗D̃(m)

Y ]/Z]

E).

Lemma 5.3.1.13. Suppose we are in the non-respective case. Let M ∈ D−qc(r‹D(m)

X]/S]
). Then the

canonical morphism of D−(rh−1‹D(m)

Y ]/Z]
)

M⊗L
D̃(m)

X]/Z]

‹D(m)

X]→Y ]/Z] →M⊗
L
D̃(m)

X]/S]

‹D(m)

X]→Y ]/S] (5.3.1.13.1)

is an isomorphism.

Proof. Since this is local, we can suppose X affine. Using the way-out left version of [Har66, I.7.1.(iv)],
since the functorsM 7→M⊗L

D̃(m)

X]/Z]

‹D(m)

X]→Y ]/Z] andM 7→M⊗
L
D̃(m)

X]/S]

‹D(m)

X]→Y ]/S] are way-out left, we

reduce to check the isomorphism whenM is a free right ‹D(m)

X]/S]
-module. Hence, we come down to the

case whereM = ‹D(m)

X]/S]
. In that case,M is a flat right ‹D(m)

X]/S]
-module and a flat right ‹D(m)

X]/Z]
-module

(see 5.3.1.6.c). Hence, we conclude using 5.3.1.11.

Proposition 5.3.1.14. Suppose we are in the non-respective case. Assume that S and Z are noetherian
of finite Krull dimension and that (the underlying schemes morphim) h is quasi-compact and quasi-
separated. We have for anyM∈ D−qc(r‹D(m)

X]/S]
) the isomorphism

forgY ]/Z]/S] ◦ h̃
(m)

/S] +
(M)

∼−→ h̃
(m)

/Z] +
◦ forgX]/Z]/S](M). (5.3.1.14.1)
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Proof. Recall h̃(m)

/S] +
(M) := Rh∗

Ç
M⊗L

D̃(m)

X]/S]

‹D(m)

X]→Y ]/S]

å
, h̃(m)

/Z] +
(M) := Rh∗

Ç
M⊗L

D̃(m)

X]/Z]

‹D(m)

X]→Y ]/Z]

å
.

Hence, this is straightforward from 5.3.1.13.

Proposition 5.3.1.15. With hypotheses of 5.3.1.14, for M ∈ D−qc(r‹D(m)

Y ]/Z]
), we have the canonical

isomorphism

h̃
(m)

/Z] +
(M)⊗D̃(m)

Y ]/Z]

‹D(m)

Y ]/S]
∼−→ h̃

(m)

/S] +
(M⊗D̃(m)

X]/Z]

‹D(m)

X]/S]
). (5.3.1.15.1)

Proof. Using the projection isomorphism, we get

h̃
(m)

/Z] +
(M)⊗D̃(m)

Y ]/Z]

‹D(m)

Y ]/S]
= Rh∗

Ç
M⊗L

D̃(m)

X]/Z]

‹D(m)

X]→Y ]/Z]

å
(5.3.1.15.2)

∼−→
5.1.2.6.1

Rh∗

ÇÇ
M⊗L

D̃(m)

X]/Z]

‹D(m)

X]→Y ]/Z]

å
⊗
h−1D̃(m)

Y ]/Z]

h−1‹D(m)

Y ]/S]

å
(5.3.1.15.3)

∼−→
5.3.1.2.1

Rh∗

Ç
M⊗L

D̃(m)

X]/Z]

‹D(m)

X]→Y ]/S]

å
∼−→ h̃

(m)

/S] +
(M⊗D̃(m)

X]/Z]

‹D(m)

X]/S]
). (5.3.1.15.4)

5.3.2 Way-out properties of pushforwards and extraordinary pullbacks, sta-
bility of the coherence, tor dimension finiteness, perfectness

We keep notation and hypotheses of 5.1.1.1 and we suppose f̃ is quasi-flat (see Definition 4.4.1.3).

5.3.2.1. We suppose f is log-smooth and the bottom arrow of 5.1.1.1.1 is the identity. Following
5.3.1.11.1 (applied in the case where g = id and therefore f = h), since ‹D(m)

X]→Y ]/Y ] = BX , we have
therefore the canonical morphism‹D(m)

X]/S]
⊗D̃(m)

X]/Y ]

BX
∼−→ ‹D(m)

X]→Y ]/S] , (5.3.2.1.1)

given by P ⊗ 1 7→ P · (1 ⊗ 1), is an isomorphism of (‹D(m)

X]/S]
, f̃−1BY )-bimodules Since f is log smooth,

following 4.7.3.7.2 we have the exact sequence of left ‹D(0)

X]/Y ]
-modules

0→ ‹D(0)

X]/Y ]
⊗BX ∧d‹TX]/Y ] · · · −→

δ

‹D(0)

X]/Y ]
⊗BX ∧‹TX]/Y ] −→

δ

‹D(0)

X]/Y ]
→ BX → 0. (5.3.2.1.2)

By applying the exact functor ‹D(0)

X]/S]
⊗D̃(0)

X]/Y ]

− to the Spencer exact sequence 5.3.2.1.2, by using the

isomorphism 5.3.2.1.1, we get the exact sequence of left ‹D(0)

X]/S]
-modules:

0→ ‹D(0)

X]/S]
⊗B̃(0)

X

∧d‹TX]/Y ] · · · −→
δ

‹D(0)

X]/S]
⊗B̃(0)

X

‹TX]/Y ] −→
δ

‹D(0)

X]/S]
→ ‹D(0)

X]→Y ]/S] → 0. (5.3.2.1.3)

In other words, the morphism ‹D(0)

X]/S]
⊗B̃(0)

X

∧•‹TX]/Y ] → ‹D(0)

X]→Y ]/S] is a quasi-isomorphism (where‹D(0)

X]/S]
⊗B̃(0)

X

∧0‹TX]/Y ] = ‹D(0)

X]/S]
is at the 0th place.

5.3.2.2. We suppose f is log-smooth and the bottom arrow of 5.1.1.1.1 is the identity. By applying the
functor F := ω̃X]/S] ⊗ f̃∗(−⊗ ω̃−1

Y ]/S]
) to the canonical ring homomorphism BY → ‹D(m)

Y ]/S]
, we get the

canonical map of right ‹D(m)

X]/Y ]
-modules ω̃X]/Y ] → ‹D(m)

Y ]←X]/S] (indeed the induced structure via F of

the right ‹D(m)

X]/Y ]
-module of ‹D(m)

Y ]←X]/S] is given by the right structure of BY -module of ‹D(m)

Y ]/S]
). This

yields the morphism
ω̃X]/Y ] ⊗D̃(m)

X]/Y ]

‹D(m)

X]/S]
→ ‹D(m)

Y ]←X]/S] . (5.3.2.2.1)
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Via a local computation (recall 4.3.5.4), it follows from 5.3.2.1.1 that the map 5.3.2.2.1 is an isomorphism.
Following 4.7.3.14, we have the exact sequence

0→ ‹D(0)

X]/Y ]
−→
d

Ω̃1
X]/Y ] ⊗BX ‹D(0)

X]/Y ]
−→
d
· · · −→

d
ω̃X]/Y ] ⊗BX ‹D(0)

X]/Y ]
→ ω̃X]/Y ] → 0 (5.3.2.2.2)

given by the de Rham complex of ‹D(0)

X]/Y ]
and for the last arrow by the right structure of ‹D(0)

X]/Y ]
on

ω̃X]/Y ] . By applying the exact functor −⊗D̃(0)

X]/Y ]

‹D(0)

X]/S]
to the exact sequence 5.3.2.2.2, by using the

isomorphism 5.3.2.2.1, we get the exact sequence of right ‹D(0)

X]/S]
-modules:

0→ ‹D(0)

X]/S]
−→
d

Ω̃1
X]/Y ] ⊗BX ‹D(0)

X]/S]
−→
d
· · · −→

d
ω̃X]/Y ] ⊗BX ‹D(0)

X]/S]
→ ‹D(0)

Y ]←X]/S] → 0 (5.3.2.2.3)

In other words, the map Ω̃•X]/Y ] ⊗BX ‹D(0)

X]/S]
[df ]→ ‹D(0)

Y ]←X]/S] is a quasi-isomorphism.

Proposition 5.3.2.3. Assume we are in the non-respective case of 5.1.1.1, T is a noetherian scheme
of finite Krull dimension and f is a log-smooth, quasi-compact and quasi-separated morphism and the
bottom arrow of 5.1.1.1.1 is the identity. Then we have the following isomorphisms:

1. For any E ∈ D(
l‹D(0)

X]/S]
), we have the isomorphism

f̃
(0)
+ (E)

∼−→ Rf∗
Ä
Ω̃•X]/Y ] ⊗BX E

ä
[df ]; (5.3.2.3.1)

2. For anyM∈ D(
r‹D(0)

X]/S]
), we have the isomorphism

f̃
(0)
+ (M)

∼−→ Rf∗
Ä
M⊗BX ∧•‹TX]/Y ]ä . (5.3.2.3.2)

Proof. The isomorphism 5.3.2.3.1 (resp. 5.3.2.3.2) is a consequence of 5.3.2.2.3 (resp. 5.3.2.1.3).

Proposition 5.3.2.4. Suppose one of the following conditions holds:

(i) either m = 0,

(ii) or we are the non-respective case of 5.1.1.1 and log-structures are trivial.

Then the left ‹D(m)

X]/S]
-module ‹D(m)

X]/S]→Y ]/T ] has finite tor-dimension and the right ‹D(m)

X]/S]
-module ‹D(m)

Y ]/T ]←X]/S]
has finite tor-dimension.

Proof. I) Let us prove the case m = 0. a) Suppose the diagram 5.1.1.1.1 is cartesian and the mor-
phism f∗BY → BX is an isomorphism, i.e. suppose we are in the base change case. Following
5.1.1.15, the canonical morphism ‹D(m)

X]/S]
→ ‹D(m)

X]/S]→Y ]/T ] is an isomorphism of (‹D(m)

X]/S]
, f−1‹D(m)

Y ]/T ]
)-

bimodules and moreover there exists a canonical isomorphism of (f−1‹D(m)

Y ]/T ]
, ‹D(m)

X]/S]
)-bimodules of the

form ‹D(m)

Y ]/T ]←X]/S]
∼−→ ‹D(m)

X]/S]
. Hence we get done.

b) By using the splitting of 7.5.6.7.1 and 5.1.1.12.1, by using the part a) of the proof, we reduce to
the case where the bottom morphism of 5.1.1.1.1 is the identity. When f is log-smooth, we can check
the first (resp. second) statement is a consequence of 5.3.2.1.3 (resp. 5.3.2.2.3). By decomposing f
by its graph γf : X] ↪→ X] ×S] Y ], which is a closed immersion, followed by the log-smooth projection
X] ×S] Y ] → Y ] this yields the first statement thanks to 5.2.3.1.

II) Let us prove the case (ii). Since p is nilpotent and log structures are trivial, we are under conditions
6.1. Hence, by Frobenius descent (see 6.1.3.6.b), this is a consequence of the case where m = 0.

The following corollary completes 5.1.3.5.

Corollary 5.3.2.5. Suppose we are the non-respective case of 5.1.1.1. Suppose one of the following
conditions holds:

(i) either m = 0,
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(ii) or log-structures are trivial.

Then, the functor f̃ (m)
+ is way out in both direction and for any ∗ ∈ {r, l}, we have the factorization

f̃
(m)
+ : Db(∗‹D(m)

X]/S]
)→ Db(∗‹D(m)

Y ]/T ]
).

Proof. The factorization is a consequence of Proposition 5.3.2.4.

Corollary 5.3.2.6. Let ∗ ∈ {r, l}. Suppose one of the following conditions holds:

(i) either m = 0,

(ii) or we are the non-respective case of 5.1.1.1 and log-structures are trivial.

Then, we have the factorization f̃ (m)! : Dtdf(
∗‹D(m)

Y ]/T ]
)→ Dtdf(

∗‹D(m)

X]/S]
).

Proof. By twisting if necessary, we can suppose ∗ = l. Let F ∈ Dtdf(
∗‹D(m)

Y ]/T ]
). In both cases, the

left ‹D(m)

X]/S]
-module ‹D(m)

X]/S]→Y ]/T ] has finite tor-dimension (see 5.3.2.4). Hence, there exists a bounded

resolution P of ‹D(m)

X]/S]→Y ]/T ] by (‹D(m)

X]/S]
, f−1‹D(m)

Y ]/T ]
)-bimodules which are moreover flat as left ‹D(m)

X]/S]
-

modules (see the remark 4.6.3.4). Let Q be a bounded complex of flat left ‹D(m)

X]/S]
-modules representing

F . Hence, ‹D(m)

X]/S]→Y ]/T ] ⊗
L
f−1D̃(m)

Y ]/T]

f−1F ∼−→ P ⊗
f−1D̃(m)

Y ]/T]

f−1Q,

which is a bounded complex of flat left ‹D(m)

X]/S]
-modules.

Proposition 5.3.2.7. Suppose f is log-smooth, the bottom arrow of 5.1.1.1.1 is the identity and both
conditions of 4.1.2.17.(e) are satisfied for BY and BX . Let ∗ ∈ {r, l}.

(a) For any E ∈ D−coh(∗‹D(m)

Y ]/S]
), we have f̃ (m)!(E) ∈ D−coh(∗‹D(m)

X]/S]
).

(b) Suppose either m = 0, or we are the non-respective case of 5.1.1.1 and log-structures are trivial. We
have the factorization

f̃ (m)! : Dperf(
∗‹D(m)

Y ]/S]
)→ Dperf(

∗‹D(m)

X]/S]
).

Proof. Let us check the first statement. Since this is local on X], using locally free resolution, we reduce
to the case E = ‹D(m)

Y ]/S]
. Since the map α : ‹D(m)

X]/Y ]
→ BX (given by the structure of left ‹D(m)

X]/Y ]
-module

of BX) is surjective, since ‹D(m)

X]/Y ]
→ ‹D(m)

X]/S]
is flat, then it follows form 5.3.2.1.1 the canonical morphism‹D(m)

X]/S]
→ f̃∗‹D(m)

Y ]/S]
is surjective and its kernel is equal to ‹D(m)

X]/S]
⊗D̃(m)

X]/Y ]

kerα. Remark, when X]/Y ]

is endowed with logarithmic coordinates (uλ)λ=1,...,r, then kerα is the left ‹D(m)

X]/Y ]
-submodule generated

∂]1, . . . , ∂]r. In particular, the kernel of ‹D(m)

X]/S]
→ f̃∗‹D(m)

Y ]/S]
is a left ‹D(m)

X]/S]
-module of finite type.

Following [Sta22, 08G8], a complex is perfect if and only if it is pseudo-coherent and locally has finite
tor dimension. Hence, the second statement is a consequence of the first one and of the propositions
4.1.2.17.(e) and 5.3.2.6.

Proposition 5.3.2.8. Suppose we are the non-respective case of 5.1.1.1. Let CY be a BY -algebra endowed
with a compatible structure of D(m)

Y ]/T ]
-module such that BY → CY is D(m)

Y ]/T ]
-linear. Let F ∈ D(BY ) (resp.

F ∈ D(CY ⊗OY D
(m)

Y ]/S]
,BY )), and G ∈ D(BX).

(i) We have the canonical morphism of D(BY ) (resp. of D(CY ⊗OY D
(m)

Y ]/T ]
,BY )):

F ⊗L
BY Rf∗(G)→ Rf∗

Ä
Lf̃∗(F)⊗L

BX G
ä
. (5.3.2.8.1)

(ii) Suppose f is quasi-compact and quasi-separated. Suppose one of the following conditions:
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(a) either F ∈ Db
qc(

rBY ), and G ∈ D(BX),

(b) or S and T are noetherian schemes of finite Krull dimension and F ∈ D−qc(
rBY ), and G ∈

D−(BX).

Then the morphism 5.3.2.8.1 is an isomorphism.

Proof. Choosing a K-flat complex P of K(BY ) (resp. of K(‹D(m)

Y ]/T ]
,BY ) representing F , a K-injective

complex I of K(BX) representing G, we get

F ⊗L
BY Rf∗(G)

∼−→ P ⊗BY f∗(I)→ f∗
Ä
f̃∗P ⊗BX I

ä
→ Rf∗

Ä
f̃∗P ⊗BX I

ä ∼−→ Rf∗
(
Lf∗F ⊗L

BX G
)
, (5.3.2.8.2)

the second morphism is built by adjointness from the morphism of ringed spaces f̃ : (X,BX)→ (Y,BY ),
the last isomorphism coming from the fact that f∗P a K-flat complex of K(BX) representing Lf̃∗F .
In the respective case, since we have by functoriality f∗P ⊗BX I ∈ K(f−1‹D(m)

Y ]/T ]
,BX) which yields

f∗
Ä
f̃∗P ⊗BX I

ä
∈ K(‹D(m)

Y ]/T ]
,BY ), then the second arrow do is a morphism of K(‹D(m)

Y ]/T ]
,BY ).

To check that this is an isomorphism, using the remark 5.1.2.1 and using [Har66, I.7.1 (ii), (iii) and
(iv)] and 5.1.2.4, we reduce to the case where F = BY , which is obvious.

5.3.2.9. Suppose we are the non-respective case of 5.1.1.1, BY is quasi-coherent and the morphism
f∗BY → BX is an isomorphism. Then ‹D(m)

Y ]/T ]
⊗BY ω̃−1

Y ]/T ]
is endowed with a canonical structure of

(‹D(m)

Y ]/T ]
,BY )-bimodule (induced by its structure of left ‹D(m)

Y ]/T ]
-bimodule) such that both underlying OY -

module structure are quasi-coherent. Since f∗BY → BX is an isomorphism, then f̃∗r
Ä‹D(m)

Y ]/T ]
⊗BY ω̃−1

Y ]/T ]

ä ∼−→
f∗r
Ä‹D(m)

Y ]/T ]
⊗BY ω̃−1

Y ]/T ]

ä
. Let G̃ be a BX -module. Then ‹D(m)

X]/S]
⊗BX G̃ is endowed with a canonical struc-

ture of (‹D(m)

X]/S]
,BX)-bimodule. We get the isomorphisms of D(‹D(m)

Y ]/S]
,BY ):

f̃
(m)
+ (‹D(m)

X]/S]
⊗BX G̃)

∼−→ Rf∗

ÇÄ
f̃∗r
Ä‹D(m)

Y ]/T ]
⊗BY ω̃−1

Y ]/T ]

ä
⊗BX ω̃X]/S]

ä
⊗L
D̃(m)

X]/S]

(‹D(m)

X]/S]
⊗BX G̃)

å
∼−→ Rf∗

Ä
f̃∗r
Ä‹D(m)

Y ]/T ]
⊗BY ω̃−1

Y ]/T ]

ä
⊗BX ω̃X]/S] ⊗BX G̃

ä
∼←−

5.3.2.8.1
(‹D(m)

Y ]/T ]
⊗BY ω̃−1

Y ]/T ]
)⊗L
BY Rf∗

Ä
ω̃X]/S] ⊗BX G̃

ä
∼−→ ‹D(m)

Y ]/T ]
⊗BY

Ä
ω̃−1
Y ]/T ]

⊗L
BY Rf∗

Ä
ω̃X]/S] ⊗BX G̃

ää
. (5.3.2.9.1)

Lemma 5.3.2.10. Suppose we are the non-respective case of 5.1.1.1. Suppose f is proper, S and T
are noetherian schemes of finite Krull dimension and f∗BY → BX is an isomorphism. Suppose BY is
a quasi-coherent OY -module, is an OY -algebra of finite type and the conditions 4.1.2.17.(e) are satisfied
for BY . For any ? ∈ {b,+,−, ∅}, the functor Rf∗ sends D?

coh(BX) to D?
coh(BY ).

Proof. Recall that following 1.4.5.2, BY is a coherent sheaf of rings. We can suppose BX = f∗BY . Let
E be a coherent BX -module. Since Rf∗ is way-out, then by using [Har66, I.7.3.(iii)], we reduce to check
Rf∗(E) ∈ Db

coh(BY ). Since this is Zariski local in Y , we can suppose Y is affine. Let ‹Y := Spec(Γ(Y,BY )),‹X := ‹Y ×Y X, f̃ : ‹X → ‹Y and $ : ‹X → X be the projections. In other words, ‹X = SpecX(BX) is the
relative spectrum of BX over X and $ is the natural affine projection. Since f is proper, so is f̃ . Since‹Y and Y are noetherian, then so are ‹X and X. Hence, a BX -module (resp. B

X̃
-module) is coherent if

and only if it is both quasi-coherent and of finite type. Following [Gro61, 1.4.5], there exists therefore a
coherent O

X̃
-module Ẽ such that $∗(Ẽ) = E . Since f̃ is proper, then Rf̃∗(Ẽ) ∈ Db

coh(B
Ỹ

). This yields
Γ(‹Y ,Rf̃∗(Ẽ) ∈ Db

coh(Γ(Y,BY )).
Since we already know Rf∗(E) ∈ Db

qc(BY ), since Y is affine and the conditions 4.1.2.17.(e) are satisfied
for BY , then Rf∗(E) ∈ Db

coh(BY ) if and only if Γ(Y,Rf∗(E)) ∈ Db
coh(Γ(Y,BY )). Since Rf∗(E)

∼−→
Γ(‹Y ,Rf̃∗(Ẽ), then we are done.

Proposition 5.3.2.11. We keep notation and hypotheses of 5.3.2.10. Suppose moreover one of the
following conditions hold:

280



(a) either ? = −,

(b) or m = 0,

(c) or log structures are trivial.

The functor f̃ (m)
+ sends D?

coh(∗‹D(m)

X]/S]
) to D?

coh(∗‹D(m)

Y ]/T ]
), where ∗ ∈ {r, l}.

Proof. Following 5.1.3.5 and 5.3.2.5, f̃ (m)
+ is way out left (or in both direction in the second and third

case). Following [Har66, I.7.3] in order to check the coherence of f̃ (m)
+ (F) for F ∈ D?

coh(‹D(m)

X]/S]
) we can

suppose that F is a coherent left ‹D(m)

X]/S]
-module. Since F is the inductive limit of its coherent OX -

submodules (see [Gro60, 9.4.9]), there exists a coherent OX -submodule G of F such that the canonical‹D(m)

X]/S]
-linear map ‹D(m)

X]/S]
⊗OX G � F is surjective. Hence, by using [Har66, I.7.3.(iv)] (in fact, a left

way-out version), we reduce to the case where F is of the form ‹D(m)

X]/S]
⊗OX G where G is a coherent

OX -module.
Since f is proper and S is locally noetherian, then the functor Rf∗ preserves the O-coherence, hence

If follows from 5.3.2.10, that ω̃−1
Y ]/S]

⊗L
BY Rf∗(ω̃X]/S] ⊗BX (BX ⊗OX G)) ∈ Db

coh(BY ). By using the

isomorphism 5.3.2.9.1 (applied to the case G̃ = BX ⊗OX G, we can conclude.

Proposition 5.3.2.12. Suppose we are the non-respective case of 5.1.1.1, BY is quasi-coherent, f∗BY →
BX is an isomorphism and the bottom arrow of 5.1.1.1.1 is the identity. Suppose f−1BY → BX has
finite tor dimension, S is a noetherian scheme of finite Krull dimension, f is quasi-compact and quasi-
separated. The functor f̃ (m)

+ sends Dtdf(
∗‹D(m)

X]/S]
) (resp. Dqc,tdf(

∗‹D(m)

X]/S]
)) to Dtdf(

∗‹D(m)

Y ]/S]
) (resp.

Dqc,tdf(
∗‹D(m)

Y ]/S]
)), where ∗ ∈ {r, l}.

Proof. LetM∈ Dtdf(
r‹D(m)

X]/S]
) and F be a quasi-coherent left ‹D(m)

X]/S]
-module. It follows from 5.1.2.6.1

that we have the canonical isomorphism

Rf∗

Ç
M⊗L

D̃(m)

X]/S]

‹D(m)

X]/S]→Y ]/S]

å
⊗L
D̃(m)

Y ]/S]

F ∼−→ Rf∗

Ç
M⊗L

D̃(m)

X]/S]

‹D(m)

X]/S]→Y ]/S] ⊗
L
f−1D̃(m)

Y ]/S]

f−1F
å
.

It follows from 5.1.1.10 that ‹D(m)

X]/S]→Y ]/S]⊗
L
f−1D̃(m)

Y ]/S]

f−1F = f̃ (m)!(F)[df ] is bounded. SinceM has fi-

nite tor-dimension, since f̃ (m)
+ (M) = Rf∗

Ç
M⊗L

D̃(m)

X]/S]

‹D(m)

X]→Y ]/S]

å
, then this yields that f̃ (m)

+ (M)⊗L
D̃(m)

Y ]/S]

F is bounded. We conclude by using 1.4.3.3.

Proposition 5.3.2.13. Suppose we are the non-respective case of 5.1.1.1, f∗BY → BX is an isomor-
phism and the bottom arrow of 5.1.1.1.1 is the identity. Suppose BY is a quasi-coherent OY -module, is
an OY -algebra of finite type and the conditions 4.1.2.17.(e) are satisfied for BY . Suppose f−1BY → BX
has finite tor dimension, S is a noetherian scheme of finite Krull dimension, f is proper. The functor
f̃

(m)
+ sends Dperf(

∗‹D(m)

X]/S]
) to Dperf(

∗‹D(m)

Y ]/S]
), where ∗ ∈ {r, l}.

Proof. Following [Sta22, 08G8], a complex is perfect if and only if it is pseudo-coherent and locally has
finite tor dimension. Hence, this is a consequence of 5.3.2.11 and 5.3.2.12.

Notation 5.3.2.14 (Varying m notation). We keep notation and hypotheses 5.1.1.1. Fix m ≥ m′ ≥ 0
a second integer. Let B′X (resp. B′Y ) be a commutative OX -algebra (resp. OY -algebra) endowed with
a compatible structure of left D(m′)

X]/S]
-module (resp. left D(m′)

Y ]/T ]
-module) and satisfying the hypotheses

of 7.3.2. We suppose that we have algebras morphisms B′X → BX ,B′Y → BY , f∗B′Y → B′X which are
respectively ‹D(m′)

X]/S]
-linear (resp. ‹D(m′)

Y ]/T ]
-linear, resp. ‹D(m)

X]/S]
-linear) and inducing the commutative

diagram
f∗BY // BX

f∗B′Y //

OO

B′X .

OO
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We denote by ‹D(m′)

X]/S]
:= B′X“⊗OXD(m′)

X]/S]
and ‹D(m′)

Y ]/T ]
:= B′Y“⊗OY D(m′)

Y ]/T ]
. We keep similar to 5.1.1.2

notation by replacing m by m′ and B by B′.

Proposition 5.3.2.15. With notation 5.3.2.14, suppose we are the non-respective case of 5.1.1.1, S
and T are noetherian schemes of finite Krull dimension, f is quasi-compact and quasi-separated, B′Y
is quasi-coherent and f∗B′Y → B′X is an isomorphism, BY is quasi-coherent and f∗BY → BX is an
isomorphism. Let ? ∈ {+,−, ∅}, ∗ ∈ {r, l} and F ∈ D?

qc(‹D(m′)

X]/S]
). Suppose moreover one of the following

conditions holds:

(a) either ? = −,

(b) or log structures are trivial.

Suppose moreover either B′X → BX is an isomorphism or f−1OY and OX are tor independent over
f−1BY .

Then we have in D?
qc(‹D(m′)

Y ]/T ]
) the canonical isomorphism‹D(m)

Y ]/T ]
⊗L
D̃(m′)
Y ]/T]

f̃
(m′)
+ (F)

∼−→ f̃
(m)
+

Ç‹D(m)

X]/S]
⊗L
D̃(m′)
X]/S]

F
å
. (5.3.2.15.1)

Proof. We can suppose ∗ = l. It follows from 5.1.3.4 that we can suppose B′X → BX is an isomorphism.
By using the canonical morphism of (f−1‹D(m′)

Y ]/T ]
, ‹D(m′)

X]/S]
)-bimodules ‹D(m′)

Y ]/T ]←X]/S] → ‹D(m)

Y ]/T ]←X]/S]

and the ‹D(m′)

X]/S]
-linear morphism F → ‹D(m)

X]/S]
⊗L
D̃(m′)
X]/S]

F , we get the ‹D(m′)

Y ]/T ]
-linear morphism f̃

(m′)
+ (F)→

f̃
(m)
+

Ç‹D(m)

X]/S]
⊗L
D̃(m′)
X]/S]

F
å
, which yields 5.3.2.15.1 by extension. To check that this is an isomorphism,

since f̃ (m′)
+ is way out left (resp. in both direction by using 3.2.4.3), following [Har66, I.7.1.(iii)], we can

suppose that F is a quasi-coherent left ‹D(m′)

X]/S]
-module. Since the canonical morphism ‹D(m′)

X]/S]
⊗OX F →

F is surjective, by using [Har66, I.7.3.(iv)] (in fact, a left way-out version), we reduce to the case where F
is of the form ‹D(m′)

X]/S]
⊗OX G where G is a quasi-coherent OX -module. We conclude via the isomorphism

5.3.2.9.1.

Remark 5.3.2.16. When m′ = m, we get 5.1.3.4.

5.3.3 Commutation with base change
Consider the commutative diagram

Y ]

��

$ // X]

��

Y ′]

!!

g

==

$′
// X ′]

!!

f

==

T ] // S]

(5.3.3.0.1)

where the squares are cartesian, where S] and T ] are Noetherian nice fine log scheme over Spec(Z/pi+1Z)
(see definition 3.1.1.1), where X] and Y ] are log smooth S]-log-scheme, where morphisms are morphisms
of log schemes whose underlying morphism of schemes are quasi-compact and quasi-separated. Let
BX (resp. BX′) be a commutative quasi-coherent OX -algebra (resp. OX′ -algebra) endowed with of a
compatible structure of D(m)

X]/S]
-module (resp. D(m)

X′]/S]
-module). We suppose finally that we have a

morphism of algebras f∗BX → BX′ which is moreover D(m)

X′]/S]
-linear. We will again denote by ‹D(m)

X]/S]
=

BX ⊗OX D
(m)

X]/S]
and ‹D(m)

Y ]/S]
= BY ⊗OY D

(m)

Y ]/S]
. We denote by ‹X] (resp. ‹X ′]) the ringed logarithmic (V-

formal) scheme (X],BX) (resp. (X ′],BX′)), and by f̃ : ‹X ′]/S] → ‹X]/S] the morphism of relative ringed
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logarithmic (V-formal) schemes induced by the diagram 5.3.3.0.1 and by f∗BX → BX′ . We suppose f̃ is
quasi-flat (see Definition 4.4.1.3).

Set BY := $∗BX and BY ′ := $′∗BX′ , ‹D(m)

Y ]/T ]
= BY ⊗OY D

(m)

Y ]/T ]
and ‹D(m)

Y ′]/T ]
= BY ′ ⊗OY D

(m)

Y ]/T ]
.

We denote by ‹Y ] (resp. ‹Y ′]) the ringed logarithmic (V-formal) scheme (Y ],BY ) (resp. (Y ′],BY ′)),
and by g̃ : ‹Y ′]/T ] → ‹Y ]/T ] the morphism of relative ringed logarithmic (V-formal) schemes induced by
the diagram 5.3.3.0.1 and by g∗BY → BY ′ . We get moreover the morphisms ‹$ : ‹Y ]/T ] → ‹X]/S] and‹$′ : ‹Y ′]/T ] → ‹X ′]/S]. Since the squares of the diagram 5.3.3.0.1 are cartesian, then the functors ‹$(m)!

and ‹$′(m)! are the base change inverse image (see 5.1.1.15).

Proposition 5.3.3.1. Let E ∈ D(
lD(m)

X]/S]
). There exists a canonical isomorphism in D(

l‹D(m)

Y ′]/T ′]
) of

the form: ‹$′(m)! ◦ f̃ (m)!(E)
∼−→ g̃(m)! ◦ ‹$(m)!(E). (5.3.3.1.1)

Proof. Following 5.1.1.13, they both are canonically isomorphic to h̃(m)!(E) where h̃ : (Y ′,BY ′)/T ] →
(X,BX)/S] is the morphism induced by composition.

Proposition 5.3.3.2. Tensor products commutes with base change, i.e. we have the canonical isomor-
phism in D(∗‹D(m)

X]/S]
) for anyM∈ D(∗‹D(m)

X]/S]
) and E ∈ D(

l‹D(m)

X]/S]
):‹$(m)!(M⊗L

BX E)
∼−→ ‹$(m)!(M)⊗L

BY ‹$(m)!(E). (5.3.3.2.1)

Proof. Obvious.

Theorem 5.3.3.3. Let E ′ ∈ D(
l‹D(m)

X′]/S]
). There exists a canonical homorphism in D(

l‹D(m)

Y ]/T ]
) of the

form: ‹$(m)! ◦ f̃ (m)
+ (E ′)→ g̃

(m)
+ ◦ ‹$′(m)!(E ′). (5.3.3.3.1)

This morphism is an isomorphism in the following cases:

(a) either E ′ ∈ D−qc(
l‹D(m)

X′]/S]
);

(b) or m = 0, f−1BX → BY and f−1BX′ → BY ′ have finite tor dimension and E ′ ∈ Dqc(
l‹D(m)

X′]/S]
);

(c) or the log structures are trivial, p is nilpotent, f−1BX → BY and f−1BX′ → BY ′ have finite tor
dimension and E ′ ∈ Dqc(

l‹D(m)

X′]/S]
).

Proof. a) By computing in local coordinates, we can check the canonical isomorphisms of BY -modules
(resp. of BY ′ -modules) ‹$!(ω̃X]/S])

∼−→ ω̃Y ]/T ] (resp. ‹$′!(ω̃X′]/S]) ∼−→ ω̃Y ′]/T ]) is ‹D(m)

Y ]/T ]
-linear (resp.‹D(m)

Y ′]/T ]
-linear). Hence, we get the isomorphism of right ‹D(m)

Y ′]/T ]
-modules:‹$′!(‹D(m)

X]←X′]/S])
∼−→ ‹$′∗(ω̃X′]/S] ⊗BX′ f̃∗r (‹D(m)

X]/S]
⊗BX ω̃−1

X]/S]
))

∼−→ ω̃Y ′]/T ] ⊗BY ′ ‹$′∗f̃∗r (‹D(m)

X]/S]
⊗BX ω̃−1

X]/S]
)
∼−→ ω̃Y ′]/T ] ⊗BY ′ g̃

∗
r‹$∗r (‹D(m)

X]/S]
⊗BX ω̃−1

X]/S]
)

∼−→ ω̃Y ′]/T ] ⊗BY ′ g
∗
r (‹D(m)

Y ]/T ]
⊗BY ω̃−1

Y ]/T ]
)) = ‹D(m)

Y ]←Y ′]/T ] . (5.3.3.3.2)

In fact, since ‹D(m)

X]←X′]/S] is a (f−1‹D(m)

X]/S]
, ‹D(m)

X′]/S
)-bimodule, we check by functoriality that the homo-

morphisms of 5.3.3.3.2 are homomorphisms of (($ ◦ g)−1‹D(m)

X]/S]
, ‹D(m)

Y ′]/S
)-bimodules. Let P ′ be a K-flat

complex representing E ′. Hence, we get the morphism of D(($ ◦ g)−1‹D(m)

X]/S]
):

$′−1(‹D(m)

X]←X′]/S] ⊗D̃(m)

X′]/S]
P ′)→ ‹$′!(‹D(m)

X]←X′]/S])⊗D̃(m)

Y ′]/T]
‹$′!(P ′) ∼−→

5.3.3.3.2
‹D(m)

Y ]←Y ′]/T ] ⊗D̃(m)

Y ′]/T]
‹$′!(P ′).

(5.3.3.3.3)
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b) We have the adjoint morphism (or called base change morphism which is constructed by ad-
jointness: see [Sta22, 20.28.3]) adj : $−1Rf∗ → Rg∗$′−1 of functors D(f−1‹D(m)

X]/S]
) → D($−1‹D(m)

X]/S]
).

Hence, we get the morphism of D($−1‹D(m)

X]/S]
):

$−1 ◦ Rf∗(‹D(m)

X]←X′]/S] ⊗D̃(m)

X′]/S]
P ′) adj−→ Rg∗ ◦$′−1(‹D(m)

X]←X′]/S] ⊗D̃(m)

X′]/S]
P ′)

−→
5.3.3.3.3

Rg∗(‹D(m)

Y ]←Y ′]/T ] ⊗D̃(m)

Y ′]/T]
‹$′!(P ′)). (5.3.3.3.4)

Via the extension $−1‹D(m)

X]/S]
→ ‹D(m)

Y ]/T ]
, this yields the morphism of D(‹D(m)

Y ]/T ]
)‹$! ◦ f̃ (m)

+ (E ′) = ‹$! ◦Rf∗(‹D(m)

X]←X′]/S] ⊗
L
D̃(m)

X′]/S]
E ′)→ Rg∗(‹D(m)

Y ]←Y ′]/T ] ⊗
L
D̃(m)

Y ′]/T]
‹$′!(E ′)) = g̃

(m)
+ ◦‹$′!(E ′).

(5.3.3.3.5)
It remains to check that this morphism is an isomorphism. In the first case (resp. in the other two
cases), since the functors ‹$! ◦ f̃ (m)

+ and g̃
(m)
+ ◦ $′! are way out left (resp. way out in both directions:

see 5.1.1.10 and 5.3.2.5), by using (the way out left version of) Proposition [Har66, I.7.1], we reduce to
the case where E ′ is a quasi-coherent ‹D(m)

X′]/S]
-module. By using [Har66, I.7.1.(iv)], we reduce to the

case where E ′ is of the form ‹D(m)

X′]/S]
⊗BX′ F

′, where F ′ is a quasi-coherent BX′-module. The morphism
5.3.3.3.4 is canonically isomorphism to the composite of the top arrow of the following diagram:

$−1Rf∗(D̃(m)

X]←X′]/S] ⊗
L

D̃(m)

X′]/S]
E ′)

adj//

∼
��

Rg∗$′−1(D̃(m)

X]←X′]/S] ⊗
L

D̃(m)

X′]/S]
E ′) //

∼
��

Rg∗(D̃(m)

Y ]←Y ′]/T ] ⊗
L

D̃(m)

Y ′]/T]
‹$′!(E ′))

∼
��

$−1 ◦ Rf∗(D̃(m)

X]←X′]/S] ⊗BX′ F
′)

adj //

��

Rg∗ ◦$′−1(D̃(m)

X]←X′]/S] ⊗BX′ F
′) //

��

Rg∗(D̃(m)

Y ]←Y ′]/T ] ⊗BY ′ ‹$′!(F ′))
‹$! ◦ Rf∗(D̃(m)

X]←X′]/S] ⊗BX′ F
′)

adj

∼
// Rg∗ ◦‹$′!(D̃(m)

X]←X′]/S] ⊗BX′ F
′)

∼ // Rg∗(D̃(m)

Y ]←Y ′]/T ] ⊗BY ′ ‹$′!(F ′)),
(5.3.3.3.6)

where, by identifying ‹$! with the functor $∗, the adjoint isomorphism of the bottom row can be viewed
at the one constructed in the categories of O-modules (this latter is indeed an isomorphism because
Y and X ′ are tor-independent over X: see [Sta22, 36.22.5]). Remark that the left bottom square is
indeed commutative by transitivity of the base change morphism (see [Sta22, 20.28.4]). This yields the
commutative diagram:‹$! ◦ f̃ (m)

+ (E ′) //

∼
��

g̃
(m)
+ ◦ ‹$′!(E ′)

∼
��‹$! ◦ Rf∗(‹D(m)

X]←X′]/S] ⊗BX′ F
′)

adj

∼
// Rg∗ ◦ ‹$′!(‹D(m)

X]←X′]/S] ⊗BX′ F
′)

∼ // Rg∗(‹D(m)

Y ]←Y ′]/T ] ⊗BU′ ‹$′!(F ′)).
(5.3.3.3.7)

Proposition 5.3.3.4. Let E ∈ Db
perf(

‹D(m)

X]/S],Q). We have the canonical isomorphism‹$!(DX]/S](E))
∼−→ DY ]/T ](‹$!(E)). (5.3.3.4.1)

Proof. Since E is a perfect complex, then we have the last canonical isomorphism‹$!(DX]/S](E)) = ‹D(m)

Y ]/S]
⊗L
$−1D̃(m)

X]/S]

$−1RHomD̃(m)

X]/S]

(E , ‹D(m)

X]/S]
⊗BX ω̃−1

X]/S]
)[δS

]

X] ] (5.3.3.4.2)

∼−→ ‹D(m)

Y ]/S]
⊗L
$−1D̃(m)

X]/S]

RHom
$−1D̃(m)

X]/S]

($−1E , $−1(‹D(m)

X]/S]
⊗BX ω̃−1

X]/S]
))[δS

]

X] ] (5.3.3.4.3)

∼−→
4.6.3.6.1

RHom
$−1D̃(m)

X]/S]

($−1E ,‹$!(‹D(m)

X]/S]
⊗BX ω̃−1

X]/S]
))[δS

]

X] ]. (5.3.3.4.4)
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Using ??, since ‹$!(‹D(m)

X]/S]
) = $∗(‹D(m)

X]/S]
)
∼−→ ‹D(m)

Y ]/T ]
and ‹$!(ω̃

(m)

X]/S]
) = $∗(ω̃

(m)

X]/S]
)
∼−→ ω̃

(m)

Y ]/T ]
,

then we get the isomorphism of left ‹D(m)

Y ]/T ]
-bimodules‹$!(‹D(m)

X]/S]
⊗BX ω̃−1

X]/S]
)
∼−→ ‹D(m)

Y ]/T ]
⊗BY ω̃−1

Y ]/T ]
.

Using ??, this yields the first isomorphism

RHom
$−1D̃(m)

X]/S]

($−1E ,‹$!(‹D(m)

X]/S]
⊗BX ω̃−1

X]/S]
))[δS

]

X] ] (5.3.3.4.5)

∼−→ RHom
$−1D̃(m)

X]/S]

($−1E , ‹D(m)

Y ]/T ]
⊗BY ω̃−1

Y ]/T ]
))[δT

]

Y ] ] (5.3.3.4.6)

∼−→ RHomD̃(m)

Y ]/T]

(‹$!E , ‹D(m)

Y ]/T ]
⊗BY ω̃−1

Y ]/T ]
))[δT

]

Y ] ] = DY ]/T ](‹$!(E)). (5.3.3.4.7)

5.3.4 Projection formula as D-module

We keep notation 5.1.2 and we suppose f̃ is quasi-flat (see Definition 4.4.1.3). Moreover, assume that T
is a noetherian scheme of finite Krull dimension; and f is quasi-compact and quasi-separated. We check
here a projection formula involving the pushforward as D-module and the extraordinary inverse image
as D-module (compare 5.3.4.1 with 5.1.2.8).

Proposition 5.3.4.1 (Projection formula). ForM ∈ D−(r‹D(m)

X]/S]
) and E ∈ D−qc(

l‹D(m)

Y ]/T ]
) (resp. M ∈

D(r‹D(m)

X]/S]
) and E ∈ Db

qc(
l‹D(m)

Y ]/T ]
), with notation 5.1.1.4 and 5.1.3.1 we have the canonical isomorphism

f̃
(m)
+

Ä
M⊗L

BX Lf̃∗(E)
ä ∼−→ f̃

(m)
+ (M)⊗L

BY E . (5.3.4.1.1)

Proof. Since ‹D(m)

X]/S]
and ‹D(m)

X]/S]→Y ]/T ] are flat BX -modules, we have the isomorphisms ofD(rf−1‹D(m)

Y ]/T ]
):Ä

M⊗L
BX Lf̃∗(E)

ä
⊗L
D̃(m)

X]/S]

‹D(m)

X]/S]→Y ]/T ]
∼−→
Ç
M⊗L

D̃(m)

X]/S]

(‹D(m)

X]/S]
⊗BX Lf̃∗(E))

å
⊗L
D̃(m)

X]/S]

‹D(m)

X]/S]→Y ]/T ]

∼−→
4.2.5.1

Ç
M⊗L

D̃(m)

X]/S]

(Lf̃∗(E)⊗BX ‹D(m)

X]/S]
)

å
⊗L
D̃(m)

X]/S]

‹D(m)

X]/S]→Y ]/T ]
∼−→ M⊗L

D̃(m)

X]/S]

Ä
Lf̃∗(E)⊗BX ‹D(m)

X]/S]→Y ]/T ]
ä
.

(5.3.4.1.2)

We have the isomorphism of D(‹D(m)

X]/S]
, f−1‹D(m)

Y ]/T ]
):

Lf̃∗(E)⊗BX ‹D(m)

X]/S]→Y ]/T ]
∼−→

5.1.1.7.1
Lf̃∗(E ⊗BY ‹D(m)

Y ]/T ]
)
∼←−

4.2.5.1
Lf̃∗(‹D(m)

Y ]/T ]
⊗BY E)

∼−→ ‹D(m)

X]/S]→Y ]/T ] ⊗
L
f−1D̃(m)

Y ]/T]

f−1(‹D(m)

Y ]/T ]
⊗BY E). (5.3.4.1.3)

By using 5.3.4.1.3 and 5.3.4.1.3, we get the isomorphismÄ
M⊗L

BX Lf̃∗(E)
ä
⊗L
D̃(m)

X]/S]

‹D(m)

X]/S]→Y ]/T ]
∼−→ M⊗L

D̃(m)

X]/S]

‹D(m)

X]/S]→Y ]/T ]⊗
L
f−1D̃(m)

Y ]/T]

f−1(‹D(m)

Y ]/T ]
⊗L
BY E)

(5.3.4.1.4)
Since ‹D(m)

Y ]/T ]
⊗BY E ∈ D−qc(

l‹D(m)

Y ]/T ]
) (resp. ∈ Db

qc(
l‹D(m)

Y ]/T ]
)), we get

f̃
(m)
+

Ä
M⊗L

BX Lf̃∗(E)
ä ∼−→

Rf∗(5.3.4.1.4)
Rf∗

ÇÇ
M⊗L

D̃(m)

X]/S]

‹D(m)

X]/S]→Y ]/T ]

å
⊗L
f−1D̃(m)

Y ]/T]

f−1(‹D(m)

Y ]/T ]
⊗BY E)

å
∼←−

5.1.2.6.1
Rf∗

Ç
M⊗L

D̃(m)

X]/S]

‹D(m)

X]/S]→Y ]/T ]

å
⊗L
D̃(m)

Y ]/T]

(‹D(m)

Y ]/T ]
⊗BY E)

∼−→ f̃
(m)
+ (M)⊗L

BY E .
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5.3.5 Commutations with exterior tensor products
Let S] be a nice fine log schemes over Spec(Z/pr+1Z) as defined in 3.1.1.1 with r ∈ N. We suppose the
underlying scheme S is noetherian of finite Krull dimension. Since the base scheme S] is fixed, so we
can remove it in the notation concerning relative object with base S]. If p : X] → S] is a morphism, by
abuse of notation, we sometimes denote p−1OS simply by OS .

For i = 1, . . . , n, let fi : X
]
i → Y ]i be a quasi-separated and quasi-compact morphism of log smooth

S]-log schemes. Set X] := X]
1 ×S] X

]
2 ×S] · · · ×S] X]

n, Y ] := Y ]1 ×S] Y
]
2 ×S] · · · ×S] Y ]n , and f :=

f1 × · · · × fn : X] → Y ]. For i = 1, . . . , n, let pri : X → Xi, pr′i : Y
] → Y ]i be the projections. We denote

by $ : X] → S] and $i : X
]
i → S], $′ : Y ] → S] and $′i : Y

]
i → S] the structural morphisms.

For i = 1, . . . , n, let BXi (resp. BYi) be a commutative OXi-algebra (resp. OYi-algebras) endowed
with a compatible structure of left D(m)

X]
i
/S]

-module (resp. left D(m)

Y ]
i
/S]

-module). For i = 1, . . . , n, we

suppose there exists a homomorphism of OYi-algebras f∗i BXi → BYi which is also D(m)

Y ]
i
/S]

-linear. We set

Bi := pr∗i BXi and B′i := pr′∗i BYi , BX := B1 ⊗OX · · · ⊗OX Bn and BY := B′1 ⊗OY · · · ⊗OY B′n.
We will denote by ‹D(m)

X]
= BX ⊗OX D

(m)

X]/S]
and ‹D(m)

X]
i

= BXi ⊗OXi D
(m)

X]
i
/S]

, ‹D(m)

Y ]
= BX ⊗OX D

(m)

X]/S]

and ‹D(m)

X]
i

= BXi ⊗OXi D
(m)

X]
i
/S]

. We get the following ringed logarithmic schemes ‹X] := (X],BX), ‹X]
i :=

(X]
i ,BXi), ‹Y ] := (Y ],BY ), ‹Y ]i := (Y ]i ,BYi). We denote by ‹pri : ‹X]/S] → X̃i

]
/S], ‹pr

′
i :
‹X ′]/S] → X̃ ′i

]
/S],

f̃i : X̃i

]
/S] → ‹Yi]/S] and f̃ : ‹X]/S] → ‹Y ]/S] the induced morphisms of relative to S] ringed logarithmic

schemes and similarly the induced morphisms of ringed logarithmic schemes.

Remark 5.3.5.1. Suppose n = 2 and f2 is the identity. In that case, denoting by T ] := X]
2 = Y ]2 , we get

the cartesian square

X] = X]
1 ×S] T ]

f=f1×id //

pr1

��

Y ] = Y ]1 ×S] T ]

pr′1
��

X]
1

f1 // Y ]1 .

(5.3.5.1.1)

Proposition 5.3.5.2. For i = 1, . . . , n, let Di be a sheaf of rings such that (Di, ‹D(m)

Y ]
i

) has the ring of

resolution R. Let Ni ∈ D−(Di,R, ‹D(m)

Y ]
i

). With notation 5.1.5, we have the canonical isomorphism of

D−(�
i

topDi,R, ‹D(m)

X]
i

):

Lf̃∗(‹�
i

L
Ni)

∼−→ ‹�
i

L
Lf̃∗i (Ni).

Proof. This is a consequence of 5.1.5.4.3 and of the commutation of inverse images with tensor products.

Remark 5.3.5.3. The proposition means in particular that tensor products commute with extensions of
coefficients.

5.3.5.4. We recall the following fact (see [Sta22, 09T5]). Let F : A→ B and G : B→ A be functors of
abelian categories such that F is a right adjoint to G. LetM be a complex of A and let N be a complex
of B. If RF is defined atM and LG is defined at N , then there is a canonical isomorphism

HomD(B)(N ,RF (M))
∼−→ HomD(A)(LG(N ),M).

This isomorphism is functorial in both variables on the triangulated subcategories of D(A) and D(B)
where RF and LG are defined.

5.3.5.5. Let u : (U,OU ) → (V,OV ) be a morphism of ringed spaces (or more generally ringed topoi).
LetM∈ Ob(D(OU )) and N ∈ Ob(D(OV )).

(a) Since the functors Ru∗ and Lu∗ are well defined, we get from 5.3.5.4

HomD(OV )(N ,Ru∗(M))
∼−→ HomD(OU )(Lu

∗(N ),M) (5.3.5.5.1)
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bifunctorially inM andN (see [Sta22, 079W]). We get the adjunction functorial morphisms adjRL(N ) : N →
Ru∗Lu∗(N ) and adjLR : Lu∗Ru∗(M) → M. In fact, we can directly prove 5.3.5.5.1 and describe
(which will be useful) theses adjunction morphisms as follows.

i) Let P be a K-flat complex of Ob(K(OV )) endowed with a quasi-isomorphism P → N (we call
such P a K-flat representation or K-flat resolution of N ). Modulo the isomorphism Q(P)

∼−→ N ,
to construct adjRL(N ) we reduce to build adjRL(Q(P)) which is simply Q(P) → Q(u∗u

∗(P) →
Ru∗ ◦ Q(u∗(P)) = Ru∗ ◦ Lu∗(Q(P)), where Q means the localisation functors K(OU ) → D(OU ) or
K(OV )→ D(OV ) and where the first morphism is given by adjunction via the adjoint paire (u∗, u∗)
(in the categories of complexes).

ii) Let I be a K-injective complex of Ob(K(OU )) endowed with a quasi-isomorphismM→ I (we call
such I a K-injective representation or K-injective resolution ofM). Modulo the isomorphismM ∼−→
Q(I), to construct adjLR(M) we reduce to build adjLR(Q(I)) which is simply Lu∗Ru∗(Q(I)) =
Lu∗ ◦ Q(u∗(I)) → Q ◦ u∗(u∗(I)) → Q(I) where the last morphism is given by adjunction via the
adjoint paire (u∗, u∗) (in the categories of complexes).

iii) This is an easy exercice to check that check that adjLR(Lu∗N )◦Lu∗(adjRL(N )) is the identity of
Lu∗N and Lu∗ adjLR(M) ◦ adjRL(Lu∗M) is the identity of Lu∗M. This yields a check of 5.3.5.5.1.

(b) For anyM,M′ ∈ D(OU ), we construct the canonical morphism of D(OV ):

Ru∗(M)⊗L
OV Ru∗(M′)→ Ru∗(M⊗L

OU M
′) (5.3.5.5.2)

bifunctorially in M,M′ ∈ Ob(D(OU )) as follows. Using 5.3.5.5.1, since tensor products commute
with inverses images, we reduce to construct a canonical morphism adjLR⊗ adjLR : Lu∗Ru∗(M)⊗L

OU
Lu∗Ru∗(M′)→M⊗L

OU M
′, which again a consequence of 5.3.5.5.1.

(c) For anyM∈ D(OU ), N ∈ D(OV ), we construct the canonical morphism

Ru∗(M)⊗L
OV N → Ru∗(M⊗L

OU Lu∗N ). (5.3.5.5.3)

as follows. Using 5.3.5.5.1, since tensor products commute with inverses images, we reduce to con-
struct a canonical morphism adjLR⊗ id : Lu∗Ru∗(M) ⊗L

OU Lu∗N → M⊗L
OU Lu∗N , which again a

consequence of 5.3.5.5.1.

(d) Let M ∈ D(OU ), N ∈ D(OV ), I be a K-injective resolution of M, Q be a K-flat resolution of
N (see [Sta22, 06YF]). Then the map 5.3.5.5.3 is equal to the composition Ru∗(M) ⊗L

OV N
∼−→

u∗(I) ⊗OV Q → u∗(I ⊗OU u∗Q) → Ru∗(I ⊗OU u∗Q)
∼−→ Ru∗(M⊗L

OU Lu∗N ). Indeed, taking P a
K-flat object representing u∗I, this follows from the commutativity of the diagram

Ru∗(M)⊗L
OV N

adjRL
��

∼ // P ⊗OV Q
∼ //

adj

��

u∗I ⊗OV Q //

adj

��

u∗(I ⊗OU u∗Q)

Ru∗Lu∗(Ru∗(M)⊗L
OV N )

∼

��

u∗u
∗(P ⊗OV Q) //oo

∼
��

u∗u
∗(u∗I ⊗OV Q)

∼
��

u∗(u
∗P ⊗OU u∗Q) //

��

u∗(u
∗u∗(I)⊗OU u∗Q)

adj //

��

u∗(I ⊗OU u∗Q)

��
Ru∗(u∗P ⊗OU u∗Q) // Ru∗(u∗u∗(I)⊗OU u∗Q)

adj // Ru∗(I ⊗OU u∗Q)

∼
��

Ru∗(Lu∗Ru∗(M)⊗L
OU Lu∗N )

∼
44

adjLR // Ru∗(M⊗L
OU Lu∗N )

(5.3.5.5.4)
where we have avoid writing the localisation functor of the form Q : K(D)→ D(D), where 5.3.5.5.3
is by definition the composition of the left and bottom arrows (to check the commutativity of the
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top left square or of the bottom trapeze see the explicit construction of adjRL and adjLR given at
(a)). Hence, we get the commutativity of the canonical diagram

Ru∗(M)⊗L
OV OV

5.3.5.5.3// Ru∗(M⊗L
OU Lu∗OV )

Ru∗(M).

∼

OO
∼

55
(5.3.5.5.5)

This yields (using standard methods) that when u is a quasi-separated and quasi-compact morphism
of noetherian schemes of finite Krull dimension, the projection morphism 5.3.5.5.3 is an isomorphism
for complexes with bounded above and quasi-coherent cohomology. The commutativity of 5.3.5.5.5
will be used to check the commutativity of 5.3.6.1.3.

Lemma 5.3.5.6. Let u : (U,OU )→ (V,OV ) be a morphism of ringed spaces. For anyM∈ D(OU ), the
following diagram is commutative:

Ru∗(M)⊗L
OV Ru∗Lu∗(N )

5.3.5.5.2// Ru∗(M⊗L
OU Lu∗N )

Ru∗(M)⊗L
OV N .

id⊗ adjRL

OO
5.3.5.5.3

44
(5.3.5.6.1)

Proof. Since the composition Lu∗(N )
adjRL−→ Lu∗Ru∗Lu∗(N )

adjLR−→ Lu∗(N ) is the identity, we get the
commutativity of the triangle of the diagram:

Lu∗
(
Ru∗(M)⊗L

OV Ru∗Lu∗(N )
) ∼ // Lu∗Ru∗(M)⊗L

OU Lu∗Ru∗Lu∗(N )
adjLR⊗ adjLR//M⊗L

OU Lu∗N

Lu∗
(
Ru∗(M)⊗L

OV N
) ∼ //

id⊗ adjRL

OO

Lu∗Ru∗(M)⊗L
OU Lu∗N .

id⊗ adjRL

OO
adjLR⊗ id

33

(5.3.5.6.2)
By construction of both morphisms 5.3.5.5.2 and 5.3.5.5.3, from the commutative diagram 5.3.5.6.2 we
get by adjointness (via 5.3.5.5.1) the commutative diagram 5.3.5.6.1.

Lemma 5.3.5.7. Let u : (U,OU )→ (V,OV ) be a morphism of ringed spaces. LetM∈ Ob(D(OU )) and
N ∈ Ob(D(OV )). For anyM∈ D(OU ), the following commutative diagram of D(OV ):

N
adjRL(N ) // Ru∗u−1(N )

��
N

adjRL(N ) // Ru∗Lu∗(N )

, u−1Ru∗(M)

��

adjLR(M) //M

Lu∗Ru∗(M)
adjLR(M) //M

(5.3.5.7.1)

Proof. By using the explicit description of the adjunction maps adjRL and adjLR of 5.3.5.5.(a), this is
easy.

Lemma 5.3.5.8. Let u : (U,OU ) → (V,OV ), v : (V,OV ) → (V ′,OV ′), v′ : (U,OU ) → (U ′,OU ′) and
u′ : (U ′,OU ′) → (V ′,OV ′) be some morphisms of ringed spaces such that v ◦ u = u′ ◦ v′. For any
E ′ ∈ D(OU ′), the canonical diagram

v−1Ru′∗(E ′)
adj //

��

Ru∗v′−1(E ′)

��
Lv∗Ru′∗(E ′)

adj // Ru∗Lv′∗(E ′)

(5.3.5.8.1)

is commutative.
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Proof. Consider the diagram

v−1Ru′∗(E ′)
adjRL //

��

Ru∗u−1v−1Ru′∗(E ′)

��

∼ // Ru∗v′−1u′−1Ru′∗(E ′)
adjLR //

��

Ru∗v′−1(E ′)

��
Lv∗Ru′∗(E ′)

adjRL // Ru∗Lu∗Lv∗Ru′∗(E ′)
∼ // Ru∗Lv′∗Lu′∗Ru′∗(E ′)

adjLR // Ru∗Lv′∗(E ′)

(5.3.5.8.2)

whose the composition of the top (resp. below) maps is the top (resp. below) map of the diagram
5.3.5.8.1. It follows from 5.3.5.8 that the left and right squares of 5.3.5.8.2 is commutative. The middle
one is obvious.

Lemma 5.3.5.9. For i = 1, . . . , n, we suppose BXi and BYi are flat OS-algebras. For i = 1, . . . , n, let
Di be a sheaf of $′−1

i OS-algebras.

(a) For i = 1, . . . , n, let Ei ∈ D−(f−1
i Di). Then we have the canonical morphism ‹�

i

L
top(Rfi∗Ei) →

Rf∗(‹�
i

L
topEi) of D−(�

i
topDi).

(b) For i = 1, . . . , n, let Ei ∈ D−(f−1
i Di,BXi). Then the canonical morphism ‹�

i

L
top(Rfi∗Ei)→ Rf∗(‹�

i

L
topEi)

is also a morphism of D−(�
i

topDi,�
i

topBYi). Moreover we have the canonical morphism ‹�
i

L
(Rfi∗Ei)→

Rf∗(‹�
i

L
Ei) of D−(�

i
topDi,BY ) making commutative the diagram‹�

i

L
top(Rfi∗Ei) //

��

‹�
i

L
(Rfi∗Ei)

��

Rf∗(‹�
i

L
topEi) // Rf∗(‹�

i

L
Ei).

(5.3.5.9.1)

Proof. 0) If Gi ∈ D−($−1
i OS) (resp. Gi ∈ D−($′−1

i OS)), then we set
L
⊗
i
Gi := G1⊗L

OS G2⊗L
OS · · · ⊗

L
OS Gn.

a) By applying 5.3.5.5.2 to the morphism of ringed spaces (X,$−1OS) → (Y,$′−1OS), we get the

morphism
L
⊗
i
(Rf∗ pr−1

i Ei)→ Rf∗

Å
L
⊗
i
(pr−1

i Ei)
ã
. By functoriality, since pr−1

i Ei ∈ D−(f−1 pr′−1
i Di, $−1OS)

this latter morphism belongs to D−(�
i

topDi).

b) Similarly, by applying 5.3.5.5.2 we get the morphisms
L
⊗
i
(Rf∗ pr−1

i Ei) → Rf∗

Å
L
⊗
i
(pr−1

i Ei)
ã

and

L
⊗
i
(Rf∗L‹pr

∗
i Ei) → Rf∗

Å
L
⊗
i
(L‹pr

∗
i Ei)

ã
of D−(�

i
topDi,�

i
topBYi). Finally, by applying 5.3.5.5.2 to the mor-

phism X → Y , we get the morphisms ⊗L

BY
(Rf∗L‹pr

∗
i Ei)→ Rf∗

Å
L
⊗
i
(L‹pr

∗
i Ei)

ã
of D−(�

i
topDi,BY ).

1) The canonical morphism ‹�
i

L
top(Rfi∗Ei) → Rf∗‹�

i

L
top(Ei) (resp. ‹�

i

L
(Rfi∗Ei) → Rf∗(‹�

i

L
Ei) is by

definition is the one making commutative the right (resp. left) rectangle of the diagram 5.3.5.9.2 below:‹�
i

L
top(Rfi∗Ei)

∼
5.1.5.4.2

//

��

L
⊗
i
(pr′−1

i Rfi∗Ei) //

adj

��

L
⊗
i
(L‹pr

′∗
i Rfi∗Ei) //

adj

��

L
⊗
BY

(L‹pr
′∗
i Rfi∗Ei)

∼ //

adj

��

‹�
i

L
(Rfi∗Ei)

��

L
⊗
i
(Rf∗ pr−1

i Ei) //

5.3.5.5.2

��

L
⊗
i
(Rf∗L‹pr

∗
i Ei)

5.3.5.5.2

��

// L
⊗
BY

(Rf∗L‹pr
∗
i Ei)

5.3.5.5.2

��

Rf∗‹�
i

L
top(Ei)

∼
5.1.5.4.2

// Rf∗

Å
L
⊗
i
(pr−1

i Ei)
ã

// Rf∗

Å
L
⊗
i
(L‹pr

∗
i Ei)

ã
// Rf∗

Å
L
⊗
BX

(L‹pr
∗
i Ei)

ã
∼ // ‹�

i

L
(Rfi∗Ei)

(5.3.5.9.2)
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Using 5.3.5.8, we get the commutativity of the top left square. We check the commutativity of the
bottom right square by construction of both vertical arrows. The other squares are commutative by
functoriality. Since the right and left rectangles are commutative by definition, then the diagram 5.3.5.9.2
is commutative. Finally, the composition of the top (resp. bottom) morphisms of 5.3.5.9.2 is the canonical

morphism ‹�
i

L
top(Rfi∗Ei)→ ‹�

i

L
(Rfi∗Ei) (resp. Rf∗‹�

i

L
top(Ei)→ ‹�

i

L
(Rfi∗Ei)).

5.3.5.10. By flatness, the morphism ‹�
i

L‹D(m)

X]
i
→Y ]

i

→ ‹�
i

‹D(m)

X]
i
→Y ]

i

is an isomorphism. We have by functo-

riality the canonical isomorphism of (‹D(m)

X]
, f−1 �

i
top
‹D(m)

Y ]
i

)-bimodules‹�
i

‹D(m)

X]
i
→Y ]

i

= ‹�
i
f̃∗i (‹D(m)

Y ]
i

∼−→
5.3.5.2

f̃∗(‹�
i

‹D(m)

Y ]
i

)
∼−→ ‹D(m)

X]→Y ] , (5.3.5.10.1)

where the last isomorphism is a consequence of the canonical isomorphism ‹�
i

‹D(m)

Y ]
i

∼−→ ‹D(m)

Y ]
(see

5.1.5.2.3). This yields a canonical structure of (‹D(m)

X]
, f−1‹D(m)

Y ]
)-bimodule on‹�

i

‹D(m)

X]
i
→Y ]

i

making (‹D(m)

X]
, f−1‹D(m)

Y ]
)-

bilinear the composite isomorphism 5.3.5.10.1.
Similarly, by flatness, the morphism ‹�

i

L‹D(m)

Y ]
i
←X]

i

→ ‹�
i

‹D(m)

Y ]
i
←X]

i

is an isomorphism. Moreover, using

5.1.5.9, we get by functoriality the canonical isomorphism of (f−1 �
i

top
‹D(m)

Y ]
i

, ‹D(m)

X]
)-bimodules‹�

i

‹D(m)

Y ]
i
←X]

i

= ‹�
i

(
ω̃X]

i
⊗BXi f̃

∗
i (‹D(m)

Y ]
i

⊗BYi ω
−1
Yi

)
)

∼−→
5.3.5.2

ωX ⊗BX f̃∗(‹�
i

‹D(m)

Y ]
i

⊗BY ω−1
Y ]

)
∼−→ ‹D(m)

Y ]←X] ,

(5.3.5.10.2)
where the last isomorphism is a consequence of the canonical isomorphism ‹�

i

‹D(m)

Y ]
i

∼−→ ‹D(m)

Y ]
(see

5.1.5.2.3). This yields a canonical structure of (f−1‹D(m)

Y ]
, ‹D(m)

X]
)-bimodule on‹�

i

‹D(m)

Y ]
i
←X]

i

making (f−1‹D(m)

Y ]
, ‹D(m)

X]
)-

bilinear the composite isomorphism 5.3.5.10.2.

Theorem 5.3.5.11. Suppose BXi = OXi and BYi = OYi for any i = 1, . . . , n and suppose Ei ∈
D−qc(∗‹D(m)

X]
i

). The canonical morphism of 5.3.5.9

�
i

L Rfi∗(Ei)→ Rf∗(�
i

LEi). (5.3.5.11.1)

is an isomorphism.

Proof. i) By construction of the morphism 5.3.5.11.1 (i.e. the one making commutative the right rectangle
of 5.3.5.9.2), we reduce to the case where n = 2. We have to check that the composition

pr′∗1 Rf1∗(E1)⊗L
BY pr′∗2 Rf2∗E2 → Rf∗ pr∗1(E1)⊗L

BY Rf∗ pr∗2 E2 → Rf∗(pr∗1(E1)⊗L
BX pr∗2 E2) (5.3.5.11.2)

is an isomorphism.
ii) We reduce to the case where f2 = id as follows. Consider the commutative diagram

X1 X = X1 ×X2

pr2 //pr1oo

g2:=id×f2

��

X2

f2

��
X1

f1

��

Y ′ := X1 × Y2

pr′′2 //pr′′1oo

g1:=f1×id

��

X2

Y1 Y := Y1 × Y2

pr′2 //pr′1oo X2.

(5.3.5.11.3)

By adjointness with respect to the left bottom square of 5.3.5.11.3 (resp. the left top square of 5.3.5.11.3)
we get the morphism pr′∗1 Rf1∗(E1)

adj−→ Rg1∗ pr′′∗1 (E1) and pr′′∗1 (E1) = pr′′∗1 id∗(E1)
adj−→ Rg2∗ pr∗1(E1). By

transitivity, we get that the composition pr′∗1 Rf1∗(E1)
adj−→ Rg1∗ pr′′∗1 (E1)

adj−→ Rg1∗Rg2∗ pr∗1(E1)
∼−→

Rf∗ pr∗1(E1) is the adjoint morphism with respect to the left rectangle of 5.3.5.11.3 (i.e. the com-
posite of both left squares). Similarly, we get by transitivity that the composition pr′∗2 Rf2∗E2

adj−→
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Rg1∗ pr′′∗2 Rf2∗E2
adj−→ Rg1∗Rg2∗ pr∗2 E2

∼−→ Rf∗ pr∗2 E2 is the adjoint morphism. This yields the commuta-
tivity of the top left square of the following diagram:

pr′∗1 Rf1∗(E1)
L
⊗
BY

pr′∗2 Rf2∗E2
adj //

adj

��

Rg1∗ pr′′∗1 (E1)
L
⊗
BY

Rg1∗ pr′′∗2 Rf2∗E2
5.3.5.5.2//

adj

��

Rg1∗

Å
pr′′∗1 (E1)

L
⊗
BY ′

pr′′∗2 Rf2∗E2
ã

adj

��

Rf∗ pr∗1(E1)
L
⊗
BY

Rf∗ pr∗2 E2
∼ //

5.3.5.5.2

��

Rg1∗Rg2∗ pr∗1(E1)
L
⊗
BY

Rg1∗Rg2∗ pr∗2 E2
5.3.5.5.2// Rg1∗

Å
Rg2∗ pr∗1(E1)

L
⊗
BY ′

Rg2∗ pr∗2 E2
ã

5.3.5.5.2

��

Rf∗

Å
pr∗1(E1)

L
⊗
BX

pr∗2 E2
ã

∼ // Rg1∗Rg2∗

Å
pr∗1(E1)

L
⊗
BX

pr∗2 E2
ã

(5.3.5.11.4)
By transitivity of the morphism of the form 5.3.5.5.2, we get the commutativity of the bottom rectangle.
The top right square is commutative by functoriality. Hence, 5.3.5.11.4 is commutative. By stability of
the quasi-coherence under (topological) pushforwards, Rf2∗E2 is quasi-coherent. Hence, the case where
f1 or f2 is the identity implies the general case. By symmetry, we can suppose f2 = id.

iii) Consider the commutative diagram

pr′∗1 Rf1∗(E1)⊗L
BY pr′∗2 Rf2∗E2 //

∼

��

Rf∗ pr∗1(E1)⊗L
BY Rf∗ pr∗2 E2 // Rf∗(pr∗1(E1)⊗L

BX pr∗2 E2)

Rf∗ pr∗1(E1)⊗L
BY pr′∗2 Rf2∗E2

33

Rf∗ pr∗1(E1)⊗L
BY Rf∗ pr∗2 Lf∗2 Rf2∗E2 //

OO

Rf∗(pr∗1(E1)⊗L
BX pr∗2 Lf∗2 Rf2∗E2)

OO

Rf∗ pr∗1(E1)⊗L
BY pr′∗2 Rf2∗E2

id⊗ adj// Rf∗ pr∗1(E1)⊗L
BY Rf∗Lf∗ pr′∗2 Rf2∗E2

5.3.5.5.2//

∼

OO

Rf∗(pr∗1(E1)⊗L
BX Lf∗ pr′∗2 Rf2∗E2)

∼

OO

(5.3.5.11.5)
where the top horizontal morphisms are 5.3.5.11.2, where the left vertical isomorphism is induced
by the base change morphism pr′∗1 Rf1∗(E1) → Rf∗ pr∗1(E1) which is in our case an isomorphism (see
[Har66, II.5.12]), where the trapeze is commutative by construction of the base change isomorphism
pr′∗2 Rf2∗E2

∼−→ Rf∗ pr∗2 E2, where the composition of the bottom horizontal morphisms is the projection
morphism and hence is an isomorphism (see 5.3.5.6). Since f2 = id, then the top middle and right ver-
tical arrows are identity morphisms. Hence, the composition of the top arrows of the diagram 5.3.5.11.5
is an isomorphism.

Notation 5.3.5.12. LetMi ∈ D(r‹D(m)

X]
i

). We denote by Tfi : : Rfi,∗(Mi)→ Rfi,∗(Mi⊗L
D̃(m)

X
]
i

‹D(m)

X]
i
→Y ]

i

) =

f̃
(m)
i,+ (Mi), the morphism induced by the canonical homomorphism ‹D(m)

X]
i

→ ‹D(m)

X]
i
→Y ]

i

(see 4.4.2.6.3).

Theorem 5.3.5.13. For i = 1, . . . , n, let Ei ∈ D−(∗‹D(m)

X]
i

), with ∗ = r or ∗ = l.

(a) We have the canonical homomorphism of D−(∗D(m)

Y ]
):‹�

i

L
f̃

(m)
i+ (Ei)→ f̃

(m)
+ (‹�

i

L
Ei) (5.3.5.13.1)

(b) Suppose BXi = OXi and BYi = OYi for any i = 1, . . . , n and suppose Ei ∈ D−qc(r‹D(m)

X]
i

). The
homomorphism 5.3.5.13.1 is therefore an isomorphism making commutative the canonical diagram

�
i

L
top(Rfi∗Ei) //

��

�
i

LRfi∗(Ei)

5.3.5.11.1��

�
i

LTfi

5.3.5.12
// �
i

Lf̃
(m)
i+ (Ei)
∼��

Rf∗(�
i

L
topEi) // Rf∗(�

i

LEi)
Tf

5.3.5.12
// f̃ (m)

+ (�
i

LEi).

(5.3.5.13.2)
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Proof. 0) To get 5.3.5.13.1, since the case where ∗ = l is a consequence of the case suppose ∗ = r we can
prove the whole theorem in the case where ∗ = r.

I) 1) We have the morphisms of D−(r �
i

top
‹D(m)

Y ]
i

):

L
�
i

topRfi∗(Ei ⊗L
D̃(m)

X
]
i

‹D(m)

X]
i
→Y ]

i

) −→
5.3.5.9.a

Rf∗‹�
i

L
top(Ei ⊗L

D̃(m)

X
]
i

‹D(m)

X]
i
→Y ]

i

)
∼−→

5.1.5.7.2
Rf∗

(‹�
i

L
topEi ⊗L

�
i

topD̃(m)

X
]
i

�
i

top
‹D(m)

X]
i
→Y ]

i

)

→ Rf∗

Ñ‹�
i

L
Ei ⊗L

�̃
i
D̃(m)

X
]
i

‹�
i

‹D(m)

X]
i
→Y ]

i

é
∼−→

5.3.5.10.1
Rf∗

Å‹�
i

L
Ei ⊗L

D̃(m)

X]

‹D(m)

X]→Y ]

ã
= f

(m)
+ (‹�

i

L
Ei)

Since f (m)
+ (‹�

i

L
Ei) ∈ D−(rD(m)

Y ]
), this yields the morphism of D−(rD(m)

Y ]
):‹�

i

L
f̃

(m)
i+ (Ei) = ‹D(m)

Y ⊗
�
i

topD̃(m)

Y
]
i

L
�
i

topRfi∗(Ei ⊗L
D̃(m)

X
]
i

‹D(m)

X]
i
→Y ]

i

)→ f̃
(m)
+ (‹�

i

L
Ei). (5.3.5.13.3)

Since the left square is commutative (see 5.3.5.9.1), to check the commutativity of the diagram 5.3.5.13.2,
we notice it is enough to check the commutativity of the outer. This latter fact is easy.

II) It remains to check the morphism const ructed at the step I.1) is an isomorphism. Using [Har66,
I.7.1.(i)], we reduce to the case where Ei is a quasi-coherent ‹D(m)

X]
i

-module. We remark that such a Ei is

a quotient of a ‹D(m)

X]
i

-module of the form Li ⊗OXi D
(m)

X]
i

, where Li is a quasi-coherent OXi-module (e.g.

take Li = Ei). Since both functors of 5.3.5.13.2 are way-out right, using [Har66, I.7.1.(iv)] we reduce to
the case where Ei = Li ⊗OXi D

(m)

X]
i

.

3) To simplify notation, put
L
�
top

:=
L
�
i

top, Mi := D(m)

X]
i
→Y ]

i

, Di := D(m)

X]
i

, OXi := Oi, D′i := D(m)

Y ]
i

,

O′i := OYi . Since �
i

topf−1
i D

(m)

Y ]
i

= f−1 �
i

top D(m)

Y ]
i

, we get the the following diagram in the category

D−(f−1 �
i

top D(m)

Y ]
i

,OX):

L
�
top

(
(Li ⊗Oi Di)⊗L

DiMi

)
∼
��

∼
5.1.5.7.2

//
L
�
top

(Li ⊗Oi Di)⊗L
�
top
Di �

top
Mi

∼
5.1.5.7.1

// (
L
�
top
Li ⊗�

top
Oi �

top
Di)⊗L

�
top
Di �

top
Mi

∼
��

L
�
top

(Li ⊗OiMi)
∼

5.1.5.7.1
//

��

�
top
Li ⊗�

top
Oi

L
�
top
Mi

��
L
�
i
(Li ⊗OiMi)

∼
5.1.5.8.2

// �
i
Li ⊗�

i
Oi

L
�
i
Mi.

(5.3.5.13.4)
Using 5.1.5.8.1, we get the commutativity of the bottom rectangle. The commutativity of the top
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rectangle is straightforward. Consider now the following diagram:

L
�
top

(Li ⊗Oi Di)⊗L
�
top
Di �

top
Mi

//

∼5.1.5.7.1

��

L
�
i
(Li ⊗Oi Di)⊗L

�
top
Di �

top
Mi

∼5.1.5.8.2

��

//
L
�
i
(Li ⊗Oi Di)⊗L

�
i
Di �i
Mi

∼
��

(�
top
Li ⊗�

top
Oi

L
�
top
Di)⊗L

�
top
Di �

top
Mi

//

∼
��

(�
i
Li ⊗�

i
Oi

L
�
i
Di)⊗L

�
top
Di �

top
Mi

// (�
i
Li ⊗�

i
Oi

L
�
i
Di)⊗L

�
i
Di �i
Mi

∼
��

�
top
Li ⊗�

top
Oi

L
�
top
Mi

// �
i
Li ⊗�

i
Oi

L
�
i
Mi.

(5.3.5.13.5)
The left top square is commutative because of that of 5.1.5.8.1. The right top square is commutative by
functoriality. Taking OXi -flat resolutions of Li, we check the commutativity of the bottom rectangle.

Compositing both diagrams 5.3.5.13.4 and 5.3.5.13.5, we get the commutative diagram

L
�
top

(
(Li ⊗Oi Di)⊗L

DiMi

)
∼
��

//
L
�
i
(Li ⊗Oi Di)⊗L

�
i
Di �i
Mi

∼
��

L
�
top

(Li ⊗OiMi)

��

(�
i
Li ⊗�

i
Oi

L
�
i
Di)⊗L

�
i
Di �i
Mi

∼
��

L
�
i
(Li ⊗OiMi)

∼
5.1.5.8.2

// �
i
Li ⊗�

i
Oi

L
�
i
Mi,

(5.3.5.13.6)

where the top arrow is the composite of the left top horizontal arrow of 5.3.5.13.4 with top horizontal
arrows of 5.3.5.13.5. We get from the commutativity of 5.3.5.13.6 that of the right rectangle of the
diagram 5.3.5.13.7 below:

L
�
i
f
(m)
i+ (Ei) // f (m)

+ (
L
�
i
Ei)

L
�
top

Rfi∗((Li ⊗
Oi
Di)

L
⊗
Di
Mi) ⊗

�
top
D′
i

D′5.3.5.9.a//

∼

��

Rf∗
L
�
top

Å
(Li ⊗

Oi
Di)

L
⊗
Di
Mi

ã
⊗

�
top
D′
i

D′

∼

��

// Rf∗

Ñ
L
�
i
(Li ⊗

Oi
Di) ⊗L

�
i
Di

�
i
Mi

é
∼

��

∼ 5.3.5.10.1

OO

L
�
top

Rfi∗(Li ⊗
Oi
Mi) ⊗

�
top
D′
i

D′ 5.3.5.9.a // Rf∗
L
�
top

(Li ⊗
Oi
Mi) ⊗

�
top
D′
i

D′

∼

��

Rf∗

Ñ
(�
i
Li ⊗

�
i
Oi

L
�
i
Di) ⊗L

�
i
Di

�
i
Mi

é
∼

��
L
�
i
Rfi∗(Li ⊗

Oi
Mi)

5.3.5.9.b //

∼

OO

Rf∗
L
�
i

(Li ⊗
Oi
Mi)

∼ // Rf∗(�
i
Li ⊗

�
i
Oi

L
�
i
Mi).

(5.3.5.13.7)
The commutativity of the top rectangle is by construction of the top arrow (see 5.3.5.13.3). The commu-
tativity of the top square is checked by functoriality. Using the commutativity of the diagram 5.3.5.9.1,
we obtain the commutativity of the bottom square of 5.3.5.13.7. Hence, the diagram 5.3.5.13.7 is com-
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mutative. Following Theorem 5.3.5.11, the left bottom morphism is an isomorphism. Hence, using the
commutativity of the diagram 5.3.5.13.7, this yields that the top morphism is an isomorphism.

5.3.6 Base change in the projection case
We keep notation 5.3.5 and we suppose n = 2 and f2 is the identity.

Proposition 5.3.6.1. For any E1 ∈ Db
qc(D(m)

X1
), we have the canonical isomorphism pr

′(m)!
1 ◦f (m)

1,+ (E1)
∼−→

f
(m)
+ ◦ pr(m)!

1 (E1) of Db
qc(D(m)

Y ) making commutative the diagram

pr′∗1 ◦ Rf1,∗(E1)
∼ //

��

Rf∗ ◦ pr∗1(E1)

��
pr′∗1 ◦ f

(m)
1,+ (E1)

∼ // f (m)
+ ◦ pr∗1(E1),

(5.3.6.1.1)

where the top isomorphism is the usual base change isomorphism.

Proof. This is an easy consequence of Theorem 5.3.5.13. Indeed, with notation 5.3.5.1, recall pr(m)!
1 =

pr∗1 [dimT ], pr′(m)!
1 = pr′∗1 [dimT ]. Next, consider the following diagram

pr′∗1 ◦ Rf1,∗(E1)
∼ // pr′∗1 Rf1∗(E1)⊗L

OY pr
′∗
2 OT // Rf∗(pr∗1(E1)⊗L

OX pr
∗
2OT )

∼ // Rf∗ ◦ pr∗1(E1)

pr′∗1 ◦ Rf1,∗(E1)
∼ //

��

Rf1,∗(E1)
L
�OT

5.3.5.11.1
∼

//

��

Rf∗(E1
L
�OT )

∼ //

��

Rf∗ ◦ pr∗1(E1)

��
pr′∗1 ◦ f

(m)
1,+ (E1)

∼ // f (m)
1,+ (E1)

L
�OT

∼
5.3.5.13

// f (m)
+ (E1

L
�OT )

∼ // f (m)
+ (pr∗1(E1))

(5.3.6.1.2)
Following 5.3.5.13, the middle square (of the bottom) is commutative. The left and right squares are
commutative by functoriality. By compositing the bottom isomorphisms, we get pr∗1 ◦ f

(m)
1,+ (E1)

∼−→
f

(m)
+ ◦ pr∗1(E1). It remains to check that the composition of the top isomorphisms is the base change
isomorphism.

Consider the commutative diagram

pr′∗1 ◦ Rf1,∗(E1)
∼ //

∼
��

pr′∗1 Rf1∗(E1)⊗L
OY pr

′∗
2 OT

∼ //

∼
��

Rf∗(pr∗1(E1)⊗L
OX pr

∗
2OT )

∼ // Rf∗pr∗1(E1)

Rf∗pr∗1(E1)
∼ // Rf∗pr∗1(E1)⊗L

OY pr
′∗
2 OT

5.3.5.5.3// Rf∗(pr∗1(E1)⊗L
OX Lf∗pr′∗2 OT )

∼

OO

∼ // Rf∗pr∗1(E1),

(5.3.6.1.3)
where the middle square is commutative (this is the outer of the diagram 5.3.5.11.5), the top arrows are
the same as that of 5.3.6.1.2, where the right and left squares are commutative by functoriality. Using
5.3.5.5.5, we get that the composition of the bottom morphisms is the identity. Hence we are done.

Notation 5.3.6.2. Let g : Z → T be a smooth morphism of S-schemes. As for [Har66, III.2], we define
a functor g] : D(OT )→ D(OZ) by g](M) := g∗(M)⊗OT ωZ/T [dZ/T ]. We remark that ifM∈ Db

qc(D(m)
T )

then g](M)
∼−→ g(m)!(M).

Proposition 5.3.6.3. We keep notation 5.3.6.2.

(a) For anyM1 ∈ Db
qc(OX1), we have the isomorphism

pr′]1 ◦ Rf1,∗(M1)
∼−→ Rf∗ ◦ pr]1(M1) (5.3.6.3.1)

of Db
qc(OY ) canonically induced by the usual base change isomorphism.
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(b) For any M1 ∈ Db
qc(rD(m)

X1
), we have the isomorphism the canonical pr′(m)!

1 ◦ f (m)
1,+ (M1)

∼−→ f
(m)
+ ◦

pr
(m)!
1 (M1) of Db

qc(rD(m)
Y ) making commutative the diagram

pr′]1 ◦ Rf1,∗(M1)
∼

5.3.6.3.1
//

��

Rf∗ ◦ pr]1(M1)

��
pr
′(m)!
1 ◦ f (m)

1,+ (M1)
∼ // f (m)

+ ◦ pr(m)!
1 (M1).

(5.3.6.3.2)

Proof. Again, this is an easy consequence of Theorem 5.3.5.13. Indeed, with notation 5.3.5.1, since
pr′∗2 ωT

∼−→ ωY/T and pr∗2ωT
∼−→ ωX/T , we get the commutative diagram

pr′]1 ◦ Rf1,∗(M1)
∼ // pr′∗1 Rf1∗(M1)⊗L

OY pr
′∗
2 ωT [dT ]

∼
5.3.5.11.2

// Rf∗(pr∗1(M1)⊗L
OX pr

∗
2ωT )[dT ]

∼ // Rf∗ ◦ pr]1(M1)

pr′]1 ◦ Rf1,∗(M1)
∼ //

��

Rf1,∗(M1)
L
� ωT [dT ]

5.3.5.11.1
∼

//

��

Rf∗(M1

L
� ωT )[dT ]

∼ //

��

Rf∗ ◦ pr]1(M1)

��
pr
′(m)!
1 ◦ f (m)

1,+ (M1)
∼ // f (m)

1,+ (M1)
L
� ωT [dT ]

∼
5.3.5.13

// f (m)
+ (M1

L
� ωT )[dT ]

∼ // f (m)
+ (pr

(m)!
1 (M1)).

(5.3.6.3.3)
The commutative diagram 5.3.6.3.2 corresponds to the outer of 5.3.6.3.3.

5.3.7 Trace map, relative duality isomorphism, adjunction for proper mor-
phisms

We just review in this subsection the results of [Vir00], [Vir04] concerning Virrion’s relative duality
isomorphism and its related properties.

Let S be a smooth scheme on Spec(V/mi+1) for some integer i ∈ N or a regular scheme over Spec Z(p).
We assume that S is Noetherian and of finite Krull dimension. Let f : X → Y be a proper morphism of
smooth S schemes.

Notation 5.3.7.1. We get a locally free OX -module by setting

HkX/S := lim−→
n≥0

HomOX (PnX/S,(m)(k),OX).

where PnX/S,(m)(k) is the partial divided power envelope of level m and order n defined by the closed
immersion X ↪→ Xk+1/S.

The Čech-Alexander complex was mentioned in [Grot68, 6.2]; [Ber74, V, 1.2.3] ; [BO78, 5.29] ; [Vir04,
p.1048]. Virrion proved this arithmetic analogue:

Theorem 5.3.7.2 (Čech-Alexander resolution). The following properties hold.

(a) The complex D(m)
X/S ⊗OX H

•
X/S is a left resolution of OX as a left D(m)

X/S-module.

(b) Let F be a right D(m)
X/S-module. Then the Čech-Alexander complex ČA∗(F) defined by

ČA∗(F)k := F ⊗OX HkX/S ⊗OX D
(m)
X/S

is a canonical left resolution of F by induced right D(m)
X/S-modules.

(c) Let F• be a bounded above complex of right D(m)
X/S-modules. Then ČA∗(F•) is a resolution of F• by

induced right D(m)
X/S-modules.

295



Sketch of the proof. The part (a) is the result of a study of the OX -linear dual of the Čech-Alexander
complex of the linearization of OX - see [Vir04] pp. 1047-1061. The implications (a) ⇒ (b) ⇒ (c) are
much easier and can be checked as an exercice. The reader can found a complete proof at [Vir04, II.2.4,
II.2.5, II.3.2, II.3.4.1].

5.3.7.3 (Trace map). The Grothendieck-Hartshorne duality theory of [Har66] then provides an OY -linear
trace morphism:

Trf : Rf∗(ωX/S [dX/S ])→ ωY/S [dY/S ]. (5.3.7.3.1)

The D(m)
X/S-linear canonical map D(m)

X/S → D
(m)
X→Y/S induces

Rf∗(ωX/S [dX/S ])→ Rf∗(ωX/S [dX/S ]⊗L
D(m)

X/S

D(m)
X→Y/S) = f+(ωX/S [dX/S ]). (5.3.7.3.2)

Let K•X/S be the Cousin complex of ωX/S [dX/S ] (see [Har66, IV.§2,3]), which is a resolution of

ωX/S [dX/S ] by injective right D(m)
X/S-modules. Hence, using 5.3.7.2 , we get the isomorphisms:

R∗(ωX/S [dX/S ])
∼−→ Rf∗(ČA

∗(K•X/S))
∼−→ f∗(K•Y/S ⊗OY H

•
Y/S ⊗OY D

(m)
Y/S)

f+(ωX/S [dX/S ])
∼−→ Rf∗(ČA

∗(K•X/S)⊗L
D(m)

X/S

D(m)
X→Y/S)

∼−→ f∗(K•X/S ⊗OX H
•
X/S ⊗OX D

(m)
X→Y/S)

ωY/S [dY/S ]
∼−→ ČA∗(K•Y/S) = K•Y/S ⊗OY H

•
Y/S ⊗OY D

(m)
Y/S .

Virrion constructs in ([Vir04, pp. 1074-1090]) the following horizontal morphism

f∗(K•X/S ⊗OX H
•
X/S ⊗OX D

(m)
X→Y/S) // K•Y/S ⊗OY H

•
Y/S ⊗OY D

(m)
Y/S

f∗(K•X/S ⊗OX H
•
X/S ⊗OX D

(m)
X/S)

OO 33

where the oblique arrow is induced by the map f∗(K•X/S)→ K•Y/S which appears in the construction of

5.3.7.3.1, where the vertical arrow is induced by functoriality from D(m)
X/S → D

(m)
X→Y/S , making commu-

tative the diagram. This yields the construction of

Tr+,f : f+(ωX/S [dX/S ])→ ωY/S [dY/S ] (5.3.7.3.3)

making commutative the diagram

f+(ωX/S [dX/S ]
Tr+,f // ωY/S [dY/S ]

Rf∗(ωX/S)[dX/S ].

5.3.7.3.2

OO
Trf

5.3.7.3.1

66
(5.3.7.3.4)

Theorem 5.3.7.4 (Virrion). Let ∗ ∈ {l, r}. Let E ∈ Db
coh(∗D(m)

X/S). We have in Db
coh(D(m)

Y/S) the canonical
isomorphism

χ : f
(m)
+ ◦ D(m)

X (E)
∼−→ D(m)

Y ◦ f (m)
+ (E) (5.3.7.4.1)

satisfying the transitivity condition for the composition of two proper morphisms.

Proof. 1) Using the trace map, we construct the morphism 5.3.7.4.1 as follows: We can suppose ∗ = r.
We construct the composite morphism:

f
(m)
+ ◦ DX(E)

∼−→ Rf∗

Å
RHomD(m)

X/S

(E , ωX ⊗OX D
(m)
X/S)⊗L

D(m)

X/S

D(m)
X→Y

ã
[dX ]

∼−→
4.6.3.6.1

Rf∗RHomD(m)

X/S

(E , ωX ⊗OX D
(m)
X→Y )[dX ]

→ Rf∗RHomf−1D(m)

Y

(E ⊗L
D(m)

X

D(m)
X→Y , (ωX ⊗OX D

(m)
X→Y )⊗L

D(m)

X

D(m)
X→Y )[dX ]

−→
4.6.5.7.1

RHomD(m)

Y

(
Rf∗(E ⊗L

D(m)

X

D(m)
X→Y ),Rf∗

(
(ωX ⊗OX D

(m)
X→Y )⊗L

D(m)

X

D(m)
X→Y

))
[dX ]. (5.3.7.4.2)
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By using flat resolutions, it follows by functoriality from 4.2.6.1.1 that we have the isomorphism of
complexes of right D(m)

X -bimodules:

Rf∗
(

(ωX ⊗OX D
(m)
X→Y )⊗L

D(m)

X

D(m)
X→Y

)
∼−→ Rf∗

(
ωX ⊗L

D(m)

X

(D(m)
X→Y ⊗O(m)

X

D(m)
X→Y )

)
. (5.3.7.4.3)

We have the isomorphism of left D(m)
X ⊗OS f−1(D(m)

X )op ⊗OS f−1(D(m)
X )op-modules

D(m)
X→Y ⊗OX D

(m)
X→Y

∼−→ f∗l (D(m)
Y ⊗l,l

OY D
(m)
Y )

∼←−
γ

f∗l (D(m)
Y ⊗r,l

OY D
(m)
Y )

∼−→ D(m)
X→Y ⊗f−1OY f

−1D(m)
Y , (5.3.7.4.4)

where D(m)
Y ⊗l,l

OY D
(m)
Y is a left, right, right D(m)

Y -trimodule whose left D(m)
Y -module structure comes from

the tensor product structure given by the left D(m)
Y -module structure of both D(m)

Y and whose the two
structures of right D(m)

Y -modules are induced by functoriality (the ‘second” one is given by D(m)
Y at the

right by convention), where D(m)
Y ⊗r,l

OY D
(m)
Y is a left, right, right D(m)

Y -trimodules whose second right
D(m)
Y -module structure comes from the right (resp. left) D(m)

Y -module structure of the left (resp. right)
term D(m)

Y (and the two other D(m)
Y -modules structures are obtained by functoriality) and where γ is the

transposition isomorphism of D(m)
Y (see 4.2.5.1.1). This yields

Rf∗
(
ωX ⊗L

D(m)

X

(D(m)
X→Y ⊗O(m)

X

D(m)
X→Y )

)
∼−→ Rf∗

(
(ωX ⊗L

D(m)

X

D(m)
X→Y )⊗f−1OY f

−1D(m)
Y

)
. (5.3.7.4.5)

By applying the projection isomorphism 7.5.7.3, we get

Rf∗
(

(ωX ⊗L
D(m)

X

D(m)
X→Y )⊗f−1OY f

−1D(m)
Y )

)
∼−→ Rf∗

(
ωX ⊗L

D(m)

X

D(m)
X→Y

)
⊗OY D

(m)
Y . (5.3.7.4.6)

By applying the functor (−⊗OY D
(m)
Y ) to the trace map 5.3.7.3.3, we get

Rf∗
(
ωX ⊗L

D(m)

X

D(m)
X→Y

)
⊗OY D

(m)
Y → ωY ⊗OY D

(m)
Y [−dX/Y ] (5.3.7.4.7)

By composing 5.3.7.4.3, 5.3.7.4.5, 5.3.7.4.6, 5.3.7.4.7, we get

Rf∗
(

(ωX ⊗O(m)

X

D(m)
X→Y )⊗L

D(m)

X

D(m)
X→Y

)
→ ωY ⊗OY D

(m)
Y [−dX/Y ]. (5.3.7.4.8)

By applying the functor RHomD(m)

Y

(Rf∗(E ⊗L
D(m)

X

D(m)
X→Y ),−) to 5.3.7.4.8 and composing it to 5.3.7.4.2,

we get the first morphism:

f
(m)
+ ◦ DX(E)→ RHomD(m)

Y

(Rf∗(E ⊗L
D(m)

X

D(m)
X→Y ), ωY ⊗OY DY )[dX ]

∼−→ DY ◦ f (m)
+ (E). (5.3.7.4.9)

2) Let us now sketch the fact that is an isomorphism. By applying base change we can reduce to the
case when S is a regular scheme. By using [Har66, I.7.1.(i)], we reduce to the case where E is a coherent
D(m)
X/S-module. And then because both functors f (m)

+ ◦D(m)
X and D(m)

Y ◦ f (m)
+ are way-out right, since any

coherent D(m)
X/S-module is a quotient of a D(m)

X/S-module of the form L ⊗OX D
(m)
X/S , where L is a locally

free OX -module of finite type, then following [Har66, I.7.1.(iv)] we reduce to check χ is an isomorphism
for such a module. For such an induced module, using the duality for coherent OX -modules as given in
[Har66, VII, (3.4,)c], Virrion constructed an isomorphism χ′ (see [Vir04, IV.2.2.4]). The equality χ = χ′

and is a consequence of the commutativity of 5.3.7.3.4: see [Vir04, IV.2.2.5].

Corollary 5.3.7.5 (Virrion). Let E ∈ Db
coh(D(m)

X/S), and F ∈ Db
coh(D(m)

Y/S). We have the isomorphisms

RHomD(m)

Y/S

(f
(m)
+ (E),F)

∼−→ Rf∗RHomD(m)

X/S

(E , f (m)!(F)). (5.3.7.5.1)

RHomD(m)

Y/S

(f
(m)
+ (E),F)

∼−→ RHomD(m)

X/S

(E , f (m)!(F)). (5.3.7.5.2)
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Proof. Since we have Db
coh(D(m)

Y/S) = Db
perf(D

(m)
Y/S), then using 4.6.3.6.1, we get the canonical isomorphism:

RHomD(m)

Y/S

(f
(m)
+ (E),F)

∼−→ (ωY ⊗OY F)⊗L
D(m)

Y/S

RHomD(m)

Y/S

Ä
f

(m)
+ (E),D(m)

Y/S ⊗OY ω
−1
Y

ä
.

Via 5.3.7.4, this yields by composition the isomorphism

RHomD(m)

Y/S

(f
(m)
+ (E),F)

∼−→ (ωY ⊗OY F)⊗L
D(m)

Y/S

f
(m)
+ (DX(E)) [−dY ]. (5.3.7.5.3)

Via the projection formula of 5.1.2.5.1, the right term of 5.3.7.5.3 is isomorphic to

Rf∗

Å
f−1 (ωY ⊗OY F)⊗L

f−1D(m)

Y/S

D(m)
Y←X ⊗

L
D(m)

X/S

DX(E)

ã
[−dY ]. (5.3.7.5.4)

Using the isomorphisms
Å
f−1 (ωY ⊗OY F)⊗L

f−1D(m)

Y/S

D(m)
Y←X

ã
⊗OX ω−1

X [df ]
∼−→

5.1.1.5.1
f (m)!(F) and ωX⊗OX

DX(E)[−dX ]
∼−→ RHomD(m)

X/S

(E ,D(m)
X/S), the term of 5.3.7.5.4 is isomorphic to

Rf∗

Å
RHomD(m)

X/S

(E ,D(m)
X/S)⊗L

D(m)

X/S

f (m)!(F)

ã
∼−→

4.6.3.6.1
Rf∗

Å
RHomD(m)

X/S

(E , f (m)!(F)

ã
.

5.3.8 Trace map, relative duality isomorphism and adjunction for projective
morphisms

We have seen at 5.3.7 that following Virrion proved the relative duality isomorphism and the adjoint
pair (f+, f

!) for a proper morphism f . The key point is to construct a trace map which is compatible
with that of Grothendieck for coherent O-modules (i.e. we have a commutative diagram of the form
5.3.8.3.2). In general, this key point is highly technical and corresponds to the hard part of the proof
of a relative duality isomorphism (see [Vir04]). In this subsection, we show how this is much easier to
construct such a trace map in the case of projective morphisms by using base change in the projection
case and by using the case of a closed immersion (see 5.2.6.6).

We keep notation 5.3.5 and we suppose n = 2, log structures are trivial (so we remove ] in the
notation), f2 is the identity, X1 = PdY1

, f1 : PdY1
→ Y1 is the canonical projection. We set T := X2 = Y2.

Lemma 5.3.8.1. For any N1 ∈ Db
qc(OY1), we have the commutative diagram (see notation 5.3.6.2)

pr′]1 ◦ Rf1,∗ ◦ f ]1(N1)
∼

5.3.6.3.1
//

Trf1
��

Rf∗ ◦ pr]1 ◦ f
]
1(N1)

∼ // Rf∗ ◦ f ] ◦ pr′]1 (N1)

Trf

��
pr′]1 (N1) pr′]1 (N1).

(5.3.8.1.1)

Proof. Following the commutativity of the diagram 5.3.5.11.5, since ωY/Y1

∼−→ pr′∗2 ωT and ωX/X1

∼−→
pr∗2ωT the isomorphism pr′]1 ◦Rf1,∗ ◦ f ]1(N1)

∼−→
5.3.6.3.1

Rf∗ ◦ pr]1 ◦ f
]
1(N1) is given by the composition of the
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left vertical arrows of the diagram below:

pr′]1 ◦ Rf1,∗ ◦ f ]1(N1)

∼
��

Trf1 // pr′]1 (N1)

∼
��

pr′∗1 Rf1∗f
]
1(N1)⊗L

OY pr
′∗
2 ωT [dT ]

Trf1⊗id
//

∼
��

pr′∗1 (N1)⊗L
OY pr

′∗
2 ωT [dT ]

Rf∗pr∗1f
]
1(N1)⊗L

OY pr
′∗
2 ωT [dT ]

∼ //

∼
��

Rf∗f ]pr′∗1 (N1)⊗L
OY pr

′∗
2 ωT [dT ]

Trf⊗id

OO

Trf⊗id //

∼
��

pr′∗1 (N1)⊗L
OY pr

′∗
2 ωT [dT ]

Rf∗(pr∗1f
]
1(N1)⊗L

OY f
∗pr′∗2 ωT )[dT ]

∼ //

∼
��

Rf∗(f ]pr′∗1 (N1)⊗L
OY f

∗pr′∗2 ωT )[dT ]

∼
��

∼ // Rf∗f ](pr′∗1 (N1)⊗L
OY pr

′∗
2 ωT )[dT ]

Trf

OO

∼

��

Rf∗(pr∗1f
]
1(N1)⊗L

OY pr
∗
2ωT )[dT ]

∼ //

∼
��

Rf∗(f ]pr′∗1 (N1)⊗L
OY pr

∗
2ωT )[dT ]

Rf∗ ◦ pr]1 ◦ f
]
1(N1)

∼ // Rf∗ ◦ f ] ◦ pr′]1 (N1)

Following [Har66, III.10.5.Tra 4)], the square of the second row is commutative. Following [Har66,
III.4.4], the right square of the third line is commutative. The commutativity of the other squares, of
the triangle or trapeze are obvious. Hence, we are done.

Proposition 5.3.8.2. Let N1 ∈ Db
qc(rD(m)

Y1
). Suppose we have the canonical morphism Tr+,f1

: f
(m)
1,+ ◦

f
(m)!
1 (N1)→ N1 of Db

qc(rD(m)
Y1

) making commutative the diagram

Rf1,∗ ◦ f ]1(N1)

��

Trf1 // N1

f
(m)
1,+ ◦ f

(m)!
1 (N1).

Tr+,f1

88 (5.3.8.2.1)

Then, there exists a canonical morphism Tr+,f : f
(m)
+ ◦f (m)!◦pr′(m)!

1 (N1)→ pr
′(m)!
1 (N1) of Db

qc(rD(m)
Y )

making commutative the diagram

Rf∗ ◦ f ] ◦ pr′]1 (N1)
Trf //

��

pr′]1 (N1)

∼
��

f
(m)
+ ◦ f (m)! ◦ pr′(m)!

1 (N1)
Tr+,f // pr′(m)!

1 (N1).

(5.3.8.2.2)

Proof. By definition, we define the morphism Tr+,f : f
(m)
+ ◦ f (m)! ◦ pr′(m)!

1 (N1) → pr
′(m)!
1 (N1) to be the

one making commutative the bottom of the diagram:

pr′]1 ◦ Rf1,∗ ◦ f ]1(N1)
∼

5.3.6.3.1
//

��

Trf1

,,
Rf∗ ◦ pr]1 ◦ f

]
1(N1)

��

∼ // Rf∗ ◦ f ] ◦ pr′]1 (N1)
Trf //

��

pr′]1 (N1)

∼
��

pr
′(m)!
1 ◦ f (m)

1,+ ◦ f
(m)!
1 (N1)

∼ //

Tr+,f1

22f
(m)
+ ◦ pr(m)!

1 ◦ f (m)!
1 (N1)

∼ // f (m)
+ ◦ f (m)! ◦ pr′(m)!

1 (N1)
Tr+,f // pr′(m)!

1 (N1).

(5.3.8.2.3)
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Following 5.3.8.1.1, the top of the diagram 5.3.8.2.3 is commutative. From the commutativity of 5.3.8.2.1,
we get the commutativity of the outer of 5.3.8.2.3. From the commutative diagram 5.3.6.3.2, we get the
commutativity of the left square of 5.3.8.2.3. The commutativity of the middle square of 5.3.8.2.3 is easy.
This yields that the right square of 5.3.8.2.3 is indeed commutative.

5.3.8.3. Suppose Y1 = S, X1 = PdS , f1 : PdS → S is the canonical projection and N1 = OS ∈
Db

qc(rD(m)
Y1/S

) = Db
qc(OS). We have f (m)!

1 (OS) = f ]1(OS) = ωPd
S
/S [d] and the trace map Trf1

: Rf∗(ωPd
S
/S)[d]→

OS is an isomorphism of Db
qc(OS). The canonical morphism Rf∗(ωPd

S
/S)[d] → f

(m)
1,+ (ωPd

S
/S)[d] is an iso-

morphism after applying the truncation functor τ≥0. Indeed, f
(m)
1,+ (ωPd

S
/S)[d]

∼−→
5.1.3.2.1

f
(m)
1,+ (OPd

S
)[d]

∼−→
6.2.6.2.2

Fm∗
Pd
S0
/S0

f
(0)
1,+(OPd

S
)[d]

∼−→
5.3.2.3.1

Fm∗
Pd
S0
/S0

Rf1∗

(
Ω•

Pd
S
/S

)
[2d]. Hence, we get the morphism Tr+,f1

: f
(m)
1,+ (ωPd

S
/S)[d]→

OS making commutative the diagram

Rf1,∗(ωPd
S
/S)[d]

��

Trf1 // OS

f
(m)
1,+ (ωPd

S
/S)[d].

Tr+,f1

99 (5.3.8.3.1)

Hence, following Proposition 5.3.8.2 and using pr′(m)!
1 (OS) = ωT/S [dT/S ], there exists a canonical mor-

phism
Tr+,f : f

(m)
+ (ωPd

T
/S)[d+ dT/S ]→ ωT/S [dT/S ]

of Db
qc(rD(m)

T/S) making commutative the diagram

Rf∗ ◦ (ωPd
T
/S)[d]

Trf //

��

ωT/S .

f
(m)
+ (ωPd

T
/S)[d]

Tr+,f

88
(5.3.8.3.2)

Corollary 5.3.8.4. Let f : X → Y be a morphism of smooth S-schemes which is the composition of a
closed immersion of the form X ↪→ PdY and of the projection PdY → Y . Let ∗ ∈ {r, l}, E ∈ Db

coh(∗D(m)
X ).

We have the isomorphism of Db
coh(lD(m)

Y ):

D(m) ◦ f (m)
+ (E)

∼−→ f
(m)
+ ◦ D(m)(E). (5.3.8.4.1)

Proof. Following 5.2.6.6, the case of a closed immersion is easily checked. Hence, we reduce to the case
where f is the projection PdY → Y . Using 5.3.8.3.2, to check such an isomorphism, we can copy Virrion’s
proof of 5.3.7.4.
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Chapter 6

Frobenius

6.1 Frobenius descent
Let m ≥ 0 be an integer. Let S be a Z(p)-scheme endowed with quasi-coherent m-PD-ideal (aS , bS , αS)),
X be a smooth S-scheme. We denote by S0 = V (aS) and by X0 := X ×S S0. We suppose also that the
following conditions are satisfied :

(a) p is nilpotent on S (then, thanks to 1.2.4.5.1, |X| = |X0|) ;

(b) p ∈ aS (then we have a Frobenius on X0).

Let s ≥ 0 be a fixed integer, X(s)
0 be the S0-scheme induced from X0 by base change via the sth power

of the absolute Frobenius of T0. We suppose there exists a smooth S-scheme X ′ which is a lifting of
X

(s)
0 (i.e. X ′ ×S S0

∼−→ X
(s)
0 ). We suppose moreover there exists F : X → X ′ an S-morphism lifting

the relative Frobenius S0-morphism F sX0/S0
: X0 → X

(s)
0 . Remark that such lifting exists always Zariski

locally on X. Since F is an homeomorphism, then by abuse of notation we might avoid writing F−1 or
F∗ when no confusion is possible.

Beware that, even locally, this is not clear that there exists a lifting FS : S → S of the absolute
Frobenius F sS0

: S0 → S0.
We suppose given an OX′ -algebra BX′ endowed with a left action of D(m)

X′ compatible with its algebra
structure. We set BX := F ∗BX′ . We will denote by ‹D(m+s)

X/S = BX⊗OXD
(m+s)
X , ‹D(m)

X′/S = BX′⊗OX′D
(m)
X′/S

(we remove /S in the notation if there is no doubt on S). and ‹F the morphism of ringed spaces
(X,BX)→ (X ′,BX′) induced by F .

We denote by pn0 and pn1 : ∆n
X/S(m) → X the left and right projections. Let ‹∆n

X/S(m) be the ringed

space (∆n
X/S(m),O∆̃n

X/S(m)

), with O
∆̃n
X/S(m)

:= pn∗0 (BX). We denote by p̃n0 : ‹∆n
X/S(m) → ‹X] the morphism

induced by the continuous map pn0 and by the morphism of rings canonical (pn0 )−1(BX) → O
∆̃n
X/S(m)

and p̃n1 : ‹∆n
X/S(m) → ‹X] whose morphism of topological spaces is pn1 and whose ring homomorphism is

(pn1 )−1(BX)→ pn∗1 (BX)
∼−→ pn∗0 (BX) = O

∆̃n
X/S(m)

. For any ν ≥ 1, we have similar notation by replacing

respectively S and X by T and Y .

6.1.1 Frobenius descent for left D-modules
Notation 6.1.1.1. Let ν ≥ 1 be an integer. If Y is a S-scheme, we will denote by Y ν+1 = Y ν+1/S, Iν the
ideal of the diagonal ∆Y/S(ν) : Y ↪→ Y ν+1 and (PY/S,(m)(ν), Iν , Ĩν) the m-PD-envelope of Iν , i.e. with
the notation of 1.3.3.5, (PY/S,(m)(ν), Iν , Ĩν) = (Pn(m),γ(∆Y/S(ν)), (I(m),γ(∆Y/S(ν)),J(m),γ(∆Y/S(ν)),[ ] )).
When ν = 1, we simply write (PY/S,(m), I, Ĩ).

We denote by Fν : Xν+1 → X ′ν+1 the morphism F × · · · × F induced by F .
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Notation 6.1.1.2 (Local coordinates). Suppose we have an étale morphism of the form g0 : X0 → AdS0
.

Since (AdS0
)(s) = AdS0

, then we get by definition the right cartesian squares of the diagram

X0

F sX0/S0 //

g0�� �

X
(s)
0

//

g
(s)
0�� �

X0

g0��
AdS0 F s

Ad
S0
/S0

// AdS0

//

�� �

AdS0

��
S0

FS0 // S0.

(6.1.1.2.1)

Since g0 : X0 → AdS0
is étale, then the left square is also cartesian.

Lemma 6.1.1.3. The morphism F : X → X ′ is finite and is locally free of finite type, i.e. F∗OX is a
locally free OX′-module of finite type.

Proof. Since this is local, we come down to the local context of 6.1.1.2. Since F s
Ad
S0
/S0

is locally free of

rank ds, using the cartesian left square of 6.1.1.2.1, then so is F sX0/S0
. Since X/S is flat, then using

[Gro66, 11.3.10], we get that F is flat. By reducing to the case where S is noetherian and therefore aS
is nilpotent, this yields that F is also finite and then F is free of rank ds.

Proposition 6.1.1.4. We have the following properties.

(a) There exists a unique PD-morphism

Φ∗ν : F−1
ν PX′,(m)(ν)→ PX,(m+s)(ν) (6.1.1.4.1)

sending F−1
ν Ĩ ′ν to Ĩν+bIν . This yields the morphism Φν : ∆X,(m+s)(ν)→ ∆X′,(m)(ν). When ν = 1,

we remove ν in the notation.

(b) For any n ∈ N, we have the inclusion

Φ∗ν(F−1
ν I

′{n}(m)

ν ) ⊂ I{n}(m+s)

ν .

Proof. See a proof in [Ber00, 2.2.2]).

Corollary 6.1.1.5. There exists a canonical factorization Φnν : ‹∆n
X/S(m+s)(ν) → ‹∆n

X′/S(m)(ν) making
commutative the following diagram of ringed spaces‹∆n

X/S(m)(ν) //

F̃nν,(m)

��

‹∆n
X/S(m+s)(ν)

Φnνww
F̃nν,(m+s)

��‹∆n
X′/S(m)(ν) // ‹∆n

X′/S(m+s)(ν).

(6.1.1.5.1)

Proof. We have to establish that the canonical morphism ‹F ∗n,(m) : ‹PnX′/T (m) → ‹PnX/T (m) factors through

a morphism ‹PnX′/T (m) → ‹PnX/T (m+s). Following the proposition 6.1.1.4, we have such a factorization

without the tildes. This yields the composition morphism PnX′/T (m) → P
n
X/T (m+s) → ‹PnX/T (m+s). We

get a unique factorization ‹PnX′/T (m) → ‹PnX/T (m+s) which is semi-linear with respect to homomorphism
BX′ → BX = F∗F

∗BX′ .

Proposition 6.1.1.6. Let E ′ be a left ‹D(m)
X′ -module (resp. (‹D(m)

X′ ,D)-bimodule). The sheaf ‹F ∗E ′ is
endowed with a structure of left ‹D(m+s)

X/S -module (resp. (‹D(m+s)
X ,D)-bimodule). Moreover, the canonical

isomorphism ‹F ∗E ′ ∼−→ ‹F ∗‹D(m)
X′ ⊗D̃(m)

X′
E ′ is an isomorphism of left ‹D(m+s)

X/S -modules (resp. (‹D(m+s)
X ,D)-

bimodules).
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Proof. By taking the inverse image by the morphisms ‹∆n
X/S(m+s) → ‹∆n

X′/S(m) (see 6.1.1.5) of the m-
PD-stratification with coefficients in BX′ of E ′, we obtain an (m+ s)-PD-stratification with coefficients
in BX of ‹F ∗E ′. We easily check the cocycle condition holds. The respective case is proved in a similar
way. The ‹D(m+s)

X/S -linearity is easy.

Remark 6.1.1.7. Let E ′ be a left ‹D(m)
X′ -module. Following [Ber00, 2.2.7], F ∗(E ′) is endowed with a

structure of left ‹D(m+s)
X/S -module extending its structure of left D(m+s)

X/S -module. We check, as for 4.4.5.2,

that the isomorphism F ∗(E ′) ∼−→ ‹F ∗(E ′) is ‹D(m+s)
X/S -linear. In the rest of the chapter, we denote simply

by F ∗ instead of ‹F ∗.
Proposition 6.1.1.8. Suppose aS = 0, F = F sX/S, X

′ = X(s) and there exists coordinates t1, . . . , td of

X/S. Denotes by t′1, . . . , t′d the coordinates of X ′/S induced by base change and by ∂′〈k〉(m) and τ ′{k}(m)

the associated elements.

(a) The homomorphism Φ∗ : F−1
ν PX′,(m)(ν)→ PX,(m+s) of 6.1.1.4.1 satisfies for all k ∈ Nd :

(τ ′{k}(m)) = τ{p
sk}(m+s) . (6.1.1.8.1)

(b) For any n ∈ N, we have the inclusion

Φ∗ν(F−1
ν I

′{n}(m)

ν ) ⊂ I{p
sn}(m+s)

ν . (6.1.1.8.2)

(c) Let E ′ be a left ‹D(m)
X′/S-module. The structure of left ‹D(m+s)

X/S -module of F ∗E ′ is characterized by the
relations:

∂〈k〉(m+s)(1⊗ e′) =

®
∂′〈k/p

s〉(m)(e′) if ps divides k
0 otherwise

(6.1.1.8.3)

Proof. See [Ber00, 2.2.4].

Theorem 6.1.1.9 (Berthelot). The functor F ∗ is an equivalence between the category of left (resp.
quasi-coherent) ‹D(m)

X′/S-modules and that of left (resp. quasi-coherent) ‹D(m+s)
X/S -modules.

Proof. A proof can be found in [Ber00, 2.3.6].

6.1.2 Frobenius descent for right D-modules
6.1.2.1. Following 6.1.1.3, F∗OX is an OX′ -module of finite type. Since BX = F ∗BX′ , this yields that
F∗BX is a BX′ -module of finite type. Since F is an homeomorphism, we get a structure of BX′ -module on
F∗BX via F . Since F is supposed to be fixed, we simply write BX instead of F∗BX . For any BX′ -module
M′, this yields the isomorphism‹F [M′ = F−1RHomBX′ (F∗BX ,M

′)
∼−→ F−1HomBX′ (F∗BX ,M

′).

For simplicity, we might remove F−1 and F∗ in the notation.

Proposition 6.1.2.2. LetM′ be a right ‹D(m)
X′ -module (resp. a (D, ‹D(m)

X′ )-bimodule). The sheaf ‹F [M′ is
endowed with a structure of right ‹D(m+s)

X/S -module (resp. a (D, ‹D(m+s)
X )-bimodule). Moreover, the canoni-

cal isomorphism ‹F [M′ ∼−→ M′⊗D̃(m)

X′

‹F [‹D(m)
X′ is an isomorphism of ‹D(m+s)

X/S -modules (resp. (D, ‹D(m+s)
X )-

bimodules).

Proof. Let us check the non-respective case. Following 3.4.3.4,M′ has a structuralm-PD-costratifcation.
By applying ‹F [ and using 6.1.1.5, we get a canonical structure of (m+ s)-PD-costratifcation on ‹F [M′,
i.e. ‹F [M′ is endowed with a structure of right ‹D(m+s)

X/S -module. By functoriality, we get the respective
case from the non-respective case.
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Remark 6.1.2.3. Let M′ be a right ‹D(m)
X′ -module. The module F [(E ′) is endowed with a structure

of right ‹D(m+s)
X/S -module extending its structure of right D(m+s)

X/S -module. We can check similarly that

F [(M′) ∼−→ ‹F [(M′) is ‹D(m+s)
X/S -linear. So we can simply write F [ instead of ‹F [.

Lemma 6.1.2.4. There exists a canonical isomorphism of right DX/S-modules

µX : F [(ωX′/S)
∼−→ ωX/S . (6.1.2.4.1)

Proof. See [Ber00, 2.4.2].

Proposition 6.1.2.5. For any left ‹D(m)
X′/S-module E ′, we have the canonical isomorphism of right ‹D(m+s)

X/S -
modules of the form

ωX/S ⊗OX F ∗(E ′)
∼−→ F [(ωX′/S ⊗OX′ E

′). (6.1.2.5.1)

Proof. See [Ber00, 2.4.3].

This yields the following corollaries (see [Ber00, 2.4.4–5]):

Corollary 6.1.2.6. For any right ‹D(m)
X′/S-module M′, we have the canonical isomorphism of right‹D(m+s)

X/S -modules of the form

F ∗(M′ ⊗OX ω−1
X/S)

∼−→ F [(M′)⊗OX′ ω
−1
X′/S . (6.1.2.6.1)

Theorem 6.1.2.7. The functor F [ is an equivalence between the category of right (resp. quasi-coherent)‹D(m)
X′/S-modules and that of right (resp. quasi-coherent) ‹D(m+s)

X/S -modules.

Proof. This is a consequence of 6.1.1.9 and of 6.1.2.5 and 6.1.2.6 which allows to switch from left to right
D-modules.

6.1.3 Quasi-inverse functor

6.1.3.1. By functoriality, we can check that the functors F ∗ and F [‹D(m)
X′ ⊗D̃(m+s)

X/S

− induce exact

canonically quasi-inverse equivalences between the category of complexes of left ‹D(m)
X′ ⊗OS (‹D(m)

X′ )op-
modules (i.e. (‹D(m)

X′ ,
‹D(m)
X′ )-bimodules) and that of complexes of left ‹D(m)

X′ ⊗OS (‹D(m+s)
X/S )op-modules (i.e.

(‹D(m)
X′ ,

‹D(m+s)
X/S )-bimodules).

Similarly, by functoriality, we can check that the functors F [ and − ⊗D̃(m+s)

X/S

F [‹D(m)
X′ induce exact

canonically quasi-inverse equivalences between the category of complexes of left ‹D(m)
X′ ⊗OS (‹D(m)

X′ )op-
modules (i.e. (‹D(m)

X′ ,
‹D(m)
X′ )-bimodules) and that of complexes of left ‹D(m+s)

X/S ⊗OS (‹D(m)
X′ )op-modules (i.e.

(‹D(m+s)
X/S , ‹D(m)

X′ )-bimodules).

For the convenience of the reader we collect below a number of results whose proofs are given in
[Ber00] section 2.5.

Proposition 6.1.3.2. There exists an isomorphism of ‹D(m+s)
X/S -bimodules of the form

ϑ : ‹D(m+s)
X/S

∼−→ F ∗F [‹D(m)
X′/S . (6.1.3.2.1)

Corollary 6.1.3.3. (a) The ‹D(m+s)
X/S -modules F ∗‹D(m)

X′/S and F [‹D(m)
X′/S are locally projective of finite type

(b) A left (resp. right) ‹D(m)
X′/S-module E ′ (resp. M′) is coherent if and only if F ∗(E ′) (resp. F [M′) is‹D(m+s)

X/S -coherent.

Corollary 6.1.3.4. Let E ′ be a left ‹D(m)
X′/S-module (resp. ‹D(m)

X′/S-bimodule). Let M′ be a right ‹D(m)
X′/S-

module (resp. ‹D(m)
X′/S-bimodule).
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(a) We have the functorial isomorphisms of (complexes of) left ‹D(m)
X′/S-modules (resp. ‹D(m)

X′/S-bimodule):

F [‹D(m)
X′/S ⊗

L
D̃(m+s)

X/S

F ∗E ′ ∼−→ F [‹D(m)
X′/S ⊗D̃(m+s)

X/S

F ∗E ′ ∼−→ E ′. (6.1.3.4.1)

(b) We have the functorial isomorphisms of (complexes of) right ‹D(m)
X′/S-modules (resp. ‹D(m)

X′/S-bimodules):

F [M′ ⊗L
D̃(m+s)

X/S

F ∗‹D(m)
X′/S

∼−→ F [M′ ⊗D̃(m+s)

X/S

F ∗‹D(m)
X′/S

∼−→ M′. (6.1.3.4.2)

(c) The functors F ∗ = F ∗‹D(m)
X′/S ⊗D̃(m)

X′/S
− and F [‹D(m)

X′/S ⊗D̃(m+s)

X/S

− (resp. F [ = −⊗D̃(m)

X′/S
F [‹D(m)

X′/S and

− ⊗D̃(m+s)

X/S

F ∗‹D(m)
X′/S) induce exact quasi-inverse equivalences of categories between the category of

left (resp. right) ‹D(m)
X′/S-modules and of left (resp. right) ‹D(m+s)

X/S -modules.

Remark 6.1.3.5. Let D be a sheaf of rings on the topological space |X ′| = |X|.

(a) It follows by functoriality from 6.1.3.4.(c) that the functors F ∗‹D(m)
X′/S⊗D̃(m)

X′/S
− and F [‹D(m)

X′/S⊗D̃(m+s)

X/S

− (resp. − ⊗D̃(m)

X′/S
F [‹D(m)

X′/S and − ⊗D̃(m+s)

X/S

F ∗‹D(m)
X′/S) induce exact quasi-inverse equivalences of

categories between the category of left (resp. right) (‹D(m)
X′/S ,D)-bimodules and of left (resp. right)

(‹D(m+s)
X/S ,D)-bimodules.

(b) Suppose (‹D(m)
X′/S ,D) and (‹D(m+s)

X/S ,D) are solved by OS (see definition 4.6.3.2). In that case, the

functors F ∗ = F ∗‹D(m)
X′/S ⊗D̃(m)

X′/S
− and F [‹D(m)

X′/S ⊗D̃(m+s)

X/S

− (resp. F [ = − ⊗D̃(m)

X′/S
F [‹D(m)

X′/S and

− ⊗D̃(m+s)

X/S

F ∗‹D(m)
X′/S) induce exact quasi-inverse equivalences of categories between the category of

left (resp. right) ‹D(m)
X′/S ⊗OS D-modules and of left (resp. right) ‹D(m+s)

X/S ⊗OS D-modules. Let

I ′ ∈ K−(l‹D(m)
X′/S ⊗OS D). This yields that if I ′ is a K-injective complex of K−(l‹D(m)

X′/S ⊗OS D) if

and only if F ∗I ′ is a K-injective complex of K−(l‹D(m+s)
X/S ⊗OS D).

Corollary 6.1.3.6. Let E ′ ∈ D−(l‹D(m)
X′/S),M′ ∈ D−(r‹D(m)

X′/S).

(a) A left (resp. right) ‹D(m)
X′/S-module E ′ (resp. M′) is flat if and only if F ∗E ′ (resp. F [M′) is a flat

left (resp. right) ‹D(m+s)
X/S -module.

(b) Let a, b ∈ Z with a ≤ b. The complex E ′ (resp. M′) has tor-amplitude in [a, b] if and only if so is
F ∗E ′ ∈ D−(l‹D(m+s)

X/S ) (resp. F [M′ ∈ D−(r‹D(m+s)
X/S )).

(c) Let f : X → S be the structural morphism. We have the functorial isomorphism in D(f−1OS)

F [M′ ⊗L
D̃(m+s)

X/S

F ∗E ′ ∼−→ M′ ⊗L
D̃(m)

X′/S

E ′. (6.1.3.6.1)

6.1.4 Homological dimension of the sheaf of differential operators of level m
Theorem 6.1.4.1 (Homological dimension). Suppose S is affine and regular, f : X → S is affine.
Suppose the fibers of f : X → S are of dimension d. Let r := supt∈f(X)OT,t. Then for any integer
m ∈ N, the ring D(m)

X/S := Γ(X,D(m)
X/S) has homological global dimension equal to 2d+ r.

Proof. Using the Frobenius descent Theorem 6.1.1.9, we reduce to the case m = 0. Then, this is
4.7.3.16.

Theorem 6.1.4.2 (Montagnon). Let R be a regular noetherian ring of characteristic p, S = SpecR
endowed with the trivial log structure. Let X be an affine smooth S-scheme endowed with the log structure
given by a strict normal crossing divisor D relative to X/S. Then D

(m)
X/S := Γ(X,D(m)

X/S) has finite
homological global dimension.

Proof. A proof can be found at [Mon02, Proposition 5.3.1]). This is based on a sort of Frobenius
descent.
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6.1.5 Glueing isomorphisms and Frobenius
Proposition 6.1.5.1. Suppose aS is m-PD-nilpotent. Suppose there exists a second morphism F ′ : X →
X ′ which is a lifting of F sX0/S0

.

(a) Let E ′ be a left ‹D(m)
X′/S-module. Then the glueing isomorphism τF,F ′ : F

∗(E ′) ∼−→ F ′∗(E ′) defined in

4.4.5.3.1 is ‹D(m+s)
X/S -linear.

(b) LetM′ be a right ‹D(m)
X′/S-module. Then the glueing isomorphism σF,F ′ : F

[(M′) ∼−→ F ′[(M′) defined
in 4.4.5.3.2 is ‹D(m+s)

X/S -linear.

Proof. We can copy the proof of [Ber00, 2.2.5] (replace D by ‹D for the first statement, the second one
replace moreover the symbole ∗ by [).

Corollary 6.1.5.2. Let S → T be an m-PD-morphism of schemes endowed with m-PD-nilpotent and
quasi-coherent m-PD-ideals satisfying the hypotheses (a) and (b) of 6.1, X0 (resp. Y0) a smooth S0-
scheme (resp. smooth T0-scheme), f0 : X0 → Y0 a T0-morphism, X (resp. Y ′) a smooth S-scheme (resp.
smooth T -scheme) lifting X0 (resp. Y (s)

0 ).

(a) The functor (F sY0/T0
◦f0)∗ = (f

(s)
0 ◦F sX0/S0

)∗ defined in 4.4.5.10 is canonically equal (up to canonical

isomorphism) to the composition of a functor from the category of left D(m)
Y ′/T -modules to that of left

D(m+s)
X/S -modules with the restriction functor from the category of the left D(m+s)

X/S -modules to that of

left D(m)
X/S-modules. We still denote by (F sY0/T0

◦ f0)∗ = (f
(s)
0 ◦ F sX0/S0

)∗ this factorization.

(b) This isomorphism is compatible with the composition: suppose given a second m-PD-morphism T →
U with m-PD-nilpotent m-PD-ideals, a morphism g0 : Y0 → Z0, where Z0 is smooth over U0, and a
smooth lifting Z ′′ of Z(s+s′)

0 . Then there exists a canonical isomorphism of functors of the category
of left D(m)

Z′′/S-modules to that of left D(m+s+s′)
X/S -modules for the above structures of the form

(F sY0/T0
◦ f0)∗ ◦ (F s

′

Z
(s)
0 /T0

◦ g(s)
0 )∗

∼−→ (F s+s
′

Z
(s)
0 /T0

◦ g0 ◦ f0)∗. (6.1.5.2.1)

6.1.5.3. With notation 6.1.5.2, when f0 is the identity we get the functor (F sX0/S0
)∗ from the category

of left ‹D(m)
X′/S-modules to that of left ‹D(m+s)

X/S -modules.
The functor (F sX0/S0

)[ defined in 4.4.5.10 is canonically equal (up to canonical isomorphism) to the

composition of a functor from the category of right D(m)
X′/S-modules to that of left D(m+s)

X/S -modules with

the restriction functor from the category of the right D(m+s)
X/S -modules to that of left D(m)

X/S-modules. We
still denote by (F sX0/S0

)[ this factorization.

6.1.5.4. With notation 6.1.5.2, let Z0 be a divisor of X0. The canonical D(m)
X/S-linear isomorphism

(F sX0/S0
)∗BX′(Z(s)

0 , r)
∼−→ BX′(psZ0, r) = BX′(Z0, p

sr)

is in fact D(m+s)
X/S -linear (see [Ber00, 2.2.9]).

Theorem 6.1.5.5. Suppose aS is m-PD-nilpotent. Let BX′ be an OX′-quasi-coherent algebra endowed
with a left action of D(m)

X′/S compatible with is OX′-algebra structure. Let BX := (F sX0/S0
)∗(BX′).

(a) The functor (F sX0/S0
)∗ is an equivalence from the category of left BX′ ⊗OX′ D

(m)
X′/S-modules to that

of left BX ⊗OX D
(m+s)
X/S -modules.

(b) The functor (F sX0/S0
)[ is an equivalence from the category of right BX′ ⊗OX′ D

(m)
X′/S-modules to that

of right BX ⊗OX D
(m+s)
X/S -modules.
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6.2 Commutation with Frobenius, first examples
First let us make precise the hypotheses and notations which we shall use systematically in the following
sections and which we shall not mention explicitly in the statements.

(i) We denote by S the base scheme (resp. by S → T a morphism of base change). For each of the
operations considered, we will first recall the general definition. No assumption on S is needed
when m = 0 or m =∞. If m ∈ N∗, we shall assume that S is a Z(p)-scheme.

When we consider a smooth S-scheme X, we suppose given on X a sheaf BX of OX -algebras
equipped with a compatible D(m)

X action, and we put ‹D(m)
X = BX ⊗OX D

(m)
X . When we consider a

morphism of schemes f : X → Y , we suppose that BX = f∗BY , equipped with the action of D(m)
X

defined by inverse image coming from that of D(m)
Y on BY (even, if there is the action of D(m+s)

X

obtained by applying 6.1.1.6.

(ii) To highlight the “crystalline nature” of the operations such as f ! and f+, we generalize their
construction to the case where S is equipped with a quasi-coherent m-PD-ideal (aS , bS , α), which
we suppose to be m-PD-nilpotent, and where the morphisms are only defined modulo aS . We write
S0 = V (aS), and, in general, the index 0 denotes the reduction of a S-scheme modulo aS , or the
data defined over S0. Under these hypotheses, the inverse image functors will be the functors f∗0
defined by applying 4.4.5.11. In particular, we generalize what we have said above by supposing
that, when a morphism f0 : X0 → Y0 is given, we have BX = f∗0BY .

(iii) To state the properties of commutation with F ∗, we suppose that p is nilpotent on S, and that S
is equipped with a quasi-coherent m-PD-ideal (aS , bS , α) such that p ∈ aS . We suppose fixed an
integer s, and, if X is a smooth S-scheme, we denote by X ′ a smooth S-scheme lifting X(s)

0 .

These properties can be stated first in a “lifted” situation: we shall not make the hypotheses of
m-PD-nilpotence on aS , the morphisms of schemes considered will be smooth morphisms of S-
schemes, and the diagrams will be commutative on S. We denote F : X → X ′ a S- morphism
lifting the morphism of relative Frobenius F sX0/S0

.

(iv) Finally, we will give a “crystalline” variant of the preceding statements: we suppose then that S and
(aS , bS , α) satisfy the hypotheses (ii) and (iii), therefore, in particular that aS is m-PD-nilpotent.
In this case, again it suffices that the morphisms are given between the reductions on S0. The
inverse image functors will still be defined by applying 4.4.5.11, reinforced by 6.1.5.2 when, as for
the functor F ∗X0/S0

, it will be necessary to take into account the raising of the level by Frobenius.

We keep notation 6.1.

6.2.1 Definition
Definition 6.2.1.1. Let M be a family of morphisms of ringed spaces f̃ : (X,BX) → (Y,BY ) where
the underlying map X → Y , denoted by f , is a morphism of smooth S-schemes, BX (resp. BY ) be a
commutative OX -algebra (resp. OY -algebra) endowed with a compatible structure of left D(m)

X/S-module

(resp. D(m)
Y/S-module), where the underlying morphism of algebras f∗BY → BX is moreover D(m)

X/S-linear

(recall that the action of left D(m)
X/S-module on f∗BY is compatible with its structure of OX -algebra

(see 3.4.4.6). For such a f̃ ∈ M , we set ‹D(m)
X/S = BX ⊗OX D

(m)
X/S and ‹D(m)

Y/S = BY ⊗OY D
(m)
Y/S . For any

integer m and every morphism f̃ of M , suppose given some functors φ(m)

f̃
: D(l‹D(m)

X/S)→ D(l‹D(m)
Y/S) (resp.

φ
(m)

f̃
: D(‹D(m)

X/S
d
)→ D(‹D(m)

Y/S
r)).

We say that the family (φ
(m)

f̃
)
f̃∈M commutes with Frobenius if for any morphism f̃ : (X,BX) →

(Y,BY ) of M , for any integer s, for any smooth lifting X ′/S (resp. Y ′/S) of X(s)
0 /S0 (resp. Y (s)

0 /S0)
and FX : X → X ′, FY : Y → Y ′ liftings of F sX0/S0

, F sY0/S0
for any morphism f̃ ′ : (X ′,BX′) → (Y ′,BY ′)

of M such that f ′ is a lifting of f (s)
0 , BX = F ∗XBX′ , BY = F ∗Y BY ′ and satisfying FY ◦ f = f ′ ◦ FX ,
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there exists for any E ′ ∈ D(l‹D(m)
X′/S) (resp. M′ ∈ D(‹D(m)

X′/S
r)) a functorial in E ′ (resp. M) canonical

isomorphism of D(l‹D(m+s)
Y/S ) (resp. D(‹D(m+s)

Y/S
r)) of the form:

F ∗Y ◦ φ
(m)
f ′ (E ′) ∼−→ φ

(m+s)

f̃
◦ F ∗X(E ′) (resp. F [Y ◦ φ

(m)
f ′ (M′))→ φ

(m+s)

f̃
◦ F [X(M′). (6.2.1.1.1)

This definition extends to bifunctors, to complexes of bimodules, and also to functors of the form
φ

(m)

f̃
: D−(l‹D(m)

Y/S)→ D−(l‹D(m)
X/S) or of the form φ

(m)

f̃
: D−(‹D(m)

Y/S
r)→ D−(‹D(m)

X/S
l) etc.

6.2.2 Internal tensor products, homomorphisms
Lemma 6.2.2.1. We assume the hypotheses 6.2 (iii).

(a) Suppose F : X → X ′ is a lift of F sX0/S0
and let E ′,F ′ ∈ D(l‹D(m)

X′ ), M′ ∈ D(r‹D(m)
X′ ). There exists in

D−(‹D(m+s)
X ) a canonical isomorphism:

F ∗E ′ ⊗L
BX F

∗F ′ ∼−→ F ∗(E ′ ⊗L
BX′ F

′), (6.2.2.1.1)

i.e. the bifunctor −⊗L
BX′ − commutes with Frobenius (in Definition 6.2.1.1, the morphisms f̃ ∈ M

consist in the family of identities). Moreover, we have the canonical isomorphism

F [M′ ⊗L
BX F

∗E ′ ∼−→ F ∗(M′ ⊗L
BX′ E

′). (6.2.2.1.2)

(b) If aS ism-PD-nilpotent and if E ′,F ′ ∈ D(l‹D(m)
X′ ), there exists in D(‹D(m+s)

X ) a canonical isomorphism:

F s∗X0/S0
E ′ ⊗L

BX F
s∗
X0/S0

F ′ ∼−→ F s∗X0/S0
(E ′ ⊗BX′ F

′). (6.2.2.1.3)

Proof. (a) i) Let P ′ be a K-flat resolution on ‹D(m)
X′ of F ′. As P ′ is also a K-flat complex of BX′-

modules, the domain and range of (6.2.2.1.1) are complexes of ‹D(m+s)
X -modules given respectively by

F ∗E ′ ⊗BX F ∗P ′ and F ∗(E ′ ⊗BX′ P
′). It suffices thus to verify that the canonical BX -linear isomorphism

between these complexes are ‹D(m+s)
X -linear. We can suppose that E ′ and P ′ are reduced to a single

module, and we are reduced to check that this isomorphism is horizontal for the (m+s)-PD-stratifications
of F ∗E ′⊗F ∗F ′ and F ∗(E ′⊗F ′). If (ε′n), (η′n) are the (m)-PD-stratifications of E ′, F ′, those of E ′⊗F ′
are then (ε′n⊗ η′n), and with notation of 6.1.1.5 the assertion results from that the inverse image by the
morphisms Φn : ‹∆n

X/S(m+s) → ‹∆n
X′/S(m) commutes with tensor product.

ii) By using 4.3.5.8 and 6.1.2.5, we deduce 6.2.2.1.2 from 6.2.2.1.1.
The case (b) follows from the case (a) once we observe that the isomorphisms of the glueing τF,F ′

themselves commute with tensor product, since they are deduced from the m-PD-stratifications by
applying an inverse image functor.

Proposition 6.2.2.2. Let E ′ and F ′ be two left ‹D(m)
X′ -modules. Let M′ and N ′ be two right ‹D(m)

X′ -
modules. The canonical morphism

F ∗(HomBX′ (E
′,F ′))→ HomBX (F ∗E ′, F ∗F ′) (6.2.2.2.1)

is an isomorphism of left ‹D(m+s)
X/S -modules, i.e. the bifunctor HomBX′ (−,−) therefore commutes with

Frobenius. Moreover, we have respectively the canonical isomorphisms of right and left ‹D(m+s)
X/S -modules

F [(HomBX′ (E
′,M′))→ HomBX (F ∗E ′, F [M′),

F ∗(HomBX′ (M
′,N ′))→ HomBX (F [M′, F [N ′). (6.2.2.2.2)

Proof. Since BX is a locally free BX′ -algebra, then the canonical morphism 6.2.2.2.1 is an isomorphism
of BX -modules. We check the ‹D(m+s)

X/S -linearity of 6.2.2.2.1 similarly to the proof of 4.4.5.14 by replacing

the morphism f̃n by the morphism ‹∆n
X/S(m+s) → ‹∆n

X′/S(m). By using 4.3.5.8 and 6.1.2.5, this implies
6.2.2.2.2.
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Proposition 6.2.2.3. Let E ′ be a ‹D(m)
X′ -bimodule and F ′ be a left ‹D(m)

X′ -module. So we have the canonical
isomorphism:

(F ∗F [E ′)⊗D̃(m+s)

X/S

(F ∗F ′) ∼−→ F ∗(E ′ ⊗D̃(m)

X′
F ′). (6.2.2.3.1)

The bifunctor −⊗D̃(m)

X′
− therefore commutes with Frobenius.

Proof. By functoriality, it follows from 6.1.3.6.1 that we have the canonical isomorphism of left ‹D(m)
X′ -

modules :
F [E ′ ⊗D̃(m+s)

X/S

F ∗F ′ ∼−→ E ′ ⊗D̃(m)

X′
F ′.

By applying to it the functor F ∗, this yields the proposition.

Proposition 6.2.2.4. Let E ′ be a left ‹D(m)
X′ -module and F ′ be a ‹D(m)

X′ -bimodule. Hence we have the
canonical isomorphism of right ‹D(m+s)

X/S -modules :

F [HomD̃(m)

X′
(E ′,F ′) ∼−→ HomD̃(m)

X′
(E ′, F [F ′) ∼−→ HomD̃(m+s)

X/S

(F ∗E ′, F ∗F [F ′). (6.2.2.4.1)

The bifunctor HomD̃(m)

X′
(−,−) therefore commutes with Frobenius.

Proof. Since ‹F [‹D(m)
X′ is a locally free left ‹D(m)

X′ -module, then the canonical isomorphism

HomD̃(m)

X′
(E ′,F ′)⊗D̃(m)

X′

‹F [‹D(m)
X′ → HomD̃(m)

X′
(E ′,F ′ ⊗D̃(m)

X′

‹F [‹D(m)
X′ )

is an isomorphism. Since F [ is canonically isomorphic to the functor −⊗D̃(m)

X′

‹F [‹D(m)
X′ , then we get the first

isomorphism of 6.2.2.4.1. Moreover, the theorem 6.1.1.9 gives us the isomorphismHomD̃(m)

X′
(E ′, F [F ′) ∼−→

HomD̃(m+s)

X/S

(F ∗E ′, F ∗F [F ′). Hence, we are done.

6.2.2.5. Suppose there exists a morphism of schemes S → B such that the composition morphism
g̃′ : (X ′,BX′) → B and g̃ : (X,BX) → B are flat. In particular, BX and BX′ are quasi-flat OS-
algebras (see Definition 3.1.1.5). Then g̃−1OB is a solving ring of (‹D(m)

X′/S ,
‹D(m)
X′/S), (‹D(m+s)

X/S , ‹D(m)
X′/S)

and (‹D(m+s)
X/S , ‹D(m+s)

X/S ) (see definition 4.6.3.2).

Proposition 6.2.2.6. Suppose the hypotheses of 6.2.2.5 are satisfied. Let E ′ ∈ D(l‹D(m)
X′ ) and F ′ ∈

D(l‹D(m)
X′ ⊗OS ‹D(m) op

X′ ). Hence we have the canonical isomorphism of D(r‹D(m+s)
X/S ):

F [RHomD̃(m)

X′
(E ′,F ′) ∼−→ RHomD̃(m)

X′
(E ′, F [F ′) ∼−→ RHomD̃(m+s)

X/S

(F ∗E ′, F ∗F [F ′). (6.2.2.6.1)

The bifunctor RHomD̃(m)

X′
(−,−) therefore commutes with Frobenius.

Proof. Let I ′ be K-injective complex of K−(l‹D(m)
X′/S ⊗OS ‹D(m) op

X′/S ) which represents F ′. Then following

6.1.3.5.(b), F [I ′ is a K-injective complex of K−(l‹D(m)
X′/S ⊗OS ‹D(m+s) op

X/S ) which represents F [F ′ and
F ∗F [I ′ is a K-injective complex of K−(l‹D(m+s)

X/S ⊗OS ‹D(m+s) op
X/S ) which represents F ∗F [F ′ Hence, we get

the isomorphisms 6.2.2.6.1 from 6.2.2.4.1.

6.2.3 Extension of the coefficients, level rising
We assume the hypotheses 6.2 (iii) holds. Let m′ ≥ m, BX′ (resp. CX′) an OX′ -algebra equipped with
a compatible action of D(m)

X′ (resp. D(m′)
X′ ), BX′ → CX′ a D(m)

X′ -linear momorphism of OX′ -algebras. We
put BX = F ∗BX′ , CX = F ∗CX′ , and we equip these algebras with actions of D(m+s)

X , D(m′+s)
X respectively

defined thanks to 6.1.1.6. We can then consider the sheaves of differential operators with coefficients in
these algebras, defined by‹D(m)

X′ = BX′ ⊗OX′ D
(m)
X′ ,

‹D(m+s)
X = BX ⊗OX D

(m+s)
X ,‹D(m′)

X′ = CX′ ⊗OX′ D
(m′)
X′ ,

‹D(m′+s)
X = CX ⊗OX D

(m′+s)
X .
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6.2.3.1. The isomorphism of ‹D(m+s)
X/S -bimodules ϑ : ‹D(m+s)

X/S

∼−→ F ∗F [‹D(m)
X′ (see 6.1.3.2.1) is by construc-

tion (see the proof of [Ber00, 2.5.2]) built by extension from the case where B = O, i.e. the composition

F ∗F [(BX′ ⊗OX′ ‹D(m)
X′ )

∼−→ F ∗(BX′ ⊗OX′ F
[‹D(m)

X′ )
6.2.2.1.1
∼−→ BX ⊗OX F ∗F [‹D(m)

X′
ϑ→ BX ⊗OX ‹D(m)

X/S

is ϑ. This yields that ϑ is compatible with extension of the coefficients. We moreover easily check its
compatibility with changes of level. To sump up the following diagram is commutative :

F ∗F [(D(m)
X′ )

F∗F [(ρ)// F ∗F [(D(m′)
X′ )

D(m+s)
X/S

ϑ ∼

OO

ρ // D(m′+s)
X/S .

id⊗ϑ ∼

OO
(6.2.3.1.1)

6.2.3.2. For any left ‹D(m)
X′ -module E ′, we get the morphism of left ‹D(m′+s)

X/S -modules‹D(m′+s)
X/S ⊗D̃(m+s)

X/S

F ∗E ′ ∼−→ F ∗(‹D(m′)
X′ ⊗D̃(m)

X′
E ′) (6.2.3.2.1)

as being the unique ‹D(m′+s)
X/S -linear morphism making commutative the following diagram :

F ∗E
--

// ‹D(m′+s)
X/S ⊗D̃(m+s)

X/S

F ∗E ′ // F ∗(‹D(m′)
X′ ⊗D̃(m)

X′
E ′). (6.2.3.2.2)

On the other hand, inspired by 6.2.2.3.1, we can construct an isomorphism of the form 6.2.3.2.1 in a
different way as follows: by considering ‹D(m′)

X′ as a (‹D(m′)
X′ ,

‹D(m)
X′ )-bimodule, we get the isomorphism of

(‹D(m′+s)
X , ‹D(m+s)

X )-bimodules:

F ∗F [‹D(m′)
X′

∼−→ F ∗‹D(m′)
X′ ⊗D̃(m′)

X′

‹D(m′)
X′ ⊗D̃(m)

X′
F [‹D(m)

X′ . (6.2.3.2.3)

This yields the first functorial in E ′ isomorphism of left ‹D(m′)
X′ -modules:‹D(m′+s)

X/S ⊗D̃(m+s)

X/S

F ∗E ′
6.1.3.2.1
∼−→
ϑ⊗id

F ∗F [‹D(m′)
X′ ⊗D̃(m+s)

X/S

F ∗E ′
6.2.3.2.3
∼−→

F ∗‹D(m′)
X′ ⊗D̃(m′)

X′

‹D(m′)
X′ ⊗D̃(m)

X′
(F [‹D(m)

X′ ⊗D̃(m+s)

X/S

F ∗E ′)
6.1.3.6.1
∼−→ F ∗(‹D(m′)

X′ ⊗D̃(m)

X′
E ′). (6.2.3.2.4)

Proposition 6.2.3.3. Both constructions of 6.2.3.2 of the isomorphism of left ‹D(m′+s)
X/S -modules of the

form ‹D(m′+s)
X/S ⊗D̃(m+s)

X/S

F ∗E ′ ∼−→ F ∗(‹D(m′)
X′ ⊗D̃(m)

X′
E ′)

coincide. The functor ‹D(m′)
X′ ⊗D̃(m)

X′
− therefore commutes with Frobenius.

Proof. Let us denote by ϑ the isomorphisms of the form ‹D(m+s)
X/S

∼−→ F ∗F [‹D(m)
X′ and ρ the ones of

the form ‹D(m)
X′ → ‹D(m′)

X′ or ‹D(m+s)
X/S → ‹D(m′+s)

X/S etc. By uniqueness of the factorization of the diagram
6.2.3.2.2, it is sufficient to establish the commutativity of the diagram below:

F ∗E ′ F ∗E ′

‹D(m+s)
X/S ⊗D̃(m+s)

X/S

F ∗E ′ ϑ⊗id

∼
//

ρ⊗id

��

∼

OO

F ∗F [‹D(m)
X′ ⊗D̃(m+s)

X/S

F ∗E ′ ∼
6.1.3.6.1//

F∗F [(ρ)⊗id

��

F ∗(‹D(m)
X′ ⊗D̃(m)

X′
E ′)

F∗(ρ)⊗id

��

∼

OO

‹D(m′+s)
X/S ⊗D̃(m+s)

X/S

F ∗E ′ ϑ⊗id

∼
// F ∗F [‹D(m′)

X′ ⊗D̃(m+s)

X/S

F ∗E ′ ∼
6.2.3.2.4// F ∗(‹D(m′)

X′ ⊗D̃(m)

X′
E ′).

(6.2.3.3.1)
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By construction of 6.2.3.2.4, the right diagram is commutative. Moreover, the canonical isomorphism
F [‹D(m)

X′ ⊗D̃(m+s)

X/S

F ∗E ′ ∼−→ E ′ was constructed such that the rectangle of the top of 6.2.3.3.1 is commutative

(see the proof of [Ber00, 2.5.5.(i)]). By applying to the right diagram of 6.2.3.1.1 the functor −⊗D̃(m+s)

X/S

F ∗E ′, we get the commutativity of left bottom square of 6.2.3.3.1.

Corollary 6.2.3.4. Let E ′ ∈ D−(l‹D(m)
X′ ). There exists in D−(l‹D(m′+s)

X ) a canonical isomorphism‹D(m′+s)
X ⊗L

D̃(m+s)

X

F ∗E ′ ∼−→ F ∗(‹D(m′)
X′ ⊗D̃(m)

X′
E ′) (6.2.3.4.1)

Proof. Thanks to 6.1.3.6, we obtain the isomorphism (6.2.3.4.1) by applying (6.2.3.4) to a flat resolution
of E ′.

Corollary 6.2.3.5. Under the hypotheses 6.2(iv), we put BX = F ∗X0/S0
BX′ , CX = F ∗X0/S0

CX′ . For any

E ′ ∈ D−(l‹D(m)
X′ ), there exists in D−(l‹D(m′+s)

X ) a canonical isomorphism‹D(m′+s)
X

L
⊗

D̃(m+s)

X

F s∗X0/S0
E ′ ' F s∗X0/S0

(‹D(m′)
X′

L
⊗
D̃(m)

X′

E ′).

Proof. Let F, F ′ : U → X ′be two liftings of FX0/S0
on an open subset U of X. For any ‹D(m)

X′ -module E ′,
we have isomorphisms τ (m+s)

F,F ′ : F ′
∗E ′ ∼−→ F ∗E ′, and

τ
(m′+s)
F,F ′ : F ′

∗
(‹D(m′)

X′ ⊗D̃(m)

X′
E ′) ∼−→ F ∗(‹D(m′)

X′ ⊗D̃(m)

X′
E ′).

The square ‹D(m′+s)
X ⊗D̃(m+s)

X

F ′
∗E ′ ∼ //

id⊗τ(m+s)

F,F ′
∼
��

F ′
∗
(‹D(m′)

X′ ⊗D̃(m)

X′
E ′)

∼τ
(m′+s)
F,F ′

��‹D(m′+s)
X ⊗D̃(m+s)

X

F ∗E ′ ∼ // F ∗(‹D(m′)
X′ ⊗D̃(m)

X′
E ′)

formed from the isomorphisms (6.2.3.4) relative to F, F ′ is commutative, because it suffices to prove
it before taking tensor product with ‹D(m′+s)

X on the left along the columns. Then it follows from the
functoriality of τ (m+s)

F,F ′ applied to the homomorphism E ′ → ‹D(m′)
X′ ⊗D̃(m)

X′
E ′, and from this, if F ′ is a‹D(m′)

X′ -module, the isomorphisms τ (m+s)
F,F ′ , τ (m′+s)

F,F ′ relative to F ′ are equal.
It follows that the isomorphisms (6.2.3.4) defined by the local liftings of Frobenius can be glued, and

we obtain thus for any ‹D(m)
X′ -module a global isomorphism‹D(m′+s)
X ⊗D̃(m+s)

X

F s∗X0/S0
E ′ ' F s∗X0/S0

(‹D(m′)
X′ ⊗D̃(m)

X′
E ′).

By taking flat resolutions on ‹D(m)
X′ , this isomorphism extends to derived categories.

6.2.4 Base change and extraordinary inverse image
Proposition 6.2.4.1 (Base change). Suppose that S and T are quipped with quasi-coherent m-PD ideals
(aS , bS , αS), (aT , bT , αT ) satisfying the hypotheses 6.2(iii), and such that S → T is a m-PD-morphism.
Let X ′ = S ×T Y ′, f ′ : X ′ → Y ′ the projection, BY ′ an OY ′-algebra equipped with compatible action of
D(m)
Y ′ , BX′ = f∗BY ′ .

(a) If FY : Y → Y ′ is a lifting of F sY0/S0
, let FX : X → X ′ be the morphism deduced from FY by base

change, BY = F ∗Y BY ′ , BX = f∗BY ' F ∗XBX′ . For any F ′ ∈ D−(‹D(m)
Y ′ ) there exists a canonical

isomorphism of D−(‹D(m+s)
X )‹D(m+s)

X

L
⊗

f−1(D̃(m+s)

Y
)

f−1F ∗Y F ′
∼−→ F ∗X(‹D(m)

X′

L
⊗

f−1(D̃(m+s)

Y ′
)

f−1F ′).
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(b) If aS and aT are m-PD nilpotent, let BY = F s∗Y0/S0
BY ′ , BX = f∗BY ' F s∗X0/S0

BX′ . For any F ′ ∈
D−(‹D(m)

Y ′ ), there exists a canonical isomorphism of D−(‹D(m+s)
X )‹D(m+s)

X

L
⊗

f−1(D̃(m+s)

Y
)

f−1F s∗Y0/S0
F ′ ∼−→ F s∗X0/S0

(‹D(m)
X′

L
⊗

f−1(D̃(m+s)

Y ′
)

f−1F ′).

Proof. It suffices to prove the non-derived version of these isomorphisms when F ′ reduces to a ‹D(m)
Y ′ -

module, because one can calculate the derived functor by replacing F ′ with a flat resolution on ‹D(m)
Y ′ .

Using the isomorphism (5.1.1.15.2), we see that we just have to define a ‹D(m+s)
X -linear isomorphism

f∗F ∗Y F ′
∼−→ F ∗Xf

′∗F ′ (resp. f∗F s∗Y0/S0
F ′ ∼−→ F s∗X0/S0

f ′
∗F ′ ). In the first case we have f ′ ◦FX = FY ◦ f ,

i suffices to apply the transitivity isomorphism. In the second case we use

(F s∗Y0/S0
◦ f0)∗ ' f∗0 ◦ F s ∗Y0/S0

' F s ∗X0/S0
◦ f (s)∗

0 .

Proposition 6.2.4.2. Under the hypotheses 6.2 (iii), let f0 : X0 → Y0 be a morphism of smooth S0-
schemes, X,Y , X ′, Y ′ are smooth S-schemes lifting X0, Y0, X

(s)
0 , Y

(s)
0 .

(a) Suppose given S-morphisms f : X → Y , f ′ : X ′ → Y ′, FX : X → X ′, FY : Y → Y ′ lifting f0, f
(s)
0 ,

F sX0/S0
, F sY0/S0

. If FY ◦ f = f ′ ◦ FX , there exists for any F ′ in D−(‹D(m)
Y ′ ) a canonical isomorphism

of D−(‹D(m+s)
X )

f !(m+s)

F ∗Y F ′
∼−→ F ∗X(f !(m)

F ′). (6.2.4.2.1)

(b) Suppose aS is m-PD-nilpotent. For any F ′ in D−(‹D(m)
Y ′ ) a canonical isomorphism of D−(‹D(m+s)

X )

f !(m+s)

0 F s∗Y0/S0
F ′ ∼−→ F s∗X0/S0

(f
(s)
0

!(m)

F ′). (6.2.4.2.2)

Proof. Note that dX′/Y ′ = dX/Y . Let P ′ be a resolution of F ′ flat on ‹D(m)
Y ′ . Thanks to 6.1.3.6 we are

reduced in the first case to construct a canonical ‹D(m+s)
X -linear isomorphism

f∗F ∗Y P ′
∼−→ F ∗Xf

′∗P ′ (6.2.4.2.3)

This isomorphism holds without hypotheses by applying 6.1.1.6 (and 6.1.1.7).
In case (b) we need the same construction of a canonical ‹D(m+s)

X -linear isomorphism

f∗0F
s∗
Y0/S0

P ′ ∼−→ F s∗X0/S0
f0

(s)∗P ′, (6.2.4.2.4)

and this isomorphism is furnished by 6.1.5.2.1

Remark 6.2.4.3. Applying the assertion (ii) to the particular case where X and Y are two lifting of X0

and f0 = IdX0
, the independence equivalences of 4.4.5.12 are compatible with the functors F ∗.

6.2.5 External tensor products
The compatibility of the functor F ∗ with external tensor product (see 5.1.5) is analogous to what we
have just seen for the inverse images.

Proposition 6.2.5.1. Under the hypotheses 6.2(iii), let X,Y be smooth S schemes, with reductions
X0, Y0 and X ′, Y ′ the smooth S-schemes lifting X(s)

0 , Y (s)
0 . Write Z = X ×S Y , Z0 = X0 ×S0

Y0,
Z ′ = X ′ ×S′ Y ′. Let BX′ (resp. BY ′) is an OX′-algebra (resp. OY ′-algebra) equipped with a compatible
action of D(m)

X′ (resp. D(m)
Y ′ , BZ′ = BX′ �OS BY ′ be the OZ′-algebra equipped with a compatible action

of D(m)
Z′ . We note as before ‹D(m)

X′ = BX′ ⊗OX′ D
(m)
X′ , ‹D(m)

Y ′ = BY ′ ⊗OY ′ D
(m)
Y ′ , ‹D(m)

Z′ = BZ′ ⊗OZ′ D
(m)
Z′ .

Set BX := F s∗X0/S0
, BY := F s∗Y0/S0

and BZ := F s∗Z0/S0
. We note as before ‹D(m+s)

X = BX ⊗OX D
(m+s)
X ,‹D(m+s)

Y = BY ⊗OY D
(m+s)
Y , ‹D(m+s)

Z = BZ ⊗OZ D
(m+s)
Z .
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(a) Suppose given liftings FX : X → X ′, FY : Y → Y ′ of F sX0/S0
, F sY0/S0

, and put FZ = FX × FY : Z →
Z ′. If E ′ ∈ D−(‹D(m)

X′ ), F ′ ∈ D−(‹D(m)
Y ′ ), there exists in D−(‹D(m+s)

Z ) a canonical isomorphism

F ∗XE ′
L
�
OS

F ∗Y F ′
∼−→ F ∗Z(E ′

L
�
OS
F ′).

(b) If aS is m-PD-nilpotent and if E ′ ∈ D−(‹D(m)
X′ ), F ′ ∈ D−(‹D(m)

Y ′ ), there exists in D−(‹D(m+s)
Z ) a

canonical isomorphism:

F s∗X0/S0
E ′

L
�
OS

F s∗Y0/S0
F ′ ∼−→ F s∗Z0/S0

(E ′
L
�
OS
F ′).

Proof. Let f : Z → X, g : Z → Y , f ′ : Z ′ → X ′, g′ : Z ′ → Y ′ be projections and let P ′, Q′ be flat
resolutions of E ,F . For case (a) it suffices to define a ‹D(m+s)

Z -linear isomorphism

f∗F ∗XP”⊗OZ g∗F ∗YQ′
∼−→ F ∗Z(f ′

∗P ′ ⊗OZ′ g
′∗Q′),

and we take the composition of the isomorphisms in 6.1.1.6 (and 6.1.1.7) and (6.2.2.1.1):

f∗F ∗XP”⊗OZ g∗F ∗YQ′
∼−→ F ∗Zf

′∗P ′ ⊗OZ F ∗Zg′
∗Q′ ∼−→ F ∗Z(f ′

∗P ′ ⊗OZ′ g
′∗Q′).

We treat the case (b) similarly.

6.2.6 Direct image
We establish the commutation of f+ with F ∗.

Lemma 6.2.6.1. Under the hypotheses 6.2(iii), let f : X → Y be a morphism of smooth S-schemes.

(a) Suppose given liftings FX : X → X ′, FY : Y → Y ′, f ′ : X ′ → Y ′ of F sX0/S0
, F sY0/S0

, and f (s)
0 such

that FY ◦ f = f ′ ◦ FX . There exists canonical isomorphisms of (‹D(m+s)
X , f−1‹D(m+s)

Y/S )-bimodules and

of (f−1‹D(m)
Y/S ,

‹D(m)
X )-bimodules‹D(m+s)

X→Y/S
∼−→ F ∗XF

[
Y
‹D(m)
Y ′→X′/S := F ∗X(f ′

∗
l (F [Y ‹D(m)

Y ′/S)), (6.2.6.1.1)‹D(m+s)
Y←X/S

∼−→ F [XF
∗
Y
‹D(m)
Y ′→X′/S := F [Xr

Ä
f ′
∗
r (F ∗Y,l(‹D(m)

Y ′/S ⊗OY ′ ω
−1
Y ′/S))⊗OX′ ωX′/S

ä
. (6.2.6.1.2)

(b) If aS is m-PD-nilpotent, there exists canonical isomorphisms of (‹D(m+s)
X , f−1‹D(m+s)

Y/S )-bimodules and

of (f−1‹D(m)
Y/S ,

‹D(m)
X )-bimodules‹D(m+s)

X→Y/S
∼−→ F s∗X0/S0

F s[Y0/S0
‹D(m)
Y ′→X′/S := F s∗X0/S0

(f
(s)∗
0l (F s[Y0/S0

‹D(m)
Y ′/S)), (6.2.6.1.3)‹D(m+s)

Y←X/S
∼−→ F s[X0/S0

F s∗Y0/S0
‹D(m)
Y ′→X′/S (6.2.6.1.4)

:= F s[X0/S0,r

Ä
f

(s)∗
0r (F s∗Y0/S0,l

(‹D(m)
Y ′/S ⊗OY ′ ω

−1
Y ′/S))⊗OX′ ωX′/S

ä
(6.2.6.1.5)

Proof. According to 6.1.3.2 there exits a canonical isomorphism of ‹D(m+s)
Y/S -bimodules‹D(m+s)

Y/S

∼−→ F ∗Y F
[
Y
‹D(m)
Y ′/S . (6.2.6.1.6)

Apply to this f∗ for the left structure, and use the ‹D(m+s)
X -linear isomorphism f∗F ∗Y F

[
Y
‹D(m)
Y ′/S

∼−→
F ∗Xf

′∗F [Y
‹D(m)
Y ′/S furnished by (6.2.4.2.3) we get (6.2.6.1.1).
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Tensor (6.2.6.1.6) on the right by ω−1
Y/S and use 6.1.2.6.1 we get a left ‹D(m+s)

Y/S -bimodule isomorphism‹D(m+s)
Y/S ⊗OY ω−1

Y
∼−→ F ∗Y,l(F

∗
Y,r(‹D(m)

Y ′/S ⊗OY ′ ω
−1
Y ′/S))

∼−→ F ∗Y,r(F
∗
Y,l(‹D(m)

Y ′/S ⊗OY ′ ω
−1
Y ′/S)).

Now apply f∗ for the right structure and use the isomorphism f∗F ∗Y ' F ∗Xf
′∗, we get an isomorphism

of left (f−1‹D(m+s)
Y/S , ‹D(m+s)

X )-bimodules

f∗(‹D(m+s)
Y/S ⊗OY ω−1

Y/S)
∼−→ F ∗X,rf

′∗
r (F ∗Y,l(‹D(m)

Y ′/S ⊗OY ′ ω
−1
Y ′/S)).

To get (6.2.6.1.2) we tensor by ωX/S on the right, and compose with the isomorphism 6.1.2.5.1 relative
to the left ‹D(m)

X′/S-module f ′∗r (F ∗Y,l(
‹D(m)
Y ′/S ⊗OY ′ ω

−1
Y ′/S)).

When aS is m-PD-nilpotent, the functors and the isomorphisms appear in the preceding construction
for the local lifting of Frobenius glues to yield globally on X the isomorphisms (6.2.6.1.3) and (6.2.6.1.4).

Theorem 6.2.6.2. Suppose the hypotheses 6.2(iii) and the relative dimension of X on S is constant.
Let X,Y be smooth S-schemes, f0;X0 → Y0 a S0-morphism between their reduction modulo aS, X ′, Y ′

smooth lifting on S of X(s)
0 , Y

(s)
0 .

(a) Let f : X → Y , f ′ : X ′ → Y ′, FX : X → X ′, FY : Y → Y ′ be lifting f0, f
(s)
0 , F sX0/S0

, F sY0/S0
. If

FY ◦ f = f ′ ◦ FX , there exists for any E ′ in D−(‹D(m)
X′/S) a canonical isomorphism of D−(‹D(m+s)

Y/S )

f+(m+s)(F ∗XE ′)
∼−→ F ∗Y (f

′(m)
+ E ′). (6.2.6.2.1)

(b) Suppose aS is m-PD-nilpotent. For any E ′ ∈ D−(‹D(m)
X′/S), there exists a canonical isomorphism of

D−(‹D(m+s)
Y/S )

f
(m+s)
0+ (F s∗X0/S0

E ′) ∼−→ F s∗Y0/S0
(f (s))

(m)
+ (E ′). (6.2.6.2.2)

Proof. Under the hypotheses of (a), the exact functor F ∗Y induces an equivalence of categoriesD−(‹D(m)
Y ′/S)

∼−→
D−(‹D(m+s)

Y/S ), and according to 6.1.3.4.1 a quasi-inverse functor is given by E 7→ F [Y
‹D(m)
Y ′/S ⊗

L
D̃(m+s)

Y/S

E . To

define the isomorphism (6.2.6.2.1) it suffices to define an isomorphism

F [Y ‹D(m)
Y ′/S

L
⊗

D̃(m+s)

Y/S

f+(m+s)(F ∗XE ′)
∼−→ f

′(m)
+ (E ′)

in D−(‹D(m)
Y ′/S). By definition, f+(m+s)(F ∗XE ′) = Rf∗(F), where

F = ‹D(m+s)
Y←X

L
⊗

D̃(m+s)

X/S

F ∗XE ′ ∈ D−(f−1‹D(m+s)
Y/S ).

By 6.1.3.3, F [Y ‹D(m)
Y ′/S is a left ‹D(m+s)

Y/S -module which is locally projective of finite type, the canonical
morphism

F [Y ‹D(m)
Y ′/S

L
⊗

D̃(m+s)

Y/S

Rf∗(F)→ Rf∗

Ñ
f−1(F [Y ‹D(m)

Y ′/S)
L
⊗

f−1D̃(m+s)

Y/S

F

é
is an isomorphism in D−(f−1‹D(m)

Y/S). As f = f ′ in as much as continuous maps between topological
spaces, we are reduced to defining an isomorphism

f−1(F [Y
‹D(m)
Y ′/S)

L
⊗

f−1D̃(m+s)

Y/S

(‹D(m+s)
Y←X/S

L
⊗

D̃(m+s)

X/S

F ∗XE ′)
∼−→ ‹D(m)

Y ′→X′/S
L
⊗
D̃(m)

X′/S

E ′ (6.2.6.2.3)

in D−(f−1‹D(m)
Y ′/S).

314



Thanks to (6.2.6.1.2) we have a canonical isomorphism of bimodule‹D(m+s)
Y←X/S

∼−→ F ∗X,r
Ä
f ′
∗
r (F ∗Y,l(‹D(m)

Y ′/S ⊗OY ′ ω
−1
Y ′/S))⊗OX′ ωX′/S

ä
.

Apply the isomorphism of invariance of tensor product (6.1.3.6.1) we get in D−(f−1‹D(m+s)
Y/S ) the isomor-

phism ‹D(m+s)
Y←X/S

L
⊗

D̃(m+s)

X/S

F ∗X
∼−→
Ä
f ′
∗
r (F ∗Y,l(‹D(m)

Y ′/S ⊗OY ′ ω
−1
Y ′/S))⊗OX′ ωX′/S

ä L
⊗
D̃(m)

X′/S

E ′.

The left hand side of (6.2.6.2.3) can be identified with

f−1(F [Y ‹D(m)
Y ′/S)

L
⊗

f−1D̃(m+s)

Y/S

Ä
f ′
∗
r (F ∗Y,l(‹D(m)

Y ′/S ⊗OY ′ ω
−1
Y ′/S))⊗OX′ ωX′/S

ä L
⊗
D̃(m)

X′/S

E ′ (6.2.6.2.4)

'

Ñ
f−1(F [Y

‹D(m)
Y ′/S)

L
⊗

f−1D̃(m+s)

Y/S

f−1(F ∗Y,l(
‹D(m)
Y ′/S ⊗OY ′ ω

−1
Y ′/S))⊗OX′ ωX′/S

é
L
⊗
D̃(m)

X′/S

E ′. (6.2.6.2.5)

We have isomorphism of ‹D(m)
Y ′/S-bimodules (6.1.3.4.1)

F [Y ‹D(m)
Y ′/S ⊗D̃(m+s)

Y/S

F ∗Y,l‹D(m)
Y ′/S

∼−→ ‹D(m)
Y ′/S

which we right tensor by ω−1
Y ′/S to deduce an isomorphism of left ‹D(m)

Y ′/S-bimodules

F [Y
‹D(m)
Y ′/S ⊗D̃(m+s)

Y/S

F ∗Y,l(
‹D(m)
Y ′/S ⊗OY ′ ω

−1
Y ′/S)

∼−→ ‹D(m)
Y ′/S ⊗OY ′/S ω

−1
Y ′/S .

Apply f−1 and right tensor by ωX′/S we obtain an (f−1‹D(m)
Y ′/S ,

‹D(m)
X′/S)-bimodule isomorphism

f−1(F [Y ‹D(m)
Y ′/S)⊗

f−1D̃(m+s)

Y/S

f−1(F ∗Y,l(‹D(m)
Y ′/S ⊗OY ′ ω

−1
Y ′/S))⊗f−1OY ′ ωX′/S

∼−→ ‹D(m)
Y ′→X′/S .

It suffices to tensor by E ′ to get the isomorphism (6.2.6.2.3).
If we suppose that aS is m-PD-nilpotent, we can construct the isomorphism 6.2.6.2.2 following the

same method : each of the isomorphism used in the construction remains well defined without assuming
the morphisms are liftable (taking into account that f = f ′ = f0 as morphisms of topological spaces).

6.2.7 Dual functor
Suppose there exists a morphism of schemes S → B such that the composition morphism g̃′ : (X ′,BX′)→
B and g̃ : (X,BX)→ B are flat.

Notation 6.2.7.1. We work under the hypotheses 6.2 (i). Set d := δX/S . The ‹D(m)
X′/S-linear and‹D(m+s)

X/S -lineal duals (see 5.1.4.1) will be denoted by setting for any E ′ ∈ D(‹D(m)
X′/S) and E ∈ D(‹D(m+s)

X/S )

D(m)

X̃′/S
(E ′) := RHomD̃(m)

X

(E ′, ‹D(m)
X′/S)⊗OX′ ω

−1
X′/S [d],

D(m+s)

X̃/S
(E) := RHomD̃(m+s)

X/S

(E , ‹D(m+s)
X/S )⊗OX ω−1

X/S [d].

Theorem 6.2.7.2. We keep notation 6.2.7.1. We assume that the hypotheses 6.2(iii) holds.

(a) Let F : X → X ′ be a lifting of F sX0/S0
. For any E ′ ∈ D(‹D(m)

X′/S), there exists a canonicial isomorphism

of D(‹D(m+s)
X/S )

D(m+s)

X̃/S
F ∗E ′ ∼−→ F ∗D(m)

X̃′/S
(E ′).
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(b) If aS ism-PD-nilpotent, for any E ′ ∈ D−(‹D(m)
X′/S), there exists a canonicial isomorphism of D+(‹D(m+s)

X/S )

D(m+s)

X̃/S
F s∗X0/S0

E ′ ∼−→ F s∗X0/S0
D(m)

X̃/S
(E ′).

Proof. For any E ′ ∈ Db
coh(‹D(m)

X′/S), we have the isomorphisms

F [RHomD̃(m)

X

(E ′, ‹D(m)
X′/S)

∼−→
6.2.2.6

RHomD̂(m+s)

X

(F ∗E ′, F ∗F [‹D(m)
X′/S)

∼−→
6.1.3.2.1

RHomD̃(m+s)

X/S

(F ∗E ′, ‹D(m+s)
X/S ).

(6.2.7.2.1)

This yields:

F ∗D(m)

X̃′/S
(E ′)

6.1.2.6.1
∼−→ F [RHomD̃(m)

X

(E ′, ‹D(m)
X′/S)⊗OX ω−1

X/S [d]

6.2.7.2.1
∼−→ RHomD̃(m+s)

X/S

(F ∗E ′, ‹D(m+s)
X/S )⊗OX ω−1

X/S [d] = D(m+s)

X̃/S
F ∗E ′.

The proof of (b) is analogous, the isomorphisms used remain defined without lifting hypotheses on
F sX0/S0

when aS is m-PD-nilpotent.

6.3 Compatibility with Frobenius, first examples
We keep notation 6.1.

6.3.1 Definition
Definition 6.3.1.1. We keep the hypotheses and notations of the definition 6.2.1.1. For any integer m,
let (φ

(m)

f̃
)
f̃∈M and (ψ

(m)

f̃
))
f̃∈M be two families of functors commuting to Frobenius and, for any f̃ ∈M ,

let θ(m)

f̃
: φ

(m)

f̃
→ ψ

(m)

f̃
be a morphism of functors. The family (θ

(m)

f̃
)
f̃∈M is said to be compatible with

Frobenius if it induces a commutative diagram

F ∗Y ◦ φ
(m)
f ′

F∗Y ◦θ
(m)

f̃

��

// φ(m+s)

f̃
◦ F ∗X

θ
(m+s)

f̃

◦F∗X
��

F ∗Y ◦ ψ
(m)
f ′

// ψ(m+s)

f̃
◦ F ∗X ,

(6.3.1.1.1)

(resp. by replacing F ∗ by F [).

6.3.2 Associativity, commutativity, switching left to right, compatibility with
coefficients extensions of tensor products and homomorphisms

Proposition 6.3.2.1. Let E ′ and G′ be two left ‹D(m)
X′/S-modules and F ′ be a right or left ‹D(m)

X′/S-module.

The following canonical ‹D(m)
X′/S-linear isomorphisms (see 4.2.3.9.1)

E ′ ⊗BX′ G
′ ∼−→ G′ ⊗BX′ E

′, E ′ ⊗BX′ (F ′ ⊗BX′ G
′)
∼−→ (E ′ ⊗BX′ F

′)⊗BX′ G
′. (6.3.2.1.1)

are compatible with Frobenius.

Proof. This is an exercice.

Proposition 6.3.2.2. The ‹D(m)
X′/S-linear switching left to right ‹D(m)

X′/S-module structures isomorphisms
for tensor products and internal homomorphisms of 4.3.5.8 are compatible with Frobenius.
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Proof. The compatibility with Frobenius is an exercice.

Let CX′ be a BX′ -algebra commutative endowed with a compatible structure of left D(m)
X′ -module such

that BX′ → CX′ is D(m)
X′ -linear (and then ‹D(m)

X′ -linear). We set CX′ := F ∗CX′ . Finally, we will suppose
that S is a noetherian (hypothesis useful for 4.6.3.7 and then for 6.3.4.1 etc.) scheme.

Proposition 6.3.2.3. Let E ′ be a left ‹D(m)
X′/S-module. The functorial in E ′ canonical isomorphism

CX′ ⊗BX′ E
′ ∼−→

4.3.4.6.1

Ä
CX′ ⊗OX′ D

(m)
X′/S

ä
⊗D̃(m)

X′/S
E ′ (6.3.2.3.1)

is compatible with Frobenius.

Proof. It is about proving that the right square of the diagram

F ∗E //

%%

F ∗(CX′ ⊗BX′ E
′) ∼

// F ∗((CX′ ⊗OX′ D
(m)
X′ )⊗BX′⊗OX′D

(m)

X′
E ′)

CX ⊗BX F ∗E ′ ∼
//

∼

OO

(CX ⊗OX D
(m)
X )⊗BX⊗OXD(m)

X

F ∗E ′

∼

OO

is commutative. By CX -linearity, it is sufficient to check that the outer of the diagram is commutative,
which is tautological (6.2.3.2.2).

Proposition 6.3.2.4. Let E ′ be a left ‹D(m)
X′ -module, F ′ a left CX′ ⊗OX′ D

(m)
X′ -module and E ′ → F ′ be a‹D(m)

X′ -linear morphism. The canonical CX′ ⊗OX′ D
(m)
X′ -linear morphism (see 4.3.4.9)

ρ : CX′ ⊗BX′ E
′ → F ′

is compatible with Frobenius.

Proof. We have to prove that the following canonical diagram

F ∗(CX′ ⊗BX′ E
′) ∼

//

F∗ρ ''

CX ⊗BX F ∗E ′

ρ
xx

F ∗F ′

is commutative, which is elementary.

Proposition 6.3.2.5. Let E ′ be a left ‹D(m)
X′ -module, F ′ be a left CX′ ⊗OX′ D

(m)
X′ -module. The canonical

CX′ ⊗OX′ D
(m)
X′ -linear isomorphism (see 4.3.4.12.1)

HomBX′ (E
′,F ′) ∼−→ HomCX′ (CX′ ⊗BX′ E

′,F ′)

is compatible with Frobenius. We have similar compatibility replacing left by right modules.

Proof. The compatibility with Frobenius means that the canonical diagram below

F ∗HomBX′ (E
′,F ′) ∼

//

∼
��

HomBX (F ∗E ′, F ∗F ′)

∼
��

F ∗HomCX′ (CX′ ⊗BX′ E
′,F ′) ∼ // HomCX (F ∗(CX′ ⊗BX′ E

′), F ∗F ′) ∼
// HomCX (CX ⊗BX F ∗E ′, F ∗F ′)

is commutative, which is easy.

Proposition 6.3.2.6. Let E ′ be a left ‹D(m)
X′ -module, F ′ be a left CX′ ⊗OX′ D

(m)
X′ -module. The canonical

BX′ ⊗OX′ D
(m)
X′ -linear isomorphism (see 4.3.4.12.1)

(E ′ ⊗BX′ CX′)⊗CX′ F
′ ∼−→ E ′ ⊗BX′ F

′. (6.3.2.6.1)

is compatible with Frobenius. We have a similar compatibility replacing left by right modules.

Proof. This is an exercice.
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6.3.3 Transposition isomorphisms
We keep notation 6.1.

Proposition 6.3.3.1. LetM′ ∈ D(‹D(m)
X′/S

r). The transposition isomorphism δM′ : M′ ⊗BX′ ‹D(m)
X′/S

∼−→
M′ ⊗BX′ ‹D(m)

X′/S which exchanges the two right structures of ‹D(m)
X′/S-modules (see 4.2.5.5) is compatible

with Frobenius, i.e., the following diagram is commutative :

F [M′ ⊗BX ‹D(m+s)
X/S

δ
F[M′

∼
//

∼
��

F [M′ ⊗BX ‹D(m+s)
X/S

∼
��

F [M′ ⊗BX F ∗F [‹D(m)
X′/S

F [l F
[
r δM′

∼
// F [M′ ⊗BX F [F ∗‹D(m)

X′/S .

(6.3.3.1.1)

Proof. It is sufficient to copy the proof of Virrion of [Vir00, II.1.12.1] by adding some tildes and replacing
"ωX′" by "M′" and "ωX" by "F [M′".

Proposition 6.3.3.2. Let E ′ ∈ D(l‹D(m)
X′/S). The transposition isomorphism of ‹D(m)

X′/S-bimodules associ-

ated to E ′, γE′ : ‹D(m)
X′/S ⊗BX′ E

′ ∼−→ E ′ ⊗BX′ ‹D(m)
X′/S (see 4.2.5.1), is compatible with Frobenius, i.e., the

canonical diagram

F ∗F [(‹D(m)
X′/S ⊗BX′ E

′)
F∗F [(γE′ )

∼
// F ∗F [(E ′ ⊗BX′ ‹D(m)

X′/S)

‹D(m+s)
X/S ⊗BX F ∗E ′

∼

OO

γF∗E′

∼
// F ∗E ′ ⊗BX ‹D(m+s)

X/S

∼

OO
(6.3.3.2.1)

is commutative.
In the same way, we have the compatible with Frobenius isomorphism of left ‹D(m)

X′/S-bimodules

(‹D(m)
X′/S ⊗OX′ ω

−1
X′/S)⊗BX′ E

′ ∼−→ E ′ ⊗BX′ (‹D(m)
X′/S ⊗OX′ ω

−1
X′/S). (6.3.3.2.2)

Proof. First of all, it is equivalent to prove the compatibility with Frobenius of

ωX′/S ⊗OX′ (γE′) : (ωX′ ⊗OX′ ‹D(m)
X′/S)⊗BX′ E

′ ∼−→ (ωX′/S ⊗OX′ E
′)⊗BX′ ‹D(m)

X′/S .

Moreover, the isomorphism

E ′ ⊗BX′ δωX′ : E
′ ⊗BX′ (ωX′ ⊗OX′ ‹D(m)

X′/S)
∼−→ (ωX′ ⊗OX′ ‹D(m)

X′/S)⊗BX′ E
′

is compatible with Frobenius (6.3.3.1.1). Moreover, thanks to 6.3.2.2 and 6.3.2.1.1, the canonical iso-
morphism

(ωX′ ⊗OX′ E
′)⊗BX′ ‹D(m)

X′/S

∼−→ E ′ ⊗BX′ (ωX′ ⊗OX′ ‹D(m)
X′/S)

is compatible with Frobenius. Since by composing these three isomorphisms we obtain the transposition
isomorphism δωX′⊗OX′ E

′ (indeed, by ‹D(m)
X′/S-linearity it is sufficient to check that for any section x of

ωX′ ⊗OX′ E
′ we have δωX′⊗OX′ E′(x⊗ 1) = x⊗ 1) which is compatible with Frobenius following 6.3.3.1.1.

This yields the commutativity of 6.3.3.2.1.
By construction of the isomorphism 6.3.3.2.2 (see 4.2.5.3.2), its compatibility with Frobenius follows

from that of γE′ .

6.3.4 Cartan isomorphisms, relations between internal tensor products and
homomorphisms, comparison between B-linear and D-linear dual

We keep notation 6.3.2. In order to be able to use the example 4.6.3.3 or 6.2.2.5, we suppose moreover
that BX is a quasi-flat OS-algebra (see Definition 3.1.1.5).
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Proposition 6.3.4.1. Let E ∈ D(l‹D(m)
X′/S), F ∈ D(l‹D(m)

X′/S ,
‹D(m)
X′/S

r), and G ∈ D(l‹D(m)
X′/S ,

‹D(m)
X′/S

r). The

canonical morphism of D(‹D(m)
X′/S

r) (see 4.6.3.6.1)

RHomlD̃(m)

X′/S
(E ,F)⊗L

D̃(m)

X′/S

G 4.6.3.6.1−→ RHomlD̃(m)

X′/S
(E ,F ⊗L

D̃(m)

X′/S

G) (6.3.4.1.1)

is compatible with Frobenius.

Proof. By transitivity of the isomorphism 4.6.3.6.1 (see 4.6.3.6.(ii)), we have the following commutative
diagram.

F [(RHomlD̃(m)

X′/S
(E ,F)⊗L

D̃(m)

X′/S

G) ∼
//

��

RHomlD̃(m)

X′/S
(E ,F)⊗L

D̃(m)

X′/S

F [G

��
F [RHomlD̃(m)

X′/S
(E ,F ⊗L

D̃(m)

X′/S

G) ∼
// RHomlD̃(m)

X′/S
(E ,F ⊗L

D̃(m)

X′/S

F [G).

(6.3.4.1.2)

Moreover, via the isomorphism F [G ∼−→ (F [‹D(m)
X′ ⊗D̃(m+s)

X/S

F ∗‹D(m)
X′ ) ⊗L

D̃(m)

X′/S

F [G ∼−→ F [‹D(m)
X′ ⊗L

D̃(m+s)

X/S

F ∗F [G, we have by functoriality of the commutative diagram :

RHomD̃(m)

X′/S
(E ,F)⊗L

D̃(m)

X′/S

F [G

��

∼ // RHomD̃(m)

X′/S
(E ,F)⊗L

D̃(m)

X′/S

F [‹D(m)
X′ ⊗L

D̃(m+s)

X/S

F ∗F [G

��
RHomD̃(m)

X′/S
(E ,F ⊗L

D̃(m)

X′/S

F [G)
∼ // RHomD̃(m)

X′/S
(E ,F ⊗L

D̃(m)

X′/S

F [‹D(m)
X′ ⊗L

D̃(m+s)

X/S

F ∗F [G).

By invoking the transitivity of 4.6.3.6.ii), we obtain the commutativity of the diagram below

RHomD̃(m)

X′/S
(E ,F)⊗L

D̃(m)

X′/S

F [‹D(m)
X′ ⊗L

D̃(m+s)

X/S

F ∗F [G

��

∼
// RHomD̃(m)

X′/S
(E , F [F)⊗L

D̃(m+s)

X/S

F ∗F [G

��
RHomD̃(m)

X′/S
(E ,F ⊗L

D̃(m)

X′/S

F [‹D(m)
X′ ⊗L

D̃(m+s)

X/S

F ∗F [G) ∼
// RHomD̃(m)

X′/S
(E , F [F ⊗L

D̃(m+s)

X/S

F ∗F [G).

(6.3.4.1.3)
Finally, choosing a K-flat complex representing F ∗F [G and a K-injective complex representing F [F , we
compute that the diagram

RHomD̃(m)

X′/S
(E , F [F)⊗L

D̃(m+s)

X/S

F ∗F [G

��

F∗⊗id

∼
// RHomD̃(m+s)

X

(F ∗E , F ∗F [F)⊗L
D̃(m+s)

X/S

F ∗F [G

��
RHomD̃(m)

X′/S
(E , F [F ⊗L

D̃(m+s)

X/S

F ∗F [G)
F∗

∼
// RHomD̃(m+s)

X

(F ∗E , F ∗F [F ⊗L
D̃(m+s)

X/S

F ∗F [G).

(6.3.4.1.4)

is commutative. By putting end to end these four commutative diagrams, we obtain the commutativity
with Frobenius of the morphism of 4.6.3.6.1.

Proposition 6.3.4.2. LetM′ be a right ‹D(m)
X′/S-module, E ′ be a left ‹D(m)

X′/S-module and N ′ be a ‹D(m)
X′/S-

bimodule. The canonical ‹D(m)
X′/S-linear isomorphisms (see 4.2.4.3)

M′ ⊗D̃(m)

X′/S
(N ′ ⊗BX′ E

′)
∼−→ (M′ ⊗D̃(m)

X′/S
N ′)⊗BX′ E

′, (6.3.4.2.1)

M′ ⊗BX′ (N ′ ⊗D̃(m)

X′/S
E ′) ∼−→ (M′ ⊗BX′ N

′)⊗D̃(m)

X′/S
E ′, (6.3.4.2.2)

are compatible with Frobenius.
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Proof. To prove the compatibility with Frobenius of 6.3.4.2.1, first let us check that the following canon-
ical diagram

F [[M′ ⊗D̃(m)

X′/S
(N ′ ⊗BX′ E

′)] ∼
//

∼ 6.3.4.2.1��

M′ ⊗D̃(m)

X′/S
F [(N ′ ⊗BX′ E

′) ∼
6.2.2.1.2 //M′ ⊗D̃(m)

X′/S
(F [N ′ ⊗BX F ∗E ′)

∼
��

F [[(M′ ⊗D̃(m)

X′/S
N ′)⊗BX′ E

′] ∼
6.2.2.1.2// F [(M′ ⊗D̃(m)

X′/S
N ′)⊗BX F ∗E ′ ∼

// (M′ ⊗D̃(m)

X′/S
F [N ′)⊗BX F ∗E ′,

(6.3.4.2.3)
where the right vertical morphism is constructed similarly to 6.3.4.2.1, is commutative. For this purpose,
let m′ be a local section ofM′, n′ of N ′, e′ of E ′ and θ of HomOX′ (OX ,OX′). The composite morphism
of the top of the diagram 6.3.4.2.3 sends the section [m′ ⊗ (n′ ⊗ e′)]⊗ θ on m′⊗ [(n′⊗ θ)⊗ (1⊗ e′)] ; the
right one sends m′⊗ [(n′⊗ θ)⊗ (1⊗ e′)] on [m′⊗ (n′⊗ θ)]⊗ (1⊗ e′) ; the left one sends [m′⊗ (n′⊗ e′)]⊗ θ
on [(m′⊗n′)⊗ e′]⊗ θ and finally that bottom sends [(m′⊗n′)⊗ e′]⊗ θ on [m′⊗ (n′⊗ θ)]⊗ (1⊗ e′). The
diagram 6.3.4.2.3 is then commutative.

Next, via (the inverse of) the canonical isomorphism φ : F [‹D(m)
X′/S ⊗D̃(m+s)

X

F ∗‹D(m)
X′/S

∼−→ ‹D(m)
X′/S , we

check by a computation (we write the image of 1 by φ−1 etc.) the commutativity of the diagram below

M′ ⊗D̃(m)

X′/S
(F [N ′ ⊗BX F ∗E ′) ∼

//

∼
��

F [M′ ⊗D̃(m+s)

X

(F ∗F [N ′ ⊗BX F ∗E ′)

∼ 6.3.4.2.1
��

(M′ ⊗D̃(m)

X′/S
F [N ′)⊗BX F ∗E ′ ∼

// (F [M′ ⊗D̃(m+s)

X

F ∗F [N ′)⊗BX F ∗E ′.

(6.3.4.2.4)

By composing 6.3.4.2.3 and 6.3.4.2.4, we obtain the diagram meaning that the isomorphism 6.3.4.2.1 is
compatible with Frobenius.

Concerning the second isomorphism of the proposition, we proceed in a similar way

Remark 6.3.4.3. The propositions 6.3.2.2 and 4.3.5.9 allow in the propositions of this section, to replace
“left ‹D(m)

X -module(s)” by “right ‹D(m)
X -module(s)”, and conversely.

Proposition 6.3.4.4. Let E ′ ∈ D(l‹D(m)
X′/S), N ′ ∈ D(l‹D(m)

X′/S ,
‹D(m)
X′/S

r), M′ ∈ D(‹D(m)
X′/S

r). The following

isomorphisms of D(r‹D(m)
X′/S)

M′ ⊗L
D̃(m)

X′/S

(N ′ ⊗L
BX′ E

′)
∼−→ (M′ ⊗L

D̃(m)

X′/S

N ′)⊗L
BX′ E

′, (6.3.4.4.1)

M′ ⊗L
BX′ (N ′ ⊗L

D̃(m)

X′/S

E ′) ∼−→ (M′ ⊗L
BX′ N

′)⊗L
D̃(m)

X′/S

E ′, (6.3.4.4.2)

are compatible with Frobenius.

Proof. By choosing K-flat complexes representing E ′ and N ′, this is a consequence of 6.3.4.2.2 and
6.3.4.2.1.

Proposition 6.3.4.5 (Switching B and ‹D). Let M′ be a ‹D(m)
X′/S-bimodule, E ′,F ′ be two left ‹D(m)

X′/S-

modules. The functorial in E ′, F ′,M′ canonical isomorphism of left ‹D(m)
X′/S-modules (see 4.2.6.1):

(M′ ⊗BX′ E
′)⊗D̃(m)

X′/S
F ′ ∼−→ M′ ⊗D̃(m)

X′/S
(E ′ ⊗BX′ F

′), (6.3.4.5.1)

is compatible with Frobenius.

Proof. This is obvious by functoriality of 4.2.6.1.

Corollary 6.3.4.6. LetM′ be a complex of D(l‹D(m)
X′/S ,

r‹D(m)
X′/S), E ′ and F ′ be two complexes of D(l‹D(m)

X′/S).

The canonical isomorphism in D(l‹D(m)
X′/S) is compatible with Frobenius :

(M′ ⊗L
BX′ F

′)⊗L
D̃(m)

X′/S

E ′ ∼−→ M′ ⊗L
D̃(m)

X′/S

(F ′ ⊗L
BX′ E

′). (6.3.4.6.1)
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Proof. By using K-flat resolutions, this is a consequence of 6.3.4.5.

Proposition 6.3.4.7. Let E ′ and G′ be two left ‹D(m)
X′/S-modules and F ′ be a ‹D(m)

X′/S-bimodule. The

canonical ‹D(m)
X′/S-linear morphism (see 4.2.4.9)

HomlD̃(m)

X′/S
(E ′,F ′)⊗BX′ G

′ → HomlD̃(m)

X′/S
(E ′,F ′ ⊗BX′ G

′), (6.3.4.7.1)

is compatible with Frobenius.

Proof. The morphism was constructed at 4.2.4.9. By construction, this is the composite of three mor-
phisms. Proceeding similarly to the proof of 6.3.4.1(iii) (we remove R and L), we prove that the second
morphism is compatible with Frobenius. For the two other ones, this is a consequence of 6.3.4.2.1.

Corollary 6.3.4.8. Let E ′ ∈ D(l‹D(m)
X′/S) F ′ ∈ D(l‹D(m)

X′/S ,
‹D(m)
X′/S

r) and G′ ∈ D(l‹D(m)
X′/S). There exists a

compatible with Frobenius canonical morphism in D(‹D(m)
X′/S

r) of the form

RHomlD̃(m)

X′/S
(E ′,F ′)⊗L

BX′ G
′ → RHomlD̃(m)

X′/S
(E ′,F ′ ⊗L

BX′ G
′). (6.3.4.8.1)

The morphism 6.3.4.8.1 is an isomorphism when E ′ ∈ Dperf(
l‹D(m)
X′/S).

Proof. Choosing a K-injective complex representing F ′ and a K-flat complex representing G′, this is a
consequence of 6.3.4.7.

Proposition 6.3.4.9. Let E ′, F ′, G′ be three left ‹D(m)
X′/S-modules. The canonical ‹D(m)

X′/S-linear isomor-
phism (see ??).

HomBX′ (E
′ ⊗BX′ F

′,G′) ∼−→ HomBX′ (E
′,HomBX′ (F

′,G′)), (6.3.4.9.1)

is compatible with Frobenius.

Proof. Let us denote by θ the isomorphisms of the form 6.3.4.9.1. The compatibility with Frobenius of
θ means that the canonical diagram

F ∗[HomBX′ (E
′ ⊗BX′ F

′,G′)] F∗θ
∼

//

∼ 6.2.2.2.1��

F ∗[HomBX′ (E
′,HomBX′ (F

′,G′))]
∼ 6.2.2.1.1��

HomBX (F ∗(E ′ ⊗BX′ F
′), F ∗G′)

∼ 6.2.2.1.1��

HomBX (F ∗E ′, F ∗HomBX′ (F
′,G′))

∼ 6.2.2.2.1��
HomBX (F ∗E ′ ⊗BX F ∗F ′, F ∗G′)

θ
∼
// HomBX (F ∗E ′,HomBX (F ∗F ′, F ∗G′))

is commutative. This is checked by a computation : for any b0 ∈ BX , for any φ ∈ HomBX′ (E
′⊗BX′F

′,G′),
the image of b0 ⊗ φ into the right bottom term via by both possible paths is b1 ⊗ e′ 7→ (b2 ⊗ f ′ 7→
b0b1b2 ⊗ φ(e′ ⊗ f ′)), where b1, b2 ∈ BX , e′ ∈ E ′ and f ′ ∈ F ′.

Corollary 6.3.4.10 (Cartan isomorphism). Let E ′ ∈ D(l‹D(m)
X′/S), F ′ ∈ D(l‹D(m)

X′/S) and G′ ∈ D(l‹D(m)
X′/S).

The canonical isomorphism of D(l‹D(m)
X′/S) (see 4.6.6.6)

RHomBX′ (E
′ ⊗L
BX′ F

′,G′) ∼−→ RHomBX′ (E
′,RHomBX′ (F

′,G′)),

is compatible with Frobenius.

Proof. By construction (see the proof of 4.6.6.6), this is a consequence of 6.3.4.9.

Proposition 6.3.4.11. Let E ′, F ′, G′ be three left ‹D(m)
X′/S-modules. The canonical ‹D(m)

X′/S-linear mor-
phism (see 4.2.4.8) :

HomBX′ (E
′,F ′)⊗BX′ G

′ → HomBX′ (E
′,F ′ ⊗BX′ G

′) (6.3.4.11.1)

is compatible with Frobenius.
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Proof. Let us denote by θ the morphisms of the form 6.3.4.11.1. We have to establish the commutativity
of the diagram below

F ∗[HomBX′ (E
′,F ′)⊗BX′ G

′] ∼
6.2.2.1.1//

F∗(θ)
��

F ∗HomBX′ (E
′,F ′)⊗BX F ∗G′ ∼

6.2.2.2.1// HomBX (F ∗E ′, F ∗F ′)⊗BX F ∗G′

θ��
F ∗[HomBX′ (E

′,F ′ ⊗BX′ G
′)] ∼

6.2.2.2.1// HomBX (F ∗E ′, F ∗(F ′ ⊗BX′ G
′)) ∼

6.2.2.1.1// HomBX (F ∗E ′, F ∗F ′ ⊗BX F ∗G′).

For this purpose, we compute that for any b0 ∈ BX , φ ∈ HomBX′ (E
′,F ′), g′ ∈ G′, the section b0⊗ φ⊗ g′

is sent for both paths on (b1 ⊗ e′ 7→ b0b1 ⊗ φ(e′)⊗ (1⊗ g′)), with b1 ∈ BX , e′ ∈ E ′ and g′ ∈ G′.

Proposition 6.3.4.12. Let E ′ ∈ D(‹D(m)
X′/S), F ′ ∈ D(‹D(m)

X′/S) and G′ ∈ D(‹D(m)
X′/S). The canonical

homomorphism of D(‹D(m)
X′/S) (see 4.6.6.7) :

RHomBX′ (E
′,F ′)⊗L

BX′ G
′ → RHomBX′ (E

′,F ′ ⊗L
BX′ G

′). (6.3.4.12.1)

is compatible with Frobenius. If E ′ is moreover in Dperf(BX′), this morphism is an isomorphism.

Proof. By construction of 6.3.4.12.1, this is a consequence of 6.3.4.11.

Proposition 6.3.4.13. Let E ′, F ′ and G′ three left ‹D(m)
X′/S-modules. Suppose the structure of ‹D(m)

X′/S-

module of E ′, F ′ or G′ extends to a structure of ‹D(m)
X′/S-bimodule or left bimodule. Then the canonical

the ‹D(m)
X′/S-linear isomorphism (see 4.2.4.5)

HomD̃(m)

X′/S
(E ′ ⊗BX′ F

′, G′) ∼−→ HomD̃(m)

X′/S
(E ′, HomBX′ (F

′, G′)). (6.3.4.13.1)

is compatible with Frobenius.

Proof. Suppose G′ extends to a structure of ‹D(m)
X′/S-bimodule. Since OX is locally free on OX′ , the

morphism F [HomBX′ (F
′, G′) → HomBX′ (F

′, F [G′) is an isomorphism. We easily compute that the
following diagram

F [HomD̃(m)

X′/S
(E ′ ⊗BX′ F

′, G′)

∼
��

F [ρ
(m)

X′ // F [HomD̃(m)

X′/S
(E ′, HomBX′ (F

′, G′))

∼
��

HomD̃(m)

X′/S
(E ′ ⊗BX′ F

′, F [G′)
ρ

(m)

X′ //

F∗∼ ��

HomD̃(m)

X′/S
(E ′, HomBX′ (F

′, F [G′))

F∗∼ ��
HomD̃(m+s)

X

(F ∗(E ′ ⊗BX′ F
′), F ∗F [G′) ∼ //

∼6.2.2.1.1 ��

HomD̃(m+s)

X

(F ∗E ′, F ∗HomBX′ (F
′, F [G′))

∼
��

HomD̃(m+s)

X

(F ∗E ′ ⊗BX F ∗F ′, F ∗F [G′)
ρ

(m+s)

X/S// HomD̃(m+s)

X

(F ∗E ′, HomBX′ (F
∗F ′, F ∗F [G′)).

(6.3.4.13.2)
is commutative, which yields the desired compatibility with Frobenius. The other cases are checked using
similar computations.

Corollary 6.3.4.14. Let ∗ ∈ {r, l}, E ′ ∈ D(l‹D(m)
X′/S), F ′ ∈ D(l‹D(m)

X′/S) and G′ ∈ D(l‹D(m)
X′/S ,

∗‹D(m)
X′/S). The

isomorphism of D(∗‹D(m)
X′/S) (see 4.6.6.5)

RHomD̃(m)

X′/S
(E ′

L
⊗BX′ F

′,G′) ∼−→ RHomD̃(m)

X′/S
(E ′,RHomBX′ (F

′,G′))

is compatible with Frobenius
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Proof. Similarly to 4.6.6.5, by using a K-flat complex of left ‹D(m)
X′/S-modules representing F ′ and a

K-injective complex of right (resp. left if ∗ = l) ‹D(m)
X′/S-bimodules representing G′, this follows from

6.3.4.13.

Proposition 6.3.4.15. Let F ∈ Db(‹D(m)
X ). The following assertions hold. The canonical morphism of‹D(m)

X -modules (see 4.6.7.1) is compatible with Frobenius:

RHomD̃(m)

X

(BX , ‹D(m)
X ⊗OX ω−1

X )⊗L
BX RHomBX (F , BX)→ RHomD̃(m)

X

(F , ‹D(m)
X ⊗OX ω−1

X ).

Proof. By construction (see the proof of 4.6.7.1), its compatibility with Frobenius follows from 6.3.4.8,
6.3.3.2.2, 6.3.4.12, 6.3.4.14
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Chapter 7

Completed sheaves of differential
operators of level m

This chapter is mostly based on the unpublished notes of Berthelot.

7.1 Derived category of projective systems

7.1.1 Projective and inductive systems, projective and inductive limits
Let us recall some terminology and notation.

Definition 7.1.1.1. Let I be a small category, C be a category.

1. An inductive system of objects of C indexed by I is a covariant functor of the form I → C. We
denote by CI the category of inductive system indexed by I.

2. A projective system of objects of C indexed by I is a contravariant functor of the form I→ C. In
other words, a projective system indexed by I is an inductive system indexed by Iop, the opposite
category of I. We denote by CI be the category of projective system indexed by I. By definition,
we have the equality CI = CIop

.

7.1.1.2. Let I be a small category, C be a category. We denote by cI : C→ CI the functor which sends an
object X of C to the constant object of CI with value X and identity of X as transition maps. Similarly,
we have the functor cI : C→ CI. Let F ∈ CI (resp. G ∈ CI).

When the left (resp. right) covariant functors C→ Sets

Y 7→ HomCI(F, cI(Y )), Y 7→ HomCI
(G, cI(Y )), (7.1.1.2.1)

is representable, we say that the inductive limits of F (resp. G) exists and the object of C representing
this functor is denoted by lim−→ F (resp. lim−→ G) or lim−→i∈I F (i) (resp. lim−→i∈Iop

G(i)). Let us explain a bit
why “op” appears in the respective notation. Via the equality CI = CIop , we can view F as on object of
CIop that we will denote by F ? to avoid confusion. We get lim−→i∈I F (i) = lim−→i∈I F

?(i), which justifies
our notations. In order to avoid confusion, we will consider inductive limits for inductive systems by
default.

When the left (resp. right) contravariant functors C→ Sets

X 7→ HomCI(cI(X), F ), X 7→ HomCI
(cI(X), G), (7.1.1.2.2)

is representable, we say that the projective limits of F (resp. G) exists and the object of C representing
this functor is denoted by lim←− F (resp. lim←− G) or lim←−i∈Iop

F (i) (resp. lim←−i∈I G(i)).
Via the equality CI = (Cop)Iop , we can view G as on object of (Cop)Iop that we will denote by Gop.

Remark we get lim←−G = lim−→Gop.
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7.1.2 Topos of projective systems of sheaves on a topological spaces
The topoi that we will use in the book are essentially that considered in 7.1.2.1.

Notation 7.1.2.1. Let I be a partially ordered set and let X be a topological space.

1. We denote by Cat(I) the category defined as follows: the objects of Cat(I) are the elements i ∈ I
and for any i, j ∈ I, the set of homomorphisms from i to j has only one element if i ≤ j and is
empty otherwise. We denote by I\ the site (see definition [Sta22, 00VH-7.6.2]), whose underlying
category is Cat(I) and whose topology is the chaotic topology (i.e. the collection of coverings of
an object i ∈ I is {idi : i → i}). By abuse of notation, if there is no ambiguity, we might write I
instead of Cat(I) or I\. We denote by Io the partially ordered set equal to I as a set but equipped
with the ordering opposite to that of I. We get Cat(Io) = Cat(I)op.

2. As in [Sta22, 00VJ-7.6.4]), we denote by XZar the category whose objects consist of all the open
sets U in X and whose morphisms are just the inclusion maps. That is, there is at most one
morphism between any two objects in XZar. We still denote by XZar the site whose underlying
category is XZar and whose covering are families of morphisms {Ul → U}l∈L of XZar such that
∪l∈LUl = U (i.e. coverings are by definition open coverings).

3. We denote by I\ ×XZar the site whose underlying category is Cat(I)×XZar and whose covering
are families of morphisms {(i, Uλ)→ (i, U)}λ∈Λ of Cat(I)×XZar such that ∪λ∈ΛUλ = U .

4. We have the equality PSh(I\) = Sh(I\) and PSh(I\) is equal to the category of projective systems
in Set indexed by I, i.e. to the category of functors Cat(I)op → Set. Moreover, PSh(I\ × XZar)
(resp. Sh(I\×XZar)) is equal to the category of projective systems in PSh(XZar) (resp. Sh(XZar))
indexed by I i.e. to the category of functors Cat(I)op → PSh(XZar) (resp. Cat(I)op → Sh(XZar)).
An object of Sh(I\ ×XZar) is written F• or (Fi)i∈I . We set

Top(X) := Sh(XZar), Top(X)I := Sh(I\ ×XZar).

Even if most of the results are still valid for any topos, we will restrict in this book our attention
only topos of the form Top(X)I . Such topos can be called I-topos or Io-topos.

Definition 7.1.2.2. Let u : I → I ′ be an increasing map of partially ordered sets. For i′ ∈ I ′ denote by
Ii′ the ordered subset of I consisting of i such that u(i) ≤ i′ and by Ii

′
the subset of I consisting of i

such that u(i) ≥ i′.

1. We say that u is “filtered” (resp. “cofiltered”) when Ii′ is directed (resp. (Ii
′
)o is directed), i.e.

Cat(Ii′) is filtered (resp. Cat(Ii
′
) is cofiltered (see definition [KS06, 3.1.1]).

2. We say u is “cofinal” if Ii
′
is non-empty for all i′ ∈ I ′.

Remark 7.1.2.3. Let u : I → I ′ be an increasing map of partially ordered sets. By convention, if u is
cofiltered then u is cofinal. Moreover, let uo : Io → I ′o be the increasing map induced by u. From uo, we
define such as 7.1.2.2 the partially ordered sets (Io)i′ and (Io)i

′
for any i′ ∈ I ′. For i′ ∈ I ′, we have the

equalities
(Io)i′ = (Ii

′
)o (Io)i

′
= (Ii′)

o. (7.1.2.3.1)

Hence, u is filtered if and only if uo : Io → I ′o is cofiltered. Finally, when I ′ has only one element, then
u is filtered (resp. cofiltered) if and only if I is filtered (resp. cofiltered).

7.1.2.4 (Varying I). Let u : I → I ′ be an increasing map of partially ordered sets. The canonical
functor uX : I\ ×XZar → I ′\ ×XZar given by (i, U) 7→ (u(i), U) is cocontinuous (see definition [Sta22,
00XJ-7.20.1]). Hence we get the morphism of topos

uX = (u−1
X a uX∗) : Top(X)I → Top(X)I′ (7.1.2.4.1)

induced by uX (see [Sta22, 00XO-7.21.1]). For any F ′• ∈ Top(X)I′ , for any i ∈ I, we have u−1
X (F ′•)i =

F ′u(i). For any F• ∈ Top(X)I , for any i′ ∈ I ′ we have

uX∗(F•)i′ = lim←−
u(i)≤i′

Fi,
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where the projective limit is that of the functor Cat(Ii′)
op → Sh(XZar) induced by F•.

Since uX is continuous we have a left adjoint uX! of u−1
X . We compute for any F• ∈ Top(X)I that

uX!(F•)i′ = lim−→
u(i)≥i′

Fi, (7.1.2.4.2)

where the inductive limit is that of the inductive system Cat((Ii
′
)o)→ Sh(XZar) induced by F•.

Beware that uX! is not necessarily exact. Indeed, suppose there exists an i′ ∈ I ′ such that Ii′ is
empty. Denoting by e and e′ the final object (i.e. the projective limit indexed by the empty set) of
respectively Top(X)I and Top(X)I′ , then we do not have uX!(e) = e′. This means that the adjoint pair
(uX! a u−1

X ) do not induce a morphism of topos Top(X)I′ → Top(X)I .
When u is cofiltered, it follows from [KS06, 3.1.6] that the functor uX! commutes with finite projective

limits. Hence, uX! is exact and we get the morphism of topos

ŭX = (uX! a u−1
X ) : Top(X)I′ → Top(X)I , (7.1.2.4.3)

i.e. ŭ−1
X = uX!, ŭX∗ = u−1

X .

Notation 7.1.2.5. Let I ′ := {∗} be some one element set. Let I be a partially ordered set, u : I → {∗}
be the map. Since I ′\ × XZar is equivalent to the site XZar, by identifying Top(X) with Top(X){∗},
then the morphism of 7.1.2.4.1 is denoted in this case

←lX,I = (←l
−1
X,I
a←lX,I∗) : Top(X)I → Top(X). (7.1.2.5.1)

We have←l
−1
X,I

(F)i = F for any F ∈ Top(X) and any i ∈ I ; transition morphisms are the identities.
Moreover, for any F• ∈ Top(X)I we have

←lX,I∗(F•) = lim←−
i

Fi,

where the projective limit is that of the functor Cat(I)op → Sh(XZar) induced by the object F•.

Remark 7.1.2.6. Suppose I is a filtered set and J ⊂ I is a cofinal subset. Let u : J → I the corresponding
map. Then, with notation 7.1.2.4.1 and 7.1.2.5, we get the isomorphism←lX,J∗ ◦ u

−1
X

∼−→←lX,I∗.

Notation 7.1.2.7. Let I ′ := {∗} be some one element set. Let I be a partially ordered set. Fix i ∈ I
and let i : I ′ → I be the map sending ∗ to i. Since I ′\×XZar is equivalent to the site XZar, by identifying
Top(X) with Top(X){∗}, then the morphism of 7.1.2.4.1 is denoted in this case

iX = (i−1
X a iX∗) : Top(X)→ Top(X)I . (7.1.2.7.1)

We have i−1
X (F•) = Fi for any F• ∈ Top(X)I and we compute

(iX∗(F))j =

®
F if j ≥ i
e otherwise

, (iX!(F))j =

®
F otherwise
∅ if j > i

(7.1.2.7.2)

where e (resp. ∅) is the final (resp. initial) object of Top(X) for any F ∈ Top(X).

Notation 7.1.2.8. Let I be a partially ordered set and i ∈ I. With notation 7.1.2.18, the morphism of
7.1.2.4.1 is in this case where u is the morphism ui : I≤i → I induces the morphism of topos

ui,X = (u−1
i,X a ui,X∗) : Top(X)I≤i → Top(X)I , (7.1.2.8.1)

which is a localization morphism. For any F• ∈ Top(X)I , u−1
i,X(F•) is the projective system (Fj)j≤i

induced by restriction. For any F ′• ∈ Top(X)I≤i , we have also

(ui,X∗(F ′•))j =

®
F ′j if j ≥ i
e otherwise

, (ui,X!(F ′•))j =

®
F ′j if j ≤ i
∅ otherwise

(7.1.2.8.2)

where e (resp. ∅) is the final (resp. initial) object of Top(X).
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7.1.2.9 (Varying X). Let I be partially ordered set and f : X → X ′ be a continuous map of topological
spaces. We have the topos morphism

fI = (f−1
I a fI∗) : Top(X)I → Top(X ′)I (7.1.2.9.1)

defined by setting f−1
I (G•) : Io → Top(X) is the functor i 7→ f−1Gi and fI∗(F•) : Io → Top(X) is the

functor i 7→ f∗Fi.

7.1.2.10. Let u : I ′ → I be an increasing map of partially ordered sets. Let f : X → X ′ be a continuous
map of topological spaces. Then we get the equality fI ◦uX = uX′ ◦fI′ as morphism of topos Top(X)I →
Top(X ′)I′ . In particular, for any i ∈ I, wet get fI ◦ iX = iX′ ◦ f , where f : Top(X) → Top(X ′) is the
morphism of topos induced by f .

7.1.2.11. This is not clear that the topos Sh(I\) is algebraic (in the sense of [SGA4.2, VI.2.3]). We will
describe when this is the case in 7.1.2.15 thanks to the equivalence of topoi 7.1.2.13.1. However, in the
special case below, we can check it without using the equivalence of topoi 7.1.2.13.1.

(a) Any objects of the site I\ is quasi-compact (in the site sense of [SGA4.2, VI.1.1]). Let us denote by
ε : Cat(I)→ Sh(I\) the canonical functor (see [SGA4.1, II.4.4.0]), which is fully faithful (because the
topology of Cat(I) is subcanonical) and commutes with projective limits. Let ε(I) be the essential
image of ε. Then following [SGA4.2, VI.1.2] the objects of ε(I) are quasi-compact.

(b) Suppose I satisfies one of the following equivalent properties:

(i) For any i, j ∈ I, the set {k ∈ I such that k ≤ i, k ≤ j} has a greatest element that we denote
by inf{i, j}.

(ii) The fibered products in Cat(I) exists.

(iii) The subsets I≤i with i ∈ I are closed under intersection.

Then ε(I) is stable under fiber products. Since the kernels in Sh(I\) of two morphisms u, v : A→ B
such that A and B are objects of ε(I) is an object of ε(I) (because necessarily u = v by full
faithfulness of ε) and is therefore quasi-compact, then following the remark [SGA4.2, VI.2.2.1], we
get that Sh(I\) is an algebraic topos.

7.1.2.12 (Open subtopos of Top(X)I). Let I be a partially ordered set and let X be a topological space.
We describe here the opens of the site I\ ×XZar defined at 7.1.2.1.

(a) Since the topology is chaotic, a sieve of I\ is the same as a sieve of I\ of local nature. Let J be a
subset of I. Then Cat(J) (simply denoted by abuse of notation by J) is a sieve of I\ if and only if
the inclusion J → ∪j∈JI≤j is an equality. For example, the subsets I≤j with j ∈ I of I are sieves.

(b) For any (i, U) ∈ I\ × XZar, we set U≤(i,U) := {(j, V ) ∈ I\ × XZar ; j ≤ i and V ⊂ U}. This is
straightforward that U≤(i,U) is an open of the site I\ ×XZar. It corresponds to U≤(i,U) a subobject
of the final object of Sh(I\×XZar) (the construction is recalled in 4.6.2.1) which is equal to h(i,U) =

h](i,U) (we remark the topology on Sh(I\ ×XZar) is subcanonical).

(c) To get all the opens of the site I\ ×XZar, we need the following construction. Let φ : Cat(J)op →
XZar be a functor, where J is a sieve of I\. We set Uφ := ∪j∈JU≤(j,φ(j)). Since a union of opens is an
open then Uφ is an open of I\ ×XZar. We remark that for any (i, U) ∈ Ob(I\ ×XZar), we have the
property (i, U) ∈ Uφ if and only if i ∈ J and U ⊂ φ(i). Hence, for any functor ψ : Cat(J ′)op → XZar,
where J ′ is a sieve of I\, we have the inclusion Uφ ⊂ Uψ if and only if J ⊂ J ′ and for any j ∈ J ,
φ(j) ⊂ ψ(j). This yields that we have the equality Uφ = Uψ if and only if J = J ′ and φ = ψ.

For any (i, U) ∈ I\ ×XZar, we have U≤(i,U) = UcI≤i (U), where cI≤i(U) : Cat(I≤i)
op → XZar is the

constant object of Cat(I≤i)
op → XZar with value U (see 7.1.1.2).

(d) The opens of I\ × XZar correspond to the subsets of the form Uφ. Indeed, we already know that
subsets of the form Uφ are opens. Conversely, let U be an open of I\ × XZar. For any i ∈ I, let
Ei := {V ∈ XZar ; (i, V ) ∈ U}. Let J be the set of the elements i ∈ I such that Ei is not empty.
Since U is a sieve, then so is J . Since U is of local nature, by setting Ui := ∪V ∈EiV we have Ui ∈ Ei
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(in other words, Ui is the greatest element of Ei). For any i ≤ j, since (i, Uj) ≤ (j, Uj) and U
is a sieve, then we get Uj ⊂ Ui. This yields the functor φ : Cat(J)op → XZar defined by setting
φ(i) := Ui. We have U = Uφ.

7.1.2.13 (An equivalence of topoi). Let I be a partially ordered set and let X be a topological space. We
can endow I with a canonical topology as follows. We say that a subset J of I is open if J = ∪j∈JI≤j ,
i.e. Cat(J) is a sieve of I\. We easily check that this gives a topology on I. Moreover, we remark that
the subsets I≤i where i ∈ I form a basis of open subsets on I. We endow the set I ×X with the product
topology. The open subsets (I≤i, U) where i ∈ I and U is a non-empty open subset of X form a basis of
open subsets of I ×X that we will be denoted by B.

(a) The opens of I×X are described as follows. Let X ′Zar := XZar \{∅} and let φ : Cat(J)op → X ′Zar be
a functor, where J is an open of I. We set Vφ := ∪j∈J(I≤j , φ(j)) ⊂ I ×X. For any non-empty open
subset V of I ×X, there exists a unique functor φ : Cat(J)op → X ′Zar such that V = Vφ. Hence, we
get therefore an order preserving injection from the set of opens of the topogical space I ×X to the
set of opens of the site I\ ×XZar given by Vφ 7→ Uφ.
Unicity: We remark that for any (i, x) ∈ I ×X, we have the property (i, x) ∈ Vφ if and only if i ∈ J
and x ∈ φ(i). Hence, for any functor ψ : Cat(J ′)op → X ′Zar, where J

′ is an open of I, we have the
inclusion Vφ ⊂ Vψ if and only if J ⊂ J ′ and for any j ∈ J , φ(j) ⊂ ψ(j). This yields the equality
Vφ = Vψ if and only if J = J ′ and φ = ψ.
Existence: Let V be a non-empty open of I×X. For any i ∈ I, let Ei := {U ∈ X ′Zar ; (I≤i, U) ⊂ V }.
Let J be the set of the elements i ∈ I such that Ei is not empty. Then J is an open of I. By setting
Ui := ∪V ∈EiV we have Ui ∈ Ei (in other words, Ui is the greatest element of Ei). For any i ≤ j,
since I≤i ≤ I≤j , then we get Uj ⊂ Ui. This yields the functor φ : Cat(J)op → X ′Zar defined by
setting φ(i) := Ui. We have V = Vφ.

(b) We denote by (I ×X)Zar the site induced by the topological space I ×X. Let F• ∈ Top(X)I . We
get a presheaf α∗(F•) on the basis of opens subsets B of I ×X by setting α∗(F•)(I≤i, U) := Fi(U).
In fact α∗(F•) is a sheaf on the basis B, i.e. satisfies the property (F0) of [Gro60, 3.2.2]. Indeed,
let (I≤iα , Uα)α∈A be an open covering of (I≤i, U). We remark that (I≤i, Uα)α∈A′ is also an open
covering of (I≤i, U), where A′ is the subset of A consisting of the elements α such that iα = i.
Hence, to check the property (F0) of [Gro60, 3.2.2] it is sufficient to reduce to the case where the
open covering of (I≤i, U) is of the form (I≤i, Uα)α∈A′ . Then, we can check the property (F0) by
using the fact that Fi is a sheaf on X. We still denote by α∗(F•) the induced sheaf on (I ×X)Zar.
We get the morphism of topoi

α : Top(X)I → Sh((I ×X)Zar) = Top(I ×X), (7.1.2.13.1)

where α∗ is the functor constructed above and for any F ∈ Sh((I ×X)Zar), we define α−1(F) := F•
so that Fi is the sheaf on X defined by setting Fi(U) := F(I≤i, U) for any i ∈ I and open set U of
X, the transition maps Fj(U)→ Fi(U) are given by the restriction map F(I≤j , U)→ F(I≤i, U) for
any i ≤ j. Since α−1 ◦ α∗ = id and α∗ ◦ α−1 = id, this is in fact an equivalence of topoi.

7.1.2.14 (Finiteness properties). Let X be a topological space.

(a) Following [SGA4.2, VI.1.2 and 1.6.1], for any open U of X, U is quasi-compact if and only if hU is a
quasi-compact object of the topos Top(X), where U 7→ hU is the canonical functor XZar → Top(X).
Moreover, a sheaf F of Top(X) is quasi-compact if and only if the étale space over X associated with
F is quasi-compact (loc. cit.). Let f : X → Y be a continuous morphism of topological spaces. With
[SGA4.1, IV.4.1.1], this yields that the topos morphism Top(f) : Top(X)→ Top(Y ) is quasi-compact
(see definition [SGA4.2, VI.3.1]) if and only if f is quasi-compact.

(b) The topological space X is said to be coherent (in the sense of [FK18, 0.2.2.1]) if X has an open
basis consisting of quasi-compact open subsets and X is quasi-compact and quasi-separated. The
topological spaceX is said to be locally coherent (in the sense of [FK18, 0.2.2.21]) ifX admits an open
covering by coherent subspaces. This is equivalent to saying that has an open basis B consisting of
quasi-compact open subsets such that fibered product of objects of B are quasi-compact (the objects
of B are therefore coherent). Hence, following [SGA4.2, VI.2.4.7]), Top(X) is algebraic (in the sense
of [SGA4.2, VI.2.3]) if and only if X is locally coherent.
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(c) Suppose X is locally coherent. Let C(X) be the family of open coherent subsets of X. The family
C(X) is a family of topological generators (in the sense of [SGA4.1, II.3.0.1] ). Then, it follows from
[SGA4.1, II.4.10] that the family of objects (hU )U∈C(X) is a family of generators of Top(X). Hence,
we deduce from [SGA4.2, VI.1.11], that to check that a morphism from a quasi-compact object F of
Top(X) to hX is quasi-compact, we reduce to the case where F = hU , with U ∈ C(X). Hence, hX
is quasi-separated if and only if X is quasi-separated.

(d) This yields that X is locally coherent and quasi-separated (resp. coherent) if and only if Top(X) is
quasi-separated (resp. coherent) in the sense of [SGA4.2, VI.2.3].

(e) Suppose X is locally coherent. Let F be a sheaf of Top(X). Following [SGA4.2, VI.2.4.6], the
sheaf F of Top(X) is quasi-separated (resp. coherent) if and only if the topos Top(X)/F is quasi-
separated (resp. coherent). Since Top(X)/F

∼−→ Top(F ′) where F ′ is the étale space associated with
F (see [SGA4.1, IV.5.7]), since F ′ is also locally coherent, then the object F of the topos Top(X) is
quasi-separated if and only if to the topological space F ′ is quasi-separated (coherent).

(f) Let f : X → Y be a morphism of locally coherent topological spaces. It follows from (e) (resp.
and (a)) that f is quasi-separated (resp. coherent) if and only if Top(f) : Top(X) → Top(Y ) is
quasi-separated (resp. coherent) as morphism of topoi (see definition [SGA4.2, VI.3.1]).

7.1.2.15 (Finiteness properties). Let X be a topological space. Let I be a partially ordered set. Recall
I can be naturally seen as a topological space so that the subsets I≤i where i ∈ I form a basis of open
subsets of I (see 7.1.2.13).

(a) The subsets I≤i are quasi-compact for any i ∈ I. Indeed, if I≤i = ∪α∈AJα where Jα are opens of I,
then there exists α ∈ A such that i ∈ Jα. Since Jα is a open then I≤i ⊂ Jα, and therefore I≤i = Jα.
This yields the quasi-compact open subsets of I are the finite union of subsets of the form I≤i with
i ∈ I.

(b) Suppose the topological space I is quasi-separated, i.e. suppose the intersection of two subsets of
the form I≤i with i ∈ I is quasi-compact. Then the open quasi-compact subsets of I (in particular
I≤i) are coherent (in the sense of [FK18, 0.2.2.1]) and I is therefore locally coherent as topological
space (in the sense of [FK18, 0.2.2.21]). This yields that Sh(IZar) is an algebraic topos. Hence, it
follows from the equivalence of topoi 7.1.2.13.1 that so is Sh(I\).

(c) If I is coherent, i.e., I is quasi-separated and is a finite union of subsets of the forms I≤i, then
Sh(IZar) is a coherent topos.

(d) If I is quasi-separated and X is locally coherent, then I × X is locally coherent and Top(X)I is
therefore an algebraic topos (use 7.1.2.14 and the equivalence of topoi 7.1.2.13.1).

(e) If I and X are coherent, then I ×X is coherent and Top(X)I is therefore a coherent topos.

7.1.2.16. Let X be a locally coherent topological space. Let I be a partially ordered set which is quasi-
separated for its canonical topology. Then following [SGA4.2, VI.5.3], for any integer q, for any coherent
object F of Top(X)I (i.e. following 7.1.2.14.(e), the étale space associated with F ′ is coherent), the
functor Hq(F,−) commutes with filtered inductive limits of abelian sheaves. In particular, when I ×X
is coherent, the functor Hq(X•,−) commutes with filtered inductive limits of abelian sheaves.

7.1.2.17. Let u : I → I ′ be an increasing map of partially ordered sets. Let f : X → X ′ be a continuous
map of topological spaces. We get the continuous morphism of topological spaces u × f : I × X →
I ′ × X ′, where the topologies on I and I ′ are defined at 7.1.2.13. This yields the morphism of topoi
Top(u× f) : Top(I ×X)→ Top(I ′ ×X ′).

(a) We have the commutative square

Top(X)I

7.1.2.13.1α

��

7.1.2.10

fI◦uX
// Top(X ′)I′

7.1.2.13.1α

��
Top(I ×X)

Top(u×f) // Top(I ′ ×X ′).

(7.1.2.17.1)
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Indeed, we reduce to the case where either u = id or f = id. When f = id, by using the description
of α of 7.1.2.13.(b) and of uX of 7.1.2.4, we easily compute that Top(u × id)∗ ◦ α∗ = α∗ ◦ uX∗ and
u−1
X ◦ α−1 = α−1 ◦ Top(u × id)−1. Similarly using 7.1.2.9, we compute Top(id×f)∗ ◦ α∗ = α∗ ◦ fI∗

and f−1
I ◦ α−1 = α−1 ◦ Top(id×f)−1.

(b) Suppose I, I ′ are quasi-separated and X, X ′ are locally coherent. Then the morphism of topoi
fI ◦ uX : Top(X)I → Top(X ′)I′ is quasi-separated (resp. quasi-compact, resp. coherent) if and only
if u and f are quasi-separated (resp. quasi-compact, resp. coherent). Indeed, this is a consequence
of 7.1.2.14.(f).

7.1.2.18. Let I be a partially ordered set and let X be a topological space. Let (i, U) ∈ Ob(I\×XZar).
We denote by I≤i = {j ∈ I | j ≤ i} and by ui : I≤i → I the canonical inclusion. Then we have the
commutative diagram of sites

I\≤i × UZar
∼ //

ui×jU

((

I\ ×XZar/(i, U)

j(i,U)

��
I\ ×XZar

(7.1.2.18.1)

where the top right term is the localization of the site I\×XZar at the object (i, U), j(i,U) is the forgetful
functor (see 4.6.2.3) and the horizontal morphism is an isomorphism of sites. Following 4.6.2.4.2 in the
case where C = I\ × XZar and using localisation at (i, U), since h](i,U) = U≤(i,U), then we have the
commutative diagram

Sh(I\≤i × UZar)

j(i,U) ))

∼= // Sh(I\ ×XZar/(i, U))

j(i,U)

��

∼= // Sh(I\ ×XZar)/U≤(i,U)

jU≤(i,U)tt
Sh(I\ ×XZar)

(7.1.2.18.2)

where j(i,U) : Sh(I\≤i × UZar) → Sh(I\ × XZar) is by definition the composition of the functor ui,X of
7.1.2.8.1 with the functor jU,I of 7.1.2.9.1 , where jU : U ⊂ X is the inclusion. Since jU≤(i,U)

is an open
of the site I\ ×XZar, then Sh(I\ ×XZar)/U≤(i,U) is an open subtopos of Sh(I\ ×XZar) and we get the
open immersion (see definition 4.6.2.6):

j(i,U) : Top(U)I≤i → Top(X)I . (7.1.2.18.3)

We can simply write |(i,U) the functor j−1
(i,U).

7.1.2.19 (Flasque sheaves). We keep notation 7.1.2.12 and 7.1.2.13.

(a) Let F• ∈ Top(X)I . Then the sheaf F• is flasque (see Definition [SGA4.2, V.4.10]) if and only if
α∗(F•) is flasque if and only if the restriction map α∗(F•)(U≤(j,X))→ α∗(F•)(U≤(i,U)) is surjective
for any i ≤ j and U open subset of X if and only if the map Fj(X) → Fi(U) is surjective for any
i ≤ j, for any open set U of X if and only if F• is a projective system of flasque sheaves whose
transition maps are surjective in the category of presheaves. The notion of flasque sheaves is also
called totally acyclic sheaves (see [Sta22, 072Y-21.13.4]) but we keep Grothendieck’s terminology.

(b) Let F• ∈ Top(X)I . We define the sheaf Gi on X by setting for any open set U of X:

Gi(U) :=
∏
j≤i

∏
x∈U
Fj,x. (7.1.2.19.1)

This is clear that G• is flasque and we have the canonical embedding F• ↪→ G•. We say that this is
the canonical embedding of F• into a flasque sheaf of Top(X)I .

(c) Suppose I and X are coherent. In that case, filtered inductive limits of flasque abelian sheaves of
Top(X)I are flasque. Indeed, since I × X is a coherent topological space, then Top(I × X) is a

330



coherent topos and then filtered inductive limits of abelian sheaves on I × X commute with the
functors Γ(V,−) for any open coherent subset V of I × X (see 7.1.2.16). Since the equivalence of
topoi 7.1.2.13.1 preserves the flasqueness and commutes with filtered inductive limits, then we are
done.

7.1.2.20 (Points of the topos Top(X)I). Let I be a partially ordered set, X be a topological space, i ∈ I
and x ∈ X. We get the continuous map of topological spaces fx : {x} → X. We denote by

px,i : Top({x}){i} → Top(X)I (7.1.2.20.1)

the morphism of topoi defined by setting px,i = (fx)I ◦ i{x} = i{x} ◦ fx{i} (see notation 7.1.2.7.1 and
7.1.2.9.1). Let {∗} be some one element set. Then Top({x}){i} = Top({∗}) and then the morphism of
topoi px,i of 7.1.2.20.1 can be identified with a point of the topos Top(X)I (recall definition [Sta22, 00Y4–
7.32.1]). We compute that for any G• ∈ Top(X)I , we have p−1

x,i(G•) = Gi,x and for any G ∈ Top({∗}), we
have

(px,i∗(G))j =

®
fx∗(G) if j ≥ i
e otherwise

. (7.1.2.20.2)

The family of points {px,i}x∈X,i∈I is conservative (see definition [Sta22, 00YK–7.38.1]). In particular,
Top(X)I has enough points.

7.1.2.21. Let I be a partially ordered set, let X be a topological space and T = Top(X). Let (i, U) ∈
I\ × XZar. Let E•, F• be two objects of TI . By applying the formula 4.6.2.7.2 (in the case where
K = h](i,U) and by using Yoneda lemma), with the notation of 7.1.2.18.2 we get

HomTI ((i, U),HomTI (E•, F•)) = HomTI≤i
(E•|(i,U), F•|(i,U)). (7.1.2.21.1)

With the notation 7.1.2.18, this yields the isomorphism of TI≤i

HomTI (E•, F•)|(i,U)
∼−→ HomTI≤i

(E•|(i,U), F•|(i,U)). (7.1.2.21.2)

7.1.3 Modules
Let I be a partially ordered set and let X be a topological space. Let T = Top(X). Recall an abelian
sheaf (resp. a ring) of TI is a projective system indexed by I of abelian sheaves (resp. of rings) on X.
Let D• be a ring of TI i.e. a functor Io → Top(X) denoted by i 7→ Di such that the transition maps
Dj → Di (if i ≤ j) are ring morphisms. We get the ringed topos (TI ,D•).

Notation 7.1.3.1. A left (resp. right) D•-moduleM• is a projective system i 7→ Mi indexed by I of
left (resp. right) Di-moduleMi such that the transition mapsMj →Mi are Dj-linear. We denote by
Mod(lD•) (resp. Mod(rD•)) the category of left (resp. right) D•-modules.

Let f•• : E•• → F•• be a morphism in C(∗D•). Then ker(fn• ) (resp. Coker(fn• )) is the D•-module
i 7→ ker(fni ) (resp. i 7→ Coker(fni )) with the induced by f•• transition maps. Hence, f•• is a quasi-
isomorphism of C(∗D•) if and only if for any i ∈ I the map f•i is a quasi-isomorphism of C(∗Di).

7.1.3.2. For any i ∈ I, with the notation 7.1.2.7,since i−1
X (D•) = Di then we get (from the morphism of

topos of 7.1.2.7.1) the morphism of ringed topoi

iX = (i−1
X a iX∗) : (T,Di)→ (TI ,D•),

which is such that the (exact) functor i∗X : Mod(D∗•) → Mod(∗Di), with ∗ ∈ {l, r} is given for any
E• ∈ Mod(∗D•) by i∗X(E•) = i−1

X (E•) = Ei. The functor i∗X has a left adjoint iX! : Mod(D∗i )→ Mod(D∗•)
which is such that for any F ∈ Mod(D∗i ) we have

(iX!(F))j =

®
Dj ⊗Di F if j ≤ i
0 otherwise.

(7.1.3.2.1)
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7.1.3.3. Fix i ∈ I and U an open subset of X. Using the open immersion j(i,U) of 7.1.2.18.3, we get the
morphism of ringed topoi

j(i,U) : (Top(U)I≤i ,D•|(i,U))→ (Top(X)I ,D•) (7.1.3.3.1)

which is such that the (exact) functor j∗(i,U) : Mod(∗D•) → Mod(∗D•|(i,U)), with ∗ ∈ {l, r} is given for
any E• ∈ Mod(∗D•) by j∗(i,U)(E•) = j−1

(i,U)(E•) = (Ej |U )j≤i. We can also simply write E•|(i,U)) = j∗(i,U)(E•).
By definition, we have j(i,U) = ui,X ◦ jU,I , were ui,X is the functor defined at 7.1.2.8.1 and jU,I is the
functor defined at 7.1.2.9.1 , where jU : U ⊂ X is the inclusion. Hence, we compute that the functor j∗(i,U)

has a left adjoint j(i,U)! : Mod(∗D•|(i,U)) → Mod(∗D•) which is such that for any F• ∈ Mod(∗D•|(i,U))
we have

(j(i,U)!(F•))j =

®
jU !(Fj) if j ≤ i
0 otherwise.

(7.1.3.3.2)

Modulo the equivalence of topoi 7.1.2.13.1, the functor j(i,U)! corresponds to the extension by zero via
the open immersion I≥i × U ⊂ I ×X (for the canonical topology).

Definition 7.1.3.4. Let E•• ∈ K(lD•). We recall the following definition in our context (see the general
one at [SGA6, I.5.2] or in the commutative case at [Sta22, 08FZ-21.44.1]).

1. Let a, b ∈ Z with a ≤ b. We say E•• has tor-amplitude in [a, b] if Hi(M• ⊗L
D• E

•
• ) = 0 for all right

D•-modulesM• and all i 6∈ [a, b].

2. We say E•• has finite tor dimension if it has tor-amplitude in [a, b] for some integers a ≤ b. We denote
by Dtdf(D•) the full subcategory of Db(lD•) consisting of complexes having finite tor dimension
on D•.

3. We say E•• locally has finite tor dimension if for every object (i, U) of I\ × XZar there exists a
covering {(i, Uλ) → (i, U)}λ∈Λ such that E•• |(i,Uλ) has finite tor dimension and for each λ ∈ Λ.
Remark that when I has a greatest element and the topological space X is quasi-compact, the
complex E•• locally has finite tor dimension if and only if E•• has finite tor dimension.

Lemma 7.1.3.5. Let E•• ∈ K(lD•). Let a, b ∈ Z with a ≤ b. The following properties are equivalent.

1. The complex E•• has tor-amplitude in [a, b].

2. For any i ∈ I and x ∈ X, the complex p−1
x,i(E•• ) (see notation 7.1.2.20) has tor-amplitude in [a, b].

Proof. This is a consequence of the fact that Top(X)I has enough points (see 7.1.2.20) and [Sta22,
0DJJ-21.44.10]

7.1.3.6. We denote by Z• the sheaf of ring of TI equal to the constant projective system indexed by I
equal to the sheaf on X associated to Z. Let E•• ∈ K(lD•). By definition, the complex E•• is K-flat is for
any acyclic complexM•• ∈ K(rD•), the complexM•• ⊗D• E•• of K(Z•) is acyclic.

Since a complex G•• of K(Z•) (resp. K(D•)) is acyclic if and only if the complex G•i of K(Z) (resp.
K(Di)) is acyclic for any i ∈ I, then a complex E•• ∈ K(lD•) is K-flat if and only if the complexes
E•i ∈ K(lDi) are K-flat for any i ∈ I. Similarly, a left D•-module E• is flat if and only if the left
Di-module Ei are flat for any i ∈ I. Hence, for any E•• ∈ D(lD•),M•• ∈ D(rD•), we have(

M•• ⊗L
D• E

•
•
)
i

∼−→ M•i ⊗L
Di E

•
i . (7.1.3.6.1)

Let E•• ∈ D(lD•). It follows from 7.1.3.6.1 that E•• has tor-amplitude in [a, b] over D• if and only if for
any i ∈ I the complex E•i has tor-amplitude in [a, b] over Di.

7.1.3.7. Let M• be a left (resp. right) D•-module. We remind the following definition (see [Sta22,
03DE-18.17.1]).

(a) M• is “generated by finitely many global sections” means that there exists a surjective morphism in
Mod(∗D•) of the form

DN• →M•,

for some positive integer N .
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(b) Moreover, M• has “a global presentation” (resp. “a global finite presentation”, resp. is “free”, resp.
is “finite free”) means that there exists an exact sequence in Mod(∗D•) of the form

⊕i∈ID• → ⊕j∈JD• →M• → 0,

for some sets I and J (resp. some finite sets I and J , resp. I is the empty set and J is a set, resp.
I is the empty set and J is a finite set).

When I has a greatest element i0,M• is generated by finitely many global sections (resp. has global
presentation, resp. has global finite presentation, resp. is free, resp. is finite free) if and only if the Di0 -
moduleMi0 is generated by finitely many global sections (resp. has global presentation, resp. has global
finite presentation, resp. is free, resp. is finite free) and if for any i ∈ I the canonical homomorphism
Di ⊗Di0 Mi0 →Mi is surjective (for the other respective cases, is an isomorphism).

When I has only one element, we retrieve usual finiteness notion on sheaves on a topological space.

Except the notion of quasi-coherent which is called here “having local presentation”, with 7.1.2.18.2,
we follow the definitions of [Sta22, 03DL-18.23.1]) (see also [Sta22, 04IX-18.19.1] for the notation): M• is
a D•-module of finite type (resp. has local presentation, resp. is of finite presentation, resp. is locally free,
resp. is locally finite free) if for any object (i, U) ∈ I\×XZar, there exists a covering {(i, Uλ)→ (i, U)}λ∈Λ

such that for any λ ∈ Λ the D•|(i,Uλ)-moduleM•|(i,Uλ) on the site I\≤i × Uλ,Zar is generated by finitely
many global sections (resp. has global presentation, resp. has global finite presentation, resp. is free,
resp. is finite free).

Proposition 7.1.3.8. LetM• be a left (resp. right) D•-module. ThenM• is a D•-module of finite type
(resp. has local presentation, resp. is of finite presentation, resp. is locally free, resp. is locally finite
free) if and only if the following two properties are satisfied:

1. For any i ∈ I, Mi is a Di-module of finite type (resp. has local presentation, resp. is of finite
presentation, resp. is locally free , resp. is locally free of finite type)

2. For any i, j ∈ I such that j ≤ i, the canonical homomorphism Dj ⊗Di Mi → Mj is surjective
(resp. is an isomorphism).

Proof. Since the other cases are similar, let us prove the non-respective one. Let (i, U) ∈ I\ × XZar.
There exists a covering {(i, Uλ) → (i, U)}λ∈Λ such that for any λ ∈ Λ the D•|(i,Uλ)-module M•|(i,Uλ)

on the site I\≤i × Uλ,Zar is generated by finitely many global sections. Since i is the greatest element of
I≤i, then it follows from 7.1.3.7 that the D•-moduleM• is of finite type if and only if for any j ≤ i, for
any open U of X, there exists an open covering {Uλ}λ∈Λ of U such that the canonical homomorphism
Dj ⊗DiMi|Uλ →Mj |Uλ is surjective. Hence, we are done.

Notation 7.1.3.9. Let us denote by Modlp(lD•) (resp. Modgp(lD•), resp. Modfp(lD•), resp. Modgfp(lD•))
the category of left D•-modules having local presentation (resp. having global presentation, resp. of finite
presentation, resp. having global finite presentation).

We recall the definition (see [Sta22, 08FL-21.42.1], [Sta22, 08FT-21.43.1] and [Sta22, 08G5-21.45.1]):

Definition 7.1.3.10. Let E•• ∈ C(D•).

1. We say E•• is “strictly perfect” if E i• is zero for all but finitely many i and E i• is a direct summand
of a finite free D•-module for all i.

2. Let n ∈ Z. We say E•• is n-pseudo-coherent if for every object (i, U) of I\ × XZar there exists
a covering {(i, Uλ) → (i, U)}λ∈Λ, and for each λ ∈ Λ there exist a strictly perfect complex of
D•|(i,Uλ)-modules E•λ• and a morphism αλ : E•λ• → E•• |(i,Uλ) of C(D•|(i,Uλ)) such that Hj(αλ) is an
isomorphism for j > n and Hn(αλ) is surjective.

3. We say E•• is “pseudo-coherent” if it is n-pseudo-coherent for all n ∈ Z.

4. We say E•• is “perfect” if for every object (i, U) of I\ × XZar there exists a covering {(i, Uλ) →
(i, U)}λ∈Λ and for each λ ∈ Λ a morphism of complexes αλ : E•λ• → E•• |(i,Uλ) which is a quasi-
isomorphism with E•λ• strictly perfect.
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5. Let n ∈ Z. We say an object of D(D•) is n-pseudo-coherent (resp. pseudo-coherent, resp. perfect)
if and only if it can be represented by a n-pseudo-coherent (resp. pseudo-coherent, resp. per-
fect) complex of D•-modules. We denote by Dn−coh(D•) (resp. Dcoh(D•), resp. Dperf(D•)) the
full subcategory of D(D•) consisting of n-pseudo-coherent (resp. pseudo-coherent, resp. perfect)
complexes.

Remark 7.1.3.11. Let E•• ∈ D(D•). Then E•• ∈ Dn−coh(D•) (resp. E•• ∈ Dperf(D•)) if and only if for every
object (i, U) of I\ ×XZar there exists a covering {(i, Uλ) → (i, U)}λ∈Λ, and for each λ ∈ Λ there exist
a strictly perfect complex of D•|(i,Uλ)-modules E•λ• and a morphism αλ : E•λ• → E•• |(i,Uλ) of D(D•|(i,Uλ))
which is an n-isomorphism (resp. is an isomorphism). Recall αλ is an n-isomorphism of D(D•|(i,Uλ))
means that for any j ≥ n, we have HjC(αλ) = 0, where C(αλ) is the cone of αλ in D(D•).

7.1.3.12. Let E•• ∈ D(D•). Following [SGA6, I.5.8.1] (or see [Sta22, 08G8] in the case where D• is
commutative), E•• is perfect if and only if E•• is pseudo-coherent and locally has finite tor dimension.

Proposition 7.1.3.13. Let E•• ∈ D(D•). Then E•• ∈ Dn−coh(D•) (resp. E•• ∈ Dcoh(D•), resp. E•• ∈
Dperf(D•)) if and only if the following properties hold

1. For any i ∈ I, E•i ∈ Dn−coh(Di) (resp. E•i ∈ Dcoh(Di), resp. E•i ∈ Dperf(Di)) ;

2. For any i, j ∈ I such that j ≤ i, the canonical homomorphism Dj
L
⊗Di E•i → E•j is an isomorphism.

Proof. The fact that these condition are necessary is obvious. Conversely, suppose E•• satisfies both
conditions. Since the other cases are either a straightforward consequence or are checked similarly, let
us consider the non-respective one. Let (i, U) ∈ I\ × XZar. From the first condition, there exists a
covering {Uλ → U}λ∈Λ, and for each λ ∈ Λ there exist a strictly perfect complex of Di|Uλ -modules E•λ
and a morphism αλ : E•λ → E•i |Uλ of D(Di|Uλ) which is an n-isomorphism, i.e. for any j ≥ n, we have

HjC(αλ) = 0, where C(αλ) is the cone of αλ (see remark 7.1.3.11). We get βλ := D•|(i,Uλ)

L
⊗Di|Uλ αλ,

which is also an n-isomorphism.
From the second condition, the canonical morphism γλ : D•|(i,Uλ) ⊗L

Di|Uλ
E•i |Uλ → E•• |(i,Uλ) is an iso-

morphism. This yields the n-isomorphism γλ◦βλ : D•|(i,Uλ)

L
⊗Di|Uλ E

•
λ → E•• |(i,Uλ), whereD•|(i,Uλ)

L
⊗Di|Uλ

E•λ is a strictly perfect complex of D•|(i,Uλ)-modules. Hence, we are done.

7.1.3.14 (Flasque resolutions). Let F• be a left D•-module. Let F• ↪→ G• be the canonical embedding
of F• into a flasque sheaf of Top(X)I , where the flasque object G• of Top(X)I is defined at 7.1.2.19.1.
In fact, we see that G• is endowed with a canonical structure of left D•-module and that the canonical
embedding F• ↪→ G• is D•-linear. We say that a D•-module is flasque if it is flasque as sheaf of sets.
Following [Sta22, 05T6], for any F•• ∈ K+(D•), there exists a quasi-isomorphism in K+(D•) of the form
F•• → H•• where Hn• is a flasque D•-module for any integer n.

7.1.3.15. Let f : X → X ′ be a continuous map of topological spaces. Set T′ := Top(X ′). Let D• (resp.
D′•) be a ring of TI (resp. T′I ) and f−1

I D′• → D• be a morphism of rings of TI (see notation 7.1.2.9).
This yields the ringed topos morphism

fI = (f−1
I a fI∗) : (TI ,D•)→ T′I ,D′•).

We get the functor f∗I : Mod(D′•)→ Mod(D•) which is defined for any E ′• ∈ Mod(D′•) by setting

f∗I (E ′•) := D• ⊗f−1
I
D′•

f−1
I E

′
•.

We denote by
fi = (f−1

i a fi∗) : (T,Di)→ T′,D′i)

the morphism of ringed topoi (which is more precisely a morphism of ringed topological spaces here),
where f−1

i = f−1 and fi∗ = f∗.
For any E ′•• ∈ D(D′•), since the functors i∗X and i∗X′ are exact, we get the canonical isomorphism

(Lf∗I (E ′•• ))i
∼−→ Lf∗i (E ′•i ). (7.1.3.15.1)
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We have the functor RfI∗ : D(D•)→ D(D′•), which is computed by using K-injective resolutions (see
[Sta22, 07A5-21.19]). We have also the functor RfI∗ : D+(D•) → D+(D′•), which can be computed by
using flasque resolutions (see 7.1.3.14). This yields by using flasque resolution [Sta22, 05TA-13.16.8] and
7.1.2.19.(a) that for any E•• ∈ D+(D•), we check that the canonical base change morphism (see [Sta22,
07A7-21.19.3])

(RfI∗(E•• ))i → Rfi∗(E•i ) (7.1.3.15.2)

is an isomorphism. In particular, this implies that a left D•-module E• is fI∗-acyclic if and only if each
Ei is f∗-acyclic for any i ∈ I.

Recall that if f∗I : Mod(D′•) → Mod(D•) is not exact then the functor fI∗ : K(D•) → K(D′•) do not
preserve K-injective complexes. But, we can still check the transitivity of the right derived of the direct
image of morphism of topos (see [Sta22, 0D6E-21.19.2]). Hence, for any increasing map u : I → I ′ of
partially ordered sets, with notation 7.1.2.4, we get the canonical isomorphisms

RuX′∗ ◦ RfI∗
∼−→ R (uX′∗ ◦ fI∗)

∼−→ R (fI′∗ ◦ uX∗)
∼−→ RfI′∗ ◦ RuX∗. (7.1.3.15.3)

7.1.3.16 (Bounded cohomological dimension). With notation 7.1.3.15, suppose moreover f∗ has bounded
cohomological dimension. It follows from the isomorphism 7.1.3.15.2 that fI∗ has also bounded cohomo-
logical dimension and then the functor RfI∗ is way-out in both directions. This yields that the morphism
7.1.3.15.2 is still an isomorphism for E•• ∈ D(D•) (use [Har66, I.7.1.(iii)]). Following 4.6.1.6, for any
E•• ∈ K(D•) (resp. for any E•• ∈ K−(D•)), there exist a complex I•• ∈ K(D•) (resp. I•• ∈ K−(D•)) of
fI∗-acyclic D•-modules and a quasi-isomorphism E••

∼−→ I•• . It follows from [Sta22, 07K7-13.31.2] that
we have the isomorphism RfI∗E••

∼−→ fI∗I•• .

7.1.3.17. Let E•,F• be two left D•-modules.

(a) Following 4.6.2.7, we have the abelian sheaf on TI that we will denote by HomD•(E•,F•) which is
characterized by the property: for any object K• of TI ,

HomTI (K•,HomD•(E•,F•)) = HomD•|K• (E•|K• ,F•|K•)).

In particular, for any (i, U) ∈ I\ ×XZar, by using 7.1.2.18.2 and Yoneda lemma we get

HomTI ((i, U),HomD•(E•,F•)) = HomD•|(i,U)
(E•|(i,U),F•|(i,U))). (7.1.3.17.1)

A morphism of this latter abelian group is a compatible family of Dj |U -linear homomorphisms
Ej |U → Fj |U for any j ≤ i.

(b) We have the abelian sheaf HomD•(E•,F•) on X by setting, for any open set U of X,

Γ(U,HomD•(E•,F•)) = HomD•|U (E•|U ,F•|U ).

With the above description of 7.1.3.17.1 and with notation 7.1.2.7.1, we get the isomorphism of
abelian sheaves on X:

←lX,I∗HomD•(E•,F•)
∼−→ HomD•(E•,F•). (7.1.3.17.2)

7.1.3.18. Let E•,F• be two left D•-modules. Fix i ∈ I. Suppose that for any j ≤ i the homomorphism
Dj⊗DiEi → Ej is an isomorphism. Then for any j ≤ i, for any open set U ofX we get the homomorphisms

HomDi|U (Ei|U ,Fi|U )
∼←− HomDj |U (Ej |U ,Fi|U )→ HomDj |U (Ej |U ,Fj |U ), (7.1.3.18.1)

which induce the canonical isomorphism

HomDi|U (Ei|U ,Fi|U )
∼−→ HomD•|(i,U)

(E•|(i,U),F•|(i,U))). (7.1.3.18.2)

Hence the abelian sheafHomD•|(i,X)
(E•|(i,X),F•|(i,X))) ofTI≤1

is the projective systemHomDj (Ej ,Fj)→
HomDj′ (Ej′ ,Fj′) for any j′ ≤ j ≤ i (induced by 7.1.3.18.1). In particular, we get the commutative dia-
gram

(HomD•(E•,F•))i
∼ //

��

HomDi(Ei,Fi)

7.1.3.18.1

��
(HomD•(E•,F•))j

∼ // HomDj (Ej ,Fj)

(7.1.3.18.3)

where the horizontal isomorphisms are the natural forgetful projection.
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7.1.3.19. Let E•• ∈ D−(D•), F•• ∈ D+(D•). Let j ≤ i in I such that the canonical morphism

Dj ⊗L
Di E

•
i → E•j (7.1.3.19.1)

is an isomorphism. Then we get the morphism

RHomDi(E•i ,F•i )
4.6.5.3.1
∼−→ RHomDj (E•j ,F•i )→ RHomDj (E•j ,F•j ). (7.1.3.19.2)

Let E•• ∈ C(D•) be a stricly perfect complex (see definition 7.1.3.10) and F•• ∈ C(D•). Then we
construct similarly the first isomorphisms of 7.1.3.19.2 and we get therefore the composite map 7.1.3.19.2.

7.1.3.20. Let (i, U) ∈ I\ ×XZar. Let E•,F• be two left D•-modules. It follows from 7.1.3.17.1 that we
have the isomorphism of abelian sheaves of TI≤i

HomD•(E•,F•)|(i,U)
∼−→ HomD•|(i,U)

(E•|(i,U),F•|(i,U)). (7.1.3.20.1)

Since j−1
(i,U) = j∗(i,U) : Mod(∗D•) → Mod(∗D•|(i,U)) has an exact left adjoint functor (see 7.1.3.3.2),

then it follows from [Sta22, 08BJ] that j−1
(i,U) preserves the K-injectivity. Hence, for any E•• ∈ D(D•),

F•• ∈ D(D•), we get the isomorphism

RHomD•(E•,F•)|(i,U)
∼= RHomD•|(i,U)

(E•|(i,U),F•|(i,U)). (7.1.3.20.2)

Lemma 7.1.3.21. Let I• be an injective left D•-module. Let I•• be a K-injective complex of K(lD•).
Let i ∈ I and let P be a left Di-module.

(a) The abelian sheaf HomDi(P, Ii) is flasque.

(b) If P is flat, then Ii is right acyclic for the functors HomDi(P,−) and HomDi(P,−).

(c) If moreover for any j ≤ i the homomorphisms Di → Dj are flat, then Ii is an injective Di-module.

(d) If moreover for any j ≤ i the homomorphisms Di → Dj are flat, then I•i is a K-injective complex of
K(lDi).

Proof. With notation 7.1.2.18.3, let us consider the canonical morphism of ringed topoi

f : (T,Di)→ (TI≤i ,D•|(i,X))

induced by the morphism of topos iX = (i−1
X a iX∗) : Top(X) → Top(X)I≤i , where i : {∗} → I≤i is the

map sending ∗ to i. Since f∗(I) = Ii, then the first two statements follows from 4.6.5.2. In the third and
forth one, with the flatness hypotheses, the left adjoint iX! of the functor i∗X : Mod(D•|(i,X))→ Mod(Di)
is therefore exact (use the computation 7.1.3.2.1 in the case where I = I≤i). Hence, i∗X preserves the
injectivity (resp. the K-injectivity following [Sta22, 08BJ]) and we are done.

Proposition 7.1.3.22. Let E•• ∈ D−(D•), F•• ∈ D+(D•). Let i ∈ I such that for any j ≤ i the canonical
morphism

Dj ⊗L
Di E

•
i → E•j (7.1.3.22.1)

is an isomorphism. Then for any j′ ≤ j ≤ i we have the canonical commutative diagram of D(ZX):

(RHomD•(E•• ,F•• ))j
∼ //

��

RHomDj (E•j ,F•j )

7.1.3.19.2

��
(RHomD•(E•• ,F•• ))j′

∼ // RHomDj′ (E
•
j′ ,F•j′)

(7.1.3.22.2)

whose horizontal arrows are isomorphisms.
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Proof. By using 7.1.3.20.2, since i−1
X ◦ u

−1
iX

∼−→ i−1
X , then we can suppose I≤i = I. Let P•i ∈ C(Di) be

a complex of flat Di-modules and P•i → E•i be a morphism of C(Di) which is a quasi-isomorphism. Set
P•• := D• ⊗Di P•i ∈ C(D•). Then P•• is a flat resolution of E•• . Moreover, it follows from 7.1.3.22.1 that
for any j′ ≤ j the canonical morphism Dj′ ⊗Dj P•j → P•j′ is an isomorphism of C(Dj′). Let I•• be a
resolution of F•• by injective D•-modules. Then, we get the isomorphisms of D(ZX):

RHomD•(E•• ,F•• )j
∼−→ Hom•D•(P

•
• , I•• )j

∼−→
7.1.3.18.3

HomDj (P•j , I•j )

∼−→
7.1.3.21b

RHomDj (P•j , I•j )
∼−→ RHomDj (E•j ,F•j ).

This yields the construction of the horizontal isomorphisms of the diagram 7.1.3.22.2. Its commutativity
is easy.

7.1.3.23. Let D• and D′′• be two rings of TI such that (D•,D′•) and (D•,D′′• ) are solved by some
commutative ring R• (see definition 4.6.3.2). Following 4.6.3.2.1, we have the bifunctors:

RHomlD•(−,−) : D(lD•,R•,D′•r)×D(lD•,R•,D′′• r)→ D(lD′•,R•,D′′• r). (7.1.3.23.1)

Let E•• ∈ D−(lD•,R•,D′•r), F•• ∈ D+(lD•,R•,D′′• r). Let i ∈ I such that for any j ≤ i the canonical
morphism

Dj ⊗L
Di E

•
i → E•j (7.1.3.23.2)

is an isomorphism. Then for any j′ ≤ j ≤ i, similarly to 7.1.3.22, we get the canonical commutative
diagram of D(lD′j ,Rj ,D′′j r):

(RHomD•(E•• ,F•• ))j
∼ //

��

RHomDj (E•j ,F•j )

��
(RHomD•(E•• ,F•• ))j′

∼ // RHomDj′ (E
•
j′ ,F•j′)

(7.1.3.23.3)

whose horizontal arrows are isomorphisms and whose left morphism is built similarly than 7.1.3.19.2. We
get similar diagram in the case where E•• ∈ C(∗D•) is a stricly perfect complex (see definition 7.1.3.10)
and F•• ∈ D(lD•,R•,D′′• r).

7.2 Completion on formal schemes
Let X be a locally noetherian formal scheme of Krull dimension d and I be an ideal of definition of X.
For any open U ⊆ X, we write

Ui = (|U|,OU/Ii+1), U := U0.

Denoting by |X| = |Xi| the underlying topological space of X and Xi, we simply write by X or Xi the
topos Top(|X|). Moreover, since N is fixed in the subsection, we denote by X• the topos Top(X)N. We
consider X• as a ringed topos by equipping it with the sheaf of rings OX• = (OXi)i∈N. We get the
morphism of ringed topoi←lX,N : (X•,OX•) → (X ,OX) (see notation 7.1.2.5) that we shall simply write
by←lX . If E is a OX-module,←l

∗
X
E is then the projective system

· · · → E/Ii+1E → · · · → E/I2E → E/IE .

7.2.1 I-adic completion of a non-commutative ring
Unless otherwise specified, modules are left modules and the results are still valid for right modules.
Moreover, “completed” will mean “separated completed”. Let D be a not necessarily commutative ring,
I ⊂ D be a central ideal of finite type, i.e. I is two-sided ideal which is generated as a left (or right)
ideal by a finite set of elements belonging to the center of D. We set Di := D/Ii+1 for any i ∈ N.

7.2.1.1 (Completion). Let M be a left D-module. The I-adic topology on D (resp. M) is given by the
two-sided ideals (Ii)i∈N (resp. the submodules (IiM)i∈N). The completion “D := lim←−iDi is endowed with
a ring structure, and the completion M̂ := lim←−iM/Ii+1M is endowed with a left “D-module structure.
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Lemma 7.2.1.2. Let (Mi)i∈N be a projective system of left Di-modules such that the homomorphisms
Mi+1/I

i+1Mi+1 →Mi are Di-linear isomorphisms. Put M = lim←−iMi.

(a) For any n ≥ 0, the canonical homomorphisms

InM → lim←−
i

InMi, M/In+1M →Mn

are isomorphisms.

(b) If M0 is of finite type on D0, then M is of finite type on “D. Moreover, any family of D whose image
in D0 generates D0 spans D.

(c) If D0 is left (resp. right) noetherian, then so is “D.

Proof. See [Ber96c, 3.2.2].

7.2.1.3. Suppose D is left noetherian. According to [Ber96c, 3.2.3], we have the following properties.

(a) The Artin-Rees property holds: IfM is a leftD-module of finite type, and N ⊂M is a subD-module,
there exists a positive integer n0 such that, for any n ≥ n0, we have

InN ⊂ InM ∩N ⊂ In−n0N. (7.2.1.3.1)

(b) The functor M 7→ M̂ is exact on the category of left D-modules of finite type.

(c) For any left D-module of finite type M , the canonical homomorphism“D ⊗D M → M̂ (7.2.1.3.2)

is an isomorphism.

(d) “D a right flat on D.

(e) Any left “D-module of finite type is separated and complete.

(f) The ring “D is left noetherian.

(g) Let D → E be a ring homomorphism such that E is left noetherian an IE is a central ideal of E.
The following properties are equivalent.

(i) “E is right flat on “D
(ii) for any i ∈ N, E/Ii+1 is right flat on Di.

Proposition 7.2.1.4. Let D be a left noetherian ring, I be a central ideal, M̂ be its I-adic completion.
LetM be a right D-module such that,M/MIn is a flat D/DIn for any n ∈ N. Then the I-adic completion
M̂ of M is a flat right “D-module. Moreover, for any left “D-module of finite type E, the abelian group
M̂ ⊗

D̂
E is separated and complete for the topology given by the subgroups M̂ ⊗

D̂
InE.

Proof. See [Ber96c, 3.2.4].

We recall the following well known Lemma.

Lemma 7.2.1.5. Let R : C→ C′ be a functor, (L,R) be an adjoint pair of functors such that the adjoint
morphism L ◦R→ id is an isomorphism.

(a) The functor R is fully faithful. Denote by D its essential image.

(b) An object E ′ ∈ C′ is an object of D if and only if the canonical morphism E ′ → R ◦ L(E ′) is an
isomorphism.

(c) The functors R and L induce quasi-inverse equivalences of categories between C and D.
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Proof. For any E ,F ∈ C, since the adjoint morphism L◦R→ id is an isomorphism, then the composition
Hom(E ,F) → Hom(R(E), R(F))

∼−→ Hom(L ◦ R(E),F) is a bijection. Hence R is fully faithful. Now,
since the composition of both adjoint morphisms R→ R◦L◦R→ R is the identity since the R◦L◦R→ R
is an isomorphism, then so is R→ R ◦ L ◦R. The parts (b) and (c) come from the fact that the adjoint
morphisms L ◦R→ id and R→ R ◦ L ◦R are isomorphisms.

7.2.1.6. We have the following notation and properties.

(a) The ringed topos←l{∗},N : ({∗}•, D•)→ ({∗}, “D) will simply be denoted by←l. Since any left Di-module
has a (global) presentation, then by using 7.1.3.8 in the case where the topological space is {∗}, we
get that a left D•-module E• has local presentation if and only if the canonical homomorphisms
Ei+1/I

i+1Mi+1 → Ei areDi-linear isomorphisms. Hence, we can interpret the property 7.2.1.2.(a) as
follows: for any leftD•-module E• having local presentation, the canonical morphism←l

∗◦←l∗(E•)→ E•
is an isomorphism.

A left “D-module E is said to be “separated complete” if the canonical morphism

E →←l∗ ◦←l
∗E = lim←−

i

Di ⊗D̂ E (7.2.1.6.1)

is an isomorphism. We denote by Modc(l“D) the category of separated complete left “D-modules. With
notation 7.1.3.9, it follows from 7.2.1.5 that the functors←l∗ and←l

∗ induce canonically quasi-inverse
equivalences of categories between Modlp(lD•) and Modc(l“D).

(b) We remark that any left “D-module E has a (global) presentation, i.e. there exists an exact sequence
in Mod(lD) of the form

⊕i∈I“D → ⊕j∈J“D → E → 0,

for some sets I and J . Since←l
∗ is left exact and commutes with direct limits, it preserve a global

presentation, i.e. we get the functor←l
∗ : Mod(l“D)→ Modgp(lD•) (see definition 7.1.3.7 and notation

7.1.3.9). Hence, it follows from (a) that the inclusion Modgp(lD•) ⊂ Modlp(lD•) is in fact an equality.

(c) Suppose D0 is noetherian. We denote by Coh(l“D) the category of coherent left “D-modules which is
therefore that of left “D-modules of finite type. It follows from 7.2.1.2 and 7.2.1.3 that the functors←l∗
and←l

∗ induce canonically quasi-inverse equivalences of categories between Modfp(lD•) and Coh(l“D)

(see notation 7.1.3.9). Moreover, since a coherent “D-module has a (global) finite presentation, we
get Modfp(lD•) = Modgfp(lD•).

7.2.2 Completion of sheaves of rings on formal schemes, flatness
Lemma 7.2.2.1. Let (Mi)i∈N be a projective system of OXi-modules satisfying both following properties

(a) the OXi-modulesMi are quasi-coherent for any i ∈ N,

(b) the homomorphismsMi+1/Ii+1Mi+1 →Mi are isomorphisms for any i ∈ N.

Then, settingM = lim←−iMi, for any n ≥ 0, the canonical homomorphisms

InM→ lim←−
i

InMi, M/In+1M→Mn (7.2.2.1.1)

are isomorphisms.

Proof. This follows from Lemma 7.2.1.2.

Lemma 7.2.2.2. Suppose X affine and put I = Γ(X, I).

(a) Let M be an OX-module such that M ∼−→ lim←−iM/IiM, and such that M/IiM are OXi-quasi-
coherent. Then ∀ n ∈ N, ∀ q ≥ 1 we have

Hq(X, InM) = 0, Γ(X, InM) = InΓ(X,M). (7.2.2.2.1)
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(b) Suppose the OX-module M is a filtered inductive limit of a family (Mλ)λ∈Λ of OX-modules satis-
fying both conditions of (a). Then M also satisfies the preceding properties. Moreover, if M̂ =
lim←−iM/IiM, and if Γ(X,M)∧ is the I-adic completion of Γ(X,M), then

Γ(X,M)∧
∼−→ Γ(X,M̂). (7.2.2.2.2)

Proof. The first equality of 7.2.2.2.1 follows from [Gro61, 0.13.3.1]. The second one follows from Lemma
7.2.1.2. As the functorsM 7→ Hq(X, InM) commutes with filtered inductive limits (see 7.1.2.16), both
equalities of 7.2.2.2.1 remain true under the hypothesis of (b). From these we get isomorphisms

Γ(X,M)/IiΓ(X,M)
∼−→ Γ(X,M/IiM). (7.2.2.2.3)

This yields (b).

7.2.2.3. Let D be a sheaf of rings on X equipped with a homomorphism OX → D satisfying the following
conditions.

(a) On any affine open U ⊆ X, the ideal I has a family of generators with image in the center of D.

(b) As OX-module for the left structure, D is a filtered inductive limit of OX-modules Dλ such that
Dλ/Ii+1Dλ is a OXi-quasi-coherent for its left structure for any i ∈ N and such that the canonical
homomorphism Dλ → lim←−iDλ/I

i+1Dλ is an isomorphism.

(c) For any affine open U ⊆ X, the ring Γ(U,D) is left noetherian.

For such a ring D, we write Di := D/Ii+1D and “D := lim←−iDi the I-adic completion of D. We remark
that the condition (b) implies that Di are OXi-quasi-coherent for any i ∈ N. We have the ringed topos
morphism:←lX : (X•,D•)→ (X , “D).

Example 7.2.2.4. Let S] be a nice fine V-log formal scheme as defined in 3.3.1.10. Suppose X] is a
log smooth S]-log formal scheme. Let B be a commutative OX-algebra endowed with a compatible left
D(m)

X]/S]
-module structure. We suppose the following properties hold:

(a) For any affine open U ⊆ X, the ring Γ(U,B) is noetherian.

(b) B/Ii+1B is OXi -quasi-coherent and the canonical morphism B → lim←−i B/I
i+1B is an isomorphism.

Using the order filtration and the proposition 4.1.2.17.(d), we can check that the properties 7.2.2.3 are
satisfied for D = B ⊗OX

D(m)

X]/S]
.

Definition 7.2.2.5. We keep the notation and hypotheses of 7.2.2.3. Let E be a left D-module.

(a) The separated completion (for the I-adic topology) of a E is defined to be the “D-module Ê =

←lX,∗ ◦←l
∗
X

(E) = lim←−iDi ⊗D E
∼−→ lim←−i E/I

i+1E .

(b) E is said to be separated complete if the canonical morphism

E →←lX,∗ ◦←l
∗
X

(E) = lim←−
i

Di ⊗D E (7.2.2.5.1)

is an isomorphism. Remark that if E is a separated complete D-module the both equalities of 7.2.2.2.1
are valid forM = E and also 7.2.2.2.2. and then we have such results.

(c) We say that E is p-torsion free if for all open U of X, Γ(U, E) is p-torsion free.

Proposition 7.2.2.6. We keep the notation and hypotheses of 7.2.2.3.

(a) For any affine open U ⊂ X, the ring Γ(U , “D) is left noetherian.

(b) If D is flat over OX fo the right structure, then so is “D.
Proof. The first statement is a consequence of 7.2.1.2.(c) and of 7.2.2.2.(b). The second one follows from
7.2.1.3.(g) and 7.2.2.2.2.
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7.2.3 Coherent and pseudo-quasi-coherent modules over a complete sheaf of
rings on formal schemes, theorems A and B

Let D be a sheaf of rings on X equipped with a homomorphism OX → D satisfying the following
conditions.

(a) On any affine open U ⊆ X, the ideal I has a family of generators with image in the center of D.

(b) The sheaf D/Ii+1D is OXi -quasi-coherent for its left structure for any i ∈ N ;

(c) The canonical homomorphism D → lim←−iD/I
i+1D is an isomorphism.

(d) For any affine open U ⊆ X, the ring Γ(U,D) is left noetherian.

We set Di := D/Ii+1D. Following 7.1.3.8, the property (b) means that D• has local presentation as
an OX• -module for its left structure. It follows from 4.1.3.2, Di be a sheaf of rings on Xi satisfying
theorems A and B for coherent modules (see definition 1.4.3.14). We have the ringed topos morphism:

←lX : (X•,D•)→ (X ,D). For any left D-module E , we write Ê =←lX,∗ ◦←l
∗
X

(E) = lim←−i E/I
i+1E .

Remark 7.2.3.1. The sheaf D of the subsection 7.2.3 satisfies the conditions of 7.2.2.3. Conversely, let D
be a sheaf of rings on X equipped with a homomorphism OX → D satisfying the conditions of 7.2.2.3.
It follows from 7.2.2.2 and 7.2.2.6.(a) that the sheaf lim←−iD/I

i+1D satisfies the same properties than the
sheaf D.

Example 7.2.3.2. Let S] be a nice fine V-log formal scheme as defined in 3.3.1.10. Suppose X] is a
log smooth S]-formal log scheme. Let B be a commutative OX-algebra endowed with a compatible left
D(m)

X]/S]
-module structure and satisfying both extra conditions of 7.2.2.4. Then with the remark 7.2.3.1,

the conditions of the section 7.2.3 are satisfied for D = B“⊗OX
D(m)

X]/S]
. We call B“⊗OX

D(m)

X]/S]
the sheaf

of differential operators of (infinite order and) level m on (X],B)/S].
Suppose in this paragraph, D = B“⊗OX

D(m)

X]/S]
. Let U ⊂ X be an affine open on which we have loga-

rithmic coordinates (uλ)λ=1,...,n. Let τ ](m) (resp. ∂]〈k〉(m)) be the element constructed from (uλ)λ=1,...,r

as defined in 3.2.2.4 (resp. 3.2.3.4). An element P ∈ Γ(U,D) can be written as an infinite serie

P =
∑
k∈Nd

bk∂]
〈k〉(m)

with bk ∈ Γ(U,B) and bk → 0 for the p-adic topology. Note that we no longer have filtration by order
on the sheaf D.

Proposition 7.2.3.3. We have the following properties.

(a) For any pair of affine opens U′ ⊂ U, the homomorphism

Γ(U,D)→ Γ(U′,D)

is right flat.

(b) The sheaf D is left coherent.

Proof. Let us check (a). Since Di is quasi-coherent for the left structure, then Γ(Ui,Di) → Γ(U ′i ,Di) is
right flat. It follows from 7.2.1.3.g that the morphism lim←−i Γ(Ui,Di) → lim←−i Γ(U ′i ,Di) is right flat. We
get the desired result by using the condition (c) satisfied by D and the commutation of the local sections
functors with projective limits. We get the second statement by using 1.4.5.2.

Notation 7.2.3.4. Assume X is affine and set OX = Γ(X,OX), D = Γ(X,D), I = Γ(X, I), Di =
Γ(X,Di)

∼−→ D/Ii+1D (see 7.2.2.2.3),D = Γ(X,D)∧
∼−→ Γ(X,D∧) (see 7.2.2.2.2) andOXi := Γ(Xi,OXi)

∼−→
OX/I

i+1OX. We denote by Modgp(lD) (resp. Modgfp(lD) ) is the category of left D-module having a
global presentation (resp. a global finite presentation).

Definition 7.2.3.5. A left D-module E is “pseudo-quasi-coherent” if it is separated complete (see def-
inition 7.2.2.5) and if, for any i ∈ N, Ei := Di ⊗D E is a quasi-coherent OXi-module. We denote by
Modpqc(lD) the category of pseudo quasi-coherent left D-modules.
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7.2.3.6. We point out the fact that a left D-module is pseudo-quasi-coherent (resp. is p-torsion free) is
local on X.

7.2.3.7. Let E• ∈ Mod(D•). Since Di is OXi-quasi-coherent, then a Di-module is OXi -quasi-coherent
if and only if it has local presentation. Hence, following 7.1.3.8, this yields that E• ∈ Modlp(D•) (see
notation 7.1.3.9) if and only if it satisfies both conditions (a) and (b) of 7.2.2.1.

Hence, for any E• ∈ Modlp(lD•), by using the second isomorphism of 7.2.2.1.1, we check that the
adjoint morphism←l

∗
X
◦←lX,∗(E•)→ E• is an isomorphism. By using 7.2.1.5 and 7.2.2.1, this implies that the

functor←lX,∗ : Modlp(lD•) → Mod(lD) is fully faithful and its essential image is Modpqc(lD). Moreover,
the functors←lX∗ and←l

∗
X

induce canonically quasi-inverse equivalences of categories between Modlp(lD•)
and Modpqc(lD).

7.2.3.8. We suppose X affine and we keep notation 7.2.3.4. Let $X : |X| → {∗} be the continuous
morphism from the underlying topological space of X to a punctual set. Taking global section of the
inverse system D•, we get the inverse system D•. With notation 7.1.2.9, this yields the morphism of
ringed topoi $X,N : (X•,D•)→ ({∗}•, D•) that will we denote by $X• .

Similarly, we denote by $X → (|X|,D) → ({∗}, D) the morphism of ringed topoi. We have $∗X =
D ⊗D − and $X∗ = Γ(X,−). With notation 7.2.1.6, we get the commutative diagram of ringed topos:

(X•,D•)
$X• //

←lX
��

({∗}•, D•)

←l

��
(|X|,D)

$X // ({∗}, D).

(7.2.3.8.1)

Proposition 7.2.3.9. We suppose X affine and we keep notation 7.2.3.8.

(a) The functors $X•∗ and $∗X• induce canonically quasi-inverse equivalences of categories between
Modlp(D•) and Modlp(D•) (resp. Modfp(D•) and Modfp(D•)).

(b) We have the equalities Modlp(D•) = Modgp(D•), Modfp(D•) = Modgfp(D•), Modlp(D•) = Modgp(D•),
Modfp(D•) = Modgfp(D•).

Proof. a) i) Let E• ∈ Modlp(D•). Following 7.2.3.7, this means that E• is a left D•-module satisfy-
ing both conditions (a) and (b) of 7.2.2.1. Let E• ∈ Modlp(D•). Following 7.2.1.6.a, E• has local
presentation means that the canonical homomorphisms Ei+1/I

i+1Mi+1 → Ei are Di-linear isomor-
phisms for any i ∈ N. By definition, $X•∗(E•) = (Γ(Xi, Ei))i∈N and $∗X•(E•) = (Di ⊗Di Ei)i∈N (see
7.1.3.8). Since Di is a quasi-coherent OXi -module, then Di → Di is flat. With both above descrip-
tions of local presentation, this implies that $∗X• preserve modules of local presentation, i.e. induces
$∗X• : Modlp(D•) → Modlp(D•). Similarly, using theorems of type A and B for quasi-coherent DXi -
modules (4.1.3.2), we get the factorization $X•∗ : Modlp(D•) → Modlp(D•) and we check that the
canonical morphisms $∗X• ◦$X•∗(E•)→ E• and E• → $X•∗ ◦$∗X•(E•) are isomorphisms.

ii) By using the theorem A and B for coherent Di-modules for any i ∈ N (see 4.1.3.2), we can proceed
similarly to i) to check the functors $X•∗ and $∗X• induce canonically quasi-inverse equivalences of
categories between Modfp(D•) and Modfp(D•).

b) i) We already know that Modlp(D•) = Modgp(D•), Modfp(D•) = Modgfp(D•), (see 7.2.1.6.(b and
(c)).

ii) The functor$∗X• preserves the (finite) global presentability. Hence, to get the equality Modfp(D•) =
Modgfp(D•), thanks to (a) it remains to check that the functor $X•∗ preserves the finite global pre-
sentability. Let E• ∈ Modgfp(lD•). By definition, E• is the cokernel of a morphism of the form
f : ⊕ri=1 D• → ⊕sj=1D•. By applying the functor $X•∗, we get the morphism of left D•-modules
g : ⊕ri=1 D• → ⊕sj=1D•. Let G• be its cokernel. By (right) flatness of the functor $∗X• = D•⊗D• −, this
yields that E•

∼−→ D• ⊗D• G•. From the part (a), this implies $X•∗(E•)
∼−→ G•. Hence, $X•∗(E•) has

global finite presentation.
iii) Since N is quasi-separated (because N is totally ordered), since the topological spaces X and {∗}

are coherent (and in particular locally coherent), then following 7.1.2.15.d the topoi X• and {∗}• are
algebraic. (Beware that N is not quasi-compact and the topoi X• and {∗}• are not coherent.) However,
since $X : |X| → {∗} is a coherent morphism of locally coherent topological spaces, then it follows from
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7.1.2.17.(b) that the topoi morphism $X,N : X• → {∗}• is coherent. Hence, the functor $X•∗ commutes
with filtered inductive limits of abelian sheaves (see [SGA4.2, VI.5.1]) and in particular with direct
sums of abelian sheaves. This implies that we can proceed similarly to b.ii) replacing a global finite
presentation by a global presentation.

Proposition 7.2.3.10. We suppose X affine and we keep notation 7.2.3.8. The functors $∗X = D⊗D −
and $X∗ = Γ(X,−) induce canonically quasi-inverse equivalences of categories between Mod(lD) and
Modgp(lD) (resp. Coh(lD) and Modgfp(lD)). Moreover, the functor D ⊗D − is exact.

Proof. a) Since the functor D ⊗D − : Mod(lD) → Mod(lD) is right exact (and even exact thanks to
7.2.3.3.a), we have the factorization

D ⊗D − : Mod(lD)→ Modgp(lD), D ⊗D − : Coh(lD)→ Modgfp(lD). (7.2.3.10.1)

b) Since Γ(X,D) = D, since Γ(X,−) commutes with filtered inductive limits of abelian sheaves
(see [SGA4.2, VI.5.2]), then the canonical homomorphism L → Γ(X,D ⊗D L) is an isomorphism when
L is a free left D-module. By using the five lemma, this yields that the canonical homomorphism
E → Γ(X,D ⊗D E) is an isomorphism for any left D-module E.

c) Let E ∈ Modgp(lD). By definition, M is the cokernel of a morphism of the form f : ⊕i∈I D →
⊕j∈JD. Taking the global section we get the morphism of left D-modules g : ⊕i∈I D → ⊕j∈JD. Let G
be its cokernel. Since the functor D ⊗D − is right exact (and is the adjoint of Γ(X,−)), this yields that
E ∼−→ D ⊗D G. Hence, the functor D ⊗D − : Mod(lD)→ Modgp(lD) is essentially surjective. From the
part b) of the proof, this yields Γ(X, E)

∼−→ G. When E has global finite presentation, this implies that
Γ(X, E) is a left D-module of finite type. Hence, we are done.

7.2.3.11. We suppose X affine and we keep notation and hypotheses of 7.2.3.4.

(a) We have the functor ∆ : Mod(lD) → Modpqc(lD) which associates to a left D-module E the left
D-module

E∆ := D“⊗DE =←lX,∗ ◦←l
∗
X
◦$∗X(E)

∼−→←lX,∗ ◦$
∗
X• ◦←l

∗(E)
∼−→ lim←−

i

(Di⊗Di (E/Ii+1E)). (7.2.3.11.1)

where we identify a left D-module with its associated constant sheaf on X.

(b) If E is a left D-module of finite type, then the canonical morphism

D ⊗D E → D“⊗DE = E∆ (7.2.3.11.2)

is an isomorphism. Indeed, for any f ∈ OX, it follows from 7.2.1.3 and 7.2.3.3 that the morphism
D(D(f))⊗D E → D(D(f))“⊗DE is an isomorphism.

(c) It follows from 7.2.3.10 and 7.2.3.11.2 that the functor ∆ factors through

∆ : Coh(lD)→ Modgfp(lD). (7.2.3.11.3)

Remark 7.2.3.12. With notation 7.2.3.11, since Di is an OXi-quasi-coherent module, then the canonical
morphism

OX“⊗OX
M →M∆

is an isomorphism.

Proposition 7.2.3.13 (Characterization of the pseudo quasi-coherence, Theorem A, Theorem B). We
suppose X affine and we keep notation and hypotheses of 7.2.3.4.

(i) Let E is a left D-module. The following properties are equivalent.

(a) The D-module Γ(X, E) belongs to Modc(lD) (see notation 7.2.1.6.a) and the canonical homo-
morphism

Γ(X, E)∆ = D“⊗DΓ(X, E)→ E

is an isomorphism.
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(b) E is a pseudo quasi-coherent D-module.

When these equivalent conditions hold, the canonical morphism

Di ⊗D Γ(X, E)→ Γ(X,Di ⊗D E) (7.2.3.13.1)

is an isomorphism.

(ii) The functors ∆ and Γ(X,−) induce canonically exact quasi-inverse equivalences of categories be-
tween Modc(lD) and Modpqc(lD).

(iii) Let E be a pseudo quasi-coherent D-module. We have Hq(X, E) = 0 for all q ≥ 1.

Proof. Let us check the equivalence of (i). The implication (a)⇒ (b) is straightforward. Conversely, let E
be a pseudo-quasi-coherent D-module. Following 7.2.2.2.2, we have the canonical morphism ◊�Γ(X, E)

∼−→
Γ(X, E). Hence, Γ(X, E) ∈ Modc(lD). It follows from (7.2.2.2.1) that for any integers n ≥ 1 and i ≥ 0
we have Hn(X, Ii+1E) = 0 and Γ(X, IiE) = IiΓ(X, E). By applying the functor Γ(X,−) to the exact
sequence 0→ Ii+1E → E → Ei → 0, this yields that the canonical morphism 7.2.3.13.1 is an isomorphism.
The canonical morphism Di⊗D Γ(X, E)→ Ei of quasi-coherent Di-modules is therefore an isomorphism.
Passing to projective limit, we get the canonical morphism D“⊗DΓ(X, E)→ E is an isomorphism and we
have therefore checked the implication (b)⇒ (a).

It follows from (i) that both functors ∆ : Modc(lD) → Modpqc(lD) and Γ(X,−) : Modpqc(lD) →
Modc(lD) are well defined. Let E ∈ Modc(lD). Since E∆ ∼−→ lim←−i (Di ⊗D E) (see 7.2.3.11.1), since
Γ(X,−) commutes with projective limits, since E is separated complete, then we get Γ(X, E∆)

∼−→
lim←−i Γ(X,Di⊗D E)

∼−→ lim←−i Di⊗D E
∼−→ E. Hence, using (i), we get the second statement. The third

one is a consequence of 7.2.2.2.1.

Lemma 7.2.3.14. We assume that X is affine. Let E be a pseudo quasi-coherent D-module. The
following condition are equivalent.

1. E is OX-flat

2. Γ(X, E) is Γ(X, OX)-flat.

Proof. 1) Suppose Γ(X, E) is Γ(X, OX)-flat. For all i, for any affine open Y of X, Γ(Yi, OXi) ⊗Γ(X,OX)

Γ(X, E) is therefore a Γ(Yi, OXi)-flat module. Now, according to 7.2.3.13.(i), the canonical homomor-
phism

Γ(X, E)∆ = D“⊗DΓ(X, E)→ E

is an isomorphism. By applying to the isomorphism 7.2.3.11.1 the functor Γ(Y,−), which commutes to
projective limits, we deduce

Γ(Y, E)
∼−→ Γ(Y, OX)“⊗Γ(X,OX)Γ(X, E).

As Γ(Y, OX) is Noetherian, it then follows from 7.2.1.4 that Γ(Y, E) is Γ(Y, OX)-flat. Hence we have
checked the flatness of E as OX-module.

Conversely, suppose E is OX-flat. For all i, Ei := OXi ⊗OX
E is therefore OXi-flat. As Ei is

moreover quasi-coherent, then the sheaf Γ(Xi, Ei) is a flat Γ(Xi, OXi)-module. Following 7.2.3.13.1,
Γ(X, E)/πi+1Γ(X, E)

∼−→ Γ(Xi, Ei). Hence, Γ(X, E)/πi+1Γ(X, E) is flat. However, by applying the
functor Γ(X, −) to the isomorphism 7.2.3.11.1, we obtain

Γ(X, E)
∼−→ lim←−

i

Γ(X, E)/πi+1Γ(X, E). (7.2.3.14.1)

According to 7.2.1.4, as Γ(X, OX) is Noetherian and Γ(X, E)/πi+1Γ(X, E) is Γ(Xi, OXi)-flat, it follows
from the isomorphism 7.2.3.14.1 that Γ(X, E) is Γ(X, OX)-flat.

Proposition 7.2.3.15. We have the inclusion Coh(lD) ⊂ Modpqc(lD) and the functors ←l
∗
X

and ←lX∗
induce canonically quasi-inverse equivalences of categories between Coh(lD) and Modfp(lD•). When X
is affine, we have the equality Coh(lD) = Modgfp(lD).
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Proof. 1) Let E ∈ Coh(lD). It follows from 7.1.3.8 that←l
∗
X

(E) ∈ Modfp(lD•). Let us check that the
canonical morphism

E →←lX,∗ ◦←l
∗
X

(E) (7.2.3.15.1)

is an isomorphism. Since this is local, we can suppose that X is affine and E has a global finite pre-
sentation. Hence, following 7.2.3.10, E := Γ(X, E) is a left D-module of finite type and the canonical
morphism D ⊗D E → E is an isomorphism. This implies the morphism 7.2.3.15.1 is an isomorphism if
and only if so is the canonical D ⊗D E → D“⊗DE. We conclude thanks to 7.2.3.11.2.

2) Let E• ∈ Modfp(lD•). Let us check that←lX,∗(E•) ∈ Coh(lD) and that the canonical morphism←l
∗
X
◦

←lX,∗(E•)→ E• is an isomorphism. Since this is local, we can suppose X is affine. By using the equivalence
of categories of 7.2.1.6 and 7.2.3.9, there exist E ∈ Coh(D) and an isomorphism $∗X• ◦←l

∗(E)
∼−→ E• of

Modfp(lD•). This yields

E∆ =←lX,∗ ◦←l
∗
X
◦$∗X(E)

∼−→←lX,∗$
∗
X• ◦←l

∗(E)
∼−→←lX,∗(E•).

Since E is a left D-module of finite type, then following 7.2.3.11.3 we have E∆ ∈ Modgfp(lD). Hence,
←lX,∗(E•) ∈ Coh(lD). Since the adjoint morphism←l

∗
X
◦←lX,∗(←l

∗
X
◦$∗X(E))→←l

∗
X
◦$∗X(E) is an isomorphism

(use 1) and the fact that $∗X(E) ∈ Coh(lD)), then so is←l
∗
X
◦←lX,∗(E•)→ E•.

3) When X is affine, it remains to check the equality Coh(lD) = Modgfp(lD). Let E ∈ Coh(lD).
From 1), E• :=←l

∗
X

(E) ∈ Modfp(lD•) and E ∼−→ ←lX,∗(E•). From 2), there exists E ∈ Coh(D) such that

←lX,∗(E•)
∼−→ E∆ ∈ Modgfp(lD). Hence, we are done.

Corollary 7.2.3.16 (Characterization of the D-coherence, Theorem A, Theorem B). We suppose X
affine and we keep notation and hypotheses of 7.2.3.4.

(i) Let E is a left D-module. The following properties are equivalent.

(a) For any i ∈ N, the Di-module E/Ii+1E is coherent, and the canonical homomorphism E →
lim←−i E/I

i+1E is an isomorphism.

(b) The D-module Γ(X, E) is of finite type and the canonical homomorphism

D ⊗D Γ(X, E)→ E

is an isomorphism.

(c) E is a coherent D-module.

(ii) The functors $∗X = D⊗D− and $X∗ = Γ(X,−) induce canonically exact quasi-inverse equivalences
of categories between Coh(lD) and Coh(lD).

(iii) Let E be a coherent left D-module. We have Hq(X, E) = 0 for all q ≥ 1.

Proof. The first two statements follows from 7.2.3.10 and 7.2.3.15. Using 7.2.2.2.a, this yields the last
one.

7.2.3.17 (Support). Let E be a coherent D-module. By using the theorem of type A of 7.2.3.16, we
easily check that the set U consisting of elements x ∈ X such that Ex = 0 is an open subset of X. The
support of E is by definition the complementary of U in X . We have E|U = 0.

Let Z be a closed subset of X and V be the complementary. We say that E has his support in Z if Z
if E|V = 0.

7.3 Quasi-coherent complexes on formal schemes or on inductive
systems of schemes

Let X be a locally noetherian formal scheme of Krull dimension d and I be an ideal of definition of X.
We keep notation 7.2.
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7.3.1 Definitions and first properties
Let D be a sheaf of rings on X equipped with a homomorphism OX → D satisfying the following
conditions of 7.2.3.

7.3.1.1. With notation 7.2, we have the morphism of ringed topoi←lX : (X•,OX•) → (|X |,OX). From
[Sta22, 07A6] (or see 5.3.5.4), this yields the functors R←lX∗ : D(OX•) → D(OX) and L←l

∗
X

: D(OX) →
D(OX•) which are adjoint:

HomD(OX• )(L←l
∗
X

(E•),F•• ) = HomD(OX)(E•,R←lX∗(F
•
• )) (7.3.1.1.1)

for any E• ∈ D(OX) and any F•• ∈ D(OX•).

7.3.1.2 (Bounded cohomological dimension). Let B be a basis of open sets of |X|. For any abelian sheaf
E• of X• and for any integer q the sheaf Rq←lX∗E• is the sheaf associated with the presheaf U ∈ B 7→
Hq(U•, E•) (see [SGA4.2, V.5.1.1]). According to notation 7.2.3.8, let $U : |U| → {∗} be the continuous
morphism for the topological space of U to a punctual set. Since R←l{∗} ◦R$U,N∗

∼−→ R(←l{∗} ◦$U,N∗) (see
7.1.3.15.3), since of Hq(U•, E•) = Rq(←l{∗} ◦ $U,N∗)(E•|U•), since Rq$U,N∗(E•|U•) = (Hq(U, Ei))i∈N (see
7.1.3.15.2), then we get the spectral sequence

Ep,q2 = Rp lim←−
i

(Hq(U, Ei))⇒ Hp+q(U•, E•). (7.3.1.2.1)

For any p > 1 or q > d, Ep,q2 = 0. Hence, Hn(U•, E•) = 0 for n > d + 1. This yields that the functor
←lX∗ has cohomological dimension bounded by d+ 1 on the category of abelian sheaves. In some special
cases, we have better estimates (see 7.3.1.3.d).

Following 4.6.1.6.b, for any E•• ∈ K(D•) (resp. for any E•• ∈ K−(D•)), there exist a complex
I•• ∈ K(D•) (resp. I•• ∈ K−(D•)) of←lX,∗-acyclic left D•-modules and a quasi-isomorphism E••

∼−→ I•• .
Following [Sta22, 07K7–Lemma 13.31.2], Moreover, we have the isomorphism R←lX,∗E

•
•
∼−→←lX,∗I

•
• .

7.3.1.3. Let E• be a left D•-module.

(a) Put [E ]i =
∏
j≤i Ej . By composing the transition map Ei+1 → Ei with the canonical inclusion

Ei → [E ]i, we get the morphism di : Ei+1 → [E ]i. This yields the transition maps (di, id) : [E ]i+1 =
Ei+1 ⊕ [E ]i → [E ]i. We get the D•-module [E ]• endowed with the canonical monomorphism of D•-
modules E• → [E ]•. Remark that this is similar to the canonical embedding of E• into a flasque sheaf
of X• (see the construction 7.1.2.19.1).

Let G• := [E ]•/E•. Then the transition maps Gi+1 =
∏
j≤i Ej →

∏
j≤i−1 Ej = Gi are the canonical

projections. Hence, we get the exact sequence

0→ E• → [E ]• → [E ]•/E• → 0, (7.3.1.3.1)

where the transition maps of [E ]• and [E ]•/E• are surjective in the category of presheaves.

(b) We say that E• is “locally Γ-acyclic” if there exists a basis of open sets B of |X| such that for any
U ∈ B, Ei|Ui is Γ(Ui,−)-acyclic for any i ∈ N. For instance, if Ei are quasi-coherent OXi-modules
for any i ∈ N, then we can choose B equal to the affine open sets of |X|.

(c) We say that E• is “ML-flasque” if there exists a basis of open subsets B of |X| such that for any
U ∈ B and for any i ∈ N Ei|Ui is Γ(Ui,−)-acyclic and the maps Ei+1(Ui+1)→ Ei(Ui) induced by the
transition maps are surjective. It follows from Mittag-Leffler criterion and from 7.3.1.2.1 that if E•
is ML-flasque then it is acyclic for←lX∗. For instance, when Ei are quasi-coherent OXi-modules and
Ei+1 → Ei are surjective as sheaves for any i ∈ N (e.g. when E• is of finite type : see 7.1.3.8), then
we can choose B equal to the affine opens of |X|.

(d) Suppose E• is locally Γ-acyclic. Hence so are [E ]• and [E ]•/E•, and they are therefore ML-flasque.
Hence the exact sequence 7.3.1.3.1 gives a resolution of length 1 of E• with ML-flasque D•-modules.
This yields Rn←lX∗E• = 0 for any n ≥ 2.

Lemma 7.3.1.4. Let n ∈ N and E• ∈ D−(OXn). The following conditions are equivalent

346



(a) The complex E• has OXn-quasi-coherent cohomology.

(b) The complex OX0
⊗L
OXn E

• has OX0
-quasi-coherent cohomology.

Proof. Since the converse is obvious, let us check (b) → (a). We proceed by induction on n. The case
n = 0 is tautological. Suppose n ≥ 1 and consider now the distinguished triangle

In/In+1 ⊗L
OXn E

• → E• → OXn−1
⊗L
OXn E

• → +1. (7.3.1.4.1)

By induction hypothesis, the complex OXn−1
⊗L
OXn E

• has OXn−1
-quasi-coherent cohomology, which

implies it has OXn-quasi-coherent cohomology. Since In/In+1 ⊗L
OXn E

• ∼−→ In/In+1 ⊗L
OX0

(OX0
⊗L
OXn

E•), then similarly we get that the left term of the exact triangle 7.3.1.4.1 has OXn -quasi-coherent
cohomology.

Definition 7.3.1.5. Let E• ∈ D−(OX) be a complex of OX-modules. We say E• is OX-quasi-coherent
if the following conditions are satisfied:

(a) The complex OX0
⊗L
OX
E• has OX0

-quasi-coherent cohomology.

(b) The canonical morphism
E• → R←lX∗(L←l

∗
X
E•) (7.3.1.5.1)

is an isomorphism.

We denote by D−qc(OX) the full subcategory of D−(OX) consisting of quasi-coherent complexes. It follows
from the Lemma 7.3.1.4 that if E• ∈ D−qc(OX) then OXn ⊗L

OX
E• ∈ D−qc(OXn) for any integer n ∈ N.

This yields this notion of quasi-coherence does not depend on the choice of the ideal of definition of X.
Moreover, this is straightforward by definition that D−qc(OX) is a triangulated subcategory of D−(OX).
Finally, the quasi-coherence is a local notion: 1) a complex E• of D−(OX) is quasi-coherent if and only
if there exists an covering (Ui)i by open subset of X such that E•|Ui is quasi-coherent for any i ; 2) if
E• ∈ D−qc(OX) then E•|U ∈ D−qc(OU) for any open set U of X.

Definition 7.3.1.6. Let E be an OX-module. We say that E is OX-quasi-coherent if E ∈ D−qc(OX).
�

If E• ∈ D−qc(OX) then this is false in general that for any n ∈ Z the OX-modules Hn(E•) are
quasi-coherent.

The following proposition gives examples of quasi-coherent modules and will be useful to check 8.7.4.2.

Proposition 7.3.1.7. Let E be an OX-module which is tor-independent with OXn for any n ∈ N (e.g.
when I = (p) and E is p-torsion free). Then the following properties are equivalent:

(a) The module E is OX-quasi-coherent ;

(b) The module E is pseudo-quasi-coherent (see Definition 7.2.3.5).

Proof. By hypothesis, we have the isomorphism E• := ←l
∗
X
E ∼←− L←l

∗
X
E . Suppose E is pseudo-quasi-

coherent. Since E• is ML-flasque (see definition 7.3.1.3.(c)), then it is acyclic for←lX∗ and we get the
canonical isomorphism←lX∗(E•)

∼−→ R←lX∗(E•). Hence, since the canonical morphism E →←lX∗(←l
∗
X
E) is an

isomorphism, then so is
E → R←lX∗(L←l

∗
X
E),

i.e. E is quasi-coherent. Conversely, if the morphism E → R←lX∗(L←l
∗
X
E) is an isomorphism, then so is

E →←lX∗(←l
∗
X
E), and E is pseudo quasi-coherent.

Lemma 7.3.1.8. Let A be a noetherian commutative ring, I an ideal of A, Ai = A/Ii+1, M be an
A-module of finite type. Then, for any q ≥ 1, there exists a large enough integer k such that the
homomorphisms

torAq (Ai+k,M)→ torAq (Ai,M)

are null for any i ∈ N.
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Proof. Fix q ≥ 1. Let L• a resolution of M by free A-modules of finite type, d be its differential. It
follows from the Artin-Rees lemma applied to the inclusion d(Lq) ⊂ Lq−1 that there exists k ∈ N such
that for any i ∈ N we have the inclusion

d(Lq) ∩ Ii+1+kLq−1 ⊂ Ii+1d(Lq) = d(Ii+1Lq). (7.3.1.8.1)

For such fixed k, it remains to check that the canonical homomorphisms Ai+k ⊗A Lq → Ai ⊗A Lq send
Zq(Ai+k ⊗A L•) to Bq(Ai ⊗A L•) for any i ∈ N. Let x ∈ Zq(Ai+k ⊗A L•). Choose y ∈ Lq which gives x
via the surjection Lq → Ai+k ⊗A Lq. Since d(y) ∈ d(Lq) ∩ Ii+1+kLq−1, then from 7.3.1.8.1, there exists
z ∈ Ii+1Lq such that d(y) = d(z). Since Hq(L•) = 0 (recall q ≥ 1), then there exists t ∈ Lq+1 such that
y = z + d(t). We compute x = d(t), where x (resp. t) is the image of x (resp. t) in Ai ⊗A Lq (resp.
Ai ⊗A Lq+1).

Proposition 7.3.1.9. Let n ∈ N, and E• ∈ D−(OXn). Then E• ∈ D−qc(OX) if and only if E• ∈
D−qc(OXn).

Proof. a) Suppose E• ∈ D−qc(OX). Since E• ∈ D−(OXn), the canonical morphism E → OXn ⊗L
OX
E has

the canonical retraction OXn
L
⊗OX

E → E . Hence, Hi(E) is a direct summand of Hi(OXn ⊗L
OX
E).

b) Conversely, suppose E• ∈ D−qc(OXn). Since OXn ∈ D−coh(OX), then OXn ⊗L
OX
OXn ∈ D−coh(OXn).

Since OXn ⊗L
OX
E ∼−→ (OXn ⊗L

OX
OXn) ⊗L

OXn E , this yields that OXn ⊗L
OX
E ∈ D−qc(OXn). Hence,

OX0
⊗L
OX
E ∼−→ OX0

⊗L
OXn (OXn ⊗L

OX
E) ∈ D−qc(OX0

). It remains to check that the morphism 7.3.1.5.1
is an isomorphism. Since the fact that the homomorphism 7.3.1.5.1 is an isomorphism is local, we can
suppose X affine and noetherian and that E is a quotient of a free OXn -module Since the functors R←lX∗
and L←l

∗
X

are way-out left (see 7.3.1.2 for the first one), then we reduce to the case where the complex E• is
in fact a quasi-coherent OXn -module (use the left version of [Har66, I.7.1.(ii)]). and then that E• is a free
OXn-module (use the left version of [Har66, I.7.1.(iv)]). For any i ≥ n, the morphism E → OXi ⊗OX

E
is an isomorphism. Hence the morphism E → lim←−iOXi ⊗OX

E is an isomorphism. Consider the spectral
sequence

Ep,q2 = Rp lim←−
i

(T orOX
q (OXi , E)) = Rp←lX∗(L

q
←l
∗
X

(E)⇒ Hn(R←lX∗(L←l
∗
X
E)).

Since←l
∗
X
E is ML-flasque (see definition 7.3.1.3), then Ep,02 = 0 for any p > 0. Hence, since this implies

that Ep,q2 = 0 for any q ≥ 1, this is sufficient to check that the projective system (T orOX
q (OXi , E))i∈N

is essentially null for any q ≥ 1. By freeness, we reduce to check it to the case where E = OXn . Since
T orOX

q (OXi ,OXn) are coherent OXi-modules such that Γ(Xi, T orOX
q (OXi ,OXn)) = torAq (Ai, An), where

X = Spf A and Xi = SpecAi, this follows from Lemma 7.3.1.8.

Definition 7.3.1.10. Let E•• ∈ D−(OX•) be a complex of OX• -modules. We say E•• is OX•-quasi-
coherent if the following conditions hold:

(a) The complex E•0 is in D−qc(OX0
).

(b) The canonical morphisms
OXi ⊗L

OXi+1
E•i+1 → E•i (7.3.1.10.1)

are isomorphisms for all i.

We denote by D−qc(OX•) the full subcategory of D−(OX•) consisting of quasi-coherent complexes. It
follows from 7.3.1.4 that for any E•• ∈ D−qc(OX•) and any i ∈ N, we have E•i ∈ D−qc(OXi). Moreover, this
is straightforward by definition that D−qc(OX•) is a triangulated subcategory of D−(OX•). Finally, the
quasi-coherence is a local notion: a complex E• of D−(OX•) is quasi-coherent if and only if there exists
an covering (Ui)i by open subset of X such that E•|Ui is quasi-coherent for any i ; if E• ∈ D−qc(OX•) then
E•|U ∈ D−qc(OU•) for any open set U of X.

Remark 7.3.1.11. Let E•• ∈ D−(OX•). Choose a morphism P••
∼−→ E•• in C−(OX•) which is a quasi-

isomorphism and such that Pn• are OX• -flat for any n ∈ Z. Since Pni are OXi-flat for any i ∈ N and
n ∈ Z, then the fact that the morphisms 7.3.1.10.1 are isomorphisms is equivalent to the fact that the
canonical morphisms

OXi ⊗OXi+1
P•i+1 → P•i (7.3.1.11.1)

are isomorphisms for all i.
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7.3.1.12. Let ∗ ∈ {l, r}. We denote by D−qc(∗D) (resp. D−qc(∗D•)) the full subcategory of D−(∗D) (resp.
D−(∗D•)) consisting of complexes of OX-quasi-coherent modules (resp. O•-quasi-coherent modules) in
the sense of 7.3.1.5 (resp. 7.3.1.10). In other words, D−qc(∗D) = D−(D) ∩D−qc(OX) (resp. D−qc(∗D•) =
D−(D•) ∩D−qc(OX•)). The objects of D−qc(∗D) (resp. D−qc(∗D•)) are called quasi-coherent complexes of
D−(∗D) (resp. D−(∗D•)). Moreover, D−qc(∗D) is a triangulated subcategory of D−(D) and D−qc(∗D•) is
a triangulated subcategory of D−(D•). The full subcategory of Db

qc(∗D•) consisting of quasi-coherent
complexes of finite tor dimension on D• is denoted by Dqc,tdf(

∗D•).

Proposition 7.3.1.13. Let E•• ∈ D−(lD•) be a complex such that the canonical morphisms

Di
L
⊗Di+1

E•i+1 → E•i (7.3.1.13.1)

are isomorphisms for any i. Then E•• has tor-amplitude in [a, b] over D• if and only if E•0 has tor-
amplitude in [a, b] over D0.

Proof. From 7.1.3.6, we reduce to check that if E•0 has tor-amplitude in [a, b] over D0 then E•i has tor-
amplitude in [a, b] over Di for any i ∈ N. We proceed by induction on i ∈ N. The case i = 0 is obvious.
Let us suppose i ≥ 1 and the property valid for j < i. LetM be a right Di-module. We have to prove
that Hn(M⊗L

Di E
•
i ) = 0 for any n 6∈ [a, b]. For any 0 ≤ j ≤ i− 1, if Nj is a right Dj-module, using the

induction hypothesis we get

Nj ⊗L
Di E

•
i
∼−→ Nj ⊗L

Dj
(
Dj ⊗L

Di E
•
i

) ∼−→ Nj ⊗L
Dj E

•
j ∈ D[a,b](Di).

We have the exact sequence 0→MIi →M→M/MIi → 0, which yields the exact triangle

MIi ⊗L
Di E

•
i →M⊗L

Di E
•
i →M/MIi ⊗L

Di E
•
i → +1.

SinceM/MIi is a right Di−1-module andMIi is a right D0-module, we are done.

7.3.1.14. Suppose that D• satisfied the condition 7.3.1.10.b for the left structure. For any E•• ∈ D−(lD•),
the canonical homomorphisms

OXi ⊗L
OXi+1

E•i+1 → Di ⊗L
Di+1

E•i+1 (7.3.1.14.1)

are then isomorphisms for all i ∈ N. Hence, E•• satisfies the isomorphisms 7.3.1.13.1 if and only if it
satisfies the condition 7.3.1.10.b. Finally, choose a morphism P••

∼−→ E•• in C−(lD•) which is a quasi-
isomorphism and such that Pn• are DX• -flat for any n ∈ Z. Since Pni are Di-flat for any i ∈ N and n ∈ Z,
then the fact that the morphisms 7.3.1.13.1 are isomorphisms is equivalent to the fact that the canonical
morphisms

Di ⊗Di+1 P•i+1 → P•i (7.3.1.14.2)

are isomorphisms for all i. We have similar results for right D•-modules.

Proposition 7.3.1.15. Suppose D is left coherent. Let E•• be a complex of D−(lD•). Then E•• is an
object of D−coh(lD•) (resp. Dperf(

lD•)) if and only if the following conditions hold.

(a) The complex E•0 is in D−coh(lD0) (resp. Dperf(
lD0)).

(b) Di ⊗L
Di+1

E•i+1 → E•i are isomorphisms for all i.

Proof. By using 7.1.3.12 and 7.3.1.13, we reduce to check the non-respective case. Suppose E•• satisfies
both conditions (a) and (b). From 7.1.3.13, it remains to check that for any i ∈ N, E•i ∈ Dcoh(lDi). The
case i = 0 is obvious. Let us suppose i ≥ 1 and the property valid for j < i. We have the exact sequence
of Di-bimodules 0→ IiD/Ii+1D → Di → Di−1 → 0, which yields the exact triangle of left Di-modules

IiD/Ii+1D ⊗L
Di E

•
i → E•i → E•i−1 → +1. (7.3.1.15.1)

By induction hypothesis, E•i−1 ∈ Dcoh(lDi−1) and then E•i−1 ⊂ Dcoh(lDi) (use 4.1.3.2 and 4.6.1.7). Since

IiD/Ii+1D ⊗L
Di E

•
i
∼−→ IiD/Ii+1D ⊗L

D0

(
D0 ⊗L

Di E
•
i

) ∼−→ IiD/Ii+1D ⊗L
D0
E•0 , (7.3.1.15.2)
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then we reduce to check that IiD/Ii+1D ⊗L
D0
E•0 ∈ Dcoh(lD0). By devissage, we can suppose that E•0 is

a coherent D0-module denoted by E0. We have to check torD0
n (IiD/Ii+1D, E0) is a coherent D0-module

for any integer n. Since this is local we can suppose there exist a resolution P•0 of E0 such that for any
l ≥ −n− 1, P l

0 is a finite free D0-module. Hence torD0
n (IiD/Ii+1D, E0)

∼−→ Kerβ/Imα, where α and β
are D0-linear (for the left structure) morphisms of the form:

(IiD/Ii+1D)r
α−→ (IiD/Ii+1D)s

β−→ (IiD/Ii+1D)t.

Hence, we are done.

Proposition 7.3.1.16. If D (resp. D•) is left quasi-coherent i.e. satisfies the conditions of 7.3.1.5
(resp. 7.3.1.10 for the left structure of OX-module (resp. OX•-module), then the category D−coh(lD)
(resp. D−coh(lD•)) is a triangulated subcategory D−qc(lD) (resp. D−qc(lD•)).

Proof. First suppose D is left quasi-coherent. Let E• ∈ D−coh(lD). Let n ∈ Z. Since the fact that
Hn(OX0 ⊗L

OX
E•) is OX0-quasi-coherent is local, we can suppose there exists a bounded complex of

free D-modules of finite type L• and a morphism L• → E• of C−(lD) which is an n − 1-isomorphism
in D−(lD), i.e. whose cone is acyclic in degree ≥ n − 1. This implies that the canonical morphism
Hn(OX0

⊗L
OX
L•) → Hn(OX0

⊗L
OX
E•) is an isomorphism. Using the first property of quasi-coherence

(see 7.3.1.5.a), we get OX0
⊗L
OX
Lm ∈ D−qc(OX0

). By using some spectral sequence this yields the
OX0

-quasi-coherence of Hn(OX0
⊗L
OX
L•). It remains to check that the canonical morphism

E• → R←lX∗(L←l
∗
X
E•) (7.3.1.16.1)

is an isomorphism. Since this is local, since these functors are way-out left (see 7.3.1.2 for the functor
R←lX∗), we reduce to the case where E• is a free left D-module of finite type (use a “local left” version of
[Har66, I.7.1.(iv)] i.e. replacing way-out right by way-out left and replacing the existence of an injection
by the local existence of a surjection), which follows from the quasi-coherence of D. Hence, we are done.

Let us now treat the respective case, i.e. suppose D• is left quasi-coherent. This is a consequence of
7.3.1.15 and 7.3.1.14.

The non-respective cases of the following lemma 7.3.1.17 and proposition 7.3.1.18 is an erratum of
[BO78, B.2.1] given to the author by Berthelot.

Lemma 7.3.1.17. Suppose X affine and set Di := Γ(X,Di) for any i ∈ N. Let E•• ∈ C−(lD•) such
that the transition map E•i+1 → E•i is an epimorphism of C−(lDi) for all i ∈ N (resp. such that
E•i ∈ C

−
coh(lDi) and the transition map E•i+1 → E•i is an epimorphism of C−(lDi), for all i ∈ N). Then

there exists F •• ∈ C−(D•) such that each Fni is a free (resp. free of finite type) left Di-module, the
transition map F •i → F •i−1 is an epimorphism of C−(lDi) for all i ≥ 1 and there exists an epimorphism
(resp. a morphism) F •• → E•• of C−(D•) which is a quasi-isomorphism.

Proof. 0) It is standard (e.g. see the dual version of the proof of [Har66, I.4.6.1.(i)], or [Sta22, 0EWZ-
15.62.19] or [Sta22, 066E-15.62.18] in the respective case) to find a F •0 ∈ C−(D0) consisting of free left
D0-modules (resp. free left D0-modules of finite type) and an epimorphism (resp. morphism) F •0 → E•0
of C−(D0) which is moreover a quasi-isomorphism.

We prove the Lemma by constructing inductively on i ≥ 1 a complex a) F •i ∈ C−(Di) consisting of
free left Di-modules (resp. free left Di-modules of finite type), b) an epimorphism (resp. a morphism)
F •i → E•i of C−(Di) which is also a quasi-isomorphism and c) an epimorphism F •i → F •i−1 of C−(Di)
making commutative the diagram of C−(Di−1)

F •i

��

// E•i

��
F •i−1

// E•i−1.

(7.3.1.17.1)

Let i ≥ 1 and suppose constructed such a F •j , F •j → E•j , F •j → F •j−1 for any j ≤ i− 1 (when j = 0, we
forget the second map).
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1) i) Let us focus in the non-respective case. As above, let P •i ∈ C−(Di) be a complex consisting of
free left Di-modules and an epimorphism a : P •i → E•i of C−(Di) which is moreover a quasi-isomorphism.

Since Pni are projective for any n ∈ Z, since our complexes are bounded above, since F •i−1 → E•i−1

is an epimorphism of C−(Di), then following [Sta22, 0649-Lemma 13.19.6] there exists a morphism
b : P •i → F •i−1 of C−(Di) making commutative in C−(Di) the diagram

P •i

b

��

a // E•i

��
F •i−1

// E•i−1.

(7.3.1.17.2)

ii) In the respective case, since C−(Di) is an abelian category, we can consider the complex R•i :=
F •i−1×E•i−1

E•i of C−(Di) (we do not write the forgetful functor C−(Di−1)→ C−(Di)). Let α : R•i → E•i
an β : R•i → F •i−1 be the structural morphisms of C−(Di). Since E•i → E•i−1 is an epimorphism of
C−(Di), then this is well known (e.g., using the five lemma, consider the morphism of long exact sequences
induced by the morphism of exact sequences of C−(Di) constructed from the morphism of epimorphisms
given by (R•i → F •i−1) → (E•i → E•i−1)) that α is a quasi-isomorphism. Since R•i ∈ D−coh(Di), then
we can choose P •i ∈ C−(Di) a complex consisting of free left Di-modules of finite type endowed with
a quasi-isomorphism γ : P •i → R•i of C−(Di). Then by setting a := α ◦ γ and b := β ◦ γ, we get a
commutative diagram such as 7.3.1.17.2 whose horizontal morphisms are quasi-isomorphisms.

2) We add an acyclic complex to P •i to construct F •i so that F •i → F •i−1 is an epimorphism as follows.
First, let K•i−1 be the mapping cone of the identity of F •i−1 and ψ : K•i−1 → F •i−1[1] be the canonical

epimorphism of C(Di−1). Since K•i−1 is an acyclic complex of projective left Di−1-modules and is
bounded above, then by descending induction on the degree n we can check that each Kn

i−1 is a direct
sum (in the category of Di−1-modules) of the form Qn−1

i−1 ⊕Qni−1 and the boundary map of Kn
i−1 → Kn+1

i−1

are the maps given by the formula dn(qn−1, qn) = (qn, 0). Now, choose for any integer n a free left Di-
module (resp. a free left Di-module of finite type) Qni such that Qni−1 is a quotient of Qni (in the
category of left Di-modules) and take Kn

i := Qn−1
i ⊕ Qni with boundary maps given as above by the

formula dn(qn−1, qn) = (qn, 0). We observe that K•i is an acyclic complex of free Di-modules (resp. free
Di-modules of finite type), still bounded above, and endowed with an epimorphism ψ′ : K•i → K•i−1 of
C(Di). Now set F •i := P •i ⊕K•i [−1] and δ := (b, ψ ◦ ψ′[−1]) : F •i → F •i−1. Since ψ and ψ′ are surjective,
then so is δ.

3) We construct now the quasi-isomorphism F •i → E•i making commutative the diagram 7.3.1.17.1
in the next two steps.

i) We remark that, for any G ∈ C(Di), the map∏
n

HomDi(Q
n
i , G

n)→ HomC(Di)(K
•
i , G

•)

given by h• 7→ {(dn−1
G ◦ hn−1, hn) : Qn−1

i ⊕Qni → Gn ; n ∈ Z} is a bijection.
ii) Since Kn

i are projective for any n ∈ Z, since our complexes are bounded above, since E•i →
E•i−1 is surjective, then following [Sta22, 0649-Lemma 13.19.6] we can find a morphism of complexes
φ : K•i [−1]→ E•i of C−(Di) making commutative in C−(Di) the diagram

K•i [−1]

ψ◦ψ′[−1]

��

φ // E•i

��
F •i−1

// E•i−1.

Hence, we get the morphism c := (a, φ) : F •i → E•i making commutative the diagram 7.3.1.17.1 . Finally,
since a is a quasi-isomorphism and K•i [−1] is acyclic, then c is also a quasi-isomorphism.

Proposition 7.3.1.18. Suppose X affine and set Di := Γ(X, Di) for any i ∈ N. Let E•• ∈ D−(lD•)
(resp. let E•• ∈ D−coh(lD•)). Then there exists F •• ∈ D−(D•), such that each Fni is a free (resp. free of
finite type) left Di-module and each map Fni → Fni−1 is surjective, and an isomorphism of D−(D•) of
the form E••

∼−→ F •• .

351



Proof. By using ML-flasque resolution (of length 1) of 7.3.1.3.1, for each E•n and then taking the total
complex, we get a morphism in C−(lD•) of the form E•• → G•• which is a quasi-isomorphism and G•• is
a complex satisfying the condition of Lemma 7.3.1.17. Hence, we are done.

Remark 7.3.1.19. Suppose X affine. Then the functors Γ(X,−) and D• ⊗D• − are exact canonically
quasi-inverse equivalences of categories between C−(lD•) and the full subcategory of C−(lD•) consisting
of complexes E•• such that, for all n ∈ Z and i ∈ N, Eni is OXi-quasi-coherent. Via these equivalences, we
can get a sheafified version of 7.3.1.17 and 7.3.1.18.

Lemma 7.3.1.20. Let E•• ∈ C−(lD•) be a complex such that En• is D•-flat, Eni is a quasi-coherent
OXi-module and the transition maps Eni → Eni−1 are surjective for any n ∈ Z and i ∈ N.

(a) The complex←lX∗(E
•
• ) consists of flat left D-modules.

(b) For any coherent right D-moduleM, the natural map of C−(lD):

M⊗D←lX∗(E
•
• )→←lX∗(←l

−1
X

(M)⊗
←l
−1
X

(D) E•• )

is an isomorphism.

Proof. 0) We can suppose E• is a flat left D•-module such that Ei is a quasi-coherent OXi-module and
the transition maps Ei → Ei−1 are surjective for any i ∈ N. Since the lemma is local, we can suppose X
is affine. Set D• := Γ(X,D•) and D := Γ(X,D), E• := Γ(X, E•) and M := Γ(X,M). Since the functor
Γ(X,−) commutes with inverse limits, we reduce to check that the left D-module←l∗(E•) is flat and that
the natural map

M ⊗D←l∗(E•)→←l∗(M ⊗D E•), (7.3.1.20.1)

where by abuse of notation we removed to indicate the functor←l
−1, is an isomorphism. Since the map

7.3.1.20.1 is an isomorphism when M is free of finite type, then by using the five lemma and the right
exactness of the functor M 7→M ⊗D←l∗(E•), it is sufficient to prove that F : M 7→←l∗(M ⊗D E•) is exact
on the category of right D-modules.

1) We prove that the inverse system torD1 (M,E•) is essentially zero. Fix i ∈ N.
i) Since Ei is Di-flat, then torD1 (M,Ei)

∼−→ torD1 (M,Di)⊗Di Ei. Hence, it suffices to prove that the
right D•-module T•(M) := torD1 (M,D•) is a an essentially zero system. By using the exact sequence of
D-bimodules 0→ Ii+1D → D → Di → 0, we get the inclusion of right D-modules Ti(M) ⊂M⊗DIi+1D.
By applying Artin-Rees with respect to the I-adic topology for this inclusion we can find an integer ν
such that

Ti(M) ∩ ((M ⊗D Ii+1D)Im+ν) ⊂ Ti(M)Im, for all m ∈ N.

Since Ti(M) is a right Di-module, then Ti(M)Ii+1 = 0. This yields Ti(M) ∩ ((M ⊗D Ii+1D)Im+ν) = 0
for m〉i+ ν.

ii) By using the commutative diagram of D-bimodules,

0 // Ii+j+1D //

��

D // Di+j
//

��

0

0 // Ii+1D // D // Di
// 0

whose horizontal sequences are exact, we get the commutative square

Ti+j(M) //

��

M ⊗D Ii+j+1D

��
Ti(M) // M ⊗D Ii+1D.

Hence, from the part 1.i) of the proof, the image Ti+j(M)→ Ti(M) is zero for j > i+ ν.
2) Let 0 → M ′ → M → M ′′ → 0 be an exact sequence of right D-modules. Let S• be the image of

torD1 (M ′′, E•)→M ′ ⊗D E• and R• be the image of M ′ ⊗D E• →M ⊗D E•. We get the exact sequence

352



0 → S• → M ′ ⊗D E• → R• → 0 where S• is essentially zero. Hence,←l∗(M
′ ⊗D E•) →←l∗(R•) is an

isomorphism. From the exact sequence, 0 → R• → M ⊗D E• → M ′′ ⊗D E• → 0, since R• is flasque,
then using again Mittag-Leffler condition we get the exact sequence 0 →←l∗(R•) →←l∗(M ⊗D E•) →
←l∗(M

′′ ⊗D E•)→ 0. Hence, we are done.

Notation 7.3.1.21. Let i ∈ N. Let vi : N≥i → N be the inclusion. Then, with notation 7.1.2.4.1,
we get the topoi morphism vi,X : Top(X)N≥i → Top(X)N. This yields the ringed topoi morphisms
vi,X : (Top(X)N≥i , v

−1
i,XD•) → (Top(X)N,D•) and←lX,N≥i : (Top(X)N≥i , v

−1
i,XD•) → (Top(X),D) (see no-

tation 7.1.2.5). We have moreover the isomorphism←lX,N≥i∗ ◦ v
−1
i,X

∼−→ ←lX,N∗. For any E
•
• ∈ D(lD•), this

yields the isomorphism
R←lX,N≥i∗ ◦ v

−1
i,X(E•• )

∼−→ R←lX,N∗(E
•
• ). (7.3.1.21.1)

7.3.1.22. Let i ∈ N and keep notation of 7.3.1.21. Recall that←l
−1
X,N≥i

(Di) is the inverse system of sheaves
of rings whose transition maps are the identity of Di. By using the projection formula of 4.6.5.8 in the case
of the ringed topoi morphism←lX,N≥i : (Top(X)N≥i ,←l

−1
X,N≥i

(Di)) → (Top(X),D), for any M•i ∈ D−(rDi)
and E•• ∈ D−(l

←l
−1
X,N≥i

(Di)), we get the projection morphism

M•i ⊗L
Di R←lX,N≥i∗(E

•
• )→ R←lX,N≥i∗

Å
←l
−1
X,N≥i

(M•i )⊗L

←l
−1
X,N≥i

(Di) E
•
•

ã
. (7.3.1.22.1)

The morphism 7.3.1.22.1 is an isomorphism whenM•i ∈ D
−
coh(rDi). Indeed, even if this is not contained

in 4.6.5.8, this can be checked as follow. Since the functor←lX,N≥i∗ has bounded cohomological dimension
(this is checked similarly to 7.3.1.2), then both functors M• 7→ M•i ⊗L

Di R←lX,N≥i∗(E
•
• ) and M• 7→

R←lX,N≥i∗

Ç
←l
−1
X,N≥i

(M•i )⊗L

←l
−1
X,N≥i

(Di) E
•
•

å
are way-out left. Then it follows from lemma [Har66, I.7.1.(ii)

and (iv)] that we can reduce to the case where M• is a free D-module of finite type. Since this latter
case is obvious, we are done.

The following proposition 7.3.1.23 is a sheafified version of [BO78, B.2.3].

Proposition 7.3.1.23. Let i ∈ N, M•i ∈ D−(rDi) and E•• ∈ D−(lD•) such that, for all n ∈ Z and
j ∈ N, Enj is OXj -quasi-coherent. With notation 7.3.1.21, there exists a natural map

M•i ⊗L
D R←lX∗(E

•
• )→ R←lX,N≥i∗

Å
←l
−1
X,N≥i

(M•i )⊗L
v−1
i,X
D•

v−1
i,XE

•
•

ã
, (7.3.1.23.1)

which is an isomorphism whenM•i has coherent cohomology.

Proof. I) First supposeM•i = Di.
1) Let us construct the morphism 7.3.1.23.1. By choosing a resolution of E•• by flat left D•-modules,

we get the morphism v−1
i,XE•• →←l

−1
X,N≥i

(Di)⊗L
v−1
i,X
D•

v−1
i,XE•• of D−(lv−1

i,XD•). This yields the morphism

R←lX∗(E
•
• )

∼−→
7.3.1.21.1

R←lX,N≥i∗v
−1
i,X(E•• )→ R←lX,N≥i∗(←l

−1
X,N≥i

(Di)⊗L
v−1
i,X
D•

v−1
i,XE

•
• ) (7.3.1.23.2)

of D−(lD). In fact, since←l
−1
X,N≥i

(Di)⊗L
v−1
i,X
D•

v−1
i,XE•• is an object of D−(l

←l
−1
X,N≥i

(Di)) then the right term

of 7.3.1.23.2 is an object of D−(lDi). Hence, we get by extension via the ring homomorphism D → Di
the desired morphism

Di ⊗L
D R←lX∗(E

•
• )→ R←lX,N≥i∗

Å
←l
−1
X,N≥i

(Di)⊗L
v−1
i,X
D•

v−1
i,XE

•
•

ã
. (7.3.1.23.3)

Recall, the map 7.3.1.23.3 is constructed from 7.3.1.23.2 by solving R←lX∗(E
•
• ) with flat left D-modules.

2) Let us check 7.3.1.23.3 is an isomorphism. Since this is local, we can suppose X is affine. Following
7.3.1.18 (and the remark 7.3.1.19), we can therefore suppose E•• is such that each Eni is a free left Di-
module and each map Eni → Eni−1 is surjective. By flatness of E•• , we get←l

−1
X,N≥i

(Di) ⊗L
v−1
i,X
D•

v−1
i,XE•• =
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←l
−1
X,N≥i

(Di)⊗v−1
i,X
D• v

−1
i,XE•• . Moreover, since for any n ∈ Z the complexes En• and←l

−1
X,N≥i

(Di)⊗v−1
i,X
D• v

−1
i,XE••

are complexes of quasi-coherent modules with surjective transitive maps, then the morphism 7.3.1.23.2
is the canonical morphism←lX∗(E

•
• )→←lX,N≥i∗(←l

−1
X,N≥i

(Di)⊗v−1
i,X
D• v

−1
i,XE•• ). It follows from 7.3.1.20.a that

the complex←lX∗(E
•
• ) consist of flat D-modules and then the morphism 7.3.1.23.3 is the natural morphism

Di⊗D←lX∗(E
•
• )→←lX,N≥i∗(←l

−1
X,N≥i

(Di)⊗v−1
i,X
D• v

−1
i,XE•• ). Since←l

−1
X,N≥i

(Di)⊗
←l
−1
X,N≥i

(D) v
−1
i,XD•

∼−→←l
−1
X,N≥i

(Di),
then the morphism 7.3.1.23.3 corresponds to the natural map

Di ⊗D←lX∗(E
•
• )→←lX,N≥i∗(←l

−1
X,N≥i

(Di)⊗
←l
−1
X,N≥i

(D) v
−1
i,XE

•
• )

∼−→←lX,N≥i∗v
−1
i,X(←l

−1
X,N(Di)⊗

←l
−1
X,N

(D) E•• )
∼−→←lX,N∗(←l

−1
X,N(Di)⊗

←l
−1
X,N

(D) E•• ).

Since Di is a coherent D-module, we conclude by using 7.3.1.20.b.

II) Let us check the general case. By applying the functorM•i
L
⊗Di − to the isomorphism 7.3.1.23.3,

we get the first isomorphism

M•i
L
⊗Di Di ⊗L

D R←lX∗(E
•
• )

∼−→ M•i
L
⊗Di R←lX,N≥i∗

Å
←l
−1
X,N≥i

(Di)⊗L
v−1
i,X
D•

v−1
i,XE

•
•

ã
(7.3.1.23.4)

7.3.1.22.1−→ R←lX,N≥i∗

Å
M•i

L
⊗
←l
−1
X,N≥i

Di←l
−1
X,N≥i

(Di)⊗L
v−1
i,X
D•

v−1
i,XE

•
•

ã
∼−→ R←lX,N≥i∗

Å
←l
−1
X,N≥i

(M•i )⊗L
v−1
i,X
D•

v−1
i,XE

•
•

ã
.

WhenM•i has coherent cohomology, the morphism 7.3.1.22.1 is an isomorphism and we are done.

7.3.2 Equivalence of categories between both notions of quasi-coherence
Let D be a sheaf of rings on X equipped with a homomorphism OX → D satisfying the following
conditions.

(a) On any affine open U ⊆ X, the ideal I has a family of generators with image in the center of D.

(b) The canonical homomorphism D → lim←−iD/I
i+1D is an isomorphism.

(c) For any affine open U ⊆ X, the ring Γ(U,D) is left and right noetherian.

(d) The projective system D• = (Di)i∈N with Di := D/Ii+1D is left and right quasi-coherent in the
sense of 7.3.1.10.

It follows from 7.2.3.3 that D is a coherent sheaf of rings.

Examples 7.3.2.1. We will use essentially in this book the following cases. Let S] be a nice fine V-log
formal scheme (see definition 3.3.1.10). Moreover, let X] → S] be a log smooth morphism of log formal
schemes. We suppose the underlying formal scheme X is locally noetherian of finite Krull dimension.

(a) Let m ∈ N. Let BX be a commutative OX-algebra endowed with a compatible structure of D(m)

X]/S]
-

module and satisfying the hypotheses of 7.3.2. Since BX“⊗OX
D(m)

X]/S]
is BX-flat (for both structures),

then BX“⊗OX
D(m)

X]/S]
satisfies also 7.3.2.

(b) Suppose X is moreover p-torsion free (see 3.3.1.12 for some example). Let Z be a divisor of X]×Spf V
Spec(V/πV). Let m, r ∈ N be two integers such that pm+1 divides r. Then following 8.7.4.2 the
sheaves BX(Z, r) and BX(Z, r)“⊗OX

D(m)

X]/S]
satisfies 7.3.2.

7.3.2.2. We denote by←lX : (X•,D•)→ (|X |,D) the morphism of ringed topoi. From [Sta22, 07A6], this
yields the functors R←lX∗ : D(D•)→ D(D) and L←l

∗
X

: D(D)→ D(D•) which are adjoint:

HomD(D•)(L←l
∗
X

(E•),F•• ) = HomD(D)(E•,R←lX∗(F
•
• )) (7.3.2.2.1)
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for any E• ∈ D(D) and any F•• ∈ D(D•). Remark that following 7.3.2.3.d just below, the functors
L←l
∗
X

when←lX is either the morphism of ringed topoi (X•,OX•)→ (|X |,OX) or (X•,D•)→ (|X |,D) are
canonically isomorphic. So this is harmless to switch from one to the other.

7.3.2.3. We have the following properties.

(a) Since D• is ML-flasque (see definition 7.3.1.3), then the canonical map D → R←lX∗(D•) is an isomor-
phism.

(b) By using 7.3.1.23 in the case where D = OX, for any i ∈ N we get the canonical isomorphism

OXi ⊗L
OX

R lim←−
j≥i
Dj

∼−→ R lim←−
j≥i

(OXi ⊗L
OXj
Dj). (7.3.2.3.1)

Since D• is left quasi-coherent and D ∼−→ R lim←−j≥iDj , this means that the canonical morphism
OX• ⊗L

OX
D → D• is an isomorphism. This yields the canonical isomorphism of functors D(OD)→

D(D•) and OX• ⊗L
X −

∼−→ D• ⊗L
D −, the isomorphism of functors D(OD) → D(Di) of the form

OXi ⊗L
OX
− ∼−→ Di ⊗L

D −, and both isomorphisms of functors D(OX)→ D(D) of the form −⊗OX•
D•

∼−→ −⊗OX
D and −⊗OXi Di

∼−→ −⊗OX
D.

Similarly, we check the canonical morphism D ⊗OX
OX• → D• is an isomorphism.

(c) It follows from (a) and (b) that the sheaf D is left and right quasi-coherent in the sense of 7.3.1.5.

(d) For any E• ∈ D−(lD), following (b), the canonical morphism OXi ⊗L
OX
E• → Di ⊗L

D E• is an
isomorphism and similarly for complexes of right D-modules. Let ∗ ∈ {l, r}. With notation 7.3.1.12,
this yields the canonical morphism OX• ⊗L

←l
−1
X
OX←

l−1
X

(−) → D• ⊗L

←l
−1
X
D←l
−1
X

(−) is an isomorphism of

functors. Hence, we get L←l
∗
X

: D−qc(∗D)→ D−qc(∗D•).

(e) By applying the functor − ⊗OX
D to the exact sequence 0 → In/In+1 → OXn → OXn−1

→ 0,
since we have also the exact sequence 0 → InD/In+1D → Dn → Dn−1 → 0, then we get the first
isomorphism InD/In+1D ∼−→ In/In+1⊗OX

D ∼−→ In/In+1⊗OX0
D0, the second one is checked at

(b).

Similarly, we get D0 ⊗OX0
In/In+1 ∼−→ InD/In+1D.

7.3.2.4. Suppose X is affine and keep notation 7.2.3.8, e.g. $X : |X| → {∗} is the continuous morphism
from the topological space of X to a punctual set. Let E•• ∈ D−(D•). Following [BO78, B.4], we say E••
is D•-quasi-consistent if and only if the canonical morphisms

Di ⊗L
Di+1

E•i+1 → E•i (7.3.2.4.1)

are isomorphisms for all i ∈ N. We denote by D−qc(D•) the full subcategory of D−(D•) consisting of
quasi-consistent complexes. Moreover, this is straightforward by definition thatD−qc(D•) is a triangulated
subcategory of D−(D•).

7.3.2.5. We keep notation 7.3.2.4. Let E•• be a complex ofD−(lD•). SinceD is noetherian, then similarly
to 7.3.1.15 E•• is an object of D−coh(lD•) (resp. Db

perf(
lD•)) if and only if the following conditions hold.

(a) The complex E•0 is in D−coh(lD0) (resp. Dperf(
lD0)).

(b) E•• is quasi-consistent.

Proposition 7.3.2.6. With notations and hypotheses of 7.3.2.4, the functors R$X•∗ and $∗X• induce
canonically quasi-inverse equivalences of categories between D−qc(D•) and D−qc(D•) (resp. D−coh(D•) and
D−coh(D•)).

Proof. I) Let us check the quasi-coherent case. 1) Let E•• ∈ D−qc(D•). We prove in this step that the
canonical morphism $∗X,•R$X,•∗(E•• )→ E•• is an isomorphism.

It follows from 7.1.3.16 there exist a complex I•• ∈ K−(D•) consisting of $X,•∗-acyclic D•-modules
and a quasi-isomorphism E••

∼−→ I•• . We get the isomorphism $X,•∗(I•• )
∼−→ R$X,•∗(I•• ) of D−(D•).
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Since I•• ∈ D−(D•) then I•• := $X,•∗(I•• ) ∈ D−(D•). Since$X,•∗ has bounded cohomological dimension,
then following 4.6.1.6.1 we have the spectral sequence Er,s2 = Rr$X,•∗(H

s(I•• )) ⇒ Hr+sR$X,•∗(I•• ).
Since Hs(I•i ) is OXi-quasi-coherent for all s ∈ Z and i ∈ N, then Hs(I•• ) is $X,•∗-acyclic (see 7.1.3.15.2).
Hence, the canonical map Hn(I•• ) = Hn$X,•∗(I•• ) → $X,•∗H

n(I•• ) (coming from the above spectral
sequence) is an isomorphism. This yields that the canonical map D•⊗D• I•• → I•• is a quasi-isomorphism
and we are done.

2) Let E•• ∈ D−(D•). We check in this step that E•• ∈ D−qc(D•) if and only if D• ⊗D• E•• ∈ D−qc(D•).
Choose a complex P •• ∈ K−(D•) consisting of flat D•-modules together with a quasi-isomorphism

P •• → E•• of K−(D•). Then E•• is quasi-consistent if and only if the canonical morphism

Di ⊗Di+1
P •i+1 → P •i (7.3.2.6.1)

is a quasi-isomorphism of K−(Di) for all i ∈ N. Set P•• := D•⊗D• P •• . Then P•• is a complex of K−(D•)
consisting of flat D•-modules together with a quasi-isomorphism P•• → D•⊗D•E•• of K−(D•). Moreover,
D• ⊗D• E•• is quasi-coherent if and only if the canonical morphism

Di ⊗Di+1 P•i+1 → P•i (7.3.2.6.2)

is a quasi-isomorphism of K−(Di) for all i. By applying the functor Di ⊗Di − to 7.3.2.6.1 we get the
second morphism:

Di ⊗Di+1 P•i+1
∼−→ Di ⊗Di (Di ⊗Di+1 P

•
i+1)→ Di ⊗Di P •i = P•i , (7.3.2.6.3)

whose composition is 7.3.2.6.2. If 7.3.2.6.1 is a quasi-isomorphism, then so is 7.3.2.6.2. Conversely,
following 4.6.1.7.c, the functor Di⊗Di− : D−(Di)→ D−qc(Di) is fully faithful which implies the following
property: if 7.3.2.6.2 is an isomorphism of D−(Di), then 7.3.2.6.1 is an isomorphism of D−(Di). Hence,
we are done.

3) Since $∗X,• = D• ⊗D• −, then it follows from 1) and 2) that the functor R$X•∗ factors through
D−qc(D•)→ D−qc(D•).

4) Let E•• ∈ D−(D•). Similarly to the step 1), since D•⊗D•E•• is a complex of $X,•∗-acyclic modules,
we can check that the canonical map E•• → R$X•∗(D• ⊗D• E••) is a quasi-isomorphism.

II) Let E•• ∈ D−coh(D•). It follows from 7.1.3.15.2, that we have the isomorphism (R$X,•∗(E•• ))0

∼−→
R$X∗(E•0 ). It follows from 4.6.1.7 that R$X∗(E•0 ) = RΓ(X, E0) ∈ D−coh(D0). By using 7.3.2.5, this yields
R$X,•∗(E•• ) ∈ D−coh(D•). Moreover, since the pseudo-coherence is stable under derived pullbacks (see
[Sta22, 08H4-21.42.3]), then for any E•• ∈ D−coh(D•), we have $∗X•(E

•
•) ∈ D−coh(D•). Hence, we get the

quasi-inverse equivalence for coherent complexes from the part I) of the proof.

Proposition 7.3.2.7. Let E•• ∈ D−(D•). The following conditions are equivalent:

(a) E•• is quasi-coherent ;

(b) For any affine open set U = Spf A ⊂ X, there exists an inverse system of complexes P •• ∈ C−(Γ(U,D•)),
endowed with an isomorphism D•|U ⊗Γ(U,D•) P

•
•
∼−→ E•• |U in D−(D•|U), such that Pni is a free left

Γ(U,Di)-module, the transition maps Pni+1 → Pni are surjective, and the canonical morphisms

Γ(U,Di)⊗Γ(U,Di+1) P
•
i+1 → P •i (7.3.2.7.1)

are quasi-isomorphisms.

(c) The complex E•0 belongs to D−qc(D0), and the canonical morphism

L←l
∗
X
◦ R←lX∗E

•
• → E•• (7.3.2.7.2)

is an isomorphism.

Proof. Let us check (c) ⇒ (a). Suppose E•• satisfies the conditions of (c). First remark that for any
F• ∈ D−(D) and F•• := L←l

∗
X

(F•), the canonical morphism

Di
L
⊗Di+1 F•i+1 → F•i (7.3.2.7.3)

356



is an isomorphism. Hence, the condition 7.3.1.10.b holds for E•• (use 7.3.1.14).
Now let us check (a)⇒ (b). Suppose E•• is quasi-coherent. We can suppose X is affine. It follows from

7.3.2.6 that we reduce to the case where there exists E•• ∈ D−qc(D•) such that E•• = D•⊗D•E•• . Following
7.3.1.18, there exists P •• ∈ C−(D•), such that each Pni is a free left Di-module and each map Pni → Pni−1

is surjective, and an isomorphism of D−(D•) of the form P ••
∼−→ E•• . Hence, D•⊗D• P ••

∼−→ D•⊗D•E•• .
is quasi-coherent. Since Pni are flat left Di-modules, then it follows the part 2) of the proof of 7.3.2.6,
that the canonical morphisms 7.3.2.7.1 are isomorphisms.

It remains to check (b)⇒ (c). Since this is local, we can suppose X affine and E•• = D• ⊗D• P •• , with
P •• ∈ C−(D•), such that each Pni is a free left Di-module and each map Pni → Pni−1 is surjective and
such that the homomorphism 7.3.2.7.1 are isomorphisms. Following 7.3.1.23.1, we have the canonical
isomorphism Di ⊗L

D R←lX∗(E
•
• )

∼−→ R←lX,N≥i∗(←l
−1
X,N≥i

(Di) ⊗L
v−1
i,X
D•

v−1
i,XE•• ). Since the morphisms 7.3.2.7.1

are isomorphism, then so are the canonical morphisms Dj ⊗Dj+1
E•j+1 → E•j for any j ≥ i. Since E••

is a flat D•-module, this implies that the canonical morphism←l
−1
X,N≥i

(Di) ⊗L
v−1
i,X
D•

v−1
i,XE•• →←l

−1
X,N≥i

(E•i )

is an isomorphism. Since R←lX,N≥i∗(←l
−1
X,N≥i

(E•i ))
∼−→ E•i , this yields the canonical isomorphism Di ⊗L

D

R←lX∗(E
•
• )

∼−→ E•i . We conclude by using 7.3.1.14.

Lemma 7.3.2.8. Suppose D0 (resp. gr•ID) has right tor dimension ≤ d on D (resp. D0) for some
integer d.

(a) Then D• has right tor dimension ≤ 2d on←l
−1
X
D.

(b) Suppose either D is commutative or OX0
(resp. gr•IOX) has right tor dimension ≤ d on OX (resp.

OX0
). Then Dj has right tor dimension ≤ 2d on Di, for any integers 0 ≤ j ≤ i.

Proof. a) Let E be a left D-module. We have the exact sequence of Di-bimodules 0 → IiD/Ii+1D →
Di → Di−1 → 0 which yields the exact triangle of left Di-modules

IiD/Ii+1D ⊗L
D0

(
D0 ⊗L

D E
)
→ Di ⊗L

D E → Di−1 ⊗L
D E → +1. (7.3.2.8.1)

For any i ∈ N, the term IiD/Ii+1D ⊗L
D0

(
D0 ⊗L

D E
)
has tor-amplitude in [−2d, 0]. Hence, we prove by

induction on i ∈ N that Di ⊗L
D E has tor-amplitude in [−2d, 0].

b) By using 7.3.1.14.1, we reduce to the case where D is commutative (and then we do not have
to bother with solving rings to be able to get derived tensor products in the derived categories of
bimodules). Let 0 ≤ j ≤ i be two integers and Ei be a left Di-module. The canonical morphism
Di → Di ⊗L

D Di has the retractation Di ⊗L
D Di → Di. Hence, Dj ⊗L

Di Di ⊗
L
Di Ei is a direct summand of

Dj ⊗L
Di (Di ⊗L

D Di)⊗L
Di Ei

∼−→ Dj ⊗L
D Ei, which has tor-amplitude in [−2d, 0].

Corollary 7.3.2.9. Suppose D0 (resp. gr•ID) has right finite tor dimension on D (resp. D0). Then
L←l
∗
X

preserves the boundedness, i.e. we get the functor L←l
∗
X

: Db
qc(D)→ Db

qc(D•).

Proof. This is straightforward from 7.3.2.8.

Corollary 7.3.2.10. The functors R←lX∗ and L←l
∗
X

induce canonically quasi-inverse equivalences of cate-
gories between D−qc(D•) and D−qc(D).

Moreover if D0 (resp. gr•ID) has right finite tor dimension on D (resp. D0) then the functors R←lX∗
and L←l

∗
X

induce canonically quasi-inverse equivalences of categories between Db
qc(D•) and Db

qc(D).

Proof. This is straightforward that we have the functor L←l
∗
X

: D−qc(D) → D−qc(D•). Let E•• ∈ D−qc(D•).
Then following 7.3.2.7, we have the canonical morphism L←l

∗
X
◦ R←lX∗E

•
• → E•• is an isomorphism. Hence,

the canonical morphism R←lX∗E
•
• → R←lX∗ ◦ L←l

∗
X
◦ R←lX∗E

•
• is an isomorphism (similarly to the proof of

7.2.1.5). Both isomorphisms imply that R←lX∗E
•
• ∈ D−qc(D•), and we get the first assertion.

We get the second one from the boundedness of the cohomological functor R←lX∗ (see 7.3.1.2) and of
L←l
∗
X

(see 7.3.2.9).

Examples 7.3.2.11. Let us give an example when we can apply 7.3.2.10. Let S] be a nice fine V-log
formal scheme (see definition 3.3.1.10). Moreover, let X] → S] be a log smooth morphism of log formal
schemes. We suppose the underlying formal scheme X is locally noetherian of finite Krull dimension.
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(a) Let BX be a commutative OX-algebra endowed with a compatible structure of D(m)

X]/S]
-module and

satisfying the hypotheses of 7.3.2. We suppose (X],BX)/S] is strongly quasi-flat, i.e., by definition
(see 4.4.1.3.b), there exists a morphism S→ T of V-formal schemes such that the induced morphism
of ringed spaces (X,BX) → T is flat and such that, denoting by IT = πOT an ideal of definition of
T, the sheaf OT0

(resp. gr•ITOT) has finite tor dimension on OT (resp. OT0
).

Following 4.4.1.5.b, this yields BX0 (resp. gr•mBX) has finite tor dimension on BX (resp. BX0). More-
over, since BX“⊗OX

D(m)

X]/S]
is BX-flat (for the left and the right structures), then D := BX“⊗OX

D(m)

X]/S]

satisfies 7.3.2 and also D0 (resp. gr•ID) has left and right finite tor dimension on D (resp. D0).

(b) When X is moreover p-torsion free (see 3.3.1.12 for some example) and Z be a divisor of X] ×Spf V

Spec(V/πV), then following 8.7.4.2 the sheaf B(m)
X (Z) satisfies 7.3.2. Moreover, (X],B(m)

X (Z))/S] is
strongly quasi-flat.

Corollary 7.3.2.12. Suppose D0 (resp. gr•ID) has right finite tor dimension on D (resp. D0). Let
E• ∈ D−qc(D). Then E• ∈ Db

qc(D) if and only if L←l
∗
X

(E•) ∈ Db
qc(D•).

Proof. This is a consequence of 7.3.2.10.

Corollary 7.3.2.13. With notations and hypotheses of 7.3.2.4, for any E•• ∈ D−qc(D•), E• ∈ D−qc(D),
the canonical base change morphisms (relative to the diagram 7.2.3.8.1)

L←l
∗ ◦ R$X∗(E•)→ R$X•∗ ◦ L←l

∗
X

(E•), $∗X ◦ R←l∗(E
•
•)→ R←lX,∗ ◦$

∗
X•(E

•
•) (7.3.2.13.1)

are isomorphism.

Proof. This is a consequence of 7.3.2.6 and 7.3.2.10.

Corollary 7.3.2.14. We have the following properties.

(a) Let E•• ∈ D−qc(lD•). Then E•• = 0 if and only if E•0 = 0.

(b) Let E• ∈ D−qc(lD). Then E• = 0 if and only if D0 ⊗L
D E• = 0.

(c) A morphism f• of D−qc(lD•) is an isomorphism if and only if so is f0.

(d) A morphism f of D−qc(lD) is an isomorphism if and only if so is D0 ⊗L
D f .

Proof. Let us check (a). Suppose E•0 = 0. By induction on i ∈ N, we prove that E•i = 0. Let us suppose
i ≥ 1 and E•j = 0 for j < i. We have the exact sequence of Di-bimodules 0 → IiD/Ii+1D → Di →
Di−1 → 0, which yields the exact triangle of left Di-modules

IiD/Ii+1D ⊗L
Di E

•
i → E•i → E•i−1 → +1. (7.3.2.14.1)

By induction hypothesis, E•i−1 = 0. We conclude with the vanishing

IiD/Ii+1D ⊗L
Di E

•
i
∼−→ IiD/Ii+1D ⊗L

D0

(
D0 ⊗L

Di E
•
i

) ∼−→ IiD/Ii+1D ⊗L
D0
E•0 = 0.

Let us check (b). Following 7.3.2.3.d, L←l
∗
X

(E•) = D• ⊗L
D E• ∈ D−qc(lD•). Hence, it follows from theorem

7.3.2.10 that (a) implies (b). The statement (c) and (d) are obvious consequences of respectively (a) and
(b).

Theorem 7.3.2.15. The functors R←lX∗ and L←l
∗
X

induce canonically quasi-inverse equivalences of cate-
gories between Dqc,tdf(D•) and Dqc,tdf(D).

More precisely let E• ∈ D−qc(D) (resp. E•• ∈ D−qc(D•)). Then E• (resp. E•• ) has tor amplitude in [a, b]
if and only if L←l

∗
X

(E•) (resp. R←lX∗E
•
• ) has tor amplitude in [a, b].

Proof. If E• ∈ Dqc,tdf(D) has tor amplitude in [a, b], then it is well known that L←l
∗
X

(E•) ∈ Dqc,tdf(D•) has
tor amplitude in [a, b]. Conversely, let E•• ∈ D−qc(D•) and suppose E•• has tor-amplitude in [a, b]. We can
replace E•• by τ≤bE•• . The fact that R←lX∗(E

•
• ) has tor-amplitude in [a, b] is local. Hence, we can suppose X

affine and, following 7.3.2.7, there exists a complex P •• ∈ C−(D•) such that Pn• = 0 if n ≥ b+1, endowed
with an isomorphism P•• := D• ⊗D• P ••

∼−→ E•• in D−(D•), such that Pni is a free left Di-module,
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the transition maps Pni+1 → Pni are surjective, and the canonical morphisms Di ⊗Di+1
P •i+1 → P •i are

quasi-isomorphisms. Let F •• := τ≥aP
•
• and F•• := D• ⊗D• F •• . Then P•• → F•• is a quasi-isomorphism.

By construction, we remark that Fni+1 → Fni are surjective for any n ∈ Z and any i ∈ N. Hence, for
any integer n the left D•-module Fn• is ML-flasque (see 7.3.1.3). Hence, we get the first isomorphism
←lX∗F

•
•
∼−→ R←lX∗F

•
•
∼−→ R←lX∗E

•
• . Since Fn = 0 for any n 6∈ [a, b], since Fn• is D•-flat for any n 6= a, since

F•• has tor-amplitude in [a, b], then it follows from [SGA6, Lemma I.5.1.1] that Fa• is D•-flat. It follows
from 7.3.1.20 that←lX∗F

•
• is a complex of flat left D-modules of tor-amplitude in [a, b].

Corollary 7.3.2.16. Let E• ∈ D−qc(D). Then E• ∈ Dqc,tdf(D) if and only if L←l
∗
X

(E•) ∈ Dqc,tdf(D•).

Proof. This is a consequence of 7.3.2.10 and 7.3.2.15.

7.3.3 Coherent complexes
Let D be a sheaf of rings on X satisfying the hypotheses of 7.3.2.

Proposition 7.3.3.1. Let E•• ∈ D−(D•). The following conditions are equivalent:

(a) E•• ∈ D−coh(D•) ;

(b) For any affine open set U = Spf A ⊂ X, there exists an inverse system of complexes P •• ∈ C−(Γ(U,D•)),
endowed with an isomorphism D•|U ⊗Γ(U,D•) P

•
•
∼−→ E•• |U in D−(D•|U), such that Pni is a free of

finite type left Γ(U,Di)-module, the transition maps Pni+1 → Pni are surjective, and the canonical
morphisms

Γ(U,Di)⊗Γ(U,Di+1) P
•
i+1 → P •i (7.3.3.1.1)

are quasi-isomorphisms.

Proof. It is clear that (b) ⇒ (a). Now let us check (a) ⇒ (b). Let E•• ∈ D−coh(D•). We can suppose
X is affine. Hence, it follows from 7.3.2.6 that we can suppose there exists E•• ∈ D−coh(D•) such that
E•• = D• ⊗D• E•• . Following 7.3.1.18, there exists P •• ∈ C−(D•), such that each Pni is a free left Di-
module of finite type and each map Pni → Pni−1 is surjective, and an isomorphism of D−(D•) of the form
P ••

∼−→ E•• . Since Pni are flat left Di-modules, then it follows the part 2) of the proof of 7.3.2.6, that
the canonical morphisms 7.3.3.1.1 are isomorphisms.

7.3.3.2. With notations and hypotheses of 7.3.2.4, let P •• ∈ C−(D•) such that Pni is a free of finite type
left Di-module, the transition maps Pni+1 → Pni are surjective, and the canonical morphisms

Di ⊗Di+1
P •i+1 → P •i (7.3.3.2.1)

are quasi-isomorphisms. Let P•• := D• ⊗D• P •• . It follows from 7.3.3.2.1 that Hs(P •• ) is ML. Hence
Hs(P•• )

∼−→ D• ⊗D• Hs(P •• ) is ML-flasque. By considering the spectral sequence Rr←lX∗(H
s(P•• )) ⇒

Hn(R←lX∗(P
•
• )), this yields that the natural map

Hn(R←lX∗(P
•
• ))→←lX∗(H

n(P•• )).

(coming from the above spectral sequence) is an isomorphism. It follows that R←lX∗(P
•
• ) ∈ D−coh(D).

Corollary 7.3.3.3. We have the following properties.

(a) The functors R←lX∗ and L←l
∗
X

induce canonically quasi-inverse equivalences of categories between
D−coh(D•) (resp. Dperf(D•)) and D−coh(D) (resp. Dperf(D)).

(b) Suppose D0 (resp. gr•ID) has right finite tor dimension on D (resp. D0). Then the functors R←lX∗
and L←l

∗
X

induce canonically quasi-inverse equivalences of categories between Db
coh(D•) and Db

coh(D).

Proof. 0) The statement (b) follows from (a) and from the boundedness of the cohomological functor
R←lX∗ (see 7.3.1.2) and of L←l

∗
X

(see 7.3.2.9).
1) Let us check the non-respective case of (a). Since the pseudo-coherence is stable under derived

pullbacks (see [Sta22, 08H4-21.42.3]), then we get the functor L←l
∗
X

: D−coh(D) → D−coh(D•). Let E•• ∈
D−coh(D•). Let us check that R←lX∗(E

•
• ) ∈ D−coh(D). Since this is local, then this follows from 7.3.3.1 and

7.3.3.2. Hence, thanks to 7.3.1.16 and the first part of 7.3.2.10 we are done.
2) We check the respective cases by using the second part of 7.3.2.10 and furthermore 7.3.2.15 (and

7.1.3.12).
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Corollary 7.3.3.4. Let E• ∈ D−qc(D) and E•• := L←l
∗
X

(E•).

(a) Then E• ∈ Dperf(D) (resp. E• ∈ D−coh(D)) if and only if E•0 ∈ Dperf(D0) (resp. E• ∈ D−coh(D0)).

(b) Suppose D0 (resp. gr•ID) has right finite tor dimension on D (resp. D0). Then E• ∈ Db
coh(D) if and

only if E•0 ∈ Db
coh(D0).

Proof. This is a consequence of 7.3.1.15, 7.3.2.10 and of 7.3.3.3.

7.3.4 Derived completed tensor products and derived completed homomor-
phisms of complexes of (bi)modules

Let X be a locally noetherian formal scheme of Krull dimension d and I be an ideal of definition of X.
Let D,D′,D′′,D′′′ be four sheaves of rings on X satisfying the hypotheses of 7.3.2 (or only 7.2.3 when
the notion of quasi-coherence is not involved).

7.3.4.1 (Independence of R←lX∗ and L←l
∗
X
). We have the topoi morphisms←lX : (X•,D•) → (|X |,D) and

←lX : (X•,ZX•)→ (|X |,ZX).

(a) Both functors R←lX∗ can be computed by taking the same flasque resolution (see 7.1.3.14) and therefore
we have the canonical commutative diagram

D−(D•)

��

R←lX∗ // D−(D)

��
D−(ZX•)

R←lX∗ // D−(ZX),

(7.3.4.1.1)

where the vertical maps are the forgetful functors. We have obviously the same property for the
exact functor←l

−1
X

.

(b) Following 7.3.2.3.d, the canonical morphism

OX• ⊗L

←l
−1
X
OX←

l−1
X

(E•)→ D• ⊗L

←l
−1
X
D←l
−1
X

(E•) =: L←l
∗
X

(E•)

is an isomorphism for any E• ∈ D−(lD), and similarly for right modules. Hence, the functor L←l
∗
X

does not depend, up to canonical forgetful functor, to the choice of such D.

7.3.4.2. Let E• ∈ D−(lD), M• ∈ D−(rD) be two complexes of D-modules, respectively to the left, to
the right. Following 7.3.2.3.d, L←l

∗
X

(E•) = D• ⊗L
D E• ∈ D−(lD•) and similarly for right modules. Hence,

we can define their completed tensor product by setting

M•“⊗L
DE• := R←lX∗(L←l

∗
X
M• ⊗L

D• L←l
∗
X
E•) ∈ D−(ZX), (7.3.4.2.1)

where R←lX∗ : D−(ZX•)→ D−(ZX) is the derived pushforward given by the topoi morphism←lX : (X•,ZX•)→
(|X |,ZX) and L←l

∗
X

: D−(lD)→ D−(lD•) is the derived pullback given by the topoi morphism←lX : (X•,D•)→
(|X |,D).

Lemma 7.3.4.3. Let E• ∈ D−(lD),M• ∈ D−(rD).

(a) We have the morphism
M• ⊗L

D E• →M•“⊗L
DE• (7.3.4.3.1)

which is an isomorphism when one of the two complexes belongs to D−coh(D) and the other to D−qc(D).

(b) When D is commutative, then we get the isomorphism of D−(D):

M•“⊗L
DE•

∼−→ R←lX∗ ◦ L←l
∗
X

(M• ⊗L
D E•), (7.3.4.3.2)

where←lX is here the topoi morphism←lX : (X•,D•)→ (|X |,D). Hence, we can considerM•“⊗L
DE• as

an object of D−(D) and then the map 7.3.4.3.1 is the adjunction morphism.
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Proof. a) Since L←l
−1
X

(M•⊗L
DE•)

∼−→ L←l
−1
X

(M•)⊗L

←l
−1
X

(D)
L←l
−1
X

(E•), then we get by adjunction the canonical
morphism

M• ⊗L
D E• → R←lX∗

(
←l
−1
X

(M•)⊗L

←l
−1
X

(D)←l
−1
X

(E•)
)

(7.3.4.3.3)

By applying the functor R←lX∗ to the following canonical morphism

←l
−1
X

(M•)⊗L

←l
−1
X

(D)←l
−1
X

(E•)→ L←l
∗
X
M• ⊗L

D• L←l
∗
X
E• (7.3.4.3.4)

and by composing this latter with 7.3.4.3.3, we get 7.3.4.3.1. By using [Har66, I.7.1], whenM• ∈ D−coh(D)
and E• ∈ D−qc(D), to check that 7.3.4.3.1 is an isomorphism, we reduce to the case whereM• = D, which
follows from 7.3.2.10.

The part b) is obvious (use 7.3.4.1).

7.3.4.4. Suppose there exists a homomorphism of sheaves of rings on X of the form D → D′ such that
the composition of OX → D with D → D′ gives OX → D′.

(a) Let ∗ ∈ {l, r} and ? ∈ {−,b}. By definition (see 7.3.1.12), the forgetful functor D?(∗D′)→ D?(∗D)
preserve the quasi-coherence, i.e. induces the functor

forgD,D′ : D
?
qc(∗D′)→ D?

qc(∗D). (7.3.4.4.1)

(b) With notation 7.3.1.12, since D• satisfied the condition 7.3.2.d for the left structure, then it follows
from 7.3.1.14 that the functor D′• ⊗L

D• − preserves the quasi-coherence, i.e., induces the functor

D′• ⊗L
D• − : D−qc(lD•)→ D−qc(lD′•). (7.3.4.4.2)

(c) Let E• ∈ D−(lD). Since D′•
∼−→ L←l

∗
X
D′ (see 7.3.2.3.b), then we get

D′“⊗L
DE•

∼←− R←lX∗(D
′
• ⊗L
D• L←l

∗
X
E•). (7.3.4.4.3)

Using the preservation of the quasi-coherence under the functors L←l
∗
X

and R←lX∗ of 7.3.2.10, the

property 7.3.4.4.2 and the isomorphism 7.3.4.4.3, we get that the functor D′“⊗L
D− preserves the

quasi-coherence, i.e. induces the functor

D′“⊗L
D− : D−qc(lD)→ D−qc(lD′). (7.3.4.4.4)

In order to derive complexes of bimodules, we need further hypotheses on D.

Definition 7.3.4.5. Let us introduce the following definition (compare with 4.6.3.2.b). A pair (R,K)
consisting of a sheaf R of commutative rings on X and an ideal K of R is said to be solving (D,D′, I) if
it satisfies the following conditions:

(i) R is separated complete for the K-adic topology and OX is an R-algebra such that KOX = I,

(ii) R is sent to the center of D and of D′ via the composite ring homomorphisms R → OX → D and
R → OX → D′ ;

(iii) D and D′ are flat on R.

In that case, we say that (D,D′, I) is solvable by (R,K). We remark that if (R,K) a (left or right)
solving pair of (D,D′, I), then R• is a (left or right) solving ring of (D•,D′•) (see Definition 4.6.3.2.b),
where R• := (R/Ki+1R)i∈N, D• := (D/Ii+1D)i∈N and D′• := (D′/Ii+1D′)i∈N. Finally, (R,K) (left or
right) solves (D, I) means by definition that (R,K) (left or right) solves (D,D, I).

Example 7.3.4.6. We will use essentially in this book the following cases. Let S] be a nice fine V-log
formal scheme (see definition 3.3.1.10). Moreover, let X] → S] be a log smooth morphism of log formal
schemes. We suppose the underlying formal scheme X is locally noetherian of finite Krull dimension and is
p-torsion free (see 3.3.1.12 for some example). For any integer i ≥ 0, set X]

i := X]×Spf V Spec(V/πi+1V).
Let Z be a divisor of X0. Then it follows from 8.7.4.2 that we can choose R = V,K = m, I = mOX and
D = lim←−i BXi(Z, r)⊗OXi D

(m)

X]
i
/S]
i

.
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Notation 7.3.4.7. Suppose (D,D′, I) is solved by (R,K). Let E• ∈ K(lD′,Dr). The following condition

(iv) The structure of R-modules induced on the (D′,D)-bimodules En by the structure of left D′-module
and of right D-module coincide for any n ∈ Z ;

is equivalent to saying that E• ∈ K(lD′ ⊗R Do).
We denote by D(lD′,R,Dr) (resp. D(lD′•,R•D•r)) the strictly full subcategory of D(lD′, rD) (resp.

D(lD′•, rD•)) consisting of complexes isomorphic to an object of K(lD′ ⊗R Do) (resp. K(lD′• ⊗R• Do
•)).

7.3.4.8. Suppose (D,D′, I) is solved by (R,K). The functor←l
∗
X

= −⊗RR• : Mod(lD′,Dr)→ Mod(lD′•, rD•)
is canonically isomorphic (modulo forgetful functors) to − ⊗D D• : Mod(Dr) → Mod(rD•) and D′• ⊗D′
− : Mod(lD′) → Mod(lD′•). Let ? ∈ {∅,−}. Since D′ ⊗R Do is flat over D, D′ and R, then by using
resolutions by flat left D′ ⊗R Do-modules we get the functor

L←l
∗
X

: D?(lD′,R,Dr)→ D?(lD′•,R•,D•r) (7.3.4.8.1)

which is canonically isomorphic (modulo some forgetful functors) to ←l
−1
X

(−) ⊗L

←l
−1
X

(D)
D• : D?(Dr) →

D?(D•r) and D′• ⊗L

←l
−1
X

(D′)←l
−1
X

(−) : D?(lD′) → D?(lD′•). Similarly, by using resolutions by K-injective

complexes of left D′ ⊗R (D)o-modules, we get the functor

R←lX∗ : D?(lD′•,R•,D•r)→ D?(lD′,R,Dr) (7.3.4.8.2)

which is canonically isomorphic to the functors R←lX∗ : D?(D•r) → D?(Dr) and R←lX∗ : : D?(lD•) →
D?(lD′).

Let E• ∈ D−(lD′•,R•,D•r). The property E• ∈ D−qc(lD′•) (resp. E• ∈ D−qc(D•r)) is satisfied if and
only if both conditions hold:

(a) The image via the forgetful functor D−(lD′0,D0
r) → D−(lD′0) → D−(OX0) (resp. D−(lD′0,D0

r) →
D−(D0

r)→ D−(OX0))) of the complex E•0 is in D−qc(OX0).

(b) The canonical map

Ri
L
⊗Ri+1

E•i+1 → E•i (7.3.4.8.3)

is an isomorphism.

Indeed, following 7.3.1.14 and the flatness of R → D or of R → D′, the condition 7.3.4.8.3 is equivalent
to the condition 7.3.1.10.b.

Let ? ∈ {qc, coh, tdf,perf}. Let ] ∈ {∅,b,+,−}. We denote respectively by D]
?,.(

lD′•,R•,D•r) and
D]
.,?(lD′•,R•,D•r) the full subcategory of D](lD′•,R•,D•r) consisting of complexes E• which belongs to
E• ∈ D]

?(lD′•) (resp. E• ∈ D]
?(D•r)). Beware that the property 7.3.4.7.(iv) is not necessarily satisfied

for OX (which is involved in the condition (a)) instead of R, so we do have to distinguish the categories
D]

qc,.(
lD′•,D•r) and D]

.,qc(lD′•,D•r).
Similarly, we denote by D]

?,.(
lD′,R,Dr) and D]

.,?(lD′,R,Dr) the full subcategory of D](lD′,R,Dr)

consisting of complexes E which belongs to E ∈ D]
?(lD′) (resp. E ∈ D]

?(Dr)). The functors L←l
∗
X

of 7.3.4.8.1
and R←lX∗ induce quasi-inverse equivalences of categories betweenD

]
.,qc(lD′,R,Dr) andD]

.,qc(lD′•,R•,D•r)
and between D]

qc,.(
lD′,R,Dr) and D]

qc,.(
lD′•,R•,D•r).

7.3.4.9. Suppose (D,D′, I) and (D,D′′, I) are solved by (R,K). Let ∗, ∗∗ ∈ {r, l}. Following 4.6.3.2,
we have the bifunctors

−⊗L
D• − : D(∗D′•,R,D•r)×D(lD•,R, ∗∗D′′• )→ D(∗D′•,R, ∗∗D′′• ). (7.3.4.9.1)

We have similar bifunctors by changing the indices l and r. With 7.3.4.8.1, we can check the bifunctor
7.3.4.2.1 induces

−“⊗L
D− : D(∗D′,R,Dr)×D(lD,R, ∗∗D′′)→ D(∗D′,R, ∗∗D′′). (7.3.4.9.2)
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LetM• ∈ D(∗D′,R,Dr), E• ∈ D(lD,R, ∗∗D′′) be two complexes. Since L←l
∗
X

(M•⊗L
DE•)

∼−→ L←l
∗
X

(M•)⊗L
D•

L←l
∗
X

(E•) (remark we have three different functors L←l
∗
X

of the form 7.3.4.8.1), then we get by adjunction
via the adjoint pair (L←l

∗
X
a R←lX∗) (see the functors 7.3.4.8.1 and 7.3.4.8.2) the canonical morphism

M• ⊗L
D E• →M•“⊗L

DE• (7.3.4.9.3)

which is an isomorphism when either M• ∈ D−coh(Dr) and E• ∈ D−qc(lD), or M• ∈ D−qc(Dr) and
E• ∈ D−coh(lD′). Indeed, for instance, suppose M• ∈ D−coh(Dr) and E• ∈ D−qc(lD). Then, since both

functors − ⊗L
D E• and −“⊗L

DE• are way-out left (use 7.3.1.2 for the second functor), then following (the
way-out left version of) [Har66, I.7.1 (ii) and (iv)], since this is local, we reduce to the case where
M• = D, which is obvious.

Proposition 7.3.4.10. Suppose (D,D′, I), (D,D′′, I) are solved by (R,K). Let ∗, ∗∗ ∈ {r, l}. The
functors 7.3.4.9.2 and 7.3.4.9.1 preserve the quasi-coherence for bounded above complexes, i.e. they
factor through the functor

−⊗L
D• − : Dqc,.(

∗D′•,R•,D•r)×Dqc,.(
lD•,R•, ∗∗D′′• )→ Dqc,.(

∗D′•,R•, ∗∗D′′• ), (7.3.4.10.1)

−“⊗L
D− : D−qc,.(

∗D′,R,Dr)×D−qc,.(
lD,R, ∗∗D′′)→ D−qc,.(

∗D′,R, ∗∗D′′), (7.3.4.10.2)

and similarly replacing the indexes “ qc, .′′ by “., qc′′.

Proof. Since the functors L←l
∗
X
and R←lX∗ induce quasi-inverse equivalences of categories betweenD

?
qc,.(

∗D′,R,Dr)
and D?

qc,.(
∗D′•,R•,D•r) (see 7.3.4.8) and similarly for the other respective categories, then we reduce to

check 7.3.4.10.1.
LetM•• ∈ D−qc,.(

∗D′•,R•,D•r) and E•• ∈ D−qc,.(
lD•,R•, ∗∗D′′• ). We have to check that G• :=M•• ⊗L

D•
E•• ∈ D−qc(D′•). Since the property G0 = M•0 ⊗L

D0
E•0 ∈ D−qc(lD′0) is local, we can suppose X affine. By

using [Har66, I.7.3.(iv)] (in fact, a left way-out version), since M•0 ⊗L
D0
− is way-out left, we reduce to

the case where E•0 is a free left D0-module, which is obvious.
We conclude the proof via the isomorphisms (recall the computations of E•• and M•• to justify the

associativity isomorphisms of the tensor products)

D′i ⊗L
D′
i+1

Ä
M•i+1 ⊗L

Di+1
E•i+1

ä ∼−→
(
D′i ⊗L

D′
i+1
M•i+1

)
⊗L
Di+1

E•i+1

∼−→ M•i ⊗L
Di+1

E•i+1
∼−→ M•i ⊗L

Di

Ä
Di ⊗L

Di+1
E•i+1

ä ∼−→ M•i ⊗L
Di E

•
i . (7.3.4.10.3)

Example 7.3.4.11. When D is commutative, we get the factorisations

−⊗L
D• − : Dqc(D•)×Dqc(D•)→ Dqc(D•), (7.3.4.11.1)

−“⊗L
D− : D−qc(D)×D−qc(D)→ D−qc(D). (7.3.4.11.2)

Proposition 7.3.4.12. Suppose (D,D′, I), (D,D′′, I), (D′′,D′′′, I) are solved by (R,K). Let ∗, ∗∗ ∈
{r, l}. Let E• ∈ D−qc,.(

∗D′,R,Dr), F• ∈ D−qc,.(
lD,R, rD′′), G• ∈ D−qc,.(

lD′′,R, ∗∗D′′′). The associativity
isomorphism of the derived complete tensor product of quasi-coherent complexes holds, i.e. we have the
isomorphism in D−qc,.(

∗D′,R, ∗∗D′′′):(
E•“⊗L

DF•
)“⊗L
D′′G•

∼−→ E•“⊗L
D

(
F•“⊗L

D′′G•
)
. (7.3.4.12.1)

Proof. Since E•“⊗L
DF• ∈ D−qc,.(

∗D′,R,D′′r) (see 7.3.4.10) then it follows from 7.3.4.8 that we have the
canonical isomorphism

L←l
∗
X

(
E•“⊗L

DF•
)
∼−→ L←l

∗
X

(E•)⊗L
D• L←l

∗
X

(F•). (7.3.4.12.2)

By associativity of the tensor product, we get the middle isomorphism:(
E•“⊗L

DF•
)“⊗L
D′′G• = R←lX∗

(
L←l
∗
X

(
E•“⊗L

DF•
)
⊗L
D′′• L←l

∗
X
G•
)

7.3.4.12.2
∼−→ R←lX∗

Ä(
L←l
∗
X

(E•)⊗L
D• L←l

∗
X

(F•)
)
⊗L
D′′• L←l

∗
X
G•
ä

(7.3.4.12.3)
4.6.3.5
∼−→ R←lX∗

Ä
L←l
∗
X

(E•)⊗L
D•

Ä
L←l
∗
X

(F•)⊗L
D′′• L←l

∗
X
G•
ää 7.3.4.12.2

∼−→ E•“⊗L
D

(
F•“⊗L

D′′G•
)
. (7.3.4.12.4)
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Remark 7.3.4.13. Without quasi-coherence hypotheses, the associativity isomorphism 7.3.4.12.1 is false.
This is the main reason why Berthelot introduced his notion of quasi-coherence.

In the case of extension by ring homomorphisms, contrary to 7.3.4.12, the associativity becomes
straightforward:

Proposition 7.3.4.14. Suppose there exists a homomorphism of sheaf of rings on X of the form D →
D′ → D′′ such that the composition of OX → D with D → D′ gives O]X → D′ and the composition of
OX → D′ with D′ → D′′ gives OX → D′′.

(a) For any Let E• ∈ D−qc(lD•), we have the associativity isomorphism in D−qc(lD′′• ):

D′′• ⊗L
D• E•

∼−→
Ä
D′′• ⊗L

D′• D
′
ä
⊗L
D• E•

∼−→ D′′• ⊗L
D′•

(
D′• ⊗L

D• E•
)
. (7.3.4.14.1)

(b) For any E ∈ D−qc(lD), we have the associativity isomorphism in D−qc(lD′′):

D′′“⊗L
DE

∼−→
(
D′′“⊗L

D′D′
)“⊗L
DE

∼−→ D′′“⊗L
D′
(
D′“⊗L

DE
)
. (7.3.4.14.2)

Proof. By using a flat resolution of we get the isomorphism 7.3.4.14.1. By using Theorem 8.5.1.10, we
get 7.3.4.14.2 from 7.3.4.14.1.

7.3.4.15. Suppose pOX ⊂ I. Suppose (D,D′, I), (D,D′′, I) are solved by (R,K). It follows from the
universal properties of categories of fractions, that the functor 7.3.4.9.2 induces

−“⊗L
D− : DQ(∗D′,R,Dr)×DQ(lD,R, ∗D′′)→ DQ(∗D′,R, ∗D′′). (7.3.4.15.1)

7.3.4.16. Let E•,F• ∈ D−(lD) be two complexes of left D-modules. Following 7.3.2.3.d, L←l
∗
X

(E•) =

D• ⊗L
D E• ∈ D−(lD•) and similarly for right modules. Hence, we can define their completed internal

homomorphism by setting

RH”omD(E•,F•) := R←lX∗(RHomD•(L←l
∗
X
E•,L←l

∗
X
F•)), (7.3.4.16.1)

where R←lX∗ : D(ZX•)→ D(ZX) is the derived pushforward given by the topoi morphism←lX : (X•,ZX•)→
(|X |,ZX) and L←l

∗
X

: D(lD)→ D(lD•) is the derived pullback given by the topoi morphism←lX : (X•,D•)→
(|X |,D).

Suppose (D,D, I) is solved by (R,K). Then we have the morphism we have the map of D(R•):

←l
−1
X

RHomD(E•,F•) 4.6.5.5.1−→ RHomD•(L←l
∗
X
E•,L←l

∗
X
F•)).

Hence, by adjunction we get the morphism of D(R):

RHomD(E•,F•)→ RH”omD(E•,F•). (7.3.4.16.2)

Remark that if D is commutative, then (D,D, I) is solved by (D, I) and the map 7.3.4.16.2 is a morphism
of D(D).

Proposition 7.3.4.17. Suppose X is quasi-compact. Suppose (D•,D′•) and (D•,D′′• ) are solved by
R•. Let ∗, ∗∗ ∈ {r, l}. Let ? ∈ {b,−}. Let E•• ∈ Dperf(

∗D•), F•• ∈ D?
.,qc(∗D•,R•, ∗∗D′•). Then

RHomD•(E•• ,F•• ) ∈ D?
qc(∗∗D′•). If moreover F•• ∈ Dperf(

∗∗D′•), then RHomD•(E•• ,F•• ) ∈ Dperf(
∗∗D′•).

Proof. a) Suppose ? = b. By using 7.1.3.23, we get (RHomD•(E•• ,F•• ))0
∼−→ RHomD0

(E•0 ,F•0 ) ∈
Db

qc(∗∗D′0). Hence, by using loc. cit., we reduce to check that the morphism

Rj ⊗L
Ri RHomDi(E•i ,F•i )→ RHomDj (E•j ,F•j ). (7.3.4.17.1)

induced by 7.1.3.19.2 is an isomorphism. This morphism is equal to the composition

Rj ⊗L
Ri RHomDi(E•i ,F•i )→ RHomDj (Rj ⊗L

Ri E
•
i ,Rj ⊗L

Ri F
•
i )→ RHomDj (E•j ,F•j ).
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Following 7.1.3.13, since E•i ∈ Dperf(Di), then we can check that the first morphism is an isomorphism.
Since E•• and F•• are quasi-coherent, then so is the second morphism.

b) Let F•• ∈ D−.,qc(∗D•,R•, ∗∗D′•). Since the property RHomD•(E•• ,F•• ) ∈ D−qc(∗∗D′•) is Zariski local
in X, we can suppose E•• ∈ C(∗D•) is a strictly perfect complex (see definition 7.1.3.10). Then this is
checked similarly to the proof of a).

7.3.4.18. Suppose (D,D′, I) and (D,D′′, I) are solved by (R,K). Since (D•,D′•) and (D•,D′′• ) are solved
by R•, then following 7.1.3.23.1, we get the bifunctor:

RHomlD•(−,−) : D(lD•,R•,D′•r)×D(lD•,R•,D′′• r)→ D(lD′•,R•,D′′• r). (7.3.4.18.1)

By setting RH”omD(−,−) := R←lX∗(RHomD•(L←l
∗
X
−,L←l

∗
X
−)), this yields the bifunctor

RH”omD(−,−) : D(lD′,R, lD)×D(lD,R, lD′′)→ D(rD′,R, lD′′). (7.3.4.18.2)

Let E• ∈ D−(lD′,R,Dr), F• ∈ D−(lD,R, lD′′) be two complexes. Similarly to 7.3.4.16.2 , we construct
the canonical morphism

RHomD(E•,F•)→ RH”omD(E•,F•) (7.3.4.18.3)

which is an isomorphism when E• ∈ Dperf(Dr) and F• ∈ Db
qc(lD). Indeed, since this is local, we reduce

to the case where E• = D, which is obvious.

7.4 Up to isogeny complexes

7.4.1 Quotient and localization of triangulated categories, general derived
functors reminders

The purpose of this subsection is to fix some terminologies (which are not standard) and recall some
properties.

Definition 7.4.1.1. LetD be a pre-triangulated category. We say a full pre-triangulated subcategoryD′

of D is “saturated” if whenever X⊕Y is isomorphic to an object of D′ then both X and Y are isomorphic
to objects of D′. Recall that this notion is equivalent to that of “épaisse triangulated subcategory” but
is more convenient to handle (see [Sta22, 05RB-13.6.1]).

7.4.1.2. Let D be a triangulated category. Let S be a multiplicative systems in D compatible with
the triangulated structure. Then we have the localisation functor QS : C → S−1C (see [Sta22, 05R6-
13.5.5]). Let B(S) := ker(QS) := {X ∈ Ob(D) | QS(X)

∼−→ 0}. Then B(S) is a strictly full saturated
pre-triangulated subcategory of D (see [Sta22, 05RC-13.6.2]).

Let us recall the following Lemma.

Lemma 7.4.1.3. Let D be a triangulated category. Let B ⊂ D be a full triangulated subcategory. Let
S(B) be the family of morphisms f of D such that there exists a distinguished triangle of D of the form
(X,Y, Z, f, g, h) with Z isomorphic to an object of B.

(i) Then S(B) is a multiplicative system compatible with the triangulated structure on D.

(ii) In this situation the following are equivalent

(a) S(B) is a saturated multiplicative system,

(b) B is a saturated triangulated subcategory.

Proof. See [Sta22, 05RG-13.6.6].

Proposition 7.4.1.4. Let D be a triangulated category. The operations described above have the follow-
ing properties

(a) For any multiplicative system S in D compatible with the triangulated structure, Ssat := S(B(S)) is
the “saturation” of S, i.e., it is the smallest saturated multiplicative system in D containing S.
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(b) For any full triangulated subcategory B ⊂ D, Bsat := B(S(B)) is the “saturation” of B, i.e., it is
the smallest strictly full saturated triangulated subcategory of D containing B.

In particular, the constructions define mutually inverse maps between the (partially ordered) set of sat-
urated multiplicative systems in D compatible with the triangulated structure on D and the (partially
ordered) set of strictly full saturated triangulated subcategories of D.

Proof. See [Sta22, 05RL].

Notation 7.4.1.5 (Quotient of triangulated category). Let D be a triangulated category.
Let B ⊂ D be a full triangulated subcategory. We set D/B := S(B)−1D and QB : D→ D/B be the

localization functor. Following [Sta22, 05RJ–13.6.8.(2)] the functor QB satisfies the following universal
property: for any exact functor of triangulated categories F : D→ D′ such that B ⊂ KerF , there exists a
unique factorization G : D/B→ D′ such that F = G◦QB. Since B ⊂ KerQB = Bsat = KerQBsat

, from
this universal properties satisfies respectively by QB and QBsat

, we can construct canonical quasi-inverse
equivalences of categories D/B→ D/Bsat and D/Bsat → D/B.

Moreover, let S be a multiplicative systems in D compatible with the triangulated structure. Since
S ⊂ Ssat, by using the universal properties satisfied by QSsat , we get the functor S−1D→ S−1

satD. Since
Ssat = {f ∈ Arrow(D), such that QS(f) is an isomorphism}, then by using the universal properties
satisfied respectively by QS we get the functor S−1

satD→ S−1D, which is quasi-inverse to S−1D→ S−1
satD.

This yields S−1D ∼= D/B(S). Hence, the difference between a localization of D and a quotient of D
is just a matter of point of view. Moreover, both saturations appearing in 7.4.1.4 do not affect the
associated quotient or localization of a triangulated category.

Lemma 7.4.1.6. Let D be a triangulated category. Let B be a full triangulated subcategory of D and
B′ be a full triangulated subcategory of D/B. Then we have the equivalence of categories:

D/ ker(QB′ ◦QB) ∼= (D/B)/B′. (7.4.1.6.1)

Proof. Since we are dealing with quotients, we can suppose that B = Bsat and B′ = B′sat (see 7.4.1.5).
The, this can be easily checked by using the universal property of the quotient given at 7.4.1.5.

Proposition 7.4.1.7. Let H : D → A be a homological functor from a triangulated category D to an
abelian category A. The subcategory Ker(H) := {X ∈ Ob(D) | H(X[n]) = 0 for all n ∈ Z} is a strictly
full saturated triangulated subcategory of D whose corresponding saturated multiplicative system (see
Lemma 7.4.1.4) is the set S = {f ∈ Arrows(D) | Hi(f) is an isomorphism for all i ∈ Z}. The functor
H factors through the quotient functor Q : D→ D/Ker(H).

Proof. See [Sta22, 05RM-13.6.11].

Definition 7.4.1.8. Let C be a triangulated category. A null system in the sense of [KS06, 10.2.2] is
a strictly full triangulated subcategories (beware in this latter book “saturatedness” means “strictness”,
i.e. the stability under isomorphisms property). Recall that when the null system is saturated (in the
sense of 7.4.1.1) then it corresponds bijectively via 7.4.1.4 to a saturated multiplicative system of C.

Definition 7.4.1.9. Let C be a category, S a right multiplicative system in C, QS : D → S−1D be the
localization functor and F : C→ A be a functor.

(a) We say that F is “right localizable (with respect to S)” (in the sense of [KS06, 7.3.1]) if there
exists a (unique up to isomorphism) functor RSF : S−1C→ A together with a morphism of functors
τ : F → RSF ◦QS such that for any functor G : : S−1C→ A the map induced by τ and the functor
◦QS

HomFct(S−1C,A)(RSF,G)→ HomFct(C,A)(F,G ◦QS), (7.4.1.9.1)

where Fct(S−1C,A) and Fct(C,A) are the corresponding category of functors, is bijective.

(b) We say that F is “universally right localizable (with respect to S)” if for any functor K : A → A′,
the functor K ◦ F is localizable and RS(K ◦ F )

∼−→ K ◦ RSF .
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(c) Let X ∈ C and X/S be the filtered category of arrows s : X → X ′ in S with source X. Following
definition [Sta22, 05S9-13.14.2] (or [KS06, 7.4.2]), we say the “right derived functor of F (with respect
to S) is defined at X” if the ind-object

αX : (X/S)→ A, (s : X → X ′) 7→ F (X ′) (7.4.1.9.2)

is essentially constant, i.e. “ lim−→ ”αX is representable by an object of A which is denoted RSF (X).
The RF (X) is called the value of RSF at X.

(d) Assume that for any X ∈ C, the category X/S is cofinally small. Following [KS06, 7.4.4], the two
conditions below are equivalent (and both RSF (X) coincide for each X ∈ C):

(i) F is right localizable at each X ∈ C (with respect to S),

(ii) F is universally right localizable (with respect to S).

Definition 7.4.1.10. Let F : D→ D′ be a triangulated functor of triangulated categories. Let N (resp.
N′) be a null system of D (resp. D′). We say that the functor F is “right localizable with respect to
(N,N′)” if QN′ ◦ F is is universally right localizable with respect to the multiplicative system S(N)
(see definition 7.4.1.9). When it exists, we denote the right localization with respect to (N,N′) by
RN′

N F : D/N → D′/N′. When N′ = 0, we simply say F is “right localizable with respect to N” and we
simply write RNF .

Remark 7.4.1.11. With notation 7.4.1.10, suppose there exists a functor G : D/N → D′/N′ such that
there exists an isomorphism of the form φ : QN′◦F

∼−→ G◦QN. Remark that for any functorsGi : D/N→
D′/N′ pour i = 1, 2, the data of a functorG1 → G2 is the same as the data of a functorG1◦QN → G2◦QN.
Using this remark, we can check the right localizable with respect to (N,N′) of F exists and we can
choose G = RN′

N F and the QN′ ◦ F → RN′

N F ◦QN equal to φ.

Remark 7.4.1.12. With notation 7.4.1.10, su suppose that X/S(N) is cofinally small, for any X ∈ D.

(a) Then if F is right localizable with respect to (N,N′), then RN′

N F is a triangulated functor of tri-
angulated categories. Indeed, following 7.4.1.9.d, this means that QN′ ◦ F is right localizable with
respect to N at each X ∈ D and we have RN′

N F = RS(N)(QN′ ◦ F ). Hence, we conclude by using
[Sta22, 05SE-13.14.8].

(b) It follows from a) that the triangulated functor RN′

N F satisfies a similar universal property than
7.4.1.9.1 where we replace functors by triangulated functors. In the notion of “right localizable with
respect to (N,N′)” in the sense of [KS06, 10.3.1], the functor RN′

N F is by definition a triangulated
functor, i.e. F is “universally right localizable” in the sense that we restrict to triangulated functors.
Since our functors will be right localizable with respect to N at each X ∈ D, since we prefer to avoid
confusion between two different notions of “universally right localizable”, we stick with our definition
7.4.1.10 which is a priori stronger than [KS06, 10.3.1].

Lemma 7.4.1.13. Let D1, D′1, D be some triangulated categories endowed respectively with the null
systems N1, N′1,N. Let N2, N′2 be some null systems of respectively D2 := D1/N1, D′2 := D′1/N

′
1 (see

notations 7.4.1.5). Let N3, N
′
3 be some null systems of respectively D1, D

′
1 such that D1 → D2/N2 and

D′1 → D′2/N
′
2 induce the equivalence of categories D1/N3

∼= D2/N2, D′1/N′3 ∼= D′2/N
′
2.

Let F : D1×D′1 → D a triangulated bifunctor. We assume that the right localization of F with respect
to (N1 ×N′1,N) exists (see the definition 7.4.1.9) and is denoted by RN

N1×N′1
F . If one of the following

conditions:

(a) the right localization of F with respect to (N3 ×N′3,N) exists,

(b) the right localization of RN
N1×N′1

F with respect to N2 ×N′2 exists

is satisfied, then so is the second one and we have in this case the isomorphism of bifunctors

RN2×N′2RN
N1×N′1

F
∼−→ RN

N3×N′3
F. (7.4.1.13.1)

Proof. This follows from the universal property of right localisations.
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7.4.2 Localising by isogenies, Serre subcategories
For any abelian sheaf E , we write EQ = E ⊗Z Q.

7.4.2.1. Let C be an additive category.

(a) We denote by CQ the category of objects of C up to isogeny. By definition Ob(CQ) = Ob(C) and for
any objects E,F of Ob(CQ) we set

HomCQ(E,F ) := HomC(E,F )⊗Z Q. (7.4.2.1.1)

Via the maps HomC(E,F ) → HomCQ(E,F ) given by f 7→ f ⊗ 1 and the identities on the objects,
we get a canonical functor C→ CQ which essentially surjective but not faithful. Remark that if D is
a full subcategory of C then DQ is a full subcategory of CQ.

(b) When C is a equal to a category of the form D∗(A) where ∗ ∈ {∅,−,+,b} and A is an abelian
category, we often write D∗Q(A) instead of D∗(A)Q.

(c) Let f ∈ HomC(E,F ). We say that f is an “n-isogeny” if n ≥ 1 is an integer so that there exists and
a morphism g ∈ HomC(F,E) such that f ◦g = n idF and g ◦f = n idE . We say that f is an “isogeny”
if there exists an integer n ≥ 1 such that f is an n-isogeny. Let Σ ⊂ Arrows(C) be the family of
isogenies of C.

Lemma 7.4.2.2. The family Σ of isogenies is a saturated multiplicative system. A morphism f of
C is an isogeny if and only if it is an isomorphism of CQ. Moreover, if CΣ := Σ−1C is the localization
category (see [KS06, 7.1.16]), then the canonical functor C→ CQ factors into the equivalence of categories
CΣ

∼−→ CQ.

Proof. 1) i) Let us check that Σ is a right multiplicative system, i.e. the properties RMS1–3 hold (see
[Sta22, 04VC-4.27.1].

RMS1: the identity is an isogeny.
RMS2 Let f : E → F be an isogeny of C and h ∈ HomC(G,F ). Let n ≥ 1 be an integer, g ∈

HomC(F,E) such that f ◦ g = n idF and g ◦ f = n idE . Then g ◦ h ∈ HomC(G,E) and nG ∈ G → G is
an isogeny such that h ◦ nG = f ◦ (g ◦ h).

RMS3 Let f, g ∈ HomC(E,F ), h : F → G be an isogeny such that h ◦ f = h ◦ g. Then there exists an
integer n ≥ 1 such that nF ◦ f = nF ◦ g. Hence, f ◦ nE = g ◦ nE .

ii) We check similarly the dual properties, i.e. Σ is a left multiplicative system.
2) An isogeny of C is an isomorphism in CQ. More precisely, let n ≥ 1 be an integer, f ∈ HomC(F ′, F ),

g ∈ HomC(F, F ′) such that f◦g = n idF and g◦f = n idF ′ . Then f⊗1, the image of f in HomC(F, F ′)⊗ZQ,
has the inverse g ⊗ 1

n .
Conversely, let f ∈ HomC(F ′, F ) such that f⊗1 ∈ HomCQ(F ′, F ) is an isomorphism. Then there exists

an integer n ≥ 1, there exists g ∈ HomC(F, F ′) such that (f ⊗ 1) ◦ (g⊗ 1
n ) = 1

1 and (g⊗ 1
n ) ◦ (f ⊗ 1) = 1

1 ,
which yields, increasing n if necessary, f ◦ g = n idF and g ◦ f = n idF ′ .

3) It follows from 2), that Σ is saturated.
4) By using the universal property on localisation functor, we get the factorization CΣ → CQ. Let

E,F ∈ Ob(C), it remains to check that the map HomCΣ
(E,F ) → HomC(E,F ) ⊗Z Q is a bijection.

Injectivity: If the equivalence class of E φ−→ F ′
f←− F with f an isogeny is sent to zero, then φ is sent

to zero. Hence, there exists n ≥ 1 such that nF ′ ◦ φ = 0, which implies that E φ−→ F ′
f←− F is the class

of zero. Surjectivity: the equivalence class of E f−→ F
nF←− F is sent to f ⊗ 1

n .

7.4.2.3. Let F be an object of CQ. We denote by N? the category whose objects are the integers
n ≥ 1 and HomN?(n,m) is empty if n do not divide m otherwise it is a singleton. Consider the functor
χF : N? → C given for any integers n, d ≥ 1 by χF (n) = F and χF (n → nd) it the multiplication by d.
We denote by n∗F := χF (n). For any objects E,F of CQ, we get from 7.4.2.2 the equality:

HomCQ(E,F ) = HomCΣ(E,F ) = lim−→
n∈N?

HomC(E,n∗F ), (7.4.2.3.1)

Proposition 7.4.2.4. Let C be a triangulated category. There exists on CQ a unique triangulated struc-
ture such that the functor Q : C→ CQ is an exact functor.
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Proof. We apply 7.4.1.7 to the family of functors HomC(E,−)⊗ Q : C→ Ab.

Let us now consider the case of an abelian category. First, let us collect few facts on Serre subcate-
gories and localisations.

7.4.2.5 (Serre subcategories). Let A be an abelian category. Let S be a multiplicative system of A.
Then S−1A is an abelian category and the localisation functor QS : A → S−1A is exact (see [Sta22,
05QG]). It follows from [Sta22, 02MQ] that B(S) := KerQS , where KerQS is the full subcategory of
objects X of A such that QS(X) = 0 , forms a Serre subcategory of A.

Let B ⊂ A be a Serre subcategory (see [Sta22, 02MO]). Consider the set of arrows of A defined by
the following formula

S(B) := {f ∈ Arrows(A) | Ker(f), Coker(f) ∈ Ob(B)}.

Then S(B) is a saturated multiplicative system (see the proof of [Sta22, 02MS]) such that B(S(B)) = B
(this is a consequence of [Sta22, 06XK]). We set A/B := (S(B))−1A. Following [Sta22, 02MS], the
category A/B and the localisation functor F : A → A/B are characterized by the following universal
property: for any exact functor G : A→ C such that B ⊂ Ker(G), there exists a factorization G = H ◦F
for a unique exact functor H : A/B→ C.

Let S be a multiplicative system of A. Then we easily see that S(B(S)) is equal to Ŝ = {f ∈
Arrows(A) | QS(f) is an isomorphism}, which is also the smallest saturated multiplicative system con-
taining S (see [Sta22, 05Q9]). Hence, S 7→ B(S) and B 7→ S(B) are reciprocal bijections of each other
between the set of saturated multiplicative systems of A and Serre subcategories of A.

Lemma 7.4.2.6. Let A be an abelian category, n,m ∈ N \ {0}.

(a) Let X f→ Y
g→ Z be two morphisms of A. If f is an n-isogeny of A and g is an m-isogeny of A, then

g ◦ f is an nm-isogeny of A.

(b) Let 0 → X
f→ Y

g→ Z → 0 be an exact sequence of A. If X is killed by n then g is an n-isogeny of
A. If Z is killed by n then f is an n-isogeny of A.

(c) Let f : X → Y be an n-isogeny of A. Then, Ker f and Coker f are killed by n.

(d) Let f : X → Y be a morphism of A such that Ker f is killed by n and Coker f is killed by n, then f
is an nm-isogeny of A

Proof. Exercice.

7.4.2.7. Let A be an abelian category. Let B be the full subcategory of A consisting of objects X ∈ ObA
such that there exists n ∈ N \ {0} so that X is killed by n. Let Σ be the class of isogenies of A. We
easily check from 7.4.2.2, 8.1.5.4 and 7.4.2.6 the following facts.

(a) The category B is a Serre subcategory of A.

(b) The saturated multiplicative system of A associated to the Serre subcategory B of A is equal to Σ.

(c) We have A/B ∼= AQ. In particular, AQ is an abelian category.

7.4.3 Commutation with tensorisation by Q

7.4.3.1. Let X be a topological space. Let G be a complex of abelian sheaves. Let (Gn)n≥1 be the
inductive system such that Gn = G and the transition maps are the maps Gn → Gdn which are the
multiplication by d. Then lim−→n

Gn
∼−→ GQ, where the inductive limit is computed in the category of

complexes of abelian sheaves.
Suppose now in the rest of the paragraph that X is a coherent topological space (see [FK18, 0.2.2.1])

and that G is an abelian sheaf. It follows from [FK18, 0.3.1.8] that for any quasi-compact open subset
U (hence U is coherent following [FK18, 0.2.2.3]) the canonical map lim−→n

Γ(U,Gn)→ Γ(U, lim−→n
Gn) is an

isomorphism. Hence, the canonical map Γ(U,G)Q → Γ(U,GQ) is an isomorphism. In particular, when X
is noetherian, then this means that U ∈ Xzar 7→ Γ(U,G)Q is a sheaf canonically isomorphic to GQ.
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Moreover, similarly, by using [FK18, 0.3.1.16] (and [FK18, 0.2.2.3]), for any complex G of abelian
sheaves, for any coherent open subset U, we can check the canonical map

RΓ(U,G)Q → RΓ(U,GQ). (7.4.3.1.1)

is an isomorphism.

Lemma 7.4.3.2. Let X be a coherent topological space, D be a sheaf of rings on X. For any E ∈ D−coh(D),
F ∈ D+(D), the canonical morphisms

RHomD(E ,F)Q → RHomDQ(EQ,FQ), (7.4.3.2.1)
R HomD(E ,F)Q → R HomDQ(EQ,FQ), (7.4.3.2.2)

are isomorphisms.

Proof. Since X is coherent, it follows from 7.4.3.1.1 that the canonical morphism RΓ(X,G)Q → RΓ(X,GQ)
is an isomorphism for any complex G of abelian sheaves. Hence, the isomorphism 7.4.3.2.2 is a conse-
quence of 4.6.2.7.6 and 7.4.3.2.1. To check this latter one, it is sufficient to prove this is an n-isomorphism
for any integer n ∈ N, i.e. the cone of 7.4.3.2.1 is acyclic in degree ≥ n. Let n ∈ N. Since this is local on
X and E is n-pseudo-coherent, then we can suppose there exists an n-isomorphism of the form L → E
with L being a strictly perfect complex of D-modules. Since RHomD(L,F)Q → RHomDQ(LQ,FQ) is an
isomorphism (use [Har66, I.7.1.(i)]), then 7.4.3.2.1 is an n-isomorphism.

7.4.4 Localisation by isogenies of derived categories of an abelian category
Let A be an abelian category. Let B be the full subcategory of A consisting of objects X ∈ ObA such
that there exists n ∈ N\{0} so that X is killed by n. Let ] ∈ {∅,+,−,b}. Let S] be the class of isogenies
of D]

Q(A).
First, let us give below some link between isogenies and vanishing of the cone of the morphism. This

will be useful later, e.g. at 9.1.2.1.

Lemma 7.4.4.1. Let n,m ∈ N \ {0}.

(a) Let X f→ Y
g→ Z be two morphisms of D(A). If f is an n-isogeny of D(A) and g is an m-isogeny of

D(A), then g ◦ f is an nm-isogeny of D(A).

(b) Let X f→ Y
g→ Z

h→ X[1] be a distinguished triangle of D(A) such that Z is killed by n, i.e.
n · idZ : Z → Z is null. Then f is an n2-isogeny of D(A).

(c) Let f : X → Y be an n-isogeny of D(A). Then, the cone C(f) of f is killed by n2.

(d) Let X f→ Y
g→ Z

h→ X[1] be a distinguished triangle of D(A) such that X is killed by n and Y by m,
then Z is killed by nm.

(e) Let X f→ Y
g→ Z be two morphisms of D(A). If f is an n-isogeny of D(A) and g ◦ f is an m-isogeny

of D(A), then g is an n2m-isogeny of D(A). If g is an n-isogeny of D(A) and g ◦ f is an m-isogeny
of D(A), then f is an n2m-isogeny of D(A).

(f) Let N(A) be the full subcategory of D(A) consisting in objects X which are killed by some integer
l ≥ 1. Then N(A) is a saturated triangulated subcategory of D(A) and the associated saturated
multiplicative system S(N(A)) of D(A) (see notation of 7.4.1.3) consists of isogenies.

Proof. a) Straightforward: we compose the inverses up to isogeny.
b) Since (X,Y, Z, f, g, h) is a distinguished triangle, since g ◦ (n · idY ) = (n · idZ) ◦ g = 0, then there

exists a morphism α : Y → X of D(A) such that f ◦ α = n · idY . Since (Z[−1], X, Y,−h[−1], f, g) is
a distinguished triangle, since f ◦ (α ◦ f − n · idX) = 0, then −h[−1] ◦ β = α ◦ f − n · idX . Since
(n · idX) ◦ −h[−1] = −h[−1] ◦ (n · idZ[−1]) = 0, then (n · α) ◦ f = n2 · idX . Since f ◦ (n · α) = n2 · idY ,
then we are done.
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c) We have the canonical distinguished triangle (X,Y,C(f), f, g, h). Let α : Y → X be a morphism
of D(A) such that f ◦α = n · idY and α ◦ f = n · idX . Since h ◦n = n ◦h = α[1] ◦ f [1] ◦h = 0, then there
exits β : Z → Y a morphism of D(A) such that g ◦ β = n · idZ . Hence, n2 · idZ = g ◦ f ◦ α ◦ β = 0.

d) Since h ◦ n = n ◦ h = 0, then there exists α : Z → Y such that g ◦ α = n. Hence, mn · idZ =
m · idZ ◦n · idZ = m · idZ ◦g ◦ α = g ◦m · idY ◦α = 0.

e) Since the second assertion is checked similarly, let us only treat the first one. By hypotheses, there
exists α : Y → X such that f ◦ α = n and α ◦ f = n, there exists β : Z → X such that g ◦ f ◦ β = m
and β ◦ g ◦ f = m. Hence, g ◦ (n2 · f ◦ β) = n2m. We have the canonical distinguished triangle
(X,Y,C(f), f, a, b). Since β ◦g◦f = m, then (f ◦β ◦g)◦f = m◦f . Hence, there exists γ : C(f)→ Y such
that (f ◦β◦g)−m = a◦γ. Since f is an n-isogeny, then C(f) is killed by n2. Hence, (n2 ·f ◦β)◦g = n2m.

f) This is a consequence of the previous statements.

Lemma 7.4.4.2. The canonical functor AQ → DQ(A) is fully faithful.

Proof. This comes from the fact that the application HomA(E , n∗F)→ HomD(A)(E , n∗F) is bijective for
any n ∈ N and that we have the equalities 7.4.2.3.1 for C = A and C = D(A).

7.4.4.3. Since the functor Hn carries isogenies to isogenies, then we get the functor Hn making com-
mutative (up to canonical equivalence)

DQ(A)
Hn // AQ

D(A)
Hn //

OO

A,

OO
(7.4.4.3.1)

where the vertical arrows are the localization functors.

Lemma 7.4.4.4. The functor Hn : DQ(A)→ AQ defined at 7.4.4.3 is a cohomological functor.

Proof. By construction (see the proof of [Sta22, 05R6 Proposition 13.5.5]), a distinguished triangle of
DQ(A) is isomorphic in DQ(A) to the image of a distinguished triangle of K(A) by the canonical local-
ization functor K(A)→ DQ(A). Since Hn : K(A)→ A is a cohomological functor, since the localization
functor A→ AQ is an exact functor between abelian categories (it follows from the properties of locali-
sations by a subcategory of Serre and of 8.1.5.5), this implies the result.

7.4.4.5. Denote by D0
Q(A) the strictly full sub-category of Db

Q(A) consisting of complexes E such that
for any integer n 6= 0 we have Hn(E)

∼−→ 0 in AQ.

Remark 7.4.4.6. Let E ∈ DQ(A) such that Hn(E)
∼−→ 0 in AQ for any n ∈ Z. Then it seems false that

E ∼−→ 0 in DQ(A). When E ∈ Db
Q(A), this property becomes true (see 7.4.4.7), which explains why we

have defined D0
Q(A) as a the strictly full subcategory of Db

Q(A) and not DQ(A) in 7.4.4.5.

Lemma 7.4.4.7. The canonical functor
AQ → D0

Q(A) (7.4.4.7.1)

is an equivalence of categories with quasi-inverse H0 : D0
Q(A)→ AQ.

Proof. The proof is similar to that of 8.1.5.10.

Corollary 7.4.4.8. Let φ : E → F be a morphism in Db
Q(A). The morphism φ is an isomorphism in

Db
Q(A) if and only if, for any integer n ∈ Z, the morphism Hn(φ) : Hn(E)→ Hn(F) is an isomorphism

of AQ.

Proof. There exists a distinguished triangle in Db
Q(A) of the form E −→

φ
F → G → E [1]. Following the

properties concerning the triangulated categories, φ is an isomorphism if and only if G ∼−→ 0 in Db
Q(A).

Following 7.4.4.7, this is equivalent to saying that, for any integer n ∈ Z, we have Hn(G)
∼−→ 0 in AQ.

The lemma 7.4.4.4 allows us to conclude.
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7.4.4.9. Let us denote by D]
B(A) the saturated (in the sense of 7.4.1.1) full triangulated subcategory

of D](A) consisting of complexes whose cohomology spaces are in B i.e. D]
B(A) is the kernel of the

canonical functor D](A)→ D](AQ) induced by the localization functor A→ AQ.
With notation 7.4.1.3, let S]N := S(D]

B(A)) be the saturated multiplicative system compatible with
the triangulation of D](A) which corresponds to D]

B(A). We can deduce from the theorem [Miy91, 3.2]
that the canonical functor D](A)→ D](AQ) induces canonically the equivalence of categories

D](A)/D]
B(A) := S]−1

N D](A) ∼= D](AQ). (7.4.4.9.1)

By definition, a morphism f of D](A) belongs to S]N if and only if, for all distinguished triangle in D](A)

of the form E f−→ F → G → E [1], for all integer n ∈ Z, we have Hn(G) ∈ B).

Lemma 7.4.4.10. With notation 7.4.4.9, we have Sb = Sb
N . For ] ∈ {+,−,b, ∅}, we have S] ⊂ S]N .

Proof. 1) First we show Sb
N ⊂ Sb. Take f ∈ Sb

N and a distinguished triangle in Db(A) of the form

E f−→ F → G → E [1]. By definition, for all integer n ∈ Z, Hn(G) ∈ B. That is, for all integer n ∈ Z, we
have Hn(G)

∼−→ 0 in AQ. By 7.4.4.7, this implies that G ∼−→ 0 in Db
Q(A). According to the properties

of triangulated categories, f is an isomorphism in Db
Q(A), i.e. f ∈ Sb.

2) Next we show that S] ⊂ S]N . Let f : E → F be a morphism of D](A). Since the cohomology
space functor H0 : D](A) → AQ is a cohomological functor, then we get at a long exact sequence in AQ

from the distinguished triangle in D](A) of the form E f−→ F → G → E [1]. Looking at this long exact
sequence, we can check that f ∈ S]N if and only if, for all integer n ∈ Z, Hn(f) is an isomorphism in
AQ (which is an abelian category). But, if f ∈ S], then its image in D]

Q(A) is an isomorphism. As the
functor Hn : D](A)→ AQ factors through D]

Q(A)→ AQ, we deduce the required inclusion S] ⊂ S]N .

Proposition 7.4.4.11. For ] ∈ {+,−,b, ∅}, the canonical functor D](A) → D](AQ) of triangulated
categories induced by the functor of abelian categories A → AQ induces the morphism of triangulated
categories

Q : D]
Q(A)→ D](AQ) (7.4.4.11.1)

making commutative the diagram

S]−1
N D](A)

∼=
7.4.4.9.1

// D](AQ)

D](A)
Q
S] //

Q
S
]
N

99

S]−1D](A)

OO

D]
Q(A)

Q

OO
(7.4.4.11.2)

When ] = b, the morphism Q is an equivalence of categories.

Proof. The left vertical arrow comes from the inclusion S] ⊂ S]N (see 7.4.4.10). When ] = b, since this
inclusion becomes an equality, both vertical arrow are equivalences of categories.

7.4.4.12. The morphism 7.4.4.11.1 commutes with cohomological functors, i.e. we have for any n ∈ N
the commutative diagram

D](A) //

Hn

��

D]
Q(A)

Q //

Hn

��

D](AQ)

Hn

��
A // AQ AQ

(7.4.4.12.1)

where the middle vertical arrow is the one making commutative by definition the left square (see 7.4.4.3).
Indeed, since the canonical functor A→ AQ is exact, the outer of the large rectangle is commutative.
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7.4.4.13. We have the commutative diagram up to canonical isomorphism

AQ
7.4.4.2 //

##

DQ(A)

7.4.4.11.1Q

��
D(AQ).

(7.4.4.13.1)

Indeed, by using the universal property of the localisation functor, we reduce to check it after applying
the functor A→ AQ, which is easy.

7.4.5 Coherent DQ-modules, Cartan’s theorems A and B

Let X be a locally noetherian formal scheme of Krull dimension d and I be an ideal of definition of X.
Let D be a sheaf of rings on X equipped with a homomorphism OX → D satisfying the conditions of
7.2.3. Recall following 7.2.3.3, D is left coherent. We suppose pOX ⊂ I.

Lemma 7.4.5.1. Let E be a coherent D-module, and Et be the subsheaf of p-torsion sections of E. Then
Et and E/Et are D-coherent.

Proof. Since this is local, we can suppose X is affine. For any positif integer n, let E(n) be the coherent
D-module equal to the kernel of the multiplication by pn on E . It follows from 7.2.3.16.ii and the
noetherianity of Γ(X,D) that for n large enough, Et = E(n). Hence, we are done.

Proposition 7.4.5.2. Assume that X is noetherian. The functor M 7→ MQ defines an equivalence of
categories Coh(D)Q → Coh(DQ).

Proof. See [Ber96c, 3.4.5].

Definition 7.4.5.3. Let E be a coherent DQ-module. An integral model
◦
E of E is a coherent D-module

such that there exists an isomorphism of DQ-modules of the form
◦
EQ

∼−→ E . We say that
◦
E is a lattice

is
◦
E is a sub D-module of E such the induced morphism

◦
EQ → E is an isomorphism. Following 7.4.5.1

and 7.4.5.2, there exists such a integral model.

Proposition 7.4.5.4. Suppose that X is affine and put D = Γ(X,D), DQ = D ⊗ Q ∼= Γ(X,DQ).

(a) LetM be a left DQ-module. The left DQ-moduleM is coherent if and only if Γ(X,M) is a DQ-module
of finite type and the canonical morphism

DQ ⊗DQ Γ(X,M)→M (7.4.5.4.1)

is an isomorphism.

(b) For any coherent left DQ-moduleM we have Hq(X,M) = 0 for all q ≥ 1.

(c) The functors DQ⊗DQ− and Γ(X,−) induce canonically exact quasi-inverse equivalences of categories
between Coh(lDQ) and Coh(lDQ).

Proof. This is a consequence of 7.2.3.16, 7.4.5.2 and 7.4.3.1.1.

7.4.6 Quasi-coherent and coherent DQ-complexes
Let X be a locally noetherian formal scheme of Krull dimension d and I be an ideal of definition of X.
Let D be a sheaf of rings on X satisfying the hypotheses of 7.3.2 and we suppose pOX ⊂ I.

Definition 7.4.6.1. Let E ∈ DQ(D). The complex E is said to be quasi-coherent (resp. of finite tor
dimension up, resp. perfect, resp. coherent) up to isogeny if there exists F ∈ Dqc(D) (resp. F ∈
Dperf(D), resp. F ∈ Dcoh(D)) together with an isomorphism in DQ(D) of the form E ∼−→ F . For
? ∈ {−,b}, we denote by D?

Q,qc(D) (resp D?
Q,perf(D), resp D?

Q,coh(D)) the strictly full subcategory of
DQ(D) consisting quasi-coherent (resp. perfect, resp. coherent) up to isogeny.

It follows from the remark of 7.4.2.1.a that the natural functors D?
?(D)Q → D?

Q,?(D) with ? ∈
{qc, tdf,perf, coh} are equivalence of categories. Remark since we prefer to work with strict full subcat-
egories, there is a slight difference with Berthelot’s notation [Ber02, 3.3.2].
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Proposition 7.4.6.2. Suppose X is affine and keep notation 7.2.3.8.

a) The functors The functors DQ ⊗DQ − and RΓ(X,−) induce canonically quasi-inverse equivalences of
categories between D−coh(DQ) and D−coh(DQ).

b) Let E• ∈ D−(DQ). The following conditions are equivalent

(i) Hn(E•) is a coherent left DQ-module for any n ∈ Z ;

(ii) E• is pseudo-coherent ;

(iii) E• is quasi-isomorphic to a bounded above complex of finite free left DQ-modules.

Proof. Since DQ satisfies Theorem A and B for coherent modules (see 7.4.5.4), than the proposition can
be checked similarly to 4.6.1.7.

Corollary 7.4.6.3. Let E• ∈ D−(DQ). The following conditions are equivalent

(i) Hn(E•) is a coherent left DQ-module for any n ∈ Z ;

(ii) E• is pseudo-coherent.

Lemma 7.4.6.4. Let F : C → D be an exact and full functor of triangulated categories. Then the
essential image of F is a strictly full triangulated subcategory of D.

Proof. Left to the reader.

Notation 7.4.6.5. With notation 7.4.2.1.(b), we denote by Q ⊗ − : DQ(lD) → D(lDQ) the natural
functor given by E 7→ EQ.

Proposition 7.4.6.6. Suppose X is noetherian of finite Krull dimension. With notation 1.4.3.27 and
7.4.6.1, the natural functor Q⊗− (see 7.4.6.5) induces the equivalence of categories:

Q⊗− : Db
Q,coh(D)→ Db

coh(DQ). (7.4.6.6.1)

Proof. Following 7.4.3.2.2, we already know that the functor is fully faithful. From 7.4.6.4, since the
functor is exact and full, then its essential image is a full triangulated subcategory ofDb

coh(DQ). Moreover,
following 7.4.5.2, the essential image of the functor 7.4.6.6.1 contains coherent left DQ-modules. Since
the smallest strictly full triangulated subcategory of Db

coh(DQ) containing coherent left DQ-modules is
Db

coh(DQ) we are done.

7.4.7 Derived completed tensor products and derived completed homomor-
phisms of complexes of (bi)modules

Let X be a locally noetherian formal scheme of Krull dimension d and I be an ideal of definition of X.
Suppose pOX ⊂ I. Let D,D′,D′′,D′′′ be four sheaves of rings on X satisfying the hypotheses of 7.3.2 (or
only 7.2.3 when the notion of quasi-coherence is not involved).

7.4.7.1. We have the topoi morphisms←lX : (X•,D•)→ (|X |,D) and←lX : (X•,ZX•)→ (|X |,ZX).

(a) Both functors R←lX∗ preserve isogenies and induce R←lX∗ : D−Q (D•)→ D−Q (D) and R←lX∗ : D−Q (ZX•)→
D−Q (ZX). We have obviously the same property for the exact functor←l

−1
X

.

(b) Similarly, we get the functor

L←l
∗
X

= D• ⊗L

←l
−1
X
D←l
−1
X
− : D−Q (lD)→ D−Q (lD•).

and similarly for right modules.
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7.4.7.2. By preservation of the isogenies, we get the functor

−⊗D•− : D−Q (rD•)×D−Q (lD•)→ D−Q (ZX•) (7.4.7.2.1)

Since sends isogenies to isogenies, this induces the functor

−“⊗L
D− := R←lX∗

(
L←l
∗
X

(−)⊗L
D• L←l

∗
X

(−)
)

: D−Q (rD)×D−Q (lD)→ D−Q (ZX). (7.4.7.2.2)

which is also the functor induced by 7.3.4.2.1.

Lemma 7.4.7.3. Let E• ∈ D−Q (lD),M• ∈ D−Q (rD).

(a) We have the morphism
M• ⊗L

D E• →M•“⊗L
DE• (7.4.7.3.1)

which is an isomorphism when one of the two complexes belongs to D−Q,coh(D) and the other to
D−Q,qc(D).

(b) When D is commutative, then we get the isomorphism of D−Q (D):

M•“⊗L
DE•

∼−→ R←lX∗ ◦ L←l
∗
X

(M• ⊗L
D E•), (7.4.7.3.2)

where←lX is here the topoi morphism←lX : (X•,D•)→ (|X |,D). Hence, we can considerM•“⊗L
DE• as

an object of D−Q (D) and then the map 7.4.7.3.1 is the adjunction morphism.

Proof. This follows from 7.3.4.3.

7.4.7.4. Suppose there exists a homomorphism of sheaves of rings on X of the form D → D′ such that
the composition of OX → D with D → D′ gives OX → D′.

(a) Let ∗ ∈ {l, r} and ? ∈ {−,b}. The functor 7.3.4.4.1 induces:

forgD,D′ : D
?
Q,qc(∗D′)→ D?

Q,qc(∗D). (7.4.7.4.1)

(b) With notation 7.3.1.12, we have from 7.3.4.4.2 the functor

D′• ⊗L
D• − : D−Q,qc(lD•)→ D−Q,qc(lD′•). (7.4.7.4.2)

(c) We have from 7.3.4.4.4 the functor:

D′“⊗L
D− : D−Q,qc(lD)→ D−Q,qc(lD′). (7.4.7.4.3)

7.4.7.5. Suppose (D,D′, I) is solved by (R,K) (see definition 7.3.4.5). Let ? ∈ {∅,−}. We set
D?

Q(lD′,R,Dr) := D?(lD′,R,Dr)Q and D?
Q(lD′•,R•,D•r) := D?(lD′•,R•,D•r)Q (see notation 7.3.4.7)

etc. The functors 7.3.4.8.1 and 7.3.4.8.2 preserve isogenies and induce therefore:

L←l
∗
X

: D?
Q(lD′,R,Dr)→ D?

Q(lD′•,R•,D•r), (7.4.7.5.1)

R←lX∗ : D?
Q(lD′•,R•,D•r)→ D?

Q(lD′,R,Dr). (7.4.7.5.2)

Let ] ∈ {∅,+,−,b}. Let ? ∈ {qc, coh, tdf,perf}. We denote respectively by D]
Q,?,.(

lD′•,R•,D•r)
and D]

Q,.,?(lD′•,R•,D•r) the strictly full subcategory of D]
Q(lD′•,R•,D•r) consisting of complexes E•

which are isomorphic to an object of D]
?,.(

lD′•,R•,D•r) and D]
.,?(lD′•,R•,D•r) (see notation 7.3.4.8). In

other words, D]
Q,?,.(

lD′•,R•,D•r) is the essential image of the full faithful functor D]
?,.(

lD′•,R•,D•r) →
D]

Q(lD′•,R•,D•r) etc.
Similarly, we denote by D]

Q,?,.(
lD′,R,Dr) and D]

Q,.,?(lD′,R,Dr) the strictly full subcategory of
D]

Q(lD′,R,Dr) consisting of complexes E which are isomorphic to an object of D]
?,.(

lD′,R,Dr) and
D]
.,?(lD′,R,Dr). The functors L←l

∗
X

of 7.3.4.8.1 and R←lX∗ induce quasi-inverse equivalences of categories
betweenD]

Q,.,qc(lD′,R,Dr) andD]
Q,.,qc(lD′•,R•,D•r) and betweenD]

Q,qc,.(
lD′,R,Dr) andD]

Q,qc,.(
lD′•,R•,D•r).
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7.4.7.6. Suppose (D,D′, I) and (D,D′′, I) are solved by (R,K). Let ∗, ∗∗ ∈ {r, l}. The functors 7.3.4.9.1
and 7.3.4.9.2 preserve the isogenies and induce

−⊗L
D• − : DQ(∗D′•,R,D•r)×DQ(lD•,R, ∗∗D′′• )→ DQ(∗D′•,R, ∗∗D′′• ), (7.4.7.6.1)

−“⊗L
D− : DQ(∗D′,R,Dr)×DQ(lD,R, ∗∗D′′)→ DQ(∗D′,R, ∗∗D′′). (7.4.7.6.2)

We have similar bifunctors by changing the indices l and r. LetM• ∈ DQ(∗D′,R,Dr), E• ∈ DQ(lD,R, ∗∗D′′)
be two complexes. The canonical morphism 7.3.4.9.3 induces

M• ⊗L
D E• →M•“⊗L

DE• (7.4.7.6.3)

which is an isomorphism when either M• ∈ D−Q,coh(Dr) and E• ∈ D−Q,qc(lD), or M• ∈ D−Q,qc(Dr) and
E• ∈ D−Q,coh(lD′).

7.4.7.7. By adding some Q the properties of 7.3.4 are still valid. For instance, for any E• ∈ D−Q,qc,.(
∗D′,R,Dr),

F• ∈ D−Q,qc,.(
lD,R, rD′′), G• ∈ D−Q,qc,.(

lD′′,R, ∗∗D′′′), we have the associativity isomorphism inD−Q,qc,.(
∗D′,R, ∗∗D′′′)

of the form: (
E•“⊗L

DF•
)“⊗L
D′′G•

∼−→ E•“⊗L
D

(
F•“⊗L

D′′G•
)
. (7.4.7.7.1)

7.5 Operations involving completed sheaves of differential oper-
ators of level m

7.5.1 Completed sheaves of differential operators of level m
Let m ∈ N ∪ {+∞}. Let S] be a nice fine V-log formal scheme (see definition 3.3.1.10). Moreover, let
X] → S] be a log smooth morphism of log formal schemes. We suppose X is locally noetherian.

7.5.1.1. Let B be a commutative OX-algebra satisfying the following conditions.

(a) B is endowed with a structure of left D(m)

X]/S]
-module compatible with its structure of OX-algebra ;

(b) For any affine open U of X, the ring Γ(U,B) is noetherian ;

(c) For any i ≥ 0, B/mi+1B is a quasi-coherent OXi-module and the canonical homomorphism B →
lim←−i∈N

B/mi+1B is an isomorphism.

We remark that the conditions (b) and (c) are equal to that of 7.2.3 in the case where I = m. Hence, for
instance we get following 7.2.3.3 that for any open immersion V ⊂ U of affine opens, the homomorphism
Γ(U,B)→ Γ(V,B) is flat.

Example 7.5.1.2. The sheaf OX is endowed with a canonical structure of left “DX]/S] -module, which
induces a structure of left D(m)

X]/S]
-module on OX. The conditions of 7.5.1.1 are satisfied by OX. It

follows from 3.1.4.5.1 and 3.2.3.5.1 that the induced structure of left D(m)

X]/S]
-module on OX is given via

the formula
P (f) := P ◦ pn1(m)(f). (7.5.1.2.1)

7.5.1.3. Suppose m ∈ N. We keep the notations and hypotheses of 7.5.1.1. By using 4.1.2.17, the
ring D := B ⊗OX

D(m)

X]/S]
satisfies the conditions of 7.2.2.3. Hence, with the remark 7.2.3.1, its p-

adic completion denoted by B“⊗OX
“D(m)

X]/S]
:= “D satisfies the conditions of 7.2.3. For instance, we get

the coherence of B“⊗OX
“D(m)

X]/S]
as well as theorems of type A and B for the left or right coherent

B“⊗OX
“D(m)

X]/S]
-modules (for more precisions, see 7.2.3.16). In the same way, it follows from 7.4.5.4 the

coherence of B“⊗OX
“D(m)

X]/S],Q := (“D)Q as well as theorems of type A and B for the left or right coherent

BX“⊗OX
“D(m)

X]/S],Q-modules.
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Proposition 7.5.1.4. Let B be an OX-algebra satisfying the conditions of 7.5.1.1 for some m ∈ N. Then
the sheaf B“⊗OX

D(m)

X]/S]
is right and left flat on B ⊗OX

D(m)

X]/S]
and on B.

Proof. Following 4.1.2.17.(d), Γ(U,B⊗OX
D(m)

X]/S]
) is right and left noetherian for any affine open U ⊂ X.

According to 7.2.2.2, Γ(U,B“⊗OX
D(m)

X]/S]
) is the p-adic completion of Γ(U,B⊗OX

D(m)

X]/S]
). Hence, we are

done.

7.5.1.5 (Local description and notation). Let B be a commutative OX-algebra satisfying the conditions
of 7.5.1.1. Suppose in this paragraph that X is an affine, noetherian formal scheme of finite Krull
dimension and X] → S] is endowed with logarithmic coordinates (uλ)λ=1,...,r. Let Y := X]∗ be the
open of X where MX] is trivial and j : Y ↪→ X] be the canonical open immersion. Let (tλ)λ=1,...,r be the
induced coordinates of Y/S. Put τ]λ(m) := µn(m)(uλ) − 1 (or simply τ]λ), where for any a ∈ MX] we
denote µn(m)(a) the unique section of ker(O∗∆n

X]/S],(m)

→ O∗X) such that we get inMn
X]/S],(m) the equality

pn∗1 (a) = pn∗0 (a)µn(m)(a). We still denote by τ]λ(m) its image via the canonical morphism PnX]/S],(m) →

B⊗OX
PnX]/S],(m). The elements {τ{k}(m)

] }|k|≤n form a B-basis of B⊗OX
PnX]/S],(m). The corresponding

dual basis of B⊗OX
D(m)

X]/S],n
is denoted by {∂〈k〉(m)

] }|k|≤n. The B-module B⊗OX
D(m)

X]/S]
is free and has

the basis {∂〈k〉(m)}k∈Nd . Let ε1, . . . , εr be the canonical basis of Nr, i.e. the coordinates of εi are 0 except
for the ith term which is 1. We put ∂]i := ∂〈εi〉(m) .

(a) A section P ∈ Γ(X,B ⊗OX
D(m)

X]/S]
) can uniquely be written of the form

P =
∑
k∈Nd

bk∂
〈k〉(m)

] , (7.5.1.5.1)

where bk ∈ B and the sum is finite.

(b) A section P ∈ Γ(X,B“⊗OX
“D(m)

X]/S]
) can uniquely be written of the form

P =
∑
k∈Nd

bk∂
〈k〉(m)

] , (7.5.1.5.2)

where bk is a sequence of elements of Γ(X,B) converging to 0 for the p-adic topology when |k| goes
to infinity.

(c) The ring Γ(X,BQ) = Γ(X,B)Q (see 7.4.3.1.1) is a Tate algebra (i.e. is an Huber ring with a pseudo-
uniformizer): a ring of definition is given by the image Γ(X,B) → Γ(X,B)Q, the ring of definition
is endowed with the p-adic topology and p is a pseudo-uniformizer (we will define in this context a
p-adic norm later in 8.7.1.6). A section P ∈ Γ(X,B“⊗OX

“D(m)

X]/S],Q) can uniquely be written of the
form

P =
∑
k∈Nd

bk∂
〈k〉(m)

] , (7.5.1.5.3)

where bk is a sequence of elements of Γ(X,BQ) converging to 0 when |k| goes to infinity.

7.5.1.6 (Local description and notation: semi-nice coordinate). Suppose X→ S is a smooth morphism
of V-formal schemes and suppose there exists a relative to X/S strict normal crossing divisor D such that
X] := (X,M(D)). Let f : X] → X be the canonical morphism. Suppose there exist semi-nice coordinates
t1, . . . , td of X]/S. Let r ∈ N be such that D is empty (if r = 0) or D is cut out by

∏
1≤j≤r tj in X.

With notation 4.5.1.4, we have the basis {∂〈k〉(m)

(r) : k ∈ Nd} of B ⊗OX
D(m)

X]/S
. Hence, we get the same

description as 7.5.1.5.1, 7.5.1.5.2 and 7.5.1.5.3 by replacing ∂〈k〉(m)

] by ∂〈k〉(m)

(r) .

7.5.1.7 (p-adic norms). Let M be a p-torsion free p-adically separated complete V-module. We define
on MK := M ⊗V K the function vp : MK \ {0}\ → Z by setting vp(x) := max{n ∈ Z, x ∈ pnM} for any
x ∈ MK . This yields a norm on ‖ − ‖ : MK → R by setting ‖ x ‖:= p−vp(x). This norm is called the
p-adic norm on MK given by M .
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When M is moreover a V-algebra, then we have ‖xx′‖ ≤ ‖x‖‖x′‖ and then vp : MK → Z ∪ {+∞}
is a quasi-valuation. We call vp to be the p-adic quasi-valuation of MK induced by M . This yields a
structure of Banach K-algebra on MK .

7.5.1.8. Let U] be an affine open of X]. For all ∈ N, the p-free algebra B = Γ(U,B) is naturally
equipped with the p-adic topology, which defines the Tate algebra Γ(U,BQ)

∼−→ BQ (see 7.4.3.1.1): a
ring of definition is given by B endowed with the p-adic topology and p is a pseudo-uniformizer. We
get the Banach algebra BQ (see 7.5.1.7). The topology obtained on this algebra is a Banach topology,
because B is an algebra topologically of finite type, and BQ can therefore be provided with a Banach
norm which defines its topology. Likewise, if there exists a logarithmic coordinate system on U], all
operator P ∈ Γ(U,B“⊗OX

“D(m)

X]/S],Q), can be written uniquely P =
∑
|k|≤n bk∂

〈k〉
] , where the bk ∈ BQ tend

to 0 for |k| → ∞, and, choosing a Banach norm on BQ, we equip the algebra DQ = Γ(U,B“⊗OX
“D(m)

X]/S],Q)

with a Banach norm defining its p-adic topology by setting ‖ P ‖= supk ‖ bk ‖. The ring of operator
of DQ of norm ≤ 1 is equal to D. Hence, a change of logarithmic coordinates does not change this
norm. (Indeed, if ∂′〈k〉] is the basis of Γ(U,B⊗OX

D(m)

X]/S]
) corresponding to another choice of logarithmic

coordinates, the base change of Γ(U,B ⊗OX
D(m)

X]/S]
) is given by a matrix with coefficients in Γ(U,B).)

If E is a coherent BQ-module (resp. a coherent B“⊗OX
“D(m)

X]/S],Q-module), then E = Γ(U, E), is a finite
type module on BQ (resp. DQ) according to theorem A, and we equip E with a Banach norm by taking
the quotient norm defined by any finite presentation ; as BQ (resp. DQ) is a Noetherian Banach algebra,
the norms defined by two presentations are equivalent (e.g. copy the proof of [BGR84, 3.7.3.3]). Denote
by M(DQ) the category of all left DQ-modules of finite type endowed with a Banach norm given by a
finite presentation with DQ-linear maps as morphisms. Any DQ-linear morphism between two objects of
M(DQ) is strict and continuous (e.g. copy the proof of [BGR84, 3.7.3.3]). Moreover, any DQ-submodule
of an object of M(DQ) is closed (e.g. copy the proof of [BGR84, 3.7.3.1])

7.5.1.9. Let B be a commutative OX-algebra satisfying the conditions of 7.5.1.1. Let Bt be the ideal of
B consisting of p-torsion sections and B′ := B/Bt. Then B′ is a coherent B-module (see 7.4.5.1). With
7.2.3.16, this implies that B′ satisfies the properties (b) and (c) of 7.5.1.1. Since p is in the center of
D(m)

X]/S]
, then Bt is a sub-D(m)

X]/S]
-module of B and then B′ is endowed with a structure of D(m)

X]/S]
-module

such that the surjection B → B′ is D(m)

X]/S]
-linear. Since this is a surjection, then the property (a) of

7.5.1.1 holds (check the Leibnitz formula). Moreover, with Lemma 4.1.2.2, we get the ring homomorphism
B⊗OX

D(m)

X]/S]
→ B′⊗OX

D(m)

X]/S]
. It follows from 7.2.3.16 (and 1.4.5.2) that B′⊗OX

D(m)

X]/S]
is a coherent

B ⊗OX
D(m)

X]/S]
-modules (via the latter homomorphism).

Via 4.2.3.5, we get a structure of left B ⊗OX
D(m)

X]/S]
-module on Bt ⊗OX

D(m)

X]/S]
∼−→ Bt ⊗B (B ⊗OX

D(m)

X]/S]
). By flatness of OX → D(m)

X]/S]
, this yields the exact sequence of coherent B⊗OX

D(m)

X]/S]
-modules:

0→ Bt ⊗OX
D(m)

X]/S]
→ B ⊗OX

D(m)

X]/S]
→ B′ ⊗OX

D(m)

X]/S]
→ 0.

By p-adic completion, this yields the exact sequence of coherent B“⊗OX
D(m)

X]/S]
-modules:

0→ Bt“⊗OX
D(m)

X]/S]
→ B“⊗OX

D(m)

X]/S]
→ B′“⊗OX

D(m)

X]/S]
→ 0. (7.5.1.9.1)

The following lemma will be useful to check 7.5.3.1.

Lemma 7.5.1.10. With notation 7.5.1.9, the canonical homomorphism

B“⊗OX
“D(m)

X]/S],Q → B
′“⊗OX

“D(m)

X]/S],Q

is an isomorphism.

Proof. Since this is local, we can suppose X is noetherian. Hence, there exists an integer N such that
pNBt = 0. This implies that the canonical morphism Bt⊗OX

D(m)

X]/S]
→ Bt“⊗OX

D(m)

X]/S]
is an isomorphism.

Since Bt ⊗ Q = 0, using 7.5.1.9.1 we are done.
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7.5.1.11. Let B be a commutative OX-algebra satisfying the conditions of 7.5.1.1. By p-adic completion,
it follows from 4.3.5.1 that the sheaf B ⊗OX

ωX]/S] is endowed with a canonical right B“⊗OX
“D(m)

X]/S]
-

module structure extending its structure of B-module. Suppose X]/S] has logarithmic coordinates
u1, . . . , ud ∈MX] . With the local description 7.5.1.5.2, we can check the logarithmic adjoint operator (see
3.4.1.2.3) extends to a map Γ(X,B“⊗OX

“D(m)

X]/S]
)→ Γ(X,B“⊗OX

“D(m)

X]/S]
) given by P =

∑
k∈Nd bk∂

〈k〉(m)

] 7→‹P :=
∑
k ∂̃
〈k〉(m)

] bk, where bk is a sequence of elements of Γ(X,B) converging to 0 for the p-adic
topology when |k| goes to infinity. Via the local description of 3.4.5.1.1, we can check the action of
P ∈ Γ(X,B“⊗OX

“D(m)

X]/S]
) on the section b d log t1 ∧ · · · ∧ d log td, where b is section of BX is given by the

formula
(b d log t1 ∧ · · · ∧ d log td) · P = ‹P (b)d log t1 ∧ · · · ∧ d log td. (7.5.1.11.1)

7.5.1.12. Let B be a commutative OX-algebra satisfying the conditions of 7.5.1.1. Following 4.3.5.7,
the functors −⊗BX

ω̃−1
X]/S]

= HomBX
(ω̃X]/S] ,−) and ω̃X]/S] ⊗BX

− are exact and induce quasi-inverse
equivalences between the category of (resp. coherent, resp. flat, resp. locally projective of finite type)
left BX ⊗OX

D(m)

X]/S]
-modules and that of (resp. coherent, resp. flat, resp. locally projective of finite

type) right BX ⊗OX
D(m)

X]/S]
-modules.

7.5.1.13. Let B be a commutative OX-algebra satisfying the conditions of 7.5.1.1. Set ‹D(m)

X]/S]
:=

B“⊗OX
“D(m)

X]/S]
.

(a) By p-adic completion, we get from 4.3.5.7 a structure of right ‹D(m)

X]/S]
-bimodule on ω̃X]/S]⊗B‹D(m)

X]/S]
.

(b) Let E be a left ‹D(m)

X]/S]
-module. Via the canonical isomorphism of B-modules:

ω̃X]/S] ⊗B E
∼−→
Ä
ω̃X]/S] ⊗B ‹D(m)

X]/S]

ä
⊗D̃(m)

X]/S]

E (7.5.1.13.1)

we get a structure of right ‹D(m)

X]/S]
-module on ω̃X]/S] ⊗B E . Suppose X]/S] has logarithmic coordi-

nates u1, . . . , ud ∈ MX] . With the notation of 7.5.1.11, we compute the action of P ∈ Γ(X, ‹D(m)

X]/S]
)

on the section d log t1 ∧ · · · ∧ d log td ⊗ x of ω̃X]/S] ⊗B E , where x is a section of E , is given by the
formula

(d log t1 ∧ · · · ∧ d log td ⊗ x) · P = d log t1 ∧ · · · ∧ d log td ⊗ ‹P · x. (7.5.1.13.2)

Hence, the structure of right B ⊗OX
D(m)

X]/S]
-module on ω̃X]/S] ⊗B E given by 7.5.1.12 is equal to

the one induced (via the canonical map B ⊗OX
D(m)

X]/S]
→ ‹D(m)

X]/S]
) by its structure of right ‹D(m)

X]/S]
-

module.

(c) LetM be a right ‹D(m)

X]/S]
-module. Via the canonical isomorphism

HomBX
(ω̃X]/S] ,M)

∼−→ HomD̃(m)

X]/S]

(ω̃X]/S] ⊗BX
‹D(m)

X]/S]
,M), (7.5.1.13.3)

we get a structure of left ‹D(m)

X]/S]
-module on HomBX

(ω̃X]/S] ,M). Suppose X]/S] has logarith-
mic coordinates u1, . . . , ud ∈ MX] . With the notation of 7.5.1.5.2, we compute the action of
P ∈ Γ(X, ‹D(m)

X]/S]
) on the section x ⊗ (d log t1 ∧ · · · ∧ d log td)

∗ of HomBX
(ω̃X]/S] ,M), where x

is section ofM, is given by the formula

P · (x⊗ (d log t1 ∧ · · · ∧ d log td)
∗) = x · ‹P ⊗ (d log t1 ∧ · · · ∧ d log td)

∗. (7.5.1.13.4)

Hence, the induced structure of left B ⊗OX
D(m)

X]/S]
-module corresponds to that of 7.5.1.12.
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(d) Since ω̃X]/S] is locally free (of rank one), the canonical BX-linear morphism, then we have the‹D(m)

X]/S]
-linear isomorphism

ω̃X]/S]⊗BX
HomBX

(ω̃X]/S] ,M)
∼−→ (ω̃X]/S]⊗BX

‹D(m)

X]/S]
)⊗D̃(m)

X]/S]

HomD̃(m)

X]/S]

(ω̃X]/S]⊗BX
‹D(m)

X]/S]
,M)

∼−→ M,

(7.5.1.13.5)
where the last isomorphism is the evaluation one. We have the canonical ‹D(m)

X]/S]
-linear isomorphism:

E ∼−→ HomD̃(m)

X]/S]

(ω̃X]/S]⊗BX
‹D(m)

X]/S]
, ω̃X]/S]⊗BX

‹D(m)

X]/S]
⊗D̃(m)

X]/S]

E)
∼−→ HomBX

(ω̃X]/S] , ω̃X]/S]⊗BX
E).

(7.5.1.13.6)

(e) Similarly to 4.3.5.6, this yields that for any left (resp. right) ‹D(m)

X]/S]
-module E (resp. M) , we have

the following isomorphism of OS-modules:

M⊗D̃(m)

X]/S]

E ∼−→ (ω̃X]/S] ⊗BX
E)⊗D̃(m)

X]/S]

(M⊗BX
ω̃−1
X]/S]

). (7.5.1.13.7)

(f) As for 4.3.5.7, using the above results, we can check that the functors−⊗BX
ω̃−1
X]/S]

= HomBX
(ω̃X]/S] ,−)

and ω̃X]/S] ⊗BX
− are exact and induce quasi-inverse equivalences between the category of (resp.

coherent, resp. flat, resp. locally projective of finite type) left ‹D(m)

X]/S]
-modules and that of (resp.

coherent, resp. flat, resp. locally projective of finite type) right ‹D(m)

X]/S]
-modules. Hence, for any

? ∈ {−,+,b, ∅}, the functors ω̃X]/S] ⊗BX
− and HomBX

(ω̃X]/S] ,−) induce quasi-inverse equiva-
lences of categories between D?(l‹D(m)

X]/S]
) and D?(r‹D(m)

X]/S]
). Moreover, these equivalences preserve

K-flat complexes and K-injective complexes.

7.5.2 Topological nilpotence and B-coherence
We keep notation of 7.5.1.1. Let us start by considering the case of B-coherent B ⊗OX

D(m)

X]/S]
-modules:

Proposition 7.5.2.1. Let E be a left B ⊗OX
D(m)

X]/S]
-module, coherent as B-module.

(a) If X is affine then E is globally of finite presentation on B ⊗OX
D(m)

X]/S]
.

(b) The sheaf E is coherent as B ⊗OX
D(m)

X]/S]
-module.

(c) The canonical homomorphism E → B“⊗OX
D(m)

X]/S]
⊗B⊗OX

D(m)

X]/S]

E is an isomorphism and the sheaf

E is coherent as B“⊗OX
D(m)

X]/S]
-module.

Proof. Suppose that X is affine. Let B = Γ(X,B), D := B⊗OX
D(m)

X]/S]
, D = Γ(X,D). As E is B-coherent,

then following theorem of type A, there exists a surjective B-linear homomorphism Bn → E , and so a
surjective D-linear homomorphism Dn → E ; let N be its kernel. Let Li := (B ⊗OX

D(m)

X]/S],i
)n be the

filtration on L := (B ⊗OX
D(m)

X]/S]
)n induced by the order filtration of D(m)

X]/S]
. Let Ni := N ∩ Li, which

yields the exact sequence 0 → Ni → Li → E → 0. Since the kernel of an homomorphism between
coherent modules is coherent, then the submodules Ni are B-coherent. Since filtered inductive limits
are exact, since L ∼−→ lim−→i

Li then N ∼−→ lim−→i
Ni. As the functor Γ(X,−) commutes with filtered

inductive limits (see [SGA4.2, VI.5.3]), by using theorem of type A for coherent B-modules, this yields
that the canonical homomorphisms B ⊗B D → D and B ⊗B Γ(X,N ) → N are isomorphisms. Thus
D⊗D Γ(X,N )→ N is also an isomorphism. Since D is noetherian, then Γ(X,N ) is a D-module of finite
type. The coherence of E over D follows from Theorem A (see 4.1.3.19) Hence, we have checked a and
therefore b). Let us treat now c). As E is a coherent B-module, it is canonically isomorphic to its p-adic
completion. Moreover, as E is a coherent D-module, its p-adic completion is canonically isomorphic to“D ⊗D E . Hence we are done.
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Corollary 7.5.2.2. Let B′ be a commutative B-algebra satisfying the conditions of 7.5.1.1 and such that
B → B′ is D(m)

X]/S]
-linear. Let E be a left B ⊗OX

D(m)

X]/S]
-module, coherent as B-module. The canonical

morphism
B′ ⊗B E → (B′“⊗OX

D(m)

X]/S]
)⊗B⊗̂OX

D(m)

X]/S]

E (7.5.2.2.1)

is an isomorphism.

Proof. It follows from 7.5.2.1 that both terms of 7.5.2.2.1 are p-adically separated and complete. Hence,
we reduce to check the map 7.5.2.2.1 is an isomorphism after reduction modulo πi+1, which is 4.3.4.6.1.

We have the following criterium to get B-coherence which will be useful in order to prove Theorem
11.2.1.12.

Proposition 7.5.2.3. We suppose X affine. Let E be a coherent B“⊗“D(m)

X]/S]
-module. Then E is B-

coherent if and only if Γ(X, E) is a Γ(X,B)-module of finite type.

Proof. Set E := Γ(X, E), B := Γ(X,B), D := B“⊗“D(m)

X]/S]
and D := Γ(X,D). For any i ∈ N, set

Bi := B/πi+1B,Bi := B/πi+1B,Di := D/πi+1D, Di := D/πi+1D. Since we have theorem of type A for
coherent B-modules (see 7.2.3.16), then the B-coherence of E implies that E is a B-module of finite type.

Conversely, suppose E is a B-module of finite type. Since the canonical morphism Bi ⊗B D → Di is
an isomorphism, then so is Bi ⊗B E → Di ⊗D E. Since the canonical morphism Bi ⊗Bi Di → Di is an
isomorphism, then so is Bi ⊗Bi (Bi ⊗B E)→ Di ⊗Di (Di ⊗D E). This yields the canonical morphism

Bi ⊗B (B ⊗B E)→ Di ⊗D (D ⊗D E).

is an isomorphism. Since E is of finite type over D and over B, the canonical morphisms lim←−i Bi ⊗B
(B ⊗B E) → B ⊗B E and lim←−iDi ⊗D (D ⊗D E) → D ⊗D E are isomorphisms. Hence, the canonical
morphism

B ⊗B E → D ⊗D E.

is an isomorphism. Since we have theorem of type A for coherent D-modules, then the canonical mor-
phism

D ⊗D E → E

is an isomorphism. Moreover, B ⊗B E is B-coherent. Hence, we are done.

Definition 7.5.2.4. Set “D := B“⊗OX
“D(m)

X]/S]
.

(a) Let U be an affine open of X on which there exists a system of logarithmic coordinates. Let E be a
left Γ(U, “DQ)-module of finite type. We say that E is “topologically nilpotent” if, for all e ∈ E, we
have ∂〈k〉(m)

] (e)→ 0 (for the Banach topology on E defined in 7.5.1.8) when |k| → +∞.

(b) A “topologically nilpotent left “DQ-module” is a left “DQ-module E so that there exists a basis B of
affine open sets having logarithmic coordinates, such that for all U ∈ B, Γ(U, E) is of finite type on
Γ(U, “DQ), and is topologically nilpotent.

Remark 7.5.2.5. With notation 7.5.2.4, suppose X affine and endowed with logarithmic coordinates.

(a) If E is a topologically nilpotent left “DQ-module, then this is not clear that E is a coherent “DQ-module.

(b) Let E be a left Γ(X, “DQ)-module of finite type. We get the coherent “DQ-modules E := “DQ⊗Γ(X,D̂Q)
E.

Then E is topologically nilpotent if and only if so is E. If
◦
E is a model of E , and if

◦
E i is the reduction

of
◦
E module mi+1, it amounts to the same thing to say that, for all i ∈ N Ei is nilpotent as left

(B/mi+1B) ⊗OXi D
(m)

X]
i
/S]
i

-module (see definition 4.2.1.11) ; we thus see that this condition does not
depend on logarithmic coordinates.
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Lemma 7.5.2.6. Let ρ : A→ B be a continuous homomorphism between Noetherian Banach K-algebras,
and E a left B-module which is of finite type on A. Then the Banach norms on E induced by its structure
of finite type A-module and by its structure of finite type B-module are equivalent. In particular, the
action of B over E is continuous for the topology of B-module and the topology of A-module of E.

Proof. Let ‖ − ‖A and ‖ − ‖B be the norms of A and B. As ρ is continuous, there exists c ∈ R such that,
for all a ∈ A, we have ‖ ρ(a) ‖B≤ c ‖ a ‖A. Let’s fix a surjective A-linear map of the form u : Ar → E
; we deduce a quotient norm ‖ − ‖1 on E. Let u′ : Br → E be the B-linear factorization of u; as u′ is
surjective, we obtain another quotient norm ‖ − ‖2 on E. Thanks to the previous relation, we see that
‖ x ‖2≤ c ‖ x ‖1 for all x ∈ E, so that the map idE : (E, ‖ − ‖1) → (E, ‖ − ‖2) is continuous. Both
norms making E a Banach space on K, the Banach theorem results in them defining the same topology
on E. The last assertion follows from this.

Lemma 7.5.2.7. Suppose B is endowed with a structure of left D(m+1)

X]/S]
-module compatible with its

structure of OX-algebra. Set “D(m) := B“⊗OX
“D(m)

X]/S]
and “D(m+1) := B“⊗OX

“D(m+1)

X]/S]
. Let E be a left“D(m)

Q -module such that

(a) there exists a basis B of affine open sets having logarithmic coordinates, such that for all U ∈ B,
Γ(U, E) is of finite type on Γ(U, “D(m)

Q )

(b) and the structure of “D(m)
Q -module of E is induced by a structure of “D(m+1)

Q -module.

Then E is topologically nilpotent as left “D(m)
Q -module.

Proof. Let U ∈ B. Set D(m) := Γ(U, “D(m)) and similarly for m + 1. Then E := Γ(U, E) is of finite
type on D

(m)
Q . Hence, E is also of finite type on D

(m+1)
Q Lemma 7.5.2.6 implies that the topologies

defined by these two structures of modules are the same. Now the elements ∂〈k〉(m+1)

] form a bounded

family of D(m+1)
Q , therefore the ∂〈k〉(m+1)

] (e) form a bounded family of E. The assertion then follows from

∂
〈k〉(m)

] =
q(m)

k
!

q
(m+1)

k
!
∂
〈k〉(m+1)

] and the fact that
q(m)

k
!

q
(m+1)

k
!
→ 0 when |k| → 0.

Proposition 7.5.2.8. For any 0 ≤ m′ ≤ m, set D(m′) := B ⊗OX
D(m′)

X]/S]
and its p-adic completion“D(m′) := B“⊗OX

“D(m′)

X]/S]
. Let E be a topologically nilpotent “D(m)

Q -module which is coherent over BQ.

(a) There exists a p-torsion free “D(m)-module
◦
E, coherent over B together with an “D(m)

Q -linear isomor-

phism
◦
EQ

∼−→ E ;

(b) The canonical homomorphism E → “D(m)
Q ⊗D(m)

Q
E is an isomorphism and the sheaf E is coherent as

D(m)
Q -module or as “D(m)

Q -module ;

(c) For any 0 ≤ m′ ≤ m, the canonical homomorphism

E → “D(m)
Q ⊗D̂(m′)

Q

E (7.5.2.8.1)

is an isomorphism.

(d) Let B′ be a commutative B-algebra satisfying the conditions of 7.5.1.1 and such that B → B′ is
D(m)

X]/S]
-linear. The canonical homomorphism

B′Q ⊗BQ E → (B′“⊗OX
“D(m)

X]/S]
)Q ⊗D̂(m)

Q
E (7.5.2.8.2)

is an isomorphism.

382



Proof. 1) Let us check (a). We suppose first that X] is an affine open, endowed with logarithmic coordi-
nates and such the nilpotence condition of 7.5.2.4.(a) holds. Let A := Γ(X,OX), Pi := Γ(Xi,PX]

i
/Si(m)),

B := Γ(X,B), D(m′) := Γ(X,D(m′)), E := Γ(X, E). We set P ′ := lim←−iB ⊗A Pi. Since E is coherent
over BQ, then E is a BQ-module of finite type. Let E′ ⊂ E be a sub B-module of finite type such that
E′Q

∼−→ E. It follows from 7.2.1.4 that E′ ⊗B P ′ is separated and complete for the p-adic topology. The

nilpotence hypothesis means that, for any e ∈ E, ∂〈k〉(m)

] (e)→ 0 (for the Banach topology on E defined

in 7.5.1.8 as D(m)
Q -module of finite type) when |k| → +∞. It follows from 7.5.2.6 that ∂〈k〉(m)

] (e)→ 0 for
the Banach topology on E defined as BQ-module of finite type. As the latter is none other than that
defined by the p-adic topology of E′, then ∂〈k〉(m)

] (e)⊗ τ{k}(m)

] → 0 in E⊗B P ′ for the topology given by
the p-adic topology of E′ ⊗B P ′. We can therefore define an application θ : E → E ⊗B P ′ by setting

θ(e) :=
∑
k∈Nd

∂
〈k〉(m)

] (e)⊗ τ{k}(m)

] . (7.5.2.8.3)

We have the algebra isomorphisms B ⊗A Pi
∼−→ Pi ⊗A B, which is given by the m-PD-stratification

of B/mi+1B. By p-adic completion, this yields the isomorphism P ′
∼−→ lim←−i Pi ⊗A B, which gives a

second B-module structure on P ′ by right multiplication. We then check easily that θ is B-linear for

this B-module structure on P ′. Hence, we get a p-torsion free B-module
◦
E = θ−1(E′ ⊗B P ′) such

that
◦
E ⊗ Q = E. Since B ⊗A Pi is free over B/mi+1B with the basis {τ{k}(m)

] }k∈Nd . Hence, P ′ is

the p-adic completion of a free B-module with the basis {τ{k}(m)

] }k∈Nd . This yields that the canonical
homomorphism

E′ ⊗B P ′ →
(
⊕kE′

)∧
is an isomorphism and any element x ∈ E′⊗BP ′ can be written as a convergent series x =

∑
k ek⊗τ

{k}(m)

] ,
with ek ∈ E′ and ek → 0 as |k| → ∞. Hence, it follows from (7.5.2.8.3) that we have

◦
E = {e ∈ E′ : ∀ k, ∂〈k〉e ∈ E′}.

In particular, we get
◦
E ⊂ E′. As B is noetherian and E′ is of finite type over B then

◦
E is of finite type

over B. Moreover, it follows from 1.4.2.7 that
◦
E is a sub-D(m)-module of E. We set

◦
E := B⊗B

◦
E. Then

using 7.5.2.1 we can check
◦
E satisfies every required properties. Finally, we move from the affine case to

the general case by reasoning as in [Ber96c, 3.4.3].

2) By using 7.5.2.1 (resp. 7.5.2.2.1) with the module
◦
E and then tensoring with Q, we get the assertion

(b) (resp. (d)).
3) Since E be also a topologically nilpotent (B“⊗OX

“D(m′)

X]/S]
)Q-module (or remark we can use again

◦
E), we get from (b) that the canonical homomorphism E → “D(m′)

Q ⊗D(m′)
Q

E is an isomorphism for any

m′ ≤ m. Since the canonical map D(m′)
Q → D(m)

Q is an isomorphism, this implies 7.5.2.8.1.

Corollary 7.5.2.9. Set “D := B“⊗OX
“D(m)

X]/S]
. Let E be a topologically nilpotent “DQ-module which is

coherent over BQ. Let
◦
E be a p-torsion free coherent “D-module together with a “DQ-linear isomorphism

of the form E ∼−→
◦
EQ. Then

◦
E is B-coherent and

◦
E/πi+1

◦
E is a nilpotent D/πi+1D = (B/πi+1B) ⊗OXi“D(m)

X]
i
/S]
i

-module (see definition 4.2.1.11).

Proof. Since this is local, we can suppose X affine and that X]/S] has logarithmic coordinates. Following
7.5.2.8.(a), there exists a p-torsion free “D-module F , coherent over B together with an “DQ-linear iso-

morphism FQ
∼−→ E . We get a homomorphism

◦
E ↪→

◦
EQ

∼−→ FQ. Multiplying this homomorphism by a

power of p, we get the injective “D-linear homomorphism
◦
E ↪→ F . Using 7.5.2.3, this yields the coherence
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of
◦
E over B. Since F is B-coherent, for r large enough we get prF ↪→

◦
E ↪→ F whose composition is the

canonical inclusion. For any x ∈ Γ(Y,
◦
E), for any k ∈ Nd, we get in Γ(Y,F) the formula

∂
〈k〉(m)

] x =
q

(m)
k !

q
(m+1)
k !

∂
〈k〉(m+1)

] x,

and q(m)
k !/q

(m+1)
k ! converges p-adically to 0 when |k| → ∞. Hence, we are done.

Corollary 7.5.2.10. Set D(m) := B ⊗OX
D(m)

X]/S]
. Let E ,F be two topologically nilpotent left “D(m)

Q -
modules which are coherent over BQ. Then E ⊗BQ F and HomBQ(E ,F) are both topologically nilpotent“D(m)

Q -modules and a coherent BQ-module.

Proof. The BQ-coherent is obvious. Moreover, following 7.5.2.8.(a), there exists a p-torsion free “D(m)-

module
◦
E (resp.

◦
F), coherent over B together with an “D(m)

Q -linear isomorphism
◦
EQ

∼−→ E (resp.
◦
FQ

∼−→

F). Since
◦
E ⊗B

◦
F and HomB(

◦
E ,
◦
F) are B-coherent, then they are p-adically complete.

For any i ∈ N, set Bi := B/πi+1B, Di := D/πi+1D,
◦
E i :=

◦
E i⊗B Bi =

◦
E i/πi+1

◦
E i, and similarly for

◦
F i.

We reduce to check that (
◦
E ⊗B

◦
F) ⊗OB Bi

∼−→
◦
E i“⊗Bi ◦F i and HomB(

◦
E ,
◦
F) ⊗OB Bi

∼−→ HomBI (
◦
E i,

◦
F i)

are nilpotent for any i ∈ N, which follows from 4.2.3.6.

7.5.3 Increasing the level: flatness with unchanged coefficients
Let m ∈ N ∪ {+∞}. Let S] be a nice fine V-log formal scheme (see definition 3.3.1.10). Moreover, let
X] → S] be a log smooth morphism of log formal schemes. We suppose X is locally noetherian.

Let B be a commutative OX-algebra satisfying the following conditions.

(a) B is endowed with a structure of left D(m)

X]/S]
-module compatible with its structure of OX-algebra ;

(b) For any affine open U of X, the ring Γ(U,B) is noetherian ;

(c) For any i ≥ 0, B/mi+1B is a quasi-coherent OXi-module and the canonical homomorphism B →
lim←−i∈N

B/mi+1B is an isomorphism.

Recall both conditions b and c are equal to that of 7.2.3 in the case where I = m. For an example, see
7.5.1.2.1.

Theorem 7.5.3.1. Suppose m ∈ N. Let B be an OX-algebra satisfying the conditions of 7.5.3 for m+ 1.
The canonical homomorphism B“⊗OX

“D(m)

X]/S],Q → B“⊗OX
“D(m+1)

X]/S],Q is right and left flat.

Proof. Since the check is the same for the right flatness, we will only prove the left flatness. The assertion
is local. We can therefore suppose X affine and X]/S] is endowed with logarithmic coordinates b1, . . . , bd
and we use the notation of 7.5.1.5. We denote byD(m) := Γ(X,B⊗OX

D(m)

X]/S]
), “D(m) its p-adic completion

(which can be identified with Γ(X,B“⊗OX
D(m)

X]/S]
) and similarly for m+1. It is sufficient to prove that the

extension “D(m)
Q → “D(m+1)

Q is flat. We put A = Γ(U,OX), B = Γ(U,B). With 7.5.1.10, we can suppose B
p-torsion free .

For any k ∈ Nd, for any i = 1, . . . , d, with notation 1.2.1.2 we have ki = pmq
(m)
ki

+r
(m)
ki

= pm+1q
(m+1)
ki

+

r
(m+1)
ki

. We have the formula ∂〈k〉(m)

] =
q(m)

k
!

q
(m+1)

k
!
∂
〈k〉(m+1)

] . So, with the uniqueness of the writing 7.5.1.5.2

and 7.5.1.5.3, the canonical homomorphisms D(m) → “D(m) → “D(m)
Q and D(m) → D(m+1) are injective.

Let us then denote by D′ the subgroup of “D(m)
Q generated by “D(m) and D(m+1).

1) We check in this step that D′ is in fact a subring of “D(m)
Q ,

Let P ∈ “D(m) and Q ∈ D(m+1). It is sufficient to check PQ ∈ D′ and QP ∈ D′. Since Q has finite
order, then there exists an integer r ≥ 0 such that prQ ∈ D(m). By using the description 7.5.1.5.1 and

384



7.5.1.5.2, we can write P = P1 +prP2 with P1 ∈ D(m) and P2 ∈ “D(m). We get PQ = P1Q+P2(prQ) with
P1Q ∈ D(m+1) and P2(prQ) ∈ “D(m) ; QP = QP1 + (prQ)P2 with QP1 ∈ D(m+1) and (prQ)P2 ∈ “D(m).

2) We claim that D(m+1)/piD(m+1) → D′/piD′ is an isomorphism for all integer i ≥ 1.
i) First we show surjectivity. Let R ∈ D′. Choose P ∈ “D(m), Q ∈ D(m+1) such that R = P +Q We

can write P = P1 + piP2 with P1 ∈ D(m), P2 ∈ “D(m). Hence, R = P1 +Q+ piP2 with P1 +Q ∈ D(m+1)

and P2 ∈ “D(m) ⊂ D′.
ii) For injectivity, take R ∈ D(m+1) ∩ piD′. Put R = pi(P + Q) with P ∈ “D(m) and Q ∈ D(m+1).

Then for some n we can write in “D(m+1)

R =
∑
|k|≤n

ak ⊗ ∂
〈k〉(m+1)

] , Q =
∑
|k|≤n

ck ⊗ ∂
〈k〉(m+1)

] ,

P =
∑
k∈Nd

bk ⊗ ∂
〈k〉(m)

] =
∑
k∈Nd

q
(m)
k !

q
(m+1)
k !

bk ⊗ ∂
〈k〉(m+1)

]

with ak, bk, ck ∈ B. Since B is p-torsion free we get bk = 0 for |k|〉n. This yields P ∈ D(m) and therefore
R ∈ piD(m+1).

3) It follows from 2) that “D(m+1) → D̂′ is an isomorphism. This implies “D(m+1)
Q

∼−→ D̂′Q. On the

other hand D(m+1)
Q = D

(m)
Q ⊂ “D(m)

Q and thus the inclusion “D(m)
Q ↪→ D′Q is an equality. To end the proof,

it is sufficient therefore to establish that D′ is noetherian (because this yields that “D′ is right and left
flat on D′ and then similarly with the index Q).

By using 4.1.2.17.b), we can check that D(m+1) is generated as left D(m)-modules by the operators
(∂

[pm+1]
] )q, for q ∈ Nd. This yields that D′ is generated as left “D(m)-module by the operator (∂

[pm+1]
] )q,

for q ∈ Nd. Let 1 ≤ j ≤ d be an integer. The operator ∂[pm+1]
]j = ∂

〈pm+1〉(m+1)

]j commutes with ∂〈k〉(m+1)

]

for any k ∈ Nd. For any b ∈ B, in D(m)
Q following 4.1.2.2.3 we have

[∂
[pm+1]
]j , b] =

∑
i<pm+1

∂
[pm+1−i]
]j (b)⊗ ∂[i]

]j .

For i < pm+1, we have q(m+1)
i < p. Thus q(m+1)

i ! ∈ Z∗(p) and ∂
[i]
]j = (q

(m+1)
i !)−1∂

〈i〉(m)

]j ∈ D(m) (see

3.2.3.5.2). It follows [∂
[pm+1]
]j , b] ∈ D(m). Passing to limit, we get [∂

[pm+1]
]j , P ] ∈ “D(m), for all P ∈ “D(m).

Since [(∂
[pm+1]
]j )k, P ] =

∑k−1
l=0 (∂

[pm+1]
]j )k−1−l[∂

[pm+1]
]j , P ](∂

[pm+1]
]j )l for all integer k ≥ 1 and P ∈ “D(m), by

iteration we get
[(∂

[pm+1]
]j )k, P ] ∈

∑
i<k

“D(m)(∂
[pm+1]
]j )i. (7.5.3.1.1)

For j = 0, . . . , d, let D′j be the subring of D′ generated by “D(m) and the ∂[pm+1]
]k for k ≤ j. Let us

prove by induction on j ≥ 0 that D′j is noetherian. This is already known when j = 0. Suppose j ≥ 1

and D′j−1 is noetherian. Let I ⊂ D′j be a left ideal. Write ∂′ = ∂
[pm+1]
]j . An element P ∈ I can be

written as P =
∑
i≤r Ai∂

′i with Ai ∈ D′j−1. Let J ⊂ D′j−1 be the set of elements A such that there is
P ∈ I which can be written of the form

P = A∂′
r

+
∑
i<r

Ai∂
′i,

with Ai ∈ D′j−1. Then J is closed under addition: if P ′ ∈ I can be written P ′ = A∂′
r′

+
∑
i<r′ Ai∂

′i

with r ≤ r′, then ∂′r
′−r

P + P ′ ∈ I and can be written thanks to 7.5.3.1.1 of the form

∂′
r′−r

P + P ′ = (A+A′)∂′
r′

+
∑
i<r′

A′′i ∂
′i

with A′′i ∈ D′j−1. Hence, J is a left ideal of D′j−1. By induction hypothesis, J has a finite set of generators
A1, . . . , As. For 1 ≤ k ≤ s let I 3 Pk = Ak∂

′rk +
∑
i<rk

Ak,i∂
′i with Ak,i ∈ D′j−1. Put r = sup rk. Let
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M ⊂ D′j be the left D′j−1-module generated by 1, ∂′, . . . , ∂′
r. Then M is left noetherian and I ∩M is

a finitely generated submodule. If Q1, . . . , Qt is a set of generators of I ∩M as left D′j−1-module then
we can check by using 7.5.3.1.1 that {P1, . . . , Ps, Q1, . . . , Qt} generates I. This completes the proof of
theorem 7.5.3.1.

Corollary 7.5.3.2. The canonical homomorphism “D(m)

X]/S],Q → “D(m+1)

X]/S],Q is right and left flat.

7.5.4 Derived completed tensor products, derived completed internal homo-
morphisms, swapping left and the right modules

Let m ∈ N. Let V be a complete discrete valuation ring of characteristic (0, p) with maximal ideal m.
Let S] be a nice fine V-log formal scheme, where X] is a log smooth S]-log-formal scheme. Let BX
be a commutative OX-algebra endowed with a compatible structure of D(m)

X]/S]
-module. We suppose

moreover that BX satisfies the hypotheses of 7.3.2 (remark when X is p-torsion free, the condition 7.3.2.d
is equivalent to saying that BX is p-torsion free). Recall following 7.3.2.3 that BX is in particular quasi-
coherent in the sense of 7.3.1.5.

We denote by ‹D(m)

X]/S]
:= BX“⊗OX

D(m)

X]/S]
. Recall also, following 7.3.2.1, ‹D(m)

X]/S]
satisfies the con-

ditions of 7.3.2, i.e. in particular the projective systems ‹D(m)

X]•/S
]
•

:= (‹D(m)

X]
i
/S]
i

)i∈N with ‹D(m)

X]
i
/S]
i

:=‹D(m)

X]/S]
/mi+1‹D(m)

X]/S]
is left and right quasi-coherent in the sense of 7.3.1.10. Let U := X]∗ be the

open of X where MX] is trivial and jU : U ↪→ X] be the canonical open immersion. Moreover, we suppose
(X],BX)/S] is a strongly quasi-flat morphism of ringed V-log formal schemes (see Definition 4.4.1.3.b).

7.5.4.1. Since X̃]/S] and ‹Y]/T] are strongly quasi-flat morphisms of ringed V-log formal schemes,
then there exists some integer d such that BX0

⊗BX
− and ⊕i∈NBXi/BXi+1

⊗BX0
− have cohomological

dimension ≤ d. Hence, it follows from 7.3.2.8 that BX• has right tor dimension ≤ 2d on←l
−1
X
BX and BXj

has right tor dimension ≤ 2d on BXi , for any integers 0 ≤ j ≤ i.

7.5.4.2 (Adjunction). Let ∗ ∈ {r, l}. Let D = ‹D(m)

X]/S]
(resp. D := BX) and D• = ‹D(m)

X]•/S
]
•
(resp. D• :=

BX•). From [Sta22, 07A6], this yields the functors R←lX∗ : D(∗D•)→ D(∗D) and L←l
∗
X

: D(∗D)→ D(∗D•)
which are adjoint, i.e., we have the bifunctorial bijections of the form

HomD(∗D•)(L←l
∗
X

(E•),F•• )
∼−→ HomD(∗D)(E•,R←lX∗(F

•
• )) (7.5.4.2.1)

for any E• ∈ D(∗D) and any F•• ∈ D(∗D•). This is equivalent to saying that we have a morphism of
functors D(∗D•)→ D(∗D•) of the form adjRL : id→ R←lX∗ ◦ L←l

∗
X

and a morphism of functors D(∗D)→
D(∗D) of the form adjLR : L←l

∗
X
◦ R←lX∗ → id such that (adjLR ◦L←l

∗
X

) ◦ (L←l
∗
X
◦ adjRL) is the identity

L←l
∗
X
→ L←l

∗
X

and (R←lX∗ ◦ adjLR) ◦ (adjRL ◦R←lX∗) is the identity R←lX∗ → R←lX∗ (see notation [KS06, 1.3.4]).
We have the commutative up to canonical isomorphism diagram

D(∗‹D(m)

X]•/S
]
•
)

��

R←lX∗ // D(∗‹D(m)

X]/S]
)

��
D(BX•)

R←lX∗ // D(BX)

, D(∗‹D(m)

X]/S]
)

��

L←l
∗
X // D(∗‹D(m)

X]•/S
]
•
)

��
D(BX)

L←l
∗
X // D(BX•)

, (7.5.4.2.2)

where the vertical maps are the forgetful functors. This yields that the adjunction morphisms adjLR and
adjRL commute with the forgetful functors (indeed, the equalities satisfied by adjLR and adjRLare still
valid after applying the forgetful functors). This implies that we have the commutative square

Hom
D(∗D̃(m)

X
]
•/S

]
•

)
(L←l
∗
X

(E•),F•• )

��

7.5.4.2.1

∼ // Hom
D(∗D̃(m)

X]/S]
)
(E•,R←lX∗(F

•
• ))

��
HomD(∗BX• )(L←l

∗
X

(E•),F•• )
7.5.4.2.1

∼ // HomD(∗BX)(E•,R←lX∗(F
•
• )).

(7.5.4.2.3)
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7.5.4.3. Let ∗ ∈ {l, r} and ? ∈ {−,b}. Let D = ‹D(m)

X]/S]
(resp. D := BX) and D• = ‹D(m)

X]•/S
]
•
(resp.

D• := BX•). We have the morphism of ringed topoi←lX : (X•,D•) → (|X |,D). Following 7.3.2.11.a, D0

(resp. gr•ID) has left and right finite tor dimension on D (resp. D0). Hence following 7.3.2.9 or 7.3.2.10,
the functors R←lX∗ and L←l

∗
X

induce canonically quasi-inverse equivalences of categories between D?
qc(∗D•)

and D?
qc(∗D). The adjunction morphisms adjLR and adjRL (of the paragraph 7.5.4.2) are isomorphisms

when restricted to bounded above quasi-coherent complexes.

7.5.4.4. Let ? ∈ {−,b}. Let D• = ‹D(m)

X]•/S
]
•
or D• := BX• . Let E•• ∈ D?(lD•), M•• ∈ D?(rD•). Then

via the beginning of the paragraph 7.3.1.14 (still valid for right modules), we get that the property
E•• ∈ D?

qc(lD•) (resp. M•• ∈ D?
qc(rD•)) is satisfied if and only if both conditions hold:

(a) The complex E•0 (resp. M•0) is in D−qc(OX0
).

(b) The canonical left (resp. right) map

Di
L
⊗Di+1

E•i+1 → E•i , M•i+1

L
⊗Di+1

Di →M•i (7.5.4.4.1)

is an isomorphism.

7.5.4.5. Let ∗ ∈ {r, l}.

(a) Since BX• → ‹D(m)

X]•/S
]
•
is flat, then a K-flat complex of left (resp. right) ‹D(m)

X]•/S
]
•
-modules is a K-flat

complex of BX• -modules. Hence, similarly to 4.6.6.1.4, we get the top functor making commutative
(up to a canonical isomorphism) the diagram:

D(l‹D(m)

X]•/S
]
•
)×D(∗‹D(m)

X]•/S
]
•
)
−⊗L
BX•
−
//

��

D(∗‹D(m)

X]•/S
]
•
)

��
D(BX•)×D(BX•)

−⊗L
BX•
−
// D(BX•)

(7.5.4.5.1)

where the vertical maps are the forgeful functors. Moreover, the top morphism of 7.5.4.5.1 preserves
the quasi-coherence, i.e. we get

−⊗L
BX•− : D(l‹D(m)

X]•/S
]
•
)×D(∗‹D(m)

X]•/S
]
•
)D(∗‹D(m)

X]•/S
]
•
). (7.5.4.5.2)

(b) Since BX• → ‹D(m)

X]•/S
]
•
is flat, then a K-injective complex of left (resp. right) ‹D(m)

X]•/S
]
•
-modules is a

K-injective complex of BX• -modules. Hence, similarly to 4.6.6.1.4, we get the top functor making
commutative (up to a canonical isomorphism) the diagram:

D(∗‹D(m)

X]•/S
]
•
)×D(∗‹D(m)

X]•/S
]
•
)

RHomBX• (−,−)
//

��

D(∗‹D(m)

X]•/S
]
•
)

��
D(BX•)×D(BX•)

RHomBX• (−,−)
// D(BX•)

(7.5.4.5.3)

where the vertical maps are the forgeful functors. Suppose X is quasi-compact. It follows from
7.3.4.17 that for any E• ∈ D(∗‹D(m)

X]/S]
) such that E• ∈ Dperf(BX•), the functor RHomBX• (E•,−)

preserves the quasi-coherence and the perfectness.

7.5.4.6 (Swapping left and right D•-module). Following 7.5.1.13, the sheaf ω̃X]/S] := BX⊗OX
ωX]/S] , is

endowed with a canonical structure of right ‹D(m)

X]/S]
-module. Moreover, ω̃X]/S] satisfies the conditions of

7.3.2, i.e. in particular the projective systems ω̃X]•/S]• := (ω̃X]
i
/S]
i
)i∈N with ω̃X]

i
/S]
i

:= ω̃X]/S]/m
i+1ω̃X]/S]

is quasi-coherent in the sense of 7.3.1.10. Similarly to 4.3.5.7, we check that the functors −⊗BX• ω̃
−1

X]•/S
]
•

=

HomBX• (ω̃X]•/S
]
•
,−) and ω̃X]•/S

]
•
⊗BX• − are exact and induce quasi-inverse equivalences between the
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category of (resp. coherent, resp. flat, resp. locally projective of finite type) left ‹D(m)

X]•/S
]
•
-modules and

that of (resp. coherent, resp. flat, resp. locally projective of finite type) right ‹D(m)

X]•/S
]
•
-modules.

Since these functors preserve the quasi-coherence (see 7.5.4.5) and are exact, then for any ? ∈ {−,b},
the functors HomBX• (ω̃X]•/S

]
•
,−) and ω̃X]•/S

]
•
⊗BX• − induce quasi-inverse equivalences between the

categories D?
qc(l‹D(m)

X]•/S
]
•
) and D?

qc(r‹D(m)

X]•/S
]
•
).

7.5.4.7. This paragraph is a variation of 7.3.4.2. Let ∗ ∈ {r, l}. Let E• ∈ D−(l‹D(m)

X]/S]
), M• ∈

D−(∗‹D(m)

X]/S]
). Following 7.3.2.3.d, L←l

∗
X

(E•) ∼−→ BX]• ⊗
L
B

X]
E• ∼−→ ‹D(m)

X]•/S
]
•
⊗L
D̃(m)

X]/S]

E• ∈ D−(l‹D(m)

X]•/S
]
•
)

and similarly for right modules. Hence, we define an object of D−(∗‹D(m)

X]/S]
) by setting

M•“⊗L
BX
E• := R←lX∗(L←l

∗
X
M• ⊗L

BX• L←l
∗
X
E•), (7.5.4.7.1)

which is called the completed tensor product ofM• over BX of E•.
It follows from 7.3.4.11.1 and 7.5.4.5.1 that the functor 7.5.4.7.1 preserves the quasi-coherence and

the isogenies, i.e., with notation 7.4.6.1 we get the functors

−“⊗L
BX
− : D−qc(l‹D(m)

X]/S]
)×D−qc(∗‹D(m)

X]/S]
)→ D−qc(∗‹D(m)

X]/S]
), (7.5.4.7.2)

−“⊗L
BX
− : D−Q,qc(l‹D(m)

X]/S]
)×D−Q,qc(∗‹D(m)

X]/S]
)→ D−Q,qc(∗‹D(m)

X]/S]
). (7.5.4.7.3)

Moreover, for any E ∈ D−qc(l‹D(m)

X]/S]
), for anyM∈ D−qc(∗‹D(m)

X]/S]
), by using a K-flat complex of left (resp.

left or right according to the value of ∗), it follows from 7.5.4.3 that we get the bifunctorial canonical
isomorphism of D(∗‹D(m)

X]•/S
]
•
) of the form

L←l
∗
X

(M“⊗L
BX
E)

∼−→ L←l
∗
X

(M)⊗L
BX• L←l

∗
X

(E). (7.5.4.7.4)

7.5.4.8. This paragraph is a variation of 7.3.4.18. Let ∗ ∈ {r, l}. Let E•,F• ∈ D−(∗‹D(m)

X]/S]
). We define

an object of D−(l‹D(m)

X]/S]
) by setting

RH”omBX
(E•,F•) := R←lX∗(RHomBX• (L←l

∗
X
E•,L←l

∗
X
F•)). (7.5.4.8.1)

which is called completed internal homomorphism over BX of E• and F•.
Suppose X is quasi-compact. Let E• ∈ K(∗‹D(m)

X]/S]
) such that E• ∈ Dperf(BX). Let ? ∈ {b,−}. Then

it follows from 7.3.4.17 and 7.5.4.5.1 that 7.5.4.8.1 induces the functor:

RH”omBX
(E•,−) : D?

qc(∗‹D(m)

X]/S]
)→ D?

qc(l‹D(m)

X]/S]
), (7.5.4.8.2)

RH”omBX
(E•,−) : D?

Q,qc(∗‹D(m)

X]/S]
)→ D?

Q,qc(l‹D(m)

X]/S]
). (7.5.4.8.3)

Hence, for any F ∈ D?
qc(∗‹D(m)

X]/S]
), it follows from 7.5.4.3 that we get the canonical isomorphism of

D?
qc(l‹D(m)

X]•/S
]
•
) of the form

L←l
∗
X

RH”omBX
(E ,F)

∼−→ RHomBX• (L←l
∗
X

(E),L←l
∗
X

(F). (7.5.4.8.4)

7.5.4.9. Following 4.6.6.1.4, we have the functors

−⊗L
BX
− : D(lBX ⊗OX

D(m)

X]/S]
)×D(∗BX ⊗OX

D(m)

X]/S]
)→ D(∗BX ⊗OX

D(m)

X]/S]
), (7.5.4.9.1)

RHomBX
(−,−) : D(∗BX ⊗OX

D(m)

X]/S]
)×D(∗BX ⊗OX

D(m)

X]/S]
)→ D(∗BX ⊗OX

D(m)

X]/S]
). (7.5.4.9.2)

7.5.4.10. Let E• ∈ D−(l‹D(m)

X]/S]
) andM•,N • ∈ D−(∗‹D(m)

X]/S]
). Since BX → BX ⊗OX

D(m)

X]/S]
→ ‹D(m)

X]/S]

are flat morphisms, then a K-flat complex of left (resp. right) ‹D(m)

X]/S]
-modules is also a K-flat complex
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of left (resp. right) BX ⊗OX
D(m)

X]/S]
-modules and a K-flat complex of BX-modules. We construct by

adjunction (similarly to 7.3.4.3) the following morphism of D−(∗BX ⊗OX
D(m)

X]/S]
)

M• ⊗L
BX
E• →M•“⊗L

BX
E•. (7.5.4.10.1)

By applying the forgetful functor D−(∗BX ⊗OX
D(m)

X]/S]
) → D(BX), we get the map 7.3.4.3. Hence, in

the case whereM• ∈ D−coh(BX) and E• ∈ D−qc(∗‹D(m)

X]/S]
), the map 7.5.4.10.1 is an isomorphism.

We construct (similarly to 7.3.4.16.2) the morphism of D(∗BX ⊗OX
D(m)

X]/S]
):

RHomBX
(M•,N •)→ RH”omBX

(M•,N •). (7.5.4.10.2)

WhenM• ∈ Dperf(BX) and N • ∈ Db
qc(∗‹D(m)

X]/S]
) the map 7.5.4.10.2 is an isomorphism.

7.5.4.11 (Swapping left and right quasi-coherent complexes of ‹D(m)

X]/S]
-modules). Let ? ∈ {−,b}. Since

ω̃X]/S] is a projective BX-module, by using 7.5.1.13.(f) we construct similarly to 7.5.4.10 the isomorphisms
of functors:

HomBX
(ω̃X]/S] ,−)

∼−→ RH”omBX
(ω̃X]/S] ,−) : D?

qc(r‹D(m)

X]/S]
)→ D?

qc(l‹D(m)

X]/S]
), (7.5.4.11.1)

ω̃X]/S] ⊗BX
− ∼−→ ω̃X]/S]

“⊗L
BX
− : D?

qc(l‹D(m)

X]/S]
)→ D?

qc(r‹D(m)

X]/S]
), (7.5.4.11.2)

so that the functors ω̃X]/S]⊗BX
− andHomBX

(ω̃X]/S] ,−) induce quasi-inverse equivalences of categories
between D?

qc(l‹D(m)

X]/S]
) and D?

qc(r‹D(m)

X]/S]
). These equivalences preserve K-flat complexes, K-injective

complexes. Since these equivalences preserve also isogenies and coherence, they induce quasi-inverse
equivalence between D?

Q,qc(l‹D(m)

X]/S]
) and D?

Q,qc(r‹D(m)

X]/S]
) and between D?

coh(l‹D(m)

X]/S]
) and D?

coh(r‹D(m)

X]/S]
)

etc.

7.5.4.12. Let ∗ ∈ {r, l}. Let E• ∈ D−qc(l‹D(m)

X]•/S
]
•
). LetM ∈ D−qc(∗‹D(m)

X]/S]
). We get the isomorphisms in

D−qc(∗‹D(m)

X]•/S
]
•
):

L←l
∗
X

(
R←lX∗(E•)“⊗L

BX
M
) 7.5.4.7.4

∼−→ L←l
∗
X
◦ R←lX∗(E•)⊗

L
BX• L←l

∗
X

(M)
7.5.4.3
∼−→ E• ⊗L

BX• L←l
∗
X

(M) (7.5.4.12.1)

Since R←lX∗(E•)“⊗L
BX
M is quasi-coherent (see 7.5.4.7.2), then we get from 7.5.4.3 the isomorphisms of

D−qc(∗‹D(m)

X]/S]
):

R←lX∗(E•)“⊗L
BX
M ∼−→ R←lX∗L←l

∗
X

(
R←lX∗(E•)“⊗L

BX
M
) 7.5.4.12.1

∼−→ R←lX∗
Ä
E• ⊗L

BX• L←l
∗
X

(M)
ä
. (7.5.4.12.2)

7.5.4.13. Since L←l
∗
X

(ω̃X]/S])
∼−→ ω̃X]•/S

]
•
, since ω̃X]/S] is a locally free BX-module of rank one, then

with 7.5.1.13, then for any E ∈ D(l‹D(m)

X]/S]
) we get by using some K-flat representation of E the canonical

D(r‹D(m)

X]•/S
]
•
):

L←l
∗
X

(E ⊗BX
ω̃X]/S])

∼−→ L←l
∗
X

(E)⊗BY• ω̃X]•/S]• . (7.5.4.13.1)

Moreover, for any E• ∈ D(l‹D(m)

X]•/S
]
•
), by using some K-injective resolution of E• we get the isomorphism

of D(r‹D(m)

X]/S]
):

R←lX∗(E•)⊗BX
ω̃X]/S]

∼−→ R←lX∗
Ä
E• ⊗BX• ω̃X]•/S]•

ä
. (7.5.4.13.2)

For anyM∈ D(r‹D(m)

X]/S]
), we get from 7.5.4.8.4 the isomorphism

L←l
∗
X

(HomBX
(ω̃X]/S] ,M))

∼−→ HomBX• (ω̃X]•/S
]
•
,L←l
∗
X

(M). (7.5.4.13.3)
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For any M• ∈ D(r‹D(m)

X]•/S
]
•
), by using K-injective representation of M•, we construct the isomorphism

of D(l‹D(m)

X]/S]
) of the form:

R←lX∗HomBX• (ω̃X]•/S
]
•
,M••)

∼−→ HomBX
(ω̃X]/S] ,R←lX∗(M

•
•)). (7.5.4.13.4)

In other words, the functors L←l
∗
X
and R←lX∗ are compatible with the quasi-inverse equivalences of categories

7.5.4.6 and of 7.5.4.11 (or 7.5.1.13.(f)).

7.5.5 Extraordinary inverse images
Let m ∈ N. Let V be a complete discrete valuation ring of characteristic (0, p) with maximal ideal m.
Let

X]
f //

p
X]

��

Y]

p
Y]

��
S] φ // T],

(7.5.5.0.1)

be a commutative diagram where S] and T] are nice fine V-log formal schemes as defined in 3.3.1.10,
where X] is a log smooth S]-log-formal scheme and Y] is a log smooth T]-log formal scheme. Let BX
(resp. BY) be a commutative OX-algebra (resp. OY-algebra) endowed with a compatible structure of
left D(m)

X]/S]
-module (resp. left D(m)

Y]/T]
-module) and satisfying the hypotheses of 7.3.2. Recall following

7.3.2.3 that BX and BY are in particular quasi-coherent in the sense of 7.3.1.5. The action of left
D(m)

X]/S]
-module on f∗BY is compatible with its structure of OX-algebra (see 3.4.4.6). We suppose that

we have a morphism of algebras f∗BY → BX which is moreover D(m)

X]/S]
-linear. We denote by ‹D(m)

X]/S]
:=

BX“⊗OX
D(m)

X]/S]
and ‹D(m)

Y]/T]
:= BY“⊗OY

D(m)

Y]/T]
. Recall also, following 7.3.2.1, ‹D(m)

X]/S]
and ‹D(m)

Y]/T]
satisfy

the conditions of 7.3.2, i.e. in particular the projective systems ‹D(m)

X]•/S
]
•

:= (‹D(m)

X]
i
/S]
i

)i∈N (resp. ‹D(m)

Y ]• /T
]
•

:=

(‹D(m)

Y ]
i
/T ]
i

)i∈N) with ‹D(m)

X]
i
/S]
i

= ‹D(m)

X]/S]
/mi+1‹D(m)

X]/S]
(resp. ‹D(m)

Y ]
i
/T ]
i

= ‹D(m)

Y]/T]
/mi+1‹D(m)

Y]/T]
) is left and

right quasi-coherent in the sense of 7.3.1.10.
We denote by X̃] (resp. ‹Y]) the ringed V-log formal scheme (X],BX) (resp. (Y],BY)), and by

f̃ : X̃]/S] → ‹Y]/T] the morphism of relative ringed V-log formal schemes induced by the diagram
7.5.5.0.1 and by f∗BY → BX. When S] → T] in understood, by abuse of notation, we also denote by f̃
the induced morphism X̃] → ‹Y] of ringed V-log formal schemes.

Let U := X]∗ be the open of X whereMX] is trivial and jU : U ↪→ X] be the canonical open immersion.
Let V := Y]∗ be the open of Y where MY] is trivial and jV : V ↪→ Y] be the canonical open immersion.

Moreover, we suppose f̃ is a strongly quasi-flat morphism of relative ringed V-log formal schemes (see
Definition 4.4.1.3.d). The quasi-flatness will be useful to get Lemma 7.5.5.5. The strongly quasi-flatness
of f̃ implies that X̃]/S] and ‹Y]/T] are strongly quasi-flat morphisms of ringed V-log formal schemes (in
the sense of 4.4.1.3.b). Hence, we get for instance the finite tor-dimensions of 7.5.4.1 and we can apply
7.5.4.3 for both.

Lemma 7.5.5.1. Suppose f−1BY → BX has tor dimension ≤ d for some integer d, i.e. suppose the
functor f̃∗ = BX⊗f−1BY

f−1− from the category of BY-modules to that of BX-modules has cohomological
dimension ≤ d. Then the functor f̃∗• = BX• ⊗f−1BY• f

−1− has cohomological dimension ≤ d.

Proof. Since f̃∗ is quasi-flat, then there exists a morphism Y → U of V-formal schemes such that both
induced morphisms of ringed spaces X̃] → U and ‹Y] → U are flat. Hence OUi ⊗L

OU
BX

∼−→ BXi and
OUi⊗L

OU
BY

∼−→ BYi for any integer i ≥ 0. This yields the canonical isomorphism BX⊗L
f−1BY

f−1BYi
∼−→

BXi , for any integer i ≥ 0. Hence, for any i ∈ N and any BYi-module Mi, the canonical morphism
BX ⊗L

f−1BY
f−1Mi → BXi ⊗L

f−1BYi
f−1Mi is an isomorphism and we are done.
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7.5.5.2. Let ? ∈ {−,b}. In the case where ? = b, we suppose moreover f−1BY → BX has finite tor
dimension, and therefore following 7.5.5.1 that so is the functor f̃∗• = BX• ⊗f−1BY• f

−1−. Hence, we get
the functors

Lf̃∗alg = BX ⊗L
f−1BY

f−1− : D?(BY)→ D?(BX), Lf̃∗• = BX• ⊗L
f−1BY•

f−1− : D?(BY•)→ D?(BX•).
(7.5.5.2.1)

Let F• ∈ D?(BY•). It follows from 7.1.3.6.1 that we have the isomorphism:(
Lf̃∗• (F•)

)
i

∼−→ Lf̃∗i (Fi). (7.5.5.2.2)

Since BXi ⊗L
BXi+1

Lf̃∗i+1(Fi+1)
∼−→ Lf̃∗i (BYi ⊗L

BYi+1
Fi+1), then it follows from 7.5.4.4 that the right

functor of 7.5.5.2.1 preserves the quasi-coherence (in the sense of 7.3.1.10), i.e. induces the functor

Lf̃∗• : D?
qc(BY•)→ D?

qc(BX•). (7.5.5.2.3)

Since BY• → ‹D(m)

Y ]• /T
]
•
is flat, then a K-flat complex of left ‹D(m)

Y ]• /T
]
•
-modules is a K-flat complex of

BY• -modules. Hence, we get the functor Lf̃∗ : D?
qc(l‹D(m)

Y ]• /T
]
•
) → D?

qc(l‹D(m)

X]•/S
]
•
) making commutative the

diagram:

D?
qc(l‹D(m)

Y ]• /T
]
•
)

��

Lf̃∗• // D?
qc(l‹D(m)

X]•/S
]
•
)

��
D?

qc(BY•)
Lf̃∗• // D?

qc(BX•)

(7.5.5.2.4)

where the vertical functors are the forgetful ones.

7.5.5.3. Following 7.5.1.13, the sheaf ω̃X]/S] := BX ⊗OX
ωX]/S] (resp. ω̃Y]/T] := BY ⊗OY

ωY]/T]) is
endowed with a canonical structure of right ‹D(m)

X]/S]
-module (resp. of right ‹D(m)

Y]/T]
-module). Moreover,

ω̃X]/S] and ω̃Y]/T] satisfy the conditions of 7.3.2, i.e. in particular the projective systems ω̃X]•/S]• :=

(ω̃X]
i
/S]
i
)i∈N (resp. ω̃Y ]• /T

]
•

:= (ω̃Y ]
i
/T ]
i
)i∈N) with ω̃X]

i
/S]
i

:= ω̃X]/S]/m
i+1ω̃X]/S] (resp. ω̃Y ]

i
/T ]
i

:=

ω̃Y]/T]/m
i+1ω̃Y]/T]) is quasi-coherent in the sense of 7.3.1.10.

Notation 7.5.5.4. We deduce by functoriality from 7.5.5.2 that we get a structure of (‹D(m)

X]•/S
]
•
, f−1‹D(m)

Y ]• /T
]
•
)-

bimodule on ‹D(m)

X]•/S
]
•→Y

]
• /T

]
•

:= f̃∗•
‹D(m)

Y ]• /T
]
•

= BX• ⊗f−1BY• f
−1‹D(m)

Y ]• /T
]
•
. When S → T is the identity, we

can simply write ‹D(m)

X]•→Y
]
• /S

]
•
and when moreover there is no doubt about S we write ‹D(m)

X]•→Y
]
•
. By

functoriality from 7.5.5.2 and 7.5.4.6, we get a structure of (f−1‹D(m)

Y ]• /T
]
•
, ‹D(m)

X]•/S
]
•
)-bimodule on‹D(m)

Y ]• /T
]
•←X

]
•/S

]
•

:= ω̃X]•/S
]
•
⊗BX• f̃

∗
•r

(‹D(m)

Y ]• /T
]
•
⊗BY• ω̃

−1

Y ]• /T
]
•

)
,

where the index “r” means that we have chosen the right (i.e. the twisted) structure of left ‹D(m)

Y ]• /T
]
•
-module

on ‹D(m)

Y ]• /T
]
•
⊗BY• ω̃

−1

Y ]• /T
]
•
to compute the structure of left ‹D(m)

X]•/S
]
•
-module via the functor f̃∗• .

When S→ T is the identity, we can simply write ‹D(m)

Y ]•←X
]
•/S

]
•
and when moreover there is no doubt

about S we write ‹D(m)

Y ]•←X
]
•
.

We have the isomorphism of left (f−1‹D(m)

Y ]• /T
]
•
, ‹D(m)

X]•/S
]
•
)-bimodules

f̃∗•r

(‹D(m)

Y ]• /T
]
•
⊗BY• ω̃

−1

Y ]• /T
]
•

)
∼−→

f̃∗• (4.2.5.6.3)

f̃∗•l

(‹D(m)

Y ]• /T
]
•
⊗BY• ω̃

−1

Y ]• /T
]
•

)
,

where the index “l” (resp. “r ”) means that we have chosen the left (resp. right) structure to compute f̃∗• .
By tensoring this latter isomorphism with ω̃X]•/S]•⊗BX•−, we get the isomorphism of (f−1‹D(m)

Y ]• /T
]
•
, ‹D(m)

X]•/S
]
•
)-

bimodules ‹D(m)

Y ]• /T
]
•←X

]
•/S

]
•

∼−→ ω̃X]•/S
]
•
⊗BX• ‹D(m)

X]•/S
]
•→Y

]
• /T

]
•
⊗f−1BY• f

−1ω̃−1

Y ]• /T
]
•
. (7.5.5.4.1)

391



Lemma 7.5.5.5. Since f̃ is quasi-flat (see Definition 4.4.1.3), then ‹D(m)

X]•/S
]
•→Y

]
• /T

]
•
(resp. ‹D(m)

Y ]• /T
]
•←X

]
•/S

]
•
)

is solvable in the sense of 4.6.3.2.b as a complex of D(‹D(m)

X]•/S
]
•
, f−1‹D(m)

Y ]• /T
]
•
) (resp. D(f−1‹D(m)

Y ]• /T
]
•
, , ‹D(m)

X]•/S
]
•
)).

Proof. By definition, there exists a morphism of V-formal schemes T→ U such that both induced mor-
phisms of ringed spaces g : (X,BX)→ U and h : (Y,BY)→ U are flat. This yields that g• : (X•,BX•)→
U• and h• : (Y•,BY•)→ U• are flat. Since ‹D(m)

Y ]• /T
]
•
/BY• is flat, since h• is flat we get that ‹D(m)

Y ]• /T
]
•
/h−1
• (OU•)

is flat. Moreover, h−1
• (OU•) is sent in the center of ‹D(m)

Y ]• /T
]
•
. Hence, f−1

•
‹D(m)

Y ]• /T
]
•
/g−1
• (OU•) is flat and

g−1
• (OU•) is sent in the center of f−1

•
‹D(m)

Y ]• /T
]
•
. Since ‹D(m)

X]•/S
]
•
/BX• is flat, since g• is flat, we get that‹D(m)

X]•/S
]
•
/g−1
• (OU•) is flat. Hence, g−1

• (OU•) is a solving ring of ‹D(m)

X]•/S
]
•→Y

]
• /T

]
•
. Similarly, we check that

g−1
• (OU•) is a solving ring of ‹D(m)

Y ]• /T
]
•←X

]
•/S

]
•
.

Definition 7.5.5.6. We keep notation 7.5.5.4.

(a) The (left version of the) extraordinary inverse image functor of levelm by f̃• is the functor f̃
(m)!
• : D(l‹D(m)

Y ]• /T
]
•
)→

D(l‹D(m)

X]•/S
]
•
) which is defined by setting

f̃
(m)!
• (F•) := ‹D(m)

X]•/S
]
•→Y

]
• /T

]
•
⊗L
f−1
• D̃

(m)

Y
]
• /T

]
•

f−1
• F• [δX]•/S

]
•
− δY ]• /T ]• ◦ f ],

where F• ∈ D(‹D(m)

Y ]• /T
]
•
), δX]•/S]• , δY ]• /T ]• are respectively the rank (as a locally constant function on

X or Y respectively) of the locally free modules ΩX]•/S
]
•
and ΩY ]• /T

]
•
.

(b) The (right version of the) extraordinary inverse image functor of level m by f̃ is the functor
f̃

(m)!
• : D(r‹D(m)

Y ]• /T
]
•
)→ D(r‹D(m)

X]•/S
]
•
) which is defined by setting

f̃
(m)!
• (M•) := f−1

• M• ⊗L
f−1
• D̃

(m)

Y
]
• /T

]
•

‹D(m)

Y ]• /T
]
•←X

]
•/S

]
•

[δX]•/S
]
•
− δY ]• /T ]• ◦ f ],

whereM• ∈ D(r‹D(m)

Y ]• /T
]
•
).

(c) For any ∗ ∈ {r, l}, the extraordinary inverse image functor f̃ (m)! : D(∗‹D(m)

Y]/T]
) → D(∗‹D(m)

X]/S]
) of

level m by f̃ is defined by setting

f̃ (m)!(F) := R←lX∗ ◦ f̃
(m)!
• ◦ L←l

∗
Y

(F) (7.5.5.6.1)

where F ∈ D(∗‹D(m)

Y]/T]
). Since the functor f̃ (m)! preserves isogenies, then we get with notation

7.4.2.1.(b) the extraordinary inverse image functor f̃ (m)! : DQ(∗‹D(m)

Y]/T]
)→ DQ(∗‹D(m)

X]/S]
).

We set Lf̃ (m)∗
• := f̃

(m)!
• [−δX]•/S]• + δY ]• /T

]
•
◦ f ] and Lf̃ (m)∗(F) := R←lX∗ ◦ f̃

(m)∗
• ◦L←l

∗
Y

(F). The functor

Lf̃ (m)∗
• is isomorphic in D(BX) to the functor Lf̃∗• of 7.5.5.2.1. When complexes are coherent, the

functor Lf̃ (m)∗ is a left derived functor of some functor f̃∗• (more precisely, see 7.5.5.13.(c) below).
Beware that this is not a priori the case in general and the notation is a bit misleading. The functor
Lf̃ (m)∗ is a p-adically separated complete of the functor Lf̃∗alg of 7.5.5.2.1, which explain why we
have distinguished them with the index alg.

7.5.5.7 (Left to right). For anyM• ∈ D(r‹D(m)

Y ]• /T
]
•
), by copying the proof of 5.1.1.5.1 (replace the use of

5.1.1.2.1 by that of 7.5.5.4.1), we get the canonical isomorphism:

f̃
(m)!
• (M• ⊗BY• ω̃

−1

Y ]• /T
]
•
)
∼−→ f̃

(m)!
• (M•)⊗BX• ω̃

−1

X]•/S
]
•
. (7.5.5.7.1)

For any E• ∈ D(l‹D(m)

Y ]• /T
]
•
), this yields the isomorphism

f̃
(m)!
• (E• ⊗BY• ω̃Y ]• /T ]• )

∼−→ f̃
(m)!
• (E•)⊗BX• ω̃X]•/S]• . (7.5.5.7.2)
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Hence, for any E ∈ D−(l‹D(m)

Y]/T]
) we get the isomorphisms

f̃ (m)!(E ⊗BY
ω̃Y]/T])

∼−→
7.5.4.13.1

R←lX∗ ◦ f̃
(m)!
• (L←l

∗
Y

(E)⊗BY• ω̃Y ]• /T ]• )
∼−→

7.5.5.7.2

R←lX∗(f̃
(m)!
• ◦ L←l

∗
Y

(E)⊗BX• ω̃X]•/S]•)
∼−→

7.5.4.13.2
R←lX∗ ◦ f̃

(m)!
• ◦ L←l

∗
Y

(E)⊗BX
ω̃X]/S] = f̃ (m)!(E)⊗BX

ω̃X]/S] .

(7.5.5.7.3)

This yields

f̃ (m)!(ω̃−1
Y]/T]

⊗BY
M)

∼−→ ω̃−1
X]/S]

⊗BX
f̃ (m)!(M). (7.5.5.7.4)

Proposition 7.5.5.8. Let ∗ ∈ {r, l}, ? ∈ {−,b}. In the case where ? = b, we suppose moreover
f−1BY → BX has finite tor dimension. For any F• ∈ D?

qc(∗‹D(m)

Y ]• /T
]
•
), we have f̃ (m)!

• (F•) ∈ D?
qc(∗‹D(m)

X]•/S
]
•
).

For any F ∈ D?
qc(∗‹D(m)

Y]/T]
), we have f̃ (m)!(F) ∈ D?

qc(∗‹D(m)

X]/S]
). For any F ∈ D?

Q,qc(∗‹D(m)

Y]/T]
), we have

f̃ (m)!(F) ∈ D?
Q,qc(∗‹D(m)

X]/S]
).

Proof. By using the equivalence of categories 7.5.4.3 and the isomorphism 7.5.5.7.2, we reduce to check
that for any F• ∈ D?

qc(l‹D(m)

Y ]• /T
]
•
), we have f̃ (m)!

• (F•) ∈ D?
qc(l‹D(m)

X]•/S
]
•
). Since the canonical morphism

BX• ⊗L
f−1BY•

f−1‹D(m)

Y ]• /T
]
•
→ ‹D(m)

X]•/S
]
•→Y

]
• /T

]
•

is an isomorphism, then so is the canonical morphism

Lf̃∗• (F•) = BX• ⊗L
f−1BY•

f−1F• → ‹D(m)

X]•/S
]
•→Y

]
• /T

]
•
⊗L
f−1D̃(m)

Y
]
• /T

]
•

f−1F•. (7.5.5.8.1)

Since the functor Lf̃∗• induces Lf̃∗• : D?
qc(BY•)→ D?

qc(BX•) (see 7.5.5.2.3), then we are done.

Lemma 7.5.5.9. For any E•,F• ∈ D−(l‹D(m)

Y ]• /T
]
•
), we have the isomorphism of D−(l‹D(m)

X]•/S
]
•
):

Lf̃ (m)!
• (E)⊗L

BX Lf̃ (m)!
• (F)

∼−→ Lf̃ (m)!
• (E ⊗L

BY F)[df ]. (7.5.5.9.1)

For any E ,F ∈ D−qc(l‹D(m)

Y]/T]
), we have the isomorphism of D−qc(l‹D(m)

X]/S]
):

Lf̃ (m)!(E)“⊗L
BX

Lf̃ (m)!(F)
∼−→ Lf̃ (m)!(E“⊗L

BY
F)[df ]. (7.5.5.9.2)

Proof. We check 7.5.5.9.1 similarly to 7.5.5.9.1. Modulo the equivalence of categories 7.3.2.10 this yields
7.5.5.9.2.

Notation 7.5.5.10. We have a structure of (‹D(m)

X]/S]
, f−1‹D(m)

Y]/T]
)-bimodule on‹D(m)

X]/S]→Y]/T]
:=←lX∗

‹D(m)

X]•/S
]
•→Y

]
• /T

]
•

∼−→ R←lX∗
‹D(m)

X]•/S
]
•→Y

]
• /T

]
•
.

We get a structure of (f−1‹D(m)

Y]/T]
, ‹D(m)

X]/S]
)-bimodule on‹D(m)

Y]/T]←X]/S]
:=←lX∗

‹D(m)

Y ]• /T
]
•←X

]
•/S

]
•

∼−→ R←lX∗
‹D(m)

Y ]• /T
]
•←X

]
•/S

]
•
.

By applying←lX∗ to 7.5.5.4.1 we get:‹D(m)

Y]/T]←X]/S]
∼−→ ω̃X]/S] ⊗BX

‹D(m)

X]/S]→Y]/T]
⊗f−1BY

f−1ω̃−1
Y]/T]

. (7.5.5.10.1)

Lemma 7.5.5.11. Let F ∈ D−qc(l‹D(m)

Y]/T]
). With notation 7.5.5.6, the canonical morphism

BX“⊗L
f−1BY

f−1F → ‹D(m)

X]/S]→Y]/T]
“⊗L
f−1D̃(m)

Y]/T]

f−1F = Lf̃ (m)∗(F) (7.5.5.11.1)

is an isomorphism.
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Proof. This follows from 7.5.5.8.1.

We will need later this following elementary lemma.

Lemma 7.5.5.12. Let F be a pseudo-quasi-coherent ‹D(m)

Y]/T]
-module (see definition 7.2.3.5) which is

BY-flat.

(a) For all r 6= 0, Hr(Lf̃ (m)∗(F)) = 0. Setting f̃ (m)∗(F) := H0(Lf̃ (m)∗(F)), f̃ (m)∗(F) is BX-flat.

(b) Suppose Y and X are affine. We have the canonical isomorphism

Γ(X, f̃ (m)∗(F))
∼−→ Γ(X,BX)“⊗Γ(Y,BY)Γ(Y,F). (7.5.5.12.1)

The module Γ(X, f̃ (m)∗(F)) is Γ(X,BX)-flat and p-adically separated complete.

(c) If F is of the form (B(J)
Y )∧, i.e., is isomorphic to the p-adic completion of a free BY-module, then

f̃ (m)∗(F) is isomorphic to (B(J)
X )∧.

Proof. a) As F is an BY-flat module then F• := L←l
∗
Y

(F)
∼−→ BY• ⊗BY

F is BY• -flat. Hence Lf̃∗• ◦
L←l
∗
Y

(F)
∼−→ BX• ⊗f−1BY

f−1F•, which is an ML-flasque BX• -module and via Mittag-Leffler we obtain
therefore the last isomorphism (see 7.3.1.3.(c)):

Lf̃ (m)∗(F)
7.5.5.11.1
∼←− R←lX∗Lf̃

∗
• ◦ L←l

∗
Y

(F)
∼−→ R←lX∗

(
BX• ⊗f−1BY

f−1F
) ∼−→←lX∗

(
BX• ⊗f−1BY

f−1F
)
.

(7.5.5.12.2)
Since BX• ⊗f−1BY• f

−1F• is BX• -flat, then if follows from 7.3.1.20 that f̃ (m)∗(F) is BX-flat.
b) Suppose X and Y are affine. Set F := Γ(Y,F), E := Γ(X,BX) ⊗Γ(Y,BY) Γ(Y,F). Following

7.2.3.13.1, we have the isomorphism Γ(Yi,BYi ⊗BY
F)

∼−→ F/πi+1F . Since the BYi-module BYi ⊗BY
F

is quasi-coherent, then this yields the canonical isomorphism E/πi+1E
∼−→ Γ(X, f∗i (BYi ⊗BY

F)). By
applying the functor Γ(X,−) (which commutes to projective limits) to the isomorphism 7.5.5.12.2, we get
the isomorphism 7.5.5.12.1. By using 7.2.1.4, it follows from 7.5.5.12.1 that Γ(X, f̃ (m)∗(F)) is Γ(X,BX)-
flat and p-adically separated complete.

c) If F is of the form (B(J)
Y )∧, then BX• ⊗f−1BY

f−1F ∼−→ B(J)
X•

. Via 7.5.5.12.2, we are done.

Proposition 7.5.5.13. Set d(f,φ) := δX]/S] − δY]/T] ◦ f , where δX]/S] , δY]/T] are respectively the rank
(as a locally constant function on X ′ or X respectively) of the locally free modules ΩX]/S] and ΩY]/T] .
By abuse of notation, we can simply write df . We have the following properties.

(a) For any F ∈ D(l‹D(m)

Y]/T]
), we have the canonical morphism

f̃ (m)!(F)alg := ‹D(m)

X]/S]→Y]/T]
⊗L
f−1D̃(m)

Y]/T]

f−1F [df ]→ f̃ (m)!(F). (7.5.5.13.1)

(b) For any F ∈ D(r‹D(m)

Y]/T]
), we have the canonical morphism

f̃ (m)!(F)alg := f−1F ⊗L
f−1D̃(m)

Y]/T]

‹D(m)

Y]/T]←X]/S]
[df ]→ f̃ (m)!(F). (7.5.5.13.2)

(c) For any ∗ ∈ {r, l}, if F ∈ Db
coh(∗‹D(m)

Y]/T]
), then the morphism 7.5.5.13.1 or 7.5.5.13.2 is an isomor-

phism.

Proof. Let us construct 7.5.5.13.1. Denoting by G the left term of 7.5.5.13.1, we have the adjoint mor-
phism G → R←lX∗ ◦ L←l

∗
X

(G). Since L←l
∗
X

(G) is isomorphic to f̃
(m)!
• (L←l

∗
Y
F), we are done. Similarly, we

construct 7.5.5.13.2. Finally, to check the last statement, we reduce to the case where F = ‹D(m)

Y]/T]
,

which is obvious.

Definition 7.5.5.14. We keep notation 7.5.5.10.
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(a) The (left version of the) extraordinary inverse image functor of level m by f̃ is the functor of the
form f̃ (m)! : D(l‹D(m)

Y]/T],Q)→ D(l‹D(m)

X]/S],Q) which is defined for any F ∈ D(l‹D(m)

Y]/T],Q) by setting

f̃ (m)!(F) := ‹D(m)

X]/S]→Y]/T],Q ⊗
L
f−1D̃(m)

Y]/T],Q

f−1(F) [df ]. (7.5.5.14.1)

(b) The (right version of the) extraordinary inverse image functor of level m by f̃ is the functor of the
form f̃ (m)! : D(r‹D(m)

Y]/T],Q)→ D(r‹D(m)

X]/S],Q) which is defined for anyM∈ D(r‹D(m)

Y]/T],Q) by setting

f̃ (m)!(M) := f−1(M)⊗L
f−1D̃(m)

Y]/T],Q

‹D(m)

Y]/T]←X]/S],Q [df ]. (7.5.5.14.2)

Remark 7.5.5.15. The functors of 7.5.5.14 might have been written f̃ (m)!
alg similarly to 7.5.5.13, but since

no confusion is possible over categories of the form D(∗‹D(m)

Y]/T],Q) then the indication alg is useless and
we have removed it.

Proposition 7.5.5.16. We have the following properties. Let ∗ ∈ {r, l}.

(a) With notation 7.4.6.5, we have the canonical morphism of functors DQ(∗‹D(m)

Y]/T]
) → D(∗‹D(m)

X]/S],Q)

of the form
f̃ (m)! ◦ (Q⊗−)→ (Q⊗−) ◦ f̃ (m)!. (7.5.5.16.1)

(b) For any ∗ ∈ {r, l}, the restriction to Db
Q,coh(∗‹D(m)

Y]/T]
) of the morphism 7.5.5.16.1 is an isomorphism.

Proof. This easily follows from 7.5.5.13.

Remark 7.5.5.17. Suppose X is noetherian of finite Krull dimension. Let ∗ ∈ {r, l} and (Q⊗−)−1 : Db
coh(∗‹D(m)

Y]/T],Q)→
Db

Q,coh(∗‹D(m)

Y]/T]
) be a quasi-inverse functor of the natural equivalence of categories 7.4.6.6. Then the

functor (Q⊗−) ◦ f̃ (m)! ◦ (Q⊗−)−1 : D(∗‹D(m)

Y]/T],Q)→ Db(∗‹D(m)

X]/S],Q) is isomorphic to the functor f̃ (m)!.

Proposition 7.5.5.18. Let ∗ ∈ {r, l}. Suppose one of the following conditions holds:

(i) either m = 0,

(ii) or log-structures are trivial.

Then, we have the factorizations f̃ (m)!
• : Dqc,tdf(

∗‹D(m)

Y ]• /T
]
•
)→ Dqc,tdf(

∗‹D(m)

X]•/S
]
•
) and f̃ (m)! : Dqc,tdf(

∗‹D(m)

Y]/T]
)→

Dqc,tdf(
∗‹D(m)

X]/S]
).

Proof. This is a consequence of 7.3.2.15 (and 7.1.3.6) and 5.3.2.6 (and the fact that the tor amplitude
does not depend on i).

7.5.5.19. It follows from 7.1.3.6.1 that we have the isomorphism for any F• ∈ D?(∗‹D(m)

Y ]• /T
]
•
) :

(
f̃

(m)!
• (F•)

)
i

∼−→ f̃
(m)!
i (Fi). (7.5.5.19.1)

By using the equivalences of categories 7.3.3.3, it follows from 7.5.5.8 that for any F ∈ D−qc(l‹D(m)

Y]/T]
),

L←l
∗
X
f̃ (m)!(F)

∼−→ f̃
(m)!
• (L←l

∗
Y
F). Since (L←l

∗
Y
F)i

∼−→ ‹D(m)

Y ]
i
/S]
i

⊗L
D̃(m)

Y]/S]

F and since
(
L←l
∗
X
f̃ (m)!(F)

)
i

∼−→‹D(m)

X]
i
/S]
i

⊗L
D̃(m)

X]/S]

f̃ (m)!(F), this yields‹D(m)

X]
i
/S]
i

⊗L
D̃(m)

X]/S]

f̃ (m)!(F)
∼−→ f̃

(m)!
i (‹D(m)

Y ]
i
/S]
i

⊗L
D̃(m)

Y]/S]

F), (7.5.5.19.2)

and similarly for right modules.
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7.5.5.20. To check that the extraordinary inverse image behaves well with respect to the composition,
let

Y] g //

��

Z]

��
T] // U],

(7.5.5.20.1)

be a commutative diagram where U] is a nice fine V-log formal scheme, where Z] is a log smooth U]-log
formal scheme. Moreover, let BZ be an OZ-algebra endowed with a compatible structure of left D(m

Z]/U]
-

module satisfying the hypotheses of 7.3.2 and with a morphism of algebras g∗BZ → BY which is moreover
D(m

Z]/U]
-linear. We denote by Z̃] the ringed V-log formal scheme (Z],BZ), and by g̃ : ‹Y]/T] → Z̃]/U] the

morphism of relative ringed V-log formal schemes induced by the diagram 7.5.5.20.1 and by g∗BZ → BY.
We suppose g̃ is a strongly quasi-flat morphism of relative ringed V-log formal schemes.

Lemma 7.5.5.21. We keep notation 7.5.5.20.

(a) We have the canonical isomorphism of D(‹D(m)

X]•/S
]
•
, (g ◦ f)−1

•
‹D(m)

Z]•/U
]
•
):‹D(m)

X]•/S
]
•→Y

]
• /T

]
•
⊗L
f−1
• D̃

(m)

Y
]
• /T

]
•

f−1
•
‹D(m)

Y ]• /T
]
•→Z

]
•/U

]
•

∼−→ ‹D(m)

X]•/S
]
•→Z

]
•/U

]
•
. (7.5.5.21.1)

(b) We have the canonical isomorphism of D((g ◦ f)−1
•
‹D(m)

Z]•/U
]
•
, ‹D(m)

X]•/S
]
•
):

f−1
•
‹D(m)

Z]•/U
]
•←Y

]
• /T

]
•
⊗L
f−1
• D̃

(m)

Y
]
• /T

]
•

‹D(m)

Y ]• /T
]
•←X

]
•/S

]
•

∼−→ ‹D(m)

Z]•/U
]
•←X

]
•/S

]
•
. (7.5.5.21.2)

Proof. By quasi-flatness of f̃ , it follows from 5.1.1.3 that the morphisms are well defined. a) Let
us check 7.5.5.21.1. i) We have the isomorphism of left D(m)

X]•/S
]
•
-modules ‹D(m)

X]•/S
]
•→Y

]
• /T

]
•
⊗
f−1
• D̃

(m)

Y
]
• /T

]
•

f−1
•
‹D(m)

Y ]• /T
]
•→Z

]
•/U

]
•

∼−→ f̃∗• g̃
∗
•
‹D(m)

Z]•/U
]
•
and ‹D(m)

X]•/S
]
•→Y

]
• /T

]
•

∼−→ (g̃ ◦ f̃)∗•‹D(m)

Z]•/U
]
•
. Hence, it follows from

4.4.5.6 that we get the canonical isomorphism of left D(m)

X]•/S
]
•
-modules‹D(m)

X]•/S
]
•→Y

]
• /T

]
•
⊗
f−1
• D̃

(m)

Y
]
• /T

]
•

f−1
•
‹D(m)

Y ]• /T
]
•→Z

]
•/U

]
•

∼−→ ‹D(m)

X]•/S
]
•→Z

]
•/U

]
•
.

We obtain by functoriality the fact that this isomorphism is an isomorphism of (‹D(m)

X]•/S
]
•
, (g◦f)−1

•
‹D(m)

Z]•/U
]
•
)-

bimodules.
ii) Moreover, since g̃∗•‹D(m)

Z]•/U
]
•
is BY• -flat then Lf̃∗•

(
g̃∗•‹D(m)

Z]•/U
]
•

)
∼−→ f̃∗•

(
g̃∗•‹D(m)

Z]•/U
]
•

)
. Hence, it follows

from 7.5.5.8.1 the isomorphism‹D(m)

X]•/S
]
•→Y

]
• /T

]
•
⊗L
f−1
• D̃

(m)

Y
]
• /T

]
•

f−1
•
‹D(m)

Y ]• /T
]
•→Z

]
•/U

]
•

∼−→ ‹D(m)

X]•/S
]
•→Y

]
• /T

]
•
⊗
f−1
• D̃

(m)

Y
]
• /T

]
•

f−1
•
‹D(m)

Y ]• /T
]
•→Z

]
•/U

]
•
.

b) Finally, we get the isomorphism 7.5.5.21.2 from 7.5.5.21.1 by twisting (use 7.5.5.4.1 and 4.3.5.6.1).

Proposition 7.5.5.22. With notation 7.5.5.20, let ∗ ∈ {r, l}.

(a) For any G• ∈ D(∗‹D(m)

Z]•/U
]
•
), we have the canonical isomorphism

f̃
(m)!
• ◦ g̃(m)!

• (G•)
∼−→ (fig ◦ f)

(m)!
• (G•). (7.5.5.22.1)

(b) Let ? ∈ {−,b}. In the case where ? = b, we suppose moreover f−1BY → BX and g−1BZ → BY have
finite tor dimension. For any G ∈ D?

qc(∗‹D(m)

Z]/U]
), we have the canonical isomorphism

f̃ (m)! ◦ g̃(m)!(G)
∼−→ (fig ◦ f)(m)!(G). (7.5.5.22.2)
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Proof. By using the equivalence of categories 7.5.4.3, we reduce to check the isomorphism 7.5.5.22.1.
This latter one can be checked similarly to 5.1.1.13 by using 7.5.5.21.

7.5.5.23 (Non-lifted case notation). To highlight the “crystalline nature” of the operations such as f !

and f+, we can extend the context of 7.5.5 to the non-lifted case as follows. Let m ∈ N. Let V be a
complete discrete valuation ring of characteristic (0, p) with maximal ideal m. Let

X]
0

f0

��

// X]
p
X] // S]

φ

��
Y ]0

// Y]
p
Y] // T],

(7.5.5.23.1)

be a commutative diagram where S] and T] are nice fine V-log formal schemes as defined in 3.3.1.10,
where X] is a log smooth S]-log-formal scheme and Y] is a log smooth T]-log formal scheme. Let BX
(resp. BY) be a commutative OX-algebra (resp. OY-algebra) endowed with a compatible structure of
left D(m)

X]/S]
-module (resp. left D(m)

Y]/T]
-module) and satisfying the hypotheses of 7.3.2. We suppose that

we have a morphism of algebras f∗BY → BX which is moreover D(m)

X]/S]
-linear. We denote by ‹D(m)

X]/S]
:=

BX“⊗OX
D(m)

X]/S]
and ‹D(m)

Y]/T]
:= BY“⊗OY

D(m)

Y]/T]
. Following 4.4.5.11, we have the (‹D(m)

X]•/S
]
•
, f−1

0
‹D(m)

Y ]• /T
]
•
)-

bimodule by setting ‹D(m)

X]•/S
]
•→Y

]
• /T

]
•

:= f̃∗0 ‹D(m)

Y ]• /T
]
•
. (7.5.5.23.2)

By p-adic completion we get a (‹D(m)

X]/S]
, f−1

0
‹D(m)

Y]/T]
)-bimodule by setting‹D(m)

X]/S]→Y]/T]
:=←lX∗

‹D(m)

X]•/S
]
•→Y

]
• /T

]
•
. (7.5.5.23.3)

According to 5.1.1.17.2, we get a structure of (f−1
0
‹D(m)

Y ]• /T
]
•
, ‹D(m)

X]•/S
]
•
)-bimodule on‹D(m)

Y ]• /T
]
•←X

]
•/S

]
•

:= ω̃X]•/S
]
•
⊗BX• f̃

∗
0r

(‹D(m)

Y ]• /T
]
•
⊗BY• ω̃

−1

Y ]• /T
]
•

)
, (7.5.5.23.4)

where the index “r” means that we have chosen the right (i.e. the twisted) structure of left ‹D(m)

Y]/T]
on‹D(m)

Y ]• /T
]
•
⊗BY• ω̃

−1

Y ]• /T
]
•
to compute structure of left ‹D(m)

X]•/S
]
•
via the functor f̃∗0 . This yields the (f−1

0
‹D(m)

Y]/T]
, ‹D(m)

X]/S]
)-

bimodule by setting ‹D(m)

Y]/T]←X]/S]
:=←lX∗

‹D(m)

Y ]• /T
]
•←X

]
•/S

]
•
, (7.5.5.23.5)

For any ∗ ∈ {l, r}, via these above bimodules we can define the pullback f̃ (m)!
0 : D(∗‹D(m)

Y]/T]
)→ D(∗‹D(m)

X]/S]
)

as in 7.5.5.6. The properties of the subsection extends to this context.

7.5.6 Base change
We keep notation 7.5.5. Suppose the diagram 7.5.5.0.1 is cartesian and the morphism f∗BY → BX is an
isomorphism.

In that case, we say that f̃∗ is the base change by φ : S] → T].

Proposition 7.5.6.1. We have the following properties.

(a) The canonical morphism ‹D(m)

X]/S]
→ ‹D(m)

X]/S]→Y]/T]
. (7.5.6.1.1)

is an isomorphism.

(b) The composite map
ρ
f̃

: f−1‹D(m)

Y]/T]
→ ‹D(m)

X]/S]→Y]/T]
∼←− ‹D(m)

X]/S]
. (7.5.6.1.2)
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is a homomorphism of sheaves of rings which fits into the commutative diagram

f−1‹D(m)

Y]/T]
7.5.6.1.2// ‹D(m)

X]/S]

f−1BY
?�

OO

// BX.
?�

OO
(7.5.6.1.3)

The canonical morphism of left ‹D(m)

X]/S]
-modules 7.5.6.1.1 is in fact an isomorphism of (‹D(m)

X]/S]
, f−1‹D(m)

Y]/T]
)-

bimodules, where the structure of right f−1‹D(m)

Y]/T]
-module on ‹D(m)

X]/S]
is given via 7.5.6.1.2.

Proof. This follows by completion of 4.4.4.1.

Lemma 7.5.6.2. The canonical homomorphism of BX-modules:

f̃∗(ω̃Y]/T])→ ω̃X]/S] (7.5.6.2.1)

is an isomorphism. Let us denote by ρω
f̃

: f−1(ω̃Y]/T]) → ω̃X]/S] the canonical homomorphism. With
7.5.6.1.2, this yields the map

f−1
Ä
ω̃Y]/T] ⊗BY

‹D(m)

Y]/T]

ä
→ ω̃X]/S] ⊗BX

‹D(m)

X]/S]
, (7.5.6.2.2)

given by ω⊗P 7→ ρω
f̃

(ω)⊗ ρ
f̃
(P ). The map 7.5.6.2.2 is a homomorphism of right f−1‹D(m)

Y]/T]
-bimodules,

where the right structure (resp. the left structure i.e. the twisted one) of right f−1‹D(m)

Y]/T]
-module of

ω̃X]/S] ⊗BX
‹D(m)

X]/S]
comes from its right structure (resp. left structure) of right ‹D(m)

X]/S]
-module via the

ring homomorphism 7.5.6.1.2.

Proof. The lemma follows by p-adic completion from 4.4.4.2.

7.5.6.3. By p-adic completion, we get from 4.2.5.5.1 the transposition isomorphism

δ : ω̃X]/S] ⊗BX
‹D(m)

X]/S]
∼−→ ω̃X]/S] ⊗BX

‹D(m)

X]/S]
(7.5.6.3.1)

exchanging the two structures of right ‹D(m)

X]/S]
-modules and such that, for each section x of ω̃X]/S] ,

δM(x⊗ 1) = x⊗ 1. It follows by p-adic completion of 4.4.4.3.1 that we get the commutative diagram:

f−1
Ä
ω̃Y]/S] ⊗BY

‹D(m)

Y]/S]

ä
7.5.6.2.2 //

7.5.6.3.1

��

ω̃X]/S] ⊗BX
‹D(m)

X]/S]

7.5.6.3.1

��
f−1

Ä
ω̃Y]/S] ⊗BY

‹D(m)

Y]/S]

ä
7.5.6.2.2 // ω̃X]/S] ⊗BX

‹D(m)

X]/S]
,

(7.5.6.3.2)

where the vertical maps are the transposition isomorphisms, is commutative. This yields the isomorphism
of right (‹D(m)

X]/S]
, f−1‹D(m)

Y]/S]
)-bimodules

f−1
Ä
ω̃Y]/S] ⊗BY

‹D(m)

Y]/S]

ä
l
⊗
f−1D̃(m)

Y]/S]

‹D(m)

X]/S]
∼−→ ω̃X]/S] ⊗BX

‹D(m)

X]/S]
, (7.5.6.3.3)

where the index l means that in the tensor product we use the left structure of right f−1‹D(m)

Y]/S]
-module,

where the structure of right ‹D(m)

X]/S]
-module (resp. right f−1‹D(m)

Y]/S]
-module) of ω̃X]/S] ⊗BX

‹D(m)

X]/S]
is

its left structure of right ‹D(m)

X]/S]
-module (resp. comes from its structure of right ‹D(m)

X]/S]
-module via the

ring homomorphism ρ
f̃
of 7.5.6.1.2).
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7.5.6.4. Let F ∈ D(l‹D(m)

Y]/T]
). By p-adic completion of 4.4.4.1.4, we get the canonical isomorphism of

D(l‹D(m)

X]/S]
): ‹D(m)

X]/S]
“⊗L
f−1D̃(m)

Y]/T]
f−1F ∼−→ f̃ (m)!(F), (7.5.6.4.1)

where f−1‹D(m)

Y]/T]
→ ‹D(m)

X]/S]
the ring homomorphism of 7.5.6.1.2. Remark that if p−1

X]•
OS• and f−1BY• are

tor independent over f−1p−1

Y ]•
OT• , then by p-adic completion of 5.1.1.15.3 we get the canonical morphism

p−1
X]
OS“⊗L

f−1p−1

Y]
OT
f−1F → ‹D(m)

X]/S]
“⊗L
f−1D̃(m)

Y]/T]
f−1F (7.5.6.4.2)

is an isomorphism. By abuse of notation, under this flatness condition we can simply denote by
OS“⊗L

OT
F := ‹D(m)

X]/S]
“⊗L
f−1D̃(m)

Y]/T]
f−1F .

Let M ∈ D(r‹D(m)

Y]/T]
). It follows by p-adic completion from 5.1.1.15.4 that we have the canonical

isomorphism of D(r‹D(m)

X]/S]
):

f−1M“⊗L
f−1D̃(m)

Y]/T]

‹D(m)

X]/S]
∼−→ f̃ (m)!(M). (7.5.6.4.3)

By functoriality, this implies that we have the canonical isomorphism of (f−1‹D(m)

Y]/T]
, ‹D(m)

X]/S]
)-bimodules

of the form ‹D(m)

Y]/T]←X]/S]
∼−→ ‹D(m)

X]/S]
. The isomorphism 7.5.5.7.4 applied in the case where M =‹D(m)

Y]/T]
gives the second isomorphism:‹D(m)

X]/S]
⊗L
f−1D̃(m)

Y]/T]

f−1(‹D(m)

Y]/T]
⊗BY

ω̃−1
Y]/T]

)r
∼−→ ‹D(m)

X]/S]
“⊗L
f−1D̃(m)

Y]/T]
f−1(‹D(m)

Y]/T]
⊗BY

ω̃−1
Y]/T]

)r

∼−→
Å
f−1(‹D(m)

Y]/T]
)“⊗L

f−1D̃(m)

Y]/T]

‹D(m)

X]/S]

ã
⊗BX

ω̃−1
X]/S]

∼−→ ‹D(m)

X]/S]
⊗BX

ω̃−1
X]/S]

(7.5.6.4.4)

where the index r means that we take the right structure of left D-module.
As for the left case, when if p−1

X]•
OS• and f−1BY• are tor independent over f−1p−1

Y ]•
OT• , the canonical

morphism
f−1M“⊗L

f−1p−1

Y]
OT
p−1
X]
OT → f−1M“⊗L

f−1D̃(m)

Y]/T]

‹D(m)

X]/S]

is an isomorphism and we can simply set in this case OS“⊗L
OT
M := f−1M“⊗L

f−1D̃(m)

Y]/T]

‹D(m)

X]/S]
.

7.5.6.5 (Preservation of the coherence). Let F ∈ D−coh(l‹D(m)

Y]/T]
). The canonical morphism ofD(l‹D(m)

X]/S]
):‹D(m)

X]/S]
⊗L
f−1D̃(m)

Y]/T]

f−1F → ‹D(m)

X]/S]
“⊗L
f−1D̃(m)

Y]/T]
f−1F (7.5.6.5.1)

is an isomorphism. Hence, with 7.5.6.5.2 we get the isomorphism of D−coh(l‹D(m)

X]/S]
):‹D(m)

X]/S]
⊗L
f−1D̃(m)

Y]/T]

f−1F ∼−→ f̃ (m)!(F). (7.5.6.5.2)

LetM∈ D−coh(r‹D(m)

Y]/T]
). We have the isomorphisms of D−coh(r‹D(m)

X]/S]
):

f−1M⊗L
f−1D̃(m)

Y]/T]

‹D(m)

X]/S]
∼−→ f−1M“⊗L

f−1D̃(m)

Y]/T]

‹D(m)

X]/S]
∼−→

7.5.6.4.3
f̃ (m)!(M). (7.5.6.5.3)

By functoriality, this implies that we have the canonical isomorphism of (f−1‹D(m)

Y]/T]
, ‹D(m)

X]/S]
)-bimodules

of the form ‹D(m)

Y]/T]←X]/S]
∼−→ ‹D(m)

X]/S]
. The isomorphism 7.5.5.7.4 applied in the case where M =
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‹D(m)

Y]/T]
gives the second isomorphism:‹D(m)

X]/S]
⊗L
f−1D̃(m)

Y]/T]

f−1(‹D(m)

Y]/T]
⊗BY

ω̃−1
Y]/T]

)r
∼−→ ‹D(m)

X]/S]
“⊗L
f−1D̃(m)

Y]/T]
f−1(‹D(m)

Y]/T]
⊗BY

ω̃−1
Y]/T]

)r

∼−→
Å
f−1(‹D(m)

Y]/T]
)“⊗L

f−1D̃(m)

Y]/T]

‹D(m)

X]/S]

ã
⊗BX

ω̃−1
X]/S]

∼−→ ‹D(m)

X]/S]
⊗BX

ω̃−1
X]/S]

(7.5.6.5.4)

where the index r means that we take the right structure of left D-module.

7.5.6.6 (Preservation of the coherence). Let G ∈ D−coh(l‹D(m)

Y]/T],Q). Tensoring with Q the results of the
proposition 7.5.6.1, we can check we have the canonical isomorphism‹D(m)

X]/S],Q ⊗
L
f−1D̃(m)

Y]/T],Q

f−1G ∼−→ f̃ (m)!(G), (7.5.6.6.1)

where the right term is defined at 7.5.5.14.
LetM∈ D−coh(r‹D(m)

Y]/T],Q). We have the isomorphisms of D−coh(r‹D(m)

X]/S],Q):

f−1M⊗L
f−1D̃(m)

Y]/T],Q

‹D(m)

X]/S],Q
∼−→ f̃ (m)!(M). (7.5.6.6.2)

Remark 7.5.6.7. We can split the diagram 5.1.1.1.1 as follows

X]
g //

p
X]

��

Z]
h //

p
Z]

��
�

Y]

p
Y]

��
S] S] // T],

(7.5.6.7.1)

where the right square is cartesian. Let BZ := h∗BY, Z̃] be the ringed logarithmic V-formal scheme
(Z],BZ), and h̃ : Z̃]/T] → ‹Y]/T] be the morphism of relative ringed logarithmic V-formal schemes induced
by the cartesian square of the diagram 7.5.6.7.1 and by BZ = h∗BY. Hence, since g̃(m)! ◦ h̃(m)! ∼−→ f̃ (m)!

over quasi-coherent complexes, then to study the extraordinary pullback functor (for instance) over
quasi-coherent complexes, we reduce to the case of the base change or to the case where φ = id.

7.5.7 Projection formula
We keep notation 7.5.5.

Proposition 7.5.7.1. Let F• ∈ D(r‹D(m)

Y ]• /T
]
•
) and G• ∈ D(

l
f−1
•
‹D(m)

Y ]• /T
]
•
).

(i) We have the canonical morphism in D(ZY•):

F• ⊗L
D̃(m)

Y
]
• /T

]
•

Rf•∗(G•)→ Rf•∗

(
f−1
• F• ⊗L

f−1
• D̃

(m)

Y
]
• /T

]
•

G•

)
. (7.5.7.1.1)

LetD• be a sheaf of rings on Y• such that (D•, ‹D(m)

Y ]• /T
]
•
) is solvable byR• and F• ∈ D(D•,R•, ‹D(m)

Y ]• /T
]
•
)

(see definition and notation 4.6.3.2). Then the morphism 7.5.7.1.1 can also be viewed as a morphism
of D(D•).

(ii) Suppose f is quasi-compact and quasi-separated. Suppose moreover for any i ∈ Z one of the
following conditions hold:

(a) either Fi ∈ Db
qc(r‹D(m)

Y ]
i
/T ]
i

), and Gi ∈ D(
l
f−1‹D(m)

Y ]
i
/T ]
i

),

(b) or Ti is a noetherian scheme of finite Krull dimension, and Fi ∈ D−qc(r‹D(m)

Y ]
i
/T ]
i

), and Gi ∈

D−(
l
f−1‹D(m)

Y ]
i
/T ]
i

).

400



Then the morphism 7.5.7.1.1 is an isomorphism.

Proof. We construct 7.5.7.1.1 as 5.1.2.5.1. The second statement is a consequence of 5.1.2.5.1.

Remark 7.5.7.2. Inverting r and l, we get the morphism

Rf•∗(G•)⊗L
D̃(m)

Y
]
• /T

]
•

F• → Rf•∗

(
G• ⊗L

f−1D̃(m)

Y
]
• /T

]
•

f−1F•

)
, (7.5.7.2.1)

which is an isomorphism when we invert the corresponding hypotheses.

Corollary 7.5.7.3. Let ∗, ∗∗ ∈ {l, r} such that both are not equal to r. Suppose f is quasi-compact and
quasi-separated.

(a) either Fi ∈ Db
qc(∗‹D(m)

Y ]
i
/T ]
i

), and Gi ∈ D(
∗∗
f−1‹D(m)

Y ]
i
/T ]
i

),

(b) or Ti is a noetherian scheme of finite Krull dimension, and Fi ∈ D−qc(∗‹D(m)

Y ]
i
/T ]
i

), and Gi ∈ D−(
∗∗
f−1‹D(m)

Y ]
i
/T ]
i

).

Then we have the following isomorphism of D−(
∗∗‹D(m)

Y ]
i
/T ]
i

):

F• ⊗L
BY• Rf•∗(G•)

∼−→ Rf•∗
Ä
f−1F• ⊗L

f−1BY•
G•
ä
. (7.5.7.3.1)

Proof. As 5.1.2.8, this is a consequence of 7.5.7.1.

7.5.8 Direct image
We keep notation 7.5.5. Assume that S and T are noetherian scheme sof finite Krull dimension, f is
quasi-compact and quasi-separated.

Definition 7.5.8.1. We keep notation 7.5.5.4.

(a) The (left version of the) direct image functor of level m by f̃• is the functor f̃ (m)
•+ : D(l‹D(m)

X]•/S
]
•
) →

D(l‹D(m)

Y ]• /T
]
•
) which is defined by setting

f̃
(m)
•+ (E•) := Rf•∗

(‹D(m)

Y ]• /T
]
•←X

]
•/S

]
•
⊗L
D̃(m)

X
]
•/S

]
•

E•

)
,

where E• ∈ D(l‹D(m)

X]•/S
]
•
).

(b) The (right version of the) direct image functor of level m by f̃• is the functor f̃ (m)
•+ : D(r‹D(m)

X]•/S
]
•
)→

D(r‹D(m)

Y ]• /T
]
•
) which is defined by setting

f̃
(m)
•+ (M•) := Rf•∗

(
M• ⊗L

D̃(m)

X
]
•/S

]
•

‹D(m)

X]•/S
]
•→Y

]
• /T

]
•

)
,

whereM• ∈ D(r‹D(m)

X]•/S
]
•
).

(c) For any ∗ ∈ {r, l}, the direct image functor of level m by f̃ of the form f̃
(m)
+ : D(∗‹D(m)

X]/S]
) →

D(∗‹D(m)

Y]/T]
) is defined by setting

f̃
(m)
+ (E) := R←lY ∗(f̃

(m)
•+ (L←l

∗
X
E))

where E ∈ D(∗‹D(m)

X]/S]
). Since this functor preserves the isogenies, this yields the functor f̃ (m)

+ : DQ(∗‹D(m)

X]/S]
)→

DQ(∗‹D(m)

Y]/T]
).
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If there is no ambiguity with the level, we might simply write f̃•+ and f̃+.

Proposition 7.5.8.2. We have the following properties.

(a) For anyM∈ D(r‹D(m)

X]/S]
), we have the canonical morphism of D(r‹D(m)

Y]/T]
):

Rf∗

Ç
M⊗L

D̃(m)

X]/S]

‹D(m)

X]/S]→Y]/T]

å
→ f̃

(m)
+ (M). (7.5.8.2.1)

(b) For any E ∈ D(l‹D(m)

X]/S]
), we have the canonical morphism of D(l‹D(m)

Y]/T]
)

Rf∗

Ç‹D(m)

Y]/T]←X]/S]
⊗L
D̃(m)

X]/S]

E
å
→ f̃

(m)
+ (E). (7.5.8.2.2)

(c) For any ∗ ∈ {r, l}, if F ∈ D−coh(∗‹D(m)

X]/S]
), then the morphism 7.5.8.2.1 or respectively 7.5.8.2.2 is

an isomorphism of D(∗‹D(m)

Y]/T]
).

Proof. Let us construct the morphism 7.5.8.2.1. By adjointness, we get the first morphism:

M⊗L
D̃(m)

X]/S]

‹D(m)

X]/S]→Y]/T]
7.3.4.9.3−→ R←lX∗

(
L←l
∗
X

(M)⊗L
D̃(m)

X
]
•/S

]
•

‹D(m)

X]•/S
]
•→Y

]
• /T

]
•

)
(7.5.8.2.3)

It follows from 7.1.3.15.3 that we have the canonical isomorphism Rf∗ ◦ R←lX∗
∼−→ R←lY ∗ ◦ Rf•∗. Hence,

by applying the functor Rf∗ to 7.5.8.2.3, we get 7.5.8.2.1 up to canonical isomorphism.
Similarly, we construct 7.5.8.2.2. Finally, to check the last statement, follows from the fact that

7.5.8.2.3 becomes an isomorphism (see again 7.3.4.9.3).

Definition 7.5.8.3. We keep notation 7.5.5.10.

(a) The (left version of the) direct image functor of level m by f̃ of the form f̃
(m)
+ : D(l‹D(m)

X]/S],Q) →
D(l‹D(m)

Y]/T],Q) which is defined by setting for any E ∈ D(l‹D(m)

X]/S],Q)

f̃
(m)
+ (E) := Rf∗

Ç‹D(m)

Y]/T]←X]/S],Q ⊗
L
D̃(m)

X]/S],Q

(E)

å
. (7.5.8.3.1)

(b) The (right version of the) direct image functor of level m by f̃ of the form D(r‹D(m)

X]/S],Q) →
D(r‹D(m)

Y]/T],Q) which is defined by setting for anyM∈ D(l‹D(m)

Y]/T],Q)

f̃
(m)
+ (M) := Rf∗

Ç
M⊗L

D̃(m)

X]/S],Q

‹D(m)

X]/S]→Y]/T],Q

å
. (7.5.8.3.2)

Proposition 7.5.8.4. We have the following properties.

(a) With notation 7.4.6.5, we have the canonical morphism of functors DQ(r‹D(m)

X]/S],Q)→ D(r‹D(m)

Y]/T],Q)

of the form
f̃

(m)
+ ◦ (Q⊗−)→ (Q⊗−) ◦ f̃ (m)

+ . (7.5.8.4.1)

(b) For any ∗ ∈ {r, l}, the restriction to Db
Q,coh(∗‹D(m)

X]/S]
) of the morphism 7.5.8.4.1 is an isomorphism.

Proof. This easily follows from 7.5.8.2.

Remark 7.5.8.5. Let ∗ ∈ {r, l} and (Q ⊗ −)−1 : Db
coh(∗‹D(m)

X]/S],Q) → Db
Q,coh(∗‹D(m)

X]/S]
) be a quasi-inverse

functor of the natural equivalence of categories 7.4.6.6. Then the functor (Q ⊗ −) ◦ f̃ (m)
+ ◦ (Q ⊗

−)−1 : Db
coh(l‹D(m)

X]/S],Q)→ D(l‹D(m)

Y]/T],Q) is isomorphic to f̃ (m)
+ .
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7.5.8.6. We have the following boundedness preservation results.

(a) Since T is a noetherian scheme of finite Krull dimension, then it follows from 5.1.2.4.i that we get
the factorization f̃ (m)

•+ : D−(∗‹D(m)

X]•/S
]
•
)→ D−(∗‹D(m)

Y ]• /T
]
•
).

(b) Suppose either m = 0 or log-structures are trivial. Then, by copying the proof of 5.3.2.4 (remark the
estimate is geometrical and do not depend on i or m), we can check the right (resp. left) ‹D(m)

X]•/S
]
•
-

module ‹D(m)

Y ]• /T
]
•←X

]
•/S

]
•
(resp. ‹D(m)

X]•/S
]
•→Y

]
• /T

]
•
) has finite tor-dimension. Hence, we get the induced

functor
f̃

(m)
•+ : Db(∗‹D(m)

X]•/S
]
•
)→ Db(∗‹D(m)

Y ]• /T
]
•
). (7.5.8.6.1)

Proposition 7.5.8.7. Let ∗ ∈ {r, l}, and ? ∈ {−,b} such that one of the following conditions holds:

(i) either ? = −,

(ii) or m = 0,

(iii) or log structures are trivial.

Then, we have the following properties.

(a) For any E• ∈ D?
qc(∗‹D(m)

X]•/S
]
•
), f̃ (m)

•+ (E•) ∈ D?
qc(∗‹D(m)

Y ]• /T
]
•
).

(b) For any E ∈ D?
qc(∗‹D(m)

X]/S]
), f̃ (m)

+ (E) ∈ D?
qc(∗‹D(m)

Y]/T]
). For any E ∈ D?

Q,qc(∗‹D(m)

X]/S]
), f̃ (m)

+ (E) ∈
D?

Q,qc(∗‹D(m)

Y]/T]
).

Proof. By using the equivalences of categories 7.5.4.3, we reduce to check (a). It follows from 7.5.8.6.1
that we reduce to check the case (i). By similarity, we can suppose ∗ = l. It follows from 5.1.3.5 that
f̃

(m)
0+ (E0) ∈ D−qc(∗‹D(m)

Y ]0 /T
]
0

). It follows from 7.5.4.1 that we can apply 5.3.3.3, i.e. we have the base change
isomorphism ‹D(m)

Y ]
i
/T ]
i

⊗L
D̃(m)

Y
]
i+1

/T
]
i+1

f̃
(m)
i+1+(Ei+1)

∼−→ f̃
(m)
i+ (‹D(m)

X]
i
/S]
i

⊗L
D̃(m)

X
]
i+1

/S
]
i+1

Ei+1).

Hence, we are done.

7.5.8.8. For any ∗ ∈ {r, l}, for any E• ∈ D(∗‹D(m)

X]•/S
]
•
), it follows from 7.1.3.15.2 and 7.1.3.6.1 that we

have (
f̃

(m)
•+ (E•)

)
i

∼−→ f̃
(m)
i+ (Ei). (7.5.8.8.1)

By using the equivalence of categories 7.3.3.3, it follows from 7.5.8.7 that, for any E ∈ D−qc(l‹D(m)

X]/S]
), we

get ‹D(m)

Y ]
i
/T ]
i

⊗L
D̃(m)

Y]/T]

f̃
(m)
+ (E)

∼−→ f̃
(m)
i+ (‹D(m)

X]
i
/S]
i

⊗L
D̃(m)

X]/S]

E), (7.5.8.8.2)

and similarly for right modules.

7.5.8.9. Suppose the bottom morphism φ of 7.5.5.0.1 is the identity and f is log-étale. Then, fol-
lowing 5.1.3.6, the canonical morphism of left ‹D(m)

X]•/S
]
•
-modules ‹D(m)

X]•/S
]
•
→ ‹D(m)

X]•→Y
]
• /S

]
•
is an isomor-

phism. Hence, f̃ (m)
•+ (M•)

∼−→ Rf•∗(M•). Similarly, the canonical morphism of right ‹D(m)

X]•/S
]
•
-modules‹D(m)

X]•/S
]
•
→ ‹D(m)

Y ]•←X
]
•/S

]
•
is an isomorphism.

7.5.8.10. The functors of 7.5.8.1 are compatible with the quasi-inverse functors − ⊗BX ω̃−1

X]•/S
]
•
and

ω̃Y ]• /T
]
•
⊗BY•− exchanging left and rightD(m)

X -module structures. More precisely, for any E• ∈ D(l‹D(m)

X]•/S
]
•
)

we have the canonical isomorphism

ω̃Y ]• /T
]
•
⊗BY• f̃

(m)
•+ (E•)

∼−→ f̃
(m)
•+ (ω̃X]•/S

]
•
⊗BX• E•), (7.5.8.10.1)
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which is constructed as follows:

ω̃Y ]• /T
]
•
⊗BY• Rf•∗

(‹D(m)

Y ]• /T
]
•←X

]
•/S

]
•
⊗L
D̃(m)

X
]
•/S

]
•

E•

)
∼−→

7.5.7.3.1
Rf•∗

(
f−1ω̃Y ]• /T

]
•
⊗f−1BY• (‹D(m)

Y ]• /T
]
•←X

]
•/S

]
•
⊗L
D̃(m)

X
]
•/S

]
•

E•)

)
∼−→ Rf•∗

(
(f−1ω̃Y ]• /T

]
•
⊗f−1BY•

‹D(m)

Y ]• /T
]
•←X

]
•/S

]
•
)⊗L
D̃(m)

X
]
•/S

]
•

E•

)
4.3.5.6.1
∼−→ Rf•∗

(
(ω̃X]•/S

]
•
⊗BX• E•)⊗

L
D̃(m)

X
]
•/S

]
•

(f−1ω̃Y ]• /T
]
•
⊗f−1BY•

‹D(m)

Y ]• /T
]
•←X

]
•/S

]
•
⊗BX• ω̃

−1

X]•/S
]
•
)

)
∼−→

7.5.5.4.1
Rf•∗

(
(ω̃X]•/S

]
•
⊗BX• E•)⊗

L
D̃(m)

X
]
•/S

]
•

‹D(m)

X]•/S
]
•→Y

]
• /T

]
•

)
.

Proposition 7.5.8.11. With notation 7.5.5.20, we suppose U is a noetherian scheme of finite Krull
dimension and g is quasi-compact and quasi-separated. Let ∗ ∈ {r, l}, and ? ∈ {−,b} such that one of
the following conditions holds:

(i) either ? = −

(ii) or m = 0,

(iii) or log structures are trivial.

In each cases, we have the following properties.

1. For any E• ∈ D?
qc(∗‹D(m)

X]•/S
]
•
), we have the canonical isomorphism of D?

qc(∗‹D(m)

Z]•/U
]
•
):

g̃
(m)
•+ ◦ f̃

(m)
•+ (E•)

∼−→ ‡(g ◦ f)
(m)

•+ (E•). (7.5.8.11.1)

2. For any E ∈ D?
qc(∗‹D(m)

X]/S]
), we have the canonical isomorphism of D?

qc(∗‹D(m)

Z]/U]
):

g̃
(m)
+ ◦ f̃ (m)

+ (E)
∼−→ ‡(g ◦ f)

(m)

+ (E). (7.5.8.11.2)

Proof. By using 7.5.7.1 and 7.5.5.21.2, we can check 7.5.8.11.1 by copying the proof of 5.1.3.8. By using
the equivalence of categories 7.5.4.3, this yields 7.5.8.11.2.

Proposition 7.5.8.12. Suppose f is proper, f∗BY → BX is an isomorphism. Suppose BY0 is an OY0-
algebra of finite type. Let ? ∈ {−,b} and ∗ ∈ {r, l}. Suppose moreover one of the following conditions:

(i) either ? = −,

(ii) or m = 0,

(iii) or log structures are trivial.

In each cases we have the following properties.

(a) The functor f̃ (m)
•+ sends D?

coh(∗‹D(m)

X]•/S
]
•
) to D?

coh(∗‹D(m)

Y ]• /S
]
•
).

(b) The functor f̃ (m)
+ sends D?

coh(∗‹D(m)

X]/S]
) (resp. D?

Q,coh(∗‹D(m)

X]/S]
), resp. D?

coh(∗‹D(m)

X]/S],Q)) to D?
coh(∗‹D(m)

Y]/S]
)

(resp. D?
Q,coh(∗‹D(m)

Y]/S]
), resp. D?

coh(∗‹D(m)

Y]/S],Q)).

Proof. By using the equivalence of categories 7.3.3.3, we reduce to check (a). It follows from 5.3.2.11
that f̃ (m)

0+ sends D?
coh(∗‹D(m)

X]0/S
]
0

) to D?
coh(∗‹D(m)

Y ]0 /S
]
0

). We conclude by using 7.3.3.4 and 7.5.8.7.
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Notation 7.5.8.13 (Varying m notation). We keep notation and hypotheses 7.5.5. Fix m ≥ m′ ≥ 0
a second integer. Let B′X (resp. B′Y) be a commutative OX-algebra (resp. OY-algebra) endowed with

a compatible structure of left D(m′)

X]/S]
-module (resp. left D(m′)

Y]/T]
-module) and satisfying the hypotheses

of 7.3.2. We suppose that we have algebras morphisms B′X → BX, B′Y → BY, f∗B′Y → B′X which are

respectively D(m′)

X]/S]
-linear (resp. D(m′)

Y]/T]
-linear, resp. D(m)

X]/S]
-linear) and inducing the commutative

diagram
f∗BY // BX

f∗B′Y //

OO

B′X.

OO

We denote by ‹D(m′)

X]/S]
:= B′X“⊗OX

D(m′)

X]/S]
and ‹D(m′)

Y]/T]
:= B′Y“⊗OY

D(m′)

Y]/T]
. We keep similar to 7.5.5.4

or 7.5.5.10 notation by replacing m by m′.

Proposition 7.5.8.14. With notation 7.5.8.13, f∗B′Y → B′X and f∗BY → BX are isomorphism. Let
? ∈ {−,b} and ∗ ∈ {r, l}. Suppose moreover one of the following conditions holds:

(a) either ? = −,

(b) or log structures are trivial.

Suppose moreover either B′X → BX is an isomorphism or f−1OY0
and OX0

are tor independent over
f−1BY0

. For any F ∈ D?
qc(‹D(m′)

X]/S]
), we have in D?

qc(‹D(m)

Y]/T]
) the canonical isomorphism‹D(m)

Y]/T]
“⊗L
D̃(m′)

Y]/T]
f̃

(m′)
+ (F)

∼−→ f̃
(m)
+

Å‹D(m)

X]/S]
“⊗L
D̃(m′)

X]/S]
F
ã
. (7.5.8.14.1)

Proof. We construct the morphism 7.5.8.14.1 similarly to 5.3.2.15.1. To check that this is an isomorphism,
since both terms of 7.5.8.14.1 are quasi-coherent, it follows from 7.3.2.14 that we reduce to check that
the following induced morphism‹D(m)

Y ]0 /T
]
0

⊗L
D̃(m)

Y]/T]

‹D(m)

Y]/T]
“⊗L
D̃(m′)

Y]/T]
f̃

(m′)
+ (F)→ ‹D(m)

Y ]0 /T
]
0

⊗L
D̃(m)

Y]/T]

f̃
(m)
+

Å‹D(m)

X]/S]
“⊗L
D̃(m′)

X]/S]
F
ã

(7.5.8.14.2)

is an isomorphism. On one hand, we have the isomorphisms‹D(m)

Y ]0 /T
]
0

⊗L
D̃(m)

Y]/T]

f̃
(m)
+

Å‹D(m)

X]/S]
“⊗L
D̃(m′)

X]/S]
F
ã 7.5.8.8.2

∼−→ f̃
(m)
0+

Ç‹D(m)

X]0/S
]
0

⊗L
D̃(m)

X]/S]

‹D(m)

X]/S]
“⊗L
D̃(m′)

X]/S]
F
å

∼−→ f̃
(m)
0+

Ç‹D(m)

X]0/S
]
0

⊗L
D̃(m′)

X]/S]

F
å
. (7.5.8.14.3)

On the other hand, we get:‹D(m)

Y ]0 /T
]
0

⊗L
D̃(m)

Y]/T]

‹D(m)

Y]/T]
“⊗L
D̃(m′)

Y]/T]
f̃

(m′)
+ (F)

∼−→ ‹D(m)

Y ]0 /T
]
0

⊗L
D̃(m′)

Y
]
0
/T
]
0

‹D(m′)

Y ]0 /T
]
0

⊗L
D̃(m′)

Y]/T]

f̃
(m′)
+ (F)

7.5.8.8.2
∼−→ ‹D(m)

Y ]0 /T
]
0

⊗L
D̃(m′)

Y
]
0
/T
]
0

f̃
(m′)
0+

Ç‹D(m′)

X]0/S
]
0

⊗L
D̃(m′)

X]/S]

F
å
. (7.5.8.14.4)

Hence, via 7.5.8.14.3 and 7.5.8.14.4, the morphism 7.5.8.14.2 is canonically isomorphic to‹D(m)

Y ]0 /T
]
0

⊗L
D̃(m′)

Y
]
0
/T
]
0

f̃
(m′)
0+

Ç‹D(m′)

X]0/S
]
0

⊗L
D̃(m′)

X]/S]

F
å
→ f̃

(m)
0+

Ç‹D(m)

X]0/S
]
0

⊗L
D̃(m′)

X]/S]

F
å
, (7.5.8.14.5)

which is an isomorphism following 5.3.2.15.
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Corollary 7.5.8.15. With notation and hypotheses of 7.5.8.14, suppose moreover BY0
is an OY0

-algebra
of finite type, f is proper and f∗BY → BX is an isomorphism. For any F ∈ D?

coh(‹D(m′)

X]/S]
), we have in

D?
coh(‹D(m)

Y]/T]
) the canonical isomorphism‹D(m)

Y]/T]
⊗L
D̃(m′)

Y]/T]

f̃
(m′)
+ (F)

∼−→ f̃
(m)
+

Ç‹D(m)

X]/S]
⊗L
D̃(m′)

X]/S]

F
å
. (7.5.8.15.1)

For any F ∈ D?
coh(‹D(m′)

X]/S],Q), we have in D?
coh(‹D(m)

Y]/T],Q) the canonical isomorphism‹D(m)

Y]/T],Q ⊗
L
D̃(m′)

Y]/T],Q

f̃
(m′)
+ (F)

∼−→ f̃
(m)
+

Ç‹D(m)

X]/S],Q ⊗
L
D̃(m′)

X]/S],Q

F
å
. (7.5.8.15.2)

Proof. We get the isomorphism 7.5.8.15.1 from 7.5.8.12 and 7.5.8.14. Moreover, we construct the mor-
phism 7.5.8.15.2 similarly to 5.3.2.15.1. To check that this is an isomorphism, since the both side functors
are wayout left, then we reduce to the case where F is a coherent ‹D(m′)

X]/S],Q-module. Since it has a coherent‹D(m′)

X]/S]
-model (see 7.4.5.2), then 7.5.8.15.2 is a consequence of 7.5.8.15.1 and 7.5.8.4.

7.5.8.16 (Non-lifted case notation). In the constext of 7.5.5.23, we can define as in 7.5.8.1 the functors
f̃

(m)
0+ : D(∗‹D(m)

X]•/S
]
•
)→ D(∗‹D(m)

Y ]• /T
]
•
) and f̃ (m)

0+ : D(∗‹D(m)

X]/S]
)→ D(∗‹D(m)

Y]/T]
) for any ∗ ∈ {r, l}.

7.5.9 Exterior tensor products and commutation with pullbacks and push-
forwards

Let m ∈ N. Let V be a complete discrete valuation ring of characteristic (0, p) with maximal ideal m.
Let S] be a nice fine V-log formal schemes as defined in 3.3.1.10, let X] and Y] be two log smooth S]-
log-formal scheme. Let BX (resp. BY) be a commutative OX-algebra (resp. OY-algebra) endowed with
a compatible structure of left D(m)

X]/S]
-module (resp. left D(m)

Y]/S]
-module) and satisfying the hypotheses

of 7.3.2. Recall following 7.3.2.3 that BX and BY are in particular quasi-coherent in the sense of 7.3.1.5.
The action of left D(m)

X]/S]
-module on f∗BY is compatible with its structure of OX-algebra (see 3.4.4.6).

We suppose that we have a morphism of algebras f∗BY → BX which is moreover D(m)

X]/S]
-linear. We

denote by ‹D(m)

X]/S]
:= BX“⊗OX

D(m)

X]/S]
and ‹D(m)

Y]/S]
:= BY“⊗OY

D(m)

Y]/S]
. Recall also, following 7.3.2.1,‹D(m)

X]/S]
and ‹D(m)

Y]/S]
satisfy the conditions of 7.3.2, i.e. in particular the projective systems ‹D(m)

X]•/S
]
•

:=

(‹D(m)

X]
i
/S]
i

)i∈N (resp. ‹D(m)

Y ]• /S
]
•

:= (‹D(m)

Y ]
i
/S]
i

)i∈N) with ‹D(m)

X]
i
/S]
i

= ‹D(m)

X]/S]
/mi+1‹D(m)

X]/S]
(resp. ‹D(m)

Y ]
i
/S]
i

=‹D(m)

Y]/S]
/mi+1‹D(m)

Y]/S]
) is left and right quasi-coherent in the sense of 7.3.1.10.

Let Z] := X] ×S] Y
], p : Z] → X], q : Z] → Y] be the projections. Set BZ := p∗BX ⊗OZ

q∗BY.
We denote by X̃] (resp. ‹Y], resp. Z̃]) the ringed V-log formal scheme (X],BX) (resp. (Y],BY), resp.

(Z],BZ)), and by p̃ : Z̃]/S] → X̃]/S], q̃ : Z̃]/S] → ‹Y]/S] the induced morphism of relative ringed V-log
formal schemes. By abuse of notation, we also denote by p̃, q̃ the induced morphism of ringed V-log
formal schemes. We suppose that X̃]/S] and ‹Y]/T] are strongly quasi-flat morphisms of ringed V-log
formal schemes (in the sense of 4.4.1.3.b). Hence, we get for instance the finite tor-dimensions of 7.5.4.1
and we can apply 7.5.4.3 for both.

7.5.9.1. Let ∗ ∈ {l, r}. With the notation 7.5.5.6, we define the external tensor product

−‹�L

OS•− : D−qc(∗‹D(m)

X]•/S
]
•
)×D−qc(∗‹D(m)

Y ]• /S
]
•
)→ D−qc(∗‹D(m)

Z]•/S
]
•
), (7.5.9.1.1)

defined as follows: for any E• ∈ D−qc(∗‹D(m)

X]•/S
]
•
), F• ∈ D−qc(∗‹D(m)

Y ]• /S
]
•
), we set

E•‹�L

OS•F• := Lp̃(m)!
• (E•)⊗L

BZ• Lq̃(m)!
• (F•)[dZ ].

When ∗ = l, using 5.1.5.4.3, this is compatible to the external tensor product defined at 5.1.5.4.5. By
using 5.1.5.9 and 7.5.5.7, this yields when ∗ = r that 7.5.9.1.1 is compatible to the external tensor product
defined at 5.1.5.4.5. When BX = OX and BY = OY, we simply write −�L

OS• −.
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7.5.9.2. Let ∗ ∈ {l, r}. Using the tensor product defined in 7.5.9.1.1, we get the bifunctor

−‹�L

OS
− : D−qc(∗‹D(m)

X]/S]
)×D−qc(∗‹D(m)

Y]/S]
)→ D−qc(∗‹D(m)

Z]/S]
), (7.5.9.2.1)

defined as follows: for any E ∈ D−qc(∗‹D(m)

X]/S]
), F ∈ D−qc(∗‹D(m)

Y]/S]
), we set

E‹�L
OS
F := R←lZ∗

(
L←l
∗
X

(E)‹�L

OS•L←l
∗
Y

(F)
)
∼−→ p̃(m)!(E)“⊗L

BZ
q̃(m)!(F)[dZ ], (7.5.9.2.2)

where the isomorphism is checked by using the definition 7.5.5.6 and the fact that R←lZ∗ is an equivalence
of categories between quasi-coherent complexes. When BX = OX and BY = OY, we simply write
−“�L
OS
−.

Proposition 7.5.9.3. Let ∗ ∈ {l, r}. Suppose ? ∈ {qc, tdf,perf} (resp. suppose ? = coh and S is locally
noetherian). The functor 7.5.9.2.1 preserves the finite tor-dimension and perfectness (resp. bounded
above coherent complexes), i.e. induces

−‹�L

OS
− : D−? (∗‹D(m)

X]/S]
)×D−? (∗‹D(m)

Y]/S]
)→ D−? (∗‹D(m)

Z]/S]
). (7.5.9.3.1)

Proof. This is a consequence of 5.1.5.5.1 and of the equivalence of categories of 7.3.2.15 and 7.3.3.3.

Proposition 7.5.9.4. Let f : X′] → X] and g : : X′] → X] be two morphisms of log smooth S]-log formal
schemes. Set Z′] := X′] ×S′] Y

′] and h = f × g : Z′] → Z] the induced morphism. Let ∗ ∈ {l, r}. Let
E ∈ D−qc(∗‹D(m)

X]/S]
), F ∈ D−qc(∗‹D(m)

Y]/S]
). We have the canonical homomorphism of D−qc(∗‹D(m)

Z′]/S]
):

f̃ (m)!(E ′)‹�L

OS
g̃(m)!(F ′)→ h̃(m)!(E ′‹�L

OS
F ′). (7.5.9.4.1)

Proof. This follows from 7.5.5.9.2.

Theorem 7.5.9.5. We suppose the underlying scheme S is noetherian of finite Krull dimension. Let
f : X′] → X] and g : : X′] → X] be two quasi-separated and quasi-compact morphisms of log smooth S]-log
formal schemes. Set Z′] := X′] ×S′] Y

′] and h = f × g : Z′] → Z] the induced morphism. Let ∗ ∈ {l, r}.
Let E ′ ∈ D−qc(∗‹D(m)

X′]/S]
), F ′ ∈ D−qc(∗‹D(m)

Y′]/S]
).

(a) We have the canonical homomorphism of D−qc(∗‹D(m)

Z]/S]
):

f̃
(m)
+ (E ′)‹�L

OS
g̃

(m)
+ (F ′)→ h̃

(m)
+ (E ′‹�L

OS
F ′). (7.5.9.5.1)

(b) When BX = OX and BY = OY, the homomorphism 7.5.9.5.1 is therefore an isomorphism.

Proof. This is a consequence of 5.3.5.13.

7.5.10 Log smooth morphisms: Spencer resolutions, stability of the coher-
ence and varying the level of pullbacks, pushforwards as relative de
Rham complexes complexes

We keep notation and hypotheses 7.5.8.13. We suppose f is a log-smooth and φ = id. We suppose T is
a noetherian scheme of finite Krull dimension.

We set ω̃(m)

X]/Y] := BX ⊗OX
ωX]/Y] and ω̃

(m′)

X]/Y] := B′X ⊗OX
ωX]/Y] , ‹D(m)

X]/Y] := BX“⊗OX
D(m)

X]/Y] and‹D(m′)

X]/Y] := B′X“⊗OX
D(m′)

X]/Y] .

Lemma 7.5.10.1. We have the following properties.

a) We have the canonical isomorphism

BX,Q
∼−→ ‹D(m)

X]/Y]Q ⊗D̃(m′)
X]/Y],Q

B′X],Q, (7.5.10.1.1)

ω̃
(m)

X]/Y],Q
∼−→ ω̃

(m′)

X]/Y],Q ⊗D̃(m′)
X]/Y],Q

‹D(m)

X]/Y],Q. (7.5.10.1.2)
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b) We have the canonical isomorphisms‹D(m)

X]→Y]/S],Q
∼−→ ‹D(m)

X]/S],Q ⊗D̃(m′)
X]/S],Q

‹D(m′)

X]→Y]/S],Q, (7.5.10.1.3)‹D(m)

Y]←X]/S],Q
∼−→ ‹D(m′)

Y]←X]/S],Q ⊗D̃(m′)
X]/S],Q

‹D(m)

X]/S],Q. (7.5.10.1.4)

Proof. a) i) For all m′′ ∈ {m′,m}, since the morphism

BX → BX“⊗OX
D(m′′)

X]/Y] ⊗BX⊗OX
D(m′′)

X]/Y]

BX

is an isomorphism (this is checked similarly to 11.1.1.5), since (BX ⊗OX
D(m)

X]/Y])Q = (BX ⊗OX
D(m′)

X]/Y])Q

then we get the canonical morphism

BX,Q → (BX“⊗OX
D(m)

X]/Y])Q ⊗(BX⊗̂OX
D(m′)

X]/Y]
)Q
BX,Q

is an isomorphism. Moreover, since the canonical morphism

BX → BX“⊗OX
D(m′)

X]/Y] ⊗B′
X
⊗̂OX

D(m′)
X]/Y]

B′X

is an is an isomorphism (use the arguments of the proof of [Ber96c, 4.4.8]: write the right version).
Hence, we are done.

ii) We proceed similarly to check 7.5.10.1.2.
b) i) Let us prove 7.5.10.1.3. From 5.3.2.1.1, we get by projective limit the isomorphism‹D(m)

X]/S]
⊗D̃(m)

X]/Y]

BX
∼−→ ‹D(m)

X]→Y]/S]
, ‹D(m′)

X]/S]
⊗D̃(m′)

X]/Y]

B′X
∼−→ ‹D(m′)

X]→Y]/S]
. (7.5.10.1.5)

Hence, using 7.5.10.1.1, we get the isomorphism 7.5.10.1.3.
ii) To check 7.5.10.1.4, we proceed similarly than i) by using this time the isomorphism 5.3.2.2.1

(resp. 7.5.10.1.2) instead of 5.3.2.1.1 (resp. 7.5.10.1.1).

7.5.10.2. We suppose m′ = 0 and B′X = BX. Since the extension BX⊗OX
D(0)

X]/S]
→ ‹D(0)

X]/S]
is flat, then

by extension from 5.3.2.1.3 we get the exact sequence

0→ ‹D(0)

X]/S]
⊗OX

∧dTX]/Y] · · · −→
δ

‹D(0)

X]/S]
⊗OX

TX]/Y] −→
δ

‹D(0)

X]/S]
→ ‹D(0)

X]→Y]/S]
→ 0. (7.5.10.2.1)

Let us denote by S̃p
(m)

X]/Y] the complex of left ‹D(m)

X]/S]
-modules given by‹D(m)

X]/S]
⊗OX

∧dTX]/Y] · · · −→
δ

‹D(m)

X]/S]
⊗OX

TX]/Y] −→
δ

‹D(m)

X]/S]

whose maps are obtained from 7.5.10.2.1 by applying the functor ‹D(m)

X]/S]
⊗D̃(0)

X]/S]

−. When BX = OX, we

simply write Sp
(m)

X]/Y] . With 4.7.3.8.1, remark ‹D(m)

X]/S]
⊗D(0)

X]/S]

Sp
(0)

X]/Y] . We call it the Spencer complex

of level m with coefficient in BX.
By taking projective limits, it follows from 5.3.2.7.a that ‹D(m)

X]→Y]/S]
is a coherent ‹D(m)

X]/S]
-module.

By using 7.5.10.1.3 we get from 7.5.10.2.1 the morphism of Db
coh(‹D(m)

X]/S]
):

S̃p
(m)

X]/Y] → ‹D(m)

X]→Y]/S]
. (7.5.10.2.2)

Since the morphism ‹D(0)

X]/S]
→ ‹D(m)

X]/S],Q is flat (see 7.5.3.1), then, by applying the functor Q ⊗Z − to

7.5.10.2.2, we get the exact sequence of coherent left ‹D(m)

X]/S],Q-modules:

0→ ‹D(m)

X]/S],Q ⊗OX
∧dTX]/Y] · · · −→

δ

‹D(m)

X]/S],Q ⊗OX
TX]/Y] −→

δ

‹D(m)

X]/S],Q → ‹D(m)

X]→Y]/S],Q → 0.

(7.5.10.2.3)
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is exact. Via the equivalence of categories of 7.4.6.6.1 of the form Db
Q,coh(‹D(m)

X]/S]
) ∼= Db

coh(‹D(m)

X]/S],Q),

the morphism 7.5.10.2.2 is therefore an isomorphism in Db
Q,coh(‹D(m)

X]/S]
).

LetM∈ D−qc(r‹D(m)

X]/S]
). The canonical map

M⊗L
D̃(m)

X]/S]

S̃p
(m)

X]/Y] →M“⊗L
D̃(m)

X]/S]

S̃p
(m)

X]/Y] (7.5.10.2.4)

is an isomorphism and will be denoted byM⊗OX
T •X]/Y] .

7.5.10.3. We suppose m′ = 0 and B′X = BX. Since the extension BX⊗OX
D(0)

X]/S]
→ ‹D(0)

X]/S]
is flat, then

by extension from 5.3.2.2.3 we get the exact sequence of right ‹D(0)

X]/S]
-modules:

0→ ‹D(0)

X]/S]
−→
d

Ω1
X]/Y] ⊗OY′

‹D(0)

X]/S]
−→
d
· · · −→

d
ωX]/Y] ⊗OX

‹D(0)

X]/S]
→ ‹D(0)

Y]←X]/S]
→ 0. (7.5.10.3.1)

Let us denote by D̃R
(m)

X]/Y] the complex‹D(m)

X]/S]
−→
d

Ω1
X]/Y] ⊗OX

‹D(m)

X]/S]
−→
d
· · · −→

d
ωX]/Y] ⊗OX

‹D(m)

X]/S]
,

where ‹D(m)

X]/S]
is the 0th term. By using the similar to 7.5.10.2 arguments, we get by extension from

7.5.10.3.1 that the canonical isomorphism of Db
Q,coh(r‹D(m)

X]/S]
) of the form

D̃R
(m)

X]/Y] [df ]
∼−→ ‹D(m)

Y]←X]/S]
. (7.5.10.3.2)

Let E ∈ D−qc(l‹D(m)

X]/S]
). The canonical map

D̃R
(m)

X]/Y] ⊗L
D̃(m)

X]/S′]
E → D̃R

(m)

X]/Y]
“⊗L
D̃(m)

X]/S′]
E (7.5.10.3.3)

is an isomorphism and will be denoted by Ω•X]/Y] ⊗OX
E .

Example 7.5.10.4. Suppose Y] = S]. Since in that case ‹D(m)

X]→Y]/S],Q = BX,Q and ‹D(m)

Y]←X]/S]
=

ω̃
(m)

X]/S],Q, then 7.5.10.2.3 and of 7.5.10.3.2 can be reformulated as follows.

(a) We have the exact sequence of coherent left ‹D(m)

X]/S],Q-modules:

0→ ‹D(m)

X]/S],Q ⊗OX
∧dTX]/Y] · · · −→

δ

‹D(m)

X]/S],Q ⊗OX
TX]/Y] −→

δ

‹D(m)

X]/S],Q → BX,Q → 0, (7.5.10.4.1)

i.e. the canonical complex morphism

S̃p
(m)

X]/S],Q → BX,Q. (7.5.10.4.2)

is a quasi-isomorphism. In particular, we get

BX,Q ∈ Db
perf(‹D(m)

X]/S],Q). (7.5.10.4.3)

(b) The map ω̃(m)

X]/S],Q ⊗BX
‹D(m)

X]/S],Q

β→ ω̃
(m)

X]/S],Q given by the structure of a right ‹D(m)

X]/S],Q-module on

ω̃
(m)

X]/S],Q induces a ‹D(m)

X]/S],Q-linear resolution DR(‹D(m)

X]/S],Q)[dX/S]
∼−→ ω̃

(m)

X]/S],Q of ω̃(m)

X]/S],Q.

When m = 0, we can remove Q, i.e. we have similar results by replacing ‹D(m)

X]/S],Q with ‹D(0)

X]/S]
.

Proposition 7.5.10.5. We suppose the rank of Ω1
X]/S] is constant and equal to d.

(a) We have Exti
D̃(m)

X]/S],Q

(BX,Q, ‹D(m)

X]/S],Q) = 0 for i 6= d.
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(b) There is a canonical isomorphism of right ‹D(m)

X]/S],Q-modules

Extd
D̃(m)

X]/S],Q

(BX,Q, ‹D(m)

X]/S],Q)
∼−→ ω̃

(m)

X]/S],Q.

When m = 0, we can remove Q, i.e. we have similar results by replacing ‹D(m)

X]/S],Q with ‹D(0)

X]/S]
, BX,Q

with BX and ω̃(m)

X]/S],Q with ω̃X]/S] .

Proof. By using the flatness of the extensions BX ⊗OX
D(0)

X]/S],Q → ‹D(m)

X]/S],Q, we get the level m case
from the level 0 one of 4.7.3.14.

Proposition 7.5.10.6 (Berthelot). Let S] be a nice fine V-log formal scheme (see definition 3.3.1.10).
Moreover, let X] → S] be a log smooth morphism of log formal schemes. We suppose X is locally
noetherian, X is V-flat, S is regular and the rank of Ω1

X]/S] is constant and equal to d. Let r :=

sups∈f(X) dimOS,s. Set “D(0)

X]/S]
:= Γ(X, “D(0)

X]/S]
) and “D(0)

X]/S],Q := Γ(X, “D(0)

X]/S],Q).

(a) The ring “D(0)

X]/S]
:= Γ(X, “D(0)

X]/S]
) has homological global dimension equal to 2d+ r + 1.

(b) Let E be a p-torsion free left “D(0)

X]/S]
-module of finite type. Then E admits a resolution by projective

of finite type left “D(0)

X]/S]
-modules of length ≤ 2d+ r.

(c) Let E be a left “D(0)

X]/S],Q-module of finite type. Then E admits a resolution by projective of finite

type left “D(0)

X]/S],Q-modules of length ≤ 2d+ r.

(d) We have the inequalities d ≤ gl .dim(“D(0)

X]/S],Q) ≤ 2d+ r.

Proof. 1) Let us exhibit a left “D(0)

X]/S]
-module E such that Ext2d+r+1

D̂
(0)

X]/S]

(E, “D(0)

X]/S]
) 6= 0. We use more or

less the same example than 2.3.4.5. Let s ∈ f(X) such that dimOS,s = r, s1, . . . , sr ∈ mS,x ⊂ OS,s be
a regular sequence of generators and let s1, . . . , sr ∈⊂ OS be some lifting. Since π, s1, . . . , sr, t

p
1, . . . , t

p
d

are in the center of “D(0)

X]/S]
then the sub-OX-module of OX generated by (π, s1, . . . , sr, t

p
1, . . . , t

p
d) is in

fact a sub-“D(0)

X]/S]
-module of OX. Hence, we get a left “D(0)

X]/S]
-module (resp. a left “D(0)

X]/S]
-module) by

setting E := OX/(π, s1, . . . , sr, t
p
1, . . . , t

p
d) (resp. E = Γ(X, E)). By using the level 0 case (without Q) of

7.5.10.5, we conclude similarly to 2.3.4.5 that Ext2d+r+1

D̂
(0)

X]/S]

(E, “D(0)

X]/S]
) 6= 0.

2) The inequality d ≤ gl .dim “D(0)

X]/S],Q follows from 7.5.10.5.
3) By using 1.4.3.31 and 2.3.4.5, we get the rest of the proposition.

Proposition 7.5.10.7. Assume f is quasi-compact and quasi-separated morphism.

(a) For any E ∈ D−Q,qc(l‹D(m)

X]/S]
), we have the isomorphism:

f
(m)
+ (E)

∼−→ Rf∗
Ä
Ω•X]/Y] ⊗OX

E
ä

[df ]; (7.5.10.7.1)

For any E ∈ D(l‹D(m)

X]/S],Q), we have the isomorphism:

f+(E)
∼−→ Rf∗

Ä
Ω•X]/Y] ⊗OX

E
ä

[df ]; (7.5.10.7.2)

(b) For anyM∈ D−Q,qc(r‹D(m)

X]/S]
), we have the isomorphism:

f
(m)
+ (M)

∼−→ Rf∗
Ä
M⊗OX

T •X]/Y]

ä
. (7.5.10.7.3)

For anyM∈ D(r‹D(m)

X]/S],Q), we have the isomorphism:

f+(M)
∼−→ Rf∗

Ä
M⊗OX

T •X]/Y]

ä
. (7.5.10.7.4)
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When m = 0, we can remove Q.

Proof. By using 9.2.4.2.1, the isomorphism 7.5.10.7.1 (resp. 7.5.10.7.3) is a consequence of 9.4.1.2.1 (resp.
7.5.10.3.2). Recalling the definition 7.5.8.3, we get the other isomorphisms by using the isomorphism
equal to the image via→l

∗
Q of 9.4.1.2.1 (resp. 7.5.10.3.2)

Proposition 7.5.10.8. Let ∗ ∈ {l, r}.

(a) For E ∈ D−coh(∗‹D(m)

Y]/S]
), we have f̃ (m)!(E) ∈ D−coh(∗‹D(m)

X]/S]
).

(b) For E ′ ∈ D−Q,qc(l‹D(m′)

Y]/S]
), we have the isomorphism of D−Q,qc(l‹D(m)

X]/S]
):‹D(m)

X]/S]
“⊗L
D̃(m′)

X]/S]
f̃ !(m′)(E ′) ∼−→ f̃ (m)!(‹D(m)

Y]/S]
“⊗L
D̃(m′)

Y]/S]
E ′),

and similarly for complexes of right modules.

(c) For E ′ ∈ D−coh(l‹D(m′)

Y]/S],Q), we have the isomorphism of D−coh(l‹D(m)

X]/S],Q):‹D(m)

X]/S],Q ⊗
L
D̃(m′)

X]/S],Q

f̃ !(m′)(E ′) ∼−→ f̃ (m)!(‹D(m)

Y]/S],Q ⊗
L
D̃(m′)

Y]/S],Q

E ′),

and similarly for complexes of right modules.

Proof. a) The first part is a consequence of 5.3.2.7.
b) We denote by S̃p

(m′)

X]/Y] the Spencer complex of level m′ with coefficient in B′X and by S̃p
(m)

X]/Y] the

Spencer complex of level m with coefficient in BX . We have the isomorphisms D−Q,qc(l‹D(m)

X]/S]
):‹D(m)

X]/S]
“⊗L
D̃(m′)

X]/S]
f̃ !(m′)(E ′) ∼−→

7.5.10.2.2
‹D(m)

X]/S]
“⊗L
D̃(m′)

X]/S]

Å
S̃p

(m′)

X]/Y]
“⊗L
f−1D̃(m)

Y]/S]
f−1E ′

ã
[df ]

The third and forth parts are a consequence of the previous ones. Since S̃p
(m′)

X]/Y] ∈ D−coh(l‹D(m′)

X]/S]
), then

we get the first isomorphism of D−Q,qc(l‹D(m)

X]/S]
):‹D(m)

X]/S]
“⊗L
D̃(m′)

X]/S]
S̃p

(m′)

X]/Y]

∼−→ ‹D(m)

X]/S]
⊗L
D̃(m′)

X]/S]

S̃p
(m′)

X]/Y]

∼−→ S̃p
(m)

X]/Y] ,

the last isomorphism is a consequence of the fact that the terms of S̃p
(m′)

X]/Y] are locally free left ‹D(m′)

X]/S]
-

modules. Hence, ‹D(m)

X]/S]
“⊗L
D̃(m′)

X]/S]
f̃ !(m′)(E ′) ∼−→ S̃p

(m)

X]/Y]
“⊗L
f−1D̃(m′)

Y]/S]
f−1E ′[df ]

∼−→ S̃p
(m)

X]/Y]
“⊗L
f−1D̃(m)

Y]/S]
f−1(‹D(m)

Y]/S]
“⊗L
D̃(m′)

Y]/S]
E ′)[df ]

∼−→ f̃ (m)!(‹D(m)

Y]/S]
“⊗L
D̃(m′)

Y]/S]
E ′).

c) Follows from b).

7.5.11 Pushforwards: way-out properties, stability of the coherence, tor di-
mension finiteness, perfectness

We keep notation and hypotheses 7.5.5. We prove in this subsection when log structure are not trivial
and m 6= 0 the proposition 7.5.8.12 remains true up to isogeny (see 9.4.2.3).

Lemma 7.5.11.1. We suppose f is a (not necessary exact) closed immersion and φ = id.

(a) The left (resp. right) ‹D(m)

X]•/S
]
•
-module ‹D(m)

X]•→Y
]
• /S

]
•
(resp. ‹D(m)

Y ]•←X
]
•/S

]
•
) is locally free.

(b) The left (resp. right) ‹D(m)

X]/S]
-module ‹D(m)

X]→Y]/S]
(resp. ‹D(m)

Y]←X]/S]
) is flat.
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Proof. Since ‹D(m)

X]→Y]/S]
∼−→ R←lX∗

‹D(m)

X]•→Y
]
• /S

]
•
and ‹D(m)

Y]←X]/S]
∼−→ R←lX∗

‹D(m)

Y ]•←X
]
•/S

]
•
, using 7.2.1.4, we

reduce to check the first assertion. We can copy the proof of 5.2.3.1.

Proposition 7.5.11.2. We have the following properties:

(a) We have ‹D(m)

X]•/S
]
•→Y

]
• /T

]
•
∈ Db

Q,tdf(
l‹D(m)

X]•/S
]
•
) and ‹D(m)

Y ]• /T
]
•←X

]
•/S

]
•
∈ Db

Q,tdf(
r‹D(m)

X]•/S
]
•
).

(b) We have ‹D(m)

X]/S]→Y]/T]
∈ Db

Q,tdf(
l‹D(m)

X]/S]
) and ‹D(m)

Y]/T]←X]/S]
∈ Db

Q,tdf(
r‹D(m)

X]/S]
).

Proof. 0) Since L←l
∗
X
‹D(m)

X]/S]→Y]/T]
∼−→ ‹D(m)

X]•/T
]
•→Y

]
• /S

]
•
and L←l

∗
X
‹D(m)

Y]/T]←X]/S]
∼−→ ‹D(m)

Y ]• /T
]
•←X

]
•/S

]
•
, then

by using 7.5.5.10.1, we reduce to check ‹D(m)

X]/S]→Y]/T]
∈ Db

Q,tdf(
l‹D(m)

X]/S]
).

1) We prove in this step the proposition in the case where φ = id. Following 9.2.1.1, since the assertion
is étale locally on X, we can suppose there exists an exact closed immersion v : X] ↪→ Y′] and a log etale
morphism Y′] → X] ×S] Y

] whose composite map gives X] ↪→ X] ×S] Y
], the graph of f . Let g be the

composite morphism Y′] → X] ×S] Y
] → Y], BY′ := g∗(BY) g̃ : (Y′,BY′) → ‹Y and ṽ : X̃ → (Y′,BY′)

be the induced morphisms. Set ‹D(m)

X]→Y′]/S]
:= ṽ∗(‹D(m)

Y′]/S]
) and ‹D(m)

Y′]→Y]/S]
:= g̃∗(‹D(m)

Y]/S]
). It follows

from 7.5.10.8.(a) and 7.5.5.13.(c) that we have the isomorphism of Db(l‹D(m)

X]/S]
, rf−1‹D(m)

Y]/S]
):‹D(m)

X]→Y]/S]
∼−→ ‹D(m)

X]→Y′]/S]
⊗L
v−1D̃(m)

Y′]/S]
v−1‹D(m)

Y′]→Y]/S]
.

Since g is log smooth, then following 7.5.10.2.a) we have the canonical isomorphism

S̃p
(m)

Y′]/Y]

∼−→ ‹D(m)

Y′]→Y]/S]

in Db
Q,tdf(

‹D(m)

Y′]/S]
). Hence, ‹D(m)

X]→Y]/S]
is isomorphic in Db

Q,qc(‹D(m)

Y′]/S]
) to a bounded complex whose

terms are of the form ‹D(m)

X]→Y′]/S]
⊗v−1OY′

v−1∧iTY′]/Y] . It follows from 7.5.11.1 that such terms are flat‹D(m)

X]/S]
-modules. Hence, ‹D(m)

X]→Y]/S]
is bounded complex with up to isogeny tor amplitude in [0, dp

X]
].

2) When the diagram 7.5.5.0.1 is cartesian and the morphism f∗BY → BX is an isomorphism (such
case is called the base change one), ‹D(m)

X]/S]
→ ‹D(m)

X]/S]→Y]/T]
is an isomorphism of (‹D(m)

X]/S]
, f−1‹D(m)

Y]/T]
)-

bimodules (see 7.5.6.4).
3) Hence, by using the splitting of the remark 7.5.6.7, we conclude from the above cases 1) and 2) by

using 7.5.5.13.(c).

Corollary 7.5.11.3. Let ∗ ∈ {r, l}. Assume that S and T are noetherian schemes of finite Krull
dimension, f is quasi-compact and quasi-separated.

f̃
(m)
•+ : Db

Q,qc(∗‹D(m)

X]•/S
]
•
)→ Db

Q,qc(∗‹D(m)

Y ]• /T
]
•
), (7.5.11.3.1)

f̃
(m)
+ : Db

Q,qc(∗‹D(m)

X]/T]
)→ Db

Q,qc(∗‹D(m)

Y]/S]
). (7.5.11.3.2)

Proof. By hypotheses, the functor Rf•∗ has finite cohomological dimension. Hence, the functor 7.5.11.3.1
is well defined thanks to 7.5.11.2.(a) (recall definition 7.5.8.1). By construction, since the functors of
the form L←l

∗
X
and L←lX∗ preserve bounded quasi-coherent complexes, then 7.5.11.3.2 is a consequence of

7.5.11.3.1.

Proposition 7.5.11.4. Suppose f is proper, f∗BY → BX is an isomorphism and BY0
is an OY0

-algebra
of finite type. Let ? ∈ {−,b} and ∗ ∈ {r, l}. The functor f (m)

+ sends D?
Q,coh(‹D(m)

X/S) (resp. Db
coh(‹D(m)

X/S,Q))

to D?
Q,coh(‹D(m)

Y]/S]
) (resp. Db

coh(‹D(m)

Y]/S],Q)).

Proof. The non-respective case is a consequence of 7.5.8.12 and 7.5.11.3. The respective case follows
from 7.4.6.6.
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Proposition 7.5.11.5. Suppose f∗BY → BX is an isomorphism and the bottom arrow of 7.5.5.0.1 is the
identity. Suppose f−1BY → BX has finite tor dimension, S is a noetherian scheme of finite Krull dimen-
sion, f is quasi-compact and quasi-separated. Let ∗ ∈ {r, l}. The functor f̃ (m)

•+ sends Dqc,tdf(
∗‹D(m)

X]•/S
]
•
)

to Dqc,tdf(
∗‹D(m)

Y ]• /S
]
•
). The functor f̃ (m)

+ sends Dqc,tdf(
∗‹D(m)

X]/S]
) to Dqc,tdf(

∗‹D(m)

Y]/S]
).

Proof. This is a consequence of 7.3.2.15 (and 7.1.3.6) and 5.3.2.12 (and the fact that the tor amplitude
does not depend on i).

Proposition 7.5.11.6. Suppose f∗BY → BX is an isomorphism and the bottom arrow of 7.5.5.0.1 is
the identity. Suppose BY is an OY -algebra of finite type. Suppose f−1BY → BX has finite tor dimension,
S is a noetherian scheme of finite Krull dimension, f is proper. Let ∗ ∈ {r, l}. The functor f̃ (m)

•+ sends
Dperf(

∗‹D(m)

X]•/S
]
•
) to Dperf(

∗‹D(m)

Y ]• /S
]
•
). The functor f̃ (m)

+ sends Dperf(
∗‹D(m)

X]/S]
) to Dperf(

∗‹D(m)

Y]/S]
).

Proof. Following [Sta22, 08G8], a complex is perfect if and only if it is pseudo-coherent and locally has
finite tor dimension. Hence, this is a consequence of 7.5.11.4 and 7.5.11.5.
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Chapter 8

Localisation of derived categories of
inductive systems of arithmetic
D-modules

8.1 Localisation of derived categories of inductive systems

8.1.1 Topos of inductive systems of sheaves on a topological space
Notation 8.1.1.1. Let I be a partially ordered set and let X be a topological space. An inductive
system indexed by I can be viewed as a projective system indexed by Io the partially ordered set equal
to I as a set but equipped with the ordering opposite to that of I (see 7.1.1.1). We set X(I) := Top(X)Io

the topos of inductive system indexed by I of sheaves on X.

8.1.1.2. Let I be a partially ordered set, {∗} be some one element set and let X be a topological space.
The results of 7.1 can be translated for X(I). Let us fix some notations.

(a) Let u : I → I ′ be an increasing map of partially ordered sets. Following 7.1.2.4.1, since (Io)i′ = (Ii
′
)o,

then we get the morphism of topos

→uX := uo
X : X(I) → X(I′) (8.1.1.2.1)

given for any F ′(•) ∈ X(I′) by →u
−1
X (F ′(•))(i) = F ′(u(i)) and for any F (•) ∈ X(I) by

→uX∗(F
(•))(i′) = lim←−

u(i)≥i′
F (i),

where the projective limit indexed by (Ii
′
)o is that of the functor Cat((Ii

′
)o)op → Sh(XZar) induced

by F (•). Moreover, we have a left adjoint →uX!
of →u

−1
X which is given for any F (•) ∈ X(I) by

→uX!
(F (•))(i′) = lim−→

u(i)≤i′
F (i), (8.1.1.2.2)

where the inductive limit is that of the inductive system Cat(Ii′)→ Sh(XZar) induced by F (•).

(b) In the case where u is a map of the form u : I → {∗}, we get the morphism of topos

→l
(I)
X :=→uX = (→u

−1
X
a→uX∗) : X(I) → X. (8.1.1.2.3)

Suppose I is a filtered set. Then uo : Io → {∗}o is cofiltered (see definition 7.1.2.2). Hence, following
7.1.2.4.3, we get the morphism of topos

→lX,I := (→uX!
a→u
−1
X

) : X → X(I). (8.1.1.2.4)

Following 7.1.2.4.2, we have the formula→l
−1
X,I

(F (•)) =→uX!
(F (•)) = lim−→i∈I F

(i). Moreover,→lX,I∗(F) =

→u
−1
X (F) is the constant inductive system with value F .
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(c) Fix i ∈ I and let i : {∗} → I be the map sending ∗ to i. The morphism of 8.1.1.2.1 is in this case

→iX = (→i
−1
X
a→iX∗) : X → X(I), (8.1.1.2.5)

where X means by abuse of notation Top(X). We have→i
−1
X

(F (•)) = F (i) for any F (•) ∈ X(I) and
we compute

(→iX∗(F))(j) =

®
F if j ≤ i
e otherwise

, (→iX!
(F))(j) =

®
F if j ≥ i
∅ otherwise

(8.1.1.2.6)

where e (resp. ∅) is the final (resp. initial) object of Top(X) for any F ∈ Top(X).

(d) For any continuous map f : X → X ′ of topological spaces, it follows from 7.1.2.9.1 we have the topos
morphism

→
f
I

:= fIo = (f−1
Io a fIo∗) : X(I) → X ′(I) (8.1.1.2.7)

defined by setting
→
f−1

I
(G(•)) : I → Top(X) is the functor i 7→ f−1G(i) and

→
f
I∗

(F (•)) : I → Top(X)

is the functor i 7→ f∗F (i).

Remark 8.1.1.3 (When I has a smallest element). Let I be a partially ordered set and let X be a
topological space.

1. Following 8.1.1.2.5, we have the topoi morphism→iX : X → X(I), following 8.1.1.2.3 we have the
topoi morphism→l

(I)
X : X(I) → X. When I has a smallest element i, we notice (→l

(I)
X )−1 =→iX!

and
(→l

(I)
X )∗ =→i

−1
X

. Hence, we get the adjoint functors (→l
(I)
X )−1 =→iX!

a (→l
(I)
X )∗ =→i

−1
X
a→iX∗.

2. Let D(•) be a sheaf of rings on the topos X(I). We have the ringed topoi morphism→iX : (X,D(i))→
(X(I),D(•)). Suppose I has a smallest element i. Then we get the canonical adjunction ring
morphism (→l

(I)
X )−1(D(i)) → D(•) which induces the ringed topoi morphism →l

(I)
X : (X(I),D(•)) →

(X,D(i)). Moreover, we have the equality of functors (→l
(I)
X )∗ =→i

−1
X

=→i
∗
X

: Mod(D(•))→ Mod(D(i))

given by E(•) 7→ E(i). They have the left adjoint (→l
(I)
X )∗ =→iX!

: Mod(D(i)) → Mod(D(•)) (beware
there are two different functors→iX!

) given by E(i) 7→ D(•) ⊗
(→l

(I)

X
)−1D(i) (→l

(I)
X )−1E(i).

Notation 8.1.1.4. We suppose I has a smallest element i0. Let G(i0) be a left D(i0)-module and
F (i0) ∈ D(D(i0)). We set

D(•)⊗L
D(i0)F (i0) := D(•)⊗L

(→l
(I)

X
)−1D(i0)

(→l
(I)
X )−1F (i0), D(•)⊗D(i0)G(i0) := D(•)⊗

(→l
(I)

X
)−1D(i0) (→l

(I)
X )−1G(i0),

(8.1.1.4.1)

Notation 8.1.1.5. Let I be a partially ordered set and let X be a topological space. Let D(•) be a
sheaf of rings on the topos X(I). A left D(•)-module E(•) = (E(i), α(j,i)) is the data for any i ∈ I of
some D(i)-module E(i) equipped with transition morphisms α(j,i) : E(i) → E(j) which are semi-linear with
respect to the homomorphism D(i) → D(j) for any elements i ≤ j of I.

(a) The category of left D(•)-modules will be denoted by Mod(D(•)) or simply by M(D(•)).

(b) Let E(•),• ∈ C(D(•)). We get

· · · E(•)n−1 → E(•)n → E(•)n+1 · · · (8.1.1.5.1)

the corresponding complexes of left D(•)-modules. If no confusion is possible, we simply write E(•).

(c) Let U be an open subset of X and j : U ↪→ X is the induced open immersion. With notation 8.1.1.2.7
we set D(•)|U :=

→
j−1

I
(D(•)). This yields the ringed topos morphism

→
j
I

:=: (U (I),D(•)|U)→ (X(I),D(•)). (8.1.1.5.2)

We denote by
→
j∗
I

: Mod(D(•)) → Mod(D(•)|U) and
→
j
I∗

: Mod(D(•)|U) → Mod(D(•)) the induced
morphism. We can also simply simply denote by |U the functor

→
j∗
I
. The functor

→
j∗
I
has a left adjoint

that we denote by
→
j
I!

: Mod(D(•)|U) → Mod(D(•)), which is defined by setting
→
j
I!

(G(•)) : I →
Top(X) is the functor i 7→ j!G(i) (the extension by zero functor) for any left D(•)-module G(•).
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(d) Let i ∈ I and U be an open set of X. By definition, X(I) = Sh((Io)\ × XZar). For any (i, U) ∈
(Io)\ ×XZar, from 7.1.2.18.1 we get,

((I≥i)
o)\ × UZar

∼ //

))

(Io)\ ×XZar/(i, U)

j(i,U)

��
(Io)\ ×XZar

(8.1.1.5.3)

where the top right term is the localization of the site (Io)\ × XZar at the object (i, U), j(i,U) is
the forgetful functor (see 4.6.2.3) and the horizontal morphism is an isomorphism of sites. Following
7.1.2.18.3, this yields the open immersion of topoi

j(i,U) : U (I≥i) → X(I). (8.1.1.5.4)

We denote by D(•)|(i,U) := j−1
(i,U)D

(•) and by D(•)|i := j−1
(i,X)D

(•). This yields the ringed topoi mor-
phism j(i,U) : (U (I≥i),D(•)|(i,U))→ (X(I),D(•)) which induces the exact functor j−1

(i,U) : Mod(D(•))→
Mod(D(•)|(i,U)). We get the functor j−1

(i,U) : D(D(•)) → D(D(•)|(i,U)) which will be simply denoted
by |(i,U). Following 7.1.3.3.2, the functor j−1

(i,U) = j∗(i,U) : Mod(D(•)) → Mod(D(•)|(i,U)) has a left
adjoint j(i,X)! : Mod(D(•)|(i,U)) → Mod(D(•)) which is such that for any F (•) ∈ Mod(D(•)|(i,U)) we
have

(j(i,U)!(F (•)))(j) =

®
jU !(F (j)) if j ≤ i
0 otherwise.

(8.1.1.5.5)

Modulo the equivalence of topoi 7.1.2.13.1, the functor j(i,U)! corresponds to the extension by zero
via the open immersion I≥i × U ⊂ I ×X (for the canonical topology).

The functor |(i,X) is equal to →ui,X where ui is the inclusion I≥i ⊂ I of 8.1.1.2.1. In this case, we
simply write |i := |(i,X). We remark that the functor j(i,U) is the composition of the functor |i with
the functor

→
j
I
where j is the inclusion U ⊂ X.

8.1.1.6. With notation 8.1.1.5, let E(•) ∈ K(lD(•)). Following 7.1.3.6, E(•) is a K-flat complex ofK(D(•))
if and only if E(i) is a K-flat complex of K(D(i)) for any i ∈ I.

8.1.2 Ind-isogenies
Let I be a partially ordered set and let X be a topological space. Let D(•) be a sheaf of rings on the
topos X(I). Let ] ∈ {∅,+,−,b}.

Notation 8.1.2.1. Let M(I) be the set of increasing maps χ : I → N. It is endowed with the following
order: χ ≤ χ′ if and only if χ(i) ≤ χ′(i) for an i ∈ I. The partially ordered set M(I) is filtered.

8.1.2.2. We have the following notations and definitions.

(a) For any map χ ∈M(I), for any left D(•)-module E(•) = (E(i), α(j,i)) (also simply denoted by E), we
set

χ∗(E(•)) := (E(i), pχ(j)−χ(i)α(j,i)).

We obtain the functor χ∗ : Mod(D(•)) → Mod(D(•)) as follows: if f (•) : E(•) → F (•) is a morphism
of Mod(D(•)), then χ∗(f (•)) : χ∗(E(•)) → χ∗(F (•)) is the morphism of left D(•)-modules such that
(χ∗(f (•)))(i) = f (i). Since the functor χ∗ : Mod(D(•)) → Mod(D(•)) is exact, then this induces the
functor χ∗ : D](D(•))→ D](D(•)).

(b) If χ1, χ2 ∈M(I), we compute χ∗1 ◦ χ∗2 = (χ1 + χ2)∗, and in particular χ∗1 and χ∗2 commute.

(c) Let χ1, χ2 ∈M(I) such that χ1 ≤ χ2. For any E(•) ∈ D(D(•)), we denote by

θE,χ2,χ1 : χ∗1(E(•))→ χ∗2(E(•)) (8.1.2.2.1)

be the morphism defined by pχ2(i)−χ1(i) : E(i) → E(i) for any i ∈ I.
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(d) Let χ1, χ2, χ3 ∈M(I) such that χ1 ≤ χ2. For any E(•) ∈ D(D(•)), we have

χ∗3(θE,χ2,χ1
) = θE,χ3+χ2,χ3+χ1

. (8.1.2.2.2)

If furthermore χ2 ≤ χ3 then
θE,χ3,χ2

◦ θE,χ2,χ1
= θE,χ3,χ1

. (8.1.2.2.3)

(e) For any E(•) ∈ D(D(•)), it follows from 8.1.2.2.3 that we get a functor θE : M(I) → D(D(•)) given
by χ 7→ χ∗(E(•)), where M(I) is the category associated with its structure of partially ordered set
(see 7.1.2.1). This gives a meaning of the notion of functoriality with respect to χ.

(f) For any map χ ∈ M(I), we write θE,χ := θE,χ,0 : E(•) → χ(E(•)). For instance, when χ = n is the
constant map with value n then θE,χ is the multiplication by pn on E(i) for each i ∈ I.

(g) A morphism f (•) : E(•) → F (•) of D](D(•)) is an “ind-isogeny of D](D(•))” if there exist χ ∈ M(I)
and a morphism g(•) : F (•) → χ∗E(•) of D(D(•)) such that g(•)◦f (•) = θE,χ and χ∗(f (•))◦g(•) = θF,χ.
We denote by Ξ(D(•)) the set of ind-isogenies of D](D(•)). If no confusion is possible with respect
to D(•), we simply write Ξ] := Ξ](D(•)). For instance, the morphisms of the form 8.1.2.2.1 are
ind-isogenies (see 8.1.4.11).

Lemma 8.1.2.3. Let Ab be the category of abelian groups. For any G(•) ∈ D](D(•)), let HG(•) : D](D(•))→
Ab be the homological functor defined by setting for any E(•) ∈ D](D(•))

HG(•)(E(•)) := lim−→
χ∈M(I)

HomD(D(•))(G(•), χ∗E(•)).

Let f : E(•) → F (•) be a morphism of D](D(•)). The morphism f (•) is an ind-isogeny if and only if
HG(•)(f (•)) is an isomorphism for any G(•) ∈ D](D(•)).

Proof. 1) Suppose that f (•) ∈ Ξ]. Hence there exists χ0 ∈M(I) and a morphism g(•) : F (•) → χ∗0(E(•))
of D(D(•)) such that g(•) ◦ f (•) = θE,χ and χ∗0(f (•)) ◦ g(•) = θF,χ

a) Let us check that HG(•)(f (•)) is injective. Let u(•) : G(•) → χ∗(E(•)) be a morphism of D](D(•))
such that the image of χ∗(f (•)) ◦ u(•) in HG(•)(F (•)) is null. It is a question of checking that the
image of u(•) in HG(•)(E(•)) is null. By increasing χ0 and χ if necessary, we can suppose that χ = χ0

and that χ∗(f (•)) ◦ u(•) = 0 in D](D(•)). By using the formula 8.1.2.2.2, we get the first equality
θE,2χ,χ = χ∗(θE,χ) = χ∗(g(•)) ◦ χ∗(f (•)). This yields θE,2χ,χ ◦ u(•) = 0. Hence, we are done.

b) Let us check the surjectivity of HG(•)(f (•)). Let v(•) : G(•) → χ∗F (•) be a morphism of D](D(•)).
By increasing χ0 and χ if necessary, we can suppose χ = χ0. Set u(•) := χ∗(g(•))◦v(•) : G(•) → (2χ)∗E(•).
We compute (2χ∗)(f (•)) ◦ u(•) = θF,2χ,χ ◦ v(•). Hence, the class of u(•) is sent to the class of v(•) via
HG(•)(f (•)).

2) Suppose now that HG(•)(f (•)) is an isomorphism for any G(•) ∈ D](D(•)). Since HF(•)(f (•)) is
in particular surjective, then there exist χ ∈ M(I) and a morphism g(•) : F (•) → χ∗E(•) of D(D(•))
such that χ∗(f (•)) ◦ g(•) = θF,χ. The functor HE(•)(f (•)) sends the class of g(•) ◦ f (•) to the class of
χ∗(f (•)) ◦ g(•) ◦ f (•) = θF,χ ◦ f (•), which is the class of f (•). Since HE(•)(f (•)) is in particular injective,
the class of g(•) ◦ f (•) is equal to the class of the identity of E(•). Increasing χ if necessary, this yields
that the morphism g(•) ◦ f (•) = θE,χ.

Notation 8.1.2.4. The subset of ind-isogenies is a saturated multiplicative system compatible with its
triangulated structure (this follows from Proposition 7.4.1.7 and Lemma 8.1.2.3). The localisation of
D](D(•)) with respect to ind-isogenies is denoted by D−→

]
Q(D(•)).

8.1.2.5. A morphism f (•) : E(•) → F (•) of D−→Q(D(•)) can be represented by a morphism φ(•) : E(•) →

χ∗F (•) of D(D(•)), i.e. by E(•) φ(•)

→ χ∗F (•) θF,χ← F (•) for some χ ∈ M(I). Moreover, two morphisms
φ

(•)
1 : E(•) → χ∗1F (•) and φ(•)

2 : E(•) → χ∗2F (•) of D(D(•)) induce the same arrow E(•) → F (•) of D−→Q(D(•))

if and only if there exists χ ≥ χ1, χ2, such that both composite arrows E(•) φ
(•)
1−→ χ∗1F (•) → χ∗F (•) and

E(•) φ
(•)
2−→ χ∗2F (•) → χ∗F (•) are equal. To sum-up, for any E(•),F (•) ∈ D−→Q(D(•)), we have the formula

HomD−→Q(D(•))(E(•),F (•)) = lim−→
χ∈M(I)

HomD(D(•))(E(•), χ∗F (•)). (8.1.2.5.1)
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Remark 8.1.2.6. Let a be an integer and χ ∈M(I). The truncation functors τ≤a : D(D(•))→ D≤a(D(•))
and τ≥a : D(D(•)) → D≥a(D(•)) (we have chosen to use notation [KS06, 12.3.1], this is not the stupid
truncation and we prefer to put the index above and not below contrary to for example [Sta22, 0118])
commute with the functors χ∗ : D(D(•))→ D(D(•)), i.e., we compute we have the equality

χ∗τ≤aE(•) = τ≤aχ∗E(•). (8.1.2.6.1)

Similarly, we have the equality
τ≥aχ∗E(•) = χ∗τ≥aE(•). (8.1.2.6.2)

Lemma 8.1.2.7. The canonical functors D−→
]
Q(D(•)) → D−→Q(D(•)) and D−→

b
Q(D(•)) → D−→

]
Q(D(•)) are fully

faithful.

Proof. The proof is divided into the following two (non-symmetric) parts. i) With the notation 8.1.1.5.1,
let a ≤ b be two integers and let f (•) : E(•),• → F (•),• be a morphism of D(D(•)) such that E(•)n = 0 for
any n < a (resp. F (•)n = 0 for any n > b and E(•)n = 0 for any n 6∈ [a, b]). Suppose there exist χ ∈M(I)
and a morphism g(•) : F (•) → χ∗E(•) of D(D(•)) such that g(•) ◦ f (•) = θE,χ and χ∗(f (•)) ◦ g(•) = θF,χ.
We denote by φ(•) : E(•) → τ≥aF (•) the composition of the canonical morphism F (•) → τ≥aF (•) with
f (•). Since the canonical morphism χ∗E(•) → τ≥aχ∗E(•) is an isomorphism, we get the morphism
ψ(•) : τ≥aF (•) → χ∗E(•) whose composition with the canonical morphism F (•) → τ≥aF (•) is g(•). We
get ψ(•) ◦ φ(•) = θE,χ and χ∗(φ(•)) ◦ ψ(•) = θτ≤aF,χ, i.e. φ(•) is an ind-isogeny. Hence, by using [Har66,
I.3.3.(ii)], we get that the canonical functor D−→

+
Q (D(•))→ D−→Q(D(•)) and D−→

b
Q(D(•))→ D−→

−
Q (D(•)) are fully

faithful.
ii) Let a ≤ b be two integers and let f (•) : E(•),• → F (•),• be a morphism of D(D(•)) such that

F (•)n = 0 for any n〉b (resp. E(•)n = 0 for any n < a and F (•)n = 0 for any n 6∈ [a, b]). Suppose
there exist χ ∈ M(I) and a morphism g(•) : F (•) → χ∗E(•) of D(D(•)) such that g(•) ◦ f (•) = θE,χ and
χ∗(f (•)) ◦ g(•) = θF,χ. We denote by φ(•) : τ≤bE(•) → F (•) the composition of the canonical morphism
τ≤bE(•) → E(•) with f (•). Since the canonical morphism τ≤bχ∗F (•) → χ∗F (•) is an isomorphism, we
get a (unique) morphism ψ(•) : F (•) → τ≤bχ∗E(•) = χ∗τ≤bE(•) whose composition with the canonical
morphism τ≤bχ∗E(•) → χ∗E(•) is g(•). We compute ψ(•) ◦ φ(•) = θτ≤aE,χ and χ∗(φ(•)) ◦ ψ(•) = θF,χ,
i.e. φ(•) is an ind-isogeny. Hence, by using [Har66, I.3.3.(i)], we can prove that the canonical functor
D−→
−
Q (D(•))→ D−→Q(D(•)) and D−→

b
Q(D(•))→ D−→

+
Q (D(•)) are fully faithful.

Remark 8.1.2.8. Beware that the images of the functors of 8.1.2.7 are not equal to the respective essential
images, i.e. we do not have strictly full subcategories but only full subcategories.

8.1.2.9. Since the functor − ⊗Z Q : D](D(•)) → D](D(•)
Q ) sends ind-isogenies to isomorphisms we get

the factorization −⊗Z Q : D−→
]
Q(D(•))→ D](D(•)

Q ).

8.1.3 Lim-isomorphisms
Let I be a partially ordered set and let X be a topological space. Let D(•) be a sheaf of rings on the
topos X(I). Let ] ∈ {∅,+,−,b}.

Notation 8.1.3.1. Let L(I) be the set of increasing maps λ : I → I such that λ(i) ≥ i. The set L(I) is
closed under composition and is endowed with the following order: λ ≤ µ if and only if λ(i) ≤ µ(i) for
an i ∈ I. The partially ordered set L(I) is filtered.

8.1.3.2. We have the following notations and definitions.

(a) For any map λ ∈ L(I), for any left D(•)-module E(•) = (E(i), α(j,i)) (also simply denoted by E), we
set

λ∗(E(•)) := (E(λ(i)), α(λ(j),λ(i)))i≤j .

We obtain the functor λ∗ : Mod(D(•))→ Mod(λ∗D(•)) as follows: if f (•) : E(•) → F (•) is a morphism
of Mod(D(•)), then λ∗(f (•)) : λ∗(E(•))→ λ∗(F (•)) is the morphism of left λ∗D(•)-modules such that
(λ∗(f (•)))(i) = f (λ(i)). Since the functor λ∗ : Mod(D(•))→ Mod(λ∗D(•)) is exact, then this induces
the functor λ∗ : D](D(•))→ D](λ∗D(•)).

(b) When λ1, λ2 ∈ L(I), we compute λ∗1 ◦ λ∗2 = (λ2 ◦ λ1)∗.
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(c) Let χ ∈ M(I) and λ ∈ L(I). The functors χ∗ and λ∗ defined respectively at 8.1.2.2.a and 8.1.3.2.a
do not commute. However, we have χ ◦ λ ∈M(I) and for any E(•) ∈ D(D(•)) we have the canonical
equalities

λ∗ ◦ χ∗(E(•)) = (χ ◦ λ)∗ ◦ λ∗(E(•)), λ∗(θE,χ) = θλ∗E,χ◦λ. (8.1.3.2.1)

This yields that the functor λ∗ : D](D(•)) → D](λ∗D(•)) the sends the ind-isogenies to the ind-
isogenies. Hence, we get the δ-functor λ∗ : D−→

]
Q(D(•))→ D−→

]
Q(λ∗D(•)).

(d) Let λ1, λ2 ∈ L(I). When λ1 ≤ λ2, for any left D(•)-module E(•) = (E(i), α(j,i)) we have the canon-
ical morphism λ∗1(E(•)) → λ∗2(E(•)) defined by the morphism α(λ2(i),λ1(i)) : E(λ1(i)) → E(λ2(i)). The
morphism λ∗1D(•) → λ∗2D(•) is in fact a ring homomorphism and the morphism λ∗1(E(•))→ λ∗2(E(•))

is λ∗1D(•)-linear. This yields the morphisms of functors ρλ1,λ2 : D](D(•)) → D−→
]
Q(λ∗1D(•)) (resp.

ρλ2,λ1
: D−→

]
Q(D(•))→ D−→

]
Q(λ∗1D(•))) of the form λ∗1 → λ∗2. For any E(•) ∈ ObD](D(•)) = Ob D−→

]
Q(D(•)),

we set ρE,λ2,λ1
:= ρλ2,λ1

(E(•)) : λ∗1(E(•))→ λ∗2(E(•)). When λ1 = id, we set ρE,λ2
:= ρE,λ2,id.

(e) Let λ1, λ2, λ3 ∈ L(I) such that λ1 ≤ λ2. For any E(•) ∈ Ob D−→
]
Q(D(•)), we have

λ∗3(ρE,λ2,λ1) = ρE,λ2◦λ3,λ1◦λ3 . (8.1.3.2.2)

If furthermore λ2 ≤ λ3 then
ρE,λ3,λ2

◦ ρE,λ2,λ1
= ρE,λ3,λ1

. (8.1.3.2.3)

(f) For any E(•) ∈ Ob D−→
]
Q(D(•)), it follows from 8.1.3.2.3 that we get a functor ρE : L(I) → D−→

]
Q(D(•))

given by ρ 7→ ρ∗(E(•)), where L(I) is the category associated with its structure of partially ordered
set (see 7.1.2.1). This gives a meaning of the notion of functoriality with respect to λ.

(g) We denote by Λ](D(•)) the set of morphisms f (•) : E(•) → F (•) of D−→
]
Q(D(•)) such that there exist λ ∈

L(I) and a morphism g(•) : F (•) → λ∗E(•) of D−→Q(D(•)) such that g(•)◦f (•) = ρE,λ and λ∗(f (•))◦g(•) =

ρF,λ in D−→
]
Q(D(•)). If no confusion is possible with respect to D(•), we simply write Λ] := Λ](D(•)).

The morphisms belonging to Λ are called “lim-isomorphisms”. For instance, the morphisms of the
form ρλ1,λ2

are lim-isomorphisms (see 8.1.4.11).

Remark 8.1.3.3. Let λ ∈ L(I). By definition, we have the equality of functors λ∗ = →λ
−1
X

(see notation
8.1.1.2.1).

Lemma 8.1.3.4. For any G(•) ∈ D−→
]
Q(D(•)), let IG(•) : D−→

]
Q(D(•)) → Ab the cohomological functor with

value in the category of abelian groups defined by setting for any E(•) ∈ D−→
]
Q(D(•))

IG(•)(E(•)) := lim−→
λ∈L(I)

HomD−→Q(D(•))(G(•), λ∗E(•)).

Let f : E(•) → F (•) be a morphism of D](D(•)). The morphism f (•) is a lim-isomorphism if and only if
IG(•)(f (•)) is an isomorphism for any G(•) ∈ D−→

]
Q(D(•)).

Proof. 1) Suppose that f (•) ∈ Λ]. Hence there exists λ0 ∈ L(I) and a morphism g(•) : F (•) → λ∗0E(•) of
D−→
]
Q(D(•)) such that g(•) ◦ f (•) = ρE,λ0

and λ∗0(f (•)) ◦ g(•) = ρF,λ0
.

a) Let us check that IG(•)(f (•)) is injective. Let λ ∈ L(I) and u(•) : G(•) → λ∗E(•) be a morphism of
D−→
]
Q(D(•)) such that the image of λ∗(f (•))◦u(•) in IG(•)(F (•)) is 0. By increasing λ0 and λ if necessary, we

can suppose that λ = λ0 and λ∗(f (•)) ◦u(•) = 0 in D−→
]
Q(D(•)). We have ρE,λ◦λ,λ ◦u(•) = λ∗(ρE,λ) ◦u(•) =

λ∗(g(•)) ◦ λ∗(f (•)) ◦ u(•) = 0. Hence, the image of u(•) in IG(•)(F (•)) is 0.
b) Let us check the surjectivity of IG(•)(f (•)). Let λ ∈ L(I) and v(•) : G(•) → λ∗F (•) be a morphism

of D−→
]
Q(D(•)). By increasing λ0 or λ if necessary, we can suppose that λ = λ0. Set u(•) := λ∗(g(•)) ◦

v(•) : G(•) → (λ ◦λ)∗E(•). Then, the image of u(•) in IG(•)(E(•)) is sent to the image of v(•) in IG(•)(F (•))
via IG(•)(f (•)).

2) Suppose now that IG(•)(f (•)) is an isomorphism for any G(•) ∈ D](D(•)). Since IF(•)(f (•)) is in
particular surjective, then there exists λ ∈ L(I) and a morphism g(•) : F (•) → λ∗E(•) of D−→

]
Q(D(•)) such
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that λ∗(f (•)) ◦ g(•) = ρF,λ. The functor IE(•)(f (•)) sends the class of g(•) ◦ f (•) in IG(•)(E(•)) to the class
of λ∗(f (•)) ◦ g(•) ◦ f (•) = ρF,λ ◦ f (•) in IG(•)(F (•)), which is also the class of f (•). Since IE(•)(f (•)) is in
particular injective, the class of g(•) ◦ f (•) is equal to the class of the identity of E(•). By increasing λ if
necessary, this yields g(•) ◦ f (•) = ρE,λ.

Notation 8.1.3.5. It follows from Lemma 8.1.3.4 and Proposition 7.4.1.7 that Λ] is a saturated mul-
tiplicative system of D−→

]
Q(D(•)) compatible with its triangulated structure. By localizing D−→

]
Q(D(•)) with

respect to lim-isomorphisms we get a category denoted by LD−→
]
Q(D(•)).

Lemma 8.1.3.6. The canonical functors LD−→
]
Q(D(•)) → LD−→Q(D(•)) and LD−→

b
Q(D(•)) → LD−→

]
Q(D(•)) are

fully faithful.

Proof. We can copy the proof of 8.1.2.7.

Remark 8.1.3.7. Beware that the images of the functors of 8.1.4.6 are not equal to the respective essential
images, i.e. we do not have strictly full subcategories.

Definition 8.1.3.8. We have the following definitions.

(a) Given an increasing map u : I → I ′ of partially ordered sets, we say that u is an “L-equivalence” if
there exists an increasing map v : I ′ → I such that u ◦ v ∈ L(I ′), v ◦ u ∈ L(I).

(b) We say a subset J ⊂ I is “strictly cofinal” if the inclusion of J in I is an L-equivalence.

(c) We say I is “strictly filtered” if it is non-empty and if for all i ∈ I the subset I≥i of I is strictly
cofinal.

Remark 8.1.3.9. (a) If I is strictly filtered then I is filtered, which justifies the terminology.

(b) Suppose I satisfies the following property: for any i, j ∈ I, the set {k ∈ I such that i ≤ k, j ≤ k} has
a smallest element that we denote by sup{i, j} (i.e. Io satisfies 7.1.2.15). Then I is strictly filtered.
Indeed, for any i ∈ I we get the map ψ : I → I≥i given by j 7→ sup{i, j}. Denoting by φ : I≥i → I
the inclusion, we get φ ◦ ψ ∈ L(I), ψ ◦ φ ∈ L(I≥i).

(c) Let u : I → I ′ be an increasing map of partially ordered sets which is an L-equivalence. Then I is
filtered if and only if I ′ is filtered.

8.1.3.10. Let u : I → I ′ be an increasing map of partially ordered sets. For any F ′(•) ∈ X(I′), we have
the canonical morphism

lim−→
i∈I
E(u(i)) → lim−→

i′∈I′
E(i′) (8.1.3.10.1)

induced by the functorial in i ∈ I maps E(u(i)) → lim−→i′∈I′ E
(i′).

Lemma 8.1.3.11. When u is an L-equivalence then the morphism 8.1.3.10.1 is an isomorphism.

Proof. a) Let λ ∈ L(I). Since λ(i) ≥ i for any i ∈ I, we get the canonical morphism lim−→i∈I E
(i) →

lim−→i∈I E
(λ(i)) which is induced by the functorial in i ∈ I maps E(i) → E(λ(i)) → lim−→i∈I E

(λ(i)). By using
the universal property of the inductive limits, we can check that this morphism lim−→i∈I E

(i) → lim−→i∈I E
(λ(i))

is the inverse of 8.1.3.10.1 (when u = λ).
b) Let us check the general case. By hypothesis, there exists v : I ′ → I such that u ◦ v ∈ L(I ′),

v◦u ∈ L(I). Since u◦v ∈ L(I ′), from the part a) of the proof, the canonical morphism lim−→i′∈I′ E
(u◦v(i′)) →

lim−→i′∈I′ E
(i′) of 8.1.3.10.1 is an isomorphism. We have the canonical morphism lim−→i′∈I′ E

(u◦v(i′)) →
lim−→i∈I E

(u(i)) given by the functorial in i′ ∈ I ′ maps E(u◦v(i′)) → lim−→i∈I E
(u(i)). This yields the morphism

lim−→i′∈I′ E
(i′) ∼←− lim−→i′∈I′ E

(u◦v(i′)) → lim−→i∈I E
(u(i)), which is the inverse of 8.1.3.10.1 (again use the

universal property of the inductive limits).
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8.1.4 Lim-ind-isogenies
Let I be a partially ordered set and let X be a topological space. Let D(•) be a sheaf of rings on the
topos X(I). Let ] ∈ {∅,+,−,b}.

Notation 8.1.4.1. We endow the set L(I) ×M(I) with the order product, i.e. (λ1, χ1) ≤ (λ2, χ2) in
L(I)×M(I) if and only if χ1 ≤ χ2 in M(I) and λ1 ≤ λ2 in L(I). Let (λ1, χ1) ≤ (λ2, χ2) in L(I)×M(I).
Let E(•) ∈ D](D(•)). We get the canonical morphism χ∗1λ

∗
1E(•) → χ∗2λ

∗
2E(•) which is given by

σE,(λ2,χ2),(λ1,χ1) := θλ∗2E,(χ2,χ1) ◦ χ∗1(ρE,(λ2,λ1)) = χ∗2(ρE,(λ2,λ1)) ◦ θλ∗1E,(χ2,χ1) (8.1.4.1.1)

We set σE,(λ2,χ2) := σE,(λ2,χ2),(id,0). For any (λ1, χ1) ≤ (λ2, χ2) ≤ (λ3, χ3) in L(I)×M(I), using 8.1.2.2.3
and 8.1.3.2.3 we get

σE,(λ3,χ3),(λ1,χ1) = σE,(λ3,χ3),(λ2,χ2) ◦ σE,(λ2,χ2),(λ1,χ1). (8.1.4.1.2)

For any E(•) ∈ D(D(•)), it follows from 8.1.4.1.2 that we get a functor σE : L(I) ×M(I) → D(D(•))
given by (λ, χ) 7→ χ∗ρ∗(E(•)), where L(I)×M(I) is the category associated with its structure of partially
ordered set (see 7.1.2.1). This gives a meaning of the notion of functoriality with respect to (ρ, χ).

8.1.4.2. Let (λ1, χ1) and (λ2, χ2) be two elements of L(I)×M(I). Using 8.1.2.2.a and 8.1.3.2.c, we get
the equalities

χ∗2λ
∗
2χ
∗
1λ
∗
1E(•) = χ∗2(χ1 ◦ λ2)∗λ∗2λ

∗
1E(•) = (χ2 + χ1 ◦ λ2)∗(λ1 ◦ λ2)∗E(•) (8.1.4.2.1)

Via 8.1.4.2.1, the canonical morphism σχ∗1λ∗1E,(λ2,χ2) : χ∗1λ
∗
1E(•) → χ∗2λ

∗
2χ
∗
1λ
∗
1E(•) satisfies the equality

σχ∗1λ∗1E,(λ2,χ2) = σE,(λ1◦λ2,χ2+χ1◦λ2),(λ1,χ1). (8.1.4.2.2)

Moreover, via 8.1.4.2.1, the canonical morphism χ∗2λ
∗
2σE,(λ1,χ1) : χ∗2λ

∗
2E(•) → χ∗2λ

∗
2χ
∗
1λ
∗
1E(•) satisfies the

equality
χ∗2λ

∗
2σE,(λ1,χ1) = σE,(λ1◦λ2,χ2+χ1◦λ2),(λ2,χ2). (8.1.4.2.3)

In particular, we see that the morphisms of the form 8.1.4.1.1 are closed under the functors of the form
χ∗ or λ∗.

Definition 8.1.4.3. Let S](D(•)) be the collection of morphisms f (•) : E(•) → F (•) of D](D(•)) such
that there exist χ ∈ M(I), λ ∈ L(I) and a morphism g(•) : F (•) → χ∗λ∗E(•) of D(D(•)) such that
g(•) ◦ f (•) = σE,(λ,χ) and χ∗λ∗(f (•)) ◦ g(•) = σF,(λ,χ). If no confusion is possible with respect to D(•),
we simply write S] := S](D(•)). The morphisms of S] are called “lim-ind-isogenies”. For instance, the
morphisms of the form 8.1.4.1.1 are lim-ind-isomorphisms (see 8.1.4.11).

Lemma 8.1.4.4. For any G(•) ∈ D](D(•)), let JG(•) : D](D(•))→ Ab be the cohomological functor with
value in the category of abelian groups defined by setting for any E(•) ∈ D](D(•))

JG(•)(E(•)) := lim−→
λ∈L

lim−→
χ∈M

HomD(D(•))(G(•), χ∗λ∗E(•)).

Let f : E(•) → F (•) be a morphism of D](D(•)). The morphism f (•) is a lim-ind-isogeny if and only if
JG(•)(f (•)) is an isomorphism for any G(•) ∈ D](D(•)).

Proof. By using 8.1.4.2, we can copy the proof of 8.1.3.4.

8.1.4.5. It follows from 8.1.4.4 and 7.4.1.7 that S] is a saturated multiplicative system of D](D(•))
compatible with the triangulated structure. We get the localised triangle category (S])−1D](D(•)).

Lemma 8.1.4.6. The canonical functors (S])−1D](D(•))→ S−1D(D(•)) and (Sb)−1Db(D(•))→ (S])−1D](D(•))
are fully faithful.

Proof. We can copy the proof of 8.1.2.7.
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8.1.4.7. Amorphism f (•) : E(•) → F (•) of (S])−1D](D(•)) can be represented by a morphism φ(•) : E(•) →

χ∗λ∗F (•), i.e. by E(•) φ
(•)

→ χ∗λ∗dF (•) σF,(λ,χ)← F (•) for some χ ∈ M(I) and λ ∈ L(I). Moreover, for any
χ1, χ2 ∈ M(I) and λ1, λ2 ∈ L(I), two morphisms φ(•)

1 : E(•) → χ∗1λ
∗
1F (•) and φ(•)

2 : E(•) → χ∗2λ
∗
2F (•) of

D(D(•)) induce the same arrow E(•) → F (•) of (S])−1D](D(•)) if and only if there exists χ ≥ χ1, χ2 and

λ ≥ λ1, λ2, such that both composite arrows E(•) φ
(•)
1−→ χ∗1λ

∗
1F (•) → χ∗λ∗F (•) and E(•) φ

(•)
2−→ χ∗2λ

∗
2F (•) →

χ∗λ∗F (•) are equal. This yields the formula

HomS]−1D](D(•))(E(•),F (•)) = lim−→
(λ,χ)∈L(I)×M(I)

HomD](D(•))(E(•), χ∗λ∗F (•)). (8.1.4.7.1)

Remark that for any χ ∈ M(I) and λ ∈ L(I), F (•) ∈ D](D(•)), since χ ◦ λ ≥ χ in M(I), we have the
morphism σE,(λ,χ◦λ),(λ,χ) : χ∗λ∗F (•) → (χ◦λ)∗λ∗F (•) = λ∗χ∗F (•) (see the formula 8.1.3.2.c). This yields

HomS]−1D](D(•))(E(•),F (•)) = lim−→
(λ,χ)∈L(I)×M(I)

HomD](D(•))(E(•), λ∗χ∗F (•)) (8.1.4.7.2)

Lemma 8.1.4.8. (a) Let χ1 ∈M(I) and f (•) : E(•) → χ∗1F (•) be a morphism of D(D(•)). If there exist
χ2 ∈ M(I) and a morphism g(•) : F (•) → χ∗2E(•) of D(D(•)) such that we have the equalities in
D−→Q(D(•)) (not necessarily in D(D(•))): χ∗1(g(•)) ◦ f (•) = θE,χ2+χ1

and χ∗2(f (•)) ◦ g(•) = θE,χ2+χ1
,

then f (•) is an ind-isogeny.

(b) Let χ1 ∈ M(I), λ1 ∈ L(I) and f (•) : E(•) → χ∗1λ
∗
1F (•) be a morphism of D(D(•)). If there exist

χ2 ∈ M(I), λ2 ∈ L(I) and a morphism g(•) : F (•) → χ∗2λ
∗
2E(•) of D(D(•)) such that we have the

equalities in S−1D(D(•)) (not necessarily in D(D(•))): χ∗1λ∗1(g(•)) ◦ f (•) = σE,(λ2◦λ1,χ1+χ2◦λ1) and
χ∗2λ

∗
2(f (•))◦g(•) = σE,(λ1◦λ2,χ2+χ1◦λ2) (i.e. are the canonical morphisms following 8.1.4.2), then f (•)

is a lim-ind-isogeny.

Proof. Proof of (a). i) First we suppose that χ1 = 0, i.e. χ∗1 = id. By hypothesis, there exists χ ≥ χ2

such that g(•) ◦ f (•) composed with the canonical morphism χ∗2E(•) → χ∗E(•) is the canonical morphism
in D(D(•)) and such that χ∗2(f (•)) ◦ g(•) composed with the canonical morphism χ∗2F (•) → χ∗F (•)

is the canonical morphism in D(D(•)). Let us write h(•) for the composition of g(•) with the canonical
morphism χ∗2E(•) → χ∗E(•), we then check that h(•)◦f (•) and χ∗(f (•))◦h(•) are the canonical morphisms
in D(D(•)).

ii) Now we deal with the general case. Composing two consecutive arrows of the sequence E(•) −→
f(•)

χ∗1F (•) −→
χ∗1(g(•))

χ∗1χ
∗
2E(•) −→

χ∗1χ
∗
2(f(•))

χ∗1χ
∗
2(χ∗1F (•)) we obtain the canonical morphisms in D−→

]
Q(D(•)). This

yields the result according to case a) treated above.
Proof of (b). We proceed in the analogius manner: first we treat the case where λ1 = id and χ1 = 0,

then we handle the general case (we replace χ∗i by χ∗i λ∗i for i = 1, 2).

Lemma 8.1.4.9. We have the canonical equivalence of categories

S]−1D](D(•)) ∼= LD−→
]
Q(D(•))

which is the identity over the objects.

Proof. a) Since the canonical functorD](D(•))→ D−→
]
Q(D(•)) carries a lim-ind-isogeny to a lim-isomorphism,

then the canonical functorD](D(•))→ LD−→
]
Q(D(•)) factors canonically through the functor S]−1D](D(•))→

LD−→
]
Q(D(•)).
b) On the other hand, since an ind-isogeny is in particular a lim-ind-isogeny, then the canonical functor

D](D(•))→ S]−1D](D(•)) factors canonically through D−→
]
Q(D(•))→ S]−1D](D(•)). Let f (•) : E(•) → F (•)

be a morphism of D−→
]
Q(D(•)) such that there exist λ2 ∈ L(I) and a morphism g(•) : F (•) → λ∗2E(•) of

D−→Q(D(•)) such that g(•) ◦ f (•) = ρE,λ and λ∗2(f (•)) ◦ g(•) = ρF,λ. There exists χ1 ∈ M(I) such that
f (•) is represented by a morphism of D](D(•)) of the form φ(•) : E(•) → χ∗1F (•). There exists χ2 ∈M(I)
such that g(•) is represented by a morphism of D](D(•)) of the form ψ(•) : F (•) → χ∗2λ

∗
2E(•). We check

therefore that χ∗1(ψ(•)) ◦ φ(•) and χ∗2λ∗2(φ(•)) ◦ ψ(•) are the canonical morphisms in D−→
]
Q(D(•)) (and thus

in S−1D](D(•))). According to lemma 8.1.4.8.b, this implies that φ(•) is a lim-ind-isogeny. Hence,
D−→
]
Q(D(•))→ S]−1D](D(•)) factors canonically through LD−→

]
Q(D(•))→ S]−1D](D(•))
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8.1.4.10. Let D′(•) be a sheaf of rings on the topos X(I).
A morphism f (•) : E(•) → F (•) of D](D(•),D′(•)) is an “ind-isogeny of D](D(•),D′(•))” if there exist

χ ∈ M(I) and a morphism g(•) : F (•) → χ∗E(•) of D(D(•),D′(•)) such that g(•) ◦ f (•) = θE,χ and
χ∗(f (•)) ◦ g(•) = θF,χ. We denote by Ξ](D(•),D′(•)) the set of ind-isogenies of D](D(•),D′(•)). The
localisation of D](D(•),D′(•)) with respect to ind-isogenies is denoted by D−→

]
Q(D(•),D′(•)).

We denote by Λ](D(•),D′(•)) the set of morphisms f (•) : E(•) → F (•) of D−→
]
Q(D(•),D′(•)) such that

there exist λ ∈ L(I) and a morphism g(•) : F (•) → λ∗E(•) of D−→Q(D(•),D′(•)) such that g(•) ◦ f (•) = ρE,λ
and λ∗(f (•)) ◦ g(•) = ρF,λ in D−→

]
Q(D(•),D′(•)). The morphisms belonging to Λ](D(•),D′(•)) are called

“lim-isomorphisms”. By localising D−→
]
Q(D(•),D′(•)) with respect to lim-isomorphisms, we get the category

LD−→
]
Q(D(•),D′(•)).
Let S](D(•),D′(•)) be the collection of morphisms f (•) : E(•) → F (•) of D](D(•),D′(•)) such that

there exist χ ∈ M(I), λ ∈ L(I) and a morphism g(•) : F (•) → χ∗λ∗E(•) of D(D(•),D′(•)) such that
g(•) ◦ f (•) = σE,(λ,χ) and χ∗λ∗(f (•)) ◦ g(•) = σF,(λ,χ). The morphisms of S](D(•),D′(•)) are called
“lim-ind-isogenies”. Similarly to 8.1.4.9, we have the canonical equivalence of categories

S]−1D](D(•),D′(•)) ∼= LD−→
]
Q(D(•),D′(•))

which is the identity over the objects. We define also the abelian category LM−−→Q(D(•),D′(•)). Similarly
to 8.1.5.3 we establish that the canonical functor LM−−→Q(D(•),D′(•))→ LD−→Q(D(•),D′(•)) is fully faithful.

Suppose (D(•),D′(•)) is left or right solved by R(•) (see definition 4.6.3.2). Then we denote by
D−→
]
Q(D(•),R(•),D′(•)) (resp. LD−→

]
Q(D(•),R(•),D′(•))) the strictly full subcategory of D−→

]
Q(D(•),D′(•)) (resp.

LD−→
]
Q(D(•),D′(•))) consisting of complexes isomorphic to a complex of K(D(•) ⊗R(•) D′(•)).

8.1.4.11. We have the following properties.

(a) Let φ(•) : E(•) → F (•) be a morphism of D](D(•)). Since Ξ] (resp. S]) is saturated, then using
[Sta22, 05Q9] the morphism φ(•) is an isomorphism in D−→Q(D(•)) (resp. LD−→Q(D(•))) if and only if
φ(•) is an ind-isogeny (resp. a lim-ind-isogeny).

(b) It follows from (a) that the morphisms of the form 8.1.2.2.1 (resp. 8.1.4.1.1) are ind-isogenies
(resp. lim-ind-isomorphisms). Similarly, the morphisms of the form ρλ2,λ1

(see 8.1.3.2) are lim-
isomorphisms.

(c) The part (a) implies also that a complex E(•) of D(D(•)) is isomorphic to 0 in D−→Q(D(•)) (resp.
LD−→Q(D(•))) if and only if there exists χ ∈M(I) (resp. χ ∈M(I) and λ ∈ L(I)) such that canonical
map E(•) → χ∗E(•) (resp. E(•) → χ∗λ∗E(•)) is the null morphism.

8.1.4.12. It follows from 8.1.4.7.1 and 8.1.4.9 that for any E(•),F (•) ∈ LD−→
]
Q(D(•)), we have the equality

HomLD−→
]
Q(D(•))(E

(•),F (•)) = lim−→
λ∈L

lim−→
χ∈M

HomD](D(•))(E(•), χ∗λ∗F (•)). (8.1.4.12.1)

8.1.5 Point of view of a derived category of an abelian category
Let I be a partially ordered set and let X be a topological space. Let D(•) be a sheaf of rings on the
topos X(I). Let ] ∈ {∅,+,−,b}.

8.1.5.1. We denote by M(D(•)) the category of D(•)-modules. Replacing D by M in 8.1.2.2, 8.1.3.2
and 8.1.4.5, we define the notion of ind-isogenies (resp. of lim-ind-isogenies) of M(D(•)) and we denote
by M−→Q(D(•)) (resp. S−1M(D(•))) the localization by ind-isogenies (resp. by lim-ind-isogenies). We
define also the multiplicative system of lim-isomorphisms of M−→Q(D(•)) and we denote by LM−−→Q(D(•)) the
corresponding localized category.

8.1.5.2. Since the functors of the form λ∗ and χ∗ are exact for any λ ∈ L(I) and χ ∈M(I), the previous
results in the subsections 8.1.2, 8.1.3, 8.1.4 are still valid by replacing complexes by modules, i.e. by
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replacing the letter D (for derived categories) by M (for modules). For instance, similarly to 8.1.4.9, we
can check the following canonical equivalence of categories

S−1M(D(•)) ∼= LM−−→Q(D(•)). (8.1.5.2.1)

This yields, for any E(•),F (•) ∈ LM−−→Q(D(•))

HomLM−−→Q(D(•))(E(•),F (•)) = lim−→
λ∈L(I)

lim−→
χ∈M(I)

HomD(•)(E(•), χ∗λ∗F (•)). (8.1.5.2.2)

Lemma 8.1.5.3. The canonical functors M−→Q(D(•)) → D−→Q(D(•)) and LM−−→Q(D(•)) → LD−→Q(D(•)) are
fully faithful.

Proof. Since the check of the full faithfulness of the first functor is similar, let us prove it for the second
one. This comes from the fact that the application HomM(D(•))(E(•), χ∗λ∗F (•))→ HomD(D(•))(E(•), χ∗λ∗F (•))
is bijective for any λ ∈ L(I) and χ ∈M(I) and that we have the equalities 8.1.4.12.1 and 8.1.5.2.2.

8.1.5.4 (Serre subcategories). Let us collect few facts on Serre subcategories and localisations. Let A
be an abelian category.

Let S be a multiplicative system of A. Then S−1A is an abelian category and the localisation functor
QS : A→ S−1A is exact (see [Sta22, 05QG]). It follows from [Sta22, 02MQ] that B(S) := KerQS , where
KerQS is the full subcategory of objects X of A such that QS(X) = 0 , forms a Serre subcategory of A.

Let B ⊂ A be a Serre subcategory (see [Sta22, 02MO]). Consider the set of arrows of A defined by
the following formula

S(B) := {f ∈ Arrows(A) | Ker(f), Coker(f) ∈ Ob(B)}.

Then S(B) is a saturated multiplicative system (see the proof of [Sta22, 02MS]) such that B(S(B)) = B
(this is a consequence of [Sta22, 06XK]). We set A/B := (S(B))−1A. Following [Sta22, 02MS], the
category A/B and the localisation functor F : A → A/B are characterized by the following universal
property: for any exact functor G : A→ C such that B ⊂ Ker(G), there exists a factorization G = H ◦F
for a unique exact functor H : A/B→ C.

Let S be a multiplicative system of A. Then we easily see that S(B(S)) is equal to Ŝ = {f ∈
Arrows(A) | QS(f) is an isomorphism}, which is also the smallest saturated multiplicative system con-
taining S (see [Sta22, 05Q9]). Hence, S 7→ B(S) and B 7→ S(B) are reciprocal bijections of each other
between the set of saturated multiplicative systems of A and Serre subcategories of A.

Lemma 8.1.5.5. Let N(D(•)) be the full subcategory of M(D(•)) consisting of modules which are null
in LM−−→Q(D(•)).

1. The category N(D(•)) is a Serre subcategory of M(D(•)).

2. The multiplicative system associated to the Serre subcategory N(D(•)) is equal to S. In particular,
S is saturated.

3. We have M(D(•))/N(D(•)) = S−1M(D(•)) ∼= LM−−→Q(D(•)). In particular, LM−−→Q(D(•)) is an abelian
category.

Proof. Apply 8.1.5.4.

8.1.5.6. For all n ∈ Z, we have the n-th cohomology space functor Hn : D(D(•)) → M(D(•)) which is
defined for E(•) = (E(i), α(j,i)) ∈ D(D(•)) by Hn(E(•)) = (Hn(E(i)),Hn(α(j,i))). We have the canonical
isomorphism Hnχ∗λ∗(E(•))

∼−→ χ∗λ∗Hn(E(•)) which is right arrow of the commutative diagram

Hn(E(•))
Hn(σE,(λ,χ)) // Hnχ∗λ∗(E(•))

∼��
Hn(E(•))

σHnE,(λ,χ) // χ∗λ∗Hn(E(•))
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where the arrows of the form σ is the canonical arrow defined at 8.1.4.1.1. We deduce from this that Hn
carries lim-ind-isogenies to lim-ind-isogenies. Then we get the functor Hn making commutative (up to
canonical equivalence) the diagram

LD−→Q(D(•))
Hn // LM−−→Q(D(•))

D(D(•))
Hn //

OO

M(D(•)),

OO
(8.1.5.6.1)

where the vertical arrows are the localization functors.
Likewise, replacing lim-ind-isogenies by ind-isogenies we get the functor Hn making commutative (up

to canonical equivalence) the diagram

D−→Q(D(•))
Hn // M−→Q(D(•))

D(D(•))
Hn //

OO

M(D(•)),

OO
(8.1.5.6.2)

where the vertical arrows are the localization functors.

Lemma 8.1.5.7. The functors Hn : LD−→Q(D(•))→ LM−−→Q(D(•)) and Hn : D−→Q(D(•))→M−→Q(D(•)) defined
at 8.1.5.6 are cohomological functors.

Proof. Let us treat the first functor. By construction (see the proof of [Sta22, 05R6 Proposition 13.5.5]),
a distinguished triangle of LD−→Q(D(•)) is isomorphic in LD−→Q(D(•)) to the image of a distinguished triangle
of K(D(•)) by the canonical localization functor K(D(•))→ LD−→Q(D(•)). Since Hn : K(D(•))→M(D(•))

is a cohomological functor, since the localization functor M(D(•)) → LM−−→Q(D(•)) is an exact functor
between abelian categories (it follows from the properties of localisations by a subcategory of Serre and
of 8.1.5.5), this implies the result of the first functor. Likewise, we check the second one.

8.1.5.8. Denote by LD−→
0
Q(D(•)) (resp. D−→

0
Q(D(•))) the strictly full sub-category of LD−→

b
Q(D(•)) (resp.

D−→
b
Q(D(•))) consisting of complexes E(•) such that for any integer n 6= 0 we have Hn(E(•))

∼−→ 0 in
LM−−→Q(D(•)).

Remark 8.1.5.9. Let E(•) ∈ LD−→Q(D(•)) such that Hn(E(•))
∼−→ 0 in LM−−→Q(D(•)) for any n ∈ Z. Then

it seems false that E(•) ∼−→ 0 in LD−→Q(D(•)). When E(•) ∈ LD−→
b
Q(D(•)), this property becomes true (see

8.1.5.10), which explains why we have defined LD−→
0
Q(D(•)) as a the strictly full subcategory of LD−→

b
Q(D(•))

and not LD−→Q(D(•)) in 8.1.5.8. We have the same remark concerning D−→
0
Q(D(•)).

Lemma 8.1.5.10. The canonical functors

LM−−→Q(D(•))→ LD−→
0
Q(D(•)), M−→Q(D(•))→ D−→

0
Q(D(•)) (8.1.5.10.1)

is an equivalence of categories with respective quasi-inverse H0 : LD−→
0
Q(D(•))→ LM−−→Q(D(•)), H0 : D−→

0
Q(D(•))→

M−→Q(D(•)).

Proof. Since the other case is similar, let us treat the first one. It follows from 8.1.5.3 that the functor
8.1.5.10.1 is fully faithful. Let E(•) ∈ LD−→

0
Q(D(•)). It remains to check there exists in LD−→

b
Q(D(•)) an

isomorphism of the form E(•) ∼−→ H0(E(•)). Since E(•) is an object of Db(D(•)), there exists an integer
N ≥ 1 large enough such that, for any j 6∈ [−N,N ] ∩ Z we have Ej(•) = 0 in M(D(•)). For any integer
n ∈ Z, we denote by τ≥n : D(D(•)) → D≥n(D(•)), τ≤n : D(D(•)) → D≤n(D(•)). the cohomological
canonical truncation functors (see 8.1.2.6)

1) Let us check τ≤−1(E(•))
∼−→ 0 in LD−→

b
Q(D(•)).
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a) Set F (•) := τ≤−1(E(•)). We have therefore the isomorphism τ≤−N−1(F (•))
∼−→ τ≤−N−1(E(•))

∼−→
0 in D(D(•)). By using the exact triangle τ≤−N−1(F (•))→ F (•) → τ≥−N (F (•))→ +1 of D(D(•)), this
implies that the canonical morphism F (•) → τ≥−N (F (•)) is an isomorphism of D(D(•)).

b) For any j ∈ [−N,−1]∩Z, we have the distinguished triangle in D(D(•)) (and then in LD−→
b
Q(D(•))):

Hj(F (•))→ τ≥j(F (•))→ τ≥j+1(F (•))→ +1.

Since, for any j ∈ [−N,−1] ∩ Z, Hj(F (•)) = Hj(E(•))
∼−→ 0 in LD−→

b
Q(D(•)), this yields that the arrow

τ≥j(F (•))→ τ≥j+1(F (•)) is an isomorphism in LD−→
b
Q(D(•)). Hence we get τ≥−N (F (•))

∼−→ τ≥0(F (•)) in
LD−→

b
Q(D(•)).
c) Since we have in D(D(•)) the isomorphism τ≥0(F (•)) = τ≥0(τ≤−1(E(•)))

∼−→ 0, it follows from
the steps a) and b) that F (•) ∼−→ 0 in LD−→

b
Q(D(•)).

2) Let us now prove that the canonical morphism H0(E(•)) → τ≥0(E(•)) is an isomorphism in
LD−→

b
Q(D(•)).
Set G(•) := τ≥0(E(•)). Similarly to the step 1.b), we check that the canonical morphism τ≥1(E(•)) =

τ≥1(G(•))→ τ≥N+1(G(•)) is an isomorphism in LD−→
b
Q(D(•)). Since τ≥N+1(G(•))

∼−→ τ≥N+1(E(•))
∼−→ 0

inD(D(•)), this yields that τ≥1(E(•))
∼−→ 0 in LD−→

b
Q(D(•)). By using the distinguished triangle ofD(D(•))

(see [Sta22, 08J5 Remark 13.12.4])

H0(E(•))→ τ≥0(E(•))→ τ≥1(E(•))→ +1,

this implies the result.
3) Via 1) and 2), we conclude by using the exact sequence 0→ τ≤−1(E(•))→ E(•) → τ≥0(E(•))→ 0

in C(D(•)).

Corollary 8.1.5.11. Let φ : E(•) → F (•) be a morphism in LD−→
b
Q(D(•)) (resp. D−→

b
Q(D(•))). The morphism

φ is an isomorphism in LD−→
b
Q(D(•)) (resp. D−→

b
Q(D(•))) if and only if, for any integer n ∈ Z, the morphism

Hn(φ) : Hn(E(•))→ Hn(F (•)) is an isomorphism of LM−−→Q(D(•)) (resp. M−→Q(D(•))).

Proof. Let us treat the non-respective case. There exists a distinguished triangle in LD−→
b
Q(D(•)) of the

form E(•) −→
φ
F (•) → G(•) → E(•)[1]. Following the properties concerning the triangulated categories, φ

is an isomorphism if and only if G(•) ∼−→ 0 in LD−→
b
Q(D(•)). Following 8.1.5.10, this is equivalent to saying

that, for any integer n ∈ Z, we have Hn(G(•))
∼−→ 0 in LM−−→Q(D(•)). The lemma 8.1.5.7 allows us to

conclude the non-respective case. Likewise we check the respective one.

8.1.5.12. Let us denote by D]
N(D(•))

(D(•)) the saturated (in the sense of 7.4.1.1) full triangulated subcat-

egory of D](D(•)) consisting of complexes whose cohomology spaces are in N(D(•)) i.e. D]
N(D(•))

(D(•))

is the kernel of the canonical functor D](D(•)) → D](LM−−→Q(D(•))) induced by the localization functor
M(D(•))→ LM−−→Q(D(•)).

With notation 7.4.1.3, let S]Nqi := S(D]
N(D(•))

(D(•))) be the saturated multiplicative system compat-

ible with the triangulation of D](D(•)) which corresponds to D]
N(D(•))

(D(•)). We can deduce from the
theorem [Miy91, 3.2] that the canonical functor D](D(•)) → D](LM−−→Q(D(•))) induces canonically the
equivalence of categories

D](D(•))/D]
N(D(•))

(D(•)) := S]−1
NqiD

](D(•)) ∼= D](LM−−→Q(D(•))). (8.1.5.12.1)

By definition, a morphism f (•) of D](D(•)) belongs to S]Nqi if and only if, for all distinguished triangle in

D](D(•)) of the form E(•) f(•)

−→ F (•) → G(•) → E(•)[1], for all integer n ∈ Z, we have Hn(G(•)) ∈ N(D(•))).

Lemma 8.1.5.13. With notation 8.1.5.12, we have Sb = Sb
Nqi. For ] ∈ {+,−,b, ∅}, we have S] ⊂ S

]
Nqi.
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Proof. 1) First we show Sb
Nqi ⊂ Sb. Take f (•) ∈ Sb

Nqi and a distinguished triangle in Db(D(•)) of the

form E(•) f(•)

−→ F (•) → G(•) → E(•)[1]. By definition, for all integer n ∈ Z, Hn(G(•)) ∈ N(D(•)). That is,
for all integer n ∈ Z, we have Hn(G(•))

∼−→ 0 in LM−−→Q(D(•)). By 8.1.5.10, this implies that G(•) ∼−→ 0 in
LD−→

b
Q(D(•)). According to the properties of triangulated categories, f (•) is an isomorphism in LD−→

b
Q(D(•)).

By 8.1.4.11, we get that f (•) ∈ Sb.
2) Next we show that S] ⊂ S]Nqi. Let f (•) : E(•) → F (•) be a morphism of D](D(•)). Since the

cohomology space functor H0 : D](D(•))→ LM−−→Q(D(•)) is a cohomological functor, then we get at a long

exact sequence in LM−−→Q(D(•)) from the distinguished triangle in D](D(•)) of the form E(•) f(•)

−→ F (•) →
G(•) → E(•)[1]. Looking at this long exact sequence, we can check that f (•) ∈ S]Nqi if and only if, for
all integer n ∈ Z, Hn(f (•)) is an isomorphism in LM−−→Q(D(•)) (which is an abelian category). But, if
f (•) ∈ S], then its image in LD−→

]
Q(D(•)) is an isomorphism. As the functor Hn : D](D(•))→ LM−−→Q(D(•))

factors through LD−→
]
Q(D(•))→ LM−−→Q(D(•)), we deduce the required inclusion S] ⊂ S]Nqi.

Proposition 8.1.5.14. For ] ∈ {+,−,b, ∅}, the canonical functor D](D(•)) → D](LM−−→Q(D(•))) of
triangulated categories induced by the functor of abelian categories M(D(•)) → LM−−→Q(D(•)) induces the
morphism of triangulated categories

e : LD−→
]
Q(D(•))→ D](LM−−→Q(D(•))) (8.1.5.14.1)

making commutative the diagram

S]−1
NqiD

](D(•))
∼=

8.1.5.12.1
// D](LM−−→Q(D(•)))

D](D(•))
Q
S] //

Q
S
]
Nqi

88

S]−1D](D(•))
∼=

8.1.4.9
//

OO

LD−→
]
Q(D(•))

e

OO
(8.1.5.14.2)

When ] = b, the morphism e is an equivalence of categories.

Proof. The left vertical arrow comes from the inclusion S] ⊂ S]Nqi (see 8.1.5.13). When ] = b, since this
inclusion becomes an equality, both vertical arrow are equivalences of categories.

8.1.5.15. The morphism 8.1.5.14.1 commutes with cohomological functors, i.e. we have for any n ∈ N
the commutative diagram

D](D(•)) //

Hn

��

LD−→
]
Q(D(•))

e //

Hn

��

D](LM−−→Q(D(•)))

Hn

��
M(D(•)) // LM−−→Q(D(•)) LM−−→Q(D(•))

(8.1.5.15.1)

where the middle vertical arrow is the one making commutative by definition the left square (see 8.1.5.6).
Indeed, since the canonical functor M(D(•)) → LM−−→Q(D(•)) is exact, the outer of the large rectangle is
commutative.

8.1.5.16. We have the commutative diagram up to canonical isomorphism

LM−−→Q(D(•))
8.1.5.3 //

''

LD−→Q(D(•))

8.1.5.14.1e

��
D(LM−−→Q(D(•))).

(8.1.5.16.1)

Indeed, by using the universal property of the localisation functor, we reduce to check it after applying
the functor M(D(•))→ LM−−→Q(D(•)), which is easy.

427



8.2 Homomorphism bifunctor over LDQ(D(•))

Let I be a partially ordered set and let X be a topological space. Let D(•) be a sheaf of rings on the
topos X(I). Let ] ∈ {∅,+,−,b}.

8.2.1 Homomorphism bifunctors of D(•)-modules
8.2.1.1. Let E(•),F (•) be two left D(•)-modules.

(a) We have the abelian sheaf on X(I) that we will denote by HomD(•)(E(•),F (•)) which is characterized
by the property: for any object K(•) of X(I),

HomX(I)(K(•),HomD(•)(E(•),F (•))) = HomD(•)|
K(•)

(E(•)|K(•) ,F (•)|K(•))).

With notation 4.6.2.7.1, in the case where K(•) is a final object, we have

Γ(X(I),HomD(•)(E(•),F (•))) = HomD(•)(E(•),F (•))). (8.2.1.1.1)

Moreover, for any (i, U) ∈ (Io)\ ×XZar, we have

HomX(I)((i, U),HomD(•)(E(•),F (•))) = HomD(•)|(i,U)
(E(•)|(i,U),F (•)|(i,U))). (8.2.1.1.2)

Via 8.1.1.5.3, a morphism of this latter abelian group is therefore a compatible family of D(j)|U -linear
homomorphisms E(j)|U → F (j)|U for any j ≥ i.

(b) We define the abelian sheaf HomD(•)(E(•),F (•)) on X by setting, for any open set U of X,

Γ(U,HomD(•)(E(•),F (•))) = HomD(•)|U (E(•)|U ,F (•)|U ). (8.2.1.1.3)

8.2.1.2. Let E(•),F (•) be two left D(•)-modules. With notation 8.1.1.2.5 and of 8.1.1.5.(d), with the
description of 8.2.1.1.2, we have the equality of abelian sheaves on X:

→i
−1
X

(HomD(•)(E(•),F (•))) = HomD(•)|i(E
(•)|i,F (•)|i), (8.2.1.2.1)

i.e. HomD(•)(E(•),F (•)) is the projective system (HomD(•)|i(E
(•)|i,F (•)|i))i∈I whose transition maps

are the forgetful maps. This yields the isomorphism of abelian sheaves on X:

→l
(I)
X∗HomD(•)(E(•),F (•))

∼−→ HomD(•)(E(•),F (•)), (8.2.1.2.2)

where following notation 8.1.1.2.3 we have→l
(I)
X∗ = lim←−

i∈Io

.

8.2.1.3. Let E(•) be a D(•)-module. Let I(•) be an injective D(•)-module. Then it follows from [SGA4.2,
V.4.10.2)] that HomD(•)(E(•), I(•)) is a flasque abelian sheaf on X•. Since the functor→l

(I)
X∗ preserves the

flasqueness (see [SGA4.2, V.4.9)]) then we deduce from 8.2.1.2.2 that HomD(•)(E(•), I(•)) is a flasque
abelian sheaf on X.

Notation 8.2.1.4. Denote by Mod(ZX) the abelian category of sheaves of abelian groups on X. Let
E(•),•, F (•),• ∈ K(D(•)) (exceptionally, we indicate the second • to clarify the following notations). With
notation 8.2.1.1.b, we define the bifunctor

Hom•D(•)(−,−) : K(D(•))×K(D(•))→ K(ZX)

whose nth term for any integer n ∈ Z is defined by setting:

Homn
D(•)(E(•),•, F (•),•) :=

∏
p∈Z

HomD(•)(E(•),p, F (•), p+n) (8.2.1.4.1)

and the transition morphisms are given by the formula d = dE + (−1)ndF .
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Notation 8.2.1.5. We denote by ZX(•) or Z(•)
X the constant inductive system of rings of X indexed by

I with value ZX . Denote by Mod(Z) (resp. Mod(ZX(•))) the category of abelian groups (resp. of abelian
groups on X(I)). Replacing “Hom” by “Hom” (resp. “Hom”), we define similarly to the construction of
8.2.1.4 the bifunctor (which are in fact the classical bifunctors of homomorphisms of the abelian category
Mod(D(•))):

Hom•D(•)(−,−) : K(D(•))×K(D(•))→ K(Z),

Hom•D(•)(−,−) : K(D(•))×K(D(•))→ K(ZX(•)).

By construction (see respectively 8.2.1.1.1 and 8.2.1.1.3), for any E(•), F (•) ∈ K(D(•)), for any (i, U) ∈
(Io)\ ×XZar, we have we have the canonical isomorphism of bifunctors

Γ((i, U),Hom•D(•)|(i,U)
(E(•)|(i,U), F (•)|(i,U))

∼−→ Hom•D(•)|
U(•)

(E(•)|U(•) , F (•)|U(•)), (8.2.1.5.1)

Γ(U,Hom•D(•)(E(•), F (•))
∼−→ Hom•D(•)|U (E(•)|U , F (•)|U ). (8.2.1.5.2)

8.2.1.6. We recall the following facts.

(a) An object I(•) ∈ K(D(•)) is K-injective if for every acyclic complexM(•) we have HomK(D(•))(M(•), I(•)) =
0 (see [Sta22, 070H]).

(b) Products in the derived category D(D(•)) of K-injective objects are obtained by taking termwise
products and products of K-injective complexes are K-injective (see [Sta22, 0BK6]).

8.2.1.7. Let U be an open subset of X and j : U ↪→ X is the induced open immersion.

(a) Let I(•) be an injective left D(•)-module. Since
→
j
I!

is exact (see notation 8.1.1.5), then I(•)|U is an
injective D(•)|U -module. This yields that the functor HomD(•)(−, I(•)) : Mod(D(•))→ Mod(ZX) is
exact.

(b) Since j−1
(i,U) = j∗(i,U) : Mod(∗D(•))→ Mod(∗D(•)|(i,U)) has an exact left adjoint functor (see 7.1.3.3.2),

then it follows from [Sta22, 08BJ] that this functor j−1
(i,U) preserves the K-injectivity.

(c) Since
→
j
I!
is exact (see notation 8.1.1.5), it follows from [Sta22, 08BJ] that for any K-injective complex

I(•) of K(D(•)), the complex I(•)|U is K-injective as object of K(D(•)|U).

8.2.1.8. Let i ∈ I, U be an open subset of X and j : U ↪→ X be the induced open immersion. It follows
by construction from respectively 8.2.1.1.2 and 8.2.1.1.1 that for any E(•), F (•) ∈ K(D(•)), we have

Hn(Γ((i, U),Hom•D(•)(E(•),F (•)))) = HomK(D(•)|(i,U))
(E(•)|(i,U),F (•)|(i,U)[n])), (8.2.1.8.1)

Hn(Γ(X(•),Hom•D(•)(E(•),F (•)))) = HomK(D(•))(E(•),F (•)[n])). (8.2.1.8.2)

Similarly, we check that for any E(•), F (•) ∈ K(D(•)), we have

Hn(Γ(U,Hom•D(•)(E(•),F (•))) = HomK(D(•)|U )(E(•)|U,F (•)|U [n])). (8.2.1.8.3)

8.2.2 Derived homomorphism bifunctors of D(•)-modules
8.2.2.1. Similarly to [Sta22, 0A95], we check that for any quasi-isomorphism I(•) ∼−→ I ′(•) of K-injective
complexes of K(D(•)), for any quasi-isomorphism E(•) ∼−→ E ′(•) of complexes of K(D(•)), the morphism
of K(ZX)

Hom•D(•)(E ′(•), I(•))→ Hom•D(•)(E(•), I ′(•)) (8.2.2.1.1)

is a quasi-isomorphism.
Let E(•) ∈ K(D(•)) and FE : K(D(•))→ D(ZX) be the functor defined by F (•) 7→ Hom•D(•)(E(•),F (•)).

By using the isomorphism 8.2.2.1.1 (in the case where E(•) ∼−→ E ′(•) is the identity of E(•)) then it follows
from [Sta22, 06XN] that RFE is everywhere defined and every K-injective complex computes RFE . Since
this is functorial in E(•), we get the bifunctor

RIIHomD(•)(−,−) : K(D(•))×D(D(•))→ D(ZX)
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which is given by RIIHomD(•)(E(•),F (•)) = Hom•D(•)(E(•), I(•)) where I(•) is a K-injective complex
representing F (•). Using again 8.2.2.1.1 (this time by varying E), we get the bifunctor

RHomD(•)(−,−) : D(D(•))×D(D(•))→ D(ZX), (8.2.2.1.2)

which is the unique functor satisfying RHomD(•)(Q(−),−) = RIIHomD(•)(−,−), where Q : K(D(•)) →
D(D(•)) is the localisation morphism.

Notation 8.2.2.2. Similarly to 8.2.2.1.2, we get the bifunctors

RHomD(•)(−,−) : D(D(•))×D((D(•))→ D(Z).

RHomD(•)(−,−) : D(D(•))×D(D(•))→ D(ZX(•)).

which are respectively given for any E(•),F (•) ∈ D(D(•)) by the formulas

R HomD(•)(E(•),F (•)) = Hom•D(•)(E(•), I(•)), RHomD(•)(E(•),F (•)) = Hom•D(•)(E(•), I(•))

where I(•) is a K-injective complex representing F (•).

Remark 8.2.2.3. Let R be a sheaf on X of commutative rings endowed with a homomorphism of rings
←lX,I∗(R) → D(•) such that the image of R in D(i) are sent into the center of D(i) for any i ∈ I. For
instance, we can always take R = ZX . Then we get the functor

RHomD(•)(−,−) : D(D(•))×D(D(•))→ D(R), (8.2.2.3.1)

whose composition with the forgetful functor D(R)→ D(ZX) is isomorphic to 8.2.2.1.2. We have similar
facts for the functors RHomD(•)(−,−) and RHomD(•)(−,−).

Lemma 8.2.2.4. Let R be a sheaf on X of commutative rings endowed with a homomorphism of rings
←lX,I∗(R) → D(•) such that the image of R in D(i) are sent into the center of D(i) for any i ∈ I. Set
R(•) :=←lX,I∗(R).

Let P(•) be a complex of K(D(•)) which is K-flat as an object of K(R(•)). Let I(•) be a K-injective
complex of K(D(•)).

(a) The object Hom•D(•)(P(•), I(•)) of K(R(•)) is K-injective.

(b) The object Hom•D(•)(P(•), I(•)) of K(R) is K-injective.

Proof. We prove (a) similarly to [Sta22, 0A96] (our lemma is a non-commutative version): for any acyclic
complex F ∈ K(R(•)), we get the isomorphisms

HomK(R(•))

Ä
F ,Hom•D(•)(P(•), I(•))

ä ∼−→
8.2.1.8.2

H0Γ
Ä
X(•),Hom•K(R(•))

Ä
F ,Hom•D(•)(P(•), I(•))

ää
∼−→ H0Γ

Ä
X(•),Hom•K(D(•))

Ä
F ⊗R(•) P(•), I(•)

ää ∼−→
8.2.1.8.2

HomK(D(•))

Ä
F ⊗R(•) P(•), I(•)

ä
= 0,

which proves (a). Since→l
(I)
X∗ has an exact left adjoint functor, then the functor→l

(I)
X∗ : K(R(•)) → K(R)

preserves K-injectivity (see [Sta22, 08BJ]). By using 8.2.1.2.2 this yields (b).

Proposition 8.2.2.5. Suppose there exists a sheaf R on X of commutative rings endowed with a flat
homomorphism of rings←lX,I∗(R) → D(•) such that the image of R in D(i) are sent into the center of
D(i) for any i ∈ I. Then for any E(•),F (•) ∈ D(D(•)), we have the isomorphisms

RΓ(X(•),−) ◦ RHomD(•)(E(•),F (•))
∼−→ R HomD(•)(E(•),F (•)), (8.2.2.5.1)

R→l
(I)
X∗RHomD(•)(E(•),F (•))

∼−→ RHomD(•)(E(•),F (•)), (8.2.2.5.2)

RΓ(X,−) ◦ RHomD(•)(E(•),F (•))
∼−→ R HomD(•)(E(•),F (•)). (8.2.2.5.3)
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Proof. Let us prove 8.2.2.5.1. Let P(•) be a K-flat complex of K(D(•)) representing E(•). Let I(•) be a K-
injective complex ofK(D(•)) representing F (•). We have RHomD(•)(E(•),F (•))

∼−→ Hom•D(•)(P(•), I(•)).
Set R(•) :=←lX,I∗(R). Since D(•) is a R(•)-flat module, then P(•) is K-flat as an object of K(R(•)).
Hence, following 8.2.2.4 Hom•D(•)(P(•), I(•)) is a K-injective object of K(R(•)). This yields the second
quasi-isomorphism

RΓ(X(•),RHomD(•)(E(•),F (•)))
∼−→ RΓ(X(•),Hom•D(•)(P(•), I(•)))

∼−→ Γ(X(•),Hom•D(•)(P(•), I(•)))

= Hom•D(•)(P(•), I(•))
∼−→ R HomD(•)(E(•),F (•)).

Replacing RΓ(X(•),−) by R→l
(I)
X∗, we get similarly 8.2.2.5.2 from 8.2.1.2.2. Since RΓ(X,−) ◦ R→l

(I)
X∗

∼−→
RΓ(X(•),−), we get 8.2.2.5.3 from both 8.2.2.5.1 and 8.2.2.5.2.

8.2.2.6. Let F be the collection of flasque ZX(•) -modules. We denote by K+(F) the full subcategory
of K+(ZX(•)) whose objects consist in complexes of terms in F. Since an object of F is right acyclic for
the functors→l

(I)
X∗ and Γ(X(•),−), then from Leray’s acyclicity lemma (see [Sta22, 015E-Lemma 13.16.7]),

the complexes of K+(F) compute R→l
(I)
X∗ and RΓ(X(•),−).

For bounded complexes, we can remove the flatness hypothesis of 8.2.2.5:

Proposition 8.2.2.7. For any E(•) ∈ D−(D(•)),F (•) ∈ D+(D(•)), we have the isomorphisms

RΓ(X(•),−) ◦ RHomD(•)(E(•),F (•))
∼−→ R HomD(•)(E(•),F (•)), (8.2.2.7.1)

R→l
(I)
X∗RHomD(•)(E(•),F (•))

∼−→ RHomD(•)(E(•),F (•)), (8.2.2.7.2)

RΓ(X,−) ◦ RHomD(•)(E(•),F (•))
∼−→ R HomD(•)(E(•),F (•)). (8.2.2.7.3)

Proof. Let I(•) be an injective resolution in K+(D(•)) of F (•). We have RHomD(•)(E(•),F (•))
∼−→

Hom•D(•)(E(•), I(•)). Since a product of flasque sheaves is flasque, then by using 8.2.1.3, we get that
Homn

D(•)(E(•), I(•)) is a flasque abelian sheaf on X(•) for any integer n, i.e. Hom•D(•)(E(•), I(•)) ∈
K+(F). Hence, following 8.2.2.6, we get the first isomorphism

RΓ(X(•),−) ◦ RHomD(•)(E(•),F (•))
∼−→ Γ(X(•),Hom•D(•)(E(•), I(•)))

∼−→
8.2.1.1.1

Hom•D(•)(E(•), I(•)))
∼−→ R HomD(•)(E(•),F (•)).

We proceed similarly to check 8.2.2.7.2. This yields 8.2.2.7.3 by composition.

8.2.2.8. Let E(•) ∈ D(D(•)), F (•) ∈ D(D(•)). It follows from 8.2.1.7.(b) and from 8.2.1.2.1 that we have
the isomorphisms

RHomD(•)(E(•),F (•))|(i,U)
∼= RHomD(•)|(i,U)

(E(•)|(i,U),F (•)|(i,U)), (8.2.2.8.1)

→i
−1
X

(RHomD(•)(E(•),F (•)))
∼−→ RHomD(•)|i(E

(•)|i,F (•)|i). (8.2.2.8.2)

8.2.3 From I to I∅

8.2.3.1. We denote by I∅ the partially ordered set whose elements are equal to that of I and with the
coarse order, i.e. i ≤ j if and only if i = j. We get the increasing map ρI : I∅ → I of partially ordered sets.
Following 8.1.1.2.1, this yields the morphism of topos

→
ρ
I,X

: X(I∅) → X(I). We set D(•)
∅ :=

→
ρ−1

I,X
(D(•)),

i.e. D(•)
∅ is the family (D(i))i∈I without transition maps (except the identities given by i ≤ i). We

get the morphism of ringed topoi
→
ρ
I,X

: (X(I∅),D(•)
∅ ) → (X(I),D(•)). The functor

→
ρ−1

I,X
: Mod(D(•)) →

Mod(D(•)
∅ ) is the forgetful functor (of the transition maps). It has a left adjoint functor that we will

denote by
→
ρ
I,X,!

: Mod(D(•)
∅ ) → Mod(D(•)) (even if the notation is the same, beware this is different

from the left adjoint of 8.1.1.2.2 computed in the category of sheaves of sets, but we will only consider
the modules case). Let E(•)

∅ be a left D(•)
∅ -module. We denote by F (i) = ⊕h≤iD(i)⊗D(h) E(h)

∅ and for any
i ≤ j and by αj,i : F (i) → F (j) the canonical transition maps induced for any elements h ≤ i of I by the
canonical maps D(i) ⊗D(h) E(h)

∅ → D(j) ⊗D(h) E(h)
∅ → F (j). Then

→
ρ
I,X,!

(E(•)
∅ ) = (F (i), α(j,i)).
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8.2.3.2. Let U be an open subset of X and j : U ↪→ X be the induced open immersion. With notation
8.1.1.2.7, we have

→
j−1

I
◦
→
ρ
I,X,!

∼−→
→
ρ
I,U,!
◦
→
j−1

I∅
. (8.2.3.2.1)

8.2.3.3. Let P∅ be the collection of flat left D(•)
∅ -modules. We denote by K−(P∅) the full subcategory

of K−(D(•)
∅ ) whose objects consist in complexes of terms in P∅.

Let 0→ P ′(•)∅ → P(•)
∅ → P

′′(•)
∅ → 0 be a short exact sequence of flat left D(•)

∅ -modules. For any i ∈ I,
P ′′(i)∅ is a flat D(i)-module. Hence, for any i ∈ I, we get the short exact sequence of flat left D(i)-modules

0→ ⊕h≤iD(i) ⊗D(h) P ′(h)
∅ → ⊕h≤iD(i) ⊗D(h) P(h)

∅ → ⊕h≤iD(i) ⊗D(h) P ′′(h)
∅ → 0,

i.e. we have the short exact sequence 0 →
→
ρ
I,X,!

(P ′(•)∅ ) →
→
ρ
I,X,!

(P(•)
∅ ) →

→
ρ
I,X,!

(P ′′(•)∅ ) → 0 of flat left

D(•)-modules. Since any left D(•)
∅ -modules is a quotient of a flat left D(•)

∅ -module, it follows from [Sta22,
05T9] that the objects of P∅ are acyclic for the functor L

→
ρ
I,X,!

. Hence, from Leray’s acyclicity lemma

(see the dual version of [Sta22, 015E]), the complexes of K−(P∅) compute L
→
ρ
I,X,!

.

Let E(•)
∅ ∈ K−(D(•)

∅ ). By using [Sta22, 05T7], there exists a quasi-isomorphism of P(•)
∅

∼−→ E(•)
∅ of

K−(D(•)
∅ ) with P(•)

∅ ∈ K
−(P∅). Hence, L

→
ρ
I,X,!

is defined at E(•)
∅ and we have

→
ρ
I,X,!

(P(•)
∅ )

∼−→ L
→
ρ
I,X,!

(E(•)
∅ ). (8.2.3.3.1)

8.2.3.4. Let E(•)
∅ be a left D(•)

∅ -module and F (•) be a left D(•)-module. By adjointness (and also use
8.2.3.2.1 for the first isomorphism of the second line) we have

HomD(•)(
→
ρ
I,X,!

(E(•)
∅ ),F (•))

∼−→ HomD(•)
∅

(E(•)
∅ ,

→
ρ−1

I,X
F (•))

∼−→
∏
i∈I

HomD(i)(E(i)
∅ ,F (i)), (8.2.3.4.1)

HomD(•)(
→
ρ
I,X,!

(E(•)
∅ ),F (•))

∼−→ HomD(•)
∅

(E(•)
∅ ,

→
ρ−1

I,X
F (•))

∼−→
∏
i∈I
HomD(i)(E(i)

∅ ,F (i)). (8.2.3.4.2)

8.2.3.5. Let E(•)
∅ be a left D(•)

∅ -module and F (•) be a left D(•)-module.

(a) The object HomD(•)
∅

(E(•)
∅ ,

→
ρ−1

I,X
F (•)) is an abelian sheaf on X(I∅). With notation 8.1.1.2.5, for any

i ∈ I∅, we compute

→i
−1
X

(
HomD(•)

∅
(E(•)
∅ ,

→
ρ−1

I,X
F (•))

)
= HomD(i)(E(i)

∅ ,F (i)). (8.2.3.5.1)

(b) On the other hand, the objectHomD(•)(
→
ρ
I,X,!

(E(•)
∅ ),F (•)) an abelian sheaf on X(I). By construction

(see 8.2.1.1.2), HomX(I)((i, U),HomD(•)(
→
ρ
I,X,!

(E(•)
∅ ),F (•))) corresponds to a compatible family of

D(j)|U -linear homomorphisms ⊕h≤jD(j) ⊗D(h) E(h)
∅ |U → F

(j)|U for any j ≥ i, which is equal to a
compatible family of D(h)|U -linear homomorphisms E(h)

∅ |U → F
(j)|U for any j ≥ i and any h ≤ j,

which is equal to a family of D(h)|U -linear homomorphisms E(h)
∅ |U → F

(i)|U any h < i and of a
family of D(j)|U -linear homomorphisms E(j)

∅ |U → F
(j)|U any j ≥ i.

→i
−1
X

(
HomD(•)(

→
ρ
I,X,!

(E(•)
∅ ),F (•))

)
=
∏
j≥i
HomD(j)(E(j)

∅ ,F (j))×
∏
h<i

HomD(h)(E(h)
∅ ,F (i)). (8.2.3.5.2)

8.2.3.6. Let Mod(Z) be the category of abelian groups. Since products are exact, then following [Sta22,
07KC] we can check the following properties

(a) D(Z) has products,
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(b) products
∏
i∈I Ki in D(Z) are obtained by taking termwise products of any complexes representing

the Ki, and

(c) Hn(
∏
i∈I Ki) =

∏
i∈I H

n(Ki) for any integer n ∈ Z.

Lemma 8.2.3.7. We have the following properties.

(a) If I(•)
∅ is an injective left D(•)

∅ -module then I(i)
∅ is an injective left D(i)

∅ -module for any i ∈ I.

(b) A complex E(•)
∅ ∈ K(lD(•)

∅ ) is a K-injective if and only if E(i)
∅ is a K-injective complex of K(D(i)) for

any i ∈ I.

Proof. This is a consequence of 7.1.3.21.c-d.

8.2.3.8. Let E(•)
∅ ,F (•)

∅ ∈ D(lD(•)
∅ ). Let R be a sheaf on X of commutative rings endowed with a

homomorphism of rings←lX,I,∗(R) → D(•) such that the image of R in D(i) are sent into the center of
D(i) for any i ∈ I. Let R := Γ(X,R).

(a) Let I(•)
∅ be a K-injective complex of K(D(•)

∅ ) representing F (•)
∅ . Following 8.2.3.7, for any i ∈ I, the

object I(i)
∅ is a K-injective complex of K(D(i)) representing F (i)

∅ . We have therefore in D(R) the
isomorphisms:

R HomD(•)
∅

(E(•)
∅ ,F (•)

∅ )
∼−→ Hom•D(•)

∅
(E(•)
∅ , I(•)

∅ ) =
∏
i∈I

Hom•D(i)(E(•)
i , I(i)

∅ )
∼−→

8.2.3.6

∏
i∈I

R HomD(i)(E(i)
∅ ,F (i)

∅ ).

(8.2.3.8.1)

(b) Suppose D(•) is a flat ←lX,I,∗(R)-module, which is equivalent to saying that D(i) is a flat R(i)-

module for any i ∈ I. Set R(•) := ←lX,I∗(R) and R(•)
∅ := ←lX,I∅,∗(R). Let P(•)

∅ be a K-flat

complex of K(D(•)
∅ ) representing E(•)

∅ . Let I(•)
∅ be a K-injective complex of K(D(•)

∅ ) represent-
ing F (•)

∅ . This yields RHomD(•)
∅

(E(•)
∅ ,F (•)

∅ )
∼−→ Hom•

D(•)
∅

(P(•)
∅ , I(•)

∅ )
∼−→

∏
i∈I Hom•D(i)(P

(i)
∅ , I(i)

∅ ),

where the product is computed in K(R). For any i ∈ I, it follows from respectively 8.1.1.6 and
8.2.3.7 that P(i)

∅ is a K-flat complex of K(D(i)) representing E(i)
∅ and I(i)

∅ is a K-injective complex of
K(D(i)) representing F (i)

∅ . Since D(i) is a flat R-module, then P(•)
∅ is K-flat as an object of K(R).

Hence, following 8.2.2.4 Hom•D(i)(P
(i)
∅ , I(i)

∅ ) is a K-injective object of K(R). Using 8.2.1.6.b, we
get in D(R) the isomorphism of complexes Hom•

D(•)
∅

(P(•)
∅ , I(•)

∅ )
∼−→

∏
i∈I Hom•D(i)(P

(i)
∅ , I(i)

∅ )
∼−→∏

i∈I RHomD(i)(E(i)
∅ ,F (i)

∅ ), where the products are computed in D(R). By composition, we get the
isomorphism in D(R):

RHomD(•)
∅

(E(•)
∅ ,F (•)

∅ )
∼−→
∏
i∈I

RHomD(i)(E(i)
∅ ,F (i)

∅ ). (8.2.3.8.2)

Similarly, for any i ∈ I, by using 8.2.3.5.1, 8.2.2.4 and 8.2.3.7, we can check the isomorphism in
D(R):

→i
−1
X

(
RHomD(•)

∅
(E(•)
∅ ,F (•)

∅ )
)
∼−→ RHomD(i)(E(i)

∅ ,F (i)
∅ ). (8.2.3.8.3)

8.2.3.9. LetF∅ be the collection of flasque Z
X(I∅)-modules. Recall, with the definition 7.1.3.14, following

7.1.2.19.(a), a Z
X(I∅) -module E(•) is flasque if and only if E(i) is a flasque sheaf of sets on X for any

i ∈ I. We denote by K+(F∅) the full subcategory of K+(Z
X(I∅)) whose objects consist in complexes of

terms in F∅.

(a) Since the objects of F∅ are acyclic for the functor←lX,I∅,∗, then from Leray’s acyclicity lemma (see
[Sta22, 015E]), the complexes of K+(F∅) compute R←lX,I∅,∗ (beware, the functor←lX,I∅,∗ =

∏
i∈I is the

product computed inK+(ZX) and is not exact). Following 7.1.3.14, there exists a quasi-isomorphism
of E(•)

∅
∼−→ F (•)

∅ of K+(Z
X(I∅)) with F (•)

∅ ∈ K+(F∅) and we have

R←lX,I∅,∗(E
(•)
∅ )

∼−→←lX,I∅,∗(F
(•)
∅ )

∼−→
∏
i∈I
F (i)
∅ , (8.2.3.9.1)
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where
∏
i∈I F

(i)
∅ is the product computed in K+(ZX) (i.e. it is computed by taking termwise prod-

ucts).

(b) Let F (•)
∅ be an object of K+(F∅), i.e. let F (i)

∅ be a collection of flasque abelian sheaves on X for
any i ∈ I. Let I(•)

∅ be a complex of injective Z
X(I∅)-modules together with a quasi-isomorphism

F (•)
∅

∼−→ I(•)
∅ . Since this latter map is a quasi-isomorphism between two objects of K+(F∅), then

it follows from 8.2.3.9.1 that the induced morphism
∏
i∈I F

(i)
∅ →

∏
i∈I I

(i)
∅ is a quasi-isomorphism

of K+(ZX). Since
∏
i∈I I

(i)
∅ is also equal to the product computed in D+(ZX) (see 8.2.1.6.b), this

yields that
∏
i∈I F

(i)
∅ is also the product computed in D+(ZX). By default, a product

∏
i∈I will

means a product in the derived category.

8.2.3.10. Let E(•)
∅ ∈ D−(lD(•)

∅ ),F (•)
∅ ∈ D+(lD(•)

∅ ). Let R be a sheaf on X of commutative rings endowed
with a homomorphism of rings←lX,I,∗(R)→ D(•) such that the image of R in D(i) are sent into the center

of D(i) for any i ∈ I. Let R := Γ(X,R). Thanks to our boundedness hypotheses on E(•)
∅ and F (•)

∅ , we
can check the above isomorphism 8.2.3.8.2 without the hypotheses (even if this is in general harmless
when D(•) comes from the theory of D-modules) that D(•) is a flat←lX,I,∗(R)-module (therefore we can
always choose R = ZX) as follows:

Let I(•)
∅ be an injective resolution in K+(D(•)

∅ ) of F (•)
∅ . This yields the quasi-isomorphisms in K(ZX):

RHomD(•)
∅

(E(•)
∅ ,F (•)

∅ )
∼−→ Hom•

D(•)
∅

(E(•)
∅ , I(•)

∅ )
∼−→
∏
i∈I
Hom•D(i)(E(i)

∅ , I(i)
∅ ), (8.2.3.10.1)

where the product is computed in K(ZX). Since a product of flasque sheaves is flasque, then by using
8.2.1.3, we get that Homn

D(i)

∅
(E(i)
∅ , I(i)

∅ ) is a flasque sheaf for any integer n. Hence following 8.2.3.9.(b),

the product appearing at 8.2.3.10.1 is also a product in D(ZX). Since I(i)
∅ is an injective resolution in

K+(D(i)
∅ ) of F (i)

∅ for any i ∈ I, this yields the isomorphism in D(ZX)∏
i∈I
Hom•D(i)(E(i)

∅ , I(i)
∅ )

∼−→
∏
i∈I

RHom•D(i)(E(i)
∅ ,F (i)

∅ ), (8.2.3.10.2)

where the product of the right term is the product in D(ZX). By composing 8.2.3.10.1 and 8.2.3.10.2,
we get the isomorphism in D+(ZX):

RHomD(•)
∅

(E(•)
∅ ,F (•)

∅ )
∼−→
∏
i∈I

RHomD(i)(E(i)
∅ ,F (i)

∅ ). (8.2.3.10.3)

Similarly, for any i ∈ I, we get the isomorphism in D+(ZX):

→i
−1
X

(
RHomD(•)

∅
(E(•)
∅ ,F (•)

∅ )
)
∼−→ RHomD(i)(E(i)

∅ ,F (i)
∅ ). (8.2.3.10.4)

8.2.3.11. Let I(•) be an injective left D(•)-module, Q(•)
∅ be a flat left D(•)

∅ -module. Since Q(i)
∅ is a flat

left D(i)-module for any i ∈ I (see 7.1.3.6), then I(i) is acyclic for the functors HomD(i)(Q(i)
∅ ,−) and

HomD(i)(Q(i)
∅ ,−) (see 7.1.3.21.b). This means that

→
ρ−1

I,X
(I(•)) is acyclic for the functor HomD(•)

∅
(Q(•)
∅ ,−)

and HomD(•)
∅

(Q(•)
∅ ,−). Moreover, HomD(i)(Q(i), I(i)) is flasque for any i ∈ I (see 7.1.3.21.a).

8.2.3.12. Let E(•)
∅ ∈ D−(D(•)

∅ ) and F (•) ∈ D+(D(•)).

(a) By taking a flat resolution of E(•) and an injective resolution of F (•), by using 8.2.3.3.1, 8.2.3.4.1
(resp. 8.2.3.8.1) we get the following first (resp. second) isomorphism:

R HomD(•)(L
→
ρ
I,X,!

(E(•)
∅ ),F (•))

∼−→ R HomD(•)
∅

(E(•)
∅ ,

→
ρ−1

I,X
F (•))

∼−→
∏
i∈I

R HomD(i)(E(i),F (i)).

(8.2.3.12.1)
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(b) Similarly, by using 8.2.3.3.1, 8.2.3.4.2, (resp. 8.2.3.10.3) the following first (resp. second) isomor-
phisms

RHomD(•)(L
→
ρ
I,X,!

(E(•)
∅ ),F (•))

∼−→ RHomD(•)
∅

(E(•)
∅ ,

→
ρ−1

I,X
F (•))

∼−→
∏
i∈I

RHomD(i)(E(i),F (i)).

(8.2.3.12.2)

(c) We have the isomorphism

→i
−1
X

(
RHomD(•)(L

→
ρ
I,X,!

(E(•)
∅ ),F (•))

)
=
∏
j≥i

RHomD(j)(E(j)
∅ ,F (j))×

∏
h<i

RHomD(h)(E(h)
∅ ,F (i)).

(8.2.3.12.3)
Indeed, let P(•)•

∅ ∈ K−(P∅) together with a quasi-isomorphism of K−(D(•)
∅ ) of the form P(•),•

∅
∼−→

E(•)
∅ (see notation 8.2.3.3). Let I(•)• be an injective resolution in K+(D(•)) of F (•). Following

8.2.3.3.1, we get

RHomD(•)(L
→
ρ
I,X,!

(E(•)
∅ ),F (•))

∼−→ Hom•D(•)(
→
ρ
I,X,!

(P(•),•
∅ ), I(•),•).

Since→i
−1
X

commutes with finite products, we get for any n ∈ Z the first equality:

→i
−1
X

(
Homn

D(•)(
→
ρ
I,X,!

(P(•),•
∅ ), I(•),•)

)
=
∏
p∈Z

→i
−1
X

(
HomD(•)(

→
ρ
I,X,!

(P(•),p
∅ ), I(•),n+p)

)
8.2.3.5.2

=
∏
p∈Z

Ñ∏
j≥i
HomD(j)(P(j),p

∅ , I(j),n+p)×
∏
h<i

HomD(h)(P(h),p
∅ , I(i),n+p)

é
8.2.1.4.1

=
∏
j≥i
Homn

D(j)(P(j),•
∅ , I(j),•)×

∏
h<i

Homn
D(h)(P(h),•

∅ , I(i),•).

This yields

→i
−1
X

(
Hom•D(•)(

→
ρ
I,X,!

(P(•),•
∅ ), I(•),•)

)
=
∏
j≥i
Hom•D(j)(P(j),•

∅ , I(j),•)×
∏
h<i

Hom•D(h)(P(h),•
∅ , I(i),•),

(8.2.3.12.4)

where the products are computed in K(ZX). Since a product of flasque sheaves is flasque, then
by using 8.2.3.11, we get that the sheaf Homn

D(h)(I
(h),•
∅ ,P(j),•) is flasque for any h ≤ j and any n.

Hence following 8.2.3.9.(b), the product appearing at 8.2.3.12.4 is also a product in D(ZX). From
Leray’s acyclicity lemma (see [Sta22, 015E]), it follows from 8.2.3.11 that for any h ≤ j, any p we
have

Hom•D(h)(P(h),•
∅ , I(i),•)

∼−→ RHomD(h)(E(h),•
∅ ,F (i),•).

Hence, we are done.

Proposition 8.2.3.13. Let u : I → I ′ be increasing map of partially ordered sets, D′(•) be a sheaf of rings
on the topos X(I′) endowed with a homomorphism of sheaf of rings D(•) →→u

−1
X (D′(•)). Let F ′(•) be a left

D′(•)-module. We consider →u
−1
X (F ′(•)) as a left D(•)-module via the homomorphism D(•) →→u

−1
X (D′(•)).

(a) Suppose
→
ρ−1

I′,X
(F ′(•)) is acyclic for the functors HomD′(•)∅

(Q′(•)∅ ,−) for any flat left D′(•)∅ -module Q′(•)∅ .

Then, for any flat left D(•)
∅ -module Q(•)

∅ , we have:

(i) the left D(•)
∅ -module

→
ρ−1

I,X
(→u
−1
X (F ′(•))) is acyclic for the functor HomD(•)

∅
(Q(•)
∅ ,−),

(ii) the module →u
−1
X (F ′(•)) is acyclic for the functor HomD(•)(

→
ρ
I,X,!

(Q(•)
∅ ),−).

(b) Suppose I ′(•) := F ′(•) is an injective left D′(•)-module and let Q(•)
∅ be a flat left D(•)

∅ -module. Then:
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(i) The left D(•)
∅ -module

→
ρ−1

I,X
(→u
−1
X (I ′(•))) is right acyclic for both functors HomD(•)

∅
(Q(•)
∅ ,−) and

HomD(•)
∅

(Q(•)
∅ ,−) ;

(ii) The module→u
−1
X (I ′(•)) is right acyclic for the three functors of the form HomD(•)(

→
ρ
I,X,!

(Q(•)
∅ ),−),

HomD(•)(
→
ρ
I,X,!

(Q(•)
∅ ),−) and HomD(•)(

→
ρ
I,X,!

(Q(•)
∅ ),−) ;

(iii) The abelian sheaves HomD(•)(
→
ρ
I,X,!

(Q(•)
∅ ),→u

−1
X (I ′(•))) and HomD(•)(

→
ρ
I,X,!

(Q(•)
∅ ),→u

−1
X (I ′(•)))

are flasque.

Proof. Let us check a). Since the non-respective case is checked similarly, let us prove the respective
case. Let Q(•)

∅ be a flat left D(•)
∅ -module. We get

→
ρ
I,X,!

(Q(•)
∅ )

∼−→ L
→
ρ
I,X,!

(Q(•)
∅ ) (see 8.2.3.3). By using

the isomorphism

R HomD(•)(
→
ρ
I,X,!

(Q(•)
∅ ),→u

−1
X

(F ′(•))) ∼−→
8.2.3.12.1

R HomD(•)
∅

(Q(•)
∅ ,

→
ρ−1

I,X
(→u
−1
X

(F ′(•)))) (8.2.3.13.1)

we reduce to check (i).
Following 8.2.3.6 and 8.2.3.8.1, the hypothesis on

→
ρ−1

I′,X
(F ′(•)) is equivalent to saying that for any

i′ ∈ I ′ the module F ′(i′) is acyclic for the functors HomD′(i′)(Q′(i
′),−) for any flat left D′(i′)-module

Q′(i′). This yields the last isomorphisms in D+(Z) (recall products are easily computed in D+(Z): see
8.2.3.6):

R HomD(•)
∅

(Q(•)
∅ ,

→
ρ−1

I,X
(→u
−1
X

(F ′(•)))) ∼−→
8.2.3.8.1

∏
i∈I

R HomD(i)(Q(i)
∅ ,F

′(u(i)))

∼−→
∏
i∈I

R HomD′(u(i))(D′(u(i)) ⊗L
D(i) Q(i)

∅ ,F
′(u(i)))

∼−→
∏
i∈I

HomD′(u(i))(D′(u(i)) ⊗D(i) Q(i)
∅ ,F

′(u(i))).

(8.2.3.13.2)

Let us check b). It follows from 8.2.3.11 that I ′(•) satisfies the condition of the part (a) of the Lemma
and therefore we get the acyclicity concerning the functors involving Hom. By replacing 8.2.3.8.1 by
8.2.3.10.3 and by using the acyclicity of 8.2.3.11, we get the isomorphisms 8.2.3.13.2 where Hom is
replaced by Hom and F ′(•) is replaced by I ′(•), which yields:

RHomD(•)
∅

(Q(•)
∅ ,

→
ρ−1

I,X
(→u
−1
X

(I ′(•)))) ∼−→
∏
i∈I
HomD′(u(i))(D′(u(i)) ⊗D(i) Q(i)

∅ , I
′(u(i))),

where the product in computed in D+(ZX) (hence, beware this is not obvious that the right term is a
module). Since I ′(u(i)) is injective, then using again 8.2.3.11 the sheaf G(i) := HomD′(u(i))(D′(u(i)) ⊗D(i)

Q(i)
∅ , I

′(u(i))) is flasque. By using 8.2.3.9.(b), the product
∏
i∈I G(i) computed in the category of flasque

abelian sheaves on X is also a product in D+(ZX). Hence, we get the acyclicity of (i). By replacing
8.2.3.12.1 by 8.2.3.12.2, we get the isomorphisms 8.2.3.13.1 where Hom is replaced by Hom and F ′(•)
is replaced by I ′(•). This implies the acyclity of (ii) from (i) for the first two functors. Concerning the
third one,

→i
−1
X

(
RHomD(•)(

→
ρ
I,X,!

(Q(•)
∅ ),→u

−1
X

(I ′(•)))
) 8.2.3.12.3

∼−→
∏
j≥i

RHomD(j)(Q(j)
∅ , I ′(u(j)))×

∏
h<i

RHomD(h)(Q(h)
∅ , I ′(u(i)))

8.2.3.11
∼−→

∏
j≥i
HomD(j)(Q(j)

∅ , I ′(u(j)))×
∏
h<i

HomD(h)(Q(h)
∅ , I ′(u(i))), (8.2.3.13.3)

where the last product is equal to the product in K(ZX) (use again 8.2.3.9.(b), and is therefore a
ZX -sheaf. Hence, we get the required acyclicity.

Finally, we get by composition the isomorphism

HomD(•)(
→
ρ
I,X,!

(Q(•)
∅ ),→u

−1
X

(I ′(•))) ∼−→
∏
i∈I
HomD′(u(i))(D′(u(i)) ⊗D(i) Q(i)

∅ , I
′(u(i)))
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of flasque sheaves (recall a product of flasque sheaves is flasque), which yields (iii) for the first sheaf.
Concerning the second sheaf, this is a consequence of 8.2.3.13.3.

Remark 8.2.3.14. With notation 8.2.3.13, the functor (denoted slightly abusively)→u
−1
X is the composition

of Mod(D(•))→ Mod(→u
−1
X D(•)) induced by the inverse image by the topos morphism →uX : X(I′) → X(I)

with the forgetful functor Mod(→u
−1
X D(•)) → Mod(D′(•)). Hence, we have checked above a unification of

both cases.

Corollary 8.2.3.15. Let λ ∈ L(I) and χ ∈M(I). Let I(•) be an injective left D(•)-module. We consider
χ∗λ∗(I(•)) as a left D(•)-module via the canonical homomorphism D(•) → λ∗(D(•)). Let Q(•)

∅ be a flat
left D(•)

∅ -module.

(a) The left D(•)
∅ -module

→
ρ−1

I,X
(χ∗λ∗(I(•))) is acyclic for the functors HomD(•)

∅
(Q(•)
∅ ,−) and HomD(•)

∅
(Q(•)
∅ ,−).

(b) The module χ∗λ∗(I(•)) is acyclic for the following three functors HomD(•)(
→
ρ
I,X,!

(Q(•)
∅ ),−), HomD(•)(

→
ρ
I,X,!

(Q(•)
∅ ),−)

and HomD(•)(
→
ρ
I,X,!

(Q(•)
∅ ),−).

(c) The sheaves HomD(•)(
→
ρ
I,X,!

(Q(•)
∅ ), χ∗λ∗(I(•))) and HomD(•)(

→
ρ
I,X,!

(Q(•)
∅ ), χ∗λ∗(I(•))) are flasque.

Proof. Since
→
ρ−1

I,X
(χ∗λ∗(I(•))) =

→
ρ−1

I,X
(λ∗(I(•))), we get (a) by applying 8.2.3.13.(b) in the case where

u = λ (recall λ∗(I(•)) = →u
−1
X (I(•))). Since Q(•)

∅ is flat, then
→
ρ
I,X,!

(Q(•)
∅ )

∼−→ L
→
ρ
I,X,!

(Q(•)
∅ ). Hence, we

get b) and c) for the first functor from 8.2.3.13.(b) and via the isomorphisms:

RHomD(•)(
→
ρ
I,X,!

(Q(•)
∅ ), χ∗λ∗I(•))

∼−→
8.2.3.12.1

RHomD∅(Q
(•)
∅ ,

→
ρ−1

I,X
(χ∗λ∗I(•)))

= RHomD∅(Q
(•)
∅ ,

→
ρ−1

I,X
(λ∗I(•)))

∼−→
8.2.3.12.1

RHomD(•)(
→
ρ
I,X,!

(Q(•)
∅ ), λ∗I(•)).

Similarly, we get b) and c) for the second functor from 8.2.3.13.(b) and via the isomorphisms (which is
a consequence of 8.2.3.13.3):

RHomD(•)(
→
ρ
I,X,!

(Q(•)
∅ ), χ∗λ∗I(•))

∼−→ RHomD(•)(
→
ρ
I,X,!

(Q(•)
∅ ), λ∗I(•)).

Lemma 8.2.3.16. Let P be a collection of left D(•)-modules. We denote by I(P) the collection of
left D(•)-modules which are acyclic for the functors HomD(•)(Q(•),−) (resp. HomD(•)(Q(•),−)) for
any Q(•) ∈ P. We denote by P+ the collection of left D(•)-modules which are acyclic for the functors
HomD(•)(−,F (•)) (resp. HomD(•)(−,F (•))) for any F (•) ∈ I(P).

Let Q(•),•
1 → Q(•),•

2 be a quasi-isomorphism of K−(D(•)) such that Q(•),n
i ∈ P+, for any i = 1, 2,

n ∈ Z. Let F (•),•
1 → F (•),•

2 be a quasi-isomorphism of K+(D(•)) such that F (•),n
i ∈ I(P), for any

i = 1, 2, n ∈ Z. Then the morphism of K+(ZX) (resp. K+(Z(•)
X ))

Hom•D(•)(Q(•),•
2 ,F (•),•

1 )→ Hom•D(•)(Q(•),•
1 ,F (•),•

2 )

(resp. Hom•D(•)(Q(•),•
2 ,F (•),•

1 )→Hom•D(•)(Q(•),•
1 ,F (•),•

2 ) )

is a quasi-isomorphism.

Proof. Since the respective case is checked identically, let us only prove the non-respective one. 0) We
remark that I(P) satisfies the following property:

(a) for any F (•),G(•) ∈ I(P), we have F (•) ⊕ G(•) ∈ I(P) ;

(b) for any exact sequence of left D(•)-modules 0→ E(•) → F (•) → G(•) → 0, if E(•),F (•) ∈ I(P), then
G(•) ∈ I(P).
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and P+ satisties the dual property of I(P):

(a*) for any F (•),G(•) ∈ P+, we have F (•) ⊕ G(•) ∈ P+ ;

(b*) for any exact sequence of left D(•)-modules 0→ E(•) → F (•) → G(•) → 0, if F (•),G(•) ∈ P+, then
E(•) ∈ P+.

Hence, the cone of Q(•),•
1 → Q(•),•

2 is a complex of left D(•)-modules belonging to P+ and the cone of
F (•),•

1 → F (•),•
2 is a complex of left D(•)-modules belonging to I(P). Hence we reduce to check the

following two facts. Let F (•),• ∈ K+(D(•)) such that F (•),n ∈ I(P), for any n ∈ Z. Let Q(•),• ∈
K−(D(•)) such that Q(•),n ∈ P+, for any n ∈ Z.

1) In this step we prove that if Q(•),• is acyclic then Hom•D(•)(Q(•),•,F (•),•) is acyclic.
i) Remark that if Q(•),n = 0 for any integer n > a and F (•),n = 0 for any integer n < b then

Hn
(
Hom•D(•)(Q(•),•,F (•),•)

)
= 0 for any n < b− a.

ii) Since Q(•),• is bounded above, by using the property (b∗) satisfied by P+, we can prove by
decreasing induction on the integer n ∈ Z that ker dn are left D(•)-modules belonging to P+, where
dn : Q(•),n → Q(•),n+1 are the transition maps. For any left D(•)-module F (•) ∈ I(P), the functor
HomD(•)(−,F (•)) sends short exact sequences of left D(•)-modules belonging to P+ to short exact
sequences of abelian sheaves on X. Hence, by splitting Q(•),• into short exact sequences, we can check
that the complex Hom•D(•)(Q(•),•,F (•),j) is acyclic for any integer j.

iii) We can suppose F (•),n = 0 for any integer n < 0 and Q(•),n = 0 for any integer n > 0. By
applying the δ-functor Hom•D(•)(Q(•),•,−) to the naive exact sequence

0→ F (•),0 → F (•),• → F (•),≥1 → 0,

we get the exact triangle

Hom•D(•)(Q(•),•,F (•),0)→ Hom•D(•)(Q(•),•,F (•),•)→ Hom•D(•)(Q(•),•,F (•),≥1)→ +1.

By using i) and ii), this yields that H0
(
Hom•D(•)(Q(•),•,F (•),•)

)
= 0. Similarly, by induction on n ≥ 0

we check that Hn
(
Hom•D(•)(Q(•),•,F (•),•)

)
= 0.

2) It remains to prove that if F (•),• is acyclic then so is Hom•D(•)(Q(•),•,F (•),•).
i) Since F (•),• is bounded below, by using the property (b) satisfied by I(P), we can prove by

induction on the integer n ∈ Z that Im dn are left D(•)-modules belonging to I(P), where dn : F (•),n →
F (•),n+1 are the transition maps. For any left D(•)-module Q(•) ∈ P+, the functor HomD(•)(Q(•),−)
sends short exact sequences of left D(•)-modules belonging to I(P) to short exact sequences of abelian
sheaves onX. Hence, by splitting F (•),• into short exact sequences, this implies thatHom•D(•)(Q(•),j ,F (•),•)
is acyclic for any integer j.

ii) We can suppose F (•),n = 0 for any integer n < 0 and Q(•),n = 0 for any integer n > 0. By applying
the δ-functor Hom•D(•)(−,F (•),•) to the naive exact sequence

0→ Q(•),0 → Q(•),• → Q(•),≤−1 → 0,

we get the exact triangle

Hom•D(•)(Q(•),≤−1,F (•),•)→ Hom•D(•)(Q(•),•,F (•),•)→ Hom•D(•)(Q(•),0,F (•),•)→ +1.

By using 1.i.) and 2.ii), this yields that H0
(
Hom•D(•)(Q(•),•,F (•),•)

)
= 0. Similarly, by induction on

n ≥ 0 we check that Hn
(
Hom•D(•)(Q(•),•,F (•),•)

)
= 0.

8.2.4 Derived homomorphism bifunctor over LDQ(D(•))

8.2.4.1. Let E(•) ∈ K(D(•)). The family (χ∗λ∗E(•))(λ,χ)∈L(I)×M(I) can be considered as an inductive
system of objects of X(I) indexed by L(I)×M(I) with transition morphisms given by σE,(λ,χ),(λ′,χ′) for
any (λ′, χ′) ≤ (λ, χ) (see notation 8.1.4.1.1).
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Notation 8.2.4.2. We denote by I(D(•)) or simply I the category of injective left D(•)-modules,
by K+(I) the full subcategory of K+(D(•)) whose objects consist in complexes of injective left D(•)-
modules. We denote by P(D(•)) or simply P the collection of objects of the form

→
ρ
I,X,!

(Q(•)
∅ ) where

Q(•)
∅ is a flat left D(•)

∅ -module. We denote by K−(P) the full subcategory of K−(D(•)) whose objects
consist in complexes of terms in P.

We will need the following notation for some proofs. We denote by I(P) the collection of left D(•)-
modules which are acyclic for the functors HomD(•)(Q(•),−) and HomD(•)(Q(•),−) for any Q(•) ∈ P.
We denote by K−(I(P)) the full subcategory of K−(D(•)) whose objects consist in complexes of terms
in I(P). Moreover, we denote by P+ the collection of left D(•)-modules which are acyclic for the
functors HomD(•)(−,F (•)) and HomD(•)(−,F (•)) for any F (•) ∈ I(P).

8.2.4.3. We have the following properties.

(a) Let E(•)
∅ be a flat left D(•)

∅ -module, i.e. E(i)
∅ is a flat left D(i)-module for any i ∈ I. Then

→
ρ
I,X,!

(E(•)
∅ )

is a flat left D(•)-modules, i.e. →i
−1
X

(
→
ρ
I,X,!

(E(•)
∅ )) is a left D(i)-module for any i ∈ I.

(b) Let E(•) be a left D(•)-module. Choose Q(•)
∅ a flat left D(•)

∅ -module endowed with an epimorphism
of left D(•)

∅ -modules Q(•)
∅ →

→
ρ−1

I,X
(E(•)). Since

→
ρ
I,X,!

is right exact (but not left exact when the

transition homomorphisms of D(•) are not flat), this yields an epimorphism of left D(•)-modules

→
ρ
I,X,!

(Q(•)
∅ ) →

→
ρ
I,X,!

◦
→
ρ−1

I,X
(E(•)). Since the adjoint morphism

→
ρ
I,X,!

◦
→
ρ−1

I,X
(E(•)) → E(•) is an

epimorphism, this implies by composition the epimorphism of the form
→
ρ
I,X,!

(Q(•)
∅ )→ E(•).

(c) Let E(•) ∈ K−(D(•)). It follows from (b) and [Sta22, 05T7], that there exists P(•) ∈ K−(P) endowed
with a quasi-isomorphism P(•) ∼−→ E(•).

(d) Let (λ, χ) ∈ L(I) × M(I), P(•) ∈ K−(P), and I(•) ∈ K+(I). It follows from 8.2.3.15 that
χ∗λ∗I(•) ∈ K+(I(P)) (see the notation of 8.2.4.2). Hence, since P ⊂ P+, it follows from 8.2.3.16
that the complexes HomD(•)(P(•), χ∗λ∗I(•)) and HomD(•)(P(•), χ∗λ∗I(•)) are acyclic if either P(•)

or I(•) is acyclic.

Notation 8.2.4.4. Remark that since L(I)×M(I) is filtered, the functor lim−→
(λ,χ)∈L(I)×M(I)

is exact on the

category of abelian sheaves on X. If no confusion is possible, let us simply write lim−→
λ,χ

:= lim−→
(λ,χ)∈L(I)×M(I)

.

Consider the bifunctor

lim−→
λ,χ

Hom•D(•)(−, χ∗λ∗−) : K−(D(•))op ×K+(D(•))→ K+(ZX) (8.2.4.4.1)

whose nth term for any integer n ∈ Z is defined for any E(•),• ∈ K−(D(•)), F (•),• ∈ K+(D(•)) by setting

lim−→
λ,χ

Homn
D(•)(E(•),•, χ∗λ∗F (•),•) := lim−→

λ,χ

∏
p∈Z

HomD(•)(E(•),p, χ∗λ∗F (•), p+n) (8.2.4.4.2)

and the transition morphisms are given by the formula d = dE + (−1)n+1dF .

8.2.4.5. Let I(•) ∈ K+(I). Consider the functor

φI(•) : lim−→
λ,χ

Hom•D(•)(−, χ∗λ∗I(•)) : K−(D(•))op → D+(ZX).

Following 8.2.4.3.d, for any acyclic complex P(•) ∈ K−(P), φI(•)(P(•)) is acyclic. By using 8.2.4.3.c and
[Sta22, 06XN], we get therefore the right derived functor RφI(•) : : D−(D(•))op → D+(ZX). This yields
by functoriality the bifunctor

Rlim−→
λ,χ

HomD(•)(−, χ∗λ∗−) : D−(D(•))op ×K+(I)→ D+(ZX)
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defined by setting
Rlim−→
λ,χ

HomD(•)(E(•), χ∗λ∗I(•)) := RφI(•)(E(•))

for any E(•) ∈ D−(D(•)), I(•) ∈ K+(I). Since the canonical functor K+(I) → D+(D(•)) is an
equivalence of categories, then we get the bifunctor

Rlim−→
λ,χ

HomD(•)(−, χ∗λ∗−) : D−(D(•))op ×D+(D(•))→ D+(ZX). (8.2.4.5.1)

For any E(•) ∈ D−(D(•)), F (•) ∈ D+(D(•)), by construction

Rlim−→
λ,χ

HomD(•)(E(•), χ∗λ∗F (•))
∼−→ lim−→

λ,χ

Hom•D(•)(P(•), χ∗λ∗I(•))

where I(•) ∈ K+(I) is a complex representing F (•) and P(•) ∈ K−(P) is a complex representing E(•).

Proposition 8.2.4.6. Let Q]qi : K
](D(•)) → D](D(•)) be the localisation functor and N ]

qi(D(•)) :=

KerQ]qi be the saturated null system of acyclic complexes of K(D(•)) ; and similarly with ZX instead of
D(•).

The functor 8.2.4.4.1 (remark that a bifunctor can be viewed as a functor) is right localizable with
respect to (N−qi(D(•))op ×N+

qi(D(•)),N+
qi(ZX)) (in the sense of 7.4.1.10). Moreover, its right localization

is the functor 8.2.4.5.1.

Proof. Denote by F the functor 8.2.4.4.1 and by Qqi with the localization functor K+(ZX)→ D+(ZX).
Let S]qi(D(•)) := S(N]

qi(D(•))) be the saturated system of quasi-isomorphisms of K](D(•)) (we keep nota-
tion 7.4.1.2). Following 7.4.1.9.d and by definition (see 7.4.1.10), we have to check that the right derived
functor of Qqi ◦ F with respect to (S−qi(D(•))op × S+

qi(D(•)) is defined at any object of K−(D(•))op ×
K+(D(•)). By using 8.2.4.3.(c)-(d), we can checked that both conditions are satisfied: i) for any
(E(•),F (•)) ∈ K−(D(•))op ×K+(D(•)), there exists (P(•), I(•)) ∈ K−(P)op ×K+(I) and a morphism
(E(•),F (•))→ (P(•), I(•)) in (S−qi(D(•))op×S+

qi(D(•)) and ii) for any arrow s : (P(•), I(•))→ (P ′(•), I ′(•))
of (S−qi(D(•))op × S+

qi(D(•)) with (P(•), I(•)), (P ′(•), I ′(•)) ∈ K−(P)op ×K+(I), its image by Qqi ◦ F is
an isomorphism. Hence, we conclude by using [Sta22, 06XN].

8.2.4.7. Endowing the set I × L(I) ×M(I) with the order product, we can see X(I×L(I)×M(I)) as the
topos of inductive systems of objects of X(I) indexed by L(I) × M(I). We denote by D(•),(•,•) the
constant inductive system of rings of X(I) indexed by L(I)×M(I) with value D(•). We denote by Z(•,•)

X

the constant inductive system of rings of X indexed by L(I)×M(I) with value ZX .
Consider the bifunctor

Hom(•,•),•
D(•) (−, −) : K(D(•))op ×K(D(•),(•,•))→ K(Z(•,•)

X ) (8.2.4.7.1)

which is defined for any E(•),• ∈ K−(D(•)), F (•),(•,•),• ∈ K+(D(•),(•,•)), for any (λ, χ) ∈ L(I) ×M(I)
and n ∈ Z by setting

Hom(λ,χ),n

D(•) (E(•),•, F (•),(•,•),•) :=
∏
p∈Z

HomD(•)(E(•),p, F (•),(λ,χ), p+n) (8.2.4.7.2)

and the transition morphisms are given by the formula d = dE + (−1)n+1dF .

8.2.4.8. By construction, for any E(•) ∈ K−(D(•)), F (•),(•,•) ∈ K+(D(•),(•,•)), we can see the object
Hom(•,•)

D(•) (E(•),•, F (•),(•,•)) as the following inductive system of K(ZX) indexed by L(I)×M(I):

Hom(•,•),•
D(•) (E(•),•, F (•),(•,•)) =

Ä
Hom•D(•)(E(•), F (•),(λ,χ))

ä
(λ,χ)∈L(I)×M(I)

, (8.2.4.8.1)

where the right hand side is defined at 8.2.1.4.

8.2.4.9. The bifunctor 8.2.4.7.1 can be right derived as follows.
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(a) Following 7.1.3.21.c (via the identification between inductive systems indexed by J and projective
systems indexed by J◦ where J = L(I) ×M(I), and by using the fact that the section 7.1 is still
valid by replacing the topos Top(X) by any topos and in particular by the topos X(I)), if I(•),(•,•) is
an injective left D(•),(•,•)-module, then for any (λ, χ) ∈ L(I)×M(I) the left D(•)-module I(•),(λ,χ)

is injective.

(b) Similarly to (a), following 7.1.3.21.d if I(•),(•,•) is K-injective complex of K(lD(•),(•,•))-module, then
I(•),(λ,χ) is a K-injective complex of K(lD(•)) for any (λ, χ) ∈ L(I)×M(I).

(c) A morphism G(•,•) → G′(•,•) of K(Z(•,•)
X ) is a quasi-isomorphism if and only if for any (λ, χ) ∈

L(I)×M(I), the induced morphisms G(λ,χ) → G′(λ,χ) are quasi-isomorphisms.

(d) By using b) and c), by using the quasi-isomorphisms 8.2.2.1.1 and the equality 8.2.4.8.1, we can check
that for any quasi-isomorphism I(•),(•,•) ∼−→ I ′(•),(•,•) of K-injective complexes of K(D(•),(•,•)), for
any quasi-isomorphism E(•) ∼−→ E ′(•) of complexes of K(D(•)), the morphism of K(Z(•,•)

X )

Hom(•,•),•
D(•) (E ′(•), I(•),(•,•))→ Hom(•,•),•

D(•) (E(•), I ′(•),(•,•)) (8.2.4.9.1)

is a quasi-isomorphism. Hence it follows from [Sta22, 06XN] that the bifunctor 8.2.4.7.1 is right
localizable with respect to (Nqi(D(•))op × Nqi(D(•),(•,•)),Nqi(ZX)). Its right localisation will be
denoted by

RHom(•,•)
D(•) (−, −) : D(D(•))op ×D(D(•),(•,•))→ D(Z(•,•)

X ) (8.2.4.9.2)

and is computed by taking K-injective representation of objects in D(D(•),(•,•)).

(e) The exact functor lim−→
λ,χ

: Mod(Z(•,•)
X ) → Mod(ZX) induces lim−→

λ,χ

: D(Z(•,•)
X ) → D(ZX). By composing

8.2.4.9.2 with this latter functor, we get the bifunctor

lim−→
λ,χ

◦ RHom(•,•)
D(•) (−, −) : D(D(•))op ×D(D(•),(•,•))→ D(ZX). (8.2.4.9.3)

8.2.4.10. We define the functor c : Mod(D(•)) → Mod(D(•),(•,•)) by setting, for any left D(•)-module
E(•), c(E(•))(λ,χ) := χ∗λ∗(E(•)) and where for any (λ1, χ1) ≤ (λ2, χ2) the transition maps χ∗1λ∗1E(•) →
χ∗2λ

∗
2E(•) are the canonical ones i.e. are equal to σE,(λ2,χ2),(λ1,χ1) (see 8.1.4.1.1). Since c is exact, this

yields the functor c : D](D(•))→ D](D(•),(•,•)), with ] ∈ {∅,+,−,b}.

Lemma 8.2.4.11. For any E(•) ∈ D−(D(•)), F (•) ∈ D+(D(•)), we have the isomorphism

Rlim−→
λ,χ

HomD(•)(E(•), χ∗λ∗F (•))
∼−→ lim−→

λ,χ

◦ RHom(•,•)
D(•) (E(•), c(F (•))), (8.2.4.11.1)

where the right bifunctor is constructed at 8.2.4.9.3 and the left one at 8.2.4.5.1.

Proof. Let P(•) ∈ K−(P) be a complex endowed with a quasi-isomorphism P(•) ∼−→ E(•) and I(•) ∈
K+(I) be a complex endowed with a quasi-isomorphism F (•) ∼−→ I(•). Since c is exact, we get the
quasi-isomorphism c(F (•))

∼−→ c(I(•)). Let I(•),(•,•) ∈ K+(D(•),(•,•)) be a complex of injective left
D(•),(•,•)-modules endowed with a quasi-isomorphism c(I(•))

∼−→ I(•),(•,•).
Let (λ, χ) ∈ L(I)×M(I). Since I(•),(λ,χ) is a bounded below complex of injective left D(•)-modules

(see 8.2.4.9.(a)), then we get the quasi-isomorphism

Hom•D(•)(P(•), I(•),(λ,χ))
∼←− Hom•D(•)(E(•), I(•),(λ,χ)). (8.2.4.11.2)

Since c(I(•))(λ,χ) = χ∗λ∗(F (•)), we get a quasi-isomorphism χ∗λ∗(I(•))
∼−→ I(•),(λ,χ) ofK+(D(•)). With

notation 8.2.4.2, it follows from 8.2.3.15 that χ∗λ∗(I(•)) ∈ K(I(P)). Since the term of I(•),(λ,χ) are
injective, then we have also I(•),(λ,χ) ∈ K(I(P)). Hence, by using 8.2.3.16, we get that the morphism

Hom•D(•)(P(•), χ∗λ∗I(•))→ Hom•D(•)(P(•), I(•),(λ,χ)) (8.2.4.11.3)
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is a quasi-isomorphism. By composing 8.2.4.11.2 and 8.2.4.11.3 and by taking the filtered inductive limit,
we get the quasi-isomorphism of K(ZX)

lim−→
λ,χ

Hom•D(•)(P(•), χ∗λ∗I(•))
∼−→ lim−→

λ,χ

Hom•D(•)(E(•), I(•),(λ,χ)), (8.2.4.11.4)

which is our isomorphism 8.2.4.11.1 in D(ZX).

8.2.4.12. Replacing everywhere Hom by Hom, similarly to 8.2.4.5.1 and 8.2.4.9.2 we get the bifunctors

Rlim−→
λ,χ

HomD(•)(−, χ∗λ∗−) : D−(D(•))op ×D+(D(•))→ D+(Z), (8.2.4.12.1)

R Hom
(•,•)
D(•) (−, −) : D(D(•))op ×D(D(•),(•,•))→ D(Z(•,•)). (8.2.4.12.2)

Similarly to 8.2.4.11, for any E(•) ∈ D−(D(•)), F (•) ∈ D+(D(•)), we have the isomorphism

Rlim−→
λ,χ

HomD(•)(E(•), χ∗λ∗F (•))
∼−→ lim−→

λ,χ

◦ R Hom
(•,•)
D(•) (E(•), c(F (•))). (8.2.4.12.3)

When f is the canonical map of topological spaces f : X → {∗} and J = L(I) ×M(I), the functor

→
f
J∗

(see notation 8.1.1.2.7) will simply be denoted by Γ(X(•,•),−). If G(•,•) ∈ D+(Z(•,•)
X ), we have by

definition
Γ(X(•,•),G(•,•)) =

Ä
Γ(X,G(λ,χ))

ä
(λ,χ)∈L(I)×M(I)

. (8.2.4.12.4)

8.2.4.13. Replacing everywhere Hom by Hom, similarly to 8.2.4.5.1 and 8.2.4.9.2 we get the bifunctors

Rlim−→
λ,χ

HomD(•)(−, χ∗λ∗−) : D−(D(•))op ×D+(D(•))→ D+(Z(•)
X ), (8.2.4.13.1)

RHom
(•,•)
D(•) (−, −) : D(D(•))op ×D(D(•),(•,•))→ D(Z(•),(•,•)

X ). (8.2.4.13.2)

Similarly to 8.2.4.11, for any E(•) ∈ D−(D(•)), F (•) ∈ D+(D(•)), we have the isomorphism

Rlim−→
λ,χ

HomD(•)(E(•), χ∗λ∗F (•))
∼−→ lim−→

λ,χ

◦ RHom
(•,•)
D(•) (E(•), c(F (•))). (8.2.4.13.3)

When f is the canonical map of topological spaces f : X → {∗} and J = I×L(I)×M(I), the functor

→
f
J∗

(see notation 8.1.1.2.7) will simply be denoted by Γ(X(•),(•,•),−). If G(•),(•,•) ∈ D+(Z(•),(•,•)
X ), we

have by definition

Γ(X(•),(•,•),G(•),(•,•)) =
Ä
Γ(X(•),G(•),(λ,χ))

ä
(λ,χ)∈L(I)×M(I)

=
Ä
Γ(X,G(i),(λ,χ))

ä
(i,λ,χ)∈I×L(I)×M(I)

.

(8.2.4.13.4)

Lemma 8.2.4.14. We have the following properties.

1. If X is coherent, then for any E(•,•) ∈ D+(Z(•,•)
X ) we have the functorial isomorphism

lim−→
λ,χ

◦ RΓ(X(•,•), E(•,•))
∼−→ RΓ(X, lim−→

λ,χ

E(•,•)). (8.2.4.14.1)

2. If Io is coherent (for the topology 7.1.2.13) and X is coherent, then for any E(•),(•,•) ∈ D+(Z(•),(•,•)
X )

we have the functorial isomorphism

lim−→
λ,χ

◦ RΓ(X(•),(•,•), E(•),(•,•))
∼−→ RΓ(X(•), lim−→

λ,χ

E(•),(•,•)). (8.2.4.14.2)
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Proof. Since the first isomorphism is checked similarly, let us only check 8.2.4.14.2. Let I(•),(•,•) ∈
K+(Z(•),(•,•)

X ) be a complex of injective abelian sheaves on X(•),(•,•) quasi-isomorphic to E(•),(•,•). Then,
for any (λ, χ) ∈ L(I)×M(I), I(λ,χ) is a complex of flasque abelian sheaves on X(•). Since Io and X are
coherent, then filtered inductive limits of flasque abelian sheaves on X(•) are flasque (see 7.1.2.19.(c))
and since X(•) is coherent then filtered inductive limits commute of abelian sheaves on X(•) with the
global section functor Γ(X(•),−) (see 7.1.2.16). This yields

lim−→
λ,χ

◦ RΓ(X(•),(•,•), E(•),(•,•))
∼−→ lim−→

λ,χ

Ä
Γ(X(•), I(•),(λ,χ))

ä
λ,χ

(8.2.4.14.3)

∼−→ Γ(X(•), lim−→
λ,χ

I(•),(λ,χ))
∼−→ RΓ(X(•), lim−→

λ,χ

E(•),(•,•)). (8.2.4.14.4)

Proposition 8.2.4.15. Let E(•) ∈ D−(D(•)), F (•) ∈ D+(D(•)), G(•),(•,•) ∈ D+(D(•),(•,•)).

(a) We have the bifunctorial isomorphisms

RΓ(X(•,•),RHom(•,•)
D(•) (E(•), G(•),(•,•)))

∼−→ R Hom
(•,•)
D(•) (E(•), G(•),(•,•)), (8.2.4.15.1)

RΓ(X(•),(•,•),RHom
(•,•)
D(•) (E(•), G(•),(•,•)))

∼−→ R Hom
(•,•)
D(•) (E(•), G(•),(•,•)). (8.2.4.15.2)

(b) If X is coherent, then we have the bifunctorial isomorphisms

RΓ(X,Rlim−→
λ,χ

HomD(•)(E(•), χ∗λ∗F (•)))
∼−→ Rlim−→

λ,χ

HomD(•)(E(•), χ∗λ∗F (•)). (8.2.4.15.3)

(c) If Io is coherent (for the topology 7.1.2.13) and X is coherent, then we have the bifunctorial isomor-
phisms

RΓ(X(•),Rlim−→
λ,χ

HomD(•)(E(•), χ∗λ∗F (•)))
∼−→ Rlim−→

λ,χ

HomD(•)(E(•), χ∗λ∗F (•)). (8.2.4.15.4)

Proof. Let us check 8.2.4.15.1. Let I(•),(•,•),• ∈ K+(D(•),(•,•)) be a complex of injective left D(•),(•,•)-
modules representing G(•),(•,•). By construction,

RHom(•,•)
D(•) (E(•), G(•),(•,•))

∼−→ Hom(•,•),•
D(•) (E(•),•, I(•),(•,•),•).

For any integers r, s, since I(•),(•,•),s is injective, then HomD(•)(E(•),r, I(•),(•,•),s)) is a flasque sheave
on X (see 8.2.1.3). Hence, Hom(λ,χ),•

D(•) (E(•),•, I(•),(•,•),•) is a complex of flasque abelian sheaves on
X for any (λ, χ) ∈ L(I) ×M(I). Following 7.1.3.15.2 (recall an inductive system can be viewed as a
projective system), since Hom(λ,χ),•

D(•) (E(•),•, I(•),(•,•),•)) is acyclic for the functor Γ(X,−), this yields
that Hom(•,•),•

D(•) (E(•),•, I(•),(•,•),•)) is acyclic for the functor Γ(X(•,•),−). Hence, we get

RΓ(X(•,•),RHom(•,•)
D(•) (E(•), G(•),(•,•))))

∼−→ Γ(X(•,•),Hom(•,•),•
D(•) (E(•),•, I(•),(•,•),•))

∼−→
8.2.1.1.3

Hom
(•,•),•
D(•) (E(•),•, I(•),(•,•),•)

∼−→ R Hom
(•,•)
D(•) (E(•), G(•),(•,•))), (8.2.4.15.5)

where for the second isomorphism we also use 8.2.4.8.1 and 8.2.4.12.4. Similarly, we prove 8.2.4.15.2 by
using 8.2.1.1.1, 8.2.4.14.2 and 8.2.4.13.3.

Finally, by applying the functor lim−→
λ,χ

to 8.2.4.15.1 (resp. 8.2.4.15.2) in the case where G(•),(•,•) =

c(F (•)), we get 8.2.4.15.3 (resp. 8.2.4.15.4), modulo the isomorphisms of 8.2.4.14, 8.2.4.11.1 (resp.8.2.4.13.3)
and 8.2.4.12.3.
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8.2.4.16. Let E(•),F (•) ∈ K(D(•)), λ ∈ L(I), χ ∈ M(I) and f : χ∗λ∗E(•) → F (•) be a morphism of
K(D(•)). With notation 8.1.4.1, consider the following diagram

E(•) σE,(λ,χ) //

σE,(λ,χ)

��

χ∗λ∗E(•) f //

σχ∗λ∗E,(λ,χ)

��

F (•)

σF,(λ,χ)

��
χ∗λ∗E(•) χ∗λ∗(σE,(λ,χ)) // χ∗λ∗χ∗λ∗E(•) χ∗λ∗(f) // χ∗λ∗F (•)

(8.2.4.16.1)

which is commutative by functoriality. Concerning the left square, we compute more precisely that
χ∗λ∗(σE,(λ,χ)) = σχ∗λ∗E,(λ,χ).

If moreover F (•) ∈ K(λ∗D(•)) and f : χ∗λ∗E(•) → F (•) is a morphism of K(λ∗D(•)), then the right
square of 8.2.4.16.1 is therefore a commutative square of K(λ∗D(•)).

8.2.4.17. Let u : E′ → E be a topoi morphism. Let D be a sheaf of rings on E. Then, since (u−1, u∗) is a
adjoint paire, it follows from [SGA4.1, IV.13.4.2] that for any D-modules E and F we have the canonical
bifunctorial morphism u−1HomD(E ,F)→Homu−1D(E ,F).

8.2.4.18. Let E(•),F (•) ∈ K(D(•)).

(a) Let χ ∈M(I). The functor χ∗ : K(D(•))→ K(D(•)) induces

Hom•D(•)(E(•),F (•))→ Hom•D(•)(χ
∗E(•), χ∗F (•)), (8.2.4.18.1)

which is f (•) 7→ f (•) (the identity). By using 8.2.1.1.3 (resp. 8.2.1.2.1), we get from 8.2.4.18.1 a
similar to 8.2.4.18.1 morphism with Hom (resp. Hom) instead of Hom.

(b) Let λ : I → I be a morphism of L(I). Remark than λ is continuous for the canonical topology (see
7.1.2.13) and also that λ∗ = →λ

−1
X

, where →λX : X(I) → X(I) is the topoi morphism induced by λ

(see 8.1.1.2.1) We get a ringed topoi morphism →λX : (X(I), λ∗D(•)),→ (X(I),D(•)). This yields from
8.2.4.17 the canonical bifunctorial morphism of abelian sheaves on X(I):

λ∗Hom•D(•)(E(•),F (•))→Hom•λ∗D(•)(λ
∗E(•), λ∗F (•)). (8.2.4.18.2)

Modulo 8.2.1.2.1, it corresponds to the functorial on i ∈ I (the transition maps are the forgetful
ones) family of morphisms

Hom•D(•)|λ(i)
(E(•)|λ(i),F (•)|λ(i))→ Hom•(λ∗D(•))|i(λ

∗E(•))|i, (λ∗F (•))|i),

which is given by the forgetful map. The map λ induces also the morphism of abelian sheaves on X:

Hom•D(•)(E(•),F (•))→ Hom•λ∗D(•)(λ
∗E(•), λ∗F (•)). (8.2.4.18.3)

8.2.4.19. Let λ : I → I be a morphism of L(I). Let E(•),F (•) ∈ K(λ∗D(•)). We have the forgetful
morphisms of abelian sheaves:

Hom•λ∗D(•)(E(•),F (•))→ Hom•D(•)(E(•),F (•)), (8.2.4.19.1)

Hom•λ∗D(•)(E(•),F (•))→Hom•D(•)(E(•),F (•))→ λ∗Hom•D(•)(E(•),F (•)), (8.2.4.19.2)

8.2.4.20. Let E(•),F (•) ∈ K(D(•)), λ ∈ L(I), χ ∈M(I), G(•) ∈ K(λ∗D(•)). Consider the diagram

Hom•D(•)(χ
∗λ∗E(•),F (•))

(3) //

(1)

��

Hom•D(•)(E(•),F (•))

(?)

��

(2) // Hom•D(•)(E(•), χ∗λ∗F (•))

Hom•D(•)(χ
∗λ∗E(•), χ∗λ∗F (•)) Hom•

λ∗D(•)(χ
∗λ∗E(•), χ∗λ∗F (•))oo // Hom•D(•)(χ

∗λ∗E(•), χ∗λ∗F (•)),

(4)

OO

(8.2.4.20.1)
where the numbered arrows are given by functoriality of the bifunctor Hom•D(•)(−,−) via the morphisms
σE,(λ,χ) for the top horizontal maps (and by composition with the forgetful map Hom•

λ∗D(•)(−,−) →
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Hom•D(•)(−,−) for the bottom morphism) and σF,(λ,χ) for the vertical maps and where the arrow (?)
is defined by functoriality of the functor χ∗λ∗ (see 8.2.4.18). Since χ∗λ∗(σE,(λ,χ)) = σχ∗λ∗E,(λ,χ), then
by using the commutativity of the diagram 8.2.4.16.1 we get the commutativity of the left square of
8.2.4.20.1. The commutativity of the right triangle is checked by functoriality in E of σE,(λ,χ).

Consider the diagram

λ∗Hom•D(•)(χ
∗λ∗E(•),F (•))

(3) //

(1)

��

λ∗Hom•D(•)(E(•),F (•))

(?)

��

(2) // λ∗Hom•D(•)(E(•), χ∗λ∗F (•))

λ∗Hom•D(•)(χ
∗λ∗E(•), χ∗λ∗F (•)) Hom•

λ∗D(•)(χ
∗λ∗E(•), χ∗λ∗F (•))oo // λ∗Hom•D(•)(χ

∗λ∗E(•), χ∗λ∗F (•)),

(4)

OO

(8.2.4.20.2)
where both bottom horizontal arrows are equal to the composition morphism of 8.2.4.19.2, where the ar-
row (?) is defined by the functor χ∗λ∗ (see 8.2.4.18), where the numbered arrows are given by functoriality
of the bifunctor λ∗Hom•D(•)(−,−). We easily check its commutativity.

From the diagram 8.2.4.16.1 (where F is replaced by G and f is a morphism of K(λ∗D(•))) we check
similarly the commutativity of the left square of the diagram

Hom•
λ∗D(•)(χ

∗λ∗E(•),G(•)) //

��

--
λ∗Hom•D(•)(χ

∗λ∗E(•),G(•))

��

Hom•D(•)(χ
∗λ∗E(•),G(•))oo

��
Hom•

λ∗D(•)(χ
∗λ∗E(•), χ∗λ∗G(•)) λ∗Hom•D(•)(E(•),G(•))

(?)oo Hom•D(•)(E(•),G(•)),oo

(8.2.4.20.3)
where the curvy arrow is the first morphism of 8.2.4.19.2, where the left top horizontal arrow is the
composition of 8.2.4.19.2 (i.e. the top “triangle” is commutative by definition), where the arrow (?) is
defined by the functor χ∗λ∗ (see 8.2.4.18), where the vertical arrows are given by functoriality from the
canonical morphisms σE,(λ,χ) or σF,(λ,χ). We easily check its commutativity.

Lemma 8.2.4.21. Let f : E ′(•) → E(•) be a morphism belonging to S−(D(•)) and g : F (•) → F ′(•) be a
morphism belonging to S+(D(•)), i.e. f and g are lim-ind-isogenies (see 8.1.4.3). Then the canonical
morphisms

Rlim−→
λ,χ

HomD(•)(E(•), χ∗λ∗F (•))→ Rlim−→
λ,χ

HomD(•)(E ′(•), χ∗λ∗F ′(•)) (8.2.4.21.1)

Rlim−→
λ,χ

HomD(•)(E(•), χ∗λ∗F (•))→ Rlim−→
λ,χ

HomD(•)(E ′(•), χ∗λ∗F ′(•)) (8.2.4.21.2)

Rlim−→
λ,χ

HomD(•)(E(•), χ∗λ∗F (•))→ Rlim−→
λ,χ

HomD(•)(E ′(•), χ∗λ∗F ′(•)) (8.2.4.21.3)

are isomorphisms.

Proof. Since the proofs are similar (replace Hom by Hom or Hom), let us prove 8.2.4.21.1. We easily
reduce to the following two cases.

1) Suppose there exists χ0 ∈ M(I) and λ0 ∈ L(I) such that g = σF,(λ0,χ0) and f = id (see notation
8.1.4.1). Let I(•) ∈ K+(I) be a complex representing F (•) and P(•) ∈ K−(P) is a complex representing
E(•). Using 8.1.2.2 and 8.1.3.2, we get

χ∗λ∗χ∗0λ
∗
0(I(•)) = χ∗(χ0 ◦ λ)∗λ∗λ∗0(I(•)) = (χ+ (χ0 ◦ λ))∗(λ0 ◦ λ)∗(I(•)). (8.2.4.21.4)

Since the map λ 7→ λ0 ◦ λ is an element of L(L(I)), since the map χ 7→ χ + (χ0 ◦ λ) is an element of
L(M(I)), this yields the morphism

lim−→
λ,χ

Hom•D(•)(P(•), χ∗λ∗I(•))→ lim−→
λ,χ

Hom•D(•)(P(•), χ∗λ∗χ∗0λ
∗
0(I(•))) (8.2.4.21.5)

is an isomorphism.
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Let I ′(•) ∈ K+(I) be a complex representing χ∗0λ
∗
0I(•). For any χ ∈ M(I) and λ ∈ L(I), the

functors χ∗ and λ∗ are exact, Hence, we get the quasi-isomorphism χ∗λ∗χ∗0λ
∗
0(I(•))

∼−→ χ∗λ∗I ′(•).
Following 8.2.3.15, the modules of the complex χ∗λ∗I ′(•) belong to I(P) (see notation 8.2.4.2). Using
8.2.4.21.4, we check similarly that the modules of the complex χ∗λ∗χ∗0λ∗0(I(•)) belong to I(P). Hence,
it follows from 8.2.3.16 that the morphism

Hom•D(•)(P(•), χ∗λ∗χ∗0λ
∗
0(I(•)))→Hom•D(•)(P(•), χ∗λ∗I ′(•)) (8.2.4.21.6)

is an isomorphism. By applying the filtered limit lim−→
λ,χ

to 8.2.4.21.6 and by composing this latter morphism

with 8.2.4.21.5, we get the isomorphism 8.2.4.21.3.
2) Suppose there exists χ0 ∈M(I) and λ0 ∈ L(I) such that f = σE,(λ0,χ0) and g = id.
i) Since the category P is not stable under the functor of the form χ∗0λ

∗
0, via the isomorphism

8.2.4.13.3 this is more convenient to check that the canonical morphism

lim−→
λ,χ

◦ RHom
(•,•)
D(•) (χ∗0λ

∗
0E(•), c(F (•)))→ lim−→

λ,χ

◦ RHom
(•,•)
D(•) (E(•), c(F (•))) (8.2.4.21.7)

is an isomorphism.
ii) Let I(•),(•,•) ∈ K+(D(•),(•,•)) be a complex of injective left D(•),(•,•)-modules representing c(F (•)).

Let I ′(•),(•,•) ∈ K+(D(•),(•,•)) be a complex of injective left D(•),(•,•)-modules endowed with a quasi-
isomorphism χ∗0λ

∗
0I(•),(•,•) → I ′(•),(•,•) of K+(D(•),(•,•)) where χ∗0λ∗0I(•),(•,•) := (χ∗0λ

∗
0I(•),(λ,χ))λ,χ.

Consider the following diagram

lim−→
λ,χ

Hom•D(•)(χ
∗
0λ
∗
0E(•), I(•),(λ,χ))

(5) //

(1)

��

lim−→
λ,χ

Hom•D(•)(E(•), I(•),(λ,χ))

(?)

tt
(3)

��
lim−→
λ,χ

Hom•D(•)(χ
∗
0λ
∗
0E(•), χ∗0λ

∗
0I(•),(λ,χ))

(2)

��

(6) // lim−→
λ,χ

Hom•D(•)(E(•), χ∗0λ
∗
0I(•),(λ,χ))

(4)

��
lim−→
λ,χ

Hom•D(•)(χ
∗
0λ
∗
0E(•), I ′(•),(λ,χ))

(7) // lim−→
λ,χ

Hom•D(•)(E(•), I ′(•),(λ,χ)),

(8.2.4.21.8)

where the numbered arrows are given by functoriality of the bifunctor lim−→
λ,χ

Hom•D(•)(−,−) and where

the arrow (?) is defined by functoriality from the functor χ∗0λ∗0 (i.e. is the composition of 8.2.4.18.3 with
the first morphism of 8.2.4.19.1). From the Hom version of the commutative diagram 8.2.4.20.1, we
get the commutativity of both triangles of the upper square of the diagram 8.2.4.21.8. Since the lower
square is commutative by fonctoriality, the whole diagram 8.2.4.21.8 is commutative. Remark that the
top morphism (5) represents 8.2.4.21.7. We now check this morphism (5) is an isomorphism via the
following steps.

iii) Let us check that the composition morphism (4)◦(3) is a quasi-isomorphism. Let P(•) ∈ K+(D(•))
be a complex of left D(•)-modules belonging to P representing E(•). Since I(•),(λ,χ) and I ′(•),(λ,χ) are
bounded below complexes of injective left D(•)-modules, then we reduce to check that (4) ◦ (3) is a
quasi-isomorphism when E(•) is replaced by P(•). Let I(•) ∈ K+(D(•)) be a complex of injective left
D(•)-modules representing F (•). Since c is exact, then c(I(•)) is quasi-isomorphic to c(F (•)). Hence, there
exists a quasi-isomorphim of K+(D(•),(•,•)) of the form c(I(•))

∼−→ I(•),(•,•). This induces the quasi-
isomorphisms of K+(D(•)) of the form χ∗λ∗I(•) ∼−→ I(•),(λ,χ) for any λ ∈ L(I), χ ∈ M(I). Consider
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the diagram

lim−→
λ,χ

Hom•D(•)(P(•), I(•),(λ,χ)) // lim−→
λ,χ

Hom•D(•)(P(•), χ∗0λ
∗
0I(•),(λ,χ)) // lim−→

λ,χ

Hom•D(•)(P(•), I ′(•),(λ,χ))

lim−→
λ,χ

Hom•D(•)(P(•), χ∗λ∗I(•)) //

OO

lim−→
λ,χ

Hom•D(•)(P(•), χ∗0λ
∗
0χ
∗λ∗I(•)),

OO

(8.2.4.21.9)
whose morphisms are given by functoriality of the bifunctor lim−→

λ,χ

Hom•D(•)(−,−).

Since χ∗λ∗I(•) ∼−→ I(•),(λ,χ) and χ∗0λ∗0χ∗λ∗I(•) ∼−→ χ∗0λ
∗
0I(•),(λ,χ) are quasi-isomorphisms of com-

plexes of K+(D(•)) whose terms belong to I(P) (see Proposition 8.2.3.15) for any λ ∈ L(I), χ ∈M(I),
then it follows from 8.2.3.16 that both vertical morphisms of 8.2.4.21.9 are quasi-isomorphisms. Simi-
larly, we get from the quasi-isomorphism χ∗0λ

∗
0I(•),(λ,χ) ∼−→ I ′(•),(λ,χ), from 8.2.3.15 and 8.2.3.16 that

the right top horizontal morphism of 8.2.4.21.9 is a quasi-isomorphism.
Using some formulas of 8.1.2.2 and 8.1.3.2, we compute

χ∗0λ
∗
0χ
∗λ∗(I(•)) = χ∗0(χ ◦ λ0)∗λ∗0λ

∗(I(•)) = (χ0 + (χ ◦ λ0))∗(λ ◦ λ0)∗(I(•)). (8.2.4.21.10)

Since the map λ 7→ λ ◦ λ0 is an element of L(L(I), since the map χ 7→ χ0 + (χ ◦ λ0) is an element
of L(M(I)), this yields the bottom horizontal morphism of 8.2.4.21.9 is an isomorphism. Hence, the
morphisms of 8.2.4.21.9 are quasi-isomorphisms, in particular the composition of the top horizontal
ones, i.e. (4) ◦ (3) is a quasi-isomorphism.

iv) Replacing E(•) by χ∗0λ∗0E(•), it follows from iii) that (2) ◦ (1) is a quasi-isomorphism. Hence, we
get from the commutativity of 8.2.4.21.8 that (2)◦ (?), (5) and (7) are quasi-isomorphisms. In particular,
(5) is a quasi-isomorphism and then we are done.

Definition 8.2.4.22. It follows from 8.2.4.21 that the bifunctor Rlim−→
λ,χ

HomD(•)(−, χ∗λ∗−) of 8.2.4.5.1

factors through the localisation of the categories with respect to lim-ind-isogenies, i.e. via the Lemma
8.1.4.9 induces the following bifunctor denoted by

RHomLD−→Q(D(•))(−,−) : LD−→
−
Q (D(•))op × LD−→

+
Q (D(•))→ D+(ZX). (8.2.4.22.1)

Similarly, it follows from 8.2.4.21 that the bifunctor of 8.2.4.12.1 induces the bifunctor

R HomLD−→Q(D(•))(−,−) : LD−→
−
Q (D(•))op × LD−→

+
Q (D(•))→ D+(Z). (8.2.4.22.2)

Similarly, it follows from 8.2.4.21 that the bifunctor of 8.2.4.13.1 induces the composite bifunctor

RHomLD−→Q(D(•))(−,−) : LD−→
−
Q (D(•))op × LD−→

+
Q (D(•))→ D+(Z(•)

X )→ D+(Z(•)
X ). (8.2.4.22.3)

Remark 8.2.4.23. We have a Hom or Hom version of the following which we leave to the reader to
specify. Denote by F (−,−) the bounded version of the bifunctor 8.2.4.4.1:

F (−,−) := lim−→
λ,χ

Hom•D(•)(−, χ∗λ∗−) : Kb(D(•))op ×Kb(D(•))→ K+(ZX) (8.2.4.23.1)

(a) Following 8.2.4.6 and with its notation, we have

R
N+

qi
(ZX)

Nb
qi

(D(•))op×Nb
qi

(D(•))
F (−,−) = Rlim−→

λ,χ

HomD(•)(−, χ∗λ∗−) : Db(D(•))op ×Db(D(•))→ D+(ZX),

(8.2.4.23.2)
which is the restricted functor of 8.2.4.5.1.
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(b) Since the composition of the localization morphism QLD : Db(D(•)) → LD−→
b
Q(D(•)) with the equiv-

alence of categories e of 8.1.5.14.1 is the canonical functor Db(D(•)) → Db(LM−−→Q(D(•))), then with
notation 8.1.5.12 we have NLD:= KerQLD = Db

N(D(•))
(D(•)). Moreover, NLD is a saturated (in the

sense of 7.4.1.1) strictly full triangulated subcategory of Db(D(•)). Let us denote by G(−,−) the
bifunctor 8.2.4.23.2. With the remark 7.4.1.11, the right localizable with respect to Nop

LD ×NLD of
G exists and

RNop
LD
×NLD

G(−,−) = RHomLD−→Q(D(•))(−,−) : LD−→
b
Q(D(•))op × LD−→

b
Q(D(•))→ D+(ZX). (8.2.4.23.3)

(c) Let Qqi
LD : Kb(D(•)) → LD−→

b
Q(D(•)) be the localization morphism, let Nqi

LD := KerQqi
LD be the satu-

rated strictly full triangulated subcategory of Db(D(•)). It follows from 7.4.1.6 and 7.4.1.13.1 that

R
N+

qi
(ZX)

(Nqi
LD

)op×Nqi
LD

F (−,−) = RHomLD−→Q(D(•))(−,−) : LD−→
b
Q(D(•))op × LD−→

b
Q(D(•))→ D+(ZX).

(8.2.4.23.4)

Proposition 8.2.4.24. Let E(•) ∈ LD−→
−
Q (D(•)), F (•) ∈ LD−→

+
Q (D(•)). We have the isomorphism

H0R HomLD−→Q(D(•))(E(•),F (•))
∼−→ HomLD−→Q(D(•))(E(•),F (•)). (8.2.4.24.1)

Proof. Let I(•),(•,•) ∈ K+(D(•),(•,•)) be a complex of injective left D(•),(•,•)-modules representing c(F (•)).
By using (the Hom version of) 8.2.4.8.1, we get the isomorphism

H0R Hom
(•,•)
D(•) (E(•), c(F (•)))

∼−→
Ä
H0 Hom•D(•)(E(•), I(•),(λ,χ))

ä
(λ,χ)∈L(I)×M(I)

. (8.2.4.24.2)

Since I(•),(λ,χ) is a bounded below complex of injective left D(•)-module and is quasi-isomorphic to
χ∗λ∗F (•), we get

H0 Hom•D(•)(E(•), I(•),(λ,χ))
∼−→ HomD(D(•))(E(•), I(•),(λ,χ))

∼−→ HomD(D(•))(E(•), χ∗λ∗F (•)). (8.2.4.24.3)

Since L(I)×M(I) is filtered, taking the inductive limit on 8.2.4.24.2 and 8.2.4.24.3 we get

H0lim−→
λ,χ

R Hom
(•,•)
D(•) (E(•), c(F (•)))

∼−→ lim−→
λ,χ

H0R Hom
(•,•)
D(•) (E(•), c(F (•))) (8.2.4.24.4)

∼−→ lim−→
λ,χ

HomD(D(•))(E(•), χ∗λ∗F (•))
∼−→

8.1.4.12.1
HomLD−→Q(D(•))(E(•),F (•)). (8.2.4.24.5)

We conclude the proof with 8.2.4.12.3.

Proposition 8.2.4.25. Let E(•) ∈ LD−→
−
Q (D(•)), F (•) ∈ LD−→

+
Q (D(•)),

1. If X is coherent, then we have the bifunctorial isomorphism

RΓ(X,RHomLD−→Q(D(•))(E(•),F (•)))
∼−→ RHomLD−→Q(D(•))(E(•),F (•)). (8.2.4.25.1)

2. If Io and X are coherent, then we have the bifunctorial isomorphism

RΓ(X(•),RHomLD−→Q(D(•))(E(•),F (•)))
∼−→ RHomLD−→Q(D(•))(E(•),F (•)). (8.2.4.25.2)

Proof. By definition (see 8.2.4.22), this is a consequence of respectively 8.2.4.15.3 and 8.2.4.15.4.
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8.3 Homomorphism bifunctor of the derived category of LMQ(D(•))

8.3.1 Invariance of LDQ(D(•)) via L-equivalences

Lemma 8.3.1.1. Let u : I ′ → I be an increasing map of partially ordered sets, D′(•) be a sheaf of rings
on the topos X(I′) endowed with a homomorphism of sheaf of rings D′(•) →→u

−1
X (D(•)). Let F (•) be a left

D(•)-module. We consider →u
−1
X (F (•)) as a left D′(•)-module via the homomorphism D′(•) → →u

−1
X (D(•)),

which yields the exact functor →u
−1
X : Mod(D(•))→ Mod(D′(•)). Let ] ∈ {∅,+,−,b}.

(a) The functor →u
−1
X extends to the exact functor →u

−1
X : M−→Q(D(•)) → M−→Q(D′(•)) and the δ-functor

→u
−1
X : D−→

]
Q(D(•))→ D−→

]
Q(D′(•)) making commutative the diagram

D−→
]
Q(D(•))

→u
−1

X // D−→
]
Q(D′(•))

M−→Q(D(•))
→u
−1

X //

8.1.5.3

OO

M−→Q(D′(•)).

8.1.5.3

OO
(8.3.1.1.1)

(b) If u : I ′ → I is an L-equivalence (see definition 8.1.3.8) then the functor →u
−1
X extends to the exact

functor →u
−1
X : LM−−→Q(D(•)) → LM−−→Q(D′(•)) and the δ-functor →u

−1
X : LD−→

]
Q(D(•)) → LD−→

]
Q(D′(•)) making

commutative the diagram

LD−→
]
Q(D(•))

→u
−1

X // LD−→
]
Q(D′(•))

LM−−→Q(D(•))
→u
−1

X //

8.1.5.3

OO

LM−−→Q(D′(•)).

8.1.5.3

OO
(8.3.1.1.2)

Proof. a) Since →u
−1
X is an exact functor, we get the δ-functor →u

−1
X : D](D(•))→ D](D′(•)). Let χ ∈M(I)

and E(•) ∈ D](D(•)). To prove the factorizations of (a), it is sufficient to check that→u
−1
X (θE,χ) is invertible

in D−→
]
Q(D′(•)). Since χ ◦ u ∈M(I ′), this is a consequence of the commutative diagram:

→u
−1
X (E(•))

→u
−1

X
(θE,χ)

//

θ
→u
−1
X
E,χ◦u **

→u
−1
X (χ∗E(•))

(χ ◦ u)∗→u
−1
X (E(•)).

(8.3.1.1.3)

b) Let v : I → I ′ such that v ◦ u ∈ L(I ′) and u ◦ v ∈ L(I). Let f : E(•) → F (•) be a morphism of
Λ](D(•)). Choose λ ∈ L(I) and a morphism g : F (•) → λ∗E(•) of D−→Q(D(•)) such that g ◦ f = ρE,λ and
λ∗(f) ◦ g = ρF,λ in D−→

]
Q(D(•)). We easily check that v ◦ λ ◦ u ∈ L(I ′), u ◦ v ◦ λ ∈ L(I) and we have the

commutative diagram:

→u
−1
X (E(•))

→u
−1

X
(ρE,u◦v◦λ)

//

ρ
→u
−1
X
E,v◦λ◦u **

→u
−1
X (u ◦ v ◦ λ)∗E(•)

(v ◦ λ ◦ u)∗→u
−1
X E(•).

(8.3.1.1.4)

Let g′ be the morphism given by the following composition:

g′ : →u
−1
X (F (•))

→u
−1

X
(g)

//
→u
−1
X λ∗E(•) →

u−1

X
λ∗(ρE,u◦v)

//
→u
−1
X λ∗(u ◦ v)∗E(•) (v ◦ λ ◦ u)∗→u

−1
X E(•).

Via 8.3.1.1.4, we can check g′ ◦→u
−1
X (f) = ρ

→u
−1
X
E,v◦λ◦u and (v ◦ λ ◦ u)∗(→u

−1
X (f)) ◦ g′ = ρ

→u
−1
X
F,v◦λ◦u in

D−→
]
Q(D′(•)). This yields that →u

−1
X (f) ∈ Λ](D′(•)) and we are done.
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Remark 8.3.1.2. With notation 8.3.1.1, the functor (denoted slightly abusively) →u
−1
X is the composition

of Mod(D(•))→ Mod(→u
−1
X D(•)) induced by the inverse image by the topos morphism →uX : X(I′) → X(I)

with the forgetful functor Mod(→u
−1
X D(•)) → Mod(D′(•)). Hence, we have checked above a unification of

both cases.

Proposition 8.3.1.3. Let u : I ′ → I be an L-equivalence between two partially ordered sets (see definition
8.1.3.8). Let ] ∈ {∅,+,−,b}.

(a) The following functors

→u
−1
X

: LM−−→Q(D(•))→ LM−−→Q(→u
−1
X
D(•)), →u

−1
X

: LD−→
]
Q(D(•))→ LD−→

]
Q(→u
−1
X
D(•)). (8.3.1.3.1)

defined at 8.3.1.1 are equivalences of categories.
Suppose I ′ = I and u ∈ L(I), denoting by λ0 := u, the forgetful functors LM−−→Q(λ∗0D(•))→ LM−−→Q(D(•))

and LD−→
]
Q(λ∗0D(•)) → LD−→

]
Q(D(•)), induced by the canonical morphism ρD,λ0 : D(•) → λ∗0D(•), are

quasi-inverse equivalences of 8.3.1.3.1.

(b) Let E(•) ∈ LD−→
−
Q (D(•)), F (•) ∈ LD−→

+
Q (D(•)). Then →u

−1
X induces the isomorphisms

R HomLD−→Q(D(•))(E(•),F (•))
∼−→ R HomLD−→Q(→u

−1
X
D(•))(→u

−1
X
E(•),→u

−1
X
F (•)), (8.3.1.3.2)

RHomLD−→Q(D(•))(E(•),F (•))
∼−→ RHomLD−→Q(→u

−1
X
D(•))(→u

−1
X
E(•),→u

−1
X
F (•)), (8.3.1.3.3)

→u
−1
X

RHomLD−→Q(D(•))(E(•),F (•))
∼−→ RHomLD−→Q(→u

−1
X
D(•))(→u

−1
X
E(•),→u

−1
X
F (•)). (8.3.1.3.4)

Proof. a) Since the case of modules is checked similarly let us only treat the case of complexes. Since the
second part of (a) induces the first one, we can suppose I ′ = I and u ∈ L(I). In that case, we prefer to
write λ0 := u. Recall that by definition λ∗0 = →λ

−1
0X

(see 8.1.3.3). Let us denote by λ0∗ : LD−→
]
Q(λ∗0D(•)) →

LD−→
]
Q(D(•)), the forgetful functor induced by the canonical morphism ρD,λ0 : D(•) → λ∗0D(•). For any

E(•) ∈ K(D(•)) the morphism ρE,λ0 is an isomorphism in LD−→
]
Q(D(•)). By functoriality in E of ρE,λ0 ,

this induces the isomorphism of functors id → λ0∗ ◦ λ∗0 on LD−→
]
Q(D(•)). Conversely, for any F (•) ∈

K(λ∗0D(•)) the morphism ρF,λ0
constructed in K(D(•)) is in fact the same morphism constructed in

K(λ∗0D(•)). Hence, ρF,λ0
is an isomorphism in LD−→

]
Q(λ∗0D(•)). By functoriality in F of ρF,λ0

, this yields
the isomorphism of functors id

∼−→ λ∗0 ◦ λ0∗ on LD−→
]
Q(λ∗0D(•)).

b) i) Since the proof of 8.3.1.3.2 or 8.3.1.3.3 are similar, let us only prove 8.3.1.3.4. Let I(•) ∈
K+(I(D(•))) be a complex endowed with a quasi-isomorphism F (•) ∼−→ I(•), let I(•),(•,•) ∈ K+(I(D(•),(•,•)))
together with a quasi-isomorphism c(I(•))

∼−→ I(•),(•,•), and I ′(•),(•,•) ∈ K+(I((→u
−1
X D(•))(•,•))) together

with a quasi-isomorphism →u
−1
X I(•),(•,•) ∼−→ I ′(•),(•,•). Modulo the isomorphism 8.2.4.13.3, we construct

the morphism as being equal to the composition of

→u
−1
X

lim−→
λ,χ

Hom•D(•)(E(•), I(•),(λ,χ))→ lim−→
λ,χ

Hom•
→u
−1
X
D(•)(→u

−1
X
E(•),→u

−1
X
I(•),(λ,χ))→ lim−→

λ,χ

Hom•
→u
−1
X
D(•)(→u

−1
X
E(•), I ′(•),(λ,χ)),

(8.3.1.3.5)
where the first morphism follows from the commutation of the functor →u

−1
X with inductive limits and of

8.2.4.17. We check easily that this is, up to isomorphism, independent of the choices of I(•),(•,•) and
I ′(•),(•,•). It remains to check this is a quasi-isomorphism.

ii) The construction of 8.3.1.3.4 is transitive with respect to composition of the map u, i.e. if v : I ′′ →
I ′ is an L-equivalence of partially ordered sets, if I ′′(•),(•,•) is an injective resolution of →v

−1
X I ′(•),(•,•) in

K+((→v
−1
X →u

−1
X D(•))(•,•)) then the composition

→v
−1
X →
u−1
X

lim−→
λ,χ

Hom•D(•)(E(•), I(•),(λ,χ))→→v
−1
X

lim−→
λ,χ

Hom•
→u
−1
X
D(•)(→u

−1
X
E(•), I ′(•),(λ,χ))

→ lim−→
λ,χ

Hom•
→v
−1
X →u

−1
X
D(•)(→v

−1
X →
u−1
X
E(•), I ′′(•),(λ,χ)). (8.3.1.3.6)

is equal (up to isomorphism) to the morphism constructed at 8.3.1.3.5 in the case where u is replaced
by u ◦ v. Hence, we reduce to the case where λ0 := u.
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iii) Take a resolution P(•) in K−(D(•)) of E(•) with terms in P. Since for any λ ∈ L(I), χ ∈ M(I),
I(•),(λ,χ) is a bounded above complex of injective D(•)-modules, I ′(•),(λ,χ) is a bounded above complex of
injective λ∗0D(•)-modules, we reduce to check that the morphism 8.3.1.3.5 is a quasi-isomorphism when
E(•) is replaced by P(•).

iv) Take an injective resolution I ′′(•),(•,•) of λ∗0I ′(•,•) in K+((λ∗0D(•))(•,•)). Take a resolution P ′(•)
in K−(λ∗0D(•)) of λ∗0P(•) with terms in P(λ∗0D(•)). Consider the following diagram

λ∗0Hom•D(•)(P(•), I(•),(λ,χ)) //

(?)

��

λ∗0Hom•D(•)(P(•), λ∗0I(•),(λ,χ)) // λ∗0Hom•D(•)(P(•), I ′(•),(λ,χ))

(?)

��
Hom•

λ∗0D(•)(λ
∗
0P(•), λ∗0I(•),(λ,χ)) //

��

44

Hom•
λ∗0D(•)(λ

∗
0P(•), I ′(•),(λ,χ)) //

44

Hom•
λ∗0D(•)(λ

∗
0P(•), λ∗0I ′(•),(λ,χ))

��tt
Hom•

λ∗0D(•)(λ
∗
0P(•), I ′(•),(λ,χ)) //Hom•

λ∗0D(•)(P ′(•), λ∗0I ′(•),(λ,χ)) //Hom•
λ∗0D(•)(P ′(•), I ′′(•),(λ,χ))

(8.3.1.3.7)
where the arrows (?) are defined by functoriality of λ∗0 (see 8.2.4.18.2) and where the other ones are
induced by functoriality of some homomorphism bifunctor. The bottom part of the diagram 8.3.1.3.7 is
commutative by definition of the arrows, the commutativity of its left top triangle is induced by that
of the right square of 8.2.4.20.2 (in the case where χ = id), the commutativity of its right top triangle
is induced by that of the left square of 8.2.4.20.3 (in the case where χ = id). Since the trapeze is
commutative by functoriality, then we have checked the commutativity of the whole diagram 8.3.1.3.7.

v) Let us check that the images under the functor lim−→
λ,χ

of the top horizontal morphisms of the diagram

8.3.1.3.7 are quasi-isomorphisms. Since the morphism λ∗0I(•),(λ,χ) → I ′(•),(λ,χ) is a quasi-isomorphism of
bounded above complexes whose modules belong to I(P) (use see 8.2.3.13 in the case where u = id and
D′(•) = λ∗0D(•) for the left term), then it follows from 8.2.3.16 that the right top horizontal morphism is
an isomorphism.

It follows from 8.2.3.15 and 8.2.3.16 that the vertical morphisms

HomD(•)(P(•), χ∗λ∗I(•))

��

//HomD(•)(P(•), λ∗0χ
∗λ∗I(•))

��
HomD(•)(P(•), I(•),(λ,χ)) //HomD(•)(P(•), λ∗0I(•),(λ,χ))

(8.3.1.3.8)

are quasi-isomorphism. Using 8.1.2.2 and 8.1.3.2, we get λ∗0χ∗λ∗(I(•)) = (χ◦λ0)∗λ∗0λ(I(•)) = (χ◦λ0)∗(λ◦
λ0)∗(I(•)). Hence, by applying the functor lim−→

λ,χ

to the top morphism of 8.3.1.3.8 we get an isomorphism.

Hence, so is its bottom morphism, which is the top left horizontal morphism of 8.3.1.3.7. Hence, we are
done.

vi) The morphism Hom•
λ∗0D(•)(λ

∗
0P(•), I ′(•),(λ,χ)) → Hom•

λ∗0D(•)(P ′(•), I ′(•),(λ,χ)) induced by the

quasi-isomorphism P ′(•) ∼−→ λ∗0P(•) is a quasi-isomorphism. Hence, to check that the bottom hori-
zontal morphisms of the diagram 8.3.1.3.7 are quasi-isomorphisms, we reduce to the case where λ∗0P(•)

is replaced by P ′(•) at the source. Replacing in the step (v) D(•) by λ∗0D(•), P(•) by P ′(•), I(•),(λ,χ)) by
I ′(•),(λ,χ) and I ′(•),(λ,χ) by I ′′(•),(λ,χ), we check that the images under the functor lim−→

λ,χ

of these bottom

horizontal morphisms are isomorphism.
vii) Since we have in the diagram 8.3.1.3.7 a morphism from the bottom left term to the top right

term, it follows from v) and vi) that the image under the functor lim−→
λ,χ

of the composition of the left

vertical morphisms of the diagram 8.3.1.3.7 is a quasi-isomorphism. Since this latter quasi-isomorphism
is equal to the composition 8.3.1.3.5, then we are done.
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8.3.1.4. With notation and hypotheses of 8.3.1.3, consider the following diagram:

D](D(•))

→u
−1

X

��

Q //

Hn

,,
LD−→

]
Q(D(•))

→u
−1

X
∼=
��

Hn

8.1.5.6.1
// LM−−→Q(D(•))

→u
−1

X
∼=
��

D](→u
−1
X D(•))

Q //

Hn

22
LD−→

]
Q(→u
−1
X D(•))

Hn

8.1.5.6.1
// LM−−→Q(→u

−1
X D(•))

(8.3.1.4.1)

where Q are the localization morphisms, where the functor 8.1.5.6.1 are making commutative (up to iso-
morphism) by definition the “curvy triangles” of the top and bottom. Since the functor→u

−1
X : M(D(•))→

M(→u
−1
X D(•)) is exact; then the big rectangle (i.e. the composition of both squares) is commutative (up

to isomorphism). The left square is commutative (up to isomorphism) by construction (see 8.3.1.1) of
the equivalence of categories 8.3.1.3.1. By unicity of the factorization of the top functor 8.1.5.6.1, we get
the commutativity (up to isomorphism) of the right square. Hence, so is the diagram 8.3.1.4.1.

Notation 8.3.1.5 (Bimodules case in LD categories). So that the categories of the LD−→
]
Q(D(•),R,D′(•))

form (see notation 8.1.4.10) are more easily manipulated we will make the following assumptions: Let
D(•),D′(•) be two sheaves of rings on the topos X(I). Let R be a sheaf of commutative rings on X.
We still denote by R the constant inductive system of rings of X indexed by I with value R. Suppose
(D(•),D′(•)) is solved by R (see definition 4.6.3.2).

Lemma 8.3.1.6. Let u : Ĩ → I be an increasing map of partially ordered sets which is an L-equivalence
(see definition 8.1.3.8). With notation and hypotheses 8.3.1.5, let ‹D(•) (resp. ‹D′(•)) be a sheaf of rings
on the topos X(Ĩ) endowed with a homomorphism of sheaf of rings ‹D(•) → →u

−1
X (D(•)) (resp. ‹D′(•) →

→u
−1
X (D′(•))). We still denote by R the constant inductive system of rings of X indexed by I ′ (or by I)

with value R. Suppose (‹D(•), ‹D′(•)) is solved by R (see definition 8.5.2.4).
The functor →u

−1
X extends to the exact functor →u

−1
X : LM−−→Q(D(•),R,D′(•)) → LM−−→Q(‹D(•),R, ‹D′(•)) and

the δ-functor →u
−1
X : LD−→

]
Q(D(•),R,D′(•))→ LD−→

]
Q(‹D(•),R, ‹D′(•)) making commutative the diagram

LD−→
]
Q(D(•),R,D′(•)) →u

−1

X // LD−→
]
Q(‹D(•),R, ‹D′(•))

LM−−→Q(D(•),R,D′(•)) →u
−1

X //

OO

LM−−→Q(‹D(•),R, ‹D′(•)).OO
(8.3.1.6.1)

Proof. We can copy 8.3.1.1.

Proposition 8.3.1.7. We keep notation and hypotheses of 8.3.1.5. Let u : Ĩ → I be an increasing map
of partially ordered sets which is an L-equivalence (see definition 8.1.3.8). The following functors

→u
−1
X

: LM−−→Q(D(•),R,D′(•))→ LM−−→Q(→u
−1
X
D(•),R,→u

−1
X
D′(•)),

→u
−1
X

: LD−→
]
Q(D(•),R,D′(•))→ LD−→

]
Q(→u
−1
X
D(•),R,→u

−1
X
D′(•)). (8.3.1.7.1)

defined at 8.3.1.6 are equivalences of categories.
Suppose Ĩ = I and u ∈ L(I), denoting by λ := u, the forgetful functors LM−−→Q(λ∗D(•), λ∗D′(•)) →

LM−−→Q(D(•),R,D′(•)) and LD−→
]
Q(λ∗D(•),R, λ∗D′(•))→ LD−→

]
Q(D(•),R,D′(•)) are quasi-inverse equivalences

of 8.3.1.7.1.

Proof. We proceed similarly to the proofs 8.3.1.3.

8.3.2 Varying D(•) in LDQ(D(•))

8.3.2.1. Let λ, µ be two elements of L(I), let F (•) be a left λ∗D(•)-module. Then µ∗F (•) is canonically
endowed with a structure of left µ∗λ∗D(•)-module. Via the canonical morphisms of rings λ∗D(•) →
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µ∗λ∗D(•), this yields a structure of λ∗D(•)-module on µ∗F (•). We easily compute that the morphism
ρF,µ : F (•) → µ∗F (•) is λ∗D(•)-linear. On the other hand, via the canonical morphism µ∗D(•) →
µ∗λ∗D(•), we get also a structure of left µ∗D(•)-module on µ∗F (•).

When λ ≤ µ, both structures of µ∗D(•)-module and λ∗D(•)-module on µ∗F (•) are compatible because
of the commutativity of the following diagram

µ∗D(•) µ∗σD,λ // µ∗λ∗D(•)

λ∗D(•).

σD,µ,λ

hh
σλ∗D,µ

OO (8.3.2.1.1)

We get similar properties when F (•) ∈ C(λ∗D(•)).

Lemma 8.3.2.2. Suppose ] ∈ {∅,−}.

(a) Let D(•) → D′(•) be a homomorphism of rings on the topos X(I). The extension functor D′(•)
L
⊗D(•)

− : D](D(•))→ D](D′(•)) induces by localisation the functor D′(•)
L
⊗D(•) − : D−→

]
Q(D(•))→ D−→

]
Q(D′(•))

and the functor D′(•)
L
⊗D(•) − : D](D(•))→ D](D′(•)) induces the functor LD−→

]
Q(D(•))→ LD−→

]
Q(D′(•)).

(b) Let λ ≤ µ be two elements of L(I), and F (•) ∈ D](λ∗D(•)).

(i) The canonical morphism of D−→
]
Q(µ∗D(•))

µ∗D(•) L
⊗λ∗D(•) F (•) → µ∗F (•) (8.3.2.2.1)

belongs to Λ(µ∗D(•)).

(ii) The functors µ∗ : D](λ∗D(•))→ D](µ∗D(•)) (resp. µ∗D(•) L
⊗λ∗D(•) − : D](λ∗D(•))→ D](µ∗D(•)))

induces by localisation a functor LD−→
]
Q(λ∗D(•))→ LD−→

]
Q(µ∗D(•)), that we still denote by µ∗ (resp.

µ∗D(•) L
⊗λ∗D(•) −).

(c) Let λ ∈ L(I), E(•) ∈ LD−→
]
Q(D(•)), F (•) ∈ LD−→

]
Q(λ∗D(•)). The following assertions are equivalent:

(i) There exists an isomorphism E(•) ∼−→ F (•) in LD−→
]
Q(D(•)) ;

(ii) There exists an isomorphism λ∗D(•) L
⊗D(•) E(•) ∼−→ F (•) in LD−→

]
Q(λ∗D(•)) ;

(iii) There exists an isomorphism λ∗E(•) ∼−→ F (•) in LD−→
]
Q(λ∗D(•)).

Proof. a) i) Set Ξ := Ξ](D(•)) and Ξ′ := Ξ](D′(•)) (see notation 8.1.2.2). To get the factorisation

D′(•)
L
⊗D(•) − : D−→

]
Q(D(•))→ D−→

]
Q(D′(•)), it is sufficient to check that the morphisms of the form id⊗θE,χ

for any E(•) ∈ C](D(•)) and χ ∈ M(I) belong to Ξ′. Let P(•) be a K-flat complex of C](D(•)) which
is quasi-isomorphic to E(•). It follows from 8.1.1.6 that χ∗P(•) is a K-flat complex of C](D(•)) which
is quasi-isomorphic to χ∗E(•). Hence, the morphism id⊗θP,χ : D′(•) ⊗D(•) P(•) → D′(•) ⊗D(•) χ∗P(•)

of C](D′(•)) represents the morphism id⊗θE,χ in the derived category D](D′(•)). Since Z is in the
center of D(•), we compute D′(•) ⊗D(•) χ∗P(•) = χ∗D′(•) ⊗D(•) P(•) and that id⊗θP,χ = θP′,χ, where
P ′(•) := D′(•) ⊗D(•) P(•).

a) ii)We have to check that the morphism of the form id⊗LσG,χ,λ for any G(•) ∈ C](D(•)) and
χ ∈M(I) and λ ∈ L(I) belong to S′. Choose a K-flat complex P(•) of left D(•)-module repreesenting G(•).
Choose a K-flat complex ‹P(•) of left D(•)-module together with a quasi-isomorphism s : ‹P(•) → χ∗λ∗G(•)

of K(D(•)). Let g : D′(•) ⊗D(•) χ∗λ∗P(•) = χ∗
(
D′(•) ⊗D(•) λ∗P(•)) → χ∗

(
λ∗D′(•) ⊗λ∗D(•) λ∗P(•)) =

χ∗λ∗
(
D′(•) ⊗D(•) P(•)) be the canonical morphism. We conclude via the commutative diagram of
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K(D′(•)):

D′(•) ⊗L
D(•) G(•) = //

id⊗LσG,χ,λ

��

D′(•) ⊗D(•) P(•)

id⊗σP,χ,λ
��

σχ,λ // χ∗λ∗
(
D′(•) ⊗D(•) P(•))

χ∗λ∗(id⊗σP,χ,λ)

��
D′(•) ⊗D(•) χ∗λ∗P(•)

σχ,λ
//

g
44

χ∗λ∗
(
D′(•) ⊗D(•) χ∗λ∗P(•))

D′(•) ⊗L
D(•) χ

∗λ∗G(•) = // D′(•) ⊗D(•) ‹P(•)
σχ,λ

//

∼ s

OO

χ∗λ∗
Ä
D′(•) ⊗D(•) ‹P(•)

ä
.

∼ χ∗λ∗(s)

OO

(8.3.2.2.2)

b) i) Let us prove that 8.3.2.2.1 belongs to Λ(µ∗D(•)). Let P(•) be a K-flat complex of C](λ∗D(•))
which is quasi-isomorphic to F (•). The canonical morphism P(•) → µ∗P(•) is a morphism in C](λ∗D(•))
(see 8.3.2.1). Since moreover µ∗P(•) ∈ C](µ∗D(•)), with the commutativity of 8.3.2.1.1, this yields
the morphism f : P ′(•) := µ∗D(•) ⊗λ∗D(•) P(•) → µ∗P(•) of C](µ∗D(•)). The morphism f represents the
morphism 8.3.2.2.1. By applying the functor µ∗ to the canonical morphism P(•) → µ∗D(•)⊗λ∗D(•)P(•) =
P ′(•), we get g : µ∗P(•) → µ∗(P ′(•)). We compute that g ◦ f = ρP′,µ and µ∗(f) ◦ g = ρµ∗P,µ. Hence,
f ∈ Λ′ and we are done.

ii) Set S := S](λ∗D(•)) and S′ := S](µ∗D′(•)) (see notation 8.1.4.3). To get the functor LD−→
]
Q(λ∗D(•))→

LD−→
]
Q(µ∗D(•)), it is sufficient to check that the morphisms of the form µ∗(σG,χ,ν) (resp. id⊗σG,χ,ν) for

any G(•) ∈ C](D(•)), χ ∈ M(I) and ν ∈ L(I) belong to S′. Since µ∗(σG,χ,ν) : µ∗G(•) → µ∗χ∗ν∗G(•) =
(χ◦µ)∗(ν◦µ)∗G(•) is a lim-ind-isogeny (see 8.1.4.11), then we get the factorization concerning the functor

µ∗. By using b.i) and also 8.1.4.11.(a), this yields the factorization of the functor µ∗D(•) L
⊗λ∗D(•) −.

c) Since we have from 8.3.2.2.1 the isomorphism

λ∗D(•) L
⊗D(•) E(•) → λ∗E(•)

in LD−→
]
Q(λ∗D(•)), then ii) and iii) are equivalent. Moreover, following 8.3.1.3.1 the functors λ∗ and

the forgetful functor induces canonically quasi-inverse equivalences of categories between LD−→
]
Q(D(•))

and LD−→
]
Q(λ∗D(•)). In particular, the canonical morphism E(•) → λ∗E(•) (resp. F (•) → λ∗F (•)) is an

isomorphism of LD−→
]
Q(D(•)) (resp. LD−→

]
Q(λ∗D(•))). This yields the equivalence between i) and iii).

Notation 8.3.2.3. Let λ ≤ µ be two elements of L(I). The forgetful functor induced by the canonical
morphism of rings λ∗D(•) → µ∗D(•) will be denoted by

forgλ,µ : M(µ∗D(•))→M(λ∗D(•)).

When µ = id, we simply note forgλ. Since forgλ,µ is exact, it follows from 8.3.1.1 (and the remark 8.3.1.2)
that we have the factorizations forgλ,µ : M−→Q(µ∗D(•)) → M−→Q(λ∗D(•)) and forgλ,µ : LM−−→Q(µ∗D(•)) →
LM−−→Q(λ∗D(•)). We use similar notation by replacing modules by complexes, i.e. by replacing the letters
M appearing in the notation of the categories by D.

Proposition 8.3.2.4. Let ] ∈ {∅,−} and λ ≤ µ be two elements of L(I).

1. The functors µ∗D(•) L
⊗λ∗D(•) −, µ∗ : LD−→

]
Q(λ∗D(•))→ LD−→

]
Q(µ∗D(•)) are isomorphic.

2. The functors forgλ,µ and µ∗D(•) L
⊗λ∗D(•) − are quasi-inverse equivalences of categories between

LD−→
]
Q(µ∗D(•)) and LD−→

]
Q(λ∗D(•)).

Proof. The first statement is 8.3.2.2.1. Similarly to 8.3.1.3.a, we prove that forgλ,µ and µ∗ are quasi-
inverse equivalences of categories between LD−→

]
Q(µ∗D(•)) and LD−→

]
Q(λ∗D(•)). This yields the second state-

ment.

Let us now consider the case of modules.
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Lemma 8.3.2.5. We have the following properties.

(a) Let D(•) → D′(•) be a homomorphism of rings on the topos X(I). The extension functor D′(•) ⊗D(•)

− : M(D(•)) → M(D′(•)) induces by localisation the functor D′(•) ⊗D(•) − : M−→Q(D(•)) → M−→Q(D′(•))
and the functor D′(•) ⊗D(•) − : LM−−→Q(D(•))→ LM−−→Q(D′(•)).

(b) Let λ ≤ µ be two elements of L(I), and F (•) ∈M(λ∗D(•)).

(i) The canonical morphism of M−→Q(µ∗D(•))

µ∗D(•) ⊗λ∗D(•) F (•) → µ∗F (•) (8.3.2.5.1)

belongs to Λ(µ∗D(•)).
(ii) The functors µ∗ : M(λ∗D(•))→M(µ∗D(•)) (resp. µ∗D(•)⊗λ∗D(•)− : M(λ∗D(•))→M(µ∗D(•)))

induces by localization the functors LM−−→Q(λ∗D(•))→ LM−−→Q(µ∗D(•)), that we still denote by µ∗
(resp. µ∗D(•) ⊗λ∗D(•) −).

(c) Let λ ∈ L(I), E(•) ∈ LM−−→Q(D(•)), F (•) ∈ LM−−→Q(λ∗D(•)). The following assertions are equivalent:

(i) There exists an isomorphism E(•) ∼−→ F (•) in LM−−→Q(D(•)) ;

(ii) There exists an isomorphism λ∗D(•) ⊗D(•) E(•) ∼−→ F (•) in LM−−→Q(λ∗D(•)) ;

(iii) There exists an isomorphism λ∗E(•) ∼−→ F (•) in LM−−→Q(λ∗D(•)).

Proof. We can copy the proof of 8.3.2.2 (without taking K-flat resolution).

8.3.2.6 (Adjointness). Let λ ≤ µ be two elements of L(I). The functor µ∗D(•)⊗λ∗D(•) − : M(λ∗D(•))→
M(µ∗D(•)) is a left adjoint to the forgetful functor forgλ,µ : M(µ∗D(•)) → M(λ∗D(•)). Since the for-
getful functor forgλ,µ commutes canonically to the functors of the form µ∗ and χ∗, then it follows from
8.1.5.2.2 that forgλ,µ : M−→Q(µ∗D(•))→M−→Q(λ∗D(•)) is a right adjoint to µ∗D(•)⊗λ∗D(•)− : M−→Q(λ∗D(•))→
M−→Q(µ∗D(•)) and forgλ,µ : LM−−→Q(µ∗D(•))→ LM−−→Q(λ∗D(•)) is a right adjoint to µ∗D(•)⊗λ∗D(•)− : LM−−→Q(λ∗D(•))→
LM−−→Q(µ∗D(•)).

Proposition 8.3.2.7. Let λ ≤ µ be two elements of L(I).

1. The functors µ∗D(•) ⊗λ∗D(•) −, µ∗ : LM−−→Q(λ∗D(•))→ LM−−→Q(µ∗D(•)) are isomorphic.

2. The functors forgλ,µ and µ∗D(•)⊗λ∗D(•)− are exact quasi-inverse equivalences of categories between
LM−−→Q(µ∗D(•)) and LM−−→Q(λ∗D(•)).

Proof. The first statement is 8.3.2.5.1. By using 8.3.2.6, it is a question of checking that the adjunction
morphisms are isomorphisms. Then this follows from 8.3.2.5.

Corollary 8.3.2.8. Let λ ≤ µ be two elements of L(I). The forgetful functor

M−→Q(µ∗D(•))→ LM−−→Q(µ∗D(•))
forgλ,µ−→ LM−−→Q(λ∗D(•)) (8.3.2.8.1)

is exact.

Proof. Since this a quotient by a Serre subcategory, the localisation functorM−→Q(µ∗D(•))→ LM−−→Q(µ∗D(•))
is exact. We conclude by using 8.3.2.7.

Lemma 8.3.2.9. We keep notation and hypotheses 8.3.1.5.

(a) Let λ1, λ2 ≤ µ be three elements of L(I), and F (•) ∈ D](λ∗1D(•),R, λ∗2D′(•)). The canonical morphism
of D−→

]
Q(µ∗D(•), µ∗R, µ∗D′(•))

µ∗D(•) L
⊗λ∗1D(•) F (•) L

⊗λ∗2D′(•) µ
∗D′(•) → µ∗F (•) (8.3.2.9.1)

belongs to Λ(µ∗D(•), µ∗D′(•)).
The canonical morphism of D−→

]
Q(µ∗D(•),R,D′(•))

µ∗D(•) L
⊗λ∗D(•) F (•) → µ∗F (•) (8.3.2.9.2)

belongs to Λ(µ∗D(•),D′(•)).
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(b) Let λ ∈ L(I), E(•) ∈ LD−→
]
Q(D(•),R,D′(•)), F (•) ∈ LD−→

]
Q(λ∗D(•),R,D′(•)). The following assertions

are equivalent:

(i) There exists an isomorphism E(•) ∼−→ F (•) in LD−→
]
Q(D(•),R,D′(•)) ;

(ii) There exists an isomorphism λ∗D(•) L
⊗D(•) E(•) ∼−→ F (•) in LD−→

]
Q(λ∗D(•),R,D′(•)) ;

(iii) There exists an isomorphism λ∗E(•) ∼−→ F (•) in LD−→
]
Q(λ∗D(•),R,D′(•)).

(c) Let λ ∈ L(I), E(•) ∈ LD−→
]
Q(D(•),R,D′(•)), F (•) ∈ LD−→

]
Q(λ∗D(•),R, λ∗D′(•)). The following assertions

are equivalent:

(i) There exists an isomorphism E(•) ∼−→ F (•) in LD−→
]
Q(D(•),R,D′(•)) ;

(ii) There exists an isomorphism λ∗D(•) L
⊗D(•) E(•) L

⊗D′(•) λ∗D′(•)
∼−→ F (•) in LD−→

]
Q(λ∗D(•),R, λ∗D′(•))

;

(iii) There exists an isomorphism λ∗E(•) ∼−→ F (•) in LD−→
]
Q(λ∗D(•),R, λ∗D′(•)).

Proof. This is checked similarly to the proof of 8.3.2.2.

8.3.3 Local properties on X and X(•)

We suppose X coherent.

Definition 8.3.3.1. Put C ∈ {M,M−→Q, LM−−→Q, LD−→
]
Q}. Let P be a property on the objects (resp. on the

arrows) of C(D(•)), where X, I, D(•) can vary. We keep notation 8.1.1.5.c,d.

(a) We say that the property P for the objects E(•) (resp. for the arrows f) of C(D(•)) is local on X
(with X and I fixed) if for any open subset U of X the following properties are equivalent:

(i) The property P holds for E(•)|U (resp. f |U ) ;
(ii) For any open set V of U , the property P holds for E(•)|V (resp. of f |V ) ;
(iii) There exist an open covering (Uα)α∈A of U such that the property P holds for E(•)|Uα (resp.

of f |Uα) for any α ∈ A.

(b) We say that the property P for the objects E(•) (resp. for the arrows f) of C(D(•)) is local on I
(with X and I fixed) if both properties are equivalent ;

(i) The property P holds for E(•) (resp. f) ;

(ii) For any i ∈ I, the property P holds for E(•)|(i,X) (resp. of f |(i,X)).

(c) We say that the property P for the objects E(•) (resp. for the arrows f) of C(D(•)) is local on X(I)

if for any open subset U of X the following properties are equivalent:

(i) The property P holds for E(•)|U (resp. f |U ) ;
(ii) For any i ∈ I, for any open subset V of U , the property P holds for E(•)|(i,V ) (resp. of f(i,V )) ;

(iii) For any i ∈ I, there exists an open covering (Uα)α∈A of U such that the property P holds for
E(•)|(i,Uα) (resp. of f |(i,Uα)) for any α ∈ A.

(d) We say that a property P for the objects and the arrows f of C(D(•)) is quasi-local on X (resp.
quasi-local on I, resp. quasi-local on X(•)), if we have the implication (i) ⇒ (ii) of (a) (resp. (b),
resp. (c)).

(e) We say that a property is closed under L-equivariance if for any L-equivalence u : I ′ → I between two
partially ordered sets (see definition 8.1.3.8), for any object E(•) (resp. for any arrow f) of C(D(•)),
both properties are equivalent

(i) The property P holds for E(•) (resp. f) ;

(ii) The property P holds for →u
−1
X (E(•)) (resp. →u

−1
X (f)).
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Remark 8.3.3.2. We keep notation 8.3.3.1. We have the following links between above local properties.

(a) When I has a smallest element, the property P is local on I if and only if it is quasi-local on I.

(b) Assume I is strictly filtered. In that case, we have the following properties.

(i) If the property P is quasi-local on I and is closed under L-equivariance, then P is local on I.

(ii) If the property P is quasi-local on I for the objects (resp. the arrows) of C(D(•)), closed under
L-equivariance and local on X for the objects (resp. the arrows) of C(D(•)

|(i,X)) for some i ∈ I,
then P is local on X(I).

Lemma 8.3.3.3. The property that “an object of M(D(•)) is an object of N(D(•))” (see notation 8.1.5.5)
is local on X. When I is strictly filtered, it is local on X(•).

Proof. Let E(•) be a D(•)-module. Following 8.1.4.11.(c) (still valid by replacing complexes by modules),
the fact that E(•) is an object of N(D(•)) is equivalent to saying that there exist χ ∈M(I) and λ ∈ L(I)
such that the canonical arrow E(•) → χ∗λ∗E(•) is the zero morphism (in the category M(D(•))).

Let us check the property “an object of M(D(•)) is an object of N(D(•))” say P is local on X. Let
(Xi)i∈I be an open covering of X such that, for any i ∈ I, there exist χi ∈ M(I) and λi ∈ L(I) such
that the canonical arrow E(•)|Xi → χ∗i λ

∗
i E(•)|Xi is the zero morphism. Since X is quasi-compact, we can

suppose I finite. Hence, there exist χ ∈M(I) and λ ∈ L(I) such that, for any i ∈ I, we have χ ≥ χi and
λ ≥ λi. For any i ∈ I, the canonical morphism E(•)|Xi → χ∗λ∗E(•)|Xi is therefore the null morphism.
Hence, P is local on X

It is straightforward that the property P is quasi-local on X(I) (e.g. on I) and closed under L-
equivariance (use the equivalence of category 8.3.1.3.a). Hence, when I is strictly filtered, this yields
that P is local on X(•) by using the remark 8.3.3.2.b.(ii).

Lemma 8.3.3.4. Let f : E(•) → F (•) be a morphism of LM−−→Q(D(•)). The property that the morphism f

is a monomorphism (resp. an epimorphism, resp. an isomorphism) of LM−−→Q(D(•)) is local on X. When
I is strictly filtered, it is local on X(•).

Proof. We already know that LM−−→Q(D(•)) is an abelian category (see 8.1.5.5). Hence, f is a monomor-
phism (resp. an epimorphism, resp. an isomorphism) of LM−−→Q(D(•)) if and only if its kernel (resp.
cokernel, resp. kernel and cokernel) is null in LM−−→Q(D(•)). We conclude by using 8.3.3.3.

Proposition 8.3.3.5. Let φ : E(•) → F (•) be a morphism in LD−→
b
Q(D(•)). The property that the mor-

phism φ is an isomorphism is local on X. When I is strictly filtered, it is local on X(•).

Proof. It follows from 8.3.3.4, 8.1.5.11 that the property is local on X. By using the equivalence of
categories 8.3.1.3.1, it is also closed under L-equivariance. Since it is also quasi-local on X(I), then we
conclude by using the remark 8.3.3.2.b.(ii).

Lemma 8.3.3.6. Let E(•) ∈ LD−→
b
Q(D(•)). The property E(•) ∈ LD−→

0
Q(D(•)) is local on X. When I is

strictly filtered, it is local on X(•).

Proof. Following 8.3.3.4, by using the commutativity (up to isomorphism) of the diagram 8.3.1.4.1,
for any integer n ∈ Z, the property Hn(E(•))

∼−→ 0 in LM−−→Q(D(•)) is local on X and closed under
L-equivalence. Since it is obviously quasi-local, then we conclude by using the remark 8.3.3.2.b.(ii).

Lemma 8.3.3.7. Let E(•), F (•) be two objects of M(D(•)). Let (Xα)α∈A be an open covering of X.
Then there is a canonical bijection between the following data:

(a) A morphism f : E(•) → F (•) ;

(b) A set (fα)α∈A of morphisms fα : E(•)|Xα → F (•)|Xα of LM−−→Q(D(•)|Xα) such that fα|Xα ∩ Xβ =

fβ |Xα ∩Xβ in LM−−→Q(D(•)|Xα ∩Xβ) for any α, β ∈ A.

When I is strictly filtered, then we have a bijection between the data (a) and the following one:
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(c) A set (fi)i∈I of morphisms fi : E(•)|(i,X) → F (•)|(i,X) of LM−−→Q(D(•)|(i,X)) such that for any element
i ≤ j of I we have fi|(j,X) = fj in LM−−→Q(D(•)|(j,X)).

These properties can be interpreted by saying that the existence of a morphism in LM−−→Q(D(•)) is local on
X, I and on X(I).

Proof. The implications (a)⇒ (b) and (a)⇒ (c) are clear. When I is strictly filtered, (c)⇒ (a) follows
from the fully faithfulness of the restriction functor |X(I≥i) (see 8.3.1.3.1). Let us prove (b) → (a). Let
(fα)α∈A be a set morphisms satisfying the condition of (b). Since X is quasi-compact, we can suppose A
finite. Since a finite family of elements of L(I) (resp. of M(I)) is bounded above by an element of L(I)
(resp. of M(I)), by increasing if necessary the elements of L(I) or M(I) which appear in the choices of
the morphisms representing fα, we can suppose there exist λ ∈ L(I) and χ ∈ M(I), some morphisms
aα : E(•)|Xα → χ∗λ∗F (•)|Xα in M(D(•)|Xα) representing fα. Since Xα ∩ Xβ is quasi-compact, by
increasing again λ and χ if necessary, we can moreover assume that aα|Xα ∩ Xβ = aβ |Xα ∩ Xβ in
M(D(•)|Xα ∩ Xβ). Then we get a morphism a : E(•) → χ∗λ∗F (•) in M(D(•)) such that aα = a|Xα.
Hence we are done.

Lemma 8.3.3.8. Let f, g : E(•) → F (•) be two morphisms of LM−−→Q(D(•)). The equality f = g in
LM−−→Q(D(•)) is local on X. When I is strictly filtered, it is local on X(•).

Proof. The equality f = g is equivalent to saying that the canonical morphism ker(f − g) → E(•) is an
isomorphism. Hence, this follows from 8.3.3.4.

8.3.4 Derived homomorphism bifunctor over complexes of LMQ(D(•)), com-
parison

Suppose X is coherent.

Proposition 8.3.4.1. Let E(•), F (•) be two objects of LM−−→Q(D(•)).

(a) Denote by HomLM−−→Q(D(•))(E(•), F (•)) the presheaf of abelian groups on X defined by

U 7→ HomLM−−→Q(D(•)|U)(E(•)|U, F (•)|U), (8.3.4.1.1)

where U running over ZZar. Then HomLM−−→Q(D(•))(E(•), F (•)) is a sheaf.

(b) Denote by HomLM−−→Q(D(•))(E(•), F (•)) the presheaf of abelian groups on X(•) defined by

(i, U) 7→ HomLM−−→Q(D(•)|(i,U))
(E(•)|(i,U), F (•)|(i,U)), (8.3.4.1.2)

where (i, U) running over (Io)\ ×XZar. When I is strictly filtered, HomLM−−→Q(D(•))(E(•), F (•)) is a
sheaf.

Proof. The proposition follows from the lemmas 8.3.3.7 and 8.3.3.8.

8.3.4.2. With notation 8.3.4.1, we get by construction the isomorphism of abelian presheaves on X:

→l
(I)
X,∗HomLM−−→Q(D(•))(E(•),F (•))

∼−→ HomLM−−→Q(D(•))(E(•),F (•)), (8.3.4.2.1)

where→l
(I)
X,∗ is the projective limit indexed by Io (see notation 8.1.1.2.3).

Notation 8.3.4.3. Let E(•),•, F (•),• ∈ K(LM−−→Q(D(•))) (exceptionally, we indicate the second • to clarify
the following notations). With the notations of the proposition 8.3.4.1, we have the bifunctor

Hom•LM−−→Q(D(•))(−,−) : K(LM−−→Q(D(•)))×K(LM−−→Q(D(•)))→ K(ZX)
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whose the n-th term for any integer n ∈ Z is defined by setting:

Homn
LM−−→Q(D(•))(E

(•),•, F (•),•) :=
∏
p∈Z

HomLM−−→Q(D(•))(E(•),p, F (•), p+n) (8.3.4.3.1)

and the transition morphisms are given by the formula d = dE + (−1)n+1dF .

Notation 8.3.4.4. Similarly to the construction of 8.3.4.3, by replacing everywhere “Hom” by “Hom”
or “Hom”, we have the following results.

(a) We define the bifunctor (which is by the way the standard homomorphisms bifunctor associated to
the abelian category LM−−→Q(D(•))):

Hom•LM−−→Q(D(•))(−,−) : K(LM−−→Q(D(•)))×K(LM−−→Q(D(•)))→ K(Z).

By construction (see 8.3.4.1.1), for any E(•),F (•) ∈ K(LM−−→Q(D(•))), for any open subset U of X, we
have the bifunctorial isomorphism of K(Z):

Γ(U,Hom•LM−−→Q(D(•))(E
(•),F (•)))

∼−→ Hom•LM−−→Q(D(•))(E
(•),F (•)). (8.3.4.4.1)

(b) We define the bifunctor:

Hom•LM−−→Q(D(•))(−,−) : K(LM−−→Q(D(•)))×K(LM−−→Q(D(•)))→ K(Z(•)
X ).

By construction (see 8.3.4.1.2), for any E(•),F (•) ∈ K(LM−−→Q(D(•))), for any open subset U of X, for
any (i, U) ∈ (Io)\ ×XZar, we have the bifunctorial isomorphism of K(Z):

Γ((i, U),Hom•LM−−→Q(D(•))(E
(•),F (•)))

∼−→ Hom•LM−−→Q(D(•)|(i,U))
(E(•)|(i,U), F (•)|(i,U)). (8.3.4.4.2)

8.3.4.5. Suppose ] ∈ {−, +,b}, let Q]N : K](D(•))→ K](LM−−→Q(D(•))) be the canonical functor. Follow-
ing the remark after the theorem [Miy91, 3.2], putting N ]

N (D(•)) := kerQ]N the associated saturated null
system, the functor Q]N induces the equivalence of categories K](D(•))/N ]

N (D(•)) ∼= K](LM−−→Q(D(•))),
which is synthesized by saying Q]N is a quotient.

With the notations 8.2.4.4.1 (where we replace Hom by Hom) and 8.3.4.4, it follows from 8.1.5.2.2
that we have the isomorphism of bifunctors K−(D(•))op ×K+(D(•))→ K+(Z):

lim−→
λ∈L(I), χ∈M(I)

Hom•D(•)(−, χ∗λ∗−)
∼−→ Hom•LM−−→Q(D(•))(QN (−), QN (−)). (8.3.4.5.1)

Since X is coherent, it has an open basis consisting of coherent open subsets. Since Γ(U,−) commutes
with filtered inductive limits when U is coherent (see 7.1.2.16), since L(I) × M(I) is filtered, then
with notations 8.2.4.4.1 and 8.3.4.3 it follows from 8.2.1.5.2, 8.3.4.4.1 and 8.3.4.5.1 that we have the
isomorphism of bifunctors K−(D(•))op ×K+(D(•))→ K+(ZX):

lim−→
λ∈L(I), χ∈M(I)

Hom•D(•)(−, χ∗λ∗−)
∼−→ Hom•LM−−→Q(D(•))(QN (−), QN (−)). (8.3.4.5.2)

Following the remark 7.4.1.11 and with notation 8.2.4.6, this implies that the right localisation with
respect to (NN × NN ,Nqi) of the bifunctor of 8.2.4.4.1 exists and that we have the isomorphism of
bifunctors K(LM−−→Q(D(•)))×K(LM−−→Q(D(•)))→ D(ZX):

R
N+

qi
(ZX)

N−
N

(D(•))×N+
N

(D(•))
lim−→

λ∈L, χ∈M
Hom•D(•)(−, χ∗λ∗−)

∼−→ Q+
qi ◦ Hom

•
LM−−→Q(D(•))(−,−). (8.3.4.5.3)
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8.3.4.6. Following notation 8.2.4.23 and 8.3.4.5, we denote by Qb
N : Kb(D(•)) → Kb(LM−−→Q(D(•)))

the canonical functor, N b
N (D(•)) := kerQb

N , QLD : Db(D(•)) → LD−→
b
Q(D(•)) and Qqi

LD : Kb(D(•)) →
LD−→

b
Q(D(•)) the localization morphisms,Nqi

LD := KerQqi
LD. Set ‹Qqi

LD := e◦Qqi
LD : Kb(D(•))→ Db(LM−−→Q(D(•))),

where e is the equivalence of categories LD−→
b
Q(D(•)) ∼= Db(LM−−→Q(D(•))) (see 8.1.5.14.1) andQqi : K

b(LM−−→Q(D(•)))→
Db(LM−−→Q(D(•))) is the localisation morphism. We notice Ker ‹Qqi

LD = Nqi
LD. To avoid confusion, the

right localisation R
N+

qi
(ZX)

Nqi
LD
×Nqi

LD

F (−,−) of F (−,−) (the functor defined at 8.2.4.23) will be denoted by

R
N+

qi
(ZX)

Qqi
LD
×Qqi

LD

F (−,−) as a functor LD−→
b
Q(D(•))◦×LD−→

b
Q(D(•))→ D(ZX) and by R

N+
qi

(ZX)

Q̃qi
LD
×Q̃qi

LD

F (−,−) as a func-

tor ofDb(LM−−→Q(D(•)))×Db(LM−−→Q(D(•)))→ D(ZX). Since the right derived bifunctor R
N+

qi
(ZX)

Qqi
LD
×Qqi

LD

F (−,−)

exists (see 8.2.4.23.4), then so is R
N+

qi
(ZX)

Q̃qi
LD
×Q̃qi

LD

F (−,−) and we have the canonical isomorphism of functors

RHomLD−→Q(D(•))(−,−) = R
N+

qi
(ZX)

Qqi
LD
×Qqi

LD

F (−,−)
∼−→ R

N+
qi

(ZX)

Q̃qi
LD
×Q̃qi

LD

F (e(−), e(−)). (8.3.4.6.1)

Hence, since the right derived bifunctor R
N+

qi
(ZX)

Nb
N

(D(•))×Nb
N

(D(•))
F (−,−) exists (see 8.3.4.5), since ‹Qqi

LD =

Qqi ◦ Qb
N then it follows from Lemma 7.4.1.13 that R

N+
qi

(ZX)

Nb
N

(D(•))×Nb
N

(D(•))
F (−,−) is right localizable

with respect to (Nb
qi(LM−−→Q(D(•))),Nb

qi(LM−−→Q(D(•)))) and that we have the isomorphism of bifunctors
Db(LM−−→Q(D(•)))◦ ×Db(LM−−→Q(D(•)))→ D(ZX) of the form

RNb
qi

(LM−−→Q(D(•)))×Nb
qi

(LM−−→Q(D(•)))R
N+

qi
(ZX)

Nb
N

(D(•))×Nb
N

(D(•))
F (−,−)

∼−→ R
N+

qi
(ZX)

Q̃qi
LD
×Q̃qi

LD

F (−,−). (8.3.4.6.2)

By using the (bounded version of the) isomorphism 8.3.4.5.3, this yields that the right localisation of the
bifunctor Q+

qi ◦ Hom•LM−−→Q(D(•))
(−,−) with respect to (Nb

qi(LM−−→Q(D(•))),Nb
qi(LM−−→Q(D(•)))) exists, which

will be denoted by

RHomD(LM−−→Q(D(•)))(−,−) : Db(LM−−→Q(D(•)))◦ ×Db(LM−−→Q(D(•)))→ D(ZX), (8.3.4.6.3)

and is endowed with the isomorphism of bifunctors

RHomD(LM−−→Q(D(•)))(−,−)
∼−→ R

N+
qi

(ZX)

Q̃qi
LD
×Q̃qi

LD

F (−,−). (8.3.4.6.4)

Via 8.3.4.6.1 and 8.3.4.6.4 we have the isomorphism of bifunctors LD−→
b
Q(D(•))◦ × LD−→

b
Q(D(•)) → D(ZX)

of the form
RHomLD−→Q(D(•))(−,−)

∼−→ RHomD(LM−−→Q(D(•)))(e(−), e(−)). (8.3.4.6.5)

Moreover, by using the universal property of the right localization of a functor, using Qqi ◦Qb
N = ‹Qqi

LD,
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and ‹Qqi
LD = e ◦Qqi

LD, we get the commutative up to isomorphism diagram

RHomLD−→Q(D(•))(Q
qi
LD(−), Qqi

LD(−))
8.3.4.6.5
∼

// RHomD(LM−−→Q(D(•)))(e ◦Q
qi
LD, e ◦Q

qi
LD)

R
N+

qi
(ZX)

Q̃qi
LD
×Q̃qi

LD

F (‹Qqi
LD(−), ‹Qqi

LD(−))
8.3.4.6.4
∼

//

8.3.4.6.1 ∼

OO

RHomD(LM−−→Q(D(•)))(‹Qqi
LD(−), ‹Qqi

LD(−))

RNb
qi
×Nb

qi
R
N+

qi
(ZX)

Nb
N
×Nb

N

F (‹Qqi
LD(−), ‹Qqi

LD(−))
∼ //

∼ 8.3.4.6.2

OO

RNb
qi
×Nb

qi
Q+

qi ◦ Hom•LM−−→Q(D(•))
(‹Qqi

LD(−), ‹Qqi
LD(−))

R
N+

qi
(ZX)

Nb
N
×Nb

N

F (Qb
N (−), QNn

b(−))
∼

8.3.4.5.3
//

adj

OO

Q+
qi ◦ Hom•LM−−→Q(D(•))

(Qb
N (−), Qb

N (−))

adj

OO

Q+
qi ◦ F (−,−)

adj

OO
∼

8.3.4.5.2

22

(8.3.4.6.6)
where the “adj” morphisms are given by adjunction from 7.4.1.9.1.

8.3.4.7. Suppose Io is coherent, which implies X(•) is a coherent topos. By copying the proof of 8.3.4.5.3
(i.e. by replacing everywhere “Hom” by “Hom” and by replacing the coherence of Io×X instead of that
of X), we get the isomorphism of bifunctors K(LM−−→Q(D(•)))×K(LM−−→Q(D(•)))→ D(Z(•)

X ):

R
N+

qi
(Z(•)
X

)

N−
N

(D(•))×N+
N

(D(•))
lim−→

λ∈L, χ∈M
Hom•D(•)(−, χ∗λ∗−)

∼−→ Q+
qi ◦Hom•LM−−→Q(D(•))(−,−). (8.3.4.7.1)

Similarly to 8.3.4.6, it follows from the (bounded version of the) isomorphism 8.3.4.7.1, that the right lo-
calisation of the bifunctor Q+

qi◦Hom•
LM−−→Q(D(•))

(−,−) with respect to (Nb
qi(LM−−→Q(D(•))),Nb

qi(LM−−→Q(D(•))))

exists, which will be denoted by

RHomD(LM−−→Q(D(•)))(−,−) : Db(LM−−→Q(D(•)))◦ ×Db(LM−−→Q(D(•)))→ D+(Z(•)
X ), (8.3.4.7.2)

and is endowed with the isomorphism of bifunctors

RHomD(LM−−→Q(D(•)))(−,−)
∼−→ R

N+
qi

(Z(•)
X

)

Q̃qi
LD
×Q̃qi

LD

lim−→
λ,χ

Hom•D(•)(−, χ∗λ∗−). (8.3.4.7.3)

Via the Hom version of 8.3.4.6.1 and via 8.3.4.7.3, we have the isomorphism of bifunctors LD−→
b
Q(D(•))◦×

LD−→
b
Q(D(•))→ D+(Z(•)

X ) of the form

RHomLD−→Q(D(•))(−,−)
∼−→ RHomD(LM−−→Q(D(•)))(e(−), e(−)). (8.3.4.7.4)

8.3.4.8. The standar bifunctor Hom•LM−−→Q(D(•))(−,−) is right localisable with respect to quasi-isomorphism
and its right derivated functor is denoted by

RHomD(LM−−→Q(D(•)))(−,−) : Db(LM−−→Q(D(•)))◦ ×Db(LM−−→Q(D(•)))→ D(Z). (8.3.4.8.1)

Recall, RHomD(LM−−→Q(D(•)))(E(•),F (•)) is computed by taking an injective resolution of F (•). Similarly to

8.3.4.6, we have moreover the isomorphism of bifunctors LD−→
b
Q(D(•))◦ × LD−→

b
Q(D(•))→ D(Z) of the form

RHomLD−→Q(D(•))(−,−)
∼−→ RHomD(LM−−→Q(D(•)))(e(−), e(−)). (8.3.4.8.2)
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Hence it follows from 8.2.4.24.1 that we have the isomorphism of bifunctorsDb(LM−−→Q(D(•)))◦×Db(LM−−→Q(D(•)))→
Mod(Z) of the form:

H0(RHomD(LM−−→Q(D(•)))(−,−))
∼−→ HomD(LM−−→Q(D(•)))(−,−). (8.3.4.8.3)

It follows from 8.2.4.25.1, 8.3.4.6.5 and 8.3.4.8.2 that we have the isomorphism of bifunctorsDb(LM−−→Q(D(•)))◦×
Db(LM−−→Q(D(•)))→ D(Z) of the form

RΓ(X,−) ◦ RHomD(LM−−→Q(D(•)))(−,−)
∼−→ RHomD(LM−−→Q(D(•)))(−,−). (8.3.4.8.4)

Suppose Io is coherent. Similarly, it follows from 8.2.4.25.2 that we have that the isomorphism of
bifunctors Db(LM−−→Q(D(•)))◦ ×Db(LM−−→Q(D(•)))→ D(Z) of the form

RΓ(X(•),−) ◦ RHomD(LM−−→Q(D(•)))(−,−)
∼−→ RHomD(LM−−→Q(D(•)))(−,−). (8.3.4.8.5)

8.4 Coherence

8.4.1 Coherence in LDQ(D(•)), comparison with the D†Q-coherence, theorems
A and B

Let I be a partially ordered set and let X be a topological space. Let D(•) be a sheaf of rings on the
topos X(I).

Definition 8.4.1.1. Let E(•) ∈ LD−→Q(D(•)). The complex E(•) is said to be coherent if there exist
λ ∈ L(I) and F (•) ∈ Dcoh(λ∗D(•)) together with an isomorphism in LD−→Q(D(•)) of the form E(•) ∼−→ F (•).

Remark 8.4.1.2. Let λ ∈ L(I). Following 7.1.3.13, F (•) ∈ Dcoh(λ∗D(•)) means that F (•) satisfies the
following conditions:

(a) For any i ∈ I, F (i) ∈ Dcoh(D(λ(i))) ;

(b) For any i, j ∈ I such that i ≤ j, the canonical homomorphism

D(λ(j))
L
⊗D(λ(i)) F (λ(i)) → F (λ(j)) (8.4.1.2.1)

is an isomorphism.

Notation 8.4.1.3. Let ] ∈ {∅,−,b, 0}. We denote by LD−→
]
Q,coh(D(•)) the strictly full subcategory of

LD−→
]
Q(D(•)) consisting of coherent complexes.

Lemma 8.4.1.4. Let E(•) ∈ LD−→Q(D(•)). Let λ ≤ µ be two elements of L(I). Consider the following two
properties.

(a) There exists F (•) ∈ Dcoh(λ∗D(•)) together with an isomorphism in LD−→Q(D(•)) of the form E(•) ∼−→
F (•).

(b) There exists G(•) ∈ Dcoh(µ∗D(•)) together with an isomorphism in LD−→Q(D(•)) of the form E(•) ∼−→
G(•).

Then (a)⇒ (b).

Proof. Suppose there exists F (•) ∈ Dcoh(λ∗D(•)) together with an isomorphism in LD−→Q(D(•)) of the form
E(•) ∼−→ F (•). Following 8.3.2.2.c, we get the isomorphism LD−→Q(λ∗D(•)) of the form λ∗E(•) ∼−→ F (•).

This yields the isomorphism µ∗D(•) L
⊗λ∗D(•) λ∗E(•) ∼−→ µ∗D(•) L

⊗λ∗D(•) F (•) in LD−→Q(µ∗D(•)). Since

G(•) := µ∗D(•) L
⊗λ∗D(•) F (•) ∈ Dcoh(µ∗D(•)), since µ∗D(•) L

⊗λ∗D(•) λ∗E(•) ∼−→ µ∗E(•) in LD−→Q(µ∗D(•))

(see 8.3.2.2.1), we are done by using again 8.3.2.2.c.
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Proposition 8.4.1.5. Let u : I ′ → I be an L-equivalence between two partially ordered sets (see definition
8.1.3.8). Let ] ∈ {∅,−,b, 0}. The equivalence of categories →u

−1
X of 8.3.1.3.1 preserves the coherence, i.e.

it induces the equivalence of categories

→u
−1
X

: LD−→
]
Q,coh(D(•))→ LD−→

]
Q,coh(→u

−1
X
D(•)). (8.4.1.5.1)

Suppose I ′ = I and u ∈ L(I). Denoting by λ := u, we have the forgetful functor LD−→
]
Q coh(λ∗D(•))→

LD−→
]
Q coh(D(•)) which is a quasi-inverse equivalence of 8.4.1.5.1.

Proof. 0) Let E(•) ∈ LD−→
]
Q(D(•)). We already know that the proposition without the coherence hypotheses

(see 8.3.1.3). Hence, we have to check E(•) ∈ LD−→
]
Q,coh(D(•)) if and only if→u

−1
X (E(•)) ∈ LD−→

]
Q,coh(→u

−1
X D(•)).

1) First suppose I ′ = I and λ := u ∈ L(I).
i) Suppose E(•) ∈ LD−→

]
Q,coh(D(•)). Let µ ∈ L(I) and F (•) ∈ Dcoh(µ∗D(•)) together with an iso-

morphism E(•) ∼−→ F (•) in LD−→Q(D(•)). Since λ ◦ µ ≥ µ, it follows from 8.4.1.4 that there exists
G(•) ∈ Dcoh(µ∗λ∗D(•)) together with an isomorphism E(•) ∼−→ G(•) in LD−→Q(D(•)). By using 8.3.2.2.c,
this yields the isomorphism λ∗E(•) ∼−→ G(•) in LD−→Q(λ∗D(•)). Hence, λ∗(E(•)) ∈ LD−→

]
Q,coh(λ∗D(•)).

ii) Conversely, suppose λ∗(E(•)) ∈ LD−→
]
Q,coh(λ∗D(•)). Let µ ∈ L(I) and G(•) ∈ Dcoh(µ∗λ∗D(•))

together with an isomorphism λ∗E(•) ∼−→ G(•) in LD−→Q(λ∗D(•)). By composing with the canonical
isomorphism σE,λ : E(•) → λ∗E(•) in LD−→Q(D(•)), we conclude E(•) ∈ LD−→

]
Q,coh(D(•)).

2) Let us come back to the general case. By definition, there exists an increasing map v : I → I ′ such
that u ◦ v ∈ L(I), v ◦ u ∈ L(I ′).

i) Suppose E(•) ∈ LD−→
]
Q,coh(D(•)). Let λ ∈ L(I) and F (•) ∈ Dcoh(λ∗D(•)) together with an isomor-

phism E(•) ∼−→ F (•) in LD−→Q(D(•)). We have µ := u ◦ (v ◦ λ) ∈ L(I) and µ′ := (v ◦ λ) ◦ u ∈ L(I ′). Since
µ = u ◦ v ◦ λ ≥ λ, it follows from 8.4.1.4 that there exists G(•) ∈ Dcoh(µ∗D(•)) together with an isomor-
phism E(•) ∼−→ G(•) in LD−→Q(D(•)). With 8.3.2.2.c, this means we have the isomorphism µ∗E(•) ∼−→ G(•)

in LD−→Q(µ∗D(•)). Since µ′∗→u
−1
X = →u

−1
X µ∗, by applying the functor →u

−1
X to this latter isomorphism, we

get the isomorphism µ′∗→u
−1
X E(•) ∼−→ →u

−1
X G(•) in LD−→Q(µ′∗→u

−1
X D(•)), with →u

−1
X G(•) ∈ Dcoh(µ′∗→u

−1
X D(•)).

Hence, →u
−1
X E(•) ∈ LD−→

]
Q,coh(→u

−1
X D(•)).

ii) Since v is also an L-equivalence, we get from 2.i) that the functor →v
−1
X preserve the coherence.

Hence, by using 1), we get the converse of 2.i).

Lemma 8.4.1.6. We suppose I has a smallest element i0. With notation 8.1.1.4, for any E(•) ∈
Dcoh(D(•)), we have E(i0) ∈ Dcoh(D(i0)) and the canonical isomorphism of D(D(•))

D(•) ⊗L
D(i0) E(i0) ∼−→ E(•). (8.4.1.6.1)

Proof. First let us construct the morphism. Let P(•) be a K-flat complex of K(D(•)) endowed with a
quasi-isomorphism P(•) ∼−→ E(•). Then P(i0) is a K-flat complex of K(D(i0)) endowed with a quasi-
isomorphism P(i0) ∼−→ E(i0). The morphism 8.4.1.6.1 corresponds to the canonical map D(•) ⊗D(i0)

P(i0) → P(•).
Finally, since a morphism E(•) → F (•) in D(D(•)) is an isomorphism if and only if the induced

morphisms E(i) → F (i) in D(D(i)) are isomorphisms for any i ∈ I, then the fact that the morphism
8.4.1.6.1 is an isomorphism is a consequence of 7.1.3.13.

Proposition 8.4.1.7. Suppose I has a smallest element or is strictly filtered (see 8.1.3.8). Let ] ∈
{∅,−,b}. Then the subcategory LD−→

]
Q,coh(D(•)) of LD−→Q(D(•)) is a triangulated subcategory.

Proof. The cases where ] ∈ {−,b} is a consequence of the case where ] is empty.
Let i0 ∈ I and j : Ii0 ⊂ I be the inclusion. Since j is an L-equivalence, then following 8.4.1.5 (and

use also 8.3.1.3), a complex E(•) ∈ LD−→Q(D(•)) belongs to LD−→Q,coh(D(•)) if and only if
→
j−1

X
(E(•)) belongs

to LD−→Q,coh(
→
j−1

X
D(•)). Hence, we reduce to the case where I has a smallest element i0.
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Let E(•) f→ F (•) → G(•) → E(•)[1] be a triangle of LD−→Q(D(•)) such that E(•),F (•) ∈ LD−→Q,coh(D(•)).
By using 8.4.1.4 (and also 8.3.2.2.c), there exist µ ∈ L(I), E ′(•),F ′(•) ∈ Dcoh(µ∗D(•)) together with
the isomorphisms in LD−→Q(µ∗D(•)) of the form µ∗E(•) ∼−→ E ′(•), µ∗F (•) ∼−→ F ′(•). We get the triangle
E ′(•) → F ′(•) → µ∗G(•) → E ′(•)[1] of LD−→Q(µ∗D(•)). Using again 8.3.1.3 and 8.4.1.5, if µ∗(G(•)) ∈
LD−→Q,coh(µ∗D(•)) then G(•) ∈ LD−→Q,coh(D(•)). Hence, replacing D(•) by µ∗D(•) if necesary, we can suppose
that E(•),F (•) ∈ Dcoh(D(•)).

The morphism f : E(•) → F (•) in LD−→Q(D(•)) is represented by a morphism g : E(•) → χ∗λ∗F (•) of
D(D(•)) for some (λ, χ) ∈ L(I) ×M(I). Set E ′(•) := λ∗D(•) ⊗L

D(•) E(•) and let h : E ′(•) → χ∗λ∗F (•) be
the induced morphism of D(λ∗D(•)). Since the canonical morphisms E ′(•) → λ∗E(•) and E(•) → λ∗E(•)

are morphism of Λ(D(•)) (see 8.3.2.2.1 for the first one), then the canonical morphism E(•) → E ′(•) is an
isomorphism in LD−→Q(D(•)). Hence, we get the distinguished triangle E ′(•) h→ χ∗λ∗F (•) → G(•) → E ′(•)[1]

in LD−→Q(D(•)).
Set D′(•) := λ∗D(•), F ′(•) := λ∗F (•). We have E ′(•),F ′(•) ∈ Dcoh(λ∗D(•)) (see 8.4.1.6). Let χ′ ∈M(I)

be the map defined by χ′(i) := χ(i)−χ(i0) for any i ∈ I. Remark that χ∗ = χ′∗ and that the morphism
F ′(i0) → F ′(i0) induced by θF ′,χ′ is the identity (but the one induced by θF ′,χ is the multiplication by
pχ(i0). With notation 8.1.1.4, this implies the commutativity of the outline rectangle of the diagram

E ′(i0)

h(i0)

��

// D′(•) ⊗L
D′(i0) E ′(i0) ∼ //

id⊗h(i0)

��

E ′(•)

h

��
F ′(i0) // D′(•) ⊗L

D′(i0) F ′(i0) ∼ // F ′(•)
θF′,χ′ // χ∗F ′(•)

(8.4.1.7.1)

in D(D′(•)), where the horizontal isomorphisms follows from the fact that E ′(•),F ′(•) ∈ Dcoh(D′(•)) and
where to lighten we have removed (→l

(I)
X )−1 in the notation (e.g. F ′(i0) = (→l

(I)
X )−1(F ′(i0))). By universal

property of the extension, this yields the commutativity of the right square. Hence, we get a morphism
h′ : E ′(•) → F ′(•) in D(D′(•)) making commutative the diagram, in particular such that h = θF ′,χ′ ◦ h′.
Since E ′(•),F ′(•) ∈ Dcoh(D′(•)), then the cone G′(•) of h′ in D(D′(•)) belongs to Dcoh(D′(•)). Since θF ′,χ′
is an isomorphism in LD−→Q(D(•)), then G′(•) and G(•) are isomorphic in LD−→Q(D(•)).

Notation 8.4.1.8. Suppose I is a filtered set. Let us denote by D† := lim−→i∈I D
(i). From the topos

morphism 8.1.1.2.4, we get the ringed topos morphism:

→lX,I : (X,D†)→ (X(I),D(•)). (8.4.1.8.1)

Recall→l
−1
X,I

(F (•)) = lim−→i∈I F
(i) and←lX,I∗(F) is the constant inductive system with value F . We have

→l
∗
X,I

=→l
−1
X,I

: M(D(•)) → M(D†), which is exact. It induces the functor→l
∗
X,I

: D(D(•)) → D(D†). By
composition with the tensor product −⊗Z Q : D(D†)→ D(D†Q) we get a functor D(D(•))→ D(D†Q) that
we will denote by→l

∗
X,I,Q or simply by→l

∗
Q if there is no ambiguity with I and X.

Proposition 8.4.1.9. Suppose that I is filtered.

(a) The functor →l
∗
Q : D(D(•)) → D(D†Q) (see 8.4.1.8) factors through →l

∗
Q : D−→Q(D(•)) → D(D†Q) and

→l
∗
Q : LD−→Q(D(•))→ D(D†Q).

(b) Let u : I ′ → I be an L-equivalence between two partially ordered sets (see definition 8.1.3.8). Set
D′† :=→l

−1
X,I′

(→u
−1
X D(•)). Then we have a canonical isomorphism D′† ∼−→ D† of sheaves of rings on X

making commutative (up to equivalence of categories) the diagram

LD−→
]
Q(D(•))

∼=

→u
−1

X

//

→l
∗
X,I,Q

��

LD−→
]
Q(→u
−1
X D(•))

→l
∗
X,I′,Q
��

D(D†Q) D(D′†Q )∼=
oo

(8.4.1.9.1)

where the top horizontal functor is the equivalence of categories of 8.3.1.3.1,
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(c) Suppose I has a smallest element or is strictly filtered (see 8.1.3.8). Then, for any E(•) ∈ LD−→
]
Q,coh(D(•)),

we have→l
∗
Q(E(•)) ∈ D]

coh(D†Q).

Proof. a) The E(•) ∈ D(D(•)). Let λ ∈ L(I), χ ∈M(I). Then θE,χ⊗id : E(•)⊗ZQ→ χ∗E(•)⊗ZQ is an iso-
morphism in C(D(•)

Q ). Hence,→l
∗
Q(θE,χ) is an isomorphism in D(D†Q) and we get the first factorization. Fol-

lowing the part a) of the proof of 8.1.3.11, the canonical morphism→l
−1
X,I

(ρE,λ) :→l
−1
X,I

(E(•))→→l
−1
X,I

(λ∗E(•))

is an isomorphism in C(D(•)). This yields the second factorization.
b) The property (b) follows from 8.1.3.11.
c) Since→l

∗
X,I,Q is exact, we can suppose ] is empty. Let E(•) ∈ LD−→Q,coh(D(•)). Let i0 ∈ I. Since the

inclusion j : Ii0 → I is an L-equivalence, following 8.4.1.5.1 (and 8.3.1.3.1), E(•) ∈ LD−→Q,coh(D(•)) if and
only if

→
j−1

X
E(•) ∈ LD−→Q,coh(

→
j−1

X
D(•)). Hence, by using the commutative diagram 8.4.1.9.1, we reduce to

the case where Ii0 = I. By definition and by using 8.3.2.2.c, there exist λ ∈ L(I), E ′(•) ∈ Dcoh(λ∗D(•))
together with the isomorphism in LD−→Q(D(•)) of the form E(•) ∼−→ E ′(•). Set D′(•) = λ∗D(•). From
8.4.1.6, the canonical morphism

D′(•) ⊗L
D′(i0) E ′(i0) → E ′(•) (8.4.1.9.2)

is an isomorphism in D(D′(•)). Let P ′(•) be a K-flat complex of K(D′(•)) endowed with a quasi-
isomorphism P ′(•) ∼−→ E ′(•). By construction of 8.4.1.9.2, we get that the canonical morphismD′(•)⊗D′(i0)

P ′(i0) → P ′(•) of K(D′(•)) is a quasi-isomorphism. This yields the last quasi-isomorphism:

→l
−1
X,I

(D′(•))⊗D′(i0) P ′(i0) ∼−→→l
−1
X,I

(D′(•) ⊗D′(i0) P ′(i0))
∼−→→l

−1
X,I

(P ′(•))

of K(→l
−1
X,I

(D′(•))). Since →l
−1
X,I

(D′(•)) ∼−→ D†, this means that the canonical morphism D†
L
⊗D′(i0)

E ′(i0) →→l
−1
X,I

(E ′(•)) is an isomorphism in D(D†). Hence→l
−1
X,I

(E ′(•)) ∈ Dcoh(D†), and then→l
∗
X,I,Q(E ′(•)) =

(→l
−1
X,I

(E ′(•)))Q ∈ Dcoh(D†Q). Since E(•) ∼−→ E ′(•) in LD−→Q(D(•)), then we are done.

8.4.1.10. The proposition 8.4.1.9.a is still valid by replacing complexes by modules, i.e. by replacing in
the notation of categories the letter D by M . More precisely, the exact functor→l

∗
Q : M(D(•))→ M(D†Q)

factors through→l
∗
Q : M−→Q(D(•)) → M(D†Q) and even→l

∗
Q : LM−−→Q(D(•)) → M(D†Q) making commutative the

diagram

LM−−→Q(D(•))

→l
∗
Q

��

// LD−→Q(D(•))

→l
∗
Q

��

Hn // LM−−→Q(D(•))

→l
∗
Q

��
M(D†Q) // D(D†Q)

Hn // M(D†Q).

(8.4.1.10.1)

Proposition 8.4.1.11. Suppose I is filtered. Let i0 ∈ I, E(i0), F (i0) be two left D(i0)-modules. Put
E(i) := D(i) ⊗D(i0) E(i0) and F (i) := D(i) ⊗D(i0) F (i0) for any i ≥ i0. Put D† := lim−→i∈I D

(i), E† :=

D† ⊗D(i0) E(i0) and F† := D† ⊗D(i0) F (i0). We suppose E(i0) is of finite presentation.

(a) The canonical morphism

lim−→
i∈Ii0

HomD(i)(E(i), F (i))→ HomD†(E†, F†) (8.4.1.11.1)

is an isomorphism.

(b) Suppose X is coherent.

(i) The canonical morphism

lim−→
i∈Ii0

HomD(i)(E(i), F (i))→ HomD†(E†, F†) (8.4.1.11.2)

is an isomorphism.
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(ii) Let G be a left D†-module of finite presentation. Then there exists j0 ∈ I and a left D(j0)-module
G(j0) of finite presentation together with a D†-linear isomorphism ε : D† ⊗D(j0) G(j0) ∼−→ G.
Moreover, if (j′0,G′(j

′
0), ε′) satisfies the same property, then there exists j ∈ Ij0 ∩ Ij′0 , a D(j)-

linear isomorphism εj : D(j) ⊗D(j0) G(j0) ∼−→ D(j) ⊗
D(j′

0
) G′(j

′
0) such that ε′ ◦ (id⊗εj) = ε.

Proof. a) The fact that the morphism 8.4.1.11.1 is an isomorphism is local on X. Hence, we can suppose
that E(i0) has globally finite presentation. Since Ii0 is filtered, both functors lim−→i∈Ii0 HomD(i)(−, F (i))

and HomD†(D(i)⊗D(i0) −, F†) are left exact. Hence, by using the 5 lemma, we reduce to the case where
E(i0) = D(i0), which is obvious.

b) i) When X is coherent, filtered inductive limits commute with the global section functor Γ(X,−)
(see [SGA4.2, VI.5.1-2]). Hence, we get 8.4.1.11.2 from 8.4.1.11.1 by applying Γ(X,−).

ii) Case 1): suppose G has globally finite presentation, i.e. is the cokernel of a morphism of D†-modules
of the form f : (D†)r → (D†)s. It follows from b.i), that f comes from a morphism of D(i)-modules of
the form f (i) : (D(i))r → (D(i))s. Hence, we can choose G(i) as equal to the cokernel of f (i).

Case 2) In general, by glueing (and by using again the coherence of X), to construct the left D(j0)-
module G(j0) together with a D†-linear isomorphism ε : D† ⊗D(j0) G(j0) ∼−→ G we reduce to the case
1).

Remark 8.4.1.12. Let f : (D†)r → (D†)s be a morphism of left D†-modules. Without the coherence
hypothesis on X, this is not clear that f comes by extension from a morphism of D(i)-modules of the
form f (i) : (D(i))r → (D(i))s. Indeed, the data of f is equivalent to that of rs elements of the set Γ(X,D†)
; the data of f (i) is equivalent to that of rs elements of the set Γ(X,D(i)). When X is not coherent, since
Γ(X,D†) ∼−→ lim−→Γ(X,D(i)) is not necessarily true, then this is not clear that an element of Γ(X,D†)
comes from by extension an element of Γ(X,D(i)).

Corollary 8.4.1.13. Suppose I is filtered, X is locally coherent, D(i) is left (resp. right) coherent on X
and D(i) → D(j) is flat for any i ≤ j. Then D† := lim−→i∈I D

(i) is left (resp. right) coherent.

Proof. Since this is local, we can suppose X is coherent. Let f : (D†)r → D† be a morphism of left
D†-modules. Following 8.4.1.11, there exists i ∈ I, a morphism of left D(i)-modules f (i) : (D(i))r → D(i)

such that f = D† ⊗D(i) (f (i)). Since the functor D† ⊗D(i) − is exact, ker f
∼−→ D† ⊗D(i) ker f (i) and we

are done.

Theorem 8.4.1.14. Suppose X is the topological space associated to a noetherien affine V-formal scheme
X, Suppose I is a filtered set and put D† := lim−→i∈I D

(i), D† := Γ(X,D†). Suppose moreover that for any
i ∈ I, D(i) is a sheaf of rings on X equipped with a homomorphism OX → D(i) satisfying the conditions
of 7.2.3 (for the p-adic topology).

(a) We have theorems A and B for D†-modules of finite presentation:

(i) The extension D† → D† is flat ;

(ii) For any D†-module E of finite presentation, for any q ≥ 1, we have Hq(X, E) = 0 ;

(iii) The functors Γ(X,−) and D† ⊗D† − induces canonically quasi-inverse exact equivalences be-
tween the category of D†-modules of finite presentation and that of D†-modules of finite pre-
sentation.

(b) If moreover the transition maps D(i)
Q → D(j)

Q are flat for any elements i ≤ j of I, then the sheaf of
rings D†Q satisfies theorems A and B for coherent modules in the sense of 1.4.3.14.

Proof. (a) Set D(i) := Γ(X,D(i)). Since the topological space X is coherent, then for any q ≥ 0, the
functors Hq(X,−) commute with filtered inductive limits and then for q = 0 we get D† ∼−→ lim−→i∈I D

(i).
Moreover, following 7.2.3.16, the sheaves of rings D(i) satisfy theorems A and B for coherent modules.
In particular D(i) → D(i) is flat then D† → D† is flat.

Let E be a D†-module of finite presentation. Following 8.4.1.11.b.ii), since X is coherent then there
exists i0 ∈ I and a left D(i0)-module E(i0) of finite presentation together with a D†-linear isomorphism
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ε : D† ⊗D(i0) E(i0) ∼−→ E . Set E(i) := D(i) ⊗D(i0) E(i0) for any i ≥ i0. Following 7.2.3.3, D(i) is therefore
left coherent for any i ∈ I. Hence, E(i) is a coherent D(i)-module. This yields

Hq(X, E)
∼−→ Hq(X, lim−→

i∈Ii0
E(i))

∼−→ lim−→
i∈Ii0

Hq(X, E(i))
7.2.3.16

= lim−→
i∈Ii0

0 = 0.

For any i ≥ i0, set E(i) := Γ(X, E(i)) and E := Γ(X, E). It follows from Theorem A of 7.2.3.16.(i)-(ii),
the canonical morphism

D(i) ⊗D(i0) E(i0) ∼−→ D(i) ⊗D(i0) E(i0) = E(i) (8.4.1.14.1)

is an isomorphism. By applying D(i) ⊗D(i) − to the canonical morphism of coherent D(i)-modules
D(i) ⊗D(i0) E(i0) → E(i), using again 7.2.3.16.(i)-(ii), we get 8.4.1.14.1 which is an isomorphism. Hence,
D(i)⊗D(i0)E(i0) → E(i) is an isomorphism and is the image (up to isomorphism) by Γ(X,−) of 8.4.1.14.1.
Since filtered inductive limits commute with the functor Γ(X,−) and with tensor products, we get
D† ⊗D(i0) E(i0) ∼−→ E. Hence, E is a D†-module of finite presentation.

Consider now the commutative diagram

lim−→i∈Ii0 D
(i) ⊗D(i) E(i) ∼ //

∼
��

lim−→i∈Ii0 E
(i)

∼
��

D† ⊗D† E, // E

where vertical isomorphisms come from the commutation of filtered inductive limits with the functor
Γ(X,−) and with tensor products. Since the sheaves of rings D(i) satisfy theorems A and B for coherent
modules, then the top morphism is an isomorphism. This implies that so is the bottom one. Using
the same arguments, we check that for any D†-module E of finite presentation, the canonical morphism
E → Γ(X,D† ⊗D† E) is an isomorphism.

(b) The last part is a consequence of the first one and of the fact that following the corollary 8.4.1.13
the sheaf of rings D†Q := lim−→i∈I D

(i)
Q is left (resp. right) coherent.

Theorem 8.4.1.15. Suppose that either I is filtered and has a smallest element or I is strictly filtered.
Suppose moreover that X is coherent.

(a) For any E(•) ∈ LD−→
−
Q,coh(D(•)) and F (•) ∈ LD−→

+
Q (D(•)), the functor→l

∗
X,I,Q induces an isomorphism

HomLD−→Q(D(•))(E(•),F (•))
∼−→ HomD(D†Q)(→l

∗
Q(E(•)),→l

∗
Q(F (•))). (8.4.1.15.1)

(b) Suppose the following conditions are satisfied

(i) The rings D(i) are coherent sheaves for any i ∈ I
(ii) The transition maps D(i)

Q → D
(j)
Q are flat for any elements i ≤ j of I;

(iii) There exists an integer d such that, for any elements i ≤ j of I, the ring D(j) is of tor-dimension
≤ d on D(i) ;

(iv) For any i ∈ I, for any coherent D(i)
Q -module E, there exists a coherent D(i)-module E ′ together

with an isomorphism E ′Q
∼−→ E of D(i)

Q -modules.

Under these hypotheses, the functor→l
∗
Q induces an equivalence of categories between LD−→

b
Q,coh(D(•))→

Db
coh(D†Q).

Proof. 0) Since the proof reduces (or the argument are the same) to the case where I is filtered and has
a smallest element, let us suppose I is strictly filtered.

a) i) First let us construct canonically the morphism 8.4.1.15.1. For this purpose, let us construct
for any E(•) ∈ LD−→

−
Q (D(•)) and F (•) ∈ LD−→

+
Q (D(•)), respectively in D+(ZX) and D+(Z) the following

morphisms:

RHomLD−→Q(D(•))(E(•),F (•))→ RHomD†Q(→l
∗
Q(E(•)),→l

∗
Q(F (•))), (8.4.1.15.2)

R HomLD−→Q(D(•))(E(•),F (•))→ R HomD†Q
(→l
∗
Q(E(•)),→l

∗
Q(F (•))). (8.4.1.15.3)
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Set E†Q :=→l
∗
Q(E(•)), F†Q :=→l

∗
Q(F (•)). The functor→l

∗
Q induces the canonical morphism of bifunctors

K−(D(•))×K+(D(•))→ K+(ZX):

lim−→
λ,χ

Hom•D(•)(−, χ∗λ∗−)→ lim−→
λ,χ

Hom•D†Q
(→l
∗
Q(−),→l

∗
Q(χ∗λ∗(−))). (8.4.1.15.4)

Moreover, it follows from the proof of 8.4.1.9.a that the morphism→l
∗
Q(σF,λ,χ) :→l

∗
Q(F (•))→→l

∗
Q(χ∗λ∗F (•))

is an isomorphism in C(D†Q). This yields that the canonical morphism of bifunctors K−(D(•)) ×
K+(D(•))→ K(ZX):

Hom•D†Q
(→l
∗
Q(−),→l

∗
Q(−))→ lim−→

λ,χ

Hom•D†Q
(→l
∗
Q(−),→l

∗
Q(χ∗λ∗(−))) (8.4.1.15.5)

is an isomorphism. Hence, with notation 8.3.4.6, there exists a unique morphism

RHomLD−→Q(D(•))(−,−)→ RHomD†Q(→l
∗
Q(−),→l

∗
Q(−)) (8.4.1.15.6)

of bifunctors LD−→
−
Q (D(•)) × LD−→

+
Q (D(•)) → D+(ZX) making commutative the diagram of bifunctors

K−(D(•))×K+(D(•))→ D+(ZX):

RHomLD−→Q(D(•))(Q
qi
LD(−), Qqi

LD(−))
8.4.1.15.6// RHomD†Q(→l

∗
Q ◦Q

qi
LD(−),→l

∗
Q ◦Q

qi
LD(−))

RHomD†Q(Qqi ◦→l
∗
Q(−), Qqi ◦→l

∗
Q(−))

Qqi ◦ lim−→
λ,χ

Hom•D(•)(−, χ∗λ∗(−))

adj

OO

// Qqi ◦ Hom•D†Q
(→l
∗
Q(−),→l

∗
Q(−))

adj

OO

(8.4.1.15.7)

where the “adj” morphisms are given by adjunction from 7.4.1.9.1, where the bottom morphism is con-
structed by composing 8.4.1.15.4 and 8.4.1.15.5, where the right top arrow comes from the equality
→l
∗
Q ◦ Q

qi
LD = Qqi ◦→l

∗
Q as functors K(D(•)) → D(D†Q) with→l

∗
Q : LD−→Q(D(•)) → D(D†Q) for the left side and

→l
∗
Q : K(D(•))→ K(D†Q) for the right one. By using Lemma 8.2.4.25 and the following similar isomorphism

RΓ(X,RHomD†Q(→l
∗
Q(E(•)),→l

∗
Q(F (•))))

∼−→ R HomD†Q
(→l
∗
Q(E(•)),→l

∗
Q(F (•))), (8.4.1.15.8)

by applying the functor RΓ(X,−) to 8.4.1.15.2, we get the functor 8.4.1.15.3 (or one can construct this
latter morphism directly similarly to 8.4.1.15.2). By applying the functor H0 to 8.4.1.15.3, it follows
from 8.2.4.24 (and similarly for the right term), that we get the construction of the arrow 8.4.1.15.1.

ii) Suppose from now E(•) ∈ LD−→
−
Q,coh(D(•)). We check 8.4.1.15.1, 8.4.1.15.2, 8.4.1.15.3 are isomor-

phisms.
1) By construction it is sufficient to prove it for 8.4.1.15.2. Let λ ∈ L(I) and E ′(•) ∈ D−coh(λ∗D(•))

together with an isomorphism λ∗E(•) ∼−→ E ′(•) in LD−→Q(λ∗D(•)) (by definition of the coherence and use
8.3.2.2.c). Set D′†Q :=→l

∗
X,I,Q(λ∗D(•)). Then we have a canonical isomorphism D′†Q

∼−→ D†Q of sheaves of
rings on X inducing the equivalence of categories of the right vertical arrow of the diagram:

RHomLD−→Q(D(•))(E(•),F (•))
8.4.1.15.2 //

∼=8.3.1.3.3

��

RHomD†Q(→l
∗
Q(E(•)),→l

∗
Q(F (•)))

∼=
��

RHomLD−→Q(λ∗D(•))(λ
∗E(•), λ∗F (•))

8.4.1.15.2// RHomD′†Q (→l
∗
Q(λ∗E(•)),→l

∗
Q(λ∗F (•))).

(8.4.1.15.9)

By using the commutative diagram 8.4.1.9.1, we check that the diagram 8.4.1.15.9 is commutative up to
canonical equivalence of categories. Hence, replacing D(•) by λ∗D(•) if necessary, by using the stability
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of the coherence of 8.4.1.5, we can suppose that E(•) ∈ D−coh(D(•)). Similarly, since I is strictly filtered,
we can suppose that I has a smallest element i0. Following 8.4.1.6, E(•) ∈ D−coh(D(i0)) and we have the
canonical isomorphism of D−(D(•))

D(•) ⊗L
D(i0) E(i0) ∼−→ E(•). (8.4.1.15.10)

2) We reduce in the step to the case where E(•) = D(•). Let us denote f(E(•),F (•)) the mor-
phism 8.4.1.15.2. The morphism f(E(•),F (•)) is an isomorphism in D+(ZX) is equivalent to the fact
that Hk(f(E(•),F (•))) is an isomorphism of sheaves on X for any k ∈ Z. Let k ∈ Z. Since F (•) is
bounded below, there exists n large enough (depending on k and on F (•) but not on E(•)) such that
the canonical morphism Hk(f(τ≥nE(•),F (•))) → Hk(f(E(•),F (•))) is an isomorphism. Since the fact
that Hk(f(τ≥nE(•),F (•))) is an isomorphism is local on X, since E(i0) ∈ D−coh(D(i0)), we can suppose
there exists a bounded complex L(i0) of Cb(D(i0)) which is strictly perfect together with a morphism
of complexes L(i0) → E(i0) which is an n-isomorphism (i.e. its cone is acyclic in degree ≥ n). With
8.4.1.15.10, we get the n-isomorphism L(•) := D(•) ⊗L

D(i0) L(i0) → E(•), i.e. τ≥nL(•) ∼−→ τ≥nE(•).
Since Hk(f(L(•),F (•)))→ Hk(f(τ≥nL(•),F (•))) is an isomorphism, this yields Hk(f(τ≥nE(•),F (•)))→
Hk(f(L(•),F (•))) is an isomorphism. Hence, we reduce to the case where E(•) is strictly perfect and we
are done by additivity.

3) It remains to check the case E(•) = D(•). Let I(•) ∈ K+(I) endowed with a quasi-isomorphism
E(•) ∼−→ I(•) in K+(D(•)). It remains to check that Hk(f(D(•), I(•))) is an isomorphism for any k ∈ Z.
Since D(•) ∈ K−(P), then the left arrow of 8.4.1.15.7 evaluated at (D(•), I(•)) is an isomorphism.
Moreover, since →l

∗
Q(D(•))

∼−→ D†Q, then the bottom right morphism of 8.4.1.15.7 is an isomorphism.
Hence, we reduce to check that the canonical morphism

lim−→
λ,χ

Hom•D(•)(D(•), χ∗λ∗(I(•)))→ Hom•D†Q
(→l
∗
Q(D(•)),→l

∗
Q(I(•))), (8.4.1.15.11)

is an isomorphism. Recall, the morphism 8.4.1.15.11 is constructed by composing 8.4.1.15.4 and 8.4.1.15.5.
We remark the following: for any complex G(•) ∈ C(D(•)), since i0 is the smallest element of I, then

we get the left canonical isomorphism of C(ZX):

G(i0) ∼−→ Hom•D(•)(D(•),G(•)), Hom•D†Q
(→l
∗
Q(D(•)),→l

∗
Q(G(•)))

∼−→→l
∗
Q(G(•)), (8.4.1.15.12)

the right one is obvious. Hence, the morphism 8.4.1.15.11 is canonically isomorphic to the composition
morphism

lim−→
λ,χ

(χ∗λ∗I(•))(i0) −→
8.4.1.15.4

lim−→
λ,χ

→l
∗
Q(χ∗λ∗I(•))

∼←−
8.4.1.15.5→

l∗Q(I(•)), (8.4.1.15.13)

where the left arrow is induced by the canonical morphism (χ∗λ∗I)(i0) →→l
∗
Q(χ∗λ∗I(•)). Let Fλ : M(I)→

Mod(ZX) be the functor given by χ 7→ (χ∗λ∗I(•))(i0). Let α : N → M(I) be the increasing map which
associates to n the constant map with value n. Let β : M(I) → N be the increasing map defined by
χ 7→ χ(i0). Then, Fλ = Fλ ◦ α ◦ β. Moreover, Fλ ◦ α is the inductive system Fλ ◦ α(n) = I(λ(i0)) with
transition map Fλ ◦ α(n → n + 1) given by the multiplication with p. Hence, lim−→ Fλ ◦ α

∼−→ I(λ(i0))
Q .

Since β is surjective, then lim−→ Fλ = lim−→ Fλ ◦ α ◦ β
∼−→ lim−→ Fλ ◦ α. Hence, we have the isomorphisms

lim−→
λ,χ

(χ∗λ∗I(•))(i0) ∼−→ lim−→
λ

lim−→ Fλ
∼−→ lim−→

λ∈L(I)

I(λ(i0))
Q . (8.4.1.15.14)

Let i ∈ I. Since I is strictly filtered, then the canonical inclusion ji : I
i ⊂ I is an L-equivalence.

Hence, there exists an increasing map ui : I → Ii such that λi := ji ◦ ui ∈ L(I) and ui ◦ ji ∈ L(Ii). In
particular, we get λi(i0) ≥ i. This yields a canonical morphism lim−→

i∈I
I(i)

Q → lim−→
λ∈L(I)

I(λ(i0))
Q which is an

inverse of lim−→
λ∈L(I)

I(λ(i0))
Q → lim−→

i∈I
I(i)

Q . Hence, we have the isomorphisms

lim−→
λ,χ

(χ∗λ∗I(•))(i0) ∼−→
8.4.1.15.14

lim−→
λ∈L(I)

I(λ(i0))
Q

∼−→ lim−→
i∈I
I(i)

Q =→l
∗
Q(I(•)). (8.4.1.15.15)

469



b) It follows from a) that the functor→l
∗
Q : LD−→

b
Q,coh(D(•)) → Db

coh(D†) is fully faithful. It remains
to check its essential surjectivity. From 8.4.1.13, we get from the property (i) and (ii) that D†Q is a
coherent sheaf of rings. Hence, Db

coh(D†Q) is generated as triangulated category by Coh(D†Q) (i.e. the
smallest triangulated subcategory of Db

coh(D†Q) containing Coh(D†Q) is Db
coh(D†Q)). Hence, by using some

distinguished triangles of truncation and by induction hypothesis on the cardinal of nonzero cohomo-
logical spaces, with [BGK+87, I.2.18], by fully faithfulness of functor→l

∗
Q, we reduce therefore to check

that an object G ∈ Coh(D†Q) is in the essential image of→l
∗
Q. Following 8.4.1.11.b.(ii), since our rings are

coherent (after tensorisation by −⊗ Q), there exists i ∈ I and a coherent left D(i)
Q -module G(i) together

with a D†Q-linear isomorphism ε : D†Q ⊗D(i)

Q
G(i) ∼−→ G. Using the hypothesis (iv), there exists a coherent

D(i)-module F (i) together with an isomorphism F (i)
Q

∼−→ G(i) of D(i)
Q -modules. Let j : Ii ⊂ I be the

canonical inclusion. From the hypothesis (iii), we get F (•) := (
→
j−1

X
D(•))⊗L

D(i) F (i) ∈ LD−→
b
Q,coh(

→
j−1

X
D(•)).

Since j is an L-equivalence, with 8.4.1.9.b, we get→l
∗
X,Ii,Q(

→
j−1

X
D(•))

∼−→ D†Q and then the isomorphisms

→l
∗
X,Ii,Q(F (•))

∼−→ →l
∗
X,Ii,Q(

→
j−1

X
D(•)) ⊗D(i)

Q
F (i)

Q
∼−→ G. It follows from the equivalence of categories

8.4.1.5.1 that there exists E(•) ∈ LD−→
b
Q,coh(D(•)) endowed with an isomorphism of LD−→

b
Q,coh(

→
j−1

X
D(•))

of the form
→
j−1

X
E(•) ∼−→ F (•). From the commutative diagram 8.4.1.9.1, we get the first isomorphism

→l
∗
X,I,Q(E(•))

∼−→→l
∗
X,Ii,Q(F (•))

∼−→ G.

8.4.1.16. SupposeX is the topological space associated to a noetherien affine V-formal scheme X of finite
Krull dimension. Set D(•) := Γ(X,D(•)). Following 8.1.1.2.7, the structural morphism f : X → Spf V
induces the ringed topoi morphism

→
f
I

: (X(I),D(•))→ ({∗}(I), D(•)), (8.4.1.16.1)

where {∗} is the topological space underlying to Spf V. The functor
→
f
I∗

can also be denoted by Γ(X(•),−)

and
→
f∗
I

= D(•) ⊗D(•) −. Let χ ∈M(I). For any G(•)• ∈ C(D(•)), we have the isomorphism of C(D(•)):

χ∗ ◦
→
f
I∗

(G(•)•)
∼−→

→
f
I∗
◦ χ∗(G(•)•). (8.4.1.16.2)

Following 7.1.3.15.2, a D(•)-module E(•) is
→
f
I∗
-acyclic if and only if E(i) is a

→
f
I∗
-acyclic D(•)-module for

any i ∈ I. Hence, the functor χ∗ sends
→
f
I∗
-acyclic modules to

→
f
I∗
-acyclic modules. Since X has finite

Krull dimension then f∗ has bounded cohomological dimension. Hence so is
→
f
I∗

(see 7.1.3.16). This
yields that, for any E(•)• ∈ D(D(•)), by using a resolution of E(•)• by

→
f
I∗
-acyclic modules (following

4.6.1.6.b, such resolutions exist because of the boundedness of the cohomological dimension of
→
f
I∗
), we

get the functorial in χ isomorphism of D(D(•)):

χ∗ ◦ R
→
f
I∗

(E(•)•)
∼−→ χ∗ ◦

→
f
I∗

(F (•)•)
8.4.1.16.2
∼−→

→
f
I∗
◦ χ∗(F (•)•)

∼−→ R
→
f
I∗
◦ χ∗(E(•)•). (8.4.1.16.3)

Let E(•)• ∈ D(D(•)). Choose P (•)• a K-flat complex of K(D(•)) together with a quasi-isomorphism
P (•)• → E(•)• of K(D(•)). Following 7.1.3.6, P (•)• is a K-flat complex means P (i)• is a K-flat complex
of K(D(i)). Hence, using again 7.1.3.6 and the exactness of χ∗, we get that χ∗(P (•)•) is a K-flat complex
of K(D(•)) together with a quasi-isomorphism χ∗P (•)• → χ∗E(•)• of K(D(•)). This yields the functorial
in χ and E(•)• isomorphism in D(D(•)):

χ∗ ◦ L
→
f∗
I
(E(•)•)

∼←− χ∗ ◦
→
f∗
I
(P (•)•)

∼−→
→
f∗
I
◦ χ∗(P (•)•)

∼−→ L
→
f∗
I
◦ χ∗(E(•)•). (8.4.1.16.4)

Let λ ∈ L(I). Let E(•)• ∈ D(D(•)). Let E(•)• ∈ D(D(•)). Similarly, we get the isomorphisms:

λ∗ ◦ R
→
f
I∗

(E(•)•)
∼−→ R

→
f
I∗
◦ λ∗(E(•)•), λ∗ ◦ L

→
f∗
I
(E(•)•)

∼−→ L
→
f∗
I
◦ λ∗(E(•)•) (8.4.1.16.5)

It follows from 8.4.1.16.3, 8.4.1.16.4, 8.4.1.16.5, that we get the factorisations:

L
→
f
I∗

: LD−→Q(D(•))→ LD−→Q(D(•)), L
→
f∗
I

: LD−→Q(D(•))→ LD−→Q(D(•)) (8.4.1.16.6)
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Corollary 8.4.1.17. Suppose X is the topological space associated to a noetherien affine V-formal
scheme X. Suppose that either I is filtered and has a smallest element or I is strictly filtered. Put
D† := lim−→i∈I D

(i), D(i) := Γ(X,D(i)), D† := Γ(X,D†). Suppose moreover the following conditions holds

(i) The sheaves of rings D(i) on X are equipped with a homomorphism OX → D(i) satisfying the
conditions of 7.2.3 (for the p-adic topology) for any i ∈ I;

(ii) The transition maps D(i)
Q → D

(j)
Q are flat for any elements i ≤ j of I;

(iii) There exists an integer d such that, for any elements i ≤ j of I, the ring D(j) is of tor-dimension
≤ d on D(i) ;

(iv) For any i ∈ I, for any coherent D(i)
Q -module E, there exists a coherent D(i)-module E ′ together with

an isomorphism E ′Q
∼−→ E of D(i)

Q -modules.

With notation 8.4.1.16, the functors
→
f∗
I

= D†Q ⊗D†Q − and R
→
f
I∗

= RΓ(X(•),−) of 8.4.1.16.6 induce

quasi-inverse equivalence between the categories LD−→
b
Q,coh(D(•)) and LD−→

b
Q,coh(D(•)). We have moreover

the commutative (up to canonical isomorphism) diagram of categories

LD−→
b
Q,coh(D(•))

→l
∗
Q

8.4.1.15
//

RΓ(X(•),−)

��

Db
coh(

lD†Q)

RΓ(X,−)

��
LD−→

b
Q,coh(D(•))

→l
∗
Q

8.4.1.15
//

D(•)⊗
D(•)−

OO

Db
coh(D†Q)

D†Q⊗D†
Q

−
OO

(8.4.1.17.1)

whose functors are all equivalence of categories.

Proof. With our hypotheses, the functor
→
f∗
I

= D†Q ⊗D†Q − is exact, which justifies the notation. Let

E(•) ∈ D(D(•)), E(•) ∈ D(D(•)). Since the functors D†Q ⊗D†Q − and Γ(X,−) commute with filtrant
inductive limites and with the functor −⊗Z Q, we get the following first (resp. second) isomorphism of
D(D†Q) (resp. D(D†Q)):

→l
∗
Q(D†Q ⊗D†Q (E(•)))

∼−→ D†Q ⊗D†Q→l
∗
Q(E(•)), →l

∗
Q(Γ(X, E(•)))

∼−→ Γ(X,→l
∗
Q(E(•))).

With our hypotheses, the functors RΓ(X,−) and D†Q⊗D†Q− (the left part of the diagram 8.4.1.17.1) are

quasi-inverse equivalence between Db
coh(

l
D†Q) and Db

coh(
lD†Q) (see Theorem 8.4.1.14). Following 8.4.1.15,

both horizontal functors of the diagram 8.4.1.17.1 are equivalence of categories. Hence, we are done.

Example 8.4.1.18. Both above theorems and corollary will essentially be useful in the case of differential
operators with overconvergent singularities (see later 8.7.5.4) or also in the case of the sheaf of functions
with overconvergent singularities (see 8.7.4.6).

8.4.2 Coherent modules up to ind-isogeny on formal scheme
Let X be a locally noetherian formal scheme of Krull dimension d and I be an ideal of definition of X.
We suppose pOX ⊂ I. Let I be a partially ordered set. Let D(•) = (D(i), α

(j,i)
D ) be a sheaf of rings on

the topos X(I). Let ] ∈ {∅,+,−,b}. For any i ∈ I, we suppose D(i) is a sheaf of rings on X equipped
with a homomorphism OX → D(i) satisfying the conditions of 7.2.3. Recall following 7.2.3.3, D(i) is left
coherent.

Lemma 8.4.2.1. Assume I has a smallest element i0. Then we have the following properties.

1. The functors D(•)⊗D(i0) − and E(•) 7→ E(i0) induce quasi-inverse equivalences between the category
of coherent D(i0)-modules (resp. of D(i0)-modules of global finite presentation) and that of D(•)-
modules of finite presentation (resp. of D(•)-modules of global finite presentation).
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2. Let E(•) be a D(•)-module. The D(•)-module E(•) is of finite presentation if and only if there exists
an open covering (Xα)α∈A of X such that, for any α ∈ A, we have an exact sequence in M(D(•))
of the form: Ä

D(•)|Xα
ärα → Ä

D(•)|Xα
äsα → E(•)|Xα → 0,

where rα, sα ∈ N.

Proof. The respective first statement is obvious (see 7.1.3.7). Since D(i0) is coherent , the non-respective
first statement follows from 7.1.3.8. This yields the second one.

Remark 8.4.2.2. Assume I has a smallest element i0. We complete Lemma 8.4.2.1 with the following
facts.

(a) Since the extensions D(i) → D(j) are not flat, the category of D(•)-modules of finite presentation is
not stable under kernel.

(b) If X is affine, following the theorem of type A, the notions of coherent D(i0)-modules and of D(i0)-
modules having a global finite presentation are then equal. Following 8.4.2.1, this yields that the
notions of D(•)-modules of finite presentation and of D(•)-modules having a global finite presentation
are then equal. Moreover, the functor D(•)⊗Γ(X,D(i0))− from the category of Γ(X,D(i0))-modules of
finite type into that of D(•)-modules of finite presentation is an equivalence of categories such that
a quasi-inverse functor is given by G(•) 7→ Γ(X,G(i0)).

Lemma 8.4.2.3. Assume I has a smallest element i0. Let E(•) be a D(•)-module. The following
conditions are equivalent.

(a) The module E(•) is isomorphic in M−→Q(D(•)) to a D(•)-module of finite presentation ;

(b) The module E(i0) is isogenic to a coherent D(i0)-module and the canonical morphism D(•) ⊗D(i0)

E(i0) → E(•) is an ind-isogeny of M(D(•)) (see notation 8.1.1.4).

Proof. i) Let F (i0) be a D(i0)-module, f (i0) : E(i0) → F (i0) and g(i0) : F (i0) → E(i0) be two D(i0)-linear
morphisms such that f (i0) ◦g(i0) and g(i0) ◦f (i0) are the multiplications by pn for some integer n ≥ 0. We
get by extension the morphisms f (•) : D(•) ⊗D(i0) E(i0) → D(•) ⊗D(i0) F (i0) and g(•) : D(•) ⊗D(i0) F (i0) →
D(•) ⊗D(i0) E(i0). Taking χ ∈ M(I) equal to the constant fonction with value n, by composing g(•)

with the canonical morphism id→ χ∗, we get the arrow h(•) : D(•) ⊗D(i0) F (i0) → χ∗(D(•) ⊗D(i0) E(i0)).
This yields that χ∗(f (•)) ◦ h(•) = θχ and h(•) ◦ f (•) = θχ are the canonical morphisms, i.e. f (•) is an
ind-isogeny.

ii) When F (i0) is a coherent D(i0)-module, D(•) ⊗D(i0) F (i0) is a D(•)-module of finite presentation
(see 8.4.2.1). This yields the implication (b)⇒ (a).

iii) Let us prove (a)⇒ (b). Suppose the condition (a) is satisfied, i.e. assume that E(•) is isomorphic
in M−→Q(D(•)) to a D(•)-module F (•) of finite presentation. In this case, there exists χ ∈ M(I) and an
ind-isogeny of M(D(•)) of the form E(•) → χ∗F (•). This yields an isogeny E(i0) → F (i0). Hence, the
induced map by extension D(•)⊗D(i0) E(i0) → D(•)⊗D(i0)F (i0) is an ind-isogeny (see part i) of the proof).
Following 8.4.2.1, F (i0) is a coherent D(i0)-module and the canonical morphism D(•)⊗D(i0) F (i0) → F (•)

is an isomorphism. This yields the ind-isogeny of M(D(•)):

D(•) ⊗D(i0) E(i0) → D(•) ⊗D(i0) F (i0) ∼−→ F (•) → χ∗F (•).

Since this composition is equal to the composition D(•)⊗D(i0)E(i0) → E(•) → χ∗F (•), since E(•) → χ∗F (•)

is an ind-isogeny this implies that so is D(•) ⊗D(i0) E(i0) → E(•).

Definition 8.4.2.4. Let E(•) be a left (resp. right) D(•)-module.

(a) The module E(•) is “generated by finitely many global sections up to an ind-isogeny” if there exists
a surjective morphism in M−→Q(∗D(•)) of the form

(D(•))N → E(•),

for some positive integer N .
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(b) The module E(•) has “a global presentation up to an ind-isogeny” (resp. “a global finite presentation
up to an ind-isogeny”, resp. is “free up to an ind-isogeny”, resp. is “finite free up to an ind-isogeny”)
if there exists an exact sequence in M−→Q(∗D(•)) of the form

⊕i∈ID(•) → ⊕j∈JD(•) → E(•) → 0,

for some sets I and J (resp. some finite sets I and J , resp. I is the empty set and J is a set resp. I
is the empty set and J is a finite set).

(c) The D(•)-module E(•) is of finite type up to an ind-isogeny (resp. has local presentation up to an ind-
isogeny, resp. is of finite presentation up to an ind-isogeny, resp. is locally free up to an ind-isogeny,
resp. is locally finite free up to an ind-isogeny) if for any object (i,U) ∈ I\ × XZar, there exists a
covering {(i,Uα) → (i,U)}α∈A such that for any α ∈ A the object E(•)|(i,Uα) of M−→Q(∗D(•)|(i,Uα))

is generated by finitely many global sections (resp. has global presentation, resp. has global finite
presentation, resp. is free, resp. is finite free) up to an ind-isogeny.

(d) The module E(•) is a “ coherent up to an ind-isogeny D(•)-module” if it is of finite type up to an
ind-isogeny and if for any i ∈ I and for any open set U of X, for any homomorphism ofM−→Q(D(•)|(i,U))

of the form u(•) :
(
D(•)|(i,U)

)r → E(•)|(i,U), the kernel of u(•) is of finite type up to an ind-isogeny.

Lemma 8.4.2.5. Assume I has a smallest element i0. Let E(•) a D(•)-module. Then the following
properties are equivalent.

(a) The D(•)-module E(•) has a global finite presentation up to an ind-isogeny.

(b) There exists a D(•)-module F (•) having a global finite presentation together with an isomorphism in
M−→Q(D(•)) of the form F (•) ∼−→ E(•).

(c) The module E(i0) is isogenic to a D(i0)-module having a global finite presentation and the canonical
morphism D(•) ⊗D(i0) E(i0) → E(•) is an ind-isogeny of M(D(•)) (see notation 8.1.1.4).

Proof. To check the equivalence between (b) and (c), it is sufficient to copy the proof of 8.4.2.3. The
implication (b)⇒ (a) is trivial. Conversely, let us prove (a)⇒ (b). Let’s assume that E(•) is the cokernel
in M−→Q(D(•)) of a arrow of the form f (•) :

(
D(•))r → (

D(•))s. Let χ ∈ M(I) and φ(•) :
(
D(•))r →

χ∗
(
D(•))s be a morphism of M(D(•)) representing f (•). Put χ′ ∈ M(I) such that for any i ∈ I,

χ′(i) := χ(i)− χ(i0). Hence, we get the commutative diagram

(
D(i0)

)r φ(i0)

//

α
(i,i0)

D��

(
D(i0)

)s //

pχ
′(i)α

(i,i0)

D��

Coker φ(i0) //

��

0

(
D(i)

)r φ(i)

//
(
D(i)

)s // Coker φ(i) // 0

whose horizontal sequences are exact. This yields by extension the commutative diagram of M(D(•))

(
D(•))r D(•)⊗φ(i0)

//

id��

(
D(•))s //

θχ′��

D(•) ⊗D(i0) Coker φ(i0) //

��

0

(
D(•))r φ(•)

// χ′∗
(
D(•))s // Coker φ(•) // 0

(8.4.2.5.1)

whose horizontal sequences are exact. By using the five lemma applied to the diagram 8.4.2.5.1 of
M−→Q(D(•)), since both left vertical morphisms of 8.4.2.5.1 are isomorphisms of M−→Q(D(•)), then so is
D(•) ⊗D(i0) Coker φ(i0) → Coker φ(•). Since D(•) ⊗D(i0) Coker φ(i0) is a D(•)-module having a global
finite presentation, this implies the required result.

Lemma 8.4.2.6. Assume I has a smallest element i0. Let E(•) and F (•) be two D(•)-modules having a
global finite presentation up to an ind-isogeny. Let f (•) : E(•) → F (•) be a morphism of M−→Q(D(•)). Then
Coker f (•) has a global finite presentation up to an ind-isogeny.
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Proof. By using 8.4.2.5, we can suppose that E(•) and F (•) are two D(•)-modules having a global finite
presentation. Let χ ∈ M(I) and φ(•) : E(•) → χ∗F (•) be a morphism of M(D(•)) representing f (•). By
copying the proof of the implication (a) ⇒ (b) of 8.4.2.5, we can check that D(•) ⊗D(i0) Coker φ(i0) →
Coker φ(•) is an ind-isogeny. Since D(i0) is coherent, then Coker φ(i0) is a coherent D(i0)-module. Hence,
we conclude by using again 8.4.2.5;

Remark 8.4.2.7. Suppose I is a countable well ordered set. For any map α : I → N there exists χ ∈M(I)
such that α(i) ≤ χ(i) for any i ∈ I.

Lemma 8.4.2.8. Suppose I is a countable well ordered set and X is noetherian. Let f (•) : E(•) → F (•)

be a morphism of M(D(•)) such that, for any i ∈ I, the D(i)-modules E(i) and F (i) are coherent. The
following properties are equivalent.

(a) The morphism f (•) is an ind-isogeny of M(D(•)) ;

(b) The morphism f
(•)
Q : E(•)

Q → F (•)
Q induced by tensorisation with Q is an isomorphism of D(•)

Q -modules.

Proof. 0) Since the canonical morphisms of the form E(•) → χ∗E(•) with χ ∈M(I) becomes isomorphisms
after applying the functor Q ⊗Z −, the implication (a) ⇒ (b) is obvious. Conversely let’s assume that
f

(•)
Q is an isomorphism.

1) Following 7.4.5.1, if we denote by E(i)
t the subsheaf of p-torsion sections of E(i), then E(i)

t is a
coherent sub-D(i)-module of E(i). Denote by α : E(•) → E(•)/E(•)

t the canonical projection. Let us
check that this is an ind-isogeny of M(D(•)). Since X is noetherian, then there exists χ ∈ M(I) such
that pχ(i)E(i)

t = 0 for any i ∈ I (see the proof of 7.4.5.1 and use also the remark 8.4.2.7). Hence the
map pχ(i) : E(i) → E(i) factors uniquely through β(i) : E(i)/E(i)

t → E(i). This yields that the canonical
map θE,χ : E(•) → χ∗E(•) factors through β(•) : E(•)/E(•)

t → χ∗E(•) So, the morphism β(•) : E(•)/E(•)
t →

χ∗E(•)of M(D(•)) is such that β(•) ◦ α(•) and χ∗(α(•)) ◦ β(•) are the canonical morphisms.
2) By using the step 1), we reduce to check that the canonical morphism E(•)/E(•)

t → F (•)/F (•)
t

induced by f (•) is an ind-isogeny, i.e. we can suppose that, for any i ∈ I, E(i) and F (i) are p-torsion
free. For any χ ∈M(I), let us denote by h(•)

χ := θEQ,χ ◦ (f
(•)
Q )−1 : F (•)

Q → χ∗E(•)
Q , the morphism of D(•)

Q -
modules. We can suppose that χ ∈M(I) is large enough so that for any i ∈ I the canonical isomorphism
h

(i)
χ = pχ(i)(f

(i)
Q )−1 : F (i)

Q → E(i)
Q factors uniquely through a morphism of the form g(i) : F (i) → E(i)

(use again the remark 8.4.2.7). Since χ∗E(•) ⊂ χ∗E(•)
Q and χ∗F (•) ⊂ χ∗F (•)

Q , we compute in fact that

the morphism h
(•)
χ induces the morphism g(•) : F (•) → χ∗E(•) (i.e., the g(i) commute with transition

morphisms) and satisfies the equalities g(•) ◦ f (•) = θE,χ and χ∗(f (•)) ◦ g(•) = θF,χ.

Since this is almost straightforward, let us give the following corollary of the above lemma which will
be useful later:

Corollary 8.4.2.9. Suppose I is a countable well ordered set and X is noetherian. Let f : E(•)• → F (•)•

be a morphism of Db(D(•)) such that, for any i ∈ I, the complexes E(i)• and F (i)• are objects of
Db

coh(D(i)). The following properties are equivalent.

(a) The morphism f is an isomorphism of D−→
b
Q(D(•)) ;

(b) The induced morphism fQ : E(•)•
Q → F (•)•

Q is an isomorphism of Db(D(•)
Q ).

Proof. The implication (a) ⇒ (b) is obvious. Conversely let’s assume that fQ is an isomorphism. Let
G(•) be a cone of f . It follows from 8.1.5.11 that we reduce to check that for any n ∈ N we have the
isomorphism HnG(•) ∼−→ 0 in M−→Q(D(•)), i.e. the canonical map HnG(•) → 0 is an ind-isogeny. By

hypothesis, since G(•)
Q

∼−→ 0 in Db(D(•)
Q ) then HnG(•)

Q
∼−→ 0 in M(D(•)

Q ). Hence, we conclude by using
8.4.2.8 to the canonical map HnG(•) → 0.

Definition 8.4.2.10. We say that I is locally countably well ordered if I≥i is countable and well ordered
for any i ∈ I.
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Lemma 8.4.2.11. Assume I is locally countably well ordered (see 8.4.2.10) and that the maps D(i)
Q →

D(j)
Q are flat for any i ≤ j elements of I. Let E(•) a D(•)-module. Then the following properties are

equivalent.

(a) The D(•)-module E(•) is of finite presentation up to an ind-isogeny ;

(b) The D(•)-module E(•) is coherent up to an ind-isogeny.

In particular, the sheaf of rings D(•) is therefore coherent up to an ind-isogeny D(•)-module.

Proof. The implication (b) ⇒ (a) is obvious. Conversely, suppose E(•) is of finite presentation up to an
ind-isogeny. Since both properties (a) and (b) are local on X(•) (see definition 8.3.3.1) and stable by
isomorphism in M−→Q(D(•)), via the lemma 8.4.2.1 and the equivalence between (a) and (b) of 8.4.2.5, we
can suppose I is countably well ordered with smallest element i0, E(i0) is a D(i0)-module having a global
finite presentation and E(•) = D(•) ⊗D(i0) E(i0). Let f (•) :

(
D(•))r → E(•) be a morphism of M−→Q(D(•)).

It is a question of checking that ker f (•) is of finite type up to an ind-isogeny. Let χ ∈ M(I) such that
there exists a(•) :

(
D(•))r → χ∗E(•) a morphism of M(D(•)) representing f (•). Since D(i) is a coherent

ring, since the extensions D(i)
Q → D

(j)
Q are flat, then it follows from the lemma 8.4.2.8 that the canonical

morphism D(•) ⊗D(i0) ker a(i0) → ker a(•) is an ind-isogeny of M(D(•)). Hence we are done.

Remark 8.4.2.12. With the notations of the lemma 8.4.2.11, since the extensions D(i) → D(j) are not
flat, it seems false that the sheaf of rings D(•) is coherent (as object of M(D(•))).

Lemma 8.4.2.13. If P(•) is a projective object of M(D(•)), then P(•) is a projective object of M−→Q(D(•)).

Proof. Let g(•) : E(•) → F (•) be an epimorphism of M−→Q(D(•)) and f (•) : P(•) → F (•) a morphism of
M−→Q(D(•)). Choose χ ∈ M(I), φ(•) : P(•) → χ∗F (•) and ψ(•) : E(•) → χ∗F (•) some morphisms of
M(D(•)) representing respectively f (•) and g(•). Denote by G(•) := χ∗F (•), H(•) := im ψ(•) (computed
in M(D(•))), $(•) : E(•) → H(•) the canonical epimorphism and by α(•) : H(•) → G(•) the canonical
monomorphism (both are morphisms of M(D(•))). Since g(•) is an epimorphism of M−→Q(D(•)), then
α(•) is an ind-isogeny, i.e. there exists χ1 ∈ M(I) and a morphism β(•) : G(•) → χ∗1H(•) such that
β(•) ◦ α(•) = θH,χ1

and χ∗1(α(•)) ◦ β(•) = θG,χ1
. Since P(•) is a projective object of M(D(•)), since

χ∗1($(•)) is an epimorphism of M(D(•)), then there exists a morphism ϑ(•) : P(•) → χ∗1E(•) of M(D(•))
such that χ∗1($(•)) ◦ ϑ(•) = β(•) ◦ φ(•). We notice moreover that χ∗1(ψ(•)) ◦ ϑ(•) = θG,χ1

◦ φ(•). We get
the morphism h(•) := (θE,χ1)−1 ◦ ϑ(•) : P(•) → E(•) of M−→Q(D(•)). We have g(•) ◦ h(•) = f (•).

Remark 8.4.2.14. It is not clear that if I(•) is an injective object of M(D(•)), then I(•) is an injective
object of M−→Q(D(•)).

Notation 8.4.2.15. Denote by M−→Q,coh(D(•)) the full subcategory of M−→Q(D(•)) consisting of coherent
D(•)-modules up to an ind-isogeny. Likewise, when X is affine, taking all the above arguments into
this context, we define similarly the full subcategory M−→Q,coh(D(•)) of M−→Q(D(•)) consisting of coherent
D(•)-modules up to an ind-isogeny, where D(•) := Γ(X,D(•)).

Proposition 8.4.2.16. Assume I is locally countably well ordered (see 8.4.2.10) and that the maps
D(i)

Q → D
(j)
Q are flat for any i ≤ j elements of I. The full subcategoryM−→Q,coh(D(•)) ofM−→Q(D(•)) is stable

by isomorphism, kernel, cokernel, extension.

Proof. The coherence up to ind-isogeny being a local property on X(•) we can suppose that I is countably
well ordered. The stability of the coherence up to ind-isogeny by isomorphism ofM−→Q(D(•)) is trivial. Let
us check now the stability by kernel and cokernel. Let f (•) : E(•) → F (•) be a morphism of M−→Q,coh(D(•)).
By localness on X(•), we can suppose E(•) and F (•) are two D(•)-modules having a global finite presenta-
tion up to ind-isogeny. By using 8.4.2.5, we reduce to the case where E(•) and F (•) are two D(•)-modules
having a global finite presentation. From 8.4.2.6 and 8.4.2.11, we get the stability under cokernels. It
remains the stability under kernels. Let χ ∈ M(I) and φ(•) : E(•) → χ∗F (•) be a morphism of M(D(•))

representing f (•). We get the composite morphism ψ(•) : E(•)
Q

φ(•)⊗id−→ (χ∗F (•))Q
∼←− F (•)

Q of M(D(•)
Q ).
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Following 8.4.2.1, since E(•) and F (•) have global finite presentation, then ψ(•) = D(•)
Q ⊗D(i0)

Q
ψ(i0). Since

the extensions D(i)
Q → D(j)

Q are flat, then Kerψ(•) = D(•)
Q ⊗D(i0)

Q
Kerψ(i0). Moreover, since Z → Q

is flat, we have (kerφ(i0))Q = kerψ(i0) and kerψ(•) = (kerφ(•))Q. Since D(i) is a coherent ring, then
D(i) ⊗D(i0) kerφ(i0) and kerφ(i) are coherent D(i)-modules for any i ∈ I. Hence, it follows from the
lemma 8.4.2.8 that the canonical morphism D(•)⊗D(i0) kerφ(i0) → kerφ(•) is an ind-isogeny of M(D(•)).
We conclude by using 8.4.2.5.

Now let us treat the stability by extension. Let 0→ E(•) −→
f(•)
F (•) −→

g(•)
G(•) → 0 be an exact sequence

in the category M−→Q(D(•)) with E(•), G(•) ∈ M−→Q,coh(D(•)). Since the coherence of F (•) is local on X(•),
we can suppose there exists some epimorphisms in M−→Q(D(•)) of the form a(•) :

(
D(•))r → E(•) and

b(•) :
(
D(•))s → G(•). Following 8.4.2.13, there exists h(•) :

(
D(•))s → F (•) such that g(•) ◦ h(•) = b(•).

This implies that
(
D(•))r ⊕ (D(•))s → F (•) defined by f (•) ◦ a(•) + h(•) is an epimorphism. We

have therefore checked that F (•) is of finite type up to an ind-isogeny. Let α(•) :
(
D(•))t → F (•) a

morphism of M−→Q(D(•)). It remains to check that kerα(•) is of finite type up to an ind-isogeny. Since
G(•) is coherent up to an ind-isogeny, ker(g(•) ◦ α(•)) is of finite type up to an ind-isogeny. Since
what we have to check is local on X(•), we can suppose there exists an epimorphism of M−→Q(D(•))

of the form β(•) :
(
D(•))u → ker(g(•) ◦ α(•)). Since M−→Q(D(•)) is an abelian category, we have the

canonical isomorphism α(•)(ker(g(•) ◦ α(•)))
∼−→ im(α(•)) ∩ ker g(•). In particular, if we denote by

δ(•) : ker(g(•) ◦ α(•))→ F (•) the composition of α(•) with the monomorphism ker(g(•) ◦ α(•)) ⊂
(
D(•))t,

we get the canonical factorization ε(•) : ker(g(•) ◦ α(•))→ E(•) of δ(•) by f (•). Since E(•) is coherent up
to an ind-isogeny, ker(ε(•) ◦ β(•)) is of finite type up to an ind-isogeny. Since f (•) is a monomorphism,
this yields that ker(f (•) ◦ ε(•) ◦ β(•)) is of finite type up to an ind-isogeny. Since f (•) ◦ ε(•) ◦ β(•) =
δ(•) ◦β(•), then ker(δ(•) ◦β(•)) is of finite type up to an ind-isogeny. Moreover, we have the isomorphisms
β(•)(ker(δ(•) ◦ β(•)))

∼−→ im(β(•)) ∩ ker(δ(•))
∼−→ ker(δ(•)) = ker(α(•)), which is therefore of finite type

up to an ind-isogeny.

8.4.3 Coherent modules up to lim-ind-isogeny on formal scheme
We keep notation and hypotheses of 8.4.2.

Definition 8.4.3.1 (Coherence up to lim-ind-isogeny). Let E(•) be a left (resp. right) D(•)-module.

(a) The module E(•) is “generated by finitely many global sections up to a lim-ind-isogeny ” if there
exists a surjective morphism in LM−−→Q(∗D(•)) of the form

(D(•))N → E(•),

for some positive integer N .

(b) The module E(•) has “a global presentation up to a lim-ind-isogeny ” (resp. “a global finite presen-
tation up to a lim-ind-isogeny ”, resp. is “free up to a lim-ind-isogeny ”, resp. is “finite free up to a
lim-ind-isogeny ”) if there exists an exact sequence in LM−−→Q(∗D(•)) of the form

⊕i∈ID(•) → ⊕j∈JD(•) → E(•) → 0,

for some sets I and J (resp. some finite sets I and J , resp. I is the empty set and J is a set resp. I
is the empty set and J is a finite set).

(c) The D(•)-module E(•) is of finite type up to a lim-ind-isogeny (resp. has local presentation up to a
lim-ind-isogeny , resp. is of finite presentation up to a lim-ind-isogeny , resp. is locally free up to a lim-
ind-isogeny , resp. is locally finite free up to a lim-ind-isogeny ) if for any object (i,U) ∈ I\ × XZar,
there exists a covering {(i,Uα) → (i,U)}α∈A such that for any α ∈ A the object E(•)|(i,Uα) of
LM−−→Q(∗D(•)|(i,Uα)) is generated by finitely many global sections (resp. has global presentation, resp.
has global finite presentation, resp. is free, resp. is finite free) up to a lim-ind-isogeny .
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(d) The module E(•) is a “ coherent up to a lim-ind-isogeny D(•)-module” if it is of finite type up to
a lim-ind-isogeny and if for any i ∈ I and for any open set U of X, for any homomorphism of
LM−−→Q(D(•)|(i,U)) of the form u(•) :

(
D(•)|(i,U)

)r → E(•)|(i,U), the kernel of u(•) is of finite type up to
a lim-ind-isogeny .

The following lemma will be improved via 8.4.5.10 with more hypotheses satisfied by D(•).

Lemma 8.4.3.2. Assume I has a smallest element i0. Let E(•) a D(•)-module. Then the following
properties are equivalent.

(a) The D(•)-module E(•) has a global finite presentation up to a lim-ind-isogeny.

(b) There exists λ ∈ L(I) and a λ∗D(•)-module F (•) having a global finite presentation such that E(•)

and F (•) are isomorphic in LM−−→Q(D(•)).

.

Proof. Since (D(•))r → (λ∗D(•))r is an isomorphism of LM−−→Q(D(•)), then we get the implication (b)⇒ (a).
Conversely, let us prove (a) ⇒ (b). Let’s assume that E(•) is the cokernel in LM−−→Q(D(•)) of a arrow of
the form f (•) :

(
D(•))r → (

D(•))s. Let χ ∈ M(I), λ ∈ L(I) and φ(•) :
(
D(•))r → χ∗

(
λ∗D(•))s be a

morphism of M(D(•)) representing f (•). Since χ∗
(
λ∗D(•))s is endowed with a canonical structure of

λ∗D(•)-module, this implies by adjointness (see 8.3.2.6) that the morphism φ(•) factors uniquely through
a morphism ofM(λ∗D(•)) of the form ψ(•) :

(
λ∗D(•))r → χ∗

(
λ∗D(•))s. Let Coker ψ(•) be the cokernel of

ψ(•) computed in M(λ∗D(•)). From the proof (a)→ (b) of the lemma 8.4.2.5 (“replace” D(•) by λ∗D(•)),
there exists a λ∗D(•)-module F (•) having a global finite presentation together with an isomorphism
in M−→Q(λ∗D(•)) (and then in LM−−→Q(λ∗D(•))) of the form F (•) ∼−→ Coker ψ(•). Since Coker ψ(•) is
isomorphic to E(•) in LM−−→Q(D(•)), then we are done.

Lemma 8.4.3.3. Assume I is locally countably well ordered (see 8.4.2.10) and that the maps D(i)
Q → D

(j)
Q

are flat for any i ≤ j elements of I. Let E(•) be a D(•)-module. Then the following properties are
equivalent.

(a) The D(•)-module E(•) is of finite presentation up to a lim-ind-isogeny ;

(b) The D(•)-module E(•) is coherent up to a lim-ind-isogeny.

In particular, the sheaf of rings D(•) is therefore a coherent up to a lim- ind-isogeny D(•)-module.

Proof. The implication (b)⇒ (a) is trivial. Conversely, let us prove (a)⇒ (b). Let E(•) be a D(•)-module
of finite presentation up to lim-ind-isogeny. Since the coherence up to lim-ind-isogeny is local on X(•), we
can suppose I is countably well ordered and that E(•) is a D(•)-module having a global finite presentation
up to lim-ind-isogeny. Following 8.4.3.2, by stability under isomorphisms of LM−−→Q(D(•)) of the property
of coherence up to lim-ind-isogeny, we reduce to the case where E(•) is a λ∗D(•)-module having a global
finite presentation. Let f (•) :

(
D(•))r → E(•) be morphism of LM−−→Q(D(•)). It is a question of checking

that ker f (•) is of finite type up to a lim-ind-isogeny. Let χ ∈M(I), λ ∈ L(I), a(•) :
(
D(•))r → χ∗λ∗E(•)

be a morphism of M(D(•)) representing f (•). By adjointness (see 8.3.2.6), the morphism a(•) factors
uniquely through a morphism b(•) :

(
λ∗D(•))r → χ∗λ∗E(•) of M(λ∗D(•)). It follows from propositions

8.4.2.11 and 8.4.2.16 that ker b(•) is a coherent λ∗D(•)-module up to an ind-isogeny. Hence, ker b(•) is a
λ∗D(•)-module of finite type up to an ind-isogeny, and therefore is a D(•)-module of finite type up to a
lim-ind-isogeny (indeed, we can use the exactness of the functorM−→Q(λ∗D(•))→ LM−−→Q(D(•)) of 8.3.2.8.1).
Since ker b(•) and ker f (•) are isomorphic in LM−−→Q(D(•)), then we conclude the proof.

Notation 8.4.3.4. We denote by LM−−→Q,coh(D(•)) the full subcategory of LM−−→Q(D(•)) consisting of co-
herent D(•)-modules up to lim-ind-isogeny. Similarly, when X is affine and D(•) = Γ(X,D(•)), we denote
by LM−−→Q,coh(D(•)) the full subcategory of LM−−→Q(D(•)) consisting of coherent D(•)-modules up to lim-ind-
isogeny (we replace “D” by “D”).
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Remark 8.4.3.5. Let λ ∈ L(I). We have also the full subcategory LM−−→Q,coh(λ∗D(•)) of LM−−→Q(λ∗D(•)) of
coherent up to a lim-ind-isogeny λ∗D(•)-modules. With the lemma 8.3.2.7 and with the characterization
of the global finite presentation given in 8.4.3.2, the functors forgλ and λ∗D(•)⊗D(•)− induce quasi-inverse
equivalences of categories between LM−−→Q,coh(λ∗D(•)) and LM−−→Q,coh(D(•)).

Lemma 8.4.3.6. If P(•) is a projective object ofM−→Q(D(•)), then P(•) is a projective object of LM−−→Q(D(•)).

Proof. The proof is identical to that of 8.4.2.13 (we replace χ by λ).

Proposition 8.4.3.7. Assume I is locally countably well ordered (see 8.4.2.10) and that the maps
D(i)

Q → D
(j)
Q are flat for any i ≤ j elements of I. Then the full subcategory LM−−→Q,coh(D(•)) of LM−−→Q(D(•))

is stable by isomorphisms, kernels, cokernels, extensions.

Proof. We can copy the proof of 8.4.2.16 (we use 8.4.3.2, 8.4.3.6 and the fact that the category LM−−→Q(D(•))

is abelian).

8.4.4 Passage to the limits on D(LMQ(D(•)))

We keep notation and hypotheses of 8.4.2. Let ] ∈ {+,−,b, ∅}.

8.4.4.1. Suppose I is filtered. Then we have the exact functor→l
∗
Q : LM−−→Q(D(•))→M(D†Q) (see 8.4.1.10).

We set D†Q := →l
∗
Q(D(•)). We get the functor →l

∗
Q : K](LM−−→Q(D(•))) → K](D†Q). Since the functor

→l
∗
Q : K](LM−−→Q(D(•))) → K](D†Q) sends acyclic complexes to acyclic complexes, hence it factors through
the functor

→l
∗
Q : D](LM−−→Q(D(•)))→ D](D†Q) (8.4.4.1.1)

which commutes to the localization functorsQqi : K
](LM−−→Q(D(•)))→ D](LM−−→Q(D(•))) andQqi : K

](D†Q)→
D](D†Q), i.e. we have the equality Qqi ◦→l

∗
Q =→l

∗
Q ◦ Qqi of functors of K](LM−−→Q(D(•))) → D(D†Q) (up to

canonical isomorphism), with→l
∗
Q : K](LM−−→Q(D(•)))→ K(D†Q) for the left side and→l

∗
Q : D](LM−−→Q(D(•)))→

D(D†Q) for the right one.

Lemma 8.4.4.2. Suppose I is filtered. We have the commutative up to canonical isomorphism diagram:

LD−→
]
Q(D(•))

8.1.5.14.1

e
//

→l
∗
Q

8.4.1.9

**

D](LM−−→Q(D(•)))

→l
∗
Q8.4.4.1.1

��
D](D(•))

OO

→l
∗
Q // D](D†Q).

(8.4.4.2.1)

Proof. The left triangle is commutative by definition of the functor→l
∗
Q of the diagonal (see the proof of

8.4.1.9). By using the universal property of localisation, to check the commutativity of the right triangle
it is sufficient to check the commutativity of the outline square, which is easy.

8.4.4.3. We have the canonical commutative diagram

D(D(•)) //

→l
∗
Q

��

Hnxx

LD−→Q(D(•)) //

→l
∗
Q

��

Hn
vv

D(LM−−→Q(D(•)))

→l
∗
Q

��

Hn
uu

M(D(•)) //

→l
∗
Q

��

LM−−→Q(D(•))

→l
∗
Q

��

LM−−→Q(D(•))

→l
∗
Q

��
D(D†Q)

Hn
xx

D(D†Q)

Hnvv

D(D†Q)

Hnuu
M(D†Q) M(D†Q) M(D†Q),

(8.4.4.3.1)

whose top face is 8.1.5.15.1, whose back face is 8.4.4.2.1, whose middle vertical square is the right square
of 8.4.1.10.1, whose commutativity of the right and left squares comes from the exactness of→l

∗
Q.
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8.4.4.4. Suppose I is filtered. For any E(•), F (•) two objects of K](LM−−→Q(D(•))), the functor→l
∗
Q induces

the following morphism of K(ZX):

Hom•LM−−→Q(D(•))(E
(•), F (•))→ Hom•D†Q

(→l
∗
Q(E(•)),→l

∗
Q(F (•))). (8.4.4.4.1)

Recall that RHomD(LM−−→Q(D(•)))(−,−) is the right localisation of Hom•
LM−−→Q(D(•))

(−,−) (beware its exis-

tence is not obvious, see 8.3.4.6.3). By universal property of the right localisation of a (bi)functor, this
yields there exists a canonical morphism

RHomD(LM−−→Q(D(•)))(−,−)→ RHomD†Q(→l
∗
Q(−),→l

∗
Q(−)) (8.4.4.4.2)

of bifunctors Db(LM−−→Q(D(•))) × Db(LM−−→Q(D(•))) → D(ZX) making commutative (by definition) the
diagram of bifunctors Kb(LM−−→Q(D(•)))op ×Kb(LM−−→Q(D(•)))op → D(ZX):

RHomD(LM−−→Q(D(•)))(Qqi(−), Qqi(−))
8.4.4.4.2// RHomD†Q(→l

∗
Q ◦Qqi(−),→l

∗
Q ◦Qqi(−))

RHomD†Q(Qqi ◦→l
∗
Q(−), Qqi ◦→l

∗
Q(−))

Qqi ◦ Hom•LM−−→Q(D(•))
(−,−)

8.4.4.4.1
//

adj

OO

Qqi ◦ Hom•D†Q
(→l
∗
Q(−),→l

∗
Q(−))

adj

OO

(8.4.4.4.3)

where the “adj” morphisms are given by adjunction from 7.4.1.9.1 and where the top arrow is the com-
position of 8.4.4.4.2 with Qqi.

Similarly, by universal property of the right localisation of a (bi)functor, we check there exists a
canonical morphism

RHomD(LM−−→Q(D(•)))(−,−)→ RHomD†Q
(→l
∗
Q(−),→l

∗
Q(−)) (8.4.4.4.4)

of bifunctors Db(LM−−→Q(D(•)))op ×Db(LM−−→Q(D(•)))→ D(Z).

Lemma 8.4.4.5. We have the commutative diagram of bifunctors LD−→
b
Q(D(•))op×LD−→

b
Q(D(•))→ D(ZX)

RHomLD−→Q(D(•))(−,−)
8.3.4.6.5
∼=
//

8.4.1.15.2

��

RHomD(LM−−→Q(D(•)))(e(−), e(−))

8.4.4.4.2

��
RHomD†Q(→l

∗
Q(−),→l

∗
Q(−)

∼= // RHomD†Q(→l
∗
Q(e(−)),→l

∗
Q(e(−)).

(8.4.4.5.1)

Proof. By using the universal property of right localisation functor, with notation 8.2.4.23, we reduce to
check it after composition with the adjunction map

Q+
qi ◦ F (−,−)→ R

N+
qi

(ZX)

Nqi
LD
×Nqi

LD

F (Qqi
LD(−), (Qqi

LD(−)) = RHomLD−→Q(D(•))(Q
qi
LD(−), (Qqi

LD(−)).

With notation 8.3.4.6, consider the commutative diagram of bifunctors Kb(D(•))op × Kb(D(•)) →
D+(ZX):

Q+
qi ◦ F (−,−)

8.3.4.6.6 //

8.4.1.15.7

��

Q+
qi ◦ Hom•LM−−→Q(D(•))

(Qb
N (−), Qb

N (−))

8.4.4.4.3

��
Qqi ◦ Hom•D†Q

(→l
∗
Q(−),→l

∗
Q(−))

∼ // Qqi ◦ Hom•D†Q
(→l
∗
Q ◦Q

b
N (−),→l

∗
Q ◦Q

b
N (−))

(8.4.4.5.2)
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where the left, top, right arrow are the canonical ones and appears respectively at the bottom diagram
of 8.4.1.15.7, 8.3.4.6.6, 8.4.4.4.3, where the bottom isomorphism is given by the canonical isomorphism
→l
∗
Q
∼−→ →l

∗
Q ◦ Q

b
N , where→l

∗
Q : Kb(LM−−→Q(D(•))) → Kb(D†Q) for the left side and→l

∗
Q : Kb(D(•)) → Kb(D†Q)

for the right side. Therefore, by using the commutative diagrams 8.4.1.15.7, 8.3.4.6.6, 8.4.4.4.3, we are
done.

Proposition 8.4.4.6. Let u : I ′ → I be an L-equivalence between two partially ordered sets (see def-
inition 8.1.3.8). Then →u

−1
X induces respectively the isomorphisms of bifunctors Db(LM−−→Q(D(•)))op ×

Db(LM−−→Q(D(•)))→ D(Z) and Db(LM−−→Q(D(•)))op ×Db(LM−−→Q(D(•)))→ D(ZX):

R HomD(LM−−→Q(D(•)))(−,−)
∼−→ R HomD(LM−−→Q(→u

−1
X
D(•)))(→u

−1
X

(−),→u
−1
X

(−)), (8.4.4.6.1)

RHomD(LM−−→Q(D(•)))(−,−)
∼−→ RHomD(LM−−→Q(→u

−1
X
D(•)))(→u

−1
X

(−),→u
−1
X

(−)). (8.4.4.6.2)

Proof. Let f : Db(LM−−→Q(D(•))) ∼= LD−→
b
Q(D(•)) be a quasi-inverse functor of e : LD−→

b
Q(D(•)) ∼= Db(LM−−→Q(D(•)))

of 8.1.5.14.1. The isomorphism 8.4.4.6.2 is the one making commutative the diagram of bifunctors
Db(LM−−→Q(D(•)))op ×Db(LM−−→Q(D(•)))→ D(ZX):

RHomD(LM−−→Q(D(•))(−,−) // RHomD(LM−−→Q(→u
−1
X
D(•)))(→u

−1
X (−),→u

−1
X (−))

RHomD(LM−−→Q(D(•))(e ◦ f(−), e ◦ f(−))

∼

OO

RHomD(LM−−→Q(→u
−1
X
D(•)))(e ◦→u

−1
X ◦ f(−), e ◦→u

−1
X ◦ f(−))

∼

OO

RHomLD−→Q(D(•))(f(−), f(−))
8.3.1.3.3
∼

//

∼ 8.3.4.6.5

OO

RHomLD−→Q(→u
−1
X
D(•))(→u

−1
X ◦ f(−),→u

−1
X ◦ f(−)),

∼ 8.3.4.6.5

OO

(8.4.4.6.3)
where the top right (resp. top left) vertical isomorphism comes from the isomorphism e◦→u

−1
X ◦ f

∼−→ →u
−1
X

(resp. e ◦ f ∼−→ id). By using 8.3.1.3.2 instead of 8.3.1.3.3, we construct similarly the isomorphism
8.4.4.6.1.

8.4.4.7. Let u : I ′ → I be an L-equivalence between two partially ordered sets (see definition 8.1.3.8).
Set D′† :=→l

−1
X,I′

(→u
−1
X D(•)). By composing 8.4.1.15.9 (still valid replacing λ∗ by →u

−1
X ) with 8.4.4.6.3, by

using the commutative diagram 8.4.4.5.1, we get the commutative up to canonical isomorphism diagram
of bifunctors Db(LM−−→Q(D(•)))op ×Db(LM−−→Q(D(•)))→ D+(ZX):

RHomD(LM−−→Q(D(•)))(−,−)
8.4.4.4.2 //

∼=8.4.4.6.2

��

RHomD†Q(→l
∗
Q(−),→l

∗
Q(−)

∼=
��

RHomD(LM−−→Q(→u
−1
X
D(•)))(→u

−1
X (−),→u

−1
X (−))

8.4.4.4.2// RHomD′†Q (→l
∗
Q ◦ λ

∗(−),→l
∗
Q ◦ λ

∗(−)).

(8.4.4.7.1)

8.4.5 Coherence in D(LMQ(D(•))), coherent modules, comparison
Let X be a locally noetherian formal scheme of Krull dimension d and I be an ideal of definition of X.
We suppose pOX ⊂ I. Let I be a partially ordered set which is strictly filtered and locally countably well
ordered (see 8.4.2.10). Let D(•) = (D(i), α

(j,i)
D ) be a sheaf of rings on the topos X(I). Suppose moreover

the following conditions are satisfied

(i) For any i ∈ I, we suppose D(i) is a sheaf of rings on X equipped with a homomorphism OX → D(i)

satisfying the conditions of 7.2.3. Recall following 7.2.3.3, D(i) is therefore left coherent.

(ii) The transition maps D(i)
Q → D

(j)
Q are flat for any elements i ≤ j of I;
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(iii) There exists an integer d such that, for any elements i ≤ j of I, the ring D(j) is of tor-dimension
≤ d on D(i) ;

(iv) For any i ∈ I, for any coherent D(i)
Q -module E , there exists a coherent D(i)-module E ′ together with

an isomorphism E ′Q
∼−→ E of D(i)

Q -modules.

Notation 8.4.5.1. For any ] ∈ {0,+,−,b, ∅}, we denote by D]
coh(LM−−→Q(D(•))) the full subcategory of

D](LM−−→Q(D(•))) consisting of complexes E(•) such that, for any n ∈ Z, Hn(E(•)) ∈ LM−−→Q,coh(D(•)) (see
notation 8.4.3.4). These objects are called coherent complexes of D](LM−−→Q(D(•))).

8.4.5.2. By definition, the property that an object of LM−−→Q(D(•)) is an object of LM−−→Q,coh(D(•)) is local
on X(•). This yields that the notion of coherence of 8.4.5.1 is local on X(•), i.e. the fact that a complex
E(•) of D](LM−−→Q(D(•))) is coherent is local on X(•).

Theorem 8.4.5.3. For any E(•) ∈ Db
coh(LM−−→Q(D(•))), F (•) ∈ Db(LM−−→Q(D(•))), the morphism of D(ZX)

defined in 8.4.4.4.2 and the morphism of D(Z) defined in 8.4.4.4.4:

RHomD(LM−−→Q(D(•)))(E(•), F (•))→ RHomD†Q(→l
∗
QE

(•),→l
∗
QF

(•)), (8.4.5.3.1)

RHomD(LM−−→Q(D(•)))(E(•), F (•))→ RHomD†Q
(→l
∗
QE

(•),→l
∗
QF

(•)) (8.4.5.3.2)

are isomorphisms.

Proof. i) Let us treat the case of 8.4.5.3.1. By using lemma [Har66, I.7.1.(ii)] (that we can use thanks
to 8.4.3.7), we reduce to the case where E(•) ∈ LM−−→Q,coh(D(•)). By using 8.4.1.5 and 8.4.4.7.1, since I
is strictly filtered then we reduce to the case where I is countably well ordered. Let i0 be the smallest
element of I. Since this is local on X, we can suppose X affine and E(•) has global finite presentation
up to lim-ind-isogeny. Following the lemma 8.4.3.2, there exist λ ∈ L(I) and a λ∗D(•)-module G(•)

having a global finite presentation such that E(•) and G(•) are isomorphic in LM−−→Q(D(•)). Hence we
reduce to check the theorem when E(•) has a global finite presentation as D(•)-module. Following the
second remark of 8.4.2.2, E(i0) := Γ(X, E(i0)) is a coherent D(i0) := Γ(X,D(i0))-module and the canonical
morphism D(•) ⊗D(i0) E(i0) → E(•) is an isomorphism. We get a left resolution of E(i0) by free D(i0)-
modules of finite type. It induces a left resolution of E(•) by free D(•)-modules of finite type. Hence,
by copying the proof of [Har66, I.7.1.(iv)] (i.e. by using stupid truncation exact sequences), we reduce
to check the theorem when E(•) is a free D(•)-module of finite type. By additivity, we can suppose
E(•) = D(•). Since D(•) ∈ Dcoh(D(•)) (use the first remark of 8.4.1.2), then we conclude the proof by
using Theorem 8.4.4.5 and the isomorphism 8.4.1.15.1.

ii) We check 8.4.5.3.2 similarly to 8.4.5.3.1 or we can also notice that by applying the functor RΓ(X,−)
to the morphism 8.4.5.3.1, we get the arrow 8.4.5.3.2 by using the isomorphism 8.3.4.8.4.

Lemma 8.4.5.4. For any integer n ∈ Z, the functor Hn : LD−→
b
Q(D(•))→ LM−−→Q(D(•)) defined at 8.1.5.6.1

has the factorization Hn : LD−→
b
Q,coh(D(•))→ LM−−→Q,coh(D(•)).

Proof. Let n ∈ Z and F (•) ∈ LD−→
b
Q,coh(D(•)). By using the right commutative diagram of 8.3.1.4.1,

since I is strictly filtered then we reduce to the case where I is countably well ordered. Let i0 be the
smallest element of I. Since LM−−→Q,coh(D(•)) is closed in LM−−→Q(D(•)) under isomorphisms (see 8.4.3.7),
then by definition (see 8.4.1.1) we can suppose there exists λ ∈ L(I) such that F (•) ∈ Dcoh(λ∗D(•)).
We set G(•) := Hn(F (•)), E(i0) := Hn(F (i0)) and E(•) := λ∗D(•) ⊗D(λ(i0)) E(i0). Following 7.1.3.13
F (i0) ∈ Dcoh(D(λ(i0))). Hence, with the lemma 8.4.2.1, the λ∗D(•)-module E(•) is of finite presentation.
We have the canonical morphism E(•) → G(•) ofM(λ∗D(•)). Since the homomorphisms D(λ(i0))

Q → D(λ(i))
Q

are flat, we check that the arrow E(•) → G(•) becomes an isomorphism after applying the functor Q⊗Z−.
For any i ∈ I, E(i),G(i) are coherent D(λ(i))-modules. Since I is countably well ordered, by using lemma
8.4.2.8, this yields that E(•) → G(•) is an ind-isogeny. Hence we are done.

Lemma 8.4.5.5. The equivalences of the lemma 8.1.5.10 factors through the canonical quasi-inverse
equivalences of categories of the form LM−−→Q,coh(D(•)) ∼= LD−→

0
Q,coh(D(•)) and H0 : LD−→

0
Q,coh(D(•)) ∼= LM−−→Q,coh(D(•)).
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Proof. By using lemma 8.1.5.10, it is sufficient to check that the factorization of both functors. By using
lemma 8.4.5.4, this is already known for the functor H0. It remains to check that if E(•) ∈ LM−−→Q,coh(D(•))

then E(•) ∈ LD−→
0
Q,coh(D(•)). By using 8.3.1.1.2 and 8.4.1.5, since I is strictly filtered then we reduce to

the case where I is countably well ordered. Let i0 be the smallest element of I. Since this is local
on X, we can suppose X affine and E(•) has global finite presentation up to lim-ind-isogeny. Following
the lemma 8.4.3.2, there exist λ ∈ L(I) and a λ∗D(•)-module G(•) having a global finite presentation
such that E(•) and G(•) are isomorphic in LM−−→Q(D(•)). Hence we reduce to the case where E(•) has a
global finite presentation as D(•)-module. Following 8.4.2.1, E(i0) is a coherent D(i0)-module. We set
F (•) := D(•) ⊗L

D(i0) E(i0). By using the hypothesis 8.4.5.iii, we get that the complex F (•) has bounded
cohomology and therefore F (•) ∈ LD−→

b
Q,coh(D(•)). Let n ∈ Z \ {0}. Moreover, since the extensions

D(i0)
Q → D(i)

Q are flat, we get (Hn(F (•)))Q
∼−→ Hn(F (•)

Q )
∼−→ 0. Since Hn(F (i)) is a coherent D(i)-

module for any i ∈ I, it follows from 8.4.2.8 that Hn(F (•)) is ind-isogenic to 0. Hence, we have checked
F (•) ∈ LD−→

0
Q,coh(D(•)). With the lemma 8.1.5.10, this implies the isomorphism F (•) ∼−→ H0(F (•)) in

LD−→
0
Q,coh(D(•)). Since H0(F (•))

∼−→ E(•), this yields E(•) ∈ LD−→
0
Q,coh(D(•)).

Theorem 8.4.5.6. We have the commutative diagram whose functors are equivalences of categories:

LD−→
b
Q,coh(D(•))

8.1.5.14.1

e
//

→l
∗
Q

8.4.1.15

++

Db
coh(LM−−→Q(D(•)))

→l
∗
Q8.4.4.1.1

��
Db

coh(D†Q).

(8.4.5.6.1)

Proof. It follows from lemmas 8.1.5.15.1 and 8.4.5.4 that the equivalence of categories e : LD−→
b
Q(D(•)) ∼=

Db(LM−−→Q(D(•))) of 8.1.5.14.1 factors through the (fully faithful) functor

e : LD−→
b
Q,coh(D(•))→ Db

coh(LM−−→Q(D(•))). (8.4.5.6.2)

It follows from 8.4.5.5 and 8.4.1.15.b (and from the commutativity of the left square of 8.4.1.10.1) that
we have the factorization

→l
∗
Q : LM−−→Q,coh(D(•))→ Coh(D†Q). (8.4.5.6.3)

Moreover, since →l
∗
Q commutes with Hn (more precisely, by using the commutative right square of

8.4.4.3.1), then the functor→l
∗
Q of 8.4.4.1.1 factors through

→l
∗
Q : Db

coh(LM−−→Q(D(•)))→ Db
coh(D†Q). (8.4.5.6.4)

Hence, we get the commutative diagram 8.4.5.6.1 from that of the top triangle of 8.4.4.2.1. It follows
from Theorem 8.4.5.3.2 that the functor→l

∗
Q of 8.4.5.6.4 is fully faithful. Since the composition of the

functors 8.4.5.6.2 and 8.4.5.6.4 is an equivalence of categories (see Theorem 8.4.1.15) then so is the
functor 8.4.5.6.4. Hence, the functor 8.4.5.6.2 is also an equivalence.

8.4.5.7. Using the commutativity of the diagram 8.1.5.15.1 and the stability of the coherence of Lemma
8.4.5.4 and Theorem 8.4.5.6, we get the commutative (up to canonical isomorphism) diagram:

Db(LM−−→Q,coh(D(•)))

Hn

��

// Db
coh(LM−−→Q(D(•)))

Hn

��

LD−→
b
Q,coh(D(•))

Hn

��

∼=
eoo

LM−−→Q,coh(D(•)) LM−−→Q,coh(D(•)) LM−−→Q,coh(D(•)).

(8.4.5.7.1)

8.4.5.8. We have the following properties

(a) Using 8.4.3.7, we get that Db
coh(LM−−→Q(D(•))) is a saturated triangulated subcategory (some authors

say thick or épaisse) of Db(LM−−→Q(D(•))), i.e. is a strict triangulated subcategory closed under di-
rect summands. Hence, using the equivalences of categories 8.1.5.14.1 and 8.4.5.6.2, we get that
LD−→

b
Q,coh(D(•)) is a saturated triangulated subcategory of LD−→

b
Q(D(•)).
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(b) Using again using the equivalences of categories 8.1.5.14.1 and 8.4.5.6.2, it follows from 8.4.5.2 the
following local property: the fact that a complex of LD−→

b
Q(D(•)) belongs to LD−→

b
Q,coh(D(•)) (resp.

LD−→
0
Q,coh(D(•))) is local on X.

Lemma 8.4.5.9. Denote by D0
coh(D†Q) the full subcategory of Db

coh(D†Q) of the complexes E such that,
for any integer n 6= 0, we have Hn(E) = 0.

(a) Let E(•) ∈ LD−→
b
Q,coh(D(•)). The property E(•) ∈ LD−→

0
Q,coh(D(•)) is equivalent to→l

∗
Q(E(•)) ∈ D0

coh(D†Q).

(b) We have the diagram of functors commutative up to canonical equivalence

LM−−→Q,coh(D(•))
∼= //

→l
∗
Q

∼= ��

LD−→
0
Q,coh(D(•))

∼=

H0
//

→l
∗
Q

∼= ��

LM−−→Q,coh(D(•))

→l
∗
Q

∼= ��
Coh(D†Q)

∼= // D0
coh(D†Q)

∼=

H0
// Coh(D†Q),

(8.4.5.9.1)

whose every functors are equivalences of categories.

Proof. It follows from the commutativity of the diagram 8.4.1.10.1 and from the equivalence of categories
→l
∗
Q of Theorem 8.4.5.6, that we have the fully faithful functor→l

∗
Q : LD−→

0
Q,coh(D(•)) → D0

coh(D†Q). We have
the functor 8.4.5.6.3 making commutative the diagram 8.4.5.9.1. It remains to check that the functors
of the diagram 8.4.5.9.1 are equivalences of categories. Following Lemma 8.4.5.5, this is known for the
top horizontal morphisms. For the bottom horizontal ones, this is obvious. By using the commutativity
of the left square of the diagram 8.4.5.9.1 this yields that the left vertical functor of 8.4.5.9.1 is fully
faithful. Hence, by using the commutativity of the diagram 8.4.1.10.1, for any E(•) ∈ LD−→

b
Q,coh(D(•)) and

for any n ∈ Z, this yields Hn(E(•)) = 0 if and only if Hn(→l
∗
Q(E(•))) = 0. This implies the property (a)

and the fact that the middle vertical functor of 8.4.5.9.1 is an equivalence of categories. Hence, we are
done.

With the hypotheses of the subsection 8.4.5, the following proposition improves 8.4.3.2:

Lemma 8.4.5.10. Let E(•) ∈ LM−−→Q,coh(D(•)). Suppose X quasi-compact. Hence there exists i ∈ I, such
that for any affine open U of X, E(•)|(i,U) is isomorphic in LM−−→Q(D(•)|(i,U)) to a D(•)|(i,U)-module having
a global finite presentation.

Proof. We can suppose X affine. Let G := →l
∗
Q(E(•)) ∈ Coh(D†Q). Following 8.4.1.11.b.(ii), since our

rings are coherent (after tensorisation with Q), there exists i ∈ I and a coherent left D(i)
Q -module G(i)

together with a D†Q-linear isomorphism ε : D†Q ⊗D(i)

Q
G(i) ∼−→ G. Using the hypothesis (8.4.5.iv), there

exists a coherent D(i)-module F (i) together with an isomorphism F (i)
Q

∼−→ G(i) of D(i)
Q -modules. Since

X is affine, then F (i) is a D(i)-module having a global finite presentation. This yields that F (•) :=
(D(•)|(i,X)) ⊗D(i) F (i) is a D(•)|(i,X)-module having a global finite presentation. Let j : I≥i ⊂ I be the
canonical inclusion. Since j is an L-equivalence, with 8.4.1.9.b, we get→l

∗
X,I≥i,Q

(D(•)|(i,X))
∼−→ D†Q and

then the isomorphisms→l
∗
X,I≥i,Q

(F (•))
∼−→→l

∗
X,I≥i,Q

(D(•)|(i,X))⊗D(i)

Q
F (i)

Q
∼−→ G. By using the commutative

diagram 8.4.1.9.1 (recall the restriction functor |(i,X) is equal by definition to
→
j−1

X
), we get the isomorphism

G = →l
∗
X,I,Q(E(•))

∼−→ →l
∗
X,I≥i,Q

(E(•)|(i,X)). By using the full faithfulness of the functor →l
∗
X,I≥i,Q

(see
8.4.5.9.1), this yields that E(•)|(i,X) and F (•) are isomorphic in LM−−→Q(D(•)|(i,X)). Hence, we are done.

Corollary 8.4.5.11. We suppose X affine. We have the commutative canonical diagram

Db(LM−−→Q,coh(D(•)))

→l
∗
X,Q

��

// Db
coh(LM−−→Q(D(•)))

→l
∗
X,Q

((

LD−→
b
Q,coh(D(•))

→l
∗
X,Q8.4.1.15

��

e
oo

Db(Coh(D†Q)) // Db
coh(D†Q),

(8.4.5.11.1)

whose functors are equivalences of categories.
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Proof. By universal property of the localisation, to check that the left trapeze is commutative, we reduce
to check it after composing with the functor Kb(LM−−→Q,coh(D(•))) → Db(LM−−→Q,coh(D(•))), which is easy.
Hence, we get the commutativity of the diagram 8.4.5.11.1 from that of 8.4.5.6.1. Moreover, if follows
from 4.6.1.9 (resp. 8.4.5.6) that the bottom functor (resp. the functors of the right triangle) of the
diagram 8.4.5.11.1 is an equivalence of categories. Since the exact functor→l

∗
X,Q induces an equivalence

of categories between LM−−→Q,coh(D(•)) and Coh(D†Q) (see 8.4.5.9.1), then so is the left functor. Hence, we
are done.

8.4.5.12. We have the following fact.

(a) Let E(•)• ∈ Kb(LM−−→Q,coh(D(•))), Let E• :=→l
∗
QE

(•)•, where→l
∗
Q is induced by the equivalence of cat-

egories of 8.4.5.6.3. Choose m0 large enough so that there exists p-torsion free coherent D(m0)-
modules F (0)n such that D†Q ⊗D(m0) F (0)n ∼−→ En. For any m ≥ 0, let F (m) and be the quotient of
D(m+m0) ⊗D(m0) F (0) by its p-torsion part. We get the complex F (•)• ∈ Kb(LM−−→Q,coh(D(•))) such
that→l

∗
QF

(•)• ∼−→ E•. Hence, we obtain the isomorphism E(•) ∼−→ F (•) of Kb(LM−−→Q,coh(D(•))).

(b) Let F (•)• ∈ Kb(LM−−→Q,coh(D(•))). It follows from 8.1.5.2.2 that there exists G(•)• ∈ Kb(D(•)) together
with an isomorphism of Kb(LM−−→Q,coh(D(•))) of the form e(G(•)•)

∼−→ F (•)• such that G(•)n for any
integer n is of the form λ∗χ∗F (•)n.

Corollary 8.4.5.13. Suppose X affine. Let E(•) ∈ LD−→
b
Q,coh(D(•)). There exist a representant E(•)• ∈

Kb(D(•)) of E(•) such that E(•)n is p-torsion free and e(E(•)n) ∈ LM−−→Q,coh(D(•)) for any n ∈ Z.

Proof. Let E(•)• ∈ Kb(D(•)) be a representant of E(•). Following 8.4.5.11, there exists F (•)• ∈ Kb(LM−−→Q,coh(D(•)))

endowed with an isomorphism F (•)• ∼−→ e(E(•)•) ofDb(LM−−→Q(D(•))), where e : Kb(D(•))→ Kb(LM−−→Q,coh(D(•))).
It follows from 8.4.5.12 that there exists G(•)• ∈ Kb(D(•)) endowed with an isomorphism e(G(•)•)

∼−→
F (•)• of Kb(LM−−→Q(D(•))) and such that G(•)n is p-torsion free (and e(G(•)n) ∈ LM−−→Q,coh(D(•))) for any
n ∈ Z. Since LD−→

b
Q,coh(D(•)) is a triangulated category, then we get by induction that G(•)• is an object

of LD−→
b
Q,coh(D(•)). Hence, since e(G(•)•) and e(E(•)•) are isomorphic in Db(LM−−→Q,coh(D(•)), then it follows

from 8.4.5.11 that G(•)• and E(•)• are isomorphic in LD−→
b
Q,coh(D(•)).

8.5 Quasi-coherence

8.5.1 Quasi-coherence in D(D(•)) or D(D(•)
• )

Let X be a locally noetherian formal scheme of Krull dimension d and I be an ideal of definition of X.
Let I be a partially ordered set. Let D(•) = (D(i), αj,iD ) be a sheaf of rings on the topos X(I). We suppose
there exists a homomorphism O(•)

X → D(•) such that D(i) equipped with the induced OX → D(i) is a
sheaf of rings on X satisfying the conditions of 7.3.2.

Example 8.5.1.1. We will use essentially in this book the following cases. Let S] be a nice fine V-log
formal scheme (see definition 3.3.1.10). Moreover, let X] → S] be a log smooth morphism of log formal
schemes. We suppose the underlying formal scheme X is locally noetherian of finite Krull dimension.

(a) Let B(•)
X be a commutative O(•)

X -algebra endowed with a compatible structure of left D(•)
X]/S]

-module

such that for any m ∈ N, B(m)
X satisfies the hypotheses of 7.3.2. Since B(•)

X
“⊗OX

D(•)
X]/S]

is B(•)
X -flat

(for both structures), then D(•) = B(•)
X
“⊗OX

D(•)
X]/S]

satisfies the conditions of 8.5.1 (in the case where
I = N).

(b) Suppose X is moreover p-torsion free (see 3.3.1.12 for some example). Let λ ∈ L(N). Let Z be a
divisor of X] ×Spf V Spec(V/πV). For any m ∈ N, we set B̃(m)

X (Z) := B(λ(m))
X (Z) and ‹D(m)

X]/S]
(Z) :=

B(λ(m))
X (Z)“⊗OX

D(m)

X]/S]
. Then following 8.7.4.2 the sheaves B̃(•)

X (Z) and ‹D(•)
X]/S]

(Z) satisfies the
conditions of 8.5.1.
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Notation 8.5.1.2. Following 8.1.1.1, with notation 7.1.2.1, the topos of inductive system indexed by I
of sheaves on X is by definition

X(I) := Top(X)Io := Sh(Io\ ×XZar),

where Io the partially ordered set equal to I as a set but equipped with the ordering opposite to that of
I (see 7.1.1.1).

We endow the set N×Io with the order product i.e. (n1, i1) ≤ (n2, i2) in N×Io if and only if n1 ≤ n2

in N and i1 ≥ i2 in I. We set

X
(I)
• := Top(X)N×Io := Sh((N× Io)\ ×XZar).

The object of X(I)
• are denoted by E(•)

• = (E(i)
n , αj,im,n)i≤j,m≤n where αj,im,n : E(i)

n → E(j)
m is a functorial

in i ≤ j in I and m ≤ n in N morphism of sheaves on X. Remark this yields the morphism of
Top(X)N (resp. Top(X)Io) of the form αj,i : E(i)

• → E(j)
• (resp. αm,n : E(•)

n → E(•)
m ). We denote by

D(•)
• = (D(i)/In+1D(i), αj,im,n) the sheaf of rings on the topos X(I)

• so that αj,im,n : D(i)/In+1D(i) →
D(j)/Im+1D(j) are the morphisms induced by αj,iD for any i ≤ j in I and m ≤ n in N.

1) Fix i ∈ I. Let i : {i} → I be the inclusion map sending i to i and i : N × {i} → N × Io be the
inclusion map sending (n, i) to (n, i). The morphisms defined at 7.1.2.4.1 are in this case denoted by

→iX = (→i
−1
X
a→iX∗) : X→ X(I), →iX• = (→i

−1
X•
a→iX•∗) : X• → X

(I)
• , (8.5.1.2.1)

where X means by abuse of notation Top(X). We have →i
−1
X•

(E(•)
• ) = E(i)

• for any E(•)
• ∈ X

(I)
• and

→i
−1
X

(E(•)) = E(i) for any E(•) ∈ X (with identities as transition maps). Similarly to 8.1.1.2.6, for any
E• ∈ X•, we compute

(→iX•∗(E•))
(j) =

®
E• if j ≤ i
e otherwise

, (→iX•!(E•))
(j) =

®
E• if j ≥ i
∅ otherwise

(8.5.1.2.2)

where e (resp. ∅) is the final (resp. initial) object of X•.
2) Let {∗} be some one element set. Let u : N× Io → {∗}× Io be the canonical projection. Then the

morphism of 7.1.2.4.1 induces in this case the following ringed topos morphism

←lX(I) = (←l
−1
X(I) a←lX(I),∗) : (X

(I)
• ,D(•)

• )→ (X(I),D(•)). (8.5.1.2.3)

We have←l
−1
X(I)(E(•))n = E(•) for any E(•) ∈ X(I) and any n ∈ N ; transition morphisms←l

−1
X(I)(E(•))n+1 →

←l
−1
X(I)(E(•))n are the identities. Moreover, for any E(•)

• = (E(i)
n , αj,im,n)i≤j,m≤n ∈ X(I)

• and any i ∈ I, we
have

←lX(I)∗(E
(•)
• ) = (lim←−

n∈N

E(i)
n , βj,i), (8.5.1.2.4)

where the projective limit lim←−n∈N
E(i)
n is precisely that of the functor Cat(N)op → Sh(XZar) induced

by the object E(i)
• , where βj,i : lim←−n∈N

E(i)
n → lim←−m∈N

E(j)
m for i ≤ j in I is the morphism given by

functoriality from the family of morphisms αj,im,n. Hence, we have

→i
−1
X ←
l
X(I)∗(E

(•)
• ) = lim←−

n∈N

E(i)
n =←lX∗→i

−1
X•

(E(•)
• ). (8.5.1.2.5)

8.5.1.3. Let E(•)•
• ∈ K+(D(•)

• ). Following 7.1.3.14, there exists F (•)•
• ∈ K+(D(•)

• ) such that F (•)n
• is a

flasque D(•)
• -module for any n ∈ Z and a quasi-isomorphism E(•)•

• → F (•)•
• of K+(D(•)

• ).
Recall, following 7.1.2.19.a, a D(•)

• -module G(•)
• is flasque if and only if G(i)

n is a flasque sheaf on X for
any i ∈ I and n ∈ N and the morphism G(i)

n → G(j)
m is surjective in the category of presheaves on X for

any i ≤ j,m ≤ n. For any i ∈ I, this yields that F (i)•
• =→i

−1
X•

(F (•)•
• ) is a complex of flasque D(i)

• -modules
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which is endowed with a quasi-isomorphism E(i)•
• → F (i)•

• of K+(D(i)
• ). Hence we get the isomorphisms

of D+(D(i)):

→i
−1
X
◦ R←lX(I)∗(E

(•)•
• )

∼−→ →i
−1
X
◦←lX(I)∗(F

(•)•
• )

8.5.1.2.5
∼−→ ←lX∗→i

−1
X•

(F (•)•
• )

=←lX∗(F
(i)•
• )

∼←− R←lX∗(E
(i)•
• ) = R←lX∗→i

−1
X•

(E(•)•
• ). (8.5.1.3.1)

It follows from 8.5.1.3.1 that a D(•)
• -module G(•)

• is←lX(I),∗-acyclic if and only if the D(i)
• -module G(i)

• is
←lX,∗-acyclic for any i ∈ I.

8.5.1.4 (Bounded cohomological dimension). Following 7.3.1.2, the functor←lX∗ has cohomological dimen-
sion bounded by d+1. By using 8.5.1.3.1 this yields that the functor←lX(I)∗ : Mod(D(•)

• )→ Mod(D(•)) has
also cohomological dimension bounded by d+1 and then the functor←lX(I)∗ is way-out in both directions.

Following 4.6.1.6.b, for any E(•)•
• ∈ K(D(•)

• ) (resp. for any E(•)
• ∈ K−(D(•)

• )), there exist a complex
I(•)•
• ∈ K(D(•)

• ) (resp. I(•)•
• ∈ K−(D(•)

• )) of←lX(I),∗-acyclic left D(•)
• -modules and a quasi-isomorphism

E(•)•
•

∼−→ I(•)•
• . Moreover, we have the isomorphism R←lX(I),∗E

(•)•
•

∼−→←lX(I),∗I
(•)•
• .

It follows from 8.5.1.3.1 that the functor →i
−1
X•

sends an ←lX,∗-acyclic module from a ←lX(I),∗-acyclic

module. Hence, similarly to 8.5.1.3.1, for any E(•)•
• ∈ D(D(•)

• ) we get the isomorphism

→i
−1
X
◦ R←lX(I)∗(E

(•)•
• )

∼−→ R←lX∗ ◦→i
−1
X•

(E(•)•
• ). (8.5.1.4.1)

8.5.1.5. Let E(•)• ∈ K−(D(•)). There exists F (•)• ∈ K−(D(•)) such that F (•)n is a flat D(•)-module
for any n ∈ Z together with a quasi-isomorphism E(•)• → F (•)• of K−(D(•)). Let i ∈ I. It follows from
7.1.3.6 that F (i)n is a flat D(i)-module for any n ∈ Z and that the induced morphism E(i)• → F (i)• is a
quasi-isomorphism of K−(D(i)). This yields the canonical isomorphisms

→i
−1
X•
◦ L←l

∗
X(I)(E(•)•) =→i

−1
X•

(D(•)
• ⊗L

D(•) E(•)•)
∼←− →i

−1
X•

(D(•)
• ⊗D(•) F (•)•)

= D(i)
• ⊗D(i) F (i)• ∼−→ D(i)

• ⊗L
D(i) E(i)• = L←l

∗
X→
i−1
X

(E(•)•), (8.5.1.5.1)

where←lX(I) is the ringed topos morphism 8.5.1.2.3.

Similarly to 7.3.1.5, we have the following definition:

Definition 8.5.1.6. Let O(•)
X :=→lX,I∗(OX) be the constant inductive system with value OX (see notation

8.1.1.2.4). Let E(•) ∈ D−(O(•)
X ). We say E• is O(•)

X -quasi-coherent if the following conditions holds:

(a) The complex OX0
⊗L
OX
E(i) has OX0

-quasi-coherent cohomology for any i ∈ I.

(b) The canonical morphism of D−(O(•)
X )

E(•) → R←lX(I)∗(L←l
∗
X(I)E(•)), (8.5.1.6.1)

where←lX(I) is the ringed topos morphism 8.5.1.2.3 in the case D(•) = O(•)
X , is an isomorphism.

Similarly to 7.3.1.10, we have the following quasi-coherent notion:

Definition 8.5.1.7. Let O(•)
Xn

:=→lXn,I∗(OXn) for any n ∈ N (see notation 8.1.1.2.4). In the case where

D(•) = O(•)
X , the sheaf of rings D(•)

• is written O(•)
X•

. Let E(•)
• ∈ D−(O(•)

X•
). We say E(•)

• is O(•)
X•

-quasi-
coherent if the following conditions hold:

(a) The complex E(i)
0 is in D−qc(OX0) for any i ∈ I.

(b) The canonical morphisms of D−(O(•)
Xn

)

O(•)
Xn
⊗L
O(•)
Xn+1

E(•)
n+1 → E(•)

n (8.5.1.7.1)

are isomorphisms for all n ∈ N.
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8.5.1.8. Let ∗ ∈ {l, r}. We denote by D−qc(∗D(•)) (resp. D−qc(∗D(•)
• )) the full subcategory of D−(∗D(•))

(resp. D−(∗D(•)
• )) consisting of complexes which are O(•)

X -quasi-coherent (resp. O(•)
X•

-quasi-coherent
modules) in the sense of 8.5.1.6 (resp. 8.5.1.7). The objects of D−qc(∗D(•)) (resp. D−qc(∗D(•)

• )) are
called D(•)-quasi-coherent complexes of D−(∗D(•)) (resp. D(•)

• -quasi-coherent complexes of D−(∗D(•)
• )),

or simply quasi-coherent complexes. Moreover, D−qc(∗D(•)) is a triangulated subcategory of D−(D(•))

and D−qc(∗D(•)
• ) is a triangulated subcategory of D−(D(•)

• ). The full subcategory of Db
qc(∗D(•)) (resp.

Db
qc(∗D(•)

• )) consisting of quasi-coherent complexes of finite tor dimension onD(•)
• is denoted byDqc,tdf(

∗D(•))

(resp. Dqc,tdf(
∗D(•)
• )). Finally, the D(•)-quasi-coherence is a local notion on X: 1) a complex E(•) of

D−(D(•)) is quasi-coherent if and only if there exists an open covering (Uα)α of X such that E(•)|Uα is
quasi-coherent for any α ; 2) if E(•) ∈ D−qc(D(•)) then E(•)|U ∈ D−qc(D(•)|U) for any open set U of X.
Similarly, the D(•)

• -quasi-coherence is a local notion on X.

8.5.1.9. Let E(•) ∈ D−(D(•)). It follows from the isomorphisms 8.5.1.4.1 and 8.5.1.5.1 that the property
E(•) ∈ D−qc(D(•)) is equivalent to saying E(i) ∈ D−qc(D(i)) for any i ∈ I. Since this is the case when I
has cardinal one, this yields this notion of quasi-coherence does not depend on the choice of the ideal of
definition of X.

Let E(•)
• ∈ D−(D(•)

• ). It follows from the isomorphism 8.5.1.5.1 that the property E(•)
• ∈ D−qc(D(•)

• ) is
equivalent to saying E(i)

• ∈ D−qc(D(i)
• ) for any i ∈ I.

Let E(•)
• ∈ Db

qc(∗D(•)
• ). It follows from the flatness properties given at 7.1.3.6 that for any integers

a ≤ b, E(•)
• has tor amplitude in [a, b] if and only if E(i)

• has tor amplitude in [a, b] for any i ∈ I. We have
similar properties replacing D(•)

• by D(•).
Using again the flatness properties of 7.1.3.6, we notice that the property D(•)

0 (resp. gr•ID(•)) has
right finite tor dimension on D(•) (resp. D(•)

0 ) is equivalent to saying that D(i)
0 (resp. gr•ID(i)) has right

finite tor dimension on D(i) (resp. D(i)
0 ) for any i ∈ I.

Theorem 8.5.1.10. With notation 8.5.1.2, we have the following properties.

(a) The functors R←lX(I)∗ and L←l
∗
X(I) induce canonically quasi-inverse equivalences of categories between

D−qc(D(•)
• ) and D−qc(D(•))

(b) Suppose that D(•)
0 (resp. gr•ID(•)) has right finite tor dimension on D(•) (resp. D(•)

0 ). Then the func-
tors R←lX(I)∗ and L←l

∗
X(I) induce canonically quasi-inverse equivalences of categories between Db

qc(D(•)
• )

and Db
qc(D(•)).

(c) The functors R←lX(I)∗ and L←l
∗
X(I) induce canonically quasi-inverse equivalences of categories between

Dqc,tdf(D(•)
• ) and Dqc,tdf(D(•)).

More precisely let E• ∈ Db
qc(D(•)) (resp. E(•)

• ∈ Db
qc(D(•)

• )) and a ≤ b be two integers. Then E(•)

(resp. E(•)
• ) has tor amplitude in [a, b] if and only if L←l

∗
X(I)(E(•)) (resp. R←lX(I)∗E

(•)
• ) has tor amplitude

in [a, b].

Proof. By using the isomorphisms 8.5.1.4.1 and 8.5.1.5.1 and the remarks of 8.5.1.9, this is a consequence
of Theorems 7.3.2.10, 7.3.2.15.

8.5.2 Derived completed tensor products in D(D(•)) or D(D(•)
• )

We would extend the definition of derived completed tensor products as in 7.3.4 to the case of inductive
systems and we would like to give few properties.

Let X be a locally noetherian formal scheme of Krull dimension d and I be an ideal of definition of
X. Let I be a partially ordered set. Let D(•) (resp. D′(•), resp. D′′(•), resp. D′′′(•)) be a sheaf of rings
on the topos X(I). We suppose there exists a homomorphism O(•)

X → D(•) (resp. O(•)
X → D′(•), resp.

O(•)
X → D′′(•), resp. O(•)

X → D′′′(•)) such that D(i) (resp. D′(i), resp. D′′(i), resp. D′′′(i)) equipped with
the induced map OX → D(i) (resp. OX → D′(i), resp. OX → D′′(i), resp. OX → D′′′(i)) is a sheaf of
rings on X satisfying the conditions of 7.3.2.
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8.5.2.1 (Independence of R←lX(I)∗ and L←l
∗
X(I)). We have the topoi morphisms←lX(I) : (X

(I)
• ,D(•)

• )→ : (X(I),D(•))

and←lX(I) : (X
(I)
• ,Z

X
(I)
•

)→ : (X(I),ZX(I)).

(a) Both functors R←lX(I)∗ can be computed by taking the same flasque resolution (see 7.1.3.14) and
therefore we have the canonical commutative diagram

D−(D(•)
• )

��

R←lX(I)∗ // D−(D(•))

��
D−(Z

X
(I)
•

)
R←lX(I)∗// D−(ZX(I)),

where the vertical maps are the forgetful functors. We have obviously the same property for the
exact functor←l

−1
X(I) .

(b) Following 7.3.2.3.d, the canonical morphism

O
X

(•)
•
⊗L

←l
−1

X(I)
O(•)

X
←l
−1
X(I)(E(•))→ D(•)

• ⊗L

←l
−1

X(I)
D(•)←l

−1
X(I)(E(•)) =: L←l

∗
X(I)(E(•))

is an isomorphism for any E(•) ∈ D−(lD(•)), and similarly for right modules. Hence, the functor
L←l
∗
X(I) does not depend, up to canonical forgetful functor, to the choice of such D(•).

8.5.2.2. Let E(•) ∈ D−(lD(•)), M(•) ∈ D−(rD(•)) be two complexes of D(•)-modules, respectively to
the left, to the right. Similarly to 7.3.4.2.1, we define their completed tensor product by setting

M(•)“⊗L
D(•)E(•) := R←lX(I)∗(L←l

∗
X(I)M(•) ⊗L

D(•)
•

L←l
∗
X(I)E(•)). (8.5.2.2.1)

By adjunction (see 7.3.2.2), similarly to 7.3.4.3, we construct the canonical morphism in D−(ZX(I))
of the form

M(•) ⊗L
D(•) E(•) →M(•)“⊗L

D(•)E(•) (8.5.2.2.2)

which is an isomorphism when one of the two complexes belongs to D−coh(D(•)) and the other one to
D−qc(D(•)).

When D(•) is commutative, we have the isomorphism of D−(rD(•)):

M(•)“⊗L
D(•)E(•) ∼−→ R←lX(I)∗L←l

∗
X(I)(M(•) ⊗L

D(•) E(•)) (8.5.2.2.3)

and the map 8.5.2.2.2 is (modulo the canonical isomorphism 8.5.2.2.3) the adjunction morphism.

8.5.2.3. Suppose there exists a homomorphism of sheaf of rings on X of the form D(•) → D′(•) such that
the composition of O(•)

X → D(•) with D(•) → D′(•) gives O(•)
X → D′(•).

(a) Let ∗ ∈ {l, r} and ? ∈ {−,b}. By definition (see 8.5.1.8), the forgetful functors D?(∗D′(•)) →
D?(∗D(•)) and D?(∗D′(•)• )→ D?(∗D(•)

• ) preserve the quasi-coherence, i.e. induces the functor

forgD,D′ : D
?
qc(∗D′(•))→ D?

qc(∗D(•)), forgD,D′ : D
?
qc(∗D′(•)• )→ D?

qc(∗D(•)
• ). (8.5.2.3.1)

(b) Since D(i)
• satisfied the condition 7.3.2.d for the left structure, then it follows from 7.3.1.14 and 8.5.1.9

that the functor D′(•)• ⊗L
D(•)
•
− preserves the quasi-coherence, i.e., induces the functor

D′(•)• ⊗L
D(•)
•
− : D−qc(lD(•)

• )→ D−qc(lD′(•)• ). (8.5.2.3.2)

(c) Let E(•) ∈ D−(lD(•)). Since D′(•)•
∼−→ L←l

∗
X(I)D′(•) (see 7.3.2.3.b), then we get

D′(•)“⊗L
D(•)E(•) ∼←− R←lX(I)∗(D

′(•)
• ⊗L

D(•)
•

L←l
∗
X(I)E(•)), (8.5.2.3.3)
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Using the preservation of the quasi-coherence under the functors L←l
∗
X(I) and R←lX(I)∗ of 8.5.1.10, the

property 8.5.2.3.2 and the isomorphism 8.5.2.3.3, we get that the functor D′(•)“⊗L
D(•)− preserves the

quasi-coherence, i.e. induces the functor

D′(•)“⊗L
D(•)− : D−qc(lD(•))→ D−qc(lD′(•)). (8.5.2.3.4)

Similarly, we get the functor −“⊗L
D(•)D′(•) : D−qc(rD(•))→ D−qc(rD′(•)).

In order to derive complexes of bimodules, we need further hypotheses on D(•).

Definition 8.5.2.4. Let us introduce the following definition (compare with 4.6.3.2.b). A pair (R(•),K(•))
consisting of a sheaf R(•) of commutative rings on the topos X(I) and an ideal K(•) of R(•) is said to be
solving (D(•),D′(•), I) if it satisfies the following conditions

(i) OX is endowed with a structure of R(i)-algebra such that K(i)OX = I for any i ∈ I ;

(ii) R(•) is sent to the center of D(•) and of D′(•) ;

(iii) D(•) and D′(•) are flat on R(•).

In that case, we say that (D(•),D′(•), I) is solvable. We remark that if (R(•),K(•)) solves (D(•),D′(•), I),
then R(•)

• is a solving ring of (D(•)
• ,D′(•)• ) (see Definition 4.6.3.2.b), where R(•)

• := (R(•)/(K(•))i+1)i∈N,
D(•)
• := (D(•)/Ii+1D(•))i∈N and D′(•)• := (D′(•)/Ii+1D′(•))i∈N. Finally, (R(•),K(•)) solves (D(•), I)

means by definition that (R(•),K(•)) solves (D(•),D(•), I).
A pair (R(•),K(•)) is said to be “strongly solving (D(•),D′(•), I)” is it is solving (D(•),D′(•), I) and

if the following condition holds.

(iv) R(•)
0 (resp. gr•K(•)R(•)) has right finite tor dimension on R(•) (resp. R(•)

0 ).

By flatness, remark that we have therefore D(•)
0 (resp. gr•ID(•)) has right finite tor dimension on D(•)

(resp. D(•)
0 ) and similarly D′(•)0 (resp. gr•ID′(•)) has right finite tor dimension on D′(•) (resp. D′(•)0 ).

Example 8.5.2.5. We will use essentially in this book the following cases. Let S] be a nice fine V-log
formal scheme (see definition 3.3.1.10). Moreover, let X] → S] be a log smooth morphism of log formal
schemes. We suppose the underlying formal scheme X is locally noetherian of finite Krull dimension and is
p-torsion free (see 3.3.1.12 for some example). For any integer i ≥ 0, set X]

i := X]×Spf V Spec(V/πi+1V).
Let Z be a divisor of X0. Let λ ∈ L(N). Then it follows from 8.7.4.2 that we can choose I = N,
R(•) is the constant inductive system with value V, K(•) is the constant inductive system with value m,
I = mOX and D(•) is such that D(m) = lim←−i B

(λ(m))
Xi

(Z)⊗OXi D
(m)

X]
i
/S]
i

for any m ∈ N with the canonical

transition maps D(m) → D(m+1).

8.5.2.6. Suppose (D(•),D′(•), I) is solved by (R(•),K(•)). Let E• ∈ K(lD′(•),D(•)r). The following
condition

(v) The structures of R(•)-module induced on the (D′(•),D(•))-bimodules En by the structure of left
D′(•)-module and of right D(•)-module coincide for any n ∈ Z ;

is equivalent to saying that E• ∈ K(lD′(•) ⊗R(•) D(•)o).
We denote by D(lD′(•),R(•), rD(•)) (resp. D(lD′(•)• ,R(•)

• , rD(•)
• )) the strictly full subcategory of

D(lD′(•), rD(•)) (resp. D(lD′(•)• , rD(•)
• )) consisting of complexes isomorphic to an object of K(lD′(•)⊗R(•)

D(•)o) (resp. K(lD′(•)• ⊗R(•)
•
D(•)o
• )).

8.5.2.7. Suppose (D(•),D′(•), I) is solved by (R(•),K(•)). The functor←l
∗
X(I) = −⊗R(•)R(•)

• : Mod(lD′(•),D(•)r)→
Mod(lD′(•)• ,D(•)

•
r) is canonically isomorphic (modulo forgetful functors) to −⊗D(•) D(•)

• : Mod(D(•)r)→
Mod(D(•)

•
r) and D′(•)• ⊗D′(•) − : Mod(lD′(•))→ Mod(lD′(•)• ).
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Let ? ∈ {∅,−,b}. When ? = b, we always suppose that (D(•),D′(•), I) is strongly solved by
(R(•),K(•)). Since D(•) ⊗R(•) (D′(•))o is flat over D(•), (D′(•))o and R(•), then by using resolutions
by K-flat complexes of left D′(•) ⊗R(•) (D(•))o-modules we get the functor

L←l
∗
X(I) = −⊗L

←l
−1

X(I)
(R(•))

R(•)
• : D?(lD′(•),R(•),D(•)r)→ D?(lD′(•)• ,R(•)

• ,D(•)
•

r) (8.5.2.7.1)

which is canonically isomorphic to the functors−⊗L

←l
−1

X(I)
(D(•))

D(•)
• : D?(D(•)r)→ D?(D(•)

•
r) andD′(•)• ⊗L

←l
−1

X(I)
(D′(•))

− : D?(lD′(•))→ D?(lD′(•)• ). Similarly, by using resolutions by K-injective complexes of leftD′(•)• ⊗
←l
−1

X(I)
(R(•))

(D(•)
• )o-modules, we get the functor

R←lX(I)∗ : D?(lD′(•)• ,R(•)
• ,D(•)

•
r)→ D?(lD′(•),R(•)D(•)r) (8.5.2.7.2)

which is canonically isomorphic to the functors R←lX(I)∗ : D?(D(•)
•

r)→ D?(D(•)r) and R←lX(I)∗ : : D?(lD′(•)• )→
D?(lD′(•)).

Let E(•)
• ∈ D−(lD′(•)• ,R(•)

• ,D•r). The property E(•)
• ∈ D−qc(lD′(•)• ) (resp. E(•)

• ∈ D−qc(D(•)
•

r)) is
satisfied if and only if both conditions hold:

(a) The image via the forgetful functorD−(lD′(•)0 ,R(•)
0 ,D(•)

0
r)→ D−(lD′(•)0 )→ D−(O(•)

X0
) (resp. D−(lD′(•)0 ,R(•)

0 ,D(•)
0

r)→
D−(D(•)

0
r)→ D−(O(•)

X0
))) of the complex E(•)

0 is in D−qc(O(•)
X0

).

(b) The canonical map

R(•)
i

L
⊗R(•)

i+1

E(•)
i+1 → E

(•)
i (8.5.2.7.3)

is an isomorphism.

We denote respectively by D−qc,.(
lD′(•)• ,R(•)

• ,D(•)
•

r) and D−.,qc(lD′(•)• ,R(•)
• ,D(•)

•
r) the full subcategory of

D−(lD′(•)• ,R(•)
• ,D(•)

•
r) consisting of complexes E(•)

• which belongs to E(•)
• ∈ D−qc(lD′(•)• ) (resp. E(•)

• ∈
D−qc(D(•)

•
r)). Beware that the property 8.5.2.6.(v) is not necessarily satisfied for O(•)

X instead of R(•), so
we do have to distinguish the categories D−qc,.(

lD′(•)• ,R(•)
• ,D(•)

•
r) and D−.,qc(lD′(•)• ,R(•)

• ,D(•)
•

r).
Similarly, we denote by D−qc,.(

lD′(•),R(•),D(•)r) and D−.,qc(lD′(•),R(•),D(•)r) the full subcategory
of complexes E(•) which belong to E(•) ∈ D−qc(lD′(•)) (resp. E(•) ∈ D−qc(D(•)r)). It follows from
Theorem 8.5.1.10 that the functors L←l

∗
X(I) of 8.5.2.7.1 and R←lX(I)∗ of 8.5.2.7.2 induce quasi-inverse

equivalences of categories between D−.,qc(lD′(•),R(•),D(•)r) and D−.,qc(lD′(•)• ,R(•)
• ,D(•)

•
r) and between

D−qc,.(
lD′(•),R(•),D(•)r) and D−qc,.(

lD′(•)• ,R(•)
• ,D(•)

•
r).

8.5.2.8. Suppose (D(•),D′(•), I) and (D(•),D′′(•), I) are solved by (R(•),K(•)). We have the bifunctors

RHomlD(•)
•

(−,−) : D(lD(•)
• ,R(•)

• ,D′(•)• r)×D(lD(•)
• ,R(•)

• ,D′′(•)•
r)→ D(lD′(•)• ,R(•)

• ,D′′(•)•
r), (8.5.2.8.1)

−⊗L
D(•)
•
− : D(∗D′(•)• ,R(•)

• ,D•r)×D(lD•,R(•)
• , ∗D′′(•)• )→ D(∗D′(•)• ,R(•)

• , ∗D′′(•)• ). (8.5.2.8.2)

We have similar bifunctors by changing the indices l and r. Via the functors 8.5.2.7.1 and 8.5.2.7.2, we
can check the bifunctor 8.5.2.2.1 induces

−“⊗L
D(•)− : D(∗D′(•),R(•),D(•)r)×D(lD(•),R(•), ∗D′′(•))→ D(∗D′(•),R(•), ∗D′′(•)). (8.5.2.8.3)

LetM(•) ∈ D(∗D′(•),R(•),D(•)r), E(•) ∈ D(lD(•),R(•), ∗D′′(•)) be two complexes. Since L←l
∗
X

(M(•)⊗L
D(•)

E(•))
∼−→ L←l

∗
X

(M(•)) ⊗L
D(•)
•

L←l
∗
X

(E(•)) (remark we have three different functors L←l
∗
X

such as 8.5.2.7.1),

then we get by adjunction via the adjoint pair (L←l
∗
X
a R←lX∗), (see the functors 8.5.2.7.1 and 8.5.2.7.2)

the canonical morphism
M(•) ⊗L

D(•) E(•) →M(•)“⊗L
D(•)E(•) (8.5.2.8.4)

which is an isomorphism when eitherM(•) ∈ D−coh(D(•)r) and E(•) ∈ D−qc(lD(•)), orM(•) ∈ D−qc(D(•)r)

and E(•) ∈ D−coh(lD′(•)). Indeed, for instance, supposeM(•) ∈ D−coh(D(•)r) and E(•) ∈ D−qc(lD(•)). Then,
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since both functors − ⊗L
D(•) E(•) and −“⊗L

D(•)E(•) are way-out left (use 7.3.1.2 for the second functor),
then following (the way-out left version of) [Har66, I.7.1 (ii) and (iv)], since this is local, we reduce to
the case whereM(•) = D(•), which is obvious.

Proposition 8.5.2.9. Suppose (D(•),D′(•), I) and (D(•),D′′(•), I) are solved by (R(•),K(•)). With
∗, ∗∗ ∈ {r, l}, the functors 8.5.2.8.2 and 8.5.2.8.3 preserve the quasi-coherence for bounded above com-
plexes, i.e. they factor through the functor

−“⊗L
D(•)
•
− : D−qc,.(

∗D′(•)• ,R(•)
• ,D(•)

•
r)×D−qc,.(

lD(•)
• ,R(•)

• , ∗D′′(•)• )→ D−qc,.(
∗D′(•)• ,R(•)

• , ∗∗D′′(•)• ),

(8.5.2.9.1)

−“⊗L
D(•)− : D−qc,.(

∗D′(•),R(•),D(•)r)×D−qc,.(
lD(•),R(•), ∗D′′(•))→ D−qc,.(

∗D′(•),R(•), ∗∗D′′(•)),
(8.5.2.9.2)

and similarly replacing the indexes “ qc, .′′ by “., qc′′.

Proof. We can copy the proof of 7.3.4.10.

Example 8.5.2.10. When D is commutative, we get the factorisations

−⊗L
D(•)
•
− : Dqc(D(•)

• )×Dqc(D(•)
• )→ Dqc(D(•)

• ), (8.5.2.10.1)

−“⊗L
D(•)− : D−qc(D(•))×D−qc(D(•))→ D−qc(D(•)). (8.5.2.10.2)

Proposition 8.5.2.11. Suppose (D(•),D′(•), I), (D(•),D′′(•), I) and (D′′(•),D′′′(•), I) are solved by
(R(•),K(•)). Let ∗, ∗∗ ∈ {r, l}. Let E(•) ∈ D−qc,.(

∗D′(•),R(•),D(•)r), F (•) ∈ D−qc,.(
lD(•),R(•), rD′′(•)),

G(•) ∈ D−qc,.(
lD′′(•),R(•), ∗∗D′′′(•)). The associativity isomorphism of the derived complete tensor product

of quasi-coherent complexes holds, i.e. we have the isomorphism in D−qc,.(
∗D′(•),R(•), ∗∗D′′′(•)):(

E(•)“⊗L
D(•)F (•)

)“⊗L
D′′(•)G(•) ∼−→ E(•)“⊗L

D(•)

(
F (•)“⊗L

D′′(•)G(•)
)
. (8.5.2.11.1)

Proof. By using Theorem 8.5.1.10 and Proposition 8.5.2.9, we can copy the proof of 7.3.4.12.

In the case of extension by ring homomorphisms, contrary to 8.5.2.11, we get the following associa-
tivity without the use of solving pairs:

Proposition 8.5.2.12. Suppose there exists a homomorphism of sheaf of rings on X of the form D(•) →
D′(•) → D′′(•) such that the composition of O(•)

X → D(•) with D(•) → D′(•) gives O(•)
X → D′(•) and the

composition of O(•)
X → D′(•) with D′(•) → D′′(•) gives O(•)

X → D′′(•).

(a) For any Let E(•)
• ∈ D−(lD(•)

• ), we have the associativity isomorphism in D−(lD′′(•)• ):

D′′(•)• ⊗L
D(•)
•
E(•)
•

∼−→
(
D′′(•)• ⊗L

D′(•)•
D′(•)

)
⊗L
D(•)
•
E(•)
•

∼−→ D′′(•)• ⊗L
D′(•)•

(
D′(•)• ⊗L

D(•)
•
E(•)
•

)
. (8.5.2.12.1)

(b) For any E(•) ∈ D−qc(lD(•)), we have the associativity isomorphism in D−qc(lD′′(•)):

D′′(•)“⊗L
D(•)E(•) ∼−→

(
D′′(•)“⊗L

D′(•)D′(•)
)“⊗L
D(•)E(•) ∼−→ D′′(•)“⊗L

D′(•)
(
D′(•)“⊗L

D(•)E(•)
)
. (8.5.2.12.2)

Proof. By using a flat resolution of we get the isomorphism 8.5.2.12.1. By using Theorem 8.5.1.10, we
get 8.5.2.12.2 from 8.5.2.12.1.

Proposition 8.5.2.13. Suppose X is quasi-compact. Suppose (D(•),D′(•), I) is solved by (R(•),K(•)).
Let ∗, ∗∗ ∈ {r, l}, ? ∈ {b,−}. Let E(•)

• ∈ Dperf(
∗D(•)
• ), F (•)

• ∈ D?
.,qc(∗D(•)

• ,R(•)
• , ∗∗D′(•)• ), Then

RHomD•(E
(•)
• ,F (•)

• ) ∈ D?
qc(∗∗D′(•)• ). If moreover F (•)

• ∈ Dperf(
∗∗D′(•)• ), then RHomD•(E

(•)
• ,F (•)

• ) ∈
Dperf(

∗∗D′(•)• ).

Proof. We can copy the proof of 7.3.4.17.
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8.5.3 LD(D(•)
• )

We keep notation 8.5.2.

8.5.3.1. Similarly to 8.1.2.2, we define the notion of ind-isogenies of a left D(•)
• -module as follows. Let

E(•)
• = (E(i)

n , αj,im,n)i≤j,m≤n, be a left D(•)
• -module. For any map χ ∈M(I) (see notation 8.1.2.1), for any

E(•)
• = (E(i), αj,im,n) we set

χ∗(E(•)
• ) := (E(i)

n , pχ(j)−χ(i)αj,im,n). (8.5.3.1.1)

We obtain the functor χ∗ : Mod(D(•)
• ) → Mod(D(•)

• ) as follows: if f (•)
• : E(•)

• → F (•)
• is a morphism

of Mod(D(•)
• ), then χ∗(f

(•)
• ) : χ∗(E(•)

• ) → χ∗(F (•)
• ) is the morphism of left D(•)

• -modules such that
(χ∗(f

(•)
• ))(i) = f

(i)
• . Since the functor χ∗ : Mod(D(•)

• )→ Mod(D(•)
• ) is exact, then for any ] ∈ {∅,+,−,b},

this induces the functor χ∗ : D](D(•)
• )→ D](D(•)

• ).

Notation 8.5.3.2 (Ind-isogenies). (a) Let χ1, χ2 ∈ M(I) such that χ1 ≤ χ2. For any E(•)
• ∈ D(D(•)

• ),
let

θE,χ2,χ1
: χ∗1•(E

(•)
• )→ χ∗2•(E

(•)
• ) (8.5.3.2.1)

be the morphism defined by pχ2(n)−χ1(n) : E(n) → E(n) for any n ∈ N. When χ1 = 0, we simply write
θE,χ2 . We get a functor θE : M(I) → D(D(•)

• ) given by χ 7→ χ∗(E(•)
• ), where M(I) is the category

associated with its structure of partially ordered set (see 7.1.2.1).

(b) A morphism f
(•)
• : E(•)

• → F (•)
• of D(D(•)

• ) is an “ind-isogeny” of D](D(•)
• ) if there exist χ ∈ M(I)

and a morphism g
(•)
• : F (•)

• → χ∗E(•)
• of D(D(•)

• ) such that g(•)
• ◦ f (•)

• = θE,χ and χ∗(f (•)
• ) ◦ g(•)

• =

θF,χ. We denote by Ξ(D(•)
• ) the set of ind-isogenies of D](D(•)

• ). For any ] ∈ {∅,+,−,b}, we set
Ξ](D(•)

• ) := Ξ(D(•)
• ) ∩ D](D(•)

• ). If no confusion is possible with respect to D(•)
• , we simply write

Ξ] := Ξ](D(•)
• ).

8.5.3.3. With the notation 8.5.1.2.4, for any E(•)
• ∈ Mod(D(•)

• ), we compute

χ∗ ◦←lX(I)∗(E
(•)
• ) = (lim←−

n∈N

E(i)
n , pχ(j)−χ(i)βj,i) =←lX(I)∗(E

(i)
n , pχ(j)−χ(i)αj,im,n) =←lX(I)∗ ◦ χ

∗(E(•)
• ). (8.5.3.3.1)

It follows from the last sentence of the paragraph 8.5.1.3 that the functor χ∗ sends←lX(I),∗-acyclic

modules to←lX(I),∗-acyclic modules. Hence, for any E(•)•
• ∈ D(D(•)

• ), by using a resolution F (•)•
• of E(•)•

•

by←lX(I),∗-acyclic modules (following 4.6.1.6.b, such resolutions exist because of the boundedness of the
cohomological dimension of←lX(I),∗ of 8.5.1.4 and such resolutions compute derived functors), we get the
functorial in χ isomorphism of D(D(•)):

χ∗ ◦ R←lX(I)∗(E
(•)•
• )

∼−→ χ∗ ◦←lX(I)∗(F
(•)•
• )

8.5.3.3.1
∼−→ ←lX(I)∗ ◦ χ

∗(F (•)•
• )

∼−→ R←lX(I)∗ ◦ χ
∗(E(•)•
• ). (8.5.3.3.2)

8.5.3.4. Let E(•)• ∈ D(D(•)). Choose P(•)• a K-flat complex of K(D(•)) together with a quasi-
isomorphism P(•)• → E(•)• of K(D(•)). Following 7.1.3.6, P(•)• is a K-flat complex means P(i)• is
a K-flat complex of K(D(i)). Hence, using again 7.1.3.6 and the exactness of χ∗, we get that χ∗(P(•)•)
is a K-flat complex of K(D(•)) together with a quasi-isomorphism χ∗P(•)• → χ∗E(•)• of K(D(•)). This
yields the functorial in χ and E(•)• isomorphism in D(D(•)):

χ∗ ◦ L←l
∗
X(I)(E(•)•)

∼←− χ∗ ◦←l
∗
X(I)(P(•)•)

∼−→←l
∗
X(I) ◦ χ∗(P(•)•)

∼−→ L←l
∗
X(I) ◦ χ∗(E(•)•). (8.5.3.4.1)

Notation 8.5.3.5. The subset of ind-isogenies is a saturated multiplicative system compatible with its
triangulated structure (this follows from Proposition 7.4.1.7 and the fact that by copying its proof we
can check Lemma 8.1.2.3 is still valid replacing D(•) by D(•)

• ). For any ] ∈ {∅,+,−,b}, the localisation
of D](D(•)

• ) with respect to ind-isogenies is denoted by D−→
]
Q(D(•)

• ).
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8.5.3.6. We have the following notations and definitions. For any map λ ∈ L(I), for any left D(•)
• -module

E(•)
• = (E(i)

n , αj,im,n)i≤j,m≤n, we set

λ∗(E(•)
• ) := (E(λ(i))

n , αλ(j),λ(i)
m,n )i≤j,m≤n.

We obtain the functor λ∗ : Mod(D(•)
• ) → Mod(λ∗D(•)

• ) as follows: if f (•)
• : E(•)

• → F (•)
• is a morphism

of Mod(D(•)
• ), then λ∗(f

(•)
• ) : λ∗(E(•)

• ) → λ∗(F (•)
• ) is the morphism of left λ∗D(•)

• -modules such that
(λ∗(f

(•)
• ))(i) = f

(λ(i))
• . Since the functor λ∗ : Mod(D(•)

• ) → Mod(λ∗D(•)
• ) is exact, then this induces the

functor λ∗ : D](D(•)
• )→ D](λ∗D(•)

• ).

Notation 8.5.3.7 (Lim-isomorphims). (a) Let λ1, λ2 ∈ L(I). When λ1 ≤ λ2, for any left D(•)
• -module

E(•)
• = (E(i)

n , αj,im,n)i≤j,m≤n we have the canonical morphism λ∗1(E(•)
• )→ λ∗2(E(•)

• ) defined by the mor-
phism α

λ2(i),λ1(i)
• : E(λ1(i))

• → E(λ2(i))
• . The morphism λ∗1D

(•)
• → λ∗2D

(•)
• is in fact a ring homomor-

phism and the morphism λ∗1(E(•)
• )→ λ∗2(E(•)

• ) is λ∗1D
(•)
• -linear. This yields the morphisms of functors

ρλ1,λ2
: D](D(•)

• )→ D−→
]
Q(λ∗1D

(•)
• ) (resp. ρλ2,λ1

: D−→
]
Q(D(•)

• )→ D−→
]
Q(λ∗1D

(•)
• )) of the form λ∗1 → λ∗2. For

any E(•)
• ∈ ObD](D(•)

• ) = Ob D−→
]
Q(D(•)

• ), we set ρE,λ2,λ1 := ρλ2,λ1(E(•)
• ) : λ∗1(E(•)

• )→ λ∗2(E(•)
• ). When

λ1 = id, we set ρE,λ2
:= ρE,λ2,id. We get a functor ρE : L(I) → D−→

]
Q(D(•)

• ) given by ρ 7→ ρ∗(E(•)
• ),

where L(I) is the category associated with its structure of partially ordered set (see 7.1.2.1).

(b) We denote by Λ](D(•)
• ) the set of morphisms f (•)

• : E(•) → F (•) of D−→
]
Q(D(•)

• ) such that there exist λ ∈
L(I) and a morphism g

(•)
• : F (•)

• → λ∗E(•)
• of D−→Q(D(•)

• ) such that g(•)
• ◦f (•)

• = ρE,λ and λ∗(f
(•)
• )◦g(•)

• =

ρF,λ in D−→
]
Q(D(•)

• ). If no confusion is possible with respect to D(•)
• , we simply write Λ] := Λ](D(•)

• ).
The morphisms belonging to Λ are called “lim-isomorphisms”.

Notation 8.5.3.8. It follows from the analogous Lemma 8.1.3.4 and Proposition 7.4.1.7 that Λ] is a
saturated multiplicative system of D−→

]
Q(D(•)

• ) compatible with its triangulated structure. By localizing

D−→
]
Q(D(•)

• ) with respect to lim-isomorphisms we get a category denoted by LD−→
]
Q(D(•)

• ).

8.5.3.9. With the notation 8.5.1.2.4, for any λ ∈ L(I), for any E(•)
• ∈ Mod(D(•)

• ), we compute

λ∗ ◦←lX(I)∗(E
(•)
• ) = (lim←−

n∈N

E(λ(i))
n , βλ(j),λ(i)

m,n ) =←lX(I)∗(E
(λ(i))
n , αλ(j),λ(i)

m,n ) =←lX(I)∗ ◦ λ
∗(E(•)
• ). (8.5.3.9.1)

It follows from the last sentence of the paragraph 8.5.1.3 that the functor λ∗ sends←lX(I),∗-acyclic modules

to ←lX(I),∗-acyclic modules. Hence, for any E(•)•
• ∈ D(D(•)

• ), by using a resolution F (•)•
• of E(•)•

• by

←lX(I),∗-acyclic modules (following 4.6.1.6.b, such resolutions exist because of the boundedness of the
cohomological dimension of←lX(I),∗ of 8.5.1.4 and such resolutions compute derived functors), we get the
functorial in χ isomorphism of D(D(•)):

λ∗ ◦ R←lX(I)∗(E
(•)•
• )

∼−→ λ∗ ◦←lX(I)∗(F
(•)•
• )

8.5.3.9.1
∼−→ ←lX(I)∗ ◦ λ

∗(F (•)•
• )

∼−→ R←lX(I)∗ ◦ λ
∗(E(•)•
• ). (8.5.3.9.2)

8.5.3.10. Let λ ∈ L(I). Let E(•)• ∈ D(D(•)). Choose P(•)• a K-flat complex of K(D(•)) together with
a quasi-isomorphism P(•)• → E(•)• of K(D(•)). We get the functorial in λ and E(•)• isomorphisms of
D(λ∗D(•)):

λ∗ ◦ L←l
∗
X(I)(E(•)•)

∼←− λ∗ ◦←l
∗
X(I)(P(•)•)

∼−→←l
∗
X(I) ◦ λ∗(P(•)•)

∼−→ L←l
∗
X(I) ◦ λ∗(E(•)•). (8.5.3.10.1)

Notation 8.5.3.11. Let (λ1, χ1) ≤ (λ2, χ2) in L(I)×M(I). Let E(•)
• ∈ D](D(•)

• ). We get the canonical
morphism χ∗1λ

∗
1E

(•)
• → χ∗2λ

∗
2E

(•)
• which is given by

σE,(λ2,χ2),(λ1,χ1) := θλ∗2E,(χ2,χ1) ◦ χ∗1(ρE,(λ2,λ1)) = χ∗2(ρE,(λ2,λ1)) ◦ θλ∗1E,(χ2,χ1) (8.5.3.11.1)

We set σE,(λ2,χ2) := σE,(λ2,χ2),(id,0).
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Definition 8.5.3.12. For any ] ∈ {∅,+,−,b}, let S](D(•)) be the collection of morphisms f (•) : E(•) →
F (•) of D](D(•)) such that there exist χ ∈ M(I), λ ∈ L(I) and a morphism g(•) : F (•) → χ∗λ∗E(•) of
D(D(•)) such that g(•) ◦ f (•) = σE,(λ,χ) and χ∗λ∗(f (•)) ◦ g(•) = σF,(λ,χ). If no confusion is possible with
respect to D(•), we simply write S] := S](D(•)). The morphisms of S] are called lim-ind-isogenies.

Similarly to 8.1.4.9, we have the canonical equivalence of categories

S]−1D](D(•)
• ) ∼= LD−→

]
Q(D(•)

• )

which is the identity over the objects. f K(D(•) ⊗R(•) D′(•)).

8.5.3.13. A morphism f (•) : E(•) → F (•) of D](D(•)
• ,D′(•)• ) is an “ind-isogeny of D](D(•)

• ,D′(•)• )” if there
exist χ ∈ M(I) and a morphism g(•) : F (•) → χ∗E(•) of D(D(•)

• ,D′(•)• ) such that g(•) ◦ f (•) = θE,χ and
χ∗(f (•)) ◦ g(•) = θF,χ. We denote by Ξ](D(•)

• ,D′(•)• ) the set of ind-isogenies of D](D(•)
• ,D′(•)• ). The

localisation of D](D(•)
• ,D′(•)• ) with respect to ind-isogenies is denoted by D−→

]
Q(D(•)

• ,D′(•)• ).

We denote by Λ](D(•)
• ,D′(•)• ) the set of morphisms f (•) : E(•) → F (•) of D−→

]
Q(D(•)

• ,D′(•)• ) such that

there exist λ ∈ L(I) and a morphism g(•) : F (•) → λ∗E(•) of D−→Q(D(•)
• ,D′(•)• ) such that g(•) ◦ f (•) = ρE,λ

and λ∗(f (•)) ◦ g(•) = ρF,λ in D−→
]
Q(D(•)

• ,D′(•)• ). The morphisms belonging to Λ](D(•)
• ,D′(•)• ) are called

“lim-isomorphisms”. By localising D−→
]
Q(D(•)

• ,D′(•)• ) with respect to lim-isomorphisms, we get the category

LD−→
]
Q(D(•)

• ,D′(•)• ).

Let S](D(•)
• ,D′(•)• ) be the collection of morphisms f (•) : E(•) → F (•) of D](D(•)

• ,D′(•)• ) such that
there exist χ ∈ M(I), λ ∈ L(I) and a morphism g(•) : F (•) → χ∗λ∗E(•) of D(D(•)

• ,D′(•)• ) such that
g(•) ◦ f (•) = σE,(λ,χ) and χ∗λ∗(f (•)) ◦ g(•) = σF,(λ,χ). The morphisms of S](D(•)

• ,D′(•)• ) are called
“lim-ind-isogenies”. Similarly to 8.1.4.9, we have the canonical equivalence of categories

S]−1D](D(•)
• ,D′(•)• ) ∼= LD−→

]
Q(D(•)

• ,D′(•)• )

which is the identity over the objects. We define also the abelian category LM−−→Q(D(•)
• ,D′(•)• ). Similarly

to 8.1.5.3 we establish that the canonical functor LM−−→Q(D(•)
• ,D′(•)• )→ LD−→Q(D(•)

• ,D′(•)• ) is fully faithful.

Suppose (D(•)
• ,D′(•)• ) is left or right solved by R(•)

• (see definition 4.6.3.2). Then we denote by
D−→
]
Q(D(•)

• ,R(•)
• ,D′(•)• ) (resp. LD−→

]
Q(D(•)

• ,R(•)
• ,D′(•)• )) the strictly full subcategory of D−→

]
Q(D(•)

• ,D′(•)• ) (resp.

LD−→
]
Q(D(•)

• ,D′(•)• )) consisting of complexes isomorphic to a complex of K(D(•)
• ⊗R(•)

•
D′(•)• ).

8.5.3.14. The lemma 8.3.2.2 is still valid by adding some index •, i.e. by replacing X(I) by X(I)
• and

D(•) by D(•)
• etc. For instance, let ] ∈ {∅,−}, let λ ≤ µ be two elements of L(I), and F (•)

• ∈ D](λ∗D(•)
• ).

The canonical morphism of D−→
]
Q(µ∗D(•))

µ∗D(•)
•

L
⊗
λ∗D(•)

•
F (•)
• → µ∗F (•)

• (8.5.3.14.1)

belongs to Λ(µ∗D(•)
• ).

8.5.4 Quasi-coherence, finite tor dimension, tensor products in LDQ

We keep notation 8.5.2 and we suppose I is a strictly filtered partially ordered set. We set D† =
lim−→i∈I D

(i), D′† = lim−→i∈I D
′(i), D′′† = lim−→i∈I D

′′(i). Let ] ∈ {−,b}.

Definition 8.5.4.1. Let E(•) ∈ LD−→
]
Q(D(•)). We say that E(•) is quasi-coherent (as an object of

LD−→
]
Q(D(•))) if it is isomorphic in LD−→Q(D(•)) to a complex F (•) ∈ D−qc(D(•)) (see notation 8.5.1.8),

i.e., following 8.5.1.9 to a complex F (•) ∈ D−(D(•)) such that for all i ∈ I, we have F (i) ∈ D−qc(D(i)).
We denote by LD−→

]
Q,qc(D(•)) the full subcategory of LD−→

]
Q(D(•)) consisting of quasi-coherent complexes.
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Remark 8.5.4.2. With the notation of 8.5.1.1.b, let E(•) ∈ Db(
l‹D(•)

X]/S]
(Z)). Following 8.5.1.9, the

property E(•) ∈ Db
qc(

l‹D(•)
X]/S]

(Z)) is equivalent to the property that, for anym ∈ Z, E(m) ∈ Db
qc(

l“D(m)

X]/S]
).

Hence, the above definition of LD−→
b
Q,qc(‹D(•)

X]/S]
(Z)) is equal to that of Berthelot’s one formulated in [Ber02,

4.2.3] (without singularities along a divisor).

Proposition 8.5.4.3. We have the following properties.

(a) LD−→
]
Q,qc(D(•)) is a triangulated subcategory of LD−→

]
Q(D(•)).

(b) If u : I ′ → I is an L-equivalence then the equivalence of 8.3.1.3.1 induces the equivalence of categories

→u
−1
X

: LD−→
]
Q,qc(D(•))→ LD−→

]
Q,qc(→u

−1
X
D(•)). (8.5.4.3.1)

(c) LD−→
−
Q,coh(D(•)) (see notation 8.4.1.1) is a full triangulated subcategory of LD−→

−
Q,qc(D(•)).

Proof. a) Let E(•),F (•) ∈ D−(D(•)) such that for all i ∈ I, we have E(i),F (i) ∈ D−qc(D(i)). Let f : E(•) →
F (•) be a morphism of LD−→

−
Q (D(•)). Hence, there exist λ ∈ L(I), χ ∈M(I) and a morphism u(•) : E(•) →

χ∗λ∗F (•) of D(D(•)) representing f (see 8.1.4.12.1). For any i ∈ I, u(i) : E(i) → F (λ(i)) is a morphism of
D−qc(D(i)) which is a triangulated subcategory of D−(D(i)). By using 8.5.1.9, this implies that the cone
of u(•) belongs to Dqc(D(•)). Hence, we are done.

b) By using 8.5.1.9, we can check that the functor →u
−1
X factors through D−qc(D(•)) → D−qc(→u

−1
X D(•)).

Hence, we get the functor 8.5.4.3.1. Let E•) ∈ LD−→
]
Q(D(•)). With the equivalence 8.3.1.3.1, it remains

to check that if →u
−1
X (E(•)) is quasi-coherent, then E(•) is quasi-coherence. We easily reduce to the case

I ′ = I and λ := u ∈ L(I). In that case, since the canonical morphism E(•) → λ∗(E(•)) is an isomorphism
in LD−→

]
Q(D(•)), then we are done.

c) Using theorem 8.4.1.7, we reduce to check that LD−→
−
Q,coh(D(•)) (see notation 8.4.1.1) is a subcat-

egory of LD−→
−
Q,qc(D(•)). Let E•) ∈ LD−→

−
Q,coh(D(•)). We can suppose there exists λ ∈ L(I) such that

E(•) ∈ D−coh(λ∗D(•)). Since D(λ(i)) is quasi-coherent, then we can apply 7.3.1.16, i.e. D−coh(D(λ(i))) is a
triangulated subcategory of D−qc(D(λ(i))). Hence, E(i) ∈ D−qc(D(λ(i))) and therefore E(i) ∈ D−qc(D(i)), i.e.
E(•) ∈ D−qc(D(•)) (use 8.5.1.9).

Definition 8.5.4.4. Let E(•)
• ∈ LD−→

]
Q(D(•)

• ). We say that E(•) is quasi-coherent if it is isomorphic in

LD−→Q(D(•)
• ) to a complex F (•)

• ∈ D−qc(D(•)
• ) (see notation 8.5.1.8), i.e., to a complex F (•)

• ∈ D−(D(•)
• )

such that for all i ∈ I, we have F (i)
• ∈ D−qc(D(i)

• ). We denote by LD−→
]
Q,qc(D(•)

• ) the full subcategory of

LD−→
]
Q(D(•)

• ) consisting of quasi-coherent complexes.

Theorem 8.5.4.5. Let ] ∈ {−,b}. In the case where ] = b we suppose moreover that D(•)
0 (resp.

gr•ID(•)) has right finite tor dimension on D(•) (resp. D(•)
0 ). Then the functors R←lX(I)∗ and L←l

∗
X(I)

induce canonically quasi-inverse equivalences of categories between LD−→
]
Q,qc(D(•)

• ) and LD−→
]
Q,qc(D(•)).

Proof. It follows from the theorem 8.5.1.10 that we reduce to check that the functors R←lX(I)∗ and L←l
∗
X(I)

of 8.5.1.10 preserve ind-isogenies (resp. lim-isomorphisms), which is a consequence of 8.5.3.3.2 and
8.5.3.9.2.

Notation 8.5.4.6 (Bimodules case for quasi-coherence in LD categories). We give a quasi-coherent
context of the notation and hypotheses of 8.3.1.5 as follows: Let D(•),D′(•) be two sheaves of rings on
the topos X(I). Let R be a sheaf of commutative rings on X, K be an ideal of R. We still denote by
R (resp. K) the constant inductive system of rings of X indexed by I with value R (resp. K). Suppose
(D(•),D′(•), I) and (D(•),D′′(•), I) are solved by (R,K) (see definition 8.5.2.4). Set Ri := R ⊗K Ki+1

for any i ∈ N and R• := (Ri)i∈N the inductive system with the canonical transition map.

Definition 8.5.4.7. Let ] ∈ {∅,+,−,b}. We keep the notation and hypotheses of 8.5.4.6. Let
∗, ∗∗ ∈ {l, r}. We denote by LD−→

]
Q,.,qc(∗D(•),R, ∗∗D′(•)) the full subcategory of LD−→

]
Q(∗D(•),R, ∗∗D′(•))
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(see notation 8.1.4.10) consisting of complexes E(•) such that there exists F (•) ∈ D]
.,qc(∗D(•),R, ∗∗D′(•))

(see notation 8.5.2.7) together with an isomorphism in LD−→
]
Q(∗D(•),R, ∗∗D′(•)) of the form E(•) ∼−→ F (•).

We define similarly LD−→
]
Q,qc,.(

∗D(•),R, ∗∗D′(•)), LD−→
]
Q,qc,.(

∗D(•)
• ,R•, ∗∗D′(•)• ), LD−→

]
Q,.,qc(∗D(•)

• ,R•, ∗∗D′(•)• ).

Lemma 8.5.4.8. We keep the notation and hypotheses of 8.5.4.6. Let ∗, ∗∗ ∈ {l, r}.

(a) The functor −⊗L
D(•)
•
− factors through

−⊗L
D(•)
•
− : LD−→

−
Q (∗D′(•)• ,R•,D(•)

•
r)× LD−→

−
Q (lD(•)

• ,R•, ∗∗D′′(•)• )→ LD−→
−
Q (∗D′(•)• ,R•, ∗∗D′′(•)• ).

(8.5.4.8.1)

(b) The functor 8.5.2.8.3 induces the functor:

−“⊗L
D(•)− : LD−→

−
Q (∗D′(•),R,D(•)r)×LD−→

−
Q (lD(•),R, ∗∗D′′(•))→ LD−→

−
Q (∗D′(•),R, ∗∗D′′(•)). (8.5.4.8.2)

(c) Moreover, both above functors preserve the (D(•) or D′(•)) quasi-coherence, e.g. we get the factor-
ization

−“⊗L
D(•)− : LD−→

−
Q,qc,.(

∗D′(•),R,D(•)r)× LD−→
−
Q,qc,.(

lD(•),R, ∗D′′(•))→ LD−→
−
Q,qc,.(

∗D′(•),R, ∗D′′(•)).
(8.5.4.8.3)

Proof. 1) Let us prove the factorisation 8.5.4.8.2. We can suppose ∗ = l and ∗∗ = r. We need to check
that the functor 8.5.2.8.3 sends a lim-ind-isogeny to a lim-ind-isogeny. Let E(•) ∈ D−(lD′(•),R,D(•)r),
F (•) ∈ D−(lD(•),R, rD′′(•)). Let χ ∈ M(I), λ ∈ L(I). Set E(•)

• := L←l
∗
X(I)(E(•)) ∈ D−(lD′(•)• ,R•,D(•)

•
r)

and F (•)
• := L←l

∗
X(I)(F (•)) ∈ D−(lD(•)

• ,R•, rD′′(•)• ).
By using a resolution of E(•)

• by flat left D′(•)• ⊗R• (D(•)
• )o-modules, we can check there exists a

morphism E(•)
• ⊗L

D(•)
•
χ∗λ∗F (•)

• → χ∗λ∗
(
E(•)
• ⊗L

D(•)
•
F (•)
•

)
making commutative the canonical diagram

E(•)
• ⊗L

D(•)
•
F (•)
•

id⊗σF,(λ,χ) //

σE⊗F,(λ,χ)��

E(•)
• ⊗L

D(•)
•
χ∗λ∗F (•)

•

σE⊗χ∗λ∗F,(λ,χ)��rr
χ∗λ∗

(
E(•)
• ⊗L

D(•)
•
F (•)
•

)
χ∗λ∗(id⊗σF,(λ,χ))

// χ∗λ∗
(
E(•)
• ⊗L

D(•)
•
χ∗λ∗F (•)

•

)
,

(8.5.4.8.4)

where σ are the canonical morphisms (see notation 8.5.3.11.1) and where the square is commutative by
functoriality. By applying the functor R←lX(I)∗ to the diagram 8.5.4.8.4 and by using the commutation
isomorphisms 8.5.3.3.2 and 8.5.3.9.2, we get the morphism E(•)“⊗L

D(•)χ
∗λ∗F (•) → χ∗λ∗

(
E(•)“⊗L

D(•)F (•))
making commutative the diagram:

E(•)“⊗L
D(•)F (•) id⊗σF,(λ,χ) //

σE⊗F,(λ,χ)��

E(•)“⊗L
D(•)χ

∗λ∗F (•)

��rr
χ∗λ∗

(
E(•)“⊗L

D(•)F (•)) // χ∗λ∗
(
E(•)“⊗L

D(•)χ
∗λ∗F (•)) .

(8.5.4.8.5)

This yields the factorization E(•)“⊗L
D(•)− : LD−→

−
Q (lD(•),R, rD′′(•)) → LD−→

−
Q (lD′(•),R, rD′′(•)) and then by

functoriality,

−“⊗L
D(•)− : D−(∗D′(•),R,D(•)r)× LD−→

−
Q (lD(•),R, rD′′(•))→ LD−→

−
Q (lD′(•),R, rD′′(•)).

Similarly, we get the factorization with respect to the first factor.
2) The factorisation 8.5.4.8.1 is more or less contained in the proof of 1) : this is a consequence of

the commutative diagram 8.5.4.8.4.
3) The preservation of quasi-coherence follows from 8.5.2.9.

Remark 8.5.4.9. We keep the notation and hypotheses of 8.5.4.6. Similarly to 8.5.4.8.1 (more precisely,
we use a similar to 8.5.4.8.4 diagram), we check that we have the factorisation:

−⊗L
D(•)− : LD−→

−
Q (∗D′(•),R,D(•)r)× LD−→

−
Q (lD(•),R, ∗∗D′′(•))→ LD−→

−
Q (∗D′(•),R, ∗∗D′′(•)). (8.5.4.9.1)

But contrary to the complete version, it does not preserves the quasi-coherence.
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8.5.4.10. We keep the notation and hypotheses of 8.5.4.6. Let λ ∈ L(I). Let E(•) ∈ LD−→
−
Q (lD′(•),R,D(•)r)

(resp. either E(•) ∈ LD−→
−
Q,.,qc(lD′(•),R,D(•)r) or E(•) ∈ LD−→

−
Q,qc,.(

lD′(•),R,D(•)r)). Moreover, let F (•) ∈
LD−→
−
Q (lλ∗D(•),R, rD′′(•)). We have the morphisms (resp. isomorphisms) in D(lD(•),R,D(•)r):

L←l
∗
X(I) ◦ λ∗(D(•))

8.5.3.10.1
∼−→ λ∗ ◦ L←l

∗
X(I)(D(•))

∼←− λ∗(D(•)
• ) (8.5.4.10.1)

This yields the isomorphisms of LD−→
−
Q,qc(λ∗D(•)r)

E(•)“⊗L
D(•)λ

∗D(•) = R←lX(I)∗(L←l
∗
X(I)E(•) ⊗L

D(•)
•

L←l
∗
X(I)λ

∗D(•))
8.5.4.10.1
∼−→ R←lX(I)∗(L←l

∗
X(I)E(•) ⊗L

D(•)
•
λ∗D(•)

• )

∼−→
8.5.3.14.1

R←lX(I)∗ ◦ λ
∗ ◦ L←l

∗
X(I)(E(•))

8.5.3.9.2
∼−→ λ∗ ◦ R←lX(I)∗ ◦ L←l

∗
X(I)(E(•))← λ∗E(•) (8.5.4.10.2)

Then we have in LD−→
−
Q (∗D′(•),R, ∗D′′(•)) the morphisms (resp. isomorphisms):

E(•)“⊗L
D(•)F (•)

8.5.2.11.1
∼−→ (E(•)“⊗L

D(•)λ
∗D(•))“⊗L

λ∗D(•)F (•) ←
8.5.4.10.2

(λ∗E(•))“⊗L
λ∗D(•)F (•). (8.5.4.10.3)

Similarly, we have in LD−→
−
Q (∗D′(•),R, ∗D′′(•)) the isomorphisms:

E(•) ⊗L
D(•) F (•)

4.6.3.5.1
∼−→ (E(•) ⊗L

D(•) λ
∗D(•))⊗L

λ∗D(•) F (•) ∼−→
8.3.2.2.1

(λ∗E(•))⊗L
λ∗D(•) F (•). (8.5.4.10.4)

Definition 8.5.4.11. Let a ≤ b be two integers. Let E(•) ∈ LD−→Q(D(•)). We say that E(•) has has finite
tor dimension in LD−→Q(D(•)) (resp. LD-tor amplitude in [a, b]) if there exist λ ∈ L(I) and a complex
F (•) ∈ Dtdf(λ

∗D(•)) (resp. F (•) ∈ D(λ∗D(•)) of tor amplitude in [a, b]) together with an isomorphic
in LD−→Q(D(•)) of the form E(•) ∼−→ F (•). We denote by LD−→Q,tdf(D(•)) the strictly full subcategory of
LD−→

b
Q(D(•)) consisting of complexes of finite tor dimension in LD−→Q(D(•)). We denote by LD−→Q,qc,tdf(D(•))

the full subcategory of LD−→Q,tdf(D(•)) consisting of quasi-coherent complexes.

Let E(•)
• ∈ LD−→Q(D(•)

• ). We say that E(•)
• has finite tor dimension in LD−→Q(D(•)

• ) (resp. LD-tor

amplitude in [a, b]) if there exist λ ∈ L(I) and a complex F (•)
• ∈ Dtdf(λ

∗D(•)
• ) (resp. F (•)

• ∈ D(λ∗D(•)
• ) of

tor amplitude in [a, b]) together with an isomorphic in LD−→Q(D(•)
• ) of the form E(•)

•
∼−→ F (•)

• . We denote

by LD−→Q,tdf(D(•)
• ) the full subcategory of LD−→

b
Q(D(•)

• ) consisting of complexes of finite tor dimension in

LD−→Q(D(•)
• ). We denote by LD−→Q,qc,tdf(D(•)) the full subcategory of LD−→Q,tdf(D(•)) consisting of quasi-

coherent complexes.

Remark 8.5.4.12. Let E(•) ∈ LD−→Q,qc,tdf(D(•)). Then this is not clear there exist λ ∈ L(I) and a complex
F (•) ∈ Dqc,tdf(λ

∗D(•)) (see notation 8.5.1.8) together with an isomorphic in LD−→Q(D(•)) of the form
E(•) ∼−→ F (•).

Notation 8.5.4.13. Let ] ∈ {∅,+,−,b}. Let ∗, ∗∗ ∈ {l, r}. We keep the notation and hypotheses
of 8.5.4.6. We denote by LD−→

]
Q,.,tdf(

∗D(•),R, ∗∗D′(•)) the full subcategory of LD−→
]
Q(∗D(•),R, ∗∗D′(•))

consisting of complexes E(•) ∈ LD−→
]
Q(∗D(•),R, ∗∗D′(•)) (see notation 8.1.4.10) such that there exist

λ ∈ L(I) and F (•) ∈ D]
.,tdf(

∗D(•),R, ∗∗λ∗D′(•)) (see notation 8.5.2.7) together with an isomorphism
in LD−→

]
Q(∗D(•),R, ∗∗D′(•)) of the form E(•) ∼−→ F (•). We define similarly LD−→

]
Q,tdf,.(

∗D(•),R, ∗∗D′(•)),
LD−→

]
Q,tdf,.(

∗D(•)
• ,R•, ∗∗D′(•)• ), LD−→

]
Q,.,tdf(

∗D(•)
• ,R•, ∗∗D′(•)• ).

Lemma 8.5.4.14. We keep the notation and hypotheses of 8.5.4.6.

(a) The functor −⊗L
D(•)
•
− factors through

−⊗L
D(•)
•
− : LD−→

b
Q(∗D′(•)• ,R•,D(•)

•
r)× LD−→Q,.,tdf(

lD(•)
• ,R•, ∗∗D′′(•)• )→ LD−→

b
Q(∗D′(•)• ,R•, ∗∗D′′(•)• ).

(8.5.4.14.1)
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(b) The functor 8.5.2.8.3 induces the functor:

−“⊗L
D(•)− : LD−→

b
Q(∗D′(•),R,D(•)r)× LD−→Q,tdf,.(

lD(•),R, ∗∗D′′(•))→ LD−→
b
Q(∗D′(•),R, ∗∗D′′(•)).

(8.5.4.14.2)

(c) Moreover, both functors preserve the quasi-coherence, e.g. we get the factorization

−“⊗L
D(•)− : LD−→

b
Q,qc(∗D′(•),R,D(•)r)× LD−→Q,qc,tdf,.(

lD(•),R, ∗D′′(•))→ LD−→
b
Q,qc(∗D′(•),R, ∗D′′(•)).

(8.5.4.14.3)

Proof. By using the isomorphisms 8.5.4.10.3, 8.5.4.10.4 and the Lemma 8.3.2.9 we get the boundedness
of the functors of Lemma 8.5.4.8.

Theorem 8.5.4.15. The functors R←lX(I)∗ and L←l
∗
X(I) induce canonically quasi-inverse equivalences of

categories between Dqc,tdf(D(•)
• ) and Dqc,tdf(D(•)).

More precisely let E(•) ∈ Db
qc(D(•)) (resp. E(•)

• ∈ Db
qc(D(•)

• )) and a ≤ b be two integers. Then E(•)

(resp. E(•)
• ) has LD-tor amplitude in [a, b] if and only if L←l

∗
X(I)(E(•)) (resp. R←lX(I)∗E

(•)
• ) has LD-tor

amplitude in [a, b].

Proof. It follows from the theorem 8.5.1.10 that we reduce to check that the functors R←lX(I)∗ and L←l
∗
X(I)

of 8.5.1.10 preserve ind-isogenies (resp. lim-isomorphisms), which is a consequence of the functoriality
of the isomorphisms 8.5.3.3.2 and 8.5.3.9.2.

8.5.4.16. Suppose there exists a homomorphism of sheaf of rings on X of the form D(•) → D′(•) such
that the composition of O(•)

X → D(•) with D(•) → D′(•) gives O(•)
X → D′(•).

(a) Let ∗ ∈ {l, r} and ? ∈ {−,b}. Since the functors forgD,D′ of 8.5.2.3.1 send a lim-ind-isogeny to a
lim-ind-isogeny, then we obtain the factorization of the form:

forgD,D′ : LD−→
?
Q,qc(∗D′(•))→ LD−→

?
Q,qc(∗D(•)), forgD,D′ : LD−→

?
Q,qc(∗D′(•)• )→ LD−→

?
Q,qc(∗D(•)

• ).

(8.5.4.16.1)
When D(•) → D′(•) is flat, we get the factorization

forgD,D′ : LD−→Q,qc,tdf(
∗D′(•))→ LD−→Q,qc,tdf(

∗D(•)). (8.5.4.16.2)

(b) Following 8.3.2.2.(a), the functor 8.5.2.3.2 sends a lim-ind-isogeny to a lim-ind-isogeny, then we
obtain the factorization of the form:

D′(•)• ⊗L
D(•)
•
− : LD−→

−
Q,qc(lD(•)

• )→ LD−→
−
Q,qc(lD′(•)• ). (8.5.4.16.3)

If E(•)
• ∈ LD−→

−
Q,qc(lD(•)

• ) has LD-tor amplitude in [a, b], then so is D′(•)• ⊗L
D(•)
•
E(•)
• .

(c) Following 8.3.2.2.(a), the functor 8.5.2.3.4 sends a lim-ind-isogeny to a lim-ind-isogeny. We obtain
therefore the factorization of the form:

D′(•)“⊗L
D(•)− : LD−→

−
Q,qc(lD(•))→ LD−→

−
Q,qc(lD′(•)). (8.5.4.16.4)

If E(•) ∈ LD−→
−
Q,qc(lD(•)) has LD-tor amplitude in [a, b], then so is D′(•)“⊗L

D(•)E(•) (use Theorem
8.5.4.15).

Similarly, we get the functor −“⊗L
D(•)D′(•) : LD−→

−
Q,qc(rD(•))→ LD−→

−
Q,qc(rD′(•)).

Proposition 8.5.4.17. With the notation 8.5.4.16, the functor 8.5.4.16.4 preserves the coherence and
induces:

D′(•)“⊗L
D(•)− : LD−→

−
Q,coh(lD(•))→ LD−→

−
Q,coh(lD′(•)). (8.5.4.17.1)

Moreover, for any E(•) ∈ LD−→
−
Q,coh(D(•)), the canonical morphism of D−(D(•)) (see 8.5.2.2.2)

D′(•) ⊗L
D(•) E(•) → D′(•)“⊗L

D(•)E(•) (8.5.4.17.2)

is an isomorphism in LD−→
−
Q,coh(D′(•)).

498



Proof. Let E(•) ∈ LD−→
−
Q,coh(D(•)). By hypothesis, there exist λ ∈ L(I) and F (•) ∈ D−coh(λ∗D(•)) together

with an isomorphism in LD−→
−
Q (D(•)) of the form E(•) ∼−→ F (•). This yields the isomorphism of LD−→

−
Q (D′(•))

D′(•)“⊗L
D(•)E(•) ∼−→ D′(•)“⊗L

D(•)F (•) ∼−→
8.5.4.10.3

λ∗D′(•)“⊗L
λ∗D(•)F (•). (8.5.4.17.3)

Since F (•) ∈ D−coh(λ∗D(•)), then the canonical morphism of D−(λ∗D′(•))

λ∗D′(•) ⊗L
λ∗D(•) F (•) → λ∗D′(•)“⊗L

λ∗D(•)F (•) (8.5.4.17.4)

is an isomorphism (see 8.5.2.2.2) and therefore its target belongs to D−coh(λ∗D′(•)). Hence, it follows from
the isomorphism 8.5.4.17.3 that we get the factorization 8.5.4.17.1. We have moreover the isomorphisms
of LD−→

−
Q (D′(•))

D′(•) ⊗L
D(•) E(•) ∼−→ D′(•) ⊗L

D(•) F (•) ∼−→
8.5.4.10.4

λ∗D′(•) ⊗L
λ∗D(•) F (•). (8.5.4.17.5)

By composing 8.5.4.17.3, 8.5.4.17.4 and 8.5.4.17.5, we get the isomorphism 8.5.4.17.2.
Similarly, we get the functor −“⊗L

D(•)D′(•) : LD−→
−
Q,coh(rD(•))→ LD−→

−
Q,coh(rD′(•)).

8.5.4.18. Let V be a complete discrete valuation ring of characteristic (0, p) with maximal ideal m.
Let S] be a nice fine V-log formal scheme as defined in 3.3.1.10, X] be a log smooth S]-log-formal
scheme. For any m ∈ N, let B(m)

X be a commutative OX-algebra endowed with a compatible struc-
ture of D(m)

X]/S]
-module and satisfying the hypotheses of 7.3.2. We suppose that, for any m ∈ N, we

have a morphism of OX-algebras B(m)
X → B(m+1)

X which is moreover D(m)

X]/S]
-linear. This yields the

homomorphism B(m)
X
“⊗OX

D(m)

X]/S]
→ B(m+1)

X
“⊗OX

D(m+1)

X]/S]
of sheaves of rings on X and we denote by‹D(•)

X]/S]
:= (B(m)

X
“⊗OX

D(m)

X]/S]
)m∈N the corresponding object of X(N). Let ∗ ∈ {l, r}. In the case where

D(•) = B(•)
X (resp. D(•) = ‹D(•)

X]/S]
), we set B(•)

X•
:= D(•)

• (resp. ‹D(•)
X]•/S

]
•

:= D(•)
• ). In both cases, we have

the ringed topos

←lX(N) = (←l
−1
X(N) a←lX(N),∗) : (X

(N)
• ,D(•)

• )→ (X(N),D(•)). (8.5.4.18.1)

Since B(•)
X → ‹D(•)

X]/S]
is flat, for any E(•) ∈ D(‹D(•)

X]/S]
), it follows from 4.3.4.6.1 that by taking K-flat

representation of E(•) we get the canonical morphism

B(•)
X•
⊗L
B(•)

X

E(•) → ‹D(•)
X]•/S

]
•
⊗L
D̃(•)

X]/S]

E(•) (8.5.4.18.2)

is an isomorphism.

8.5.4.19. We keep notation 8.5.4.18. Since a resolution of F (•)
• by flat left ‹D(•)

X]•/S
]
•
-modules is also a

resolution by flat B(•)
X•

-modules, then it follows from 4.2.3.1 that we have the tensor product

−⊗L
B(•)
X•
− : D−(∗‹D(•)

X]•/S
]
•
)×D−(

l‹D(•)
X]•/S

]
•
)→ D−(∗‹D(•)

X]•/S
]
•
).

By copying the proof of 8.5.4.8, we can check it preserves lim-ind-isogenies and we get therefore the
bifunctor

−⊗L
B(•)
X•
− : LD−→

−
Q (∗‹D(•)

X]•/S
]
•
)× LD−→

−
Q (

l‹D(•)
X]•/S

]
•
)→ LD−→

−
Q (∗‹D(•)

X]•/S
]
•
) (8.5.4.19.1)

making commutative the diagram

LD−→
−
Q (B(•)

X•
)× LD−→

−
Q (B(•)

X•
)

−⊗L

B(•)
X•

−

8.5.4.8.1
// LD−→

−
Q (B(•)

X•
)

LD−→
−
Q (∗‹D(•)

X]•/S
]
•
)× LD−→

−
Q (

l‹D(•)
X]•/S

]
•
)

−⊗L

B(•)
X•

−

//

OO

LD−→
−
Q (∗‹D(•)

X]•/S
]
•
)

OO
(8.5.4.19.2)

The bifunctor 8.5.4.19.1 preserves the quasi-coherence.
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Lemma 8.5.4.20. Let us keep notation 8.5.4.18. We have the bifunctor

−“⊗L
B(•)

X

− : LD−→
−
Q (∗‹D(•)

X]/S]
)× LD−→

−
Q (

l‹D(•)
X]/S]

)→ LD−→
−
Q (∗‹D(•)

X]/S]
) (8.5.4.20.1)

making commutative the diagram

LD−→
−
Q (B(•)

X )× LD−→
−
Q (B(•)

X )

−⊗̂L

B(•)
X

−

8.5.4.8.2
// LD−→

−
Q (B(•)

X )

LD−→
−
Q (∗‹D(•)

X]/S]
)× LD−→

−
Q (

l‹D(•)
X]/S]

)

−⊗̂L

B(•)
X

−
//

OO

LD−→
−
Q (∗‹D(•)

X]/S]
).

OO
(8.5.4.20.2)

The bifunctor 8.5.4.20.1 preserves the quasi-coherence and corresponds to 8.5.4.19.1 via the equivalence
of categories of Theorem 8.5.1.10, i.e. we have the commutative (up to canonical isomorphism) diagram:

LD−→
−
Q,qc(∗‹D(•)

X]•/S
]
•
)× LD−→

−
Q,qc(

l‹D(•)
X]•/S

]
•
)

−⊗L

B(•)
X•

−

//

R←lX(N)∗
×R←lX(N)∗

��

LD−→
−
Q,qc(∗‹D(•)

X]•/S
]
•
)

R←lX(N)∗
��

LD−→
−
Q,qc(∗‹D(•)

X]/S]
)× LD−→

−
Q,qc(

l‹D(•)
X]/S]

)

−⊗̂L

B(•)
X

−
//

L←l
∗
X(N)×L←l

∗
X(N)

OO

LD−→
−
Q,qc(∗‹D(•)

X]/S]
).

L←l
∗
X(N)

OO
(8.5.4.20.3)

Proof. 1) First, we check we have a commutative diagram like 8.5.4.20.2 but with LD−→
−
Q replaced by D−.

Let E(•) ∈ D−(∗‹D(•)
X]/S]

), F (•) ∈ LD−→
−
Q (

l‹D(•)
X]/S]

). It follows from 4.4.4.1.4, that the canonical morphism

B(•)
X•
⊗B(•)

X

E(•) → ‹D(•)
X]•/S

]
•
⊗D̃(•)

X]/S]

E(•) =: L←l
∗
X(N)(E(•))

is an isomorphism in D−(∗‹D(•)
X]•/S

]
•
). We set E(•)

• := L←l
∗
X(N)(E(•)) ∈ D−(∗‹D(•)

X]•/S
]
•
), F (•)

• := L←l
∗
X(N)(F (•)) ∈

D−(
l‹D(•)
X]•/S

]
•
). Hence, by applying R←lX(N)∗ and by definition (see 8.5.2.2.1), we get

E(•)“⊗L
B(•)

X
F (•) ∼−→ R←lX(N)∗

Å
E(•)
• ⊗L

B(•)
X•
F (•)
•

ã
∈ D−(∗‹D(•)

X]/S]
). (8.5.4.20.4)

2) We can copy the proof of 8.5.4.8 to get the localized functor with respect to lim-ind-isogenies.
Moreover, by construction we get the commutative diagram 8.5.4.20.3 up to canonical isomorphism.

Lemma 8.5.4.21. Let V be a complete discrete valuation ring of characteristic (0, p) with maximal ideal
m. Let S] be a nice fine V-log formal scheme as defined in 3.3.1.10, X] be a log smooth S]-log-formal
scheme. For any m ∈ N, let B(m)

X and C(m)
X be two commutative OX-algebras endowed with a compatible

structure of D(m)

X]/S]
-module and satisfying the hypotheses of 7.3.2. We suppose that, for any m ∈ N, we

have the commutative diagram

B(m)
X

//

��

B(m+1)
X

��
C(m)
X

// C(m+1)
X

(8.5.4.21.1)

whose arrows are both morphisms of OX-algebras and morphisms of left D(m)

X]/S]
-modules. With nota-

tion 8.5.4.20, this yields the homomorphism of sheaves of rings on X(N) of the form B(•)
X → C(•)

X and
B(•)
X
“⊗OX

D(•)
X]/S]

→ C(•)
X
“⊗OX

D(•)
X]/S]

.
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(a) For any E(•) ∈ LD−→
−
Q,qc(

lB(•)
X
“⊗OX

D(•)
X]/S]

), F (•) ∈ LD−→
−
Q,qc(

lC(•)
X
“⊗OX

D(•)
X]/S]

), we have the canonical

morphism of LD−→
−
Q,qc(

lC(•)
X
“⊗OX

D(•)
X]/S]

)

F (•)
X
“⊗L
B(•)

X

E(•) ∼−→ F (•)
X
“⊗L
C(•)
X

(
C(•)
X
“⊗L
B(•)

X

E(•)
)
. (8.5.4.21.2)

(b) For any E(•) ∈ D−(
lB(•)

X
“⊗OX

D(•)
X]/S]

) the canonical morphism of D−(
lC(•)

X
“⊗OX

D(•)
X]/S]

)

C(•)
X
“⊗L
B(•)

X

E(•) → (C(•)
X
“⊗OX

D(•)
X]/S]

)“⊗L
B(•)

X
⊗̂OX

D(•)
X]/S]

E(•) (8.5.4.21.3)

is an isomorphism.

Proof. By using 4.3.4.12.1, we get the isomorphism of D−(
lC(•)
X•
⊗OX• D

(•)
X]•/S

]
•
)

F (•)
• ⊗L

B(•)
X•
E(•)
•

∼−→ F (•)
• ⊗L

C(•)
X•

Å
C(•)
X•
⊗L
B(•)
X•
E(•)
•

ã
. (8.5.4.21.4)

Hence, via the quasi-inverse equivalences of categories of 8.5.4.5, we get 8.5.4.21.2 from 8.5.4.21.4. Sim-
ilarly, the isomorphism 8.5.4.21.3 follows from 4.3.4.6.1 and from the quasi-inverse equivalences of cate-
gories of 8.5.4.5.

Remark 8.5.4.22. Beware the isomorphism 8.5.4.21.2 might be wrong if complexes are not quasi-coherent.

8.5.5 Strongly quasi-flat relative I-ringed V-log formal schemes
In order to give examples when we can apply for instance theorems 8.5.4.5 and 8.5.4.15 in the context of
bounded quasi-coherent complexes, let us introduce the following notion of relative I-ringed V-log formal
scheme.

Definition 8.5.5.1. We fix I is a partially ordered set. For convenience, let us define the following
categories.

(a) We define the category of “I-ringed V-log formal scheme” as follows:

(i) Its objects consist in pairs (X],B(•)
X ) where X] is a V-log formal scheme, X is the underlying

topological space of X], X(•) = X(I), and B(•)
X is a commutative O(•)

X -algebra. The underlying
ringed I-topos of (X],B(•)

X ) is (X(•),B(•)
X ).

(ii) A morphism of I-ringed V-log formal scheme (X],B(•)
X )→ (Y],B(•)

Y ) is the data a morphism of

log schemes of the form α : X] → Y] and of a morphism of O(•)
X -algebras α∗B(•)

Y → B(•)
X .

(b) We define the category of “relative I-ringed V-log formal scheme” as follows: a “relative I-ringed V-
log formal scheme” (X],B(•)

X )/(Y],B(•)
Y ) is a morphism of I-ringed V-log formal schemes of the form

(X],B(•)
X )→ (Y],B(•)

Y ). A morphism of relative I-ringed V-log formal schemes (X],B(•)
X )/(Y],B(•)

Y )→
(X′],B(•)

X′ )/(Y′],B(•)
Y′ ) is a commutative square of the form

(X],B(•)
X )

f //

α

��

(X′],B(•)
X′ )

α′

��
(Y],B(•)

Y )
g // (Y′],B(•)

Y′ ),

(8.5.5.1.1)

such that the arrows are morphisms of I-ringed V-log formal schemes.

Example 8.5.5.2. A (logarithmic) V-formal scheme can be viewed as a I-ringed V-log formal scheme
via the faithfully flat functor given by X] 7→ (X],O(•)

X ). By abuse of notation, we can simply write X]

for (X],O(•)
X ).
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Definition 8.5.5.3. Let (X],B(•)
X )/S] be a relative I-ringed V-log formal scheme.

(a) We say that (X],B(•)
X )/S] is quasi-flat, if there exists a morphism S→ T of V-formal schemes such

that the induced morphism of ringed spaces (X],B(i)
X )→ T is flat, for any i ∈ I.

(b) We say that (X],B(•)
X )/S] is strongly quasi-flat if there exists a morphismS→ T of V-formal schemes

such that the induced morphism of ringed spaces (X],B(i)
X )→ T is flat for any i ∈ I and such that,

denoting by IT an ideal of definition of T, the sheaf OT0
(resp. gr•ITOT) has finite tor dimension on

OT (resp. OT0
).

(c) Let α̃ : (X],B(•)
X )/S] → (X′],B(•)

X′ )/S′] be a morphism of relative I-ringed V-log formal schemes. We
say that α̃ is “strongly quasi-flat” if there exists a morphism S → T of V-formal schemes such that
both induced morphisms of ringed spaces (X],B(i)

X ) → T and (X′],B(i)
X′ ) → T are flat for any i ∈ I

and such that denoting by IT an ideal of definition of T the sheaf OT0
(resp. gr•ITOT) has finite tor

dimension on OT (resp. OT0
). Remark that in both (X],B(•)

X )/S] and (X′],B(•)
X′ )/S] are strongly

quasi-flat.

8.5.5.4. The notion of strong quasi-flatness is interesting because of the following: With notation
8.5.4.18, suppose that (X],B(•)

X )/S] is strongly quasi-flat in the sense of 8.5.5.3. Set D(•) := B(•)
X

(resp. D(•) := ‹D(•)
X]/S]

). By definition (resp. and by flatness of the homomorphism B(•)
X → ‹D(•)

X]/S]
), we

get that D(•)
0 (resp. gr•ID(•)) has right and left finite tor dimension on D(•) (resp. D(•)

0 ). Hence, we can
apply for instance theorems 8.5.4.5 and 8.5.4.15.

The main example of such context will be given at 8.7.4.2.

8.6 Duality
Let I be a partially ordered set and let X be a topological space. Let D(•),D′(•) be two sheaves of rings
on the topos X(I). Let R be a sheaf of commutative rings on X, K be an ideal of R. We still denote by
R (resp. K) the constant inductive system of rings of X indexed by I with value R (resp. K). Suppose
(D(•),D′(•), I) is solved by (R,K) (see definition 8.5.2.4).

8.6.1 Perfectness in LDQ(D(•)), comparison with the D†Q-perfectness

Definition 8.6.1.1. Let E(•) ∈ LD−→Q(D(•)). The complex E(•) is said to be perfect if there exist λ ∈ L(I)

and F (•) ∈ Dperf(λ
∗D(•)) together with an isomorphism in LD−→Q(D(•)) of the form E(•) ∼−→ F (•).

Remark 8.6.1.2. Beware that this is not clear that the perfectness in the sense of 8.6.1.1 is local on X
or on X(•).

8.6.1.3. Let λ ∈ L(I). Following 7.1.3.13, F (•) ∈ Dperf(λ
∗D(•)) means that F (•) satisfies the following

conditions:

(i) For any i ∈ I, F (i) ∈ Dperf(D(λ(i))) ;

(ii) For any i, j ∈ I such that i ≤ j, the canonical homomorphism

D(λ(j))
L
⊗D(λ(i)) F (λ(i)) → F (λ(j)) (8.6.1.3.1)

is an isomorphism.

Notation 8.6.1.4. Let ] ∈ {∅,−,b, 0}. We denote by LD−→
]
Q,perf(D(•)) the strictly full subcategory of

LD−→
]
Q(D(•)) consisting of perfect complexes. The category LD−→

]
Q,perf(D(•)) is a strictly full subcategory of

LD−→
]
Q,coh(D(•)) and of LD−→

]
Q,tdf(D(•)) (see notation 8.5.4.11).

Lemma 8.6.1.5. Let E(•) ∈ LD−→Q(D(•)). Let λ ≤ µ be two elements of L(I). Consider the following two
properties.
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(a) There exists F (•) ∈ Dperf(λ
∗D(•)) together with an isomorphism in LD−→Q(D(•)) of the form E(•) ∼−→

F (•).

(b) There exists G(•) ∈ Dperf(µ
∗D(•)) together with an isomorphism in LD−→Q(D(•)) of the form E(•) ∼−→

G(•).

Then (a)⇒ (b).

Proof. Using the fact the functor µ∗D(•) L
⊗λ∗D(•) − preserves the perfectness, i.e. induces µ∗D(•) L

⊗λ∗D(•)

− : Dperf(λ
∗D(•))→ Dperf(µ

∗D(•)), we can copy the proof of 8.4.1.4.

Proposition 8.6.1.6. Let u : I ′ → I be an L-equivalence between two partially ordered sets (see definition
8.1.3.8). Let ] ∈ {∅,−,b, 0}. The equivalence of categories →u

−1
X of 8.3.1.3.1 preserves the perfectness,

i.e. it induces the equivalence of categories

→u
−1
X

: LD−→
]
Q,perf(D

(•))→ LD−→
]
Q,perf(→u

−1
X
D(•)). (8.6.1.6.1)

Suppose I ′ = I and u ∈ L(I). Denoting by λ := u, we have the forgetful functor LD−→
]
Q perf(λ

∗D(•))→
LD−→

]
Q perf(D(•)) which is a quasi-inverse equivalence of 8.6.1.6.1.

Proof. For any µ ∈ L(I), by using the functor→u
−1
X preserves the perfectness, i.e. induces→u

−1
X : Dperf(µ

∗D(•))→
Dperf(→u

−1
X µ∗D(•)), we can copy the proof of 8.4.1.5.

Proposition 8.6.1.7. Suppose I has a smallest element or is strictly filtered (see 8.1.3.8). Let ] ∈
{∅,−,b}. Then the subcategory LD−→

]
Q,perf(D(•)) of LD−→Q(D(•)) is a triangulated subcategory.

Proof. We can copy the proof of 8.4.1.7.

Theorem 8.6.1.8. Suppose that either I is filtered and has a smallest element or I is strictly filtered.
Suppose moreover that X is coherent. Suppose the following conditions are satisfied

(i) The rings D(i) are coherent sheaves for any i ∈ I

(ii) The transition maps D(i)
Q → D

(j)
Q are flat for any elements i ≤ j of I;

(iii) There exists an integer d such that, for any elements i ≤ j of I, the ring D(j) is of tor-dimension
≤ d on D(i) ;

(iv) For any i ∈ I, for any coherent D(i)
Q -module E, there exists a coherent D(i)-module E ′ together with

an isomorphism E ′Q
∼−→ E of D(i)

Q -modules.

Under these hypotheses, the functor→l
∗
Q induces a fully faithful functor LD−→

b
Q,perf(D(•))→ Db

perf(D
†
Q).

Proof. The factorisation of→l
∗
Q is obvious and the fully faithfulness follows from 8.4.1.15.

Remark 8.6.1.9. Keep notation and hypotheses of 8.6.1.8. This is not clear that the functor→l
∗
Q induces a

fully faithful functor LD−→
b
Q,perf(D(•))→ Db

perf(D
†
Q). It follows from 7.1.3.12 that if the ring D(i) has finite

tor dimension for any i ∈ I then by using 1.4.3.29, we get LD−→
]
Q,perf(D(•)) = LD−→

]
Q,coh(D(•)). Moreover,

in the case D† has also finite tor dimension, we get Db
perf(D

†
Q) = Db

coh(D†Q) (use loc.cit.).

Let us finish the subsection by considering the bimodules case.

Definition 8.6.1.10. Let ] ∈ {∅,+,−,b}. We denote by LD−→
]
Q,.,perf(D(•),R,D′(•)) the full subcate-

gory of LD−→
]
Q(D(•),R,D′(•)) consisting of complexes E(•) such that there exist λ ∈ L(I) and F (•) ∈

D]
.,perf(D(•),R, λ∗D′(•)) together with an isomorphism in LD−→

]
Q(D(•),R,D′(•)) of the form E(•) ∼−→ F (•).

We define similarly LD−→
]
Q,perf,.(D(•),R,D′(•)).
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Remark 8.6.1.11. Recall the categoryD]
.,perf(D(•),R, λ∗D′(•)) is the strictly full subcategory ofD](D(•),R, λ∗D′(•))

consisting in complexes whose image in D](D′(•)) belongs to D]
perf(D′(•)). However, this is not clear that

if E(•) is a complex of LD−→
]
Q(D(•),R,D′(•)) whose image in LD−→

]
Q(D′(•)) belongs to LD−→

]
Q,perf(D′(•)), then

E(•) ∈ LD−→
]
Q,.,perf(D(•),R,D′(•)).

Lemma 8.6.1.12. Let E(•) ∈ LD−→Q(D(•),R,D′(•)). Let λ ≤ µ be two elements of L(I). Consider the
following two properties.

(a) There exists F (•) ∈ Dperf,.(λ
∗D(•),R,D′(•)) together with an isomorphism in LD−→Q(D(•),R,D′(•)) of

the form E(•) ∼−→ F (•).

(b) There exists G(•) ∈ Dperf,.(µ
∗D(•),R,D′(•)) together with an isomorphism in LD−→Q(D(•),R,D′(•)) of

the form E(•) ∼−→ G(•).

Then (a)⇒ (b).

Proof. Using the fact the functor µ∗D(•) L
⊗λ∗D(•) − preserves the perfectness, i.e. induces µ∗D(•) L

⊗λ∗D(•)

− : Dperf(λ
∗D(•),R,D′(•)) → Dperf(µ

∗D(•),R,D′(•)), by using 8.3.2.9.(b), we can copy the proof of
8.4.1.4.

Lemma 8.6.1.13. Let λ, µ be two elements of L(I). Let E(•) ∈ Dperf,.(λ
∗D(•),R,D′(•)). Then µ∗E(•) ∈

Dperf,.(µ
∗λ∗D(•),R, µ∗D′(•)).

Proof. This is obvious from 8.6.1.3.

Proposition 8.6.1.14. Let u : Ĩ → I be an increasing map of partially ordered sets which is an L-
equivalence (see definition 8.1.3.8). The equivalence of categories →u

−1
X of 8.3.1.7.1 preserves the perfect-

ness, i.e. it induces the equivalence of categories

→u
−1
X

: LD−→
]
Q,perf,.(D

(•),R,D′(•))→ LD−→
]
Q,perf,.(→u

−1
X
D(•),R,→u

−1
X
D′(•)). (8.6.1.14.1)

Suppose Ĩ = I and u ∈ L(I). Denoting by λ := u, the forgetful functor LD−→
]
Q,perf,.(λ

∗D(•),R, λ∗D′(•))→
LD−→

]
Q,perf,.(D(•),R,D′(•)) is a quasi-inverse equivalence of 8.6.1.14.1.

Proof. We proceed similarly to the proofs 8.3.1.3 and 8.4.1.5 (use also 8.6.1.13).

Proposition 8.6.1.15. Suppose I has a smallest element or is strictly filtered (see 8.1.3.8). Let
] ∈ {∅,−,b}. Then the subcategory LD−→

]
Q,perf(D(•),R,D′(•)) of LD−→Q(D(•),R,D′(•)) is a triangulated

subcategory.

Proof. We can copy the proof of 8.4.1.7.

8.6.2 Dual functor
Suppose that either I is filtered and has a smallest element or I is strictly filtered.

8.6.2.1. Since L(I)×M(I) is a filtered set, then we get the functor

F(−,−) := “lim−→”
(λ,χ)∈L(I)×M(I)

QLD◦RHomD(•)(−, χ∗λ∗−) : D−(D(•))op×D+(D(•),R,D′(•))→ IndLD−→
+
Q (rD′(•))

(8.6.2.1.1)
where QLD : D+(rD′(•)) → LD−→

+
Q (rD′(•)) is the localisation functor, where “lim−→”

(λ,χ)∈L(I)×M(I)

means the

inductive limits in the category of ind-objects of LD−→
+
Q (rD′(•)), and where

RHomD(•)(−, χ∗λ∗−) : D−(D(•))op ×D+(D(•),R,D′(•))→ D+(rD′(•))

is the functor defined similarly to 8.5.2.8.1.
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Lemma 8.6.2.2. Let f : E(•) → E ′(•) be a morphism belonging to S−(D(•)). Let g : F (•) → F ′(•) be a
morphism belonging to S+(D(•),D′(•)) (see notation 8.1.4.10) between two objects of D+(D(•),R,D′(•)).
Then the canonical morphism

F(E ′(•),F (•))→ F(E(•),F ′(•)) (8.6.2.2.1)

is an isomorphism.

Proof. We easily reduce to the following two cases.
1) Suppose there exists χ0 ∈ M(I) and λ0 ∈ L(I) such that g = σF,(λ0,χ0) and f = id (see notation

8.1.4.1). Then we can copy the part 1) of the proof the 8.2.4.21.
2) Suppose there exist χ0 ∈ M(I) and λ0 ∈ L(I) such that f = σE,(λ0,χ0). We copy the part

2) of the proof the 8.2.4.21 as follows: We denote by D(•),(•,•) (resp. D′(•),(•,•), resp. R) the con-
stant inductive system of rings of X(I) indexed by L(I) × M(I) with value D(•) (resp. D′(•), resp
R). Let I(•),(•,•) ∈ K+(D(•),(•,•),R,D′(•),(•,•)) be a complex of injective left D(•),(•,•) ⊗R (D′(•),(•,•))o-
modules representing c(F (•)). Let I ′(•),(•,•) ∈ K+(D(•),(•,•),R,D′(•),(•,•)) be a complex of injective
left D(•),(•,•) ⊗R (D′(•),(•,•))o-modules endowed with a quasi-isomorphism χ∗0λ

∗
0I(•),(•,•) → I ′(•),(•,•) of

K+(D(•),(•,•),R,D′(•),(•,•)), where χ∗0λ∗0I(•),(•,•) := (χ∗0λ
∗
0I(•),(λ,χ))λ,χ. Consider the following diagram

of K+(D′(•)):

Hom•D(•)(χ
∗
0λ
∗
0E(•), I(•),(λ,χ))

(5) //

(1)

��

Hom•D(•)(E(•), I(•),(λ,χ))

(?)

ss
(3)

��
Hom•D(•)(χ

∗
0λ
∗
0E(•), χ∗0λ

∗
0I(•),(λ,χ))

(2)

��

(6) //Hom•D(•)(E(•), χ∗0λ
∗
0I(•),(λ,χ))

(4)

��
Hom•D(•)(χ

∗
0λ
∗
0E(•), I ′(•),(λ,χ))

(7) //Hom•D(•)(E(•), I ′(•),(λ,χ)),

(8.6.2.2.2)

where the numbered arrows are given by functoriality of the bifunctor Hom•D(•)(−,−) and where the
arrow (?) is defined by functoriality from the functor χ∗0λ∗0 (i.e. is the composition of 8.2.4.18.3 with the
first morphism of 8.2.4.19.1). It follows from the Hom version of the commutative diagram 8.2.4.20.1
that we get the commutativity of both triangles of the diagram 8.6.2.2.2. Since its bottom square is
commutative by functoriality, then the diagram 8.6.2.2.2 is commutative.

Let Qqi
LD : K+(rD′(•))→ LD−→

+
Q (rD′(•)) be the localisation functor. By applying the functor “lim−→”

(λ,χ)

Qqi
LD

to the diagram 8.6.2.2.2 we get the commutative diagram

“lim−→”
(λ,χ)

QLD ◦ RHomD(•)(χ∗0λ
∗
0E(•), χ∗λ∗D(•))

(5) //

(2)◦(1)

��

“lim−→”
(λ,χ)

QLD ◦ RHomD(•)(E(•), χ∗λ∗D(•))

(2)◦(?)

ss
(4)◦(3)

��
“lim−→”
(λ,χ)

QLD ◦ RHomD(•)(χ∗0λ
∗
0E(•), χ∗0λ

∗
0χ
∗λ∗D(•))

(7) // “lim−→”
(λ,χ)

QLD ◦ RHomD(•)(E(•), χ∗0λ
∗
0χ
∗λ∗D(•))

(8.6.2.2.3)
where in the notation concerning the arrows, we have omitted indicating “lim−→”

(λ,χ)

Qqi
LD. Remark that the

top morphism (5) is 8.6.2.2.1. By copying the part 2.iii) of the proof of 8.2.4.21, we get that both vertical
arrows of 8.6.2.2.3 are isomorphisms. Hence, we are done.

8.6.2.3. It follows from 8.6.2.2 that the functor F of 8.6.2.1.1 induces the functor

F(−,−) : LD−→
−
Q (D(•))op × LD−→

+
Q (D(•),R,D′(•))→ IndLD−→

+
Q (rD′(•)). (8.6.2.3.1)
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Lemma 8.6.2.4. Let λ0 ∈ L(I), E(•) ∈ D−(D(•)) and F (•) ∈ D+(D(•),R,D′(•)). The canonical
morphism

“lim−→”
(λ,χ)∈L(I)λ0×M(I)

QLD◦RHomλ∗0D(•)(λ∗0E(•), χ∗λ∗F (•))→ “lim−→”
(λ,χ)∈L(I)×M(I)

QLD◦RHomD(•)(E(•), χ∗λ∗F (•))

is an isomorphism.

Proof. We reduce to check

“lim−→”
(λ,χ)∈L(I)λ0×M(I)

QLD◦RHomλ∗0D(•)(λ∗0E(•), χ∗λ∗F (•))→ “lim−→”
(λ,χ)∈L(I)λ0×M(I)

QLD◦RHomD(•)(E(•), χ∗λ∗F (•))

is an isomorphism. Only in this proof, we denote by D(•),(•,•) (resp. D′(•),(•,•) , resp. R) the constant
inductive system of sheaves of rings on X(I) indexed by L(I)λ0 × M(I) with value D(•) (resp D′(•),
resp. R). We denote by ‹D(•),(•,•) (resp. ‹D′(•),(•,•), resp. ‹R) the constant inductive system of rings
of X(I) indexed by L(I)λ0 ×M(I) with value λ∗0D(•) (resp. λ∗0D′(•), resp R). We define the functor
c̃ : K+(D(•),R,D′(•)) → K+(‹D(•),(•,•), ‹R, ‹D′(•),(•,•)) by setting, for any G(•) ∈ K+(D(•),R,D′(•)), for
any λ ≥ λ0 in L(I) and any χ ∈ M(I), c̃(G(•))(λ,χ) := χ∗λ∗(G(•)) and where for any (λ1, χ1) ≤ (λ2, χ2)
the transition maps χ∗1λ∗1G(•) → χ∗2λ

∗
2G(•) are the canonical ones i.e. are equal to σG,(λ2,χ2),(λ1,χ1) (see

8.1.4.1.1).
Let Ĩ(•),(•,•) ∈ K+(‹D(•),(•,•), ‹R, ‹D′(•),(•,•)) be a complex of injective left ‹D(•),(•,•) ⊗R̃ (‹D′(•),(•,•))o-

modules representing c̃(F (•)). Let I(•),(•,•) ∈ K+(D(•),(•,•),R,D′(•),(•,•)) be a complex of injective
left D(•),(•,•) ⊗R (D′(•),(•,•))o-modules endowed with a quasi-isomorphism Ĩ(•),(•,•) → I(•),(•,•) of the
category K+(D(•),(•,•),R,D′(•),(•,•)).

Let Ĩ ′(•),(•,•) ∈ K+(‹D(•),(•,•), ‹R, ‹D′(•),(•,•)) be a complex of injective left ‹D(•),(•,•) ⊗R̃ (‹D′(•),(•,•))o-
modules endowed with a quasi-isomorphism λ∗0I(•),(•,•) → Ĩ ′(•),(•,•) of K+(‹D(•),(•,•), ‹R, ‹D′(•),(•,•)),
where λ∗0I(•),(•,•) = (λ∗0I(•),(λ,χ))λ,χ. Let I ′(•),(•,•) ∈ K+(D(•),(•,•),R,D′(•),(•,•)) be a complex of injec-
tive left D(•),(•,•) ⊗R (D′(•),(•,•))o-modules endowed with a quasi-isomorphism Ĩ ′(•),(•,•) → I ′(•),(•,•) of
K+(D(•),(•,•),R,D′(•),(•,•)).

Consider the diagram of K+(D′(•)):

Hom•
λ∗0D(•)(λ

∗
0E(•), Ĩ(•),(λ,χ))

(α) //

(1)

��

Hom•D(•)(E(•), Ĩ(•),(λ,χ))

(??)

ss

(4) //Hom•D(•)(E(•), I(•),(λ,χ))

(?)

tt
Hom•

λ∗0D(•)(λ
∗
0E(•), λ∗0Ĩ(•),(λ,χ))

(2) //Hom•
λ∗0D(•)(λ

∗
0E(•), λ∗0I(•),(λ,χ))

(3)ss

(i)
//Hom•D(•)(λ

∗
0E(•), λ∗0I(•),(λ,χ))

(5)tt
Hom•

λ∗0D(•)(λ
∗
0E(•), Ĩ ′(•),(λ,χ))

(ii)
//Hom•D(•)(λ

∗
0E(•), Ĩ ′(•),(λ,χ))

(6) //Hom•D(•)(λ
∗
0E(•), I ′(•),(λ,χ))

(8.6.2.4.1)
where (i) and (ii) are the forgetful functors (see 8.2.4.19.2), where α is the composition of the forgetful
functor 8.2.4.19.2 with the map induced by functoriality from the canonical map E(•) → λ∗0E(•), where
the numbered arrows are given by functoriality of the bifunctors Hom•D(•)(−,−) or Hom•

λ∗0D(•)(−,−)

and where the arrows (?) and (??) are defined at 8.2.4.18.3. The triangle is commutative (see 8.2.4.20.3),
the diamonds are commutative by functoriality. Hence, we get the commutativity of the diagram:

RHomλ∗0D(•)(λ∗0E(•), χ∗λ∗F (•))
(4)◦(α) //

(3)◦(2)◦(1)

��

RHomD(•)(E(•), χ∗λ∗F (•))

(3)◦(?)

ss
(6)◦(5)◦(i)◦(?)
��

RHomλ∗0D(•)(λ∗0E(•), λ∗0χ
∗λ∗F (•))

(6)◦(ii)// RHomD(•)(λ∗0E(•), λ∗0χ
∗λ∗F (•)).

(8.6.2.4.2)

Since both maps λ∗0Ĩ(•),(λ,χ) → λ∗0I(•),(λ,χ) → Ĩ ′(•),(λ,χ) are quasi-isomorphisms ofK+(‹D(•),(•,•), ‹R, ‹D′(•),(•,•))
then the left vertical map of 8.6.2.4.2 is equal to the canonical morphism. Since both maps λ∗0I(•),(λ,χ) →
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Ĩ(•),(λ,χ) → I ′(•),(λ,χ) are quasi-isomorphisms of K+(D(•),(•,•),R,D′(•),(•,•)) then the right vertical map
of 8.6.2.4.2 is equal to the canonical morphism. Finally, it is tautological that the three other arrows of
8.6.2.4.2 are the canonical ones.

By applying the functor “lim−→”
(λ,χ)∈L(I)λ0×M(I)

QLD to the diagram 8.6.2.4.2, we get a commutative dia-

gram say (Diag). Since the right vertical morphism of (Diag) is equal to the map denoted by (2) ◦ (?) of
the diagram 8.6.2.2.3, then it is an isomorphism (see the proof of 8.6.2.2). Let ‹P(•) ∈ K+(λ∗0D(•)) be a
complex of left λ∗0D(•)-modules belonging to P(λ∗0D(•)) representing λ∗0E(•). By copying the part 2.iii)
of the proof of 8.2.4.21, we get that the left vertical arrows of the diagram (Diag) is an isomorphism.
Hence, we are done.

Lemma 8.6.2.5. Suppose I is strictly filtered and X is quasi-compact. Let λ0 ∈ L(I), E(•) ∈ Db
perf(λ

∗
0D(•)),

let g : F (•) → G(•) be a morphism belonging to Sb(D(•),D′(•)) (see notation 8.1.4.10) between two objects
of Db(D(•),R,D′(•)). Then the canonical morphism of LD−→

b
Q(rD′(•))

QLD ◦ RHomλ∗0D(•)(E(•), F (•))→ QLD ◦ RHomλ∗0D(•)(E(•), G(•)) (8.6.2.5.1)

induced by g is an isomorphism.

Proof. Since E(•) ∈ Db
perf(λ

∗
0D(•)), then both complexes of the map 8.6.2.5.1 do belong to LD−→

b
Q(D′(•)).

We can therefore apply Corollary 8.1.5.11. Hence, with lemma 8.3.3.8, the property that 8.6.2.5.1 is
an isomorphism is local on X(•). This implies that we can suppose E(•) is strictly perfect. Hence, by
devissage, we reduce to the case where E(•) = λ∗0D(•), which is obvious.

Proposition 8.6.2.6. Suppose I is strictly filtered and X is quasi-compact. Let E(•) ∈ LD−→
b
Q,perf(D(•)).

(a) For any F (•) ∈ LD−→
b
Q(D(•),R,D′(•)), we have F(E(•),F (•)) ∈ LD−→

b
Q(rD′(•)) (see notation 8.6.2.3.1).

(b) For any F (•) ∈ LD−→Q,.,perf(D(•),R,D′(•)), we have F(E(•),F (•)) ∈ LD−→
b
Q,perf(

rD′(•)).

Proof. We can suppose there exists λ0 ∈ L(I) such that E(•) ∈ Db
perf(λ

∗
0D(•)).

a) Similarly to 8.6.2.2, we establish that the canonical morphism

“lim−→”
(λ,χ)∈L(I)λ0×M(I)

QLD◦RHomλ∗0D(•)(λ∗0E(•), χ∗λ∗F (•))→ “lim−→”
(λ,χ)∈L(I)λ0×M(I)

QLD◦RHomλ∗0D(•)(E(•), χ∗λ∗F (•))

is an isomorphism. It follows from Lemmas 8.6.2.4 and 8.6.2.5 that we have the canonical isomorphism
of LD−→

b
Q(rD′(•)):

QLD ◦ RHomλ∗0D(•)(E(•), λ∗0F (•))
∼−→ F(E(•), λ∗0F (•)).

Since F(E(•), λ∗0F (•))
∼−→ F(E(•),F (•)), then we are done.

b) Suppose now F (•) ∈ LD−→
b
Q,.,perf(D(•),R,D′(•)). Following 8.6.1.14, we have λ∗0F (•) ∈ LD−→Q,.,perf(λ

∗
0D(•),R, λ∗0D′(•)).

Hence, there exists µ0 ∈ L(I), G(•) ∈ Db
.,perf(λ

∗
0D(•),R, µ∗0λ∗0D(•)) together with an isomorphism in

LD−→
b
Q(λ∗0D(•),R, λ∗0D′(•)) of the form λ∗0F (•) ∼−→ G(•). This yields the isomorphisms

F(E(•),F (•))
∼−→ F(E(•), λ∗0F (•))

∼−→ F(E(•),G(•))
∼←− QLD ◦ RHomλ∗0D(•)(E(•), G(•)),

where the last isomorphism comes from 8.6.2.5.1. Since RHomλ∗0D(•)(E(•), G(•)) ∈ Db
perf(µ

∗
0λ
∗
0D′(•)),

then we are done.

Notation 8.6.2.7 (Duality). Suppose I is strictly filtered and X is quasi-compact. We denote by

RLDHomD(•)(−,−) := F(−,−) : LD−→
b
Q,perf(D(•))op × LD−→

b
Q(D(•),R,D′(•))→ LD−→

b
Q(rD′(•)) (8.6.2.7.1)

the functor induced by F (see 8.6.2.6). Following 8.6.2.3.1, we get also the functor:

RLDHomD(•)(−,D(•)) : LD−→
b
Q,perf(D(•))op → LD−→

b
Q,perf(

rD(•)). (8.6.2.7.2)
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Following the proof of 8.6.2.6, for any λ0 ∈ L(I) and E(•) ∈ Db
perf(λ

∗
0D(•)), we have the isomorphism of

LD−→
b
Q(rD(•)):

RLDHomD(•)(E(•),D(•))
∼−→ RHomλ∗0D(•)(E(•), λ∗0D(•)). (8.6.2.7.3)

A translation of 8.6.2.6 is that the functor QLD ◦ RHomD(•)(−, D(•)) : D−(D(•))op → LD−→
+
Q (rD(•))

is universally right localisable with respect to Sb(D(•)) at any object of LD−→
b
Q,perf(D(•)) (see definition

7.4.1.9) and we have

RSb(D(•))QLD ◦ RHomD(•)(E(•), D(•)) = RLDHomD(•)(E(•),D(•)). (8.6.2.7.4)

8.7 Sheaf of differential operators with infinite order and finite
level

8.7.1 The sheaf of differential operators D†

Let S] be a nice fine V-log formal scheme (see definition 3.3.1.10). Moreover, let X] → S] be a log
smooth morphism of log formal schemes. We suppose X is locally noetherian.

8.7.1.1. Let B(•) be an inductive system of commutative OX-algebras indexed by N satisfying the
following conditions.

(a) For anym ∈ N, B(m) is endowed with a structure of left D(m)

X]/S]
-module compatible with its structure

of OX-algebra such that the transition map B(m) → B(m+1) are D(m)

X]/S]
-linear ;

(b) For any m ∈ N, for any affine open U of X, the ring Γ(U,B(m)) is noetherian ;

(c) For any m ∈ N, for any i ≥ 0, B(m)/mi+1B(m) is a quasi-coherent OXi-module and the canonical
homomorphism B(m) → lim←−i∈N

B(m)/mi+1B(m) is an isomorphism.

When the transition maps B(m) → B(m+1) are the identities, we say that B(•) is constant and we denote
it by B. We remark that the conditions b and c are equal to that of 7.2.3 in the case where I = m.
Hence, for instance we get following 7.2.3.3 that for any open immersion V ⊂ U of affine opens, the
homomorphism Γ(U,B(•))→ Γ(V,B(•)) is flat.

Definition 8.7.1.2. We keep notation 8.7.1.1 and we suppose B(•) is constant.

(a) We define the sheaf of differential operators of infinite order and finite level with coefficients in B to
be

B ⊗†OX
DX]/S] := lim−→

m

B“⊗OX
“D(m)

X]/S]
.

When B = OX, we simply write D†
X]/S]

and call it the sheaf of differential operators of infinite order
and finite level.

(b) We define the sheaf of differential operators of infinite order and infinite level with coefficients in B
to be B“⊗OX

DX]/S] , the p-adic completion of B ⊗OX
DX]/S] .

8.7.1.3. We keep notation 8.7.1.1. Since B(m) is endowed with a structure of left “D(m)

X]/S]
-module, then

B := lim−→m
B(m) is endowed with a structure of left D†

X]/S]
-module. We set

B ⊗†OX
DX]/S] := lim−→

m

B(m)“⊗OX
“D(m)

X]/S]
,

B ⊗†OX
DX]/S],Q :=

Ä
B ⊗†OX

DX]/S]

ä
Q
.

Let B(•)
t be the ideal of B(•) consisting of p-torsion sections and B′(•) := B(•)/B(•)

t . Then B′(•) satisfies
the condition (a) of 8.7.1.1. Moreover, B′(m) is a coherent B(m)-module for any m ∈ N (see 7.4.5.1). With
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7.2.3.16, this implies that B′(•) satisfies the properties (b) and (c) of 8.7.1.1. By setting B′ := lim−→m
B′(m),

it follows from 7.5.1.10 that the canonical homomorphism

B ⊗†OX
DX]/S],Q → B′ ⊗

†
OX
DX]/S],Q (8.7.1.3.1)

is an isomorphism.

8.7.1.4. With notation 8.7.1.3, B ⊗†OX
DX]/S] is right and left flat over B ⊗OX

DX]/S] Indeed, this
follows from 7.5.1.4 by taking inductive limits.

Proof. Following 4.1.2.17.(d), Γ(U,B⊗OX
D(m)

X]/S]
) is right and left noetherian for any affine open U ⊂ X.

According to 7.2.2.2, Γ(U,B“⊗OX
D(m)

X]/S]
) is the p-adic completion of Γ(U,B⊗OX

D(m)

X]/S]
). Hence, we are

done.

8.7.1.5. We keep notation 8.7.1.1. For any m′ ≥ m, by p-adic completion of 3.2.3.5.1 and by using the
transition maps, we get the maps

B(m)“⊗OX
D(m)

X]/S]

ρm′,m−→ B(m′)“⊗OX
D(m′)

X]/S]
ρm′−→ B“⊗OX

DX]/S] . (8.7.1.5.1)

It follows from 3.1.4.3.1, 3.2.3.1.1 and 3.2.2.14.3 that the maps of 3.2.3.5.1 are homomorphisms of rings.
From 3.2.3.5.2, we get the formula

ρm′,m(∂
〈k〉(m)

] ) =
q

(m)
k !

q
(m′)
k !

∂
〈k〉(m′)
] and ρm(∂

〈k〉(m)

] ) = q(m)
k

!∂
[k]
] . (8.7.1.5.2)

Hence, when B(•) is constant and B is p-torsion free, the homomorphisms 8.7.1.5.1 are injective.

8.7.1.6 (p-adic norm, vp, vπ). We denote by e the absolute ramification index of V. We keep notation
8.7.1.1 and suppose B(m) is p-torsion free for some m ∈ N. Let U] be an affine open of X]. We endow
Γ(U,B(m)

Q )
∼−→ Γ(U,B(m))K with a norm induced by the p-adic topology on Γ(U,B(m)) as follows. For

any b ∈ Γ(U,B(m)
Q ), we set ‖b‖ = p−vp(b), where Eb = {n ∈ Z ; b ∈ pnΓ(U,B(m))} and vp(b) := maxEb if

b 6= 0 and vp(0) = +∞. This norm is called the p-adic norm on Γ(U,B(m)
Q ) given by Γ(U,B(m)).

Remark moreover that ‖bb′‖ ≤ ‖b‖‖b′‖ and then vp : BK → Z∪{+∞} is a quasi-valuation. We call vp
to be the p-adic quasi-valuation of Γ(U,B(m)

Q ) induced by Γ(U,B(m)). We also define vπ(b) := max{n ∈
Z ; b ∈ πnΓ(U,B(m))} if b 6= 0 and vπ(b) = +∞ otherwise. We say that vπ : BK → Z∪ {+∞} the π-adic
quasi-valuation of Γ(U,B(m)

Q ) induced by Γ(U,B(m)). For any b ∈ Γ(U,B(m)
Q ), we have

vp(b) ≤
vπ(b)

e
< vp(b) + 1. (8.7.1.6.1)

We denote by | − | the p-adic norm on Q given by Z(p). Hence, by convention |p| = p−1.

Lemma 8.7.1.7. With notation 1.2.1.2 we have the following estimates.

(a) For any k,m ∈ N, we have the inequalities

k

pm(p− 1)
− logp(k + 1)− p

(p− 1)
< vp(q

(m)
k !) ≤ k

pm(p− 1)
. (8.7.1.7.1)

(b) For any m ∈ N there exists η′ < 1, c′ ∈ R such that |q(m)
k !| ≤ c′η′k for all k ∈ N.

(c) For any η < 1 there exist m ∈ N, c ∈ R such that ηk ≤ c|q(m)
k !| for all k ∈ N.

Proof. Let us write q = q
(m)
k . Then k

pm(p−1) −
1

(p−1) <
q

(p−1) ≤
k

pm(p−1) . Using the estimates 1.2.1.1.2 of
σ(q), we get moreover

− logp(k + 1)− 1 <
−σ(q)

(p− 1)
≤ 0.
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Since vp(q!) = (q−σ(q))
(p−1) (see 1.2.1.1.1), then we get 8.7.1.7.1 by addition.

The inequality |q(m)
k !| ≤ c′η′

k is equivalent to saying that −vp(q(m)
k !) ≤ logp(c

′) + k logp(η
′). The

inequality ηk ≤ c|q(m)
k !| is equivalent to saying that k logp(η) ≤ logp(c)− vp(q

(m)
k !). Hence, the estimates

8.7.1.7.1 imply easily (b) and (c).

Proposition 8.7.1.8. We keep notation 8.7.1.1. Suppose B(•) is constant and B is p-torsion free. Let
U] be an affine open of X] endowed with logarithmic coordinates. Let P ∈ Γ(U,B“⊗OX

DX]/S]). Following
7.5.1.5.2 (in the case where m = +∞), we can uniquely write

P =
∑
k∈Nd

bk∂
[k]
] ,

with bk ∈ Γ(U,B) a sequence converging to 0 for the p-adic topology when |k| goes to infinity. For any
i ∈ N, let Pi ∈ Γ(U,Bi⊗OXi DX]i /S]i ) be the image of P , where Bi := B/mi+1B. The following conditions
are equivalent:

(a) P ∈ Γ(U,B ⊗†OX
DX]/S]) ;

(b) ∃α, β ∈ R such that ord(Pi) ≤ αi+ β for any i ∈ N ;

(c) ∃c, η ∈ R+ such that η < 1 and ‖bk‖ ≤ cη|k|, for any k ∈ Nd.

Proof. (a) ⇒ (b). Set B := Γ(U,B). Set Bi := Γ(U,Bi). Suppose P ∈ Γ(U,B ⊗†OX
DX]/S]). Then

there exists m ∈ N large enough such that P ∈ Γ(U,B“⊗OX
D(m)

X]/S]
). Let us fix such an m. Following

7.5.1.5.1, there exists a unique sequence (b
(m)
k )k∈Nd of elements of B such that b(m)

k → 0 for the p-adic

topology when |k| → ∞ and P =
∑
k∈Nd b

(m)
k ∂

〈k〉(m)

] . Since ∂〈k〉(m)

] = q
(m)
k !∂

[k]
] (see 8.7.1.5.2), then we

get P =
∑
k∈Nd b

(m)
k q

(m)
k !∂

[k]
] , i.e. bk = b

(m)
k q

(m)
k !. Using 8.7.1.7, ∃η < 1, ∃c ∈ R such that |q(m)

k !| ≤ cη|k|

for any k ∈ Nd. Setting a := e logp(1/η) and b := e logp(1/c), using the first inequality 8.7.1.6.1, this
yields vπ(bk) ≥ evp(q

(m)
k !) ≥ a|k| + b, where vp is the p-adic valuation of Z(p) and vπ is the π-adic

quasi-valuation of B. This is equivalent to saying that ord(Pi) ≤ 1
a i−

b
a for any i ∈ N.

(b)⇒ (c). Suppose ∃α, β ∈ R such that ord(Pi) ≤ αi+β for any i ∈ N. Let k ∈ Nd. Set ik := vπ(bk).
Since the image of bk in Bik is not null, then |k| ≤ αik + β. Hence, using the second inequality 8.7.1.6.1,

we get ‖bk‖ = p−vp(bk) < p1−
ik

e ≤ p1− (|k|−β)

αe = p1+ β
αe

Ä
p−

1
αe

ä|k|
. Hence, we can choose c = p1+ β

αe and
η = p−1/αe.

(c)⇒ (a). Suppose ∃c, η ∈ R>0 such that η < 1 and ‖bk‖ ≤ cη|k|, for any k ∈ Nd. We have to prove
that for m large enough, bk/q

(m)
k ! ∈ B. The inequality ‖bk‖ ≤ cη|k| is equivalent to vp(bk) ≥ λ|k| + µ,

with µ = − logp(c) and λ = − logp(η) > 0. Using 8.7.1.7.1, this yields

vp(bk/q
(m)
k

!) ≥ λ|k|+ µ− |k|/pm(p− 1) = (λ− 1/pm(p− 1)) |k|+ µ. (8.7.1.8.1)

Suppose m large enough such that λ− 1/pm(p− 1) > 0. Hence, if µ ≥ 0, then vp(bk/q
(m)
k !) ≥ 0, i.e.

bk/q
(m)
k ! ∈ B and we are done. Suppose now µ < 0 and m large enough such that the inequalities hold

pm ≥ − µ

(λ− 1/pm(p− 1))
⇔ pmλ− 1/(p− 1) ≥ −µ⇔ pm ≥ (−µ+ 1/(p− 1)) /λ. (8.7.1.8.2)

Let k ∈ Nd. If |k| ≥ −µ/ (λ− 1/pm(p− 1)), then (λ− 1/pm(p− 1)) |k|+ µ ≥ 0 and we are done thanks
to 8.7.1.8.1. On the other hand, if |k| ≤ −µ/ (λ− 1/pm(p− 1)), then from 8.7.1.8.2 we get |k| ≤ pm.
Hence, q(m)

k ! = 1 and then bk/q
(m)
k ! ∈ B.

The Spencer exact sequence (see 4.7.3.7.2) is wrong at the level m when m ≥ 1. However, we get the
exactness of the end of the sequence up to a multiplication by pm (or pm! with logarithmic log structures):

Proposition 8.7.1.9. Suppose X/S is smooth equipped with coordinates t1, . . . , td. We use notation
7.5.1.5.
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(a) Let P =
∑
k ak∂

〈k〉 ∈ Γ(X, “D(m)
X/S) with ak = 0 for all k such that k1 = 0. Then there exists a unique

operator Q ∈ Γ(X, “D(m)
X/S) such that pmP = Q∂1.

(b) Let P =
∑
k ak∂

[k] ∈ Γ(X,D†X/S,Q). If ak = 0 for all k such that k1 = 0, then there exists a unique

operator Q ∈ Γ(U,D†X/S,Q) such that P = Q∂1.

Proof. The part (b) follows from (a) by taking limit. For (a) we now take k such that k1 6= 0. In “D(m)
X/S

we have the relation: ≠
k1

1

∑
∂
〈k1〉
1 = ∂

〈k1−1〉
1 ∂1, with

≠
k1

1

∑
=

®
k1 if pm - k,
pm if pm|k.

For any k1, 〈k1

1 〉 divides p
m in Zp, thus we can take Q to be

Q =
∑
k1 6=0

(pm
≠
k1

1

∑−1

)ak∂
〈k−ε1〉.

Finally, the uniqueness of Q follows easily from the fact that OX is p-torsion free and from the unicity
of the writing of Q of the form Q =

∑
k bk∂

〈k〉 ∈ Γ(X, “D(m)
X/S).

Proposition 8.7.1.10. Suppose X]/S] is equipped with logarithmic coordinates u1, . . . , ud and X is
p-torsion free. We use notation 7.5.1.5.

(a) Let P =
∑
k ak∂

〈k〉
] ∈ Γ(X, “D(m)

X]/S]
) with ak = 0 for all k such that k1 = 0. Then there exists a

unique operator Q ∈ Γ(X, “D(m)

X]/S]
) such that pm!P = Q∂]i.

(b) Let P =
∑
k ak∂

[k]
] ∈ Γ(X,D†

X]/S],Q). If ak = 0 for all k such that k1 = 0, then there exists a unique

operator Q ∈ Γ(U,D†
X]/S],Q) such that P = Q∂]i.

Proof. The part (b) follows from (a) by taking limit. We can suppose P is of the form ∂
〈n〉(m)

]1 for some

integer n ≥ 0. Let us prove by induction on n ≥ 0 that there exists a unique operator Q ∈ Γ(X,D(m)

X]/S]
)

such that pm!∂
〈n〉(m)

]1 = Q∂1. Following 3.2.3.11.c, there exists a unique operator Q ∈ Γ(X,D(m)

X]/S]
) such

that n!∂
〈n〉(m)

]1 = Q∂1. Hence, when 1 ≤ n ≤ pm we are done. Suppose now n ≥ pm and let q ≥ 1 and
0 ≤ r < pm be some integers such that n = pmq + r. Following 3.2.3.13.1, we have the formula

∂
〈pm(q−1)+r〉(m)

]1 ∂
〈pm〉(m)

]1 =

≠
pmq + r

pm

∑
∂
〈pmq+r〉(m)

]1

+

pmq+r−1∑
k=max{pm(q−1)+r,pm}

k!

(pmq + r − k)!(k − pm)!(k − (pm(q − 1) + r))!

q
(m)
pm !q

(m)
pm(q−1)+r!

q
(m)
k !

∂
〈k〉(m)

]1

with k!
(pmq+r−k)!(k−pm)!(k−(pm(q−1)+r))!

q
(m)

pm
!q

(m)

pm(q−1)+r
!

q
(m)

k
!

∈ Z(p). Following 1.2.1.5.1, we have
¨
pmq+r
pm

∂
∈

Z∗(p). Hence, we conclude the induction. Finally, the uniqueness of Q follows from the fact that OX is

p-torsion free, from the property 3.2.3.14.1 and the unicity of the writing P =
∑
k ak∂

〈k〉
] .

8.7.2 Swapping left and right D†-modules
Let S] be a nice fine V-log formal scheme (see definition 3.3.1.10). Moreover, let X] → S] be a log
smooth morphism of log formal schemes. We suppose X is locally noetherian.

Let B(•) be an inductive system of commutative OX-algebras indexed by N satisfying the conditions
of 8.7.1.1. Set ‹D(m)

X]/S]
:= B(m)“⊗OX

“D(m)

X]/S]
, ‹D†

X]/S]
:= lim−→m

‹D(m)

X]/S]
, i.e. ‹D†

X]/S]
= B ⊗†OX

DX]/S] (see
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notation 8.7.1.3). We get a canonical left ‹D†
X]/S]

-module structure on B := lim−→m
B(m). This yield a

structure of left “DX]/S]-module structure on B̂, where “DX]/S] is the p-adic completion of DX]/S] (or of
D†

X]/S]
). We suppose B(•) has no p-torsion (this is an harmless hypothesis: see 8.7.1.3.1). In that case‹D†

X]/S]
has no p-torsion and is included in its p-adic completion B“⊗OX

DX]/S] .

8.7.2.1. Following 7.5.1.11, the sheaf ω̃(m)

X]/S]
:= B(m) ⊗OX

ωX]/S] is endowed with a canonical right‹D(m)

X]/S]
-module structure extending its structure of B(m)-module. By taking the inductive limits on the

level, the sheaf ω̃X]/S] := B ⊗OX
ωX]/S] is endowed with a canonical right ‹D†

X]/S]
-module structure

extending its structure of B-module.
Suppose X]/S] has logarithmic coordinates u1, . . . , ud ∈ MX] . By p-adic completion of the loga-

rithmic adjoint operator (see 3.4.1.2.3), we get the map Γ(X, ‹D(m)

X]/S]
) → Γ(X, ‹D(m)

X]/S]
) given by P =∑

k∈Nd bk∂
〈k〉(m)

] 7→ ‹P :=
∑
k∈Nd ∂̃

〈k〉(m)

] bk, where bk is a sequence of elements of Γ(X,B(m)) converg-
ing to 0 for the p-adic topology when |k| goes to infinity. With the local description 8.7.1.8, we can
check the logarithmic adjoint operator (see 3.4.1.2.3) extends to a By taking inductive limits on the
level, this yields the map Γ(X, ‹D†

X]/S]
) → Γ(X, ‹D†

X]/S]
). This map is also induced (via the inclu-

sion Γ(X, ‹D†
X]/S]

) ⊂ Γ(X,B“⊗OX
DX]/S])), by the p-adic completion of the logarithmic adjoint operator

Γ(X,B“⊗OX
DX]/S])→ Γ(X,B“⊗OX

DX]/S]) given by P =
∑
k∈Nd bk∂

[k]
] 7→ ‹P :=

∑
k∈Nd ∂̃

[k]

] bk, where bk is
a sequence of elements of Γ(X,B) converging to 0 for the p-adic topology when |k| goes to infinity. It fol-
lows from the formula 7.5.1.11.1 that the action of P ∈ Γ(X, ‹D†

X]/S]
) on the section b d log t1∧· · ·∧d log td,

where b is section of B is given by the formula

(b d log t1 ∧ · · · ∧ d log td) · P = ‹P (b)d log t1 ∧ · · · ∧ d log td. (8.7.2.1.1)

8.7.2.2. We have the following properties.

(a) By taking the inductive limits on the level, we get from 7.5.1.13.(a) a structure of right ‹D†
X]/S]

-

bimodule on ω̃X]/S] ⊗B ‹D†X]/S] .
(b) Let E be a left ‹D†

X]/S]
-module. Via the canonical isomorphism of B-modules:

ω̃X]/S] ⊗B E
∼−→
Ä
ω̃X]/S] ⊗B ‹D†X]/S]ä⊗D̃†

X]/S]

E (8.7.2.2.1)

we get a structure of right ‹D†
X]/S]

-module on ω̃X]/S] ⊗B E . Suppose X]/S] has logarithmic coordi-

nates u1, . . . , ud ∈ MX] . With notation 8.7.2.1, we compute the action of P ∈ Γ(X, ‹D†
X]/S]

) on the
section d log t1 ∧ · · · ∧ d log td ⊗ x of ω̃X]/S] ⊗B E , where x is a section of E , is given by the formula

(d log t1 ∧ · · · ∧ d log td ⊗ x) · P = d log t1 ∧ · · · ∧ d log td ⊗ ‹P · x. (8.7.2.2.2)

Hence, the structure of right B(m) ⊗OX
D(m)

X]/S]
-module on ω̃(m)

X]/S]
⊗B(m) E given by 7.5.1.12 is equal

to the one induced (via the canonical map B(m) ⊗OX
D(m)

X]/S]
→ ‹D†

X]/S]
) by its structure of right‹D†

X]/S]
-module.

(c) LetM be a right ‹D†
X]/S]

-module. Via the canonical isomorphism

HomBX
(ω̃X]/S] ,M)

∼−→ HomD̃†
X]/S]

(ω̃X]/S] ⊗BX
‹D†
X]/S]

,M), (8.7.2.2.3)

we get a structure of left ‹D†
X]/S]

-module on HomBX
(ω̃X]/S] ,M). Suppose X]/S] has logarithmic

coordinates u1, . . . , ud ∈ MX] . With notation 8.7.2.1, we compute the action of P ∈ Γ(X, ‹D†
X]/S]

)

on the section x⊗ (d log t1∧· · ·∧d log td)
∗ of HomBX

(ω̃X]/S] ,M), where x is section ofM, is given
by the formula

P · (x⊗ (d log t1 ∧ · · · ∧ d log td)
∗) = x · ‹P ⊗ (d log t1 ∧ · · · ∧ d log td)

∗. (8.7.2.2.4)

Hence, the induced structure of left B(m) ⊗OX
D(m)

X]/S]
-module corresponds to that of 7.5.1.12.
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8.7.2.3. Let E (resp. M) be a left (resp. right) ‹D†
X]/S]

-module.

(a) Using 8.7.2.2.4, we easily compute that the canonical B-linear isomorphism

(ω̃X]/S] ⊗B ‹D†X]/S])r ⊗D̃†
X]/S]

E ∼−→ ω̃X]/S] ⊗B E (8.7.2.3.1)

is right ‹D†
X]/S]

-linear.

(b) Since ω̃X]/S] is locally free (of rank one), the canonical B-linear morphism

ω̃X]/S] ⊗B HomB(ω̃X]/S] ,M)
∼−→ M (8.7.2.3.2)

is an isomorphism. Using 8.7.2.2.4, we compute this isomorphism is moreover ‹D†
X]/S]

-linear. Simi-
larly, the canonical B-linear isomorphism :

E ∼−→ HomB(ω̃X]/S] , ω̃X]/S] ⊗B E). (8.7.2.3.3)

is ‹D†
X]/S]

-linear.

(c) HomB(ω̃X]/S] ,−) and HomO(ωX]/S] ,−) (resp. ω̃X]/S] ⊗B − and ωX]/S] ⊗OX −) are canonically
isomorphism on the category of right (resp. left) ‹D†

X]/S]
-modules.

(d) The functors − ⊗BX
ω̃−1
X]/S]

= HomBX
(ω̃X]/S] ,−) and ω̃X]/S] ⊗BX

− are exact and induce quasi-
inverse equivalences between the category of (resp. coherent, resp. flat, resp. locally projective of
finite type) left ‹D†

X]/S]
-modules and that of (resp. coherent, resp. flat, resp. locally projective

of finite type) right ‹D†
X]/S]

-modules. Hence, for any ? ∈ {−,+,b, ∅}, the functors ω̃X]/S] ⊗BX
−

and HomBX
(ω̃X]/S] ,−) induce quasi-inverse equivalences of categories between D?(l‹D†

X]/S]
) and

D?(r‹D†
X]/S]

). Moreover, these equivalences preserve K-flat complexes and K-injective complexes.

8.7.2.4. By taking the projective limits, the inductive limits on the level, we get from 4.2.5.6.1 the
transposition isomorphism of right ‹D†

X]/S]
-modules:

δ̃X]/S] := δ
ω̃

X]/S]
: ω̃X]/S] ⊗B ‹D†X]/S] ∼−→ ω̃X]/S] ⊗B ‹D†X]/S] . (8.7.2.4.1)

By applying to this isomorphism the functor − ⊗BX ω̃−1
X]/S]

to the right (resp. left) structure from the

source (resp. target), we get the isomorphism of ‹D†
X]/S]

-modules:

α̃X]/S] : ω̃X]/S] ⊗B ‹D†X]/S] ⊗B ω̃−1
X]/S]

∼−→ ‹D†
X]/S]

. (8.7.2.4.2)

By applying to this isomorphism the functor − ⊗B ω̃X]/S] to the left (resp. right) structure from the
source (resp. target), this yields the isomorphism

β̃X]/S] : ‹D†
X]/S]

⊗B ω̃−1
X]/S]

∼−→ ‹D†
X]/S]

⊗B ω̃−1
X]/S]

. (8.7.2.4.3)

8.7.2.5. Let E (resp. M) be a left (resp. right) ‹D†
X]/S]

-module. By copying the proof of 8.7.2.5, we get
the following isomorphism of OS-modules:

M⊗D̃†
X]/S]

E ∼−→ (ωX]/S] ⊗OX
E)⊗D̃†

X]/S]

(M⊗OX
ω−1
X]/S]

). (8.7.2.5.1)

8.7.2.6. The sheaf ω̃(m)

X]/S],Q := B(m)
Q ⊗OX

ωX]/S] is endowed with a canonical right ‹D(m)

X]/S],Q-module

structure extending its structure of B(m)
Q -module. By taking the inductive limits on the level, the sheaf

ω̃X]/S],Q := BQ ⊗OX
ωX]/S] is endowed with a canonical right ‹D†

X]/S],Q-module structure extending its
structure of BQ-module. The results of this subsection are still valid by replacing respectively ω̃X]/S] by
ω̃X]/S],Q and ‹D(m)

X]/S]
by ‹D(m)

X]/S],Q.
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8.7.3 Overconvergent singularities
Proposition 8.7.3.1. We keep notation 3.4. We suppose with S is endowed with a quasi-coherent (resp.
coherent of the formal case) m-PD-ideal (aS , bS , αS) such that p ∈ aS . Let m, r ∈ N be two integers
such that pm+1 divides r. Fix f ∈ Γ(X,OX), put B′X(f, r) := OX [T ]/(frT − p), Y be the open of X
complementary to V (f) and j : Y ⊂ X be the inclusion.

(a) There exists on B′X(f, r) a canonical structure of left D(m)

X]/S]
-module compatible with its structure

of OX -algebra such that B′X(f, r)→ j∗OY is D(m)

X]/S]
-linear.

(b) If g ∈ Γ(X,OX), and f ′ = gf , the OX -algebra homomorphism

ρg : B′X(f, r) = OX [T ]/(frT − p)→ B′X(f ′, r) = OX [T ′]/(f ′rT ′ − p)

such that ρg(T ) = grT ′ is D(m)

X]/S]
-linear.

(c) If r is divisible by pm
′+1 with m′ ≥ m, then the structure of D(m)

X]/S]
-module of B′X(f, r) is equal to

that induced by its structure of D(m′)

X]/S]
-module.

Proof. a) Since the formal case is checked identically, let us focus on the algebraic one. Consider the
following commutative diagram

X]
φf //

��

A1
Z(p)

= Spec Z(p)[t]

��
(S], aS , bS , αS) // (Spec Z(p), (p), (p), α(p)),

(8.7.3.1.1)

where φf is the morphism given by f and where ((p), α(p)) is the canonical m-PD-structure of (p) (see
1.2.4.2.a). Hence, by using the preservation of D-module structures under pullbacks (see 4.4.2.4), since
B′X(f, r) = φ∗f (B′A1

Z(p)

(t, r)), we reduce to the case where S] = Spec Z(p) and X] = Spec Z(p)[t], f = t.

Since the ideal of the closed immersion ∆X/S is the ideal of Z(p)[t1, t2] = (Z(p)[t1])[t2 − t1] generated by
t2−t1, then following 1.3.2.6, we have (|X|,PnX/S,(m)) = Spec(Z(p)[t1]〈t2−t1〉(m)/I

{n+1}), where and I =

(t2 − t1) is the m-PD-ideal generated by t2− t1. We have r = pm+1q. Since Z(p)[t1]〈t2− t1〉(m)/I
{n+1} is

p-torsion free, then we compute there exists a of degree r homogeneousm-PD-polynomial φ(m)
r (t1, t2) ∈ I

such that
tr2 − tr1 = pφ(m)

r (t1, t2). (8.7.3.1.2)

Set T1 := T ⊗ 1 ∈ OX [T ]/(frT − p)⊗OX PnX/S,(m) and T2 := 1⊗ T ∈ PnX/S,(m) ⊗OX OX [T ]/(frT − p).
We are looking for an OX -algebra isomorphism εn making commutative the diagram below:

PnX/S,(m) ⊗OX OX [T ]/(frT − p)

��

εn
∼

// OX [T ]/(frT − p)⊗OX PnX/S,(m)

��
j∗(PnY/S,(m) ⊗OY OY )

∼ // j∗PnY/S,(m) j∗(OY ⊗OY PnY/S,(m))∼
oo

(8.7.3.1.3)
where the bottom isomorphisms are the canonical isomorphisms and the composite bottom isomorphism
is εOYn (see 3.4.2.4.1). The image of T2 (resp. T1) in PnY/S,(m) is pt−r2 (resp. pt−r1 ). To do so, we define
an OX -algebra map εn(T2) by setting

εn(T2) = T1(1 + T1φ
(m)
r (t1, t2))−1,

which has a meaning because φ(m)
r (t1, t2) is nilpotent in PnX/S,(m). Its inverse is given by T1 7→ T2(1 −

T2φ
(m)
r (t1, t2))−1. Since φ(m)

r (t1, t2) ∈ I, then ε0 = id. Moreover, the cocycle condition is a consequence
of the formula

φ(m)
r (t1, t2) + φ(m)

r (t2, t3) = φ(m)
r (t1, t3) (8.7.3.1.4)
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in Z(p)[t1]〈t2 − t1, t3 − t2〉(m).
b) and c) We leave the proof to the reader.

Remark 8.7.3.2. Contrary to Berthelot’s notation of [Ber96c, 4.2], we have added a prime, i.e. the ring
B′X(f, r) was written BX(f, r). The reason is that in order to use Huyghe sheaves of 8.7.3.16, we prefer
to work by default with the slight modification of 8.7.3.8 introduced by Huyghe where p is replaced by
π.

Proposition 8.7.3.3. We consider the algebraic case of 3.4 (beware the nilpotence condition is too
strong in the formal case). Let m, r ∈ N be two integers such that pm+1 divides r. Let I ⊂ OS be
an m-PD-nilpotent quasi-coherent ideal which extends to X, f, g ∈ Γ(X,OX), h ∈ Γ(X, IOX), and
f ′ = gf + h. There exists the canonical D(m)

X]/S]
-linear homomorphism of OX -algebras

ηg,h : B′X(f, r)→ B′X(f ′, r),

satisfying the following properties:

(a) If g′ ∈ Γ(X,OX), h′ ∈ Γ(X, IOX), and f ′′ = g′f ′ + h′, g′′ = g′g, h′′ = g′h + h′, then ηg′′,h′′ =
ηg′,h′ ◦ ηg,h.

(b) ηg,0 = ρg, η1,0 = id.

(c) If f is not a divisor of 0 in OX/IOX , ηg,h only depends on f , f ′, r and will be denoted ηf ′,f,r.

(d) If r is divisible by pm
′+1, with m′ ≥ m, ηg,h is independent from m ≤ m′.

Proof. This is checked similarly to [Ber96c, 4.2.2]. For the reader, we will only recall below the construc-
tion of ηg,h.

1) Suppose g = 1. Let u : Z] ↪→ X] be the exact closed immersion given by IOX . Put S0 = Spec Z(p)

and X0 = Spec Z(p)[t]. Let f and f ′ be the image of f and f ′ via the morphism Γ(X,OX)→ Γ(Z,OZ)

induced by u. Since f = f ′, then f an f ′ induce the same morphism φf : Z] → X0. Since I is an m-
PD-nilpotent ideal, then by using the universal property of the m-PD-envelope, for any integer n large
enough, we get a unique factorization θ : X → ∆n

X0/S
]
0,(m)

making commutative the following diagram

Z] �
� //

φ
f

��

X]

φf′×φf
��

θ

ww
X0

// ∆n
X0/S0,(m)

// X0 ×S0 X0.

(8.7.3.3.1)

Let εn : PnX0/S0,(m)⊗OX0
B′X0

(t, r)
∼−→ B′X0

(t, r)⊗OX0
PnX0/S0,(m) be the isomorphism given by theD(m)

X0/S0
-

module structure of B′X0
(t, r). Taking the inverse image by θ we get the isomorphism εh : B′X(f, r)

∼−→
B′X(f ′, r) which is independent on the choice of n.

2) In general, ηg,h := εh ◦ ρg.

Notation 8.7.3.4. We consider the algebraic case of 3.4. Let m, r ∈ N be two integers such that
pm+1 divides r. Let I ⊂ OS be an m-PD-nilpotent quasi-coherent ideal which extends to X, let X]

0 =
V (IOX) ↪→ X] be the exact closed immersion induced I. We suppose X0 regular.

(a) Let Z be a divisor of X0. Let U ] be an open set of X], f ∈ Γ(U,OX) such that the closed immersion
Z] ∩ U ]0 ↪→ U ]0 is given by f ∈ Γ(U0,OX0

) the image of f via Γ(U,OX) → Γ(U0,OX0
). Following

8.7.3.3, B′U (f, r) only depends on Z up to canonical isomorphism. More precisely, let f ′ ∈ Γ(U,OX)

be such that the closed immersion Z] ∩ U ]0 ↪→ U ]0 is given by f ′ ∈ Γ(U0,OX0
) the image of f ′

via Γ(U,OX) → Γ(U0,OX0
). There exists g ∈ Γ(U,OX) such that g is a unit of Γ(U,OX0

) and
f ′ = gf . Hence, there exists h ∈ Γ(U, IOX) such that f ′ = gf + h. Since I is m-PD-nilpotent
then I is nilpotent. Hence, since g is a unit of Γ(U,OX0) then g is a unit of Γ(U,OX). We get
f = g−1f ′−h. Hence ηf ′,f,r : B′U (f ′, r) is an isomorphism with ηf,f ′,r as an inverse (indeed, following
8.7.3.3.a, we have ηf,f ′,r ◦ ηf ′,f,r = ηf,f,r and ηf ′,f,r ◦ ηf,f ′,r = ηf ′,f ′,r). Hence, glueing B′U (f, r) we
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get the OX -algebra B′X(Z ↪→ X0, r) endowed with a compatible D(m)

X]/S]
-module structure. Put

B′(m)
X (Z ↪→ X0) := B′X(Z ↪→ X0, p

m+1). If there is no ambiguity with I then we can simply write
B′X(Z, r) and B′(m)

X (Z).

(b) Let Z ′ ⊃ Z be two divisors of X0. If f and f ′ are two liftings of a local equation of respectively Z
and Z ′ in X0, then the homomorphism ηf ′,f,r : B′X(f, r)→ B′X(f ′, r) of 8.7.3.3.c are compatible with
the glueing isomorphisms which yields

ηZ′,Z,r : B′X(Z, r)→ B′X(Z ′, r). (8.7.3.4.1)

If Z ′′ ⊂ Z ′ is a third divisor of X0 then we get

ηZ′′,Z,r = ηZ′′,Z′,r ◦ ηZ′,Z,r. (8.7.3.4.2)

(c) Let a ≥ 1 be an integer. Then we can check that the canonical isomorphism B′(fa, r) ∼−→ B′(f, ar)
is D(m)

X]/S]
-linear and that this is compatible with the glueing isomorphism. The yields the equality

B′X(aZ, r) = B′X(Z, ar). (8.7.3.4.3)

We get
ηZ,ar,r := ηaZ,Z,r : B′X(Z, r)→ B′X(Z, ar). (8.7.3.4.4)

If a′ ≥ 1 is another integer, we get

ηZ,a′ar,r = ηZ,a′ar,ar ◦ ηZ,ar,r. (8.7.3.4.5)

(d) When r′ is a multiple of pm
′+1, with m′ ≥ m, the structure of D(m)

X]/S]
-module of B′X(Z, r) is induced

by its structure of D(m′)

X]/S]
-module, and the homomorphisms ηZ′,Z,r and ηZ,ar,r are independent of

m ≥ m′.

Notation 8.7.3.5. Let m ∈ N be an integer such that pm ≥ e/(p − 1). Let r ∈ N be an integer such
that pm+1 divides r. Let S] be a nice fine V-log formal scheme (see definition 3.3.1.10). Moreover, let
X] → S] be a log smooth morphism of log formal schemes. We suppose X is locally noetherian. Let
X]
i := X] ×Spf V Spec(V/mi+1), X] := X]

0. We suppose X regular. Let Z be a divisor of X.
Following 1.2.4.2.(a) πV has an m-PD-structure. Hence, we can use 8.7.3.4 and we get the OXi-

algebra B′Xi(Z, r) endowed with a compatible D(m)

X]
i
/S]
i

-module structure for any i ∈ N. We observe that
the canonical isomorphism

B′Xi(Z, r)/m
iB′Xi(Z, r)

∼−→ B′Xi−1
(Z, r)

is D(m)

X]
i−1

/S]
i−1

-linear (the structure of the left term is induced by base change). This yields a structure of“D(m)

X]/S]
-module on

B′X(Z, r) := lim←−
i

B′Xi(Z, r), B′(m)
X (Z) = B′X(Z, pm+1). (8.7.3.5.1)

Moreover, the induced structure of “D(m)

X]/S]
-module B′X(Z, r) is compatible with its OX-algebra structure

(we can use the remark 4.1.1.2). Beware, contrary to what might appear in the literature, to lighten
the notation we have chosen to write B′X(Z, r) instead of “B′X(Z, r) because we can only define a priori
B′X(Z, r) by p-adic completion. However, when the divisor Z lift to an effective Cartier divisor Z in X/S,
we can get B′X(Z, r) as p-adic completion of a sheaf of rings on P (see just below 8.7.3.9.1).

Finally, we put
OX(†Z) := lim−→

m

B′(m)
X (Z) (8.7.3.5.2)

and call it the sheaf of functions on X with overconvergent singularities along the divisor Z. An important
result is: OX,Q(†Z) is a coherent D†X,Q-module. The proof will be given below at Theorem 12.2.7.1.

516



If Z ⊂ T are two divisors of X, we get from 8.7.3.3 the canonical morphisms B′(m)
Xi

(Z) → B′(m)
Xi

(T ),
B′(m)
X (Z)→ B′(m)

X (T ), and OX(†Z)→ OX(†T ).
Suppose X is noetherian. Then for any divisor Z ofX, there exists a ∈ N such that Zred ⊂ Z ⊂ paZred.

Since B′(m)
X (paZ) = B′(m+a)

X (Z) (see 8.7.3.4.3), this yields that the canonical morphism

B′(•)X (Zred)→ B′(•)X (Z) (8.7.3.5.3)

is an isomorphism of LM−−→Q(O(•)
X ). By applying the inductive limit on the level (without tensoring with

Q), we get the isomorphism
OX(†Zred)→ OX(†Z). (8.7.3.5.4)

Proposition 8.7.3.6. We keep notation 8.7.3.5. Let r ∈ N be an integer such that pm+1 divides r. Fix
f ∈ Γ(X,OX) and put BX(f, r) := OX{T}/(frT − π). Let Y be the open of X complementary to V (f)

and j : Y ⊂ X be the inclusion. There exists on BX(f, r) a canonical structure of left “D(m)

X]/S]
-module

compatible with its structure of OX-algebra such that the inclusion BX(f, r)→ j∗OY is “D(m)

X]/S]
-linear.

Proof. Since BX(f, r) is p-adically complete, then we reduce to check that there exists on BX(f, r) a
canonical structure of left D(m)

X]/S]
-module compatible with its structure of OX-algebra such that the

inclusion BX(f, r)→ j∗OY is D(m)

X]/S]
-linear. Consider the following commutative diagram

X]
φf //

��

Â1
V = Spf V{t}

��
(S], aS , bS , αS) // (Spf V, (π), (πe+1), α),

(8.7.3.6.1)

where φf is the morphism given by f and where ((πe+1), α)) is the canonical m-PD-structure of (π)
(see 1.2.4.2.a). Hence, by using the preservation of D-module structures under pullbacks (see 4.4.2.4),
since BX(f, r) = φ∗f (B

Â1
V

(t, r)), we reduce to the case where S] = Spf V and X] = Spf V{t}, f = t.
Since the ideal of the closed immersion ∆X/S is the ideal of V{t1, t2} = (V{t1}){t2 − t1} generated by
t2−t1, since PnX/S,(m) = lim←−i P

n
Xi/Si,(m), then following 1.3.2.6, we have (|X|,PnX/S,(m)) = Spf(V{t1}〈t2−

t1〉(m)/I
{n+1}), where and I = (t2 − t1) is the m-PD-ideal generated by t2 − t1. We have r = pm+1q.

Following 8.7.3.1.2, there exists a of degree r homogeneousm-PD-polynomial φ(m)
r (t1, t2), ψ

(m)
r (t1, t2) ∈ I

(and even with coefficient in Z(p)) such that tr2 − tr1 = pφ
(m)
r (t1, t2) = πψ

(m)
r (t1, t2) Set T1 := T ⊗ 1 ∈

OX{T}/(frT − π) ⊗OX
PnX/S,(m) and T2 := 1 ⊗ T ∈ PnX/S,(m) ⊗OX

OX{T}/(frT − π). We are looking
for an OX-algebra isomorphism εn making commutative the diagram below:

PnX/S,(m) ⊗OX
OX{T}/(frT − π)

��

εn
∼

// OX{T}/(frT − π)⊗OX
PnX/S,(m)

��
j∗(PnY/S,(m) ⊗OY

OY)
∼ // j∗PnY/S,(m) j∗(OY ⊗OY

PnY/S,(m))∼
oo

(8.7.3.6.2)
where the bottom isomorphisms are the canonical isomorphisms and the composite bottom isomorphism
is εOY

n (see 3.4.2.4.1). The image of T2 (resp. T1) in PnY/S,(m) is πt−r2 (resp. πt−r1 ). To do so, we define
an OX-algebra map εn(T2) by setting

εn(T2) = T1(1 + T1ψ
(m)
r (t1, t2))−1,

which has a meaning because ψ(m)
r (t1, t2) is nilpotent in PnX/S,(m). Its inverse is given by T1 7→ T2(1 −

T2ψ
(m)
r (t1, t2))−1. Since ψ(m)

r (t1, t2) ∈ I, then ε0 = id. Moreover, the cocycle condition is a consequence
of the formula

ψ(m)
r (t1, t2) + ψ(m)

r (t2, t3) = ψ(m)
r (t1, t3) (8.7.3.6.3)

in V{t1}〈t2 − t1, t3 − t2〉(m)
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Proposition 8.7.3.7. We keep notation 8.7.3.5. Let r ∈ N be an integer such that pm+1 divides r. Let
f, g, h ∈ Γ(X,OX) such that f ′ = gf + πh. There exists the canonical “D(m)

X]/S]
-linear homomorphism of

OX-algebras
ηg,h : BX(f, r)→ BX(f ′, r),

satisfying the following properties:

(a) If g′ ∈ Γ(X,OX), h′ ∈ Γ(X,πOX), and f ′′ = g′f ′ + πh′, g′′ = g′g, h′′ = g′h + h′, then ηg′′,h′′ =
ηg′,h′ ◦ ηg,h.

(b) η1,0 = id.

(c) If f is not a divisor of 0 in OX/πOX, ηg,h only depends on f , f ′, r and will be denoted ηf ′,f,r.

(d) If r is divisible by pm
′+1, with m′ ≥ m, ηg,h is independent from m ≤ m′.

Proof. 1) Suppose g = 1. Then f = f ′ − πh = f ′u, where u := (id−πf ′−1h) ∈ B×X (f ′, r). we get the
isomorphism η1,h defined by setting η1,h(T ) = u−1T ′, i.e. η1,h(πf−r) = u−1πf ′−r. 2) Suppose h = 0.
Then we get the morphism ηg,0 defined by setting ηg,0(T ) = grT ′, i.e. ηg,0(πf−r) = grπf ′−r. 3) In
general, we get the map ηg,h := η1,h ◦ ηg,0. The “D(m)

X]/S]
-linearity follows from the commutative diagram

BX(f, r)
ηg,h //

� _

��

BX(f ′, r)� _

��
j∗OY j∗OY

(8.7.3.7.1)

where the vertical map are “D(m)

X]/S]
-linear (see 8.7.3.6).

Notation 8.7.3.8. We keep notation 8.7.3.5. Let U] be an open set of X], f ∈ Γ(U,OX) such that the
closed immersion Z] ∩ U ] ↪→ U ] is given by f ∈ Γ(U,OX) the image of f via Γ(U,OX) → Γ(U,OX).
Following 8.7.3.7, BU(f, r) only depends on Z up to canonical isomorphism. Hence, glueing BU(f, r)

we get the OX -algebra BX(Z, r) endowed with a compatible “D(m)

X]/S]
-module structure. Put B(m)

X (Z) :=

BX(Z, pm+1).
We have the isomorphism:

OX(†Z)
∼−→ lim−→

m

B(m)
X (Z) (8.7.3.8.1)

If Z ⊂ T are two divisors of X, we get from 8.7.3.7 the canonical morphism ηT,Z,r : B(m)
X (Z) →

B(m)
X (T ), and OX(†Z)→ OX(†T ). These algebras satisfy the same properties than in 8.7.3.4 and we keep

the corresponding notation, e.g.
.
Suppose X is noetherian. Then for any divisor Z ofX, there exists a ∈ N such that Zred ⊂ Z ⊂ paZred.

Since B(m)
X (paZ) = B(m+a)

X (Z) (similarly to 8.7.3.4.3), this yields that the canonical morphism

B(•)
X (Zred)→ B(•)

X (Z) (8.7.3.8.2)

is an isomorphism of LM−−→Q(O(•)
X ). By applying the inductive limit on the level (without tensoring with

Q), we get the isomorphism
OX(†Zred)→ OX(†Z). (8.7.3.8.3)

Notation 8.7.3.9. With notation 8.7.3.5, suppose there exists an effective Cartier divisor Z in X/S (see
definition 4.5.2.1) which is a lifting of Z. Let m, r ∈ N be two integers such that pm+1 divides r. Then,
similarly to 8.7.3.4, by glueing BX(f, r) when f is an equation of Z ⊂ X we can define BX(Z, r) (indeed
we can get a formal version of 8.7.3.3 in the case where I is null). We get the isomorphism:

B̂X(Z, r)
∼−→ BX(Z, r), (8.7.3.9.1)

where the LHS is the p-adic completion of BX(Z, r). We also set B(m)
X (Z) := BX(Z, pm+1).
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8.7.3.10 (p-adic completion, p-adic weak completion). Let A be a noetherian p-adic ring. We denote
by A{T} the p-adic completion of the polynomial ring A[T ] with one variable. This is called the ring of
restricted power series (see [Gro60, 0.7.5]). We get

A{T} := ‘A[T ] =

{ ∞∑
n=0

anT
n : an ∈ A, lim

n→+∞
an = 0

}
,

where A is endowed with the p-adic topology. Following [Gro60, 0.7.6.15], for any f ∈ A, we write

A{f} := ”Af = A{T}/(fT − 1)

=

{ ∞∑
n=0

an
fn

: an ∈ A, lim
n→+∞

an = 0

}

where A is endowed with the p-adic topology.
The p-adic weak completion of A[T ] as A-algebra is

A[T ]† =

{ ∞∑
n=0

anT
n : ∃ c, η ∈ R, η < 1 such that ‖an‖ ≤ cηn

}
,

where ‖ − ‖ is the p-adic norm of A (see 8.7.1.6). The p-adic weak completion of Af as A-algebra is

A†f := A[T ]†/(fT − 1) =

{ ∞∑
n=0

an
fn

: an ∈ A,∃ c, η ∈ R, η < 1 such that ‖an‖ ≤ cηn for all n

}
.

Using the computation of 8.7.1.8, we can check

A†f =

{ ∞∑
n=0

anf
n : an ∈ A,∃ λ > 0 such that vp(an) ≥ n

λ
− 1

}
.

8.7.3.11 (Local description). Let S] be a nice fine V-log formal scheme (see definition 3.3.1.10). More-
over, let X] → S] be a log smooth morphism of log formal schemes. We suppose X is locally noetherian
and X0 is regular. Let Z be a divisor of X, Y] be the open of X] complementary to the support of Z
and j : Y] → X] be the canonical morphism. Let U = Spf A be an affine open of X, f ∈ A such that
Z = V (f̄) ⊂ X0 where f̄ is the image of f in A/mA.

(a) We have

Γ(U, j∗OY) = A{f} =

{ ∞∑
n=0

an
fn

: an ∈ A, lim
n→+∞

an = 0

}
.

(b) Let r′ and r be two any positive integer such that r divides r′. Then Γ(U,BX(Z, r)) = A{T}/(frT−p)
and Γ(U,BX(Z, r′)) = A{T ′}/(fr′T ′ − p). Moreover, by taking the inverse limits over i ∈ N of the
morphisms ηZ,r′,r : BXi(Z, r)→ BXi(Z, r′) of 8.7.3.4.4 and taking the sections over U functor, we get
the morphism Γ(U,BX(Z, r))→ Γ(U,BX(Z, r′)) which is given by T 7→ fr

′−rT ′.

(c) After tensorising by Q the sheaf OX(†Z) we have the following nice description from the computation
of (b):

Γ(U,OX(†Z)Q)
∼−→ lim−→

m

Γ(U,B(m)
X (Z)Q)

∼−→ lim−→
m

Ä
A{t}/(fp

m+1

t− p)
ä
K

∼−→ (A†f )K

∼−→

{ ∞∑
n=0

an
fn

: an ∈ AK , ∃ c, η ∈ R, η < 1 such that ‖an‖ ≤ cηn
}
, (8.7.3.11.1)

where AK is endowed with the topology induced by the p-adic topology of A which induces a p-adic
norm on AK (see 8.7.1.6).
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8.7.3.12. Let S] be a nice fine V-log formal scheme (see definition 3.3.1.10). Moreover, let X] → S] be
a log smooth morphism of log formal schemes. We suppose X is regular. Let Z be a divisor of X. We
define the sheaf of “differential operators of finite level on X]/S] with overconvergent singularities along
of Z” by setting

D†
X]/S]

(†Z) = lim−→
m

B(m)
X (Z)“⊗OX

“D(m)

X]/S]
.

We have the ring homomorphism D†
X]/S]

→ D†
X]/S]

(†Z).

Remark 8.7.3.13. With notation 8.7.3.12, letY] be the open of X] complementary to Z and let j : Y] ⊂ X]

be the inclusion of the complementary open. We will see via 8.7.6.8 that the sheaf OX(†Z)Q (resp.
D†

X]/S]
(†Z)Q) plays the role of an “overconvergent direct image” of OY,Q (resp. D†

Y]/S],Q)). Bearing in
mind the algebraic case, where j∗ induces an equivalence between the category ofOY -quasi-coherent mod-
ules and that of j∗OY -quasi-coherent modules, we are led to replace the category of coherent D†

Y]/S],Q-

modules by that of coherent D†
X]/S]

(†Z)Q-modules, and the functor j∗ (resp. j∗) by the restriction of the

scalars of D†
X]/S]

(†Z)Q to D†
X]/S],Q (resp. the extension of the scalars from D†

X]/S],Q to D†
X]/S]

(†Z)Q).
The main reason is to get finiteness results. For instance, when X is a proper and smooth formal scheme
over V, then the sheaf OX(†Z)Q is coherent as D†X,Q-module (see 12.2.7.1) and has in particular finite de
Rham cohomology, which is not the case for OY,Q (for instance when Y is the affine space).

Proposition 8.7.3.14. Let S] be a nice fine V-log formal scheme (see definition 3.3.1.10). Moreover,
let X] → S] be a log smooth morphism of log formal schemes. We suppose the underlying formal scheme
X is locally noetherian of finite Krull dimension and that X is regular. Let Z be a divisor of X, Y] be
the open of X] complementary to the support of Z and j : Y] → X] be the canonical morphism.

(a) For any affine open formal subscheme U ⊂ X, Γ(U,B(m)
X (Z)), and Γ(U,B(m)

X (Z)Q) are noetherian.

(b) The extensions OX,Q → B(m)
X (Z)Q and B(m)

X (Z)Q → B(m+1)
X (Z)Q are flat.

(c) The sheaves B(m)
X (Z), B(m)

X (Z)Q, and OX(†Z)Q are coherent. Moreover, coherent modules over these
sheaves satisfy theorems A and B.

Proof. We can copy the proof of [Ber96c, 4.3.2].

In the rest of the section, we keep notation and hypotheses of 8.7.3.14. We give below few constructions
of Huyghe (see [Huy03, 2.2]).

Lemma 8.7.3.15. Suppose there exist two sections f and g of OX lifting an equation of de Z in X.
Then the modules B(m)

X (Z)[1/f ] and B(m)
X (Z)[1/g] are canonically isomorphic.

Proof. There exists v ∈ OX , u ∈ O×X , such that g = u(f−πv). We have h := u(1−πvf−1) ∈ (B(m)
X (Z))×

(its inverse is given by u−1∑
n∈N π

nvnf−n). Since g = fh, then we are done.

Notation 8.7.3.16. It follows from Lemma 8.7.3.15 that we can glue the rings B(m)
X (Z)[1/f ] which gives

a sheaf of rings on X denoted by B(m)
X (∗Z) We denote by (∗Z) : Mod(B(m)

X (Z)) → Mod(B(m)
X (∗Z)) the

functor defined by setting for any B(m)
X (Z)-module E :

E(∗Z) = B(m)
X (∗Z)⊗B(m)

X
(Z)
E .

Notation 8.7.3.17. Suppose there exists an effective Cartier divisor Z in X/S which is a lifting of Z
(see definition 4.5.2.1). If there exist two sections f and g of OX giving an equation of Z in X/S, then
Then the modules OX[1/f ] and OX[1/g] are canonically isomorphic. By glueing, we get the sheaf of rings
OX(Z). We define the localisation functor (Z) : Mod(OX)→ Mod(OX(Z)) by setting for any OX-module
E :

E(Z) = OX(Z)⊗OX
E .

.

Lemma 8.7.3.18. The canonical inclusion OX ⊂ OX,Q ∩ j∗OY is an isomorphism.
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Proof. Since this is local, we can suppose X = Spf A affine and integral, and there exists f ∈ A such that
Y = Spf A{1/f}. Since A/πA is integral then we get the injective map α : A/πA → A{1/f}/πA{1/f}.
Let h ∈ AQ ∩ A{1/f}. Let s ∈ Z be minimal such that πsh ∈ A. Set k := πsh. By the absurd, suppose
s ≥ 1. Denoting by k the image of k in A/πA, since k ∈ πA{1/f} then α(k) = 0 and therefore k ∈ πA.
Since A is p-torsion free, this yields πs−1h ∈ A, which is in contradiction with respect to the minimality
of s. Hence, we are done.

Lemma 8.7.3.19. Suppose there exists an effective Cartier divisor Z in X/S which is a lifting of Z (see
definition 4.5.2.1). Denote by (Z) the localisation functor (Z) : Mod(OX)→ Mod(OX(Z)).

(a) For any B(m)
X (Z)-module E, we have the canonical isomorphism E(∗Z)

∼−→ E(Z).

(b) We have the equality OX(Z) = OX(Z)Q ∩ j∗OY.

(c) We have moreover the equality:

B(m)
X (Z) +OX(Z) = B(m)

X (∗Z). (8.7.3.19.1)

(d) We have the equalities OX(Z)Q = B(m)
X (Z)Q (see notation of 8.7.3.9):

B(m)
X (Z)Q = B(m)

X (Z) +OX(Z)Q = B(m)
X (∗Z)Q. (8.7.3.19.2)

Proof. a) The first statement is tautological.
b) Since this is local, we can suppose X = Spf A affine and integral, and there exists f ∈ A such that

Z = V (fA). Then B := Γ(X,OX(Z)) = A[1/f ], BQ = Γ(X,OX(Z)Q) and Γ(X, j∗OY) = A{1/f}. The
inclusion B ⊂ A{1/f} induces the isomorphism ι : B/πB

∼−→ A{1/f}/πA{1/f}. Let h ∈ BQ ∩A{1/f}.
Let s ∈ Z be minimal such that πsh ∈ B. Set k := πsh. By the absurd, suppose s ≥ 1. Denoting by k
the image of k in B/πB, since k ∈ πA{1/f} then ι(k) = 0 and therefore k ∈ πB. Since B is p-torsion
free, this yields πs−1h ∈ B, which is in contradiction with respect to the minimality of s. Hence, we are
done.

c) We have to check that the inclusion B(m)
X (Z)+OX(Z) ⊂ B(m)

X (∗Z) is an equality. Since this is local,
we can suppose X = Spf A affine and there exists f ∈ A such that Z = V (f). Let P ∈ Γ(X,B(m)

X (∗Z)).
Then we get P = f−nQ, for some n ∈ N and Q ∈ Γ(X,B(m)

X (Z)). We can write Q = Q0 + pnR, with
Q0 ∈ A[1/f ] and R ∈ Γ(X,B(m)

X (Z)). Since pnf−n ∈ Γ(X,B(m)
X (Z)), then we are done.

d) Since this is local, we can suppose X = Spf A affine and there exists f ∈ A such that Z = V (f).
Let us check the first equality. Since 1/f ∈ B(m)

X (Z)Q, then we get the inclusion OX(Z)Q ⊂ B(m)
X (Z)Q.

Conversely, the fact that the inclusion OX(Z)Q ⊂ B(m)
X (Z)Q is an equality follows from the fact that

p/fp
m+1 ∈ OX(Z)Q.

Since B(m)
X (Z) + B(m)

X (Z)Q = B(m)
X (Z)Q, then we get the first equality of 8.7.3.19.2. Finally if follows

from 8.7.3.19.1 the last equality: B(m)
X (Z)Q = B(m)

X (Z)Q +OX(Z)Q = B(m)
X (∗Z)Q. Finally if follows from

8.7.3.19.1 the last equality: B(m)
X (Z)Q = B(m)

X (Z)Q +OX(Z)Q = B(m)
X (∗Z)Q.

Remark 8.7.3.20. Since the canonical inclusion B(m)
X (Z)Q → B(m)

X (∗Z)Q is an isomorphism, then for any
B(m)
X (Z)-module E , we have the canonical morphism EQ → E(∗Z)Q is an isomorphism.

Lemma 8.7.3.21. We have the equality B(m)
X (Z)Q ∩ j∗OY = B(m)

X (∗Z).

Proof. Since this is local, we can suppose X = Spf A affine and integral, and there exists f ∈ A such
that Z := V (f) is an effective Cartier divisor in X/S which is a lifting of Z. Let B = Γ(X,B(m)

X (Z)),“B its p-adic completion. Let u ∈ “BQ ∩ A{1/f}. Since u ∈ “BQ then following 8.7.3.19.2, we can write
u = h+r, with r ∈ “B and h ∈ A[1/f ]Q. Since u ∈ A{1/f} and “B ⊂ A{1/f}, then h ∈ A[1/f ]Q∩A{1/f}.
Following 8.7.3.19.(b) we get the equality A[1/f ]Q ∩A{1/f} = A[1/f ] ⊂ “B[1/f ] and we are done.

Notation 8.7.3.22. We introduce the following sheaf of differential operators by adding some coeffi-
cients.
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(a) By using Leibnitz formula, since B(m)
X (Z) is a sub-D(m)

X]/S]
-module of j∗OY, then so is B(m)

X (∗Z).

Hence, B(m)
X (∗Z) is an OX-algebra endowed with a compatible structure of left D(m)

X]/S]
-module. We

get the sheaf of rings

D(m)

X]/S]
(∗Z) := B(m)

X (∗Z)⊗OX
D(m)

X]/S]
, “D(m)

X]/S]
(∗Z) := B(m)

X (∗Z)⊗B(m)

X
(Z)

“D(m)

X]/S]
(Z).

The sheaf of rings “D(m)

X]/S]
(Z) is endowed with two structure of B(m)

X (Z)-algebras (the left and the
right one). This yields two sheaves:“D(m)

X]/S]
(∗Z) := B(m)

X (∗Z)⊗B(m)

X
(Z)

“D(m)

X]/S]
(Z), “D(m)

X]/S]
(\Z) := “D(m)

X]/S]
(Z)⊗B(m)

X
(Z)
B(m)
X (∗Z),

where we choose the left (resp. right) structure for the left (resp. right) notation. Since j∗“D(m)

X]/S]
(∗Z) =“D(m)

Y]/S]
and j∗“D(m)

X]/S]
(\Z) = “D(m)

Y]/S]
, then we can identify both sheaves as subsheaves of j∗“D(m)

Y]/S]
.

We will see they are identical (see 8.7.3.23.1).

(b) Suppose there exists an effective Cartier divisor Z in X/S which is a lifting of Z (see definition
4.5.2.1). By using Leibnitz formula, we compute OX(Z) is a sub-D(m)

X]/S]
-module of j∗OY. Hence,

OX(Z) is an OX-algebra endowed with a compatible structure of left D(m)

X]/S]
-module and we get the

sheaf of rings
D(m)

X]/S]
(Z) := OX(Z)⊗OX

D(m)

X]/S]
.

Lemma 8.7.3.23. Suppose there exists an effective Cartier divisor Z in X/S which is a lifting of Z (see
definition 4.5.2.1). We have the equality“D(m)

X]/S]
(∗Z) = “D(m)

X]/S]
(Z) +D(m)

X (Z) = “D(m)

X]/S]
(\Z). (8.7.3.23.1)

Proof. i) Let us check that the inclusion “D(m)

X]/S]
(Z) +D(m)

X (Z) ⊂ “D(m)

X]/S]
(∗Z) is an equality. Since this

is local, we can suppose X = Spf A affine and integral, and there exists f ∈ A such that Z := V (f)

is an effective Cartier divisor in X/S which is a lifting of Z. Let P ∈ Γ(X, “D(m)

X]/S]
(∗Z)). Then we

get P = f−nQ, for some n ∈ N and Q ∈ Γ(X, “D(m)

X]/S]
(Z)). We can write Q = Q0 + pnR, with

Q0 ∈ Γ(X,D(m)
X (Z)) and R ∈ Γ(X, “D(m)

X]/S]
(Z)). Since pnf−n ∈ Γ(V, “D(m)

X]/S]
(Z)), hence we are done.

ii) Similarly we check the second inclusion is the identity: let P ∈ Γ(X, “D(m)

X]/S]
(\Z)). Then we

get P = Qf−n, for some n ∈ N and Q ∈ Γ(X, “D(m)

X]/S]
(Z)). We can write Q = Q0 + pnR, with

Q0 ∈ Γ(X,D(m)
X (Z)) and R ∈ Γ(X, “D(m)

X]/S]
(Z)). Since pnf−n ∈ Γ(V, “D(m)

X]/S]
(Z)), hence we are done.

Proposition 8.7.3.24. The sheaf “D(m)

X]/S]
(∗Z) is a subring of j∗“D(m)

Y]/S]
.

Proof. Since this is local, then we can suppose there exists an effective Cartier divisor Z in X/S which
is a lifting of Z. Hence, this follows from the equality 8.7.3.23.1. Let P ∈ Γ(X, “D(m)

X]/S]
(Z)) Q ∈

Γ(X,D(m)
X (Z)). Then there exists n ∈ N such that fnQ ∈ Γ(X,D(m)

X ) and Qfn ∈ Γ(X,D(m)
X ). Since“D(m)

X]/S]
(Z) is a ring, this implies that (PQ)fn = P (Qfn) ∈ Γ(X, “D(m)

X]/S]
(Z)) and fn(QP ) = (fnQ)P ∈

Γ(X, “D(m)

X]/S]
(Z)). Hence, PQ,QP ∈ Γ(X, “D(m)

X]/S]
(∗Z)).

Notation 8.7.3.25. We setOX(†∗Z) := lim−→m
B(m)
X (∗Z). Moreover, for all integerm, we write D(m)

X]/S]
(†∗

Z) := OX(† ∗ Z)⊗OX
D(m)

X]/S]
and D†

X]/S]
(† ∗ Z) := lim−→m

B(m)
X (Z)“⊗“D(m)

X]/S]
(∗Z)

∼−→ OX(† ∗ Z)⊗OX(†Z)

D†
X]/S]

(†Z).

Lemma 8.7.3.26. Suppose X = Spf A is affine and there exists f ∈ A such that Z := V (f) is an effective
Cartier divisor in X/S which is a lifting of Z. Then Γ(X,OX(† ∗ Z)) = A[ 1

f ]†, where A[ 1
f ]† the p-adic

weak completion of A[ 1
f ] as A-algebra (see 8.7.3.10).
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Proof. Set BX(Z, r) := Γ(X,BX(Z, r)) and BX(∗Z, r) := Γ(X,BX(∗Z, r)). We have:

BX(Z, r) =

{ ∞∑
n=0

anf
−n | an ∈ A, vπ(an) ≥ n

r
for all n

}
.

Hence, BX(∗Z, r) =
{∑∞

n=0 anf
−n | an ∈ A, ∃s ∈ N satisfying vπ(an) ≥ n

r − s for all n
}
. This yields

the equality Γ(X,OX(† ∗ Z)) =
{∑∞

n=0 anf
−n : an ∈ A,∃ λ > 0 such that vπ(an) ≥ n

λ − 1 for all n
}
and

we are done.

Proposition 8.7.3.27. The sheaves of rings OX(† ∗ Z) and D(m)

X]/S]
(† ∗ Z) are coherent.

Proof. This follows from 8.7.3.26 and 4.1.2.17.(e).

8.7.3.28. Suppose X is noetherian.

(a) Let E a left D†
X]/S]

(†Z)-module. Suppose that there exists a section f ∈ Γ(X,OX) lifting a local
equation of Z. Then, similarly to 7.4.3.1.1, we can check that the canonical map

RΓ(X, E)[1/f ]→ RΓ(X, E(∗Z)). (8.7.3.28.1)

is an isomorphism.

(b) Moreover, if F is aD†
X]/S]

(†∗Z)-module of finite presentation, then there exists aD†
X]/S]

(†Z)-module

of finite presentation E such that E(∗Z)
∼−→ F . Indeed, this is checked similarly to 8.4.1.11.b.ii).

Theorem 8.7.3.29. Suppose X is affine. We obtain then theorems A and B:

A) The functors Γ(X,−) and D†
X]/S]

(† ∗ Z)⊗Γ(X,D†
X]/S]

(†∗Z)) − are quasi-inverse equivalences between

the category of Γ(X,D†
X]/S]

(† ∗Z))-modules of finite presentation and that of D†
X]/S]

(† ∗Z)-modules
of finite presentation.

B) For all D†X(† ∗ Z)-module of finite presentation F , for all integer q ≥ 1, Hq(X,F) = 0.

Proof. By 8.4.1.14.(a), we know this without the symbol "∗". We can conclude by using 8.7.3.28.

Remark 8.7.3.30. After tensoring with Q, we get a coherent version of theorem A and B (see 8.7.5.5).

Let us first state a general theorem of C. Huyghe, which shows that, when Z is a large divisor in a
diagram projective, the coherent D†X(†Z)Q-modules behave well from the cohomological point of view as
coherent sheaves on an affine scheme; we can see this theorem as an analogue of theorems A and B, with
overconvergence at infinity:

Theorem 8.7.3.31 ([Huy04, 5.3.3]). Let X be a projective and smooth V-formal scheme, Z ⊂ X be an
ample divisor of its special fiber, and let D†X(†Z)Q := Γ(X,D†X(†Z)Q).

(i) The ring D†X(†Z)Q is coherent, and the functor Γ(X,−) induces an equivalence of categories between
the category of coherent D†X(†Z)Q-modules and that of D†X(†Z)Q-coherent modules.

(ii) For all n ≥ 1, and all coherent D†X(†Z)Q-module, we have Hn(X, E) = 0.

C. Huyghe further establishes an invariance theorem which shows that the category of coherent
D†X(†Z)Q-modules does not depend on the smooth compactification X of Y:

Theorem 8.7.3.32 ([Huy04, 7.3.3]). Let f : X′ → X be a proper morphism of smooth V-formal schemes,
Z ⊂ X, Z ′ ⊂ X ′ two divisors of the special fibers of X and X ′, Y = X \ Z, Y′ = X′ \ Z ′. We assume
that f induces an isomorphism Y′

∼−→ f−1(Y). Then the functors f !
Z′,Z and fZ,Z′,+ induce quasi-inverse

category equivalences between the category of coherent D†X(†Z)Q-modules, and that coherent D†X′(†Z ′)Q-
modules.
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8.7.4 Increasing the level: finiteness of the tor-dimension with overconver-
gent coefficients

LetS] be a nice fine V-log formal scheme (see definition 3.3.1.10). Moreover, let X] → S] be a log smooth
morphism of log formal schemes. We suppose the underlying formal scheme X is locally noetherian of
finite Krull dimension.

Lemma 8.7.4.1. Let r ∈ N, A be a separated complete V-algebra (for the p-adic topology), noetherian
(of finite Krull dimension) and p-torsion free, f ∈ A which is not a zero divisor modulo m, A{f} be the
p-adic completion of Af , B = A[T ]/(frT − p).

(a) The ring B is p-torsion free and is p-adically separated.

(b) The homomorphism “B → A{f} sending T to p/fr is injective.

(c) If A⊗V k is integral then so is “B.

Proof. This is [Ber96c, 4.3.3].

Corollary 8.7.4.2. Suppose X] is p-torsion free (see 3.3.1.12 for some example). Let Z be a divisor of
X0. Let m, r ∈ N be two integers such that pm+1 divides r.

(a) With the notation 8.5.4.18, 8.7.3.4 and 8.7.3.5.1, the sheaf BX(Z, r) is p-torsion free and we have
the canonical isomorphism

L←l
∗
X

(BX(Z, r)) := OX• ⊗L
OX

(BX(Z, r))
∼−→ BX•(Z, r), (8.7.4.2.1)

L←l
∗
X

(BX(Z, r)“⊗OX
D(m)

X]/S]
)
∼−→ BX•(Z, r)⊗OX• D

(m)

X]•/S
]
•
. (8.7.4.2.2)

(b) We have BX(Z, r) ∈ Db
qc(OX), BX•(Z, r) ∈ Db

qc(OX•) and BX(Z, r)“⊗OX
D(m)

X]/S]
∈ Db

qc(OX) and

BX•(Z, r)⊗OX• D
(m)

X]•/S
]
•
∈ Db

qc(OX•).

(c) Moreover, (X],B(•)
X (Z))/S] is strongly quasi-flat (see definition 8.5.5.3).

Proof. This is a consequence of 8.7.4.1 and of 7.3.1.7 (for the last property, more precisely, in the definition
8.5.5.3, we can choose T = Spf V).

8.7.4.3. It follows from 7.3.2.10 that the functors R←lX∗ and L←l
∗
X

induce canonically quasi-inverse equiv-
alences of categories between D−qc(OX•) and D−qc(OX•).

Since OX-module OXi have tor-dimension ≤ 1 for any i ∈ N, then the functor L←l
∗
X

= OX•⊗L
OX
− pre-

serves the boundedness. Hence, the functors R←lX∗ and L←l
∗
X

induce canonically quasi-inverse equivalences
of categories between Db

qc(OX•) and Db
qc(OX•).

Lemma 8.7.4.4. Let m′ ≥ m ≥ 0 be two integers, D ⊂ T be two divisors of X. We suppose X is
p-torsion free.

(a) The kernel of the canonical epimorphism B(m)
X (D)“⊗OX

B(m′)
X (T )→ B(m′)

X (T ) is a quasi-coherent OX-
module.

(b) The canonical morphism B(m)
X (D)“⊗L

OX
B(m′)
X (T ) → B(m)

X (D)“⊗OX
B(m′)
X (T ) is an isomorphism, where

the complete tensor product is defined at 7.3.4.2.1.

(c) The B(m)
X (D)-module B(m′)

X (T ) has tor-dimension ≤ 2.

(d) The OX-module B(m′)
X (T ) has tor-dimension ≤ 1.

Proof. Since the lemma is local, we can suppose X = Spf A affine, and T ⊂ X (resp D ⊂ X) has a local
equation φ ∈ A/πA (resp. ψ ∈ A/πA). Since D ⊂ T , then φ is a multiple of ψ. Choose g ∈ A a lifting of
ψ and then f a lifting of φ which is a multiple of g. For any integer r ≥ 0, put B(g, r) := OX[X]/(grX−p)
and B(m)(g) := B(m)(g, pm+1) where OX[X] is a polynomial ring in the variable X with coefficients in
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OX. For any integer s ≥ 0, put B(f, s) := OX[Y ]/(fsY − p), B(m′)(f) := B(f, pm
′+1) where OX[Y ] is

a polynomial ring in the variable Y with coefficients in OX (we use two distinct letters for the variable
to avoid confusion later). Recall B(m′)

X (T )
∼−→ B(m′)(f) (see 8.7.3.5.1) and do not depend (up to a

canonical isomorphism) on the choice of f such that f modulo πA is a local equation of T ⊂ X.
Since B(m′)(f) = B(fp

m′−m
, pm+1) and since f is a multiple of g then we get from 8.7.3.1 the canonical

morphism B(m)(g)→ B(m′)(f). It follows from 8.7.4.1 that we have the commutative diagram of injective
ring morphisms

B(m)(g) �
� //

� _

��

A{g}� _

��
B(m′)(f) �

� // A{f}.

(8.7.4.4.1)

Since the image in A{g} of the class of X in B(m)(g) is p

gpm+1 , since B(m)(g) → A{g} is injective then

we still denote by p

gpm+1 the class of X in B(m)(g) or its image in B(m′)(f) (following 8.7.4.4.1 this is
harmless).

1) Let us prove first that, for any integer j ≤ −1, Hj(B(m)(g)⊗L
OX
B(m′)(f)) = 0.

We have the short exact sequence 0 → OX[X] −→
α
OX[X] −→

β
B(m)(g) → 0, where α is the mul-

tiplication by gp
m+1

X − p and β is the morphism of OX-algebras given by X 7→ p

gpm+1 . Since this

exact sequence gives a canonical resolution of B(m)(g) by some flat OX-modules, by applying the functor
−⊗OX

B(m′)(f) to this exact sequence, we see that it is a question of proving that p (or gp
m+1

) is not a
zero divisor of B(m′)(f). Since B(m′)(f) is p-torsion free (see 8.7.4.1), then we are done.

2) Consider the diagram of B(m′)(f)-modules:

0 // OX[X]⊗OX
B(m′)(f)

α⊗id //

a��

OX[X]⊗OX
B(m′)(f)

β⊗id // B(m)(g)⊗OX
B(m′)(f)

c��

// 0

0 // B(m′)(f)[X]
α′ // B(m′)(f)[X]

β′ // B(m′)(f) // 0,

(8.7.4.4.2)
where α′ is the multiplication by X− p

gpm+1 , β′ is the morphism the morphism of B(m′)(f)-algebras given

by X 7→ p

gpm+1 , a is the multiplication by gp
m+1

, c is induced by the ring morphism B(m)(g)→ B(m′)(f)

and the identity of B(m′)(f). We compute easily that the diagram 8.7.4.4.2 is commutative. Moreover,
the horizontal sequences are exact. Hence by using the snake lemma, we get the isomorphism N0 :=
Ker c

∼−→ Coker a. This implies that N0, is killed by 1 ⊗ gpm+1

and therefore by p. Since B(m′)(f) is
p-torsion free, since B(m)

Xi
(D)⊗OXi B

(m′)
Xi

(T )
∼−→ V/πi+1V⊗VB(m)(g)⊗OX

B(m′)(f), this implies the short

exact sequence 0→ N0 → B(m)
Xi

(D)⊗OXi B
(m′)
Xi

(T )→ B(m′)
Xi

(T )→ 0. For i = 0, this implies que N0 is a
quasi-coherent OX -module. Following 7.3.1.9, this yields N0 ∈ Db

qc(OX). By taking the projective limits,

we get moreover the exact sequence: 0→ N0 → B(m)
X (D)“⊗OX

B(m′)
X (T )→ B(m′)

X (T )→ 0. Since B(m′)
X (T )

is p-torsion free and separated complete, then B(m′)
X (T ) ∈ Db

qc(OX) (see 7.3.2.15). Since the notion of
quasi-coherence of 7.3.1.5 is closed under devissage, i.e. quasi-coherent complexes are a triangulated
subcategory of that all complexes, then B(m)

X (D)“⊗OX
B(m′)
X (T ) ∈ Db

qc(OX).

3) On the other hand, since B(m)
X (D),B(m′)

X (T ) ∈ Db
qc(OX) (see 8.7.4.2), then following 7.3.4.10,

B(m)
X (D)“⊗L

OX
B(m′)
X (T ) ∈ D−qc(OX). Moreover, we get the isomorphism

OX• ⊗L
OX

(
B(m)
X (D)“⊗L

OX
B(m′)
X (T )

)
∼−→ B(m)

X•
(D)⊗L

OX• B
(m)
X•

(T ).

4) Hence, with the last result of 2) and with 3), in order to prove the isomorphism of (b), it remains
to check the canonical isomorphism OXi⊗L

OX

Ä
B(m)
X (D)“⊗OX

B(m′)
X (T )

ä ∼−→ B(m)
Xi

(D)⊗L
OXi
B(m)
Xi

(T ). This
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is checked as follows: By applying the functor OXi ⊗L
OX
− to the diagram

0 // N0
// B(m)(g)⊗OX

B(m′)(f) //

��
B(m′)(f) //

��
0

0 // N0
// B(m)

X (D)“⊗OX
B(m′)
X (T ) // B(m′)

X (T ) // 0,

(8.7.4.4.3)

we get OXi ⊗L
OX

Ä
B(m)(g)⊗OX

B(m′)(f)
ä ∼−→ OXi ⊗L

OX

Ä
B(m)
X (D)“⊗OX

B(m′)
X (T )

ä
. Finally following the

step 1), we get OXi ⊗L
OX

Ä
B(m)(g)⊗OX

B(m′)(f)
ä ∼−→ (OXi ⊗L

OX
B(m)(g))⊗L

OXi
(OXi ⊗L

OX
B(m′)(f))

∼−→

B(m)
Xi

(D)⊗L
OXi
B(m′)
Xi

(T ).
5) It remains to check the property (c) via the following steps 5,6,7). We have the short exact sequence

0 → OX[Y ] −→
α′′
OX[Y ] −→

β′′
B(m′)(f) → 0, where α′′ is the multiplication by fp

m′+1

Y − p and β′′ is the

morphism of OX-algebras given by Y 7→ p

fpm
′+1 . Since B(m)(g) is p-torsion free, by applying the functor

B(m)(g)⊗OX
−, similarly to the step 1) we get the exact sequence

0 // B(m)(g)⊗OX
OX[Y ]

id⊗α′′ // B(m)(g)⊗OX
OX[Y ]

id⊗β′′ // B(m)(g)⊗OX
B(m′)(f) // 0.

(8.7.4.4.4)
We set B(m)

X (D){Y } := B(m)
X (D)“⊗OX

OX[Y ]. By taking the p-adic completion of 8.7.4.4.4, we get the
sequence

0 // B(m)
X (D){Y } α̂ // B(m)

X (D){Y }
β̂ // B(m)

X (D)“⊗OX
B(m′)
X (T ) // 0 (8.7.4.4.5)

where α̂ is the multiplication by fp
m′+1

Y −p and β̂ is the morphism of complete B(m)
X (D)-algebras given

by Y 7→ p

fpm
′+1 . Since B

(m)
X (D) is p-torsion free, then the sequence is exact. Hence, B(m)

X (D)“⊗OX
B(m′)
X (T )

has tor-dimension ≤ 1 as B(m)
X (D)-module.

6) With notation of 2), N0
∼−→ Coker a

∼−→ (B(m′)(f)/gp
m+1B(m′)(f))[X]. Since B(m′)(f) :=

OX[Y ]/(fp
m′+1

Y−p), then we get B(m′)(f)/gp
m+1B(m′) ∼−→ OX[Y ]/(gp

m+1

, fp
m′+1

Y−p), where (gp
m+1

, fp
m′+1

Y−
p) is the ideal of OX[Y ] generated by the elements gp

m+1

and fp
m′+1

Y − p. Using the same notation Y
instead of X to define B(m)(g), since (gp

m+1

, fp
m′+1

Y − p) = (gp
m+1

, p) = (gp
m+1

, gp
m+1

Y − p), then we
get

B(m′)(f)/gp
m+1

B(m′)(f)
∼−→ OX [Y ]/(gp

m+1

)
∼−→ B(m)(g)/gp

m+1

B(m)(g),

where g is the image of g via the projection OX → OX . Similarly, since B(m)(g)
∼−→ B(m)

X (D) taking
the p-adic completion, we get

B(m)
X (D)/gp

m+1

B(m)
X (D)

∼−→ OX [Y ]/(gp
m+1

).

This yields
N0

∼−→ (B(m)
X (D)/gp

m+1

B(m)
X (D))[Y ].

Since B(m)
X (D) is p-torsion free, since gp

m+1

Y = p in B(m)
X (D), then B(m)

X (D) is gp
m+1

-torsion free. Hence,
N0 has tor-dimension ≤ 1 as B(m)

X (D)-module.
7) It follows from the parts 5) and 6) of the proof and from the bottom exact sequence of the diagram

8.7.4.4.3 that B(m)
X (D)-module B(m′)

X (T ) has tor-dimension ≤ 2.

Remark 8.7.4.5. With notation 8.7.4.4, it seems false in general that for any i ∈ N, the canonical
morphism B(m)

Xi
(D)⊗L

OXi
B(m)
Xi

(T )→ B(m)
Xi

(D)⊗OXi B
(m)
Xi

(T ) is an isomorphism. But, when the divisors
are reduced and irreducible components are two by two distinct, then this becomes true (see 9.1.3.1).
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8.7.4.6. We keep notation 8.7.3.12. Following 8.1, we denote by M(B(•)
X (Z)) the category of B(•)

X (Z)-
modules. Let ] ∈ {∅,+,−,b}. We get D](B(•)

X (Z)) the derived category of complexes of B(•)
X (Z)-modules

with the corresponding boundedness property. Moreover, we denote similarly to 8.1 by D−→
]
Q(B(•)

X (Z)),

M−→Q(B(•)
X (Z)), LD−→Q(B(•)

X (Z)), LM−−→
]
Q(B(•)

X (Z)) the localized categories of D](B(•)
X (Z)). We have also the

notion of coherent up to lim-ind-isogeny B(•)
X (Z)-modules and we denote by LM−−→Q,coh(B(•)

X (Z)) the full

subcategory of LM−−→Q(B(•)
X (Z)) of coherent up to lim-ind-isogeny B(•)

X (Z)-modules. By using the flatness
property of 8.7.3.14, the finiteness tor-dimension of 8.7.4.4.c, we can applying 8.4.1.15.b. Hence, we get
the canonical fully faithful functor LM−−→Q,coh(B(•)

X (Z))→ LD−→
b
Q,coh(B(•)

X (Z)) and of the functor→l
∗
Q induces

the equivalence of categories

→l
∗
Q : LD−→

b
Q,coh(B(•)

X (Z)) ∼= Db
coh(OX(†Z)Q). (8.7.4.6.1)

Corollary 8.7.4.7. Let µ ∈ L(N), m′ ≥ m ≥ 0 be two integers and n = µ(m), n′ = µ(m′). Let D ⊂ T
be two divisors of P . We suppose X is p-torsion free. We have the following tor finiteness results.

(a) The OX•-module B(n′)
X•

(T ) (resp. B(n)
X•

(D)-module B(n′)
X•

(T )) has tor-dimension ≤ 1 (resp. has tor-
dimension ≤ 2).

(b) The (left or right) B(n)
X•

(D)⊗OX• D
(m)

X]•/S
]
•
-module B(n′)

X•
(T )⊗OX• D

(m)

X]•/S
]
•
has tor-dimension ≤ 2.

(c) The (left or right) B(n)
X•

(D)⊗OX• D
(m)

X]•/S
]
•
-module B(n′)

X•
(T )⊗OX• D

(m′)

X]•/S
]
•
has tor-dimension ≤ d+ 2.

(d) The B(n)
X (D)-module B(n′)

X (T ) has tor-dimension ≤ 2. The (left or right) B(n)
X (D)“⊗OX

D(m)

X]/S]
-

module B(n′)
X (T )“⊗OX

D(m)

X]/S]
has tor-dimension ≤ 2. The (left or right) B(n)

X (D)“⊗OX
D(m)

X]/S]
-module

B(n′)
X (T )“⊗OX

D(m′)

X]/S]
has tor-dimension ≤ d+ 2.

Proof. a) The first statement follows from 8.7.4.4.c.
b) Let us check b). Since the proof is the same, we reduce to check the left case. LetM• be a right

B(n)
X•

(D)⊗OX• D
(m)

X]•/S
]
•
-module. Let P•• be a resolution ofM• by flat right B(n)

X•
(D)⊗OX• D

(m)

X]•/S
]
•
-module.

Since P•• is also a resolution ofM• by flat B(n)
X•

(D)-modules, then we get:

M• ⊗L
B(n)

X•
(D)⊗OX•D

(m)

X
]
•/S

]
•

(
B(n′)
X•

(T )⊗OX• D
(m)

X]•/S
]
•

)
∼−→ P•• ⊗B(n)

X•
(D)⊗OX•D

(m)

X
]
•/S

]
•

(
B(n′)
X•

(T )⊗OX• D
(m)

X]•/S
]
•

)
∼←−

4.3.4.8.3
P•• ⊗B(n)

X•
(D)
B(n′)
X•

(T )
∼←− M• ⊗L

B(n)

X•
(D)
B(n′)
X•

(T ). (8.7.4.7.1)

Hence, it follows from the part (a) that the object B(n′)
X•

(T )⊗OX• D
(m)

X]•/S
]
•
of Db

qc(lB(n)
X•

(D)⊗OX• D
(m)

X]•/S
]
•
)

has tor-amplitude in [−2, 0].
c) Let us check c). Let N• be a right B(n′)

X•
(T ) ⊗OX• D

(m)

X]•/S
]
•
-module. Let Q•• be a resolution of N•

by flat B(n′)
X•

(T )⊗OX• D
(m)

X]•/S
]
•
-module. We have the isomorphisms of (B(n′)

X•
(T ),D(m′)

X]•/S
]
•
)-bimodules:

B(n′)
X•

(T )⊗OX• D
(m′)

X]•/S
]
•

∼←− B(n′)
X•

(T )⊗L
OX• D

(m′)

X]•/S
]
•

∼−→ B(n′)
X•

(T )⊗L
OX•

(
D(m)

X]•/S
]
•
⊗L
D(m)

X
]
•/S

]
•

D(m′)

X]•/S
]
•

)
∼−→

4.6.3.5

(
B(n′)
X•

(T )⊗L
OX• D

(m)

X]•/S
]
•

)
⊗L
D(m)

X
]
•/S

]
•

D(m′)

X]•/S
]
•

∼−→
(
B(n′)
X•

(T )⊗OX• D
(m)

X]•/S
]
•

)
⊗L
D(m)

X
]
•/S

]
•

D(m′)

X]•/S
]
•
.

This yields the canonical morphism of complexes of (B(n′)
X•

(T )⊗OX• D
(m)

X]•/S
]
•
,D(m′)

X]•/S
]
•
)-bimodules(

B(n′)
X•

(T )⊗OX• D
(m)

X]•/S
]
•

)
⊗L
D(m)

X
]
•/S

]
•

D(m′)

X]•/S
]
•
→
(
B(n′)
X•

(T )⊗OX• D
(m)

X]•/S
]
•

)
⊗D(m)

X
]
•/S

]
•

D(m′)

X]•/S
]
•
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is an isomorphism. By using 4.3.1.2.1, we get the isomorphism of complexes of (B(n′)
X•

(T )⊗OX•D
(m)

X]•/S
]
•
,D(m′)

X]•/S
]
•
)-

bimodules (
B(n′)
X•

(T )⊗OX• D
(m)

X]•/S
]
•

)
⊗L
D(m)

X
]
•/S

]
•

D(m′)

X]•/S
]
•

∼−→ B(n′)
X•

(T )⊗OX• D
(m′)

X]•/S
]
•
. (8.7.4.7.2)

This yields the first isomorphism:

N• ⊗L
B(n′)
X•

(T )⊗OX•D
(m)

X
]
•/S

]
•

(
B(n′)
X•

(T )⊗OX• D
(m′)

X]•/S
]
•

)
∼−→

8.7.4.7.2

N• ⊗L
B(n′)
X•

(T )⊗OX•D
(m)

X
]
•/S

]
•

((
B(n′)
X•

(T )⊗OX• D
(m)

X]•/S
]
•

)
⊗L
D(m)

X
]
•/S

]
•

D(m′)

X]•/S
]
•

)
(8.7.4.7.3)

∼−→
4.6.3.5

(
N• ⊗L

B(n′)
X•

(T )⊗OX•D
(m)

X
]
•/S

]
•

(
B(n′)
X•

(T )⊗OX• D
(m)

X]•/S
]
•

))
⊗L
D(m)

X
]
•/S

]
•

D(m′)

X]•/S
]
•

(8.7.4.7.4)

∼−→ N• ⊗L
D(m)

X
]
•/S

]
•

D(m′)

X]•/S
]
•

(8.7.4.7.5)

Hence, it follows from 3.2.4.3 that the object B(n′)
X•

(T )⊗OX• D
(m′)

X]•/S
]
•
of Db

qc(lB(n′)
X•

(T )⊗OX• D
(m)

X]•/S
]
•
)

has tor amplitude in [−d, 0]. Hence, c) follows from b).
d) Let us check the non-respective case (the respective ones are checked similarly). Since B(n′)

X (T )“⊗OX
D(m′)

X]/S]
∼−→

R←lX∗(B
(n′)
X•

(T ) ⊗OX• D
(m′)

X]•/S
]
•
) (for any n′ ≥ m′ and T ), then the part c) is a consequence of the part c)

and of the Theorem 7.3.2.15.

8.7.5 Flatness by adding overconvergent singularities
Lemma 8.7.5.1. We keep notation 3.4 in the algebraic case. Let m ∈ N, r be a multiple of pm+1, r′
be a multiple of r. Fix f ∈ Γ(X,OX) and put BX(f, r) := OX [T ]/(frT − p). Let ρ

f
r′
r
−1

: BX(f, r) =

OX [T ]/(frT − p)→ BX(f
r′
r , r) = BX(f, r′) = OX [T ′]/(fr

′
T ′− p) be the homomorphism of OX algebras

of 8.7.3.1 given by T 7→ fr
′−rT ′. Then for any k ∈ N, the sub-BX(f, r)-module of BX(f, r′) generated

by T ′i for i ≤ k is a left sub-D(m)

X]/S]
-module of BX(f, r′).

Proof. First, suppose S] = Spec Z(p) and X] = Spec Z(p)[t], f = t. This case has already been proved
in [Ber96c, 4.3.4]. More generally, using the diagram of the form 8.7.3.1.1, we get by construction
ρ
f
r′
r
−1

= φ∗f (ρ
t
r′
r
−1

). Hence, we are done. Since the structure of D(m)

X]/S]
-module on BX(f, r′) is induced

by pullback via 4.4.2.4, then we are done.

Theorem 8.7.5.2. Let S] be a nice fine V-log formal scheme (see definition 3.3.1.10). Moreover, let
X] → S] be a log smooth morphism of log formal schemes. We suppose the underlying formal scheme X
is locally noetherian of finite Krull dimension and p-torsion free. Let Z be a divisor of X, m′ ≥ m, r
(resp. r′) a multiple of pm+1 (resp. pm

′+1). Then with notation 8.7.3.5 the extension

BX(Z, r)“⊗OX
“D(m)

X]/S],Q → BX(Z, r′)“⊗OX
“D(m′)

X]/S],Q

is left and right flat.

Proof. It follows from 7.5.3.1 that we only need to show

BX(Z, r)“⊗OX
“D(m)

X]/S],Q → BX(Z, r′)“⊗OX
“D(m)

X]/S],Q

is flat. This check is similar to that of 7.5.3.1. Since this is local, we can suppose X] → S] is endowed
with logarithmic coordinates u1, . . . , ud, X is connected affine and there exists f ∈ Γ(X,OX) =: A such
that its image in A/πA is a local equation of the divisor Z of X.
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Let B = A[T ]/(frT − p), B′ = A[T ′]/(fr
′
T ′ − p), D = Γ(U,D(m)

X]/S]
); “B, B̂′, “D be their respective

p-adic completion. Let η : B → B′ be the A-algebra homomorphism given by T 7→ fr
′−rT ′. Let

η′ : B ⊗D → B′ ⊗D be the homomorphism induced by η (we simply write in the proof ⊗ for ⊗A). It
suffices to prove B′“⊗DQ is flat over B“⊗DQ. Observe that since f is not a zero divisor modulo π, the
rings B and B′ are p-torsion free (see 8.7.4.1). Hence, since B and B′ are noetherian then “B and “B′ are
p-torsion free by flatness. Again, by flatness B ⊗D, B′ ⊗D, B“⊗D, “B′“⊗“D are p-torsion free. It follows
from 8.7.4.1 that B → “B and “B → “B′ are injective. Hence, since X] → S] is endowed with logarithmic
coordinates then B“⊗D → B′“⊗D and B′ ⊗D → B′“⊗D are injective (use the description 7.5.1.5.2). Let
us introduce the set

D′ = B“⊗D +B′ ⊗D ⊂ B′“⊗D.
In fact D′ is a subring: let P ∈ B“⊗D and Q ∈ B′ ⊗D. It is enough to check that PQ,QP ∈ D′. There
exists a ∈ N such that faQ ∈ B ⊗ D. Since p = frT in B, this yields paQ ∈ B ⊗ D. We can write
P = P1 +paP2 with P1 ∈ B⊗D and P2 ∈ B“⊗D. Since PQ = P1Q+P2(paQ) and QP = QP1 +(paQ)P2,
then we are done.

Now let’s prove that the canonical morphism D̂′ → B′“⊗D is an isomorphism. We have to check the
homomorphismsD′/piD′ → B′“⊗D/pi(B′“⊗D) are isomorphisms for all integer i ≥ 1. Since B′⊗D/piB′⊗
D)

∼−→ B′“⊗D/pi(B′“⊗D) and B′⊗D ⊆ D′ then we get the surjectivity. For the injectivity, an operator of
D′∩pi(B′“⊗D) can be written of the form P+Q = piP ′ with P ∈ B“⊗D, Q ∈ B′⊗D and P ′ ∈ B′“⊗D. We
can write P = P1+piP2 with P1 ∈ B⊗D and P2 ∈ B“⊗D. Then P1+Q ∈ (B′⊗D)∩pi(B′“⊗D) = piB′⊗D.
Hence, P +Q = (P1 +Q) + piP2 ∈ piD′ and we are done.

Since BQ → B′Q is an isomorphism, then so is (B ⊗ D)Q → (B′ ⊗ D)Q. This yields the equality
B“⊗DQ = D′Q. Hence, it is sufficient to prove that D′ is noetherian because this implies the flatness of
D′ → D̂′. We prove this noetherianity as follows.

For any k ∈ N, let B′k be the sub-B-module of B′ generated by T ′j for 0 ≤ j ≤ k. Following 8.7.5.1,
B′k is a left sub-D-module of B′. Hence, by using the formula 4.1.2.2.3, we can check that E′k := B′k⊗D
is a left sub-B ⊗D-module of B′ ⊗D.

The element P ′ of E′k are the element of B′ ⊗D which can be written of the form

P ′ =
∑
i∈Nd

b′i∂
〈i〉
] =

∑
i∈Nd

(
k∑
j=0

T ′
j
bi,j

)
∂
〈i〉
] =

k∑
j=0

T ′
j

Ñ∑
i∈Nd

bi,j∂
〈i〉
]

é
, (8.7.5.2.1)

where the sums are finite, bi,j ∈ B and b′i =
∑k
j=0 T

′jbi,j ∈ B′k. In the left equality of 8.7.5.2.1, the
elements b′i ∈ B′ are uniquely determined by P ′ but be aware that this is not clear in the right equality
for bi,j .

By p-adic completion, for any integer k ≥ 0, we get the homomorphism of B“⊗D-modules B′k“⊗D →
B′“⊗D whose image is denoted by D′k. Set D′k = 0 for any integer k < 0. Since E′k is generated as sub-
B ⊗D-module of B′ ⊗D by T ′j for j = 0, . . . , k, then D′k is the sub-B“⊗D-module of B′“⊗D generated
by T ′j for j = 0, . . . , k. We prove now that grD′ := ⊕k∈ND

′
k/D

′
k−1 is noetherian, which will imply that

so is D′ (recall 1.4.2.9).
The element P ′ of D′k are the element of B′ ⊗D which can be written of the form

P ′ =
k∑
j=0

T ′
j

Ñ∑
i∈Nd

bi,j∂
〈i〉
]

é
=
∑
i∈Nd

(
k∑
j=0

T ′
j
bi,j

)
∂
〈i〉
] =

∑
i∈Nd

b′i∂
〈i〉
] , (8.7.5.2.2)

where bi,j ∈ “B converges to 0 when |i| goes to infinity, where b′i :=
∑k
j=0 T

′jbi,j ∈ B̂′.
For k ≥ 1 we have fr

′
T ′
k

= pT ′
k−1 ∈ D′k−1 because fr

′
T ′ = p in B′“⊗D ; thus fr

′
grkD

′ = 0.
Write r′ = ar. Since p = frT , then fr

′
divides pa in B“⊗D and thus pa grkD

′ = 0 for k ≥ 1. Since
gr0D

′ = D′0 = B“⊗D then we get the ring homomorphism B“⊗D → grD′. This yields a structure
of B“⊗D-module on pa grD′ such that pa grD′ = pa gr0D

′ = paB“⊗D is B“⊗D-linear. Since B“⊗D is
noetherian, then so is pa grD′.

Now let us check that grD′/pa grD′ is noetherian. We have

grD′/pa grD′ = (B“⊗D)/pa(B“⊗D)⊕k≥1 grkD
′. (8.7.5.2.3)
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For any n ∈ N, we set Dn := Γ(U,D(m)

X]/S],n
) which yields the order filtration (Dn)n∈N on D. For any

k, n ∈ N, we put C ′I,k := D′k ∩ (B′ ⊗D), C ′II,n := B′ ⊗Dn.
Let k ≥ 1 be an integer. Since paD′k ⊂ D′k−1, since “B = B + pa“B, then we get from 8.7.5.2.1 and

8.7.5.2.2 D′k ⊂ E′k + D′k−1. Since we have also E′k ⊂ D′k ∩ (B′ ⊗ D) = C ′I,k, then the monomorphism
grIk(B′ ⊗D) = C ′I,k/C

′
I,k−1 ↪→ D′k/D

′
k−1 is in fact an isomorphism. Since C ′I,0 = (B“⊗D) ∩ (B′ ⊗D)→

(B“⊗D)/pa(B“⊗D) is surjective, then it follows from 8.7.5.2.3 that the canonical morphism grI(B′ ⊗
D) → grD′/pa grD′ is an epimorphism. Hence, we reduce to prove grI(B′ ⊗ D) is noetherian. Since
grII(B′ ⊗ D)

∼−→ B′ ⊗ grD is noetherian, then B′ ⊗ D is noetherian and so is grI(B′ ⊗ D). Hence
grD′/pa grD′ is noetherian. Finally the exact sequence

0→ pa grD′ → grD′ → grD′/pa grD′ → 0

implies that grD′ is noetherian. This completes the proof of theorem 8.7.5.2.

Corollary 8.7.5.3. With notation and hypotheses of 8.7.5.5, the sheaf D†
X]/S]

(†Z)Q is right and left

flat over BX(Z, r)“⊗OX
“D(m)

X]/S],Q.

8.7.5.4. It follows from Corollary 7.2.3.16 (see also the example 7.2.3.2 which can be applied in the case
where B = B(m)

X (Z) thanks to 8.7.3.14), Proposition 7.4.5.2, the corollary 8.7.4.7 and Theorem 8.7.5.2
that the condition of Theorem 8.4.1.15.b are fully satisfied in the case where I = N and for any i ∈ I,
D(i) := B(λ(i))

X (Z)“⊗OX
D(i)

X]/S]
, where λ ∈ L(N). Hence, we have the equivalence of categories:

→l
∗
Q : LD−→

b
Q,coh(‹D(•)

X]/S]
(Z)) ∼= Db

coh(D†
X]/S]

(Z)Q). (8.7.5.4.1)

Theorem 8.7.5.5. With notation and hypotheses of 8.7.5.2, the sheaf D†
X]/S]

(†Z)Q (see 8.7.3.12) is

coherent. We have theorems of type A and B for right or left coherent D†
X]/S]

(†Z)Q-modules (in the
sense of 1.4.3.14).

Proof. Following 8.4.1.14, this is a consequence of 8.7.5.2.

Remark 8.7.5.6. With notation and hypotheses of 8.7.5.5, we do not know if D†
X]/S]

(and a fortiori

D†
X]/S]

(†Z)) is coherent.

8.7.6 Restriction outside the overconvergent singularities: full faithfulness
Lemma 8.7.6.1. Let S] be a nice fine log scheme over Spec(Z/pZ), (see definition 3.1.1.1). Let X] → S]

be a log smooth morphism of log schemes, f ∈ Γ(X,OX), r be a multiple of pm+2 and consider the OX-
algebra BX(f, r) := OX [T ]/(frT ) endowed with its canonical structure of D(m)

X]/S]
-module compatible

with its structure of OX-algebra (see 8.7.3.1). Then T ⊗ 1 belongs to the center of the sheaf of rings
BX(f, r)⊗OX D

(m)

X]/S]
.

Proof. Since this is local, we can suppose X]/S] has logarithmic coordinates. By using 4.1.2.2.3, we
reduce to check that ∂〈k〉] (T ) = 0. Following Taylor formula (see 4.2.1.5.4), this is equivalent to saying

that for any n ∈ N we have εBX(f,r)
n (1⊗ T ) = T ⊗ 1. Consider the following commutative diagram

X]
φf //

��

A1
Z(p)

= Spec Z(p)[t]

��
(S], aS , bS , αS) // (Spec Z(p), (p), (p), α(p)),

(8.7.6.1.1)

where φf is the morphism given by f , α(p) is the canonical m-PD (see 1.2.4.2.a). By construction,
the canonical structure of D(m)

X]/S]
-module compatible with its structure of OX -algebra on BX(f, r) is

given by pullback (see 4.4.2.4) via BX(f, r) = φ∗f (BA1
Z(p)

(t, r)). By construction the m-PD-stratification
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ε
BX(f,r)
n is therefore given by pullback from the m-PD-stratification ε

BA1 (t,r)
n . Hence, we reduce to the

case where S] = Spec Z(p) and X] = Spec Z(p)[t], f = t. This latter case has already been proved in
[Ber96c, 4.3.9].

Lemma 8.7.6.2. Let A→ B be a ring homomorphism. The following property are equivalent.

(a) B is right flat on A and for any monogeneous of finite presentation left A-module M , we have the
implication B ⊗AM = 0⇒M = 0 ;

(b) B is faithfully flat as A-module.

Proof. The implication (b)⇒ (a) is straightforward. Let us prove (a)⇒ (b). Let M be a left A-module
such that B⊗AM = 0. Let x ∈M . If we set M ′ = A · x ⊂M , then by flatness B⊗AM ′ = 0. Hence, to
check that M = 0 we reduce to the case where M is monogeneous. We get M = A/J with J a left ideal
of A. Let Λ be the set of finite subsets of J . For any λ ∈ Λ, let Jλ be the left ideal of A generated by
the element of λ. Then J = ∪λ∈ΛJλ. Let Mλ := A/Jλ. Since filtered inductive limits are exact, then we
have lim−→λ∈Λ

Mλ = M and therefore lim−→λ∈Λ
B ⊗A Mλ = 0. Since Λ is filtered, then for λ large enough,

1⊗ 1 = 0 in B⊗AMλ, where 1 is the image of 1 in Mλ. Since B⊗AMλ = B/BJλ is generated by 1⊗ 1,
this yields B ⊗AMλ = 0. Hence, Mλ = 0. This yields M = 0.

Definition 8.7.6.3. Let X be a topological space, A → B be a homomorphism of sheaves of rings on
X. We say that A → B is right (resp. left) faithfully flat if for any x ∈ X, Ax → Bx is right (resp. left)
faithfully flat.

Lemma 8.7.6.4. Let X be a topological space, A → B be a homomorphism of sheaves of rings on X.
The following properties are equivalent:

(a) A → B is right faithfully flat ;

(b) A → B is right flat and that for any left A-moduleM, we have the implication B⊗AM = 0⇒M = 0.

Proof. Since M = 0 if and only if Mx = 0 for any x ∈ X, then we get (a) ⇒ (b) (for instance use
Lemma 8.7.6.2). Suppose now A → B satisfies (b) and let us prove (a). Let x ∈ X and let M be a
monogeneous left Ax-module of finite presentation such that Bx ⊗Ax M = 0. Following 8.7.6.2, it is
enough to check that M = 0. Let B be the collection of open subsets of X containing x. Following
8.4.1.11.b, since B is filtered, then there exist U ∈ B andMU a left Γ(U,A)-module of finite presentation
endowed with the isomorphism M

∼−→ Ax⊗Γ(U,A)MU . Using again 8.4.1.11.b, shrinking U if necessary,
we can suppose that MU is monogeneous. Since Bx ⊗Γ(U,A) MU

∼−→ Bx ⊗Ax M = 0, since B is filtered,
since MU is monogeneous, then there exists U ′ ∈ B such that U ′ ⊂ U and Γ(U ′,B) ⊗Γ(U,A) MU = 0.
SetMU ′ := A|U ′ ⊗Γ(U,A) MU . Then B|U ′ ⊗A|U′ MU ′ = 0. Let j : U ′ ⊂ X be the inclusion and j!(MU ′)
be the extension by zero outside U ′ of MU ′ (recall j!(MU ′) is the sheaf associated with the presheaf
V 7→ Γ(V,MU ′) is V ⊂ U ′ and V 7→ 0 if V 6⊂ U ′). Then B ⊗AM = 0. Hence by hypothesisM = 0 and
therefore M =Mx = 0.

Lemma 8.7.6.5. Let X be a coherent topological space, A → B be a homomorphism of sheaves of rings
on X. Suppose there exists a basis B of opens of X such that, for any U ∈ B, Γ(U,A) → Γ(U,B) is
right faithfully flat. Then, A → B is right faithfully flat.

Proof. Let x ∈ X and let M be a monogeneous left Ax-module of finite presentation such that Bx ⊗Ax
M = 0. Following 8.7.6.2, it is enough to check that M = 0. Using the same arguments as the beginning
of the proof of (b)⇒ (a) of 8.7.6.4, we can check there exist U ′ ⊂ U two elements ofB,MU a monogeneous
left Γ(U,A)-module of finite presentation endowed with the isomorphism M

∼−→ Ax ⊗Γ(U,A) MU such
that Γ(U ′,B)⊗Γ(U,A) MU = 0. Hence, Γ(U ′,B)⊗Γ(U ′,A) (Γ(U ′,A)⊗Γ(U,A) MU ) = 0. By hypothesis, this
implies Γ(U ′,A)⊗Γ(U,A) MU = 0 and therefore M = 0.

8.7.6.6. Let S] be a nice fine V-log formal scheme (see definition 3.3.1.10). Moreover, let X] → S] be
a log smooth morphism of log formal schemes. We suppose X is p-torsion free. Let Z be a divisor of X,
Y] be the open of X] complementary to the support of Z and j : Y] → X] be the canonical morphism.
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For any multiple r of pm+1, the canonical D(m)

X]
i
/S]
i

-linear ring homomorphism OXi → BXi(Z, r)
is an isomorphism outside Z, i.e. it becomes an isomorphism on the open Yi. This yields the ring
homomorphism D(m)

X]
i
/S]
i

→ BXi(Z, r) ⊗OXi D
(m)

X]
i
/S]
i

is an isomorphism outside Z. By completion, this

yields the ring homomorphism OX → BX(Z, r), “D(m)
X → BX(Z, r)“⊗D(m)

X]/S]
are isomomorphisms outside

Z. Going through the limit on the level this implies the ring homomorphisms OX → OX(†Z), D†
X]/S]

→
D†

X]/S]
(†Z) are isomorphisms outside Z. By adjointness, this yields the ring homomorphisms

BX(Z, r)→ j∗OY, OX(†Z)→ j∗OY, (8.7.6.6.1)

BX(Z, r)“⊗D(m)

X]/S]
→ j∗“D(m)

Y]/S]
, D†

X]/S]
(†Z)→ j∗D†Y]/S]

. (8.7.6.6.2)

Lemma 8.7.6.7. With notation 8.7.6.6, suppose X] is affine and there exists f ∈ Γ(X,OX) lifting a
local equation of Z in X. Let m′ ≥ m. Set D(m)

m′ := Γ(X,B(m′′)
X (Z)“⊗OX

“D(m)

X]/S]
) for any m′′ ≥ m. Let

E be an f -torsion free monogeneous left D(m)
m′ -module such that (E/pE)f = 0. Then for m′′ ≥ m′ large

enough we have D(m)
m′′ ⊗D(m)

m′
E = 0.

Proof. Choose a generator e of E. Then there exists s ∈ N, R ∈ D
(m)
m′ such that (fs − pR)e = 0.

Set Bm′ := A{T}/(fpm
′+1

T − p) = Γ(U,B(m′)
X (Z)). Increasing m′ if necessary (i.e. replacing E by

D
(m)
m′′ ⊗D(m)

m′
E withm′′ large enough such that s ≤ pm′′+1), we get fs(1−TR′)e = 0 with R′ = fp

m′+1−sR.

Since E is f -torsion free, then (1 − TR′)e = 0 and therefore (1 − TR′)pe = 0. Let S ∈ D(m)
m′ such that

(1−TR′)p = 1+pS+(TR′)p. We can supposem′ ≥ m+1 and then following 8.7.6.1 we get that T belongs
to the center of D(m)

m′ /pD
(m)
m′ . Hence, we can write (1−TR′)p = 1 +pS′+T pR′′ with R′′, S′ ∈ D(m)

m′ . Set
Bm′+1 := A{T ′}/(fpm

′+2

T ′ − p) = Γ(U,B(m′+1)
X (Z)). Using the computation of 8.7.3.11.(b), we get that

the homomorphism Bm′ → Bm′+1 (and therefore D(m)
m′ → D

(m)
m′+1) sends T to f (p−1)pm

′+1

T ′ and then

sends T p to f (p−1)pm
′+2

(T ′)p = pf (p−2)pm
′+2

(T ′)p−1. This yields that we can write (1− TR′)p = 1 + pQ

with Q ∈ D(m)
m′+1. Since D

(m)
m′+1 is p-adically complete, this implies that (1−TR′)p is invertible in D(m)

m′+1.
Hence, 1⊗ e = 0 in D(m)

m′+1 ⊗D(m)

m′
E and then D(m)

m′+1 ⊗D(m)

m′
E = 0. Hence, we are done.

Theorem 8.7.6.8. We keep notation 8.7.6.6

(a) The ring homomorphisms 8.7.6.6.1 and 8.7.6.6.2 are injective, left and right flat.

(b) The induced ring homomorphisms

OX(†Z)Q → j∗OY,Q, (8.7.6.8.1)

D†
X]/S]

(†Z)Q → j∗D†Y]/S],Q (8.7.6.8.2)

are left and right faithfully flat.

Proof. (a) The injectivity of 8.7.6.6.1 is a consequence of 8.7.4.1.b. By using the local description
7.5.1.5.2, we get the injectivity of 8.7.6.6.2 from that of 8.7.6.6.1.

(i) Let us now check the flatness. Since this is local, we can suppose X is affine and there exists
f ∈ Γ(X,OX) =: A giving a local equation of the divisor Z of X. Let B = A[T ]/(frT − p). Since the
canonical morphism B → Af is induced by adjointness from the isomorphism Bf

∼−→ Af , this morphism
B → Af is flat. Since these rings are noetherian, then so is the p-adic completion “B → A{f}, which
corresponds to the canonical morphism Γ(U,BX(f, r)) → Γ(U, j∗OY). Going through the limits, we get
that the the canonical morphism Γ(U,OX(†Z)) → Γ(U, j∗OY) is flat. Hence, we have checked that the
homomorphisms of 8.7.6.6.1 are flat.

(ii) Using the same arguments as in (i), for any affine open U of X such that there exists f ∈
Γ(X,OX) =: A giving a local equation of the divisor Z ofX, we get the flatness of Γ(U,BX(Z, r)“⊗D(m)

X]/S]
)→

Γ(U, j∗“D(m)

Y]/S]
) and Γ(U,D†

X]/S]
(†Z))→ Γ(U, j∗D†Y]/S]

) and therefore that of the morphisms of 8.7.6.6.2.
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(b) Let us now check the full faithfulness of 8.7.6.8.2. Let U] = (Spf A,MU]) be an affine open of
X] such that there exists f ∈ Γ(U,OX) lifting a local equation of Z in X. Set D = Γ(U,D†

X]/S]
(†Z)),

D
(m)
m′ := Γ(U,B(m′)

X (Z)“⊗OX
“D(m)

X]/S]
) for m′ ≥ m, D′ := Γ(U ∩ Y,D†

X]/S]
), D′(m) = Γ(U ∩ Y, “D(m)

X]/S]
).

Let M be a monogeneous left DQ-module of finite presentation such that D′Q ⊗DQ M = 0. With 8.7.6.2
and 8.7.6.5, we reduce to check that M = 0.

Since U is coherent, then filtered inductive limits commute with the section functor Γ(U,−) (see
[SGA4.2, VI.5.1-2]) and therefore Γ(U,D†

X]/S]
(†Z)Q)

∼−→ DQ
∼−→ lim−→m′≥mD

(m)
m′,Q. Following 8.4.1.11.b,

there exists a monogeneous left D(m)
m′,Q-module N for m′ ≥ m large enough together with an isomorphism

of left DQ-module M ∼−→ DQ ⊗D(m)

m′,Q
N . Hence D′Q ⊗D(m)

m′,Q
N = 0. Since D′Q

∼−→ lim−→D
′(m)
Q , then

increasing m′ ≥ m is necessary we can suppose D′(m)
Q ⊗

D
(m)

m′,Q
N = 0.

The left D(m)
m′,Q-module N is the cokernel of some morphism of the form (D

(m)
m′,Q)n → D

(m)
m′,Q for some

integer n. Since such morphism is the image via −⊗Z Q of some morphism of the form (D
(m)
m′ )n → Dm′ ,

then there exists a monogeneous p-torsion free left D(m)
m′ -module E endowed with an isomorphism of

left D(m)
m′,Q-module N ∼−→ EQ. Following the proof of the part (a), the extension D(m)

m′ → D′(m) is flat.

Hence, D′(m) ⊗
D

(m)

m′
E is p-torsion free and therefore is null. Since D′(m)/pD′(m) ∼−→ (D

(m)
m′ /pD

(m)
m′ )f ,

this implies that (E/pE)f = 0. Moreover, since E is p-torsion free then a fortiori E is f -torsion free.
Hence, it follows from 8.7.6.7 that DQ ⊗D(m)

m′
E = 0. Since M ∼−→ DQ ⊗D(m)

m′
E then we are done.

(b’) Using similar arguments, we can check the full faithfulness of 8.7.6.8.1.

Remark 8.7.6.9. Let E be a coherent B(m0)
X (Z)Q-module. If E|Y is a locally projective OY,Q-module of

finite type, then form ≥ m0 large enough, B(m)
X (Z)Q⊗B(m0)

X
(Z)Q
E is a locally projective B(m)

X (Z)Q-module

of finite type. Indeed, since OX(†Z)Q → j∗OY,Q is faithfully flat (see 8.7.6.8), then OX(†Z)Q⊗B(m0)

X
(Z)Q
E

is a projective OX(†T )Q-module of finite type. We conclude using Proposition 8.4.1.11.

Corollary 8.7.6.10. With the notation 8.7.6.6, the homomorphism D†
X]/S],Q → D

†
X]/S]

(†Z)Q is left
and right flat.

Proof. It follows from 7.2.3.3.a that “D(m)

X]/S]
→ j∗“D(m)

Y]/S]
is flat. Passing to the limits and tensoring by

Q this yields that D†
X]/S]

→ j∗D†Y]/S],Q is flat. We conclude from the full faithfulness of 8.7.6.8.2.

Proposition 8.7.6.11. We keep the notations 8.7.6.8.

(a) For any coherent D†
X]/S]

(†Z)Q-module E, the canonical homomorphism

j∗D†Y]/S],Q ⊗D†
X]/S]

(†Z)Q
E → j∗j

∗E (8.7.6.11.1)

is an isomorphism.

(b) A coherent D†
X]/S]

(†Z)Q-module E is null if and only if j∗E is null.

Proof. The first assertion is local and then we can suppose X is affine, there exists f ∈ Γ(X,OX) =: A
giving a lifting of a local equation of the divisor Z ofX and thatM has a global finite presentation. In that
case j is an open immersion of affine formal log schemes. Hence the functor j∗ (and therefore j∗j∗) is exact
(this follows from theorem B of 8.7.5.5). By flatness (see 8.7.6.8) the functor j∗D†Y]/S],Q⊗D†

X]/S]
(†Z)Q

−
is exact. Hence, using the five lemma we reduce to check that the morphism 8.7.6.11.1 is an isomorphism
whenM is a free D†

X]/S]
(†Z)Q-module of finite type. This latter case is obvious.

By using the full faithfulness of 8.7.6.8.2, we get the statement (b) from (a).

Theorem 8.7.6.12. With the notation 8.7.6.8, the canonical homomorphisms OX(† ∗ Z) → j∗OY and
D†

X]/S]
(† ∗ Z)→ j∗D†Y]/S]

are left and right faithfully flat.
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Proof. We already know that these morphisms without the symbol "∗" are flat (see 8.7.6.8). This yields
that the morphisms of 8.7.6.12 are flat. Let X′ be an affine open of X on which there exists f ∈ Γ(X′,OX)

lifting a local equation of Z in X. Let M be a monogeneous left Γ(X′,D†
X]/S]

(† ∗ Z))-module of finite

presentation such that Γ(X′ ∩ Y,D†
Y]/S]

) ⊗Γ(X′,D†
X]/S]

(†∗Z)) M = 0. By using 8.7.6.2 and 8.7.6.5, it

suffices to prove that M = 0.
Let m′ ≥ m be large enough such that there exists a monogeneous Γ(X′,B(m′)

X (Z)“⊗“D(m)

X]/S]
(∗Z))-

module M ′ of finite presentation inducing M by scalar extension and such that

Γ(X′ ∩Y, “D(m)

X]/S]
)⊗

Γ(X′,B(m′)
X

(Z)⊗̂D̂(m)

X]/S]
(∗Z))

M ′ = 0.

On X′, the functor (∗Z) is isomorphic to the localisation functor of localisation (Z). Let e be a gen-
erator of M ′. Write E′ for the sub-Γ(X′,B(m′)

X (Z)“⊗“D(m)

X]/S]
)-module of M ′ generated by e. Then

E′ is a f -torsion free monogeneous Γ(X′,B(m′)
X (Z)“⊗“D(m)

X]/S]
)-module such that E′[1/f ]

∼−→ M ′. As
M ′/pM ′ = 0, we obtain the equality (E′/pE′)f = 0, Hence, it follows from Lemma 8.7.6.7 that
E := Γ(X′,D†

Y]/S]
(†Z))⊗

Γ(X′,B(m′)
X

(Z)⊗̂D̂(m)

X]/S]
)
E′ = 0. Since M ∼−→ Ef , then we are done.

Corollary 8.7.6.13. With the notation 8.7.6.8, the homomorphism D†
X]/S]

→ D†
X]/S]

(† ∗Z) is left and
right flat.

Proposition 8.7.6.14. For all D†
X]/S]

(† ∗ Z)-module of finite presentation E , the canonical homomor-
phism

j∗D†Y]/S]
⊗D†

X]/S]
(†∗Z) E → j∗j

∗E (8.7.6.14.1)

is an isomorphism. Moreover, a morphism of D†
X]/S]

(† ∗ Z)-modules of finite presentation is injective
(resp. surjective, resp. bijective) if and only if so is its restriction to Y.

We have analogous results when we replace “D†
X]/S]

(† ∗ Z)” by “D(m)

X]/S]
(† ∗ Z)” and “D†

Y]/S]
” by

“D(m)

Y]/S]
”.

Proof. We argue as in 8.7.6.11: the right exactness of the functors in E (because of the theorem B

for coherent D†
Y]/S]

-modules or coherent D(m)

Y]/S]
-modules implies the exactness of j∗ in our case) we

end up to establish the isomorphism 8.7.6.14.1, in the immediate case where E = D†
X]/S]

(† ∗ Z) or

E = D(m)

X]/S]
(† ∗ Z). Proposition 8.7.6.12 then implies the required criteria.

8.7.7 Homological global dimension
8.7.7.1. With its notation, it follows from the equivalence between left and right D-modules of the
subsection 8.7.2 that when X is affine we have

l. gl .dim Γ(X, ‹D†
X]/S],Q) = r. gl .dim Γ(X, ‹D†

X]/S],Q).

Hence, we simply denote by gl .dim Γ(X, ‹D†
X]/S],Q) this number.

Proposition 8.7.7.2. Let S] be a nice fine V-log formal scheme (see definition 3.3.1.10). Moreover, let
X] → S] be a log smooth morphism of log formal schemes. We suppose X is locally noetherian. Let B(•)

be an inductive system of commutative OX-algebras indexed by N satisfying the conditions of 8.7.1.1. We
keep notation 8.7.2.1 and 8.7.2. The following conditions hold.

(a) We have the exact sequence of coherent left ‹D†
X]/S],Q-modules:

0→ ‹D†
X]/S],Q ⊗OX

∧dTX]/Y] · · · −→
δ

‹D†
X]/S],Q ⊗OX

TX]/Y] −→
δ

‹D†
X]/S],Q → BQ → 0, (8.7.7.2.1)

i.e. the canonical complex morphism
S̃pX]/S],Q → BQ. (8.7.7.2.2)
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is a quasi-isomorphism. In particular,

BQ ∈ Db
perf(‹D†X]/S],Q). (8.7.7.2.3)

(b) The map ω̃†
X]/S],Q ⊗B ‹D†X]/S],Q β→ ω̃X]/S],Q given by the structure of a right ‹D†

X]/S],Q-module on

ω̃X]/S],Q induces a ‹D†
X]/S],Q-linear resolution DR(‹D†

X]/S],Q)[dX/S]
∼−→ ω̃X]/S],Q of ω̃X]/S],Q.

Proof. We get the rest of the proposition by taking the inductive limit on the level of 7.5.10.4.

8.7.7.3 (Biduality). The ‹D†
X]/S],Q-linear functor denoted by D

X̃]
: D(‹D†

X]/S],Q) → D(‹D†
X]/S],Q) is de-

fined by setting for any E ∈ D(‹D†
X]/S],Q)

D
X̃]

(E) := RHomD̃†
X]/S],Q

(E , ‹D†
X]/S],Q ⊗OX

ω−1
X]/S]

))[dX/S ]. (8.7.7.3.1)

Similarly to 5.1.4.4, we can check that for any E ∈ D(‹D†
X]/S],Q), we have a canonical morphism E →

D
X̃]
◦ D

X̃]
(E), which is an isomorphism when E ∈ Db

perf(
‹D†
X]/S],Q).

Proposition 8.7.7.4. We keep notation 8.7.7.2 and we suppose the rank of Ω1
X]/S] is constant and equal

to d.

(a) We have Exti
D̃†

X]/S],Q

(BQ, ‹D†X]/S],Q) = 0 for i 6= d.

(b) There are the canonical isomorphisms of right (left) ‹D(m)

X]/S],Q-modules

Extd
D̃†

X]/S],Q

(BQ, ‹D†X]/S],Q)
∼−→ ω̃X]/S],Q,

Extd
D̃†

X]/S],Q

(ω̃X]/S],Q, ‹D†X]/S],Q)
∼−→ BQ.

(c) Suppose X is affine. Then we have d ≤ tor .dim Γ(X, ‹D†
X]/S],Q).

Proof. We get the first statement and the first isomorphism of the proposition by taking the inductive
limit on the level of 7.5.10.5. The second isomorphism is a consequence of the biduality isomorphism
(see 8.7.7.3). When X is affine, by using theorems A and B for coherent ‹D†

X]/S],Q-modules, by applying
the exact functor Γ(X,−) on the isomorphisms of (b) we get

Extd
D̃†

X]/S],Q

(BQ, ‹D†X]/S],Q)
∼−→ ω̃X]/S],Q,Extd

D̃†
X]/S],Q

(ω̃X]/S],Q, ‹D†X]/S],Q)
∼−→ BQ.

The third assertion is therefore a consequence of 1.4.3.30.

Example 8.7.7.5. We denote by ‹DX] one of the sheaves of rings D(0)

X]
, “D(0)

X]
(resp. DX],Q, “D(m)

X],Q, D
†
X],Q,

resp. DX](
†T )Q, D†X](

†T )Q). Let us denote by ωX](
†T ) := ωX] ⊗OX

OX(†T ). With 4.7.3.7 and 4.7.3.14
(level 0 case), with 4.7.3.15 (algebraic infinite level case), with 7.5.10.5 (level m case), with 8.7.7.2.3 and
8.7.7.4, the following assertions hold.

(a) The canonical morphism ωX] ⊗OX
‹DX] → ωX] (resp. ωX] ⊗OX

‹DX] → ωX],Q, resp. ωX] ⊗OX
‹DX] →

ωX](
†T )Q) induces a quasi-isomorphism Ω•X] ⊗OX

‹DX] [d]
∼−→ ωX] (resp. Ω•X] ⊗OX

‹DX] [d]
∼−→ ωX],Q,

resp. Ω•X] ⊗OX
‹DX] [d]

∼−→ ωX](
†T )Q).

(b) OX,Q(†T ) ∈ Db
perf(DX(†T )Q) and OX,Q(†T ) ∈ Db

perf(D
†
X(†T )Q).

(c) We have a canonical isomorphism of Dperf(DX(†T )Q):

Dalg
T (OX(†T )Q)

∼−→ OX(†T )Q, DT (OX(†T )Q)
∼−→ OX(†T )Q. (8.7.7.5.1)

Beware that this isomorphism is not compatible with Frobenius: we need a Tate twist (see 11.3.5.2).
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Proposition 8.7.7.6 (Berthelot). Let X → S be a smooth morphism of V-formal schemes. We
suppose X is affine and V-flat, S is regular and the rank of Ω1

X/S is constant and equal to d. Let

r := sups∈f(X) dimOS,s. Set “D(m)
X/S := Γ(X, “D(m)

X/S), “D(m)
X/S,Q := Γ(X, “D(m)

X/S,Q), D†X/S,Q := Γ(X,D†X/S,Q).

(a) The ring “D(m)
X/S has homological global dimension equal to 2d+ r + 1.

(b) Let E(m) be a p-torsion free left “D(m)
X/S-module of finite type. Then E(m) admits a resolution by

projective of finite type left “D(m)
X/S-modules of length ≤ 2d+ r.

(c) Let E(m) be a “D(m)
X/S,Q-module of finite type. Then E(m) admits a resolution by projective of finite

type left “D(m)
X/S,Q-modules of length ≤ 2d+ r.

(d) We have the inequalities d ≤ gl .dim “D(m)
X/S,Q ≤ 2d+ r.

(e) We have d ≤ tor .dimD†X/S,Q ≤ 2d + r and coherent left D†X/S,Q-module admits a resolution by

projective of finite type left D†X/S,Q-modules of length ≤ 2d+ r.

(f) We have the inequalities d ≤ tor .dimD†X/S,Q ≤ gl .dimD†X/S,Q ≤ 2d+ r + 1.

Proof. The parts a), b), c), d) of the proposition follow from 6.1.4.1, 7.5.10.5 and from 1.4.3.31. The
part (e) follows from 1.4.3.32. It remains to check (f). The inequality d ≤ gl .dimD†X/S,Q is already

known in a wider context (see 8.7.7.4). The inequality gl .dimD†X/S,Q ≤ 2d + r + 1 follows from (see
2.3.4.3).

Proposition 8.7.7.7 (Montagnon). Let S = Spf V. Let X → S be a smooth adic morphism of formal
schemes. We suppose is locally noetherian and the rank of Ω1

X/S is constant and equal to d. Let D be
a strict normal crossing divisor relative to X/S. Let MD be the log structure of X given by D and let
X] := (X,MD).

(a) If X is affine then the rings Γ(X, “D(m)

X]/S
), Γ(X, “D(m)

X]/S,Q), Γ(X,D†
X]/S

) have finite global dimensions.

(b) The rings “D(m)

X]/S
, “D(m)

X]/S,Q, D
†
X]/S

have finite tor dimensions.

Proof. By copying the proof of 8.7.7.6, this is a consequence 6.1.4.2.

Remark 8.7.7.8. With the notation of 8.7.7.6, since the rings are noetherian, then we have tor .dim(“D(m)
X/S) =

gl .dim(“D(m)
X/S), tor .dim(“D(m)

X/S,Q) = gl .dim(“D(m)
X/S,Q) (see 2.3.4.2). Beware that tor .dimD†X/S,Q is equal

to gl .dimD†X/S,Q. We have a similar remark for the log version 8.7.7.7.

Theorem 8.7.7.9 (Noot-Huyghe). Let S = Spf V. Let X → S be a smooth morphism of V-formal
schemes. We suppose X is locally noetherian and the rank of Ω1

X/S is constant and equal to d. Let Z be
a divisor of X, U be an affine open subscheme of X. We have the inequality: gl .dim(Γ(U,D†X(†Z)Q)) ≤
2d+ 2.

Proof. This has been proved by C. Noot-Huyghe in [Huy07, Th. 3.1.3.2 and 3.2.1.2].

8.7.7.10. Let X → S be a noetherian smooth morphism of V-formal schemes and Z be a divisor
of X. Following 8.4.1.15, for any ∗ ∈ {r, l}, the functor →l

∗
Q induces the equivalence of categories

LD−→
b
Q,coh(∗“D(•)

X (Z)) ∼= Db
coh(D†X(†Z)Q). It follows from 8.7.7.6 and 7.1.3.13 that for any λ ∈ L(N) we

have the equality Db
perf(

∗λ∗“D(•)
X ) = Db

coh(∗λ∗“D(•)
X ). With notation 8.6.1.4, this yields LD−→

b
Q,coh(∗“D(•)

X ) =

LD−→
b
Q,perf(

∗“D(•)
X ). Then the functor→l

∗
Q induces an equivalence LD−→

b
Q,perf(

∗“D(•)
X ) ∼= Db

perf(D
†
X,Q).

We get from 8.7.7.9 the equality Db
coh(D†X(†Z)Q) = Db

perf(D
†
X(†Z)Q). Howerver, when Z is not empty,

it is not clear that the inclusion LD−→
b
Q,perf(

∗“D(•)
X (Z)) ⊂ LD−→

b
Q,coh(∗“D(•)

X (Z)) is an equality. Hence, we only

get a priori a fully faithful functor→l
∗
Q : LD−→

b
Q,perf(

∗“D(•)
X (Z))→ Db

perf(D
†
X(†Z)Q).
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8.7.8 Arithmetic differential operators of finite congruence, link with Ardakov-
Wadsley’s theory of D-modules

8.7.8.1. Let X0 be a smooth formal scheme over V and let D(m)
X0

be Berthelot’s sheaf of arithmetic
differential operators of level m on X0. For any number k ≥ 0, let D(k,m)

X0
be the V-subalgebra of D(m)

X0

consisting of those differential operators which are generated, locally where we have coordinates x1, ..., xM
and corresponding derivations ∂1, ..., ∂M , by operators of the form

πk|ν|∂〈ν〉(m) = πk(ν1+...+νM )
M∏
l=1

∂
〈νl〉(m)

l .

Given an admissible blow-up pr : X → X0, we let kX be the minimal k such that πkOX ⊂ I for any
coherent ideal sheaf I on X0 whose blow-up is X. In [HSS21, 2.1.12], C. Huyghe, T. Schmidt, and M.
Strauch checked that

D(k,m)
X := pr∗D(k,m)

X0
= OX ⊗pr−1OX0

pr−1D(k,m)
X0

is naturally a sheaf of rings on X whenever k ≥ kX. Similarly to Berthelot’s sheaves of arithmetic
D-module, we write “D(k,m)

X = lim←−
i

D(k,m)
X /πi and D†X,k = lim−→

m

“D(k,m)
X → Q ,

and call these sheaves arithmetic differential operators of congruence level1 k on X. The structure theory
of these differential operators goes largely parallel to the classical smooth setting (when X = X0 and
k = 0), as developed in this book. In particular, the sheaves D(k,m)

X , “D(k,m)
X and D†X,k are sheaves of

coherent rings on X. Cartan’s theorems A and B hold for the sheaf D†X,k, when restricted to an affine
open subscheme U of X (see [HSS21, 3.1.12 and 3.1.15]). A key result (the ’invariance theorem’) shows
that in case of a morphism X′ → X between admissible blow-ups of X0, the categories of coherent modules
over D†X′,k and over D†X,k, respectively, are naturally equivalent. As a consequence, this yields theorems
A and B on the whole blow-up X provided the base X0 is affine (see [HSS21, 2.3.12]).

Passing to the projective limit
DX,∞ = lim←−

k

D†X,k,

we get the category CX of coadmissible DX,∞.modules. This is a full abelian subcategory of the category
of all DX,∞-modules. Its construction relies on the fact that the ring of local sections Γ(V,DX,∞) over
an open affine V ⊆ X is a Fréchet-Stein algebra. This concept and study of coadmissible modules over
Fréchet-Stein algebra were introduced by P. Schneider and J. Teitelbaum in [ST03]. For such coadmissible
DX,∞-module, C. Huyghe, T. Schmidt, and M. Strauch established Cartan’s theorems A and B hold (see
[HSS21, 3.1.12 an 3.1.15]).

Consider the Zariski-Riemann space of X0, i.e., the projective limit 〈X0〉 = lim←−X of all admissible
formal blow-ups X→ X0, cf. [Bos14]. One can then form the inductive limit

D〈X0〉 = lim−→
X

sp−1
X DX,∞ ,

where spX : 〈X0〉 → X is the projection map. This is a sheaf of rings on 〈X0〉 and we get the abelian
category of coadmissible D〈X0〉-modules. C. Huyghe, T. Schmidt, and M. Strauch proved analogues of
Theorems A and B in this setting (see [HSS21, 3.2.6])

This work of C. Huyghe, T. Schmidt, M. Strauch of [HSS21], [HSS22] presented above is a general-
isation of the construction of D. Patel, T. Schmidt, and M. Strauch in [PSS14, PSS17] and is related
to distribution algebras of arithmetic D-modules (see [HS18]). Moreover, A. Shiho introduced in [Shi15]
sheaves of p-adic differential operators of negative level −m, as they are called there. These are closely
related to the sheaves considered here, where the congruence level k corresponds to Shiho’s level −m.

Some application of this generalization is the localization theorem of [HPSS]: in this context X0 is
the smooth model of the flag variety of a connected split reductive group G over K, and the main result
of [HPSS] establishes then an anti-equivalence between the category of admissible locally analytic G(L)-
representations (with trivial character) [ST03] and the category of so-called coadmissible equivariant

1The terminology is motivated by the relation to congruence subgroups in reductive groups in the case of formal models
of flag varieties, cf. [HPSS].
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arithmetic D-modules on the system of all formal models of the rigid analytic flag variety of G. We also
have a twisted version by A. Sarrazola in [SA23]: when V is the ring of integers of a finite extension
Qp, A. Sarrazola defined and studied the category of coadmissible G-equivariant twisted (by an algebraic
character of a split maximal torus of G) arithmetic D-modules over the induced rigid flag variety. He
generalized the main results from a paper by Huyghe, Patel, Schmidt and Strauch in [HPSS19] for
algebraic characters. A. Sarrazola also proved in [SA24] a twisted version of a Beilinson-Bernstein
theorem for twisted arithmetic differential operators on the formal flag variety. This extends for instance
the Beilinson-Bernstein’s theorem for arithmetic D-modules proved by C. Huyghe in [Huy09].

8.7.8.2 (Comparison with K. Ardakov and S. Wadsley theory). K. Ardakov and S. Wadsley are devel-
oping a theory of D-modules on general smooth rigid-analytic spaces, cf. [Ard14, AW18, AW19]. In
their work they consider deformations of crystalline differential operators (as in [AW13]), whereas we
take as a starting point deformations of Berthelot’s arithmetic differential operators. The category of
coadmissible D〈X0〉-modules as defined by C. Huyghe, T. Schmidt, M. Strauch, when pulled back to the
site of the rigid-analytic space of classical points, coincides with the corresponding category studied in
[Ard14, AW18, AW19].

8.8 Frobenius structures

8.8.1 Frobenius descente of ‹D(m)
X/S-modules

Let m ∈ N be an integer. Let a := πhV and b := πkV. Following 1.2.4.2.(a) (a, b, []) is an m-ideal if and
only if e/(p− 1) ≤ k, e+ h ≥ k, hpm ≥ k and k ≥ h. In particular, a has an m-PD-structure if and only
if hpm ≥ e/(p− 1). From now, fix such a m-PD-ideal (a, b, []) of V.

To avoid being limited in certain applications by hypotheses on the branching index, we will thus be
led to consider not only liftings of the relative Frobenius modulo m of a V-formal scheme X, but, more
generally, raisings of the Frobenius relative to the reduction of X modulo a. For any integer i ∈ N, for any
V-formal scheme S, we denote here Si the reduction of S modulo ai+1 (and not mi+1). The ideal bOSi
endows aOSi with an m-PD nilpotent m-PD-structure. Remark that if a is topologically m-PD-nilpotent
(i.e. if hpm > e/(p− 1) following 1.3.1.3), then aOSi is m-PD nilpotent.

Proposition 8.8.1.1. Let s ∈ N, S be a flat V-formal scheme, X be an S-smooth formal scheme,
X0 → S0 be its reduction modulo a, F : X→ X′ a morphism of smooth S-schemes lifting F sX0/S0

. Let BX′
be an OX′-algebra endowed with a compatible structure of left DX′/S-module. Set ‹D(m)

X′/S := BX′“⊗D(m)
X′/S,

BX := F ∗BX′ and ‹D(m+s)
X/S := BX“⊗D(m+s)

X/S . So:

(a) F ∗‹D(m)
X′/S, F

[‹D(m)
X′/S and F ∗F [‹D(m)

X′/S are respectively provided with canonical structures of (‹D(m+s)
X/S , ‹D(m)

X′/S)-

bimodule , (‹D(m)
X′/S,

‹D(m+s)
X/S )-bimodule, and of (‹D(m+s)

X/S , ‹D(m+s)
X/S )- bimodule; moreover, the canonical

homomorphism

F ∗F [‹D(m)
X′/S → F ∗‹D(m)

X′/S, (resp. F ∗F [‹D(m)
X′/S → F [‹D(m)

X′/S)

is ‹D(m+s)
X/S -linear on the left (resp. on the right), and locally identifies F ∗‹D(m)

X′/S (resp. F [‹D(m)
X′/S) to

a direct factor of F ∗F [‹D(m)
X′/S on ‹D(m+s)

X/S .

(b) There exists a canonical isomorphism of ‹D(m+s)
X/S -bimodules‹D(m+s)

X/S

∼−→ F ∗F [‹D(m)
X′/S. (8.8.1.1.1)

(c) There exists a canonical isomorphism of ‹D(m)
X′/S-bimodules

F [‹D(m)
X′/S ⊗D̃(m+s)

X/S

F ∗‹D(m)
X′/S

∼−→ ‹D(m)
X′/S. (8.8.1.1.2)

Proof. By p-adic completion, this is a consequence of such results over schemes (see 6.1.3). For more
details, see [Ber00, 4.1.2].
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Remark 8.8.1.2. Suppose X/S has coordinates t1, . . . , td. If m ≥ 1, then the sheaf Γ(X, “D(m)
X/S) contains

zero divisors. Indeed, let F : X → X′ is a morphism of V-formal schemes lifting the m-th power of
Frobenius of X. Then (tα) with 0 ≤ αj < pM is a basis of OX over OX′ . Let (θα) be the dual
basis of F [OX′ = HomOX′ (OX,OX′). Then the isomorphism 8.8.1.1.1 becomes an isomorphism of left“D(m)

X/S-modules of the form “D(m)
X/S

∼−→ ⊕αF ∗“D(0)
X/S · θα.

Let 1 =
∑
α eα be the decomposition of 1. Since the map “D(m)

X/S → F ∗“D(0)
X/S · θα is a surjective morphism

of left “D(m)
X/S-modules which sends 1 to eα, we get eα 6= 0 for any α. Since eβ = eβ · 1 =

∑
α eβeα, then

we obtain eβeα = 0 if β 6= α, e2
β = eβ .

Theorem 8.8.1.3. We keep notations and hypotheses of 8.8.1.1.

(a) For any left ‹D(m)
X′/S-module E ′ (resp. right ‹D(m)

X′/S-modulesM′), F ∗E ′ (resp. F [M′) is endowed with

a functorial structure of left (resp. right) ‹D(m+s)
X/S -module.

(b) The functor F ∗ (resp. F [) induces an equivalence between the category of left (resp. right) ‹D(m)
X′/S-

modules and left (resp. right) ‹D(m+s)
X/S -modules.

(c) The functor which associates from a left (resp. right) ‹D(m+s)
X/S -module E the left (resp. right) ‹D(m)

X′/S-

module F [‹D(m)
X′/S ⊗D̃(m+s)

X/S

E (resp. M⊗D̃(m+s)

X/S

F ∗‹D(m)
X′/S) is quasi-inverse to F ∗ (resp. F [).

(d) A left (resp. right) ‹D(m)
X′/S-module E ′ (resp. M′) is coherent if and only if F ∗(E ′) (resp. F [M′) is‹D(m+s)

X/S -coherent.

(e) For any left ‹D(m)
X′/S-module E ′, we have the canonical isomorphism of right ‹D(m+s)

X/S -modules of the
form

ωX/S ⊗OX
F ∗(E ′) ∼−→ F [(ωX′/S ⊗OX′ E

′). (8.8.1.3.1)

Proof. By p-adic completion, this is a consequence of such results over schemes (see 6.1.3). For more
details, see [Ber00, 4.1.3].

8.8.1.4. Suppose a is topologicallym-PD-nilpotent. If F and F ′ are two liftings of the relative Frobenius
F sX0/S0

, then by taking the p-adic completion of the glueing isomorphisms of the form (see 6.1.5.1), we

get the canonical isomorphism τF,F ′ : F
′∗‹D(m)

X′/S

∼−→ F ∗‹D(m)
X′/S. Hence, by glueing these bimodules, we

get the (‹D(m+s)
X/S , ‹D(m)

X′/S)-bimodule (F sX0/S0
)∗(‹D(m)

X′/S). This yields the functor from the category of left‹D(m)
X′/S-modules to that of left ‹D(m+s)

X/S -modules by setting

(F sX0/S0
)∗(E ′) := (F sX0/S0

)∗(‹D(m)
X′/S)⊗D̃(m)

X′/S
E ′. (8.8.1.4.1)

Similarly, by p-adic completion, we get from 6.1.5.1, the canonical isomorphism σF,F ′ : F
′[‹D(m)

X′/S

∼−→
F [‹D(m)

X′/S. By glueing, this yields the (‹D(m)
X′/S,

‹D(m+s)
X/S )-bimodule (F sX0/S0

)[(‹D(m)
X′/S). This yields the

functor from the category of right ‹D(m)
X′/S-modules to that of right ‹D(m+s)

X/S -modules by setting

(F sX0/S0
)[(M′) :=M′ ⊗D̃(m)

X′/S
(F sX0/S0

)[(‹D(m)
X′/S).

The theorem 8.8.1.3 (in particular) is still valid in this context, i.e. we do not need to suppose that
F sX0/S0

has a lifting.
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Theorem 8.8.1.5. We keep notations and hypotheses of 8.8.1.1. Let m′ ≥ m, CX′ be an OX′-algebra
endowed with a compatible structure of left left D(m′)

X′/S-module, BX′ → CX′ a homomorphism of OX′-

algebras which is D(m′)
X′/S-linear. Set‹D(m′)
X′/S := CX′“⊗D(m′)

X′/S, CX := F ∗CX′ , ‹D(m′+s)
X/S := CX“⊗D(m′+s)

X/S .

For any E ′ ∈ D(l‹D(m)
X′/S), there exists in D(l‹D(m+s)

X/S ) the canonical isomorphism:‹D(m′+s)
X/S ⊗L

D̃(m+s)

X/S

F ∗E ′ ∼−→
Å
F ∗(‹D(m′)

X′/S ⊗
L
D̃(m)

X′/S

E ′
ã
. (8.8.1.5.1)

Proof. By associativity of the tensor products, we reduce to check‹D(m′+s)
X

L
⊗

D̃(m+s)

X

F ∗‹D(m)
X′

∼−→ F ∗(‹D(m′)
X′ ).

Since F ∗(‹D(m)
X′ ) is a locally projective of finite type left ‹D(m+s)

X -module, then the tensor product is
p-adically complete and this therefore follows from 6.2.3.5.

8.8.2 Frobenius descente of ‹D†X/S-modules

8.8.2.1. Let a ⊂ m be an ideal containing p. Fix a PD-ideal b ⊂ a (e.g. b = (p)). Let m0 ∈ N be large
enough such that b endows a with an m0-PD-structure. Replacing m0 by m0 + 1 if necessary, we can
suppose that this structure is topologically m0-PD-nilpotent. Let S be a flat V-formal scheme. For any
integer i ∈ N, we denote here Si the reduction of S modulo ai+1 (and not mi+1).

Let X be a smooth formal S-scheme. Let X0 be its special fiber, s ∈ N and integer and X(s)
0 be the

base change of X0 by the s-th power of the absolute Frobenius of S0. Suppose there exists F : X→ X′ a
morphism of smooth formal S-schemes which is a lifting of the relative Frobenius F sX0/S0

: X0 → X
(s)
0 .

Let (B(m)
X′ )m≥m0 be an inductive system of commutative OX′ -algebras indexed by integers great or

equal to m0 and satisfying the conditions of 8.7.1.1. For any m ≥ m0, set ‹D(m)
X′/S := B(m)

X′
“⊗OX′

“D(m)
X′/S,‹D†X/S := lim−→m

‹D(m)
X′/S. We set B(m+s)

X′ := F ∗B(m)
X′ , ‹D(m+s)

X/S := B(m+s)
X

“⊗OX
“D(m+s)
X/S , ‹D†X/S := lim−→m

‹D(m+s)
X/S .

Proposition 8.8.2.2. We keep notations and hypotheses of 8.8.2.1.

(a) F ∗‹D†X′/S, F [‹D†X′/S and F ∗F [‹D†X′/S are respectively provided with canonical structures of (‹D†X/S, ‹D†X′/S)-

bimodule , (‹D†X′/S, ‹D†X/S)-bimodule , and of (‹D†X/S, ‹D†X/S)- bimodule; moreover, the canonical ho-
momorphism

F ∗F [‹D†X′/S → F ∗‹D†X′/S, (resp. F ∗F [‹D†X′/S → F [‹D†X′/S)
is ‹D†X/S-linear on the left (resp. on the right), and locally identifies F ∗‹D†X′/S (resp. F [‹D†X′/S) to a

direct factor of F ∗F [‹D†X′/S on ‹D†X/S.
(b) There exists a canonical isomorphism of ‹D†X/S-bimodules‹D†X/S ∼−→ F ∗F [‹D†X′/S. (8.8.2.2.1)

(c) There exists a canonical isomorphism of ‹D†X′/S-bimodules

F [‹D†X′/S ⊗D̃†
X/S

F ∗‹D†X′/S ∼−→ ‹D†X′/S. (8.8.2.2.2)

Proof. By taking inductive limits on the level, this is a consequence of 8.8.1.1. For more details, see
[Ber00, 4.2.2].
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Theorem 8.8.2.3. We keep notations and hypotheses of 8.8.2.1.

(a) For any left ‹D†X′/S-module E ′ (resp. right ‹D†X′/S-modulesM′), F ∗E ′ (resp. F [M′) is endowed with

a functorial structure of left (resp. right) ‹D†X/S-module.

(b) The functor F ∗ (resp. F [) induces an equivalence between the category of left (resp. right) ‹D†X′/S-
modules and left (resp. right) ‹D†X/S-modules.

(c) The functor F+ which associates from a left (resp. right) ‹D†X/S-module E the left (resp. right)‹D†X′/S-module F+(E) := F [‹D†X′/S ⊗D̃†
X/S

E (resp. F+(M) := M⊗D̃†
X/S

F ∗‹D†X′/S) is quasi-inverse

to F ∗ (resp. F [).

(d) For any left ‹D†X′/S-module E ′ (resp. right ‹D†X′/S-modulesM′), F ∗E ′ (resp. F [M′) is a flat (coher-

ent) ‹D†X/S-module if and only if E ′ (resp. M′) is a flat (coherent) ‹D†X′/S-module.

(e) For any left ‹D†X′/S-module E ′, we have the canonical isomorphism of right ‹D†X/S-module-modules of
the form

ωX/S ⊗OX
F ∗(E ′) ∼−→ F [(ωX′/S ⊗OX′ E

′). (8.8.2.3.1)

Proof. By taking inductive limits on the level, this is a consequence of 8.8.1.3. For more details, see
[Ber00, 4.2.4].

8.8.2.4. If F and F ′ are two liftings of the relative Frobenius F sX0/S0
, then by taking the inductive limit

on the level of the glueing isomorphisms of 8.8.1.4 we get the canonical isomorphism τF,F ′ : F
′∗‹D†X′/S ∼−→

F ∗‹D†X′/S. Hence, by glueing these bimodules, we get the (‹D†X/S, ‹D†X′/S)-bimodule (F sX0/S0
)∗(‹D†X′/S).

This yields the functor from the category of left ‹D†X′/S-modules to that of left ‹D†X/S-modules by setting

(F sX0/S0
)∗(E ′) := (F sX0/S0

)∗(‹D†X′/S)⊗D̃†
X′/S

E ′. (8.8.2.4.1)

Similarly, by taking the inductive limit on the level of the glueing isomorphisms of 8.8.1.4 we get
the canonical isomorphism σF,F ′ : F

′[‹D†X′/S ∼−→ F [‹D†X′/S. By glueing, this yields the (‹D†X′/S, ‹D†X/S)-

bimodule (F sX0/S0
)[(‹D†X′/S). This yields the functor from the category of right ‹D†X′/S-modules to that

of right ‹D†X/S-modules by setting

(F sX0/S0
)[(M′) :=M′ ⊗D̃†

X′/S
(F sX0/S0

)[(‹D†X′/S).

The theorem 8.8.2.3 is still valid in this context, i.e. we do not need to suppose that F sX0/S0
has a

lifting.

Theorem 8.8.2.5. We keep notations and hypotheses of 8.8.2.1. Let E ′ ∈ D(l‹D(m)
X′/S). There exists in

D(l‹D†X/S) the canonical isomorphism:‹D†X/S ⊗L
D̃(m+s)

X/S

F ∗E ′ ∼−→
Å
F ∗(‹D†X′/S ⊗L

D̃(m)

X′/S

E ′
ã
. (8.8.2.5.1)

Proof. By taking inductive limits on the level, this is a consequence of 8.8.1.5.

8.8.3 F -complexes
8.8.3.1. Suppose the residue field k of V is a perfect field of characteristic p > 0. Suppose there exists
an automorphism σ : V ∼−→ V which is a lifting of the sth Frobenius power of k. The data s and σ
are fixed in the remaining. Let X be a smooth V-formal scheme. We denote by X′ := Xσ the V-formal
scheme deduced from X by the base change defined by σ. Following 8.8.2.3 and the remark 8.8.2.4, the
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functor (F sX0/S0
)∗ (resp. (F sX0/S0

)[) induces an equivalence between the category of left (resp. right)‹D†X′/S-modules and left (resp. right) ‹D†X/S-modules. For simplicity, we simply denote by F ∗ and F [

these functors, which is compatible with such a functor when F : X → X′ is a lifting of F sX0/S0
. If E

is a left D(m)
X/S-module (or a left D†X/S-module etc.), we denote by Eσ is the left D(m)

X′/S-module (or left

D†X′/S-module etc.) induced from E by base change via σ.
Let us further assume that we have the following data

(a) an inductive system of OX-algebra (B(m)
X )m≥m0 , such that each B(m)

X is p-adically complete, and
endowed with a compatible structure of left D(m)

X/S-module so that B(m)
X → B(m+1)

X is D(m)
X/S-linear ;

by setting B(m)
X′ := (B(m)

X )σ this yields inductive system of OX-algebra (B(m)
X′ )m≥m0

, such that each
B(m)
X′ is p-adically complete, and endowed with a compatible structure of left D(m)

X′/S-module so that

B(m)
X′ → B

(m+1)
X′ is D(m)

X′/S-linear ;

(b) a family of D(m+s)
X/S -linear isomorphism F ∗(B(m)

X′ )
∼−→ B(m+s)

X which commutes with the transition
maps, i.e., making commutative the diagram

F ∗(B(m)
X′ )

��

// B(m+s)
X

��
F ∗(B(m+1)

X′ ) // B(m+1+s)
X .

(8.8.3.1.1)

For any m ≥ m0, set ‹D(m)
X/S := B(m)

X
“⊗OX

“D(m)
X/S, ‹D†X/S := lim−→m

‹D(m)
X/S, ‹D(m)

X′/S := B(m)
X′
“⊗OX′

“D(m)
X′/S,‹D†X′/S := lim−→m

‹D(m)
X′/S. The isomorphisms F ∗(B(m)

X )
∼−→ B(m+s)

X induce the ring isomorphisms

F ∗(B(m)
X′ )“⊗“D(m+s)

X/S

∼−→ ‹D(m+s)
X/S

which are compatible when m varies. This yields the ring isomorphism

lim−→
m

F ∗(B(m)
X′ )“⊗“D(m+s)

X/S

∼−→ ‹D†X/S. (8.8.3.1.2)

Let E be a left D†X/S-module and let Eσ be the left ‹D†X′/S-module induced from E by base change via

σ. It follows from 8.8.2.3 that F ∗(Eσ) is endowed with a structure of left lim−→m
F ∗(B(m)

X′ )“⊗“D(m+s)
X/S -module.

Via 8.8.3.1.2, we get a structure of left D†X/S-module on F ∗E := F ∗(Eσ) (we keep this abuse of notation).

Similarly, for any integer n ∈ N, we get the left D†X/S-module by setting Fn∗E := (FnsX0/S0
)∗(Eσn).

Definition 8.8.3.2. With notation and hypotheses of 8.8.3.1, a “left F -‹D†X/S-module” (or a left F s-‹D†X/S-module if we would like to clarify s) is the data of a left ‹D†X/S-module E together with a ‹D†X/S-linear

isomorphism Φ: E ∼−→ F ∗E . A morphism of left F -‹D†X/S-modules u : (E ,Φ)→ (F ,Ψ) is a morphism of‹D†X/S-modules u : E → F such that Ψ ◦ u = F ∗(u) ◦ Φ.

A “coherent (of finite presentation) left F -‹D†X/S-module” is a left F -‹D†X/S-module (E ,Φ) such that

E is a coherent (of finite presentation) ‹D†X/S-module.

Similarly, for ? ∈ {∅, coh, tdf,perf}, ∗ ∈ {b,−,+, ∅}, we define an F -complex of D∗?(l‹D†X/S) (resp.

D(l‹D†X/S)) is the data of a complex E of D∗?(l‹D†X/S) together with an isomorphism of D∗?(l‹D†X/S) of

the form Φ: E ∼−→ F ∗E . A morphism u : (E ,Φ) → (F ,Ψ) of F -complexes of D∗?(l‹D†X/S) is a morphism

u : E → F of D(l‹D†X/S) such that Ψ ◦ u = F ∗(u) ◦ Φ. We denote by F -D∗?(l‹D†X/S) the corresponding
category of F -complexes.
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Definition 8.8.3.3 (Tate twist). Let (E ,Φ) be an F -‹D†X/S-module (resp. complex). For any integer d,

we define an F -‹D†X/S-module (resp. complex) (E ,Φ)(d) := (E ,Φ(d)) as follows: the underlying D†X/S,Q-
module (resp. complex) is the same as E and Φ(d) := q−dΦ, where q = ps (beware s is hidden in the
notation “F ”). The object (E ,Φ)(d) is called the Tate twist of (E ,Φ).

Theorem 8.8.3.4. There exists a canonical equivalence between the category of left F -‹D†X/S-module of

finite presentation and the category of couples (E(m),Φ(m+s)), where E(m) is left ‹D(m)
X/S-module of finite

presentation, and
Φ(m+s) : ‹D(m+s)

X/S ⊗D̃(m)

X/S

E(m) ∼−→ F ∗((E(m))σ)

is a ‹D(m+s)
X/S -linear isomorphism.

Proof. We have the functor (E(m),Φ(m+s)) 7→ (‹D†X/S ⊗D̃(m)

X/S

E(m),Φ), where Φ is induced from Φ(m+s)

thanks to the commutation isomorphism 8.8.2.5.1. For the details, see [Ber00, 4.5.4].

Corollary 8.8.3.5. Suppose X is quasi-compact, the transition maps ‹D(m)
X/S → ‹D(m+1)

X/S are flat, the al-
gebras BX/mi+1BX are quasi-coherent with noetherian sections on affine opens. The category of coherent
left F -‹D†X/S-module is a noetherian.

Proof. See [Ber00, 4.5.5].
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Chapter 9

Cohomological operations for coherent
D†-modules or quasi-coherent inductive
systems of arithmetic D-modules

9.1 Localization functor outside a divisor
Let S] be a nice fine V-log formal scheme (see definition 3.3.1.10). Moreover, let X] → S] be a log
smooth morphism of log formal schemes. We suppose the underlying formal scheme X is p-torsion free,
noetherian of finite Krull dimension. For any integer i ≥ 0, set X]

i := X] ×Spf V Spec(V/πi+1V). We
suppose X0 is regular.

Let λ0 ≤ µ0 be two maps of L(N). Let D ⊂ Z be two divisors of X0. For any m ∈ N, for any i ∈ N,
we set B̃(m)

Xi
(D) := B(λ0(m))

Xi
(D), B̃(m)

Xi
(Z) := B(µ0(m))

Xi
(Z) and ‹D(m)

X]
i
/S]
i

(D) := B̃(m)
Xi

(D) ⊗OXi D
(m)

X]
i
/S]
i

,‹D(m)

X]
i
/S]

(Z) := B̃(m)
Xi

(Z) ⊗OXi D
(m)

X]
i
/S]
i

. For any m ∈ N, we set B̃(m)
X (D) := B(λ0(m))

X (D), B̃(m)
X (Z) :=

B(µ0(m))
X (Z) and ‹D(m)

X]/S]
(D) := B̃(m)

X (D)“⊗OX
D(m)

X]/S]
, ‹D(m)

X]/S]
(Z) := B̃(m)

X (Z)“⊗OX
D(m)

X]/S]
. When λ0 = id

or µ0 = id, we write B(m)
X (D) and “D(m)

X]/S]
(D) or B(m)

X (Z) and “D(m)

X]/S]
(Z).

Following 8.7.4.2 the sheaves B̃(m)
X (D) and ‹D(m)

X]/S]
(D) satisfy 7.3.2 ; similarly with D replaced by

Z. Via the canonical homomorphisms of sheaves of rings ‹D(m)

X]/S]
(D) → ‹D(m+1)

X]/S]
(D) (resp. B̃(m)

X (D) →
B̃(m+1)
X (D)) we get a sheaf of rings denoted by ‹D(•)

X]/S]
(D) (resp. B̃(•)

X (D)) on X(N) ; similarly with

D replaced by Z. We get also the sheaf of rings B̃(•)
X•

(D) and ‹D(•)
X]•/S

]
•
(D) on X

(N)
• ; similarly with D

replaced by Z. When D is empty, B̃(•)
X (D) (resp. B̃(•)

X•
(D)) is denoted by O(•)

X (resp. O(•)
X•

, i.e. O(•)
X is

the subring of “D(•)
X]/S]

whose transition morphisms are the identity of OX. We have the canonical ring

homomorphisms B̃(•)
X (D)→ B̃(•)

X (Z) and ‹D(•)
X]/S]

(D)→ ‹D(•)
X]/S]

(Z).

Following 8.7.4.2, (X],B(•)
X (Z))/S] is strongly quasi-flat (see definition 8.5.5.3). Hence, we can apply

8.5.4.5 and 8.5.4.15 in this context where D(•) = ‹D(•)
X]/S]

(Z) or D(•) = B̃(•)
X (Z) (see 8.5.5.4).

9.1.1 Internal tensor products, localization functor outside a divisor
9.1.1.1. It follows from 8.7.4.7, we have the following tor finiteness results.

(a) The O(•)
X•

-module B̃(•)
X•

(T ) has tor-dimension ≤ 1. The B̃(•)
X•

(D)-module B̃(•)
X•

(T ) has tor-dimension
≤ 2.

(b) The (left or right) ‹D(•)
X]•/S

]
•
(D)-module ‹D(•)

X]•/S
]
•
(Z) has tor-dimension ≤ d+ 2.
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(c) Let ν ∈ L(N). Denoting the constant sheaf→lX(N),N∗
(‹D(ν(0))

X]•/S
]
•
(D)) on X(N)

N simply by ‹D(ν(0))

X]•/S
]
•
(D), the

(left or right) ‹D(ν(0))

X]•/S
]
•
(D)-module ν∗‹D(•)

X]•/S
]
•
(Z) has tor-dimension ≤ d + 2. Moreover, the (left or

right) ‹D(•)
X]•/S

]
•
(D)-module ν∗‹D(•)

X]•/S
]
•
(Z) has tor-dimension ≤ d+ 2.

(d) The O(•)
X -module B̃(•)

X (T ) has tor-dimension ≤ 1. The B̃(•)
X (D)-module B̃(•)

X (T ) has tor-dimension
≤ 2.

(e) The (left or right) ‹D(•)
X]/S]

(D)-module ‹D(•)
X]/S]

(Z) has tor-dimension ≤ d+ 2.

(f) Let ν ∈ L(N). Denoting the constant sheaf→lX,N∗(‹D(ν(0))

X]/S]
(D)) on X (N) simply by ‹D(ν(0))

X]/S]
(D), the

(left or right) ‹D(ν(0))

X]/S]
(D)-module ν∗‹D(•)

X]/S]
(Z) has tor-dimension ≤ d + 2. Moreover, the (left or

right) ‹D(•)
X]/S]

(D)-module ν∗‹D(•)
X]/S]

(Z) has tor-dimension ≤ d+ 2.

9.1.1.2. We have the morphism of ringed topoi

←lX(N) = (←l
−1
X(N) a←lX(N),∗) : (X

(N)
• , ‹D(•)

X]•/S
]
•
(Z))→ (X(N), ‹D(•)

X]/S]
(Z)). (9.1.1.2.1)

We keep notation 8.5.4.18, e.g. for any E(•) ∈ D−(
l‹D(•)

X]/S]
(Z)) andM(•) ∈ D−(r‹D(•)

X]/S]
(Z)), we set:

M(•)
• := L←l

∗
X(N)(M(•)) =M(•) ⊗L

D̃(•)
X]/S]

(Z)
‹D(•)
X]•/S

]
•
(Z), E(•)

• := L←l
∗
X(N)(E(•)) = ‹D(•)

X]•/S
]
•
(Z)⊗L

D̃(•)
X]/S]

(Z)
E(•),

9.1.1.3. Let ∗ = r or ∗ = l. Following respectively 8.5.4.19.1 and 8.5.4.20 (see also the last example of
7.3.2.1), we have the following tensor product bifunctors

−⊗L
B(•)
X•

(Z)
− : LD−→

−
Q (∗‹D(•)

X]•/S
]
•
(Z))× LD−→

−
Q (

l‹D(•)
X]•/S

]
•
(Z))→ LD−→

−
Q (∗‹D(•)

X]•/S
]
•
(Z)), (9.1.1.3.1)

−“⊗L
B̃(•)

X
(Z)
− : LD−→

−
Q (∗‹D(•)

X]/S]
(Z))× LD−→

−
Q (

l‹D(•)
X]/S]

(Z))→ LD−→
−
Q (∗‹D(•)

X]/S]
(Z)). (9.1.1.3.2)

Notation 9.1.1.4 (Quasi-coherence and partial forgetful functor of the divisor). Let ? ∈ {−,b}.

(a) The partial forgetful functors of the divisorD?
qc(

l‹D(•)
X]•/S

]
•
(Z))→ D?

qc(
l‹D(•)
X]•/S

]
•
(D)) andD?

qc(
l‹D(•)

X]/S]
(Z))→

D?
qc(

l‹D(•)
X]/S]

(D)) (thanks to the example 8.5.1.1.b, this is a special case of 8.5.2.3.1) will be denoted
by forgD,Z .

(b) Following 8.5.4.16.1, the forgetful functors forgD,Z induces

forgD,Z : LD−→
?
Q,qc(‹D(•)

X]•/S
]
•
(Z))→ LD−→

?
Q,qc(‹D(•)

X]•/S
]
•
(D)), forgD,Z : LD−→

?
Q,qc(‹D(•)

X]/S]
(Z))→ LD−→

?
Q,qc(‹D(•)

X]/S]
(D)).

(9.1.1.4.1)

(c) We still denote by forgD,Z : D?(D†
X]/S]

(†Z)Q) → D?(D†
X]/S]

(†D)Q) the partial forgetful functor of
the divisor.

9.1.1.5. Let ? ∈ {−,b}.

(a) It follows from 4.3.4.6.1 (and from 9.1.1.1.a-b in the case where ? = b) that for any E(•)
• ∈

D?(
l‹D(•)
X]•/S

]
•
(D)), the morphism of D?(

l‹D(•)
X]•/S

]
•
(Z)):

B̃(•)
X•

(Z)⊗L
B̃(•)
X•

(D)
E(•)
• → ‹D(•)

X]•/S
]
•
(Z)⊗L

D̃(•)

X
]
•/S

]
•

(D)
E(•)
• =: (†Z,D)(E(•)

• ) (9.1.1.5.1)

is an isomorphism.
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(b) For any E(•) ∈ D?(
l‹D(•)

X]/S]
(D)), it follows from 8.5.4.21.3 (and from 9.1.1.1.d-e) that the morphism

of D?(
l‹D(•)

X]/S]
(Z)):

B̃(•)
X (Z)“⊗L

B̃(•)
X

(D)
E(•) → ‹D(•)

X]/S]
(Z)“⊗L

D̃(•)
X]/S]

(D)
E(•) =: (†Z,D)(E(•)) (9.1.1.5.2)

is an isomorphism.

(c) Following 8.5.4.16.4, we get from 9.1.1.5.2 the localization outside Z functor:

(†Z, D) := ‹D(•)
X]/S]

(Z)“⊗L
D̃(•)

X]/S]
(D)
− : LD−→

?
Q,qc(‹D(•)

X]/S]
(D))→ LD−→

?
Q,qc(‹D(•)

X]/S]
(Z)). (9.1.1.5.3)

We also write E(•)(†D, Z) := (†Z, D)(E(•)). This functor (†Z, D) is the localization outside Z
functor. When D = ∅, we omit writing it.

9.1.1.6. Following 7.5.1.13, the B̃(•)
X (Z)-module ω̃(•)

X]/S]
(Z), where ω̃(m)

X]/S]
(Z) := B̃(m)

X (Z) ⊗OX
ωX]/S]

for any m ∈ N with the canonical transition maps, is endowed with a canonical structure of right‹D(•)
X]/S]

(Z)-module. Moreover, ω̃(m)

X]/S]
satisfies the conditions of 7.3.2 for any m ∈ N, i.e. ω̃(•)

X]•/S
]
•
(Z) :=

B̃(•)
X•

(Z)⊗B̃(•)
X

(Z)
ω̃

(•)
X]/S]

(Z) is quasi-coherent in the sense of 8.5.1.7.

9.1.1.7. Let ? ∈ {−,b}. We have a right version of 9.1.1.5.

(a) It follows from 4.3.4.8.3 (and from 9.1.1.1.a-b in the case where ? = b) that for any M(•)
• ∈

D?(
r‹D(•)

X]•/S
]
•
(D)), the morphism of D?(

r‹D(•)
X]•/S

]
•
(Z)):

M(•)
• ⊗L

B̃(•)
X•

(D)
B̃(•)
X•

(Z)→M(•)
• ⊗L

D̃(•)

X
]
•/S

]
•

(D)
‹D(•)
X]•/S

]
•
(Z) =: (†Z,D)(M(•)

• ) (9.1.1.7.1)

is an isomorphism. For any E(•)
• ∈ D?(

l‹D(•)
X]•/S

]
•
(D)), with notation 9.1.1.6, it follows from 9.1.1.5.1

and 9.1.1.7.1 that we have the canonical isomorphism

(†Z,D)(ω̃
(•)
X]•/S

]
•
(D)⊗OX• E

(•)
• )

∼−→ ω̃
(•)
X]•/S

]
•
(Z)⊗OX• (†Z,D)(E(•)

• ). (9.1.1.7.2)

(b) For anyM(•) ∈ D?(
r‹D(•)

X]/S]
(D)), it follows from 8.5.4.21.3 (and from 9.1.1.1.d-e) that the morphism

of D?(
r‹D(•)

X]/S]
(Z)):

M(•)“⊗L
B̃(•)

X
(D)
B̃(•)
X (Z)→M(•)“⊗L

D̃(•)
X]/S]

(D)
‹D(•)
X]/S]

(Z) =: (†Z,D)(M(•)) (9.1.1.7.3)

is an isomorphism. For any E(•) ∈ D?(
l‹D(•)

X]/S]
(D)), it follows from 9.1.1.5.2 and 9.1.1.7.3 that we

have the canonical isomorphism

(†Z,D)(ω̃
(•)
X]/S]

(D)⊗OX
E(•))

∼−→ ω̃
(•)
X]/S]

(Z)⊗OX
(†Z,D)(E(•)). (9.1.1.7.4)

(c) Following 8.5.4.16.4, we get from 9.1.1.7.3 the localization outside Z functor:

(†Z, D) := −“⊗L
D̃(•)

X]/S]
(D)
‹D(•)
X]/S]

(Z) : LD−→
?
Q,qc(r‹D(•)

X]/S]
(D))→ LD−→

?
Q,qc(r‹D(•)

X]/S]
(Z)). (9.1.1.7.5)

We also write M(•)(†D, Z) := (†Z, D)(M(•)). This functor (†Z, D) is the localization outside Z
functor. When D = ∅, we omit writing it.

9.1.1.8. For any E(•)
• ∈ LD−→

]
Q,qc(

l‹D(•)
X]•/S

]
•
(D)) and E(•) ∈ LD−→

]
Q,qc(‹D(•)

X]/S]
(D)), it follows from 8.5.4.5 that

we have the functorial isomorphisms

(†Z,D) ◦ R←lX(N)∗(E
(•)
• )

∼−→ R←lX(N)∗ ◦ (†Z,D)(E(•)
• ), (†Z,D) ◦ L←l

∗
X(N)(E(•))

∼−→ L←l
∗
X(N) ◦ (†Z,D)(E(•)).

(9.1.1.8.1)
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For any E(•)
• ∈ LD−→

]
Q,qc(

l‹D(•)
X]•/S

]
•
(Z)) and E(•) ∈ LD−→

]
Q,qc(‹D(•)

X]/S]
(Z)), it follows from 8.5.4.5 that we have

the functorial isomorphisms

forgD,Z ◦ R←lX(N)∗(E
(•)
• )

∼−→ R←lX(N)∗ ◦ forgD,Z(E(•)
• ), forgD,Z ◦ L←l

∗
X(N)(E(•))

∼−→ L←l
∗
X(N) ◦ forgD,Z(E(•)).

(9.1.1.8.2)

Remark 9.1.1.9. Let ? ∈ {−,b}. Let X] → X′] be a morphism of log formal schemes which are log
smooth over S] whose underlying morphism of formal schemes is the identity. We keep similar to 9.1
notation replacing X by X′. Since a flat ‹D(•)

X′]• /S
]
•
(D)-module or a flat ‹D(•)

X]•/S
]
•
(D)-module is also a flat

B̃(•)
X (D)-module, then it follows that the functor (†Z,D) of 9.1.1.5.1 that we get the commutative (up to

canonical isomorphism) square:

D?(‹D(•)
X′]• /S

]
•
(D))

(†Z,D)

9.1.1.5.1
//

��

D?(‹D(•)
X′]• /S

]
•
(Z))

��
D?(‹D(•)

X]•/S
]
•
(D))

(†Z,D)

9.1.1.5.1
// D?(‹D(•)

X]•/S
]
•
(Z))

where the vertical maps are the forgetful functors. Since the functors L←l
∗
X(N) and R←lX(N),∗ commute

with the forgetful functors (induced by the homomorphisms of the form ‹D(•)
X]•/S

]
•
(Z) → ‹D(•)

X′]• /S
]
•
(Z) and‹D(•)

X]/S]
(Z)→ ‹D(•)

X′]/S]
(Z)), then we get the commutative (up to canonical isomorphism) square:

D?(‹D(•)
X′]/S]

(D))
(†Z,D)

9.1.1.5.2
//

��

D?(‹D(•)
X′]/S]

(Z))

��
D?(‹D(•)

X]/S]
(D))

(†Z,D)

9.1.1.5.2
// D?(‹D(•)

X]/S]
(Z))

where the vertical maps are the forgetful functors.

9.1.1.10. If follows from 8.7.3.8.2 that the canonical morphism B̃(•)
X (Zred)→ B̃(•)

X (Z) is an isomorphism
of LM−−→Q(B̃(•)

X (Zred)) and that the canonical morphism ‹D(•)
X]/S]

(Zred)→ ‹D(•)
X]/S]

(Z) is an isomorphism of

LM−−→Q(‹D(•)
X]/S]

(Zred)). This yields that the canonical morphism B̃(•)
X•

(Zred)→ B̃(•)
X•

(Z) is an isomorphism

of LM−−→(B̃(•)
X•

(Zred)), and that canonical morphism ‹D(•)
X]•/S

]
•
(Zred) → ‹D(•)

X]•/S
]
•
(Z) is an isomorphism of

LM−−→(‹D(•)
X]•/S

]
•
(Zred)), Hence, the functors (†Z,D) and (†Zred, Dred) are canonically isomorphic.

9.1.1.11 (Preservation of the coherence and perfection). Let ? ∈ {−,b} and ? ∈ {coh,perf}. The
functors (†Z, D) of 9.1.1.5.3 and 9.1.1.7.5 preserve coherence and perfectness, i.e. they induce the
functors

(†Z, D) : LD−→
?
Q,?(r‹D(•)

X]/S]
(D))→ LD−→

?
Q,?(r‹D(•)

X]/S]
(Z)). (9.1.1.11.1)

9.1.1.12 (Coherent complexes). Let ] ∈ {−,b}. We write in the same way the associated functor for
coherent complexes:

(†Z,D) := D†
X]/S]

(†Z)Q ⊗D†
X]/S]

(†D)Q
− : D]

coh(D†
X]/S]

(†D)Q)→ D]
coh(D†

X]/S]
(†Z)Q). (9.1.1.12.1)

The functor 9.1.1.12.1 is exact, which justifies the absence of the symbol L. Following 8.4.1.9.c, we have
the functor→l

∗
Q : LD−→

]
Q,coh(‹D(•)

X (T )) → D]
coh(D†X(†T )Q) in the case where T = D or T = Z. The functors

9.1.1.5.3 and 9.1.1.12.1 are compatible with these functors→l
∗
Q i.e. for any E(•) ∈ LD−→

]
Q,coh(‹D(•)

X]/S]
(D)) we

have the canonical isomorphism of D]
coh(D†X(†Z)Q)

(†Z,D) ◦→l
∗
Q(E(•))

∼−→→l
∗
Q ◦ (†Z,D)(E(•)). (9.1.1.12.2)

Hence, both notation of (†Z,D) are compatible.
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9.1.1.13. Let D′ ⊂ D be a third divisor of X and let λ′0 ≤ λ0 be a third map of L(N). Let ] ∈ {−,b}.
For any m ∈ N, we set B̃(m)

X (D′) := B(λ′0(m))
X (D), and ‹D(m)

X]/S]
(D′) := B̃(m)

X (D′)“⊗OX
D(m)

X]/S]
. We get

similarly to 9.1.1.5 the functors (†Z,D′) and (†D,D′). It follows from 8.5.2.12.1 (resp. 8.5.2.12.2) that
we have the isomorphism

(†Z,D) ◦ (†D,D′)
∼−→ (†Z,D′) (9.1.1.13.1)

of functors D](
l‹D(•)
X]•/S

]
•
(D′))→ D](

l‹D(•)
X]•/S

]
•
(Z)) (resp. D]

qc(
l‹D(•)

X]/S]
(D′))→ D]

qc(
l‹D(•)

X]/S]
(Z))).

Proposition 9.1.1.14. Let ν ∈ L(N). Let ? ∈ {−,b}. We have the functors:

ν∗‹D(•)
X]•/S

]
•
(Z)⊗L

D̃(ν(0))

X
]
•/S

]
•

(Z)
− : D?(‹D(ν(0))

X]•/S
]
•
(Z))→ D?(ν∗‹D(•)

X]•/S
]
•
(Z)), (9.1.1.14.1)

ν∗‹D(•)
X]/S]

(Z)“⊗L
D̃(ν(0))

X]/S]
(Z)− : D?(‹D(ν(0))

X]/S]
(Z))→ D?(ν∗‹D(•)

X]/S]
(Z)), (9.1.1.14.2)

and similarly replacing ‹D(ν(0))

X]•/S
]
•
(Z) (resp. ‹D(ν(0))

X]/S]
(Z)) by ‹D(•)

X]•/S
]
•
(Z) (resp. ‹D(•)

X]/S]
(Z)).

Proof. It follows from 9.1.1.1.(c) that these functors preserve the boundedness of the cohomology.

Remark 9.1.1.15. Let ? ∈ {−,b}. Let ν ∈ L(N) and E(•) ∈ LD−→
?
Q(‹D(•)

X]/S]
(Z)).

(a) Following 8.3.2.2.(bi) (and 9.1.1.1.(f)), we have the canonical isomorphism of LD−→
?
Q(ν∗‹D(•)

X]/S]
(Z))

ν∗‹D(•)
X]/S]

(Z)⊗L
D̃(•)

X]/S]
(Z)
E(•) ∼−→ ν∗E(•). (9.1.1.15.1)

(b) Let E(•) ∈ LD−→
?
Q,qc(‹D(•)

X]
(Z)). By using L←l

∗
X(N)ν

∗‹D(•)
X]/S]

(Z)
∼−→ ν∗‹D(•)

X]•/S
]
•
(Z), we get the first of the

canonical isomorphisms of LD−→
?
Q,qc(‹D(•)

X]
(Z)):

ν∗‹D(•)
X]

(Z)“⊗L
D̃(•)

X]/S]
(Z)E

(•) ∼−→ R←lX(N)∗(ν
∗‹D(•)

X]•/S
]
•
(Z)⊗L

D̃(•)

X
]
•/S

]
•

(Z)
L←l
∗
X(N)E(•))

∼−→
8.5.3.14.1

R←lX(N)∗(ν
∗L←l
∗
X(N)E(•))

∼−→
8.5.3.9.2

ν∗R←lX(N)∗(L←l
∗
X(N)E(•))

∼−→ ν∗E(•).

With 9.1.1.15.1, this yields the canonical morphisms

ν∗‹D(•)
X]

(Z)⊗L
D̃(•)

X]/S]
(Z)
E(•) → ν∗‹D(•)

X]
(Z)“⊗L

D̃(•)
X]/S]

(Z)E
(•) → ν∗E(•)

are isomorphisms in LD−→
?
Q,qc(ν∗‹D(•)

X]/S]
(Z)). Moreover, it follows from 8.3.1.3 that we have the

equivalence of categories

ν∗‹D(•)
X]/S]

(Z)“⊗L
D̃(•)

X]/S]
(Z)− : LD−→

?
Q,qc(‹D(•)

X]/S]
(Z)) ∼= LD−→

?
Q,qc(ν∗‹D(•)

X]/S]
(Z)) (9.1.1.15.2)

whose forgetful functor LD−→
?
Q,qc(ν∗‹D(•)

X]/S]
(Z)) → LD−→

?
Q,qc(‹D(•)

X]/S]
(Z)) is canonically a quasi-inverse

equivalence.

Proposition 9.1.1.16. Let ] ∈ {−,b}.

(a) The forgetful functor and ‹D(•)
X]

(Z)⊗L
D̂(•)

X]
(Z)
− induce quasi-inverse equivalences of categories between

LD−→
]

Q
(“D(•)

X]
(Z)) and LD−→

]
Q(‹D(•)

X]
(Z)).

(b) The forgetful functor and ‹D(•)
X]

(Z)“⊗L
D̂(•)

X]
(Z)− (or ‹D(•)

X]
(Z) ⊗L

D̂(•)
X]

(Z)
−) induce quasi-inverse equiva-

lences of categories between LD−→
]

Q,qc
(“D(•)

X]
(Z)) and LD−→

]

Q,qc
(‹D(•)

X]
(Z)), between LD−→

]

Q,coh
(“D(•)

X]
(Z))) and

LD−→
]

Q,coh
(‹D(•)

X]
(Z)).
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(c) The forgetful functor and ‹D(•)
X]

(Z) ⊗D̂(•)
X]

(Z)
− are quasi-inverse equivalences of categories between

LM−−→Q
(“D(•)

X]
(Z)) and LM−−→Q

(‹D(•)
X]

(Z)), between LM−−→Q,coh
(“D(•)

X]
(Z)) and LM−−→Q,coh

(‹D(•)
X]

(Z)).

Proof. 1) We have the ring extensions “D(•)
X]

(Z)→ ‹D(•)
X]

(Z)→ µ∗0
“D(•)
X]

(Z). Hence, “D(•)
X]

(Z)→ ‹D(•)
X]

(Z) is an
isomorphism in LD−→

]

Q,qc
(“D(•)

X]
(Z)). By using the functor 8.5.4.9.1 (which preserves here the boundedness

thanks to 9.1.1.1.(e)), this yields for any E(•) ∈ LD−→
]
Q(“D(•)

X]
(Z)) the isomorphisms of LD−→

]
Q(“D(•)

X]
(Z)):

E(•) ∼−→ “D(•)
X]

(Z)⊗L
D̂(•)

X]
(Z)
E(•) ∼−→ ‹D(•)

X]
(Z)⊗L

D̂(•)
X]

(Z)
E(•), (9.1.1.16.1)

which implies the first assertion.
2) Let E(•) ∈ LD−→

]
Q,qc(“D(•)

X]
(Z)). We have the isomorphisms of LD−→

]
Q,qc(“D(•)

X]
(Z))

E(•) ∼−→ “D(•)
X]

(Z)“⊗L
D̂(•)

X]
(Z)E

(•) ∼−→ ‹D(•)
X]

(Z)“⊗L
D̂(•)

X]
(Z)E

(•). (9.1.1.16.2)

This yields the second assertion with respect to the functor ‹D(•)
X]

(Z)“⊗L
D̂(•)

X]
(Z)−. Hence, with 9.1.1.16.1

and 9.1.1.16.2, the canonical morphism‹D(•)
X]

(Z)⊗L
D̂(•)

X]
(Z)
E(•) → ‹D(•)

X]
(Z)“⊗L

D̂(•)
X]

(Z)E
(•) (9.1.1.16.3)

is an isomorphism, which yields the quasi-coherent case of the second statement.
3) Let F (•) ∈ LD−→

]
Q,coh(‹D(•)

X]
(Z)). Since ‹D(•)

X]
(Z)→ µ∗0

“D(•)
X]

(Z) is an isomorphism in LD−→
]

Q,qc
(‹D(•)

X]
(Z)),

this yields the isomorphisms of LD−→
]
Q(‹D(•)

X]
(Z)):

F (•) ∼−→ µ∗0
“D(•)
X]

(Z)⊗L
D̃(•)

X]
(Z)
F (•). (9.1.1.16.4)

Since µ∗0“D(•)
X]

(Z) ⊗L
D̃(•)

X]
(Z)
F (•) ∈ LD−→

]
Q,coh(µ∗0

“D(•)
X]

(Z)) (use 8.5.4.17), then µ∗0
“D(•)
X]

(Z) ⊗L
D̃(•)

X]
(Z)
F (•) ∈

LD−→
]
Q,coh(“D(•)

X]
(Z)) (use 8.4.1.5). Hence, with Proposition 8.5.4.17, we have checked the coherent case of

the second statement.
4) We check the third one similarly.

9.1.2 Preservation of bounded quasi-coherence by localization functor out-
side a divisor, internal tensor products

Proposition 9.1.2.1. Let D′ ⊂ D be a third divisors of X. Let m′ ≥ m ≥ 0 be two integers. The
canonical homomorphisms of D−(B̃(m′)

X (Z))

B(m′)
X (Z)→ B(m)

X (D)“⊗L
B(m)

X
(D′)B

(m′)
X (Z)→ B(m′)

X (Z), (9.1.2.1.1)

B(m′)
X (Z)→ B(m)

X (D)“⊗B(m)

X
(D′)
B(m′)
X (Z)→ B(m′)

X (Z) (9.1.2.1.2)

are p3-isogenies (see definition 7.4.2.1.(c)).

Proof. 1) Following the lemma 8.7.4.4.a, the kernel of the canonical epimorphism a : B(m)
X (D′)“⊗OX

B(m′)
X (Z)→

B(m′)
X (Z) is a quasi-coherent OX -module. Hence, it follows from 7.4.2.6.b that a is a p-isogeny. Moreover,

following lemma 8.7.4.4.b, the canonical morphism B(m)
X (D′)“⊗L

OX
B(m′)
X (Z) → B(m)

X (D′)“⊗OX
B(m′)
X (Z) is

an isomorphism. Hence, we get by composition the p-isogeny α : B(m)
X (D′)“⊗L

OX
B(m′)
X (Z)→ B(m′)

X (Z).

2) Since the functor B(m)
X (D)“⊗L

B(m)

X
(D′)− sends a p-isogeny to a p-isogeny, then we get the p-isogeny

β : B(m)
X (D)“⊗L

OX
B(m′)
X (Z)

∼−→ B(m)
X (D)“⊗L

B(m)

X
(D′)(B

(m)
X (D′)“⊗L

OX
B(m′)
X (Z))→ B(m)

X (D)“⊗L
B(m)

X
(D′)B

(m′)
X (Z).
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Let γ : B(m)
X (D)“⊗L

B(m)

X
(D′)B

(m′)
X (Z) → B(m′)

X (Z) be the canonical morphism (the last one of 9.1.2.1.1).

Following the part 1) of the proof (replace D′ by D), the composition γ ◦ β : B(m)
X (D)“⊗L

OX
B(m′)
X (Z) →

B(m′)
X (Z) is a p-isogeny. Since so is β, then γ is a p3-isogeny (see ??.??). Since the composition of the

following two canonical morphisms of 9.1.2.1.1 is the identity, by using ??.??, this yields that the first
morphism is also a p3-isogeny.

3) Likewise (we remove the symbols L) we can check that the canonical morphisms of 9.1.2.1.2 are
p3-isogenies.

Corollary 9.1.2.2. The canonical morphisms of Db
qc(“D(•)

X]
(Z))

B̃(•)
X (Z)→ B̃(•)

X (Z)“⊗L
B̃(•)

X
(D)
B̃(•)
X (Z)→ B̃(•)

X (Z)“⊗B̃(•)
X

(D)
B̃(•)
X (Z)→ B̃(•)

X (Z) (9.1.2.2.1)

are lim-ind-isogenies.

Proof. This is a consequence of 9.1.2.1.

Proposition 9.1.2.3. Let ] ∈ {−,b}. Let E(•) ∈ LD−→
]
Q,qc(‹D(•)

X]/S]
(Z)) (resp. E(•) ∈ LD−→

]
Q,qc(‹D(•)

X]•/S
]
•
(Z))).

(a) The functorial in E(•) canonical morphism:

(†Z, D) ◦ forgD,Z(E(•))→ E(•) (9.1.2.3.1)

is an isomorphism of LD−→
]
Q,qc(‹D(•)

X]/S]
(Z)) (resp. LD−→

]
Q,qc(‹D(•)

X]•/S
]
•
(Z))).

(b) The functorial in E(•) canonical morphism:

forgD,Z(E(•))→ forgD,Z ◦ (†Z,D) ◦ forgD,Z(E(•)) (9.1.2.3.2)

is an isomorphism of LD−→
]
Q,qc(‹D(•)

X]/S]
(D)) (resp. LD−→

]
Q,qc(‹D(•)

X]•/S
]
•
(D))).

(c) The functor forgD,Z : LD−→
]
Q,qc(‹D(•)

X]/S]
(Z))→ LD−→

]
Q,qc(‹D(•)

X]/S]
(D)) (resp. forgD,Z : LD−→

]
Q,qc(‹D(•)

X]•/S
]
•
(Z))→

LD−→
]
Q,qc(‹D(•)

X]•/S
]
•
(D)) ) is fully faithful.

Proof. 1) Since the functors (†Z, D) and forgD,Z commute with R←lX(N)∗ and L←l
∗
X(N) (see 9.1.1.8.1 and

9.1.1.8.2), then via the equivalence of categories of Theorem 8.5.1.10 we reduce to check the non-respective
case.

2) Let us check the non-respective case. With the notations 9.1.1.5.2, we have canonical isomorphisms
of LD−→

]
Q,qc(‹D(•)

X]
(Z)):

B̃(•)
X (Z)“⊗L

B̃(•)
X

(D)
E(•) ∼−→

Å
B̃(•)
X (Z)“⊗L

B̃(•)
X

(D)
B̃(•)
X (Z)

ã“⊗L
B̃(•)

X
(Z)
E(•) ∼−→

9.1.2.2
B̃(•)
X (Z)“⊗L

B̃(•)
X

(Z)
E(•) ∼←− E(•).

This composition is the canonical morphism (†Z, D) ◦ forgD,Z(E(•)) → E(•) which is therefore an iso-
morphism. This yields the canonical isomorphism forgD,Z ◦ (†Z,D) ◦ forgD,Z(E(•))

∼−→ forgD,Z(E(•))

of LD−→
]
Q,qc(‹D(•)

X]
(D)). Since the composition forgT,D(E(•)) → forgD,Z ◦ (†Z,D) ◦ forgD,Z(E(•))

∼−→
forgD,Z(E(•)) is the identity, this implies that the canonical morphism 9.1.2.3.2 is an isomorphism. The
fully faithfulness of forgD,Z is a consequence of both previous assertions.

Corollary 9.1.2.4. Let D′ ⊂ D be a third divisor of X and let λ′0 ≤ λ0 be a third map of L(N).
Let E(•) ∈ LD−→

]
Q,qc(‹D(•)

X]/S]
(D)) (resp. E(•) ∈ LD−→

]
Q,qc(‹D(•)

X]•/S
]
•
(D))). With notation 9.1.1.13, we get the

functorial in E(•) canonical morphism

(†Z, D′) ◦ forgD′,D(E(•))→ (†Z, D)(E(•)) (9.1.2.4.1)

is an isomorphism of LD−→
]
Q,qc(‹D(•)

X]/S]
(Z)) (resp. LD−→

]
Q,qc(‹D(•)

X]•/S
]
•
(Z))).
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Proof. Following 9.1.2.3.1, we benefit from the canonical isomorphism (†D, D′)◦forgD′,D(E(•))
∼−→ E(•).

By applying the functor (†Z, D) to this latter isomorphism, the isomorphism (†Z, D′)
∼−→ (†Z, D) ◦

(†D, D′) of 9.1.1.13.1 allows us then to conclude.

Notation 9.1.2.5. Let D′ ⊂ D ⊂ Z be some divisors of X. Following 9.1.2.4, by forgetting to write
some forgetful functors, the functors (†Z, D′) and (†Z, D) are canonically isomorphic over categories of
the form LD−→

]
Q,qc. Hence, we can simply write (†Z) in both case.

Proposition 9.1.2.6. Suppose the log structure of S] is trivial and that S is regular. Suppose X/S is
smooth and that MX] is the log structure given by a strict normal crossing divisor of X/S.

(a) We have the equalities Db
qc(“D(m)

X]/S]
) = Dqc,tdf(“D(m)

X]/S]
), Db

qc(“D(•)
X]•/S

]
•
) = Dqc,tdf(“D(•)

X]•/S
]
•
), Db

qc(“D(•)
X]/S]

) =

Dqc,tdf(“D(•)
X]/S]

).

(b) With notation 8.5.4.11, we have LD−→
b
Q,qc(‹D(•)

X]/S]
(Z)) = LD−→

b
Q,qc,tdf(

‹D(•)
X]/S]

(Z)) ⊂ LD−→
b
Q,qc,tdf(B̃

(•)
X (Z))

and similarly for X and S replaced respectively by X• and S•.

(c) The bifunctors 9.1.1.3.2 and 9.1.1.3.1 factor respectively through the bifunctors

−⊗L
B(•)
X•

(Z)
− : LD−→

b
Q(∗‹D(•)

X]•/S
]
•
(Z))× LD−→

b
Q(

l‹D(•)
X]•/S

]
•
(Z))→ LD−→

b
Q(∗‹D(•)

X]•/S
]
•
(Z)), (9.1.2.6.1)

−“⊗L
B̃(•)

X
(Z)
− : LD−→

b
Q(∗‹D(•)

X]/S]
(Z))× LD−→

b
Q(

l‹D(•)
X]/S]

(Z))→ LD−→
b
Q(∗‹D(•)

X]/S]
(Z)). (9.1.2.6.2)

Proof. a) i ) Let us check Db
qc(D(m)

X]/S
) = Db

qc,tdf(D
(m)

X]/S
). Since this is local, we can suppose X affine.

With the theorems of type A for the quasi-coherent sheaves (see 4.6.1.7.c), we reduce then to check
Db(D

(m)

X]/S
) = Db

tdf(D
(m)

X]/S
). This last equality is a consequence of the fact that D(m)

X]/S
is a ring of global

dimension ≤ N for some integer N independent from m (see 6.1.4.2 and [Sta22, 066P]).
ii) By using Theorem 8.5.1.10, proposition 7.3.1.13 and the paragraph 8.5.1.9, since D(m)

X]/S
is a ring

of finite global dimension
b) The inclusion is a consequence of the flatness of B̃(•)

X (Z) → ‹D(•)
X]/S]

(Z). Let us now prove the

equality. Let E(•) ∈ LD−→
b
Q,qc(‹D(•)

X]/S
(Z)). It follows from 9.1.2.3.1 (in the case where D empty), that

we have the isomorphism (†Z) ◦ forgZ(E(•))
∼−→ E(•) of LD−→

b
Q,qc(‹D(•)

X]/S
(Z)). It follows from a) that

LD−→
b
Q,qc(“D(•)

X]/S]
) = LD−→Q,qc,tdf(“D(•)

X]/S]
). Hence, we get forgZ(E(•)) ∈ LD−→

b
Q,qc,tdf(

“D(•)
X]/S

). Since the
functor (†Z) preserves the LD-tor amplitude, we conclude the proof.

c) Similarly to 8.5.4.14, we get c) from the b).

Corollary 9.1.2.7. Let ] ∈ {−,b}. When ] = b, we suppose we are in the context of Proposition 9.1.2.6.
Let M(•) ∈ LD−→

]
Q,qc(∗‹D(•)

X]/S]
(D)), and E(•) ∈ LD−→

]
Q,qc(‹D(•)

X]/S]
(D)). We have the canonical isomorphism

in LD−→
]
Q,qc(∗‹D(•)

X]/S]
(Z)) of the form

(†Z, D)(M(•))“⊗L
B̃(•)

X
(Z)

(†Z, D)(E(•))
∼−→ (†Z, D)

Å
M(•)“⊗L

B̃(•)
X

(D)
E(•)

ã
. (9.1.2.7.1)

Proof. Following notation 9.1.1.2, we set E(•)
• = L←l

∗
X(N)(E(•)) and M(•)

• = L←l
∗
X(N)(M(•)). By using

9.1.1.5.1, we get the isomorphism:

(†Z, D)(M(•)
• )⊗L

B̃(•)
X•

(Z)
(†Z, D)(E(•)

• )
∼−→ (†Z, D)

Å
M(•)
• ⊗L

B̃(•)
X•

(D)
E(•)
•

ã
. (9.1.2.7.2)

Hence, with the commutativity isomorphisms 9.1.1.8.1 and using the commutativity of the diagram
8.5.4.20.3, we get 9.1.2.7.1 from 9.1.2.7.2.
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Corollary 9.1.2.8. Let ] ∈ {−,b}. When ] = b, we suppose we are in the context of Proposition 9.1.2.6.
LetM(•) ∈ LD−→

]
Q,qc(∗‹D(•)

X]/S]
(Z)), and E(•) ∈ LD−→

]
Q,qc(‹D(•)

X]/S]
(Z)). We have the isomorphism

forgD,Z(M(•))“⊗L
B̃(•)

X
(D)

forgD,Z(E(•))
∼−→ forgD,Z

Å
M(•)“⊗L

B̃(•)
X

(Z)
E(•)

ã
. (9.1.2.8.1)

Proof. We construct the isomorphism 9.1.2.8.1 by composing the following isomorphisms:

M(•)“⊗L
B̃(•)

X
(Z)
E(•)

9.1.2.3.1
∼−→ M(•)“⊗L

B̃(•)
X

(Z)

Å
B̃(•)
X (Z)“⊗L

B̃(•)
X

(D)
(forgD,Z(E(•)))

ã 8.5.4.21.4
∼−→ M(•)“⊗L

B̃(•)
X

(D)
E(•).

9.1.3 Composition of localisation functors

Let Z ′ be a second divisor of X. Let µ′0 ∈ L(N). For any m ∈ N, for any i ∈ N, we set B̃(m)
Xi

(Z ′) :=

B(µ′0(m))
Xi

(Z ′), and ‹D(m)

X]
i
/S]
i

(Z ′) := B̃(m)
Xi

(Z ′)⊗OXiD
(m)

X]
i
/S]
i

. For anym ∈ N, we set B̃(m)
X (Z ′) := B(µ′0(m))

X (Z ′),‹D(m)

X]/S]
(Z ′) := B̃(m)

X (Z ′)“⊗OX
D(m)

X]/S]
. When Z ⊂ Z ′, we can suppose µ0 ≤ µ′0 (see 9.1.1.16).

The following Lemma improves the part (a) and (b) of Lemma 8.7.4.4 by adding hypotheses on the
divisors.

Lemma 9.1.3.1. Suppose Z, Z ′ are two reduced divisors of X whose irreducible components are two by
two distinct. Let U′′ the open set of X complementary to Z ∪ Z ′.

(a) For any i ∈ N, the canonical morphism B(m)
Xi

(Z) ⊗L
OXi
B(m)
Xi

(Z ′) → B(m)
Xi

(Z) ⊗OXi B
(m)
Xi

(Z ′) is an
isomorphism.

(b) The canonical morphism B(m)
X (Z)“⊗L

OX
B(m)
X (Z ′)→ B(m)

X (Z)“⊗OX
B(m)
X (Z ′) is an isomorphism and the

OX-algebra B(m)
X (Z)“⊗OX

B(m)
X (Z ′) is p-torsion free.

(c) The canonical morphism of OX-algebras B(m)
X (Z)“⊗OX

B(m)
X (Z ′) → j∗OU′′ , where j : U′′ ↪→ X is the

inclusion, is a monomorphism.

(d) Let χ, λ : N → N defined respectively by setting for any integer m ∈ N, χ(m) := pp−1 and λ(m) :=

m + 1. We have two canonical ring monomorphisms α(•) : B(•)
X (Z)“⊗OX

B(•)
X (Z ′) → B(•)

X (Z ∪ Z ′)
and β(•) : B(•)

X (Z ∪ Z ′) → χ∗λ∗(B(•)
X (Z)“⊗OX

B(•)
X (Z ′)) such that χ∗λ∗(α(•)) ◦ β(•) = σF,(λ,χ) and

β(•) ◦ α(•) = σE,(λ,χ) (see notation 8.1.4.1.1).

Proof. 0) Since the assertions a), b) and c) are local on X, we can suppose X = Spf A affine, integral
and there exist f1, . . . , fr ∈ OX (resp. f ′1, . . . , f

′
r′ ∈ OX) lifting a local equation of the irreducible

components of Z ⊂ X (resp Z ′ ⊂ X). Denote by f :=
∏r
s=1 fs and f ′ :=

∏r′

s=1 f
′
s. We have therefore the

isomorphisms B(m)
X (Z)

∼−→ OX{T}/(fp
m+1

T −p) and B(m)
X (Z ′)

∼−→ OX{T ′}/((f ′)p
m+1

T ′−p), where we
took care to distinguish the variables T and T ′.

a) We have to prove that for any j ≤ −1, Hj(B(m)
Xi

(Z)⊗L
OXi
B(m)
Xi

(Z ′)) = 0.

Since X is p-torsion free, we have the short exact sequence 0 → OX{T} −→
fpm+1T−p

OX{T} →

B(m)
X (Z) → 0. Since B(m)

X (Z) is p-torsion free (see 8.7.4.1), this yields the short exact sequence 0 →
OXi [T ] −→

f
pm+1

T−p
OXi [T ] → B(m)

Xi
(Z) → 0 where f is the reduction of f modulo πi+1. Since this exact

sequence gives a canonical resolution of B(m)
Xi

(Z) by some flat OXi-modules, by applying the functor
− ⊗OXi B

(m)
Xi

(Z ′) to this exact sequence, we see that it is a question of proving that the image de f in
B

(m)
Xi

(Z ′) is nonzero and is nonzero divisor. Since “B(m)
X (Z ′) is p-torsion free (see 8.7.4.1), we reduce to

the case i = 0. Set A = Γ(X,OX). In that case, we get B(m)
X (Z ′)

∼−→ OX [T ′]/(f ′
pm+1

T ′) where f ′
is the reduction of f ′ modulo π, i.e. is the image of f ′ on A. Let P (T ′), Q(T ′) ∈ A[T ′] satisfying the
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equality f · P (T ′) = (f ′
pm+1

T ′) · Q(T ′) in A[T ′]. We have to check that f ′
pm+1

T ′ divides P (T ′). Since
A/f ′sA is integral for any s = 1, . . . , r′ (because Z ′ is reduced), since the image of f on A/f ′sA is not
null (because the irreducible components of Z and Z ′ are two by two distinct), since A is integral, then

from an equality of the form fa = f ′
pm+1

a′ in A with a, a′ ∈ A, we get f ′
pm+1

divides a. Hence we are
done.

b) By applying the functor Rlim
←−
i

to the canonical isomorphisms of (a), via Mittag-Leffler, we get the de-

sired isomorphism of (b) (or we can invoke 8.7.4.4.b). Moreover, following 8.7.4.2, B(m)
X (Z)“⊗L

OX
B(m)
X (Z ′) ∈

Db
qc(OX) and k ⊗L

V

(
B(m)
X (Z)“⊗L

OX
B(m)
X (Z ′)

)
∼−→ B(m)

X (Z) ⊗L
OX B

(m)
X (Z ′). This yields following a) and

the isomorphism of b) that H−1(k ⊗L
V (B(m)

X (Z)“⊗OX
B(m)
X (Z ′)))

∼−→ 0.
c) It is sufficient to copy the proof of 8.7.4.1.(b): denote B(m)

X (Z) := Γ(X,B(m)
X (Z) and B(m)

X (Z ′) :=

Γ(X,B(m)
X (Z ′). We get “B := Γ(X,B(m)

X (Z)“⊗OX
B(m)
X (Z ′))

∼−→ B
(m)
X (Z)“⊗AB(m)

X (Z ′). Since “B is p-torsion
free, then it is f -torsion free and we get therefore the monomorphism “B ↪→ “Bf . Denote by U = D(f)

the open set of X complementary to Z. Since (B
(m)
X (Z)f )̂

∼−→ A{f}, then we get the first isomorphism:
(“Bf )̂

∼−→ A{f}“⊗AB(m)
X (Z ′)

∼−→ A{f}{T ′}/((f ′)p
m+1

T ′ − p). Since f ′ modulo π is not a zero divisor of
A{f}, then following 8.7.4.1.b, the canonical morphism A{f}{T ′}/((f ′)p

m+1

T ′−p)→ A{ff ′} = Γ(U′′,OX)

is injective. Hence, we reduce to check “Bf is p-adically separated. We still denote by T , the image of
T in “B. Since T is a divisor of p in B

(m)
X (Z) and therefore in “Bf , then we reduce to check that “Bf

is T -adically separated. Let b, x ∈ “Bf such that (1 − bT )x = 0. With Krull theorem (see [Mat89,
Theorem 8.9]), it is enough to prove x = 0. By multiplying by a power of f large enough if necessary,
we can suppose b, x ∈ “B and there exists s ∈ N large enough such that (fs − bT )x = 0 in “B. However,
since B(m)

X (Z)/TB
(m)
X (Z)

∼−→ A{T}/(fpm+1

T − p, T ) = A{T}/(p, T )
∼−→ A/pA, then we get the first

isomorphism: “B/T “B ∼−→ A/pA⊗A A{T ′}/((f ′)p
m+1

T ′ − p) ∼−→ (A/pA)[T ′]/(f ′
pm+1

T ′)
∼−→ B

(m)
X (Z ′).

Hence, since the image of fs in B(m)
X (Z ′) is nonzero and is not a zero divisor (see the step a) of the proof),

then the equality (fs− bT )x = 0 implies that x ∈ T “B. Since “B is p-torsion free, then it is T -torsion free.
Hence, by iterating the reasoning, we get x ∈ ∩n∈NT

n“B. With Krull theorem (see [Mat89, Theorem
8.9]), this yields there exists c ∈ “B such that (1− cT )x = 0.

The relation (1 − cT )x = 0 in “B induces in “B/p“B the equality (1 − cT )x = 0. On the other hand,“B/p“B ∼−→ B
(m)
X (Z)⊗AB(m)

X (Z ′)
∼−→ B

(m)
X (Z ′)[T ]/(f

pm+1

T ). We can choose some elements c̃(T ), ‹X(T )

of B(m)
X (Z ′)[T ] inducing modulo f

pm+1

T the elements c, x. Hence, there exists Q(T ) ∈ B(m)
X (Z ′)[T ] such

that (1− c̃(T )T )‹X(T ) = f
pm+1

TQ(T ) in B(m)
X (Z ′)[T ]. This yields there exists R(T ) ∈ B(m)

X (Z ′)[T ] such

that ‹X(T ) = TR(T ). Hence we get in B(m)
X (Z ′)[T ] the equality (1 − c̃(T )T )R(T ) = f

pm+1

Q(T ). This

implies that f
pm+1

divides R(T ) and therefore x = 0, i.e. x ∈ p“B. Since “B is p-torsion free, repeating
the process we get x ∈ ∩n∈Np

n“B = {0} and we are done.
d) Since Z,Z ′ ⊂ Z ∪Z ′, then we get the canonical morphism B(•)

X (Z ′)→ B(•)
X (Z ∪Z ′) and B(•)

X (Z)→
B(•)
X (Z∪Z ′). This yields by extension α(•). The fact that this is a monomorphism is a consequence of d).

This yields that the construction Moreover, since σF,(λ,χ) is also a monomorphism (use 8.7.4.1), then the
existence of such morphism β(•) is local on X. Hence, we reduce to local situation of 0) and we keep its
notations. Let γ(m) : OX[T ]→ (B(m+1)

X (Z)“⊗OX
B(m+1)
X (Z ′))Q be the morphism of OX-algebras defined by

setting γ(m)(T ) := 1
p ( p

fpm+1
“⊗ p

(f ′)pm+1 ). Let n ∈ N, q ∈ N, r ∈ N such that 0 ≤ r < p and n = pq+ r. We

compute γ(m)(Tn) = 1
pr ( p

fpm+1
“⊗ p

(f ′)pm+1 )r
(
pp−2( p

fpm+2
“⊗ p

(f ′)pm+2 )
)q

. Hence, we get the factorisation

pp−1γ(m) : OX{T} → (B(m+1)
X (Z)“⊗OX

B(m+1)
X (Z ′)) of OX{T}-modules. Since γ(m)((ff ′)p

m+1

T − p) = 0,
then pp−1γ(m) induces the desired morphism β(m).

Proposition 9.1.3.2. For any E(•) ∈ LD−→
−
Q,qc(‹D(•)

X]/S]
(Z)), the canonical functorial in Z, Z ′, E(•)

morphism (†Z ′) ◦ (†Z)(E(•))→ (Z ′ ∪ Z)(E(•)) is an isomorphism.

Proof. By using 9.1.1.10, we can suppose Z and Z ′ are reduced. Let Z1, Z2, Z
′′ be some divisors whose
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irreducible components are two by two distinct and such that Z = Z1 ∪ Z ′′ et Z ′ = Z2 ∪ Z ′′. It follows
from 9.1.3.1 the isomorphisms (†Z ′) ◦ (†Z)(E(•))

∼−→ (†Z2) ◦ (†Z ′′) ◦ (†Z ′′) ◦ (†Z1)(E(•)). It follows from
9.1.2.3 that we get (†Z ′′) ◦ (†Z ′′)

∼−→ (†Z ′′). Using again 9.1.3.1, since Z ∪ Z ′ = Z1 ∪ Z ′′ ∪ Z2, then we
are done.

Let us five the following corollary of 9.1.3.2.

Lemma 9.1.3.3. Let G(•) ∈ LD−→
−
Q,qc(∗‹D(•)

X]/S]
(Z)). The canonical morphism G(•)(†Z ′)→ G(•)(†Z ∪ Z ′)

is an isomorphism of LD−→
−
Q,qc(“D(•)

X]/S]
).

Proof. Following 9.1.2.4, by omitting to indicate the forgetful functor, we have the isomorphism G(•) ∼−→
G(•)(†Z). Moreover, by 9.1.3.2, (†Z ′) ◦ (†Z)

∼−→ (†Z ∪ Z ′). We deduce the desired isomorphism
G(•)(†Z ′)

∼−→ G(•)(†Z ∪ Z ′).

Proposition 9.1.3.4. Let G(•) ∈ LD−→
−
Q,qc(∗‹D(•)

X]/S]
(Z)), E(•) ∈ LD−→

−
Q,qc(

l‹D(•)
X]/S]

(Z ′)). The canonical
morphism:

G(•)“⊗L
O(•)

X

E(•) → G(•)(†Z ∪ Z ′)“⊗L
B̃(•)

X
(Z∪Z′)

E(•)(†Z ∪ Z ′) (9.1.3.4.1)

is an isomorphism of LD−→
−
Q,qc(∗“D(•)

X]/S]
).

Proof. Following 9.1.1.5.2, the morphism B(•)
X (Z ∪Z ′)“⊗L

OX
G(•) → “D(•)

X]
(Z ∪Z ′)“⊗L

D̂(•)
X]/S]

G(•) is an isomor-

phism. In the same way, for E(•). Via the associativity properties of the derived complete tensor product

for quasi-coherent complexes, this yields the canonical isomorphism: (†Z ∪ Z ′)
Å
G(•)“⊗L

O(•)
X

E(•)
ã

∼−→

G(•)(†Z∪Z ′)“⊗L
B̃(•)

X
(Z∪Z′)

E(•)(†Z∪Z ′). Since we have the canonical morphisms (†Z)

Å
G(•)“⊗L

O(•)
X

E(•)
ã
∼−→

(†Z)(G(•))“⊗L
O(•)

X

E(•) ∼−→ G(•)“⊗L
O(•)

X

E(•) and (†Z ′)

Å
G(•)“⊗L

O(•)
X

E(•)
ã
→ G(•)“⊗L

O(•)
X

(†Z ′)(E(•))
∼−→ G(•)“⊗L

O(•)
X

E(•),

then by 9.1.3.2 the canonical morphism G(•)“⊗L
O(•)

X

E(•) → (†Z ∪ Z ′)
Å
G(•)“⊗L

O(•)
X

E(•)
ã

is an isomor-

phism.

9.1.4 The case of pseudo quasi-coherent modules
We keep notation 9.1.3.

Notation 9.1.4.1. Let E(•) ∈M(‹D(•)
X]

(D)). We define the divisor extension functor (†Z,D)0 : M(‹D(•)
X]

(D))→
M(‹D(•)

X]
(Z)) by putting (†Z,D)0(E(•)) := ‹D(•)

X]
(Z)“⊗D̃(•)

X]
(D)
E(•). As for 9.1.1.3.2, we verify that the func-

tor (†Z,D)0 factorizes into

(†Z,D)0 : LM−−→Q(‹D(•)
X]

(D))→ LM−−→Q(‹D(•)
X]

(Z)). (9.1.4.1.1)

The canonical forgetful functor M(‹D(•)
X]

(Z))→M(‹D(•)
X]

(D)) factorizes into the functor which we denote
by

forgD,Z : LM−−→Q(‹D(•)
X]

(Z))→ LM−−→Q(‹D(•)
X]

(D)). (9.1.4.1.2)

It seems false that the functor 9.1.4.1.2 is fully faithful without finiteness hypothesis. To get satisfying
properties we need to work with pseudo-coherent modules whose notion is recalled just below.

Definition 9.1.4.2. Let E(•) ∈ LM−−→Q(l‹D(•)
X]

(Z)) and E(•)
• ∈ LM−−→Q(l‹D(•)

X]•
(Z)).

1. We say that E(•) is pseudo-quasi-coherent (as an object of LM−−→Q(l‹D(•)
X]

(Z))) if it is isomorphic in
LM−−→Q(D(•)) to a complex F (•) ∈ Modpqc(D(•)) (see notation 7.2.3.5).

We denote by LM−−→Q,pqc(l‹D(•)
X]

(Z)) the full subcategory of LM−−→Q(l‹D(•)
X]

(Z)) consisting of quasi-
coherent complexes.
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2. We say that E(•) is of local presentation (as an object of LM−−→Q(l‹D(•)
X]•

(Z))) if it is isomorphic in

LM−−→Q(l‹D(•)
X]•

(Z)) to a complex F (•) ∈ Modlp(l‹D(•)
X]•

(Z)) (see notation 7.1.3.9).

We denote by LM−−→Q,lp(l‹D(•)
X]•

(Z)) the full subcategory of LM−−→Q(l‹D(•)
X]•

(Z)) consisting of local presen-
tation.

9.1.4.3. The functors←lX(N),∗ : Mod(l‹D(•)
X]•

(Z))→ Mod(l‹D(•)
X]

(Z)) and←l
∗
X(N) : Mod(l‹D(•)

X]
(Z))→ Mod(l‹D(•)

X]•
(Z))

send lim-ind-isogenies to lim-ind-isogenies. Hence, we get the functors←lX(N),∗ : LM−−→Q(l‹D(•)
X]•

(Z))→ LM−−→Q(l‹D(•)
X]

(Z))

and←l
∗
X(N) : LM−−→Q(l‹D(•)

X]
(Z)) → LM−−→Q(l‹D(•)

X]•
(Z)), which yields the adjoint functors (←l

∗
X(N) a←lX(N),∗). It fol-

lows from 7.2.3.7 that for any E(•)
• ∈ LM−−→Q,lp(l‹D(•)

X]•
(Z)) the adjoint morphism←l

∗
X(N) ◦←lX(N),∗(E

(•)
• )→ E(•)

•

is an isomorphism of LM−−→Q,lp(l‹D(•)
X]•

(Z)). By using 7.2.1.5 and 7.2.2.1, this implies that the functor

←lX(N),∗ : LM−−→Q,lp(l‹D(•)
X]•

(Z))→ LM−−→Q(l‹D(•)
X]

(Z)) is fully faithful and its essential image is LM−−→Q,pqc(l‹D(•)
X]

(Z)).
Moreover, the functors←lX(N),∗ and←l

∗
X(N) induce canonically quasi-inverse equivalences of categories be-

tween LM−−→Q,lp(l‹D(•)
X]•

(Z)) and LM−−→Q,pqc(l‹D(•)
X]

(Z)).

9.1.4.4. As pseudo quasi-coherence is a notion which is independant of the choice of divisors, the forgetful
functor factors into a functor of the form forgD,Z : Mpqc(‹D(•)

X]
(Z))→ Mpqc(‹D(•)

X]
(D)). The factorization

(†Z,D)0 : Mpqc(‹D(•)
X]

(D))→Mpqc(‹D(•)
X]

(Z)) is even more obvious. As for 9.1.2.3 (i.e., it suffices to remove
the “L” in the proof), we deduce from 9.1.2.2 that, for all E ′(•) ∈ Mpqc(‹D(•)

X]
(Z)), the functorial in E ′(•)

canonical morphisms:

forgD,Z(E ′(•))→ forgD,Z ◦ (†Z,D)0 ◦ forgD,Z(E ′(•)),

(†Z,D)0 ◦ forgD,Z(E ′(•))→ E ′(•) (9.1.4.4.1)

are isomorphisms. The functor forgD,Z : Mpqc(‹D(•)
X]

(Z))→Mpqc(‹D(•)
X]

(D)) is therefore fully faithful.

9.1.4.5. Similarly to 9.1.3.2, for any E(•) ∈ Modpqc(‹D(•)
X]/S]

(Z)), the canonical functorial in Z, Z ′, E(•)

morphism (†Z ′) ◦ (†Z)(E(•))→ (Z ′ ∪ Z)(E(•)) is an isomorphism.

9.1.5 Theorem of type A in LMQ,coh

9.1.5.1. Let λ ∈ L(N) and m0 = λ(0). We denote by µm0
∈ L(N) so that µm0

(m) = m + m0, by‹D(•+m0)

X]
(Z) := µ∗m0

‹D(•)
X]

(Z) = ‹D(•)
X]

(Z)|(m0,X). Then it follows from 8.4.2.1 that we have an equivalence of
categories between the category of ‹D(•+m0)

X]
(Z)-module of global finite presentation and that of λ∗‹D(•)

X]
(Z)-

module of global finite presentation.
Let E(•) ∈ LM−−→Q(‹D(•)

X]
(Z)). Hence, it follows from 8.4.5.10 that the property E(•) ∈ LM−−→Q,coh(‹D(•)

X]
(Z))

is equivalent to saying that there exists m0 ∈ N such that for any affine open U] of X], the object E(•)|U
is isomorphic in LM−−→Q(‹D(•)

U]
(Z)) to a ‹D(•+m0)

U]
(Z ∩ U)-module F (•) having a global finite presentation.

9.1.5.2. Suppose that X is affine.

(a) We have the global section functor Γ(X,−) : M(‹D(•)
X]

(Z))→M(‹D(•)
X]

(Z)) defined by putting Γ(X, E(•)) :=

E(•), where E(m) → E(m+1) is the image by the functor Γ(X,−) of the arrow E(m) → E(m+1).
As the functor Γ(X,−) commutes canonically with the functor χ∗, the functor Γ(X,−) transforms
the ind-isogenies of M(‹D(•)

X]
(Z)) into ind-isogenies of M(‹D(•)

X]
(Z)). It induces therefore the functor

Γ(X,−) : M−→Q(‹D(•)
X]

(Z)) → M−→Q(‹D(•)
X]

(Z)). Likewise, Γ(X,−) send a lim-ind-isogeny to a lim-ind-
isogeny and we obtain the factorization Γ(X,−) : LM−−→Q(‹D(•)

X]
(Z))→ LM−−→Q(‹D(•)

X]
(Z)).

(b) We have the functor ‹D(•)
X]

(Z) ⊗
D̃

(•)
X]

(Z)
− : M(‹D(•)

X]
(Z)) → M(‹D(•)

X]
(Z)). We check in the same way

that we obtains the factorization ‹D(•)
X]

(Z)⊗
D̃

(•)
X]

(Z)
− : LM−−→Q(‹D(•)

X]
(Z))→ LM−−→Q(‹D(•)

X]
(Z)).
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Lemma 9.1.5.3. Let λ ∈ L(N).

(a) For all λ∗‹D(•)
X]

(D)-module E(•), the canonical morphisms ‹D(•)
X]

(Z)⊗D̃(•)
X]

(D)
E(•) → λ∗‹D(•)

X]
(Z)⊗

λ∗D̃(•)
X]

(D)

E(•) and ‹D(•)
X]

(Z)“⊗D̃(•)
X]

(D)
E(•) → λ∗‹D(•)

X]
(Z)“⊗

λ∗D̃(•)
X]

(D)
E(•) are isomorphisms of LM−−→Q(‹D(•)

X]
(Z)).

(b) For all λ∗‹D(•)
X]

(Z)-module F (•), the canonical morphisms ‹D(•)
X]

(Z)⊗
D̃

(•)
X]

(Z)
F (•) → λ∗‹D(•)

X]
(Z)⊗

λ∗D̃
(•)
X]

(Z)

F (•) and ‹D(•)
X]

(Z)“⊗
D̃

(•)
X]

(Z)
F (•) → λ∗‹D(•)

X]
(Z)“⊗

λ∗D̃
(•)
X]

(Z)
F (•) are isomorphisms of LM−−→Q(‹D(•)

X]
(Z)).

Proof. We have the factorization λ∗‹D(•)
X]

(Z) ⊗
λ∗D̃(•)

X]
(D)
E(•) → λ∗

Å‹D(•)
X]

(Z)⊗D̃(•)
X]

(D)
E(•)

ã
inscribed in

the canonical commutative diagram‹D(•)
X]

(Z)⊗D̃(•)
X]

(D)
E(•) //

��

λ∗‹D(•)
X]

(Z)⊗
λ∗D̃(•)

X]
(D)
E(•)

��ss

λ∗
Å‹D(•)

X]
(Z)⊗D̃(•)

X]
(D)
E(•)

ã
// λ∗
Å
λ∗‹D(•)

X]
(Z)⊗

λ∗D̃(•)
X]

(D)
E(•)

ã
,

(9.1.5.3.1)

and the same in replacing “⊗” by ““⊗”. From this the first assertion follows. For the second assertion we
proceed in the same manner.

Lemma 9.1.5.4. We have the following properties.

(a) The functor (†Z,D)0 factors through

(†Z,D)0 : LM−−→Q,coh(‹D(•)
X]

(D))→ LM−−→Q,coh(‹D(•)
X]

(Z)). (9.1.5.4.1)

(b) For all E(•) ∈ LM−−→Q,coh(‹D(•)
X]

(D)), the canonical morphism ‹D(•)
X]

(Z)⊗D̃(•)
X]

(D)
E(•) → ‹D(•)

X]
(Z)“⊗D̃(•)

X]
(D)
E(•)

is an isomorphism of LM−−→Q,coh(‹D(•)
X]

(Z)).

(c) Suppose that X is affine. For all F (•) ∈ LM−−→Q,coh(‹D(•)
X]

(Z)), the canonical morphism ‹D(•)
X]

(Z)⊗
D̃

(•)
X]

(Z)

F (•) → ‹D(•)
X]

(Z)“⊗
D̃

(•)
X]

(Z)
F (•) is an isomorphism of LM−−→Q,coh(‹D(•)

X]
(Z)).

Proof. It follows from 8.4.5.2 that the statement (a) and (b) are local on X. Hence, we can suppose
X is affine. According to lemma 8.4.5.10, to verify the preservation of coherence, we can suppose that
there exists m0, n0 ∈ N such that E(•) (resp. F (•)) is a ‹D(•+m0)

X]
(Z)-module having a global finite

presentation (resp. a ‹D(•+n0)

X]
(Z)-module having a global finite presentation). Following Lemma 8.4.2.1,

we thus obtain the equalities (up to canonical isomorphisms): E(•) = ‹D(•+m0)

X]
(Z) ⊗D̃(m0)

X]
(Z)
E(m0) and

F (•) = ‹D(•+n0)

X]
(Z)⊗

D̃
(n0)

X]
(Z)

F (n0). We conclude by using the lemma 9.1.5.3 in the case where λ ∈ L(N)

is defined by setting λ(m) = m+m0.

Proposition 9.1.5.5. Suppose that X is affine. Then the functor Γ(X,−) and ‹D(•)
X]

(Z)⊗
D̃

(•)
X]

(Z)
− factor

trough the quasi-inverse equivalences of the categories Γ(X,−) : LM−−→Q,coh(‹D(•)
X]

(Z))→ LM−−→Q,coh(‹D(•)
X]

(Z))

and ‹D(•)
X]

(Z)⊗
D̃

(•)
X]

(Z)
− : LM−−→Q,coh(‹D(•)

X]
(Z))→ LM−−→Q,coh(‹D(•)

X]
(Z)).

Proof. One proceeds in an analogous manner as in the proof of the lemma 9.1.5.4: by using 8.4.5.10 and
9.1.5.3 we reduce to the theorem of type A of the remark 8.4.2.2.b.
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9.1.5.6. We have the canonical commutative (up to canonical isomorphism) diagram

LM−−→Q,coh(‹D(•)
X]

(D))
∼= //

(†Z,D)0

��

LD−→
0
Q,coh(‹D(•)

X]
(D))

∼=

H0
//

(†Z,D)��

LM−−→Q,coh(‹D(•)
X]

(Z))

(†Z,D)0

��
LM−−→Q,coh(‹D(•)

X]
(Z))

∼= //

forgD,Z��

LD−→
0
Q,coh(‹D(•)

X]
(Z))

∼=

H0
//

forgD,Z��

LM−−→Q,coh(‹D(•)
X]

(Z))

forgD,Z��
LM−−→Q(‹D(•)

X]
(D))

∼= // LD−→
0
Q(‹D(•)

X]
(D))

∼=

H0
// LM−−→Q(‹D(•)

X]
(D))

(9.1.5.6.1)

whose horizontal functors are the equivalence of categories of Lemma 8.4.5.5 or of Lemma 8.1.5.10. As
the middle forgetful functor forgD,Z is fully faithful (see 9.1.2.3), we deduce that it is the same for
forgD,Z : LM−−→Q,coh(‹D(•)

X]
(Z))→ LM−−→Q(‹D(•)

X]
(D)).

The functor 9.1.1.12.1 is exact and induces the following functor for coherent modules:

(†Z,D) := D†
X]/S]

(†D)Q ⊗D†
X]/S]

(†D)Q
− : Coh(D†

X]/S]
(†D)Q)→ Coh(D†

X]/S]
(†Z)Q). (9.1.5.6.2)

The functors 9.1.5.4.1 and 9.1.5.6.2 are compatible with the equivalence of categories of 8.4.5.6.3 i.e. for
any E(•) ∈ LM−−→Q,coh(‹D(•)

X]/S]
(D)) we have the isomorphism of Coh(D†

X]
(†Z)Q)

(†Z,D) ◦→l
∗
Q(E(•))

∼−→→l
∗
Q ◦ (†Z,D)0(E(•)) (9.1.5.6.3)

where→l
∗
Q is the equivalence of categories of 8.4.5.6.3 of the form→l

∗
Q : LM−−→Q,coh(‹D(•)

X]
(T ))→ Coh(D†

X]
(†T )Q)

in the case where T = Z or T = D.

9.1.6 A coherence stability criterion by localisation outside a divisor

Notation 9.1.6.1. Following 8.4.1.15 in this context whereD(•) = ‹D(•)
X]/S]

(Z), the functor→l
∗
Q : LD−→

−
Q (‹D(•)

X]
(Z))→

D−(D†
X]

(†Z)Q) induces we have the equivalence of categories→l
∗
Q : LD−→

b
Q,coh(‹D(•)

X]
(Z))→ Db

coh(D†
X]

(†Z)Q).
When we would like to clarify the divisor (specially when we consider a quasi-inverse functor), this latter
equivalence of categories will be denoted by→l

∗
Q,Z .

The functors→l
∗
Q commute with the forgetful of the divisor functor, i.e. we have the commutative (up

to canonical isomorphism) square

LD−→
−
Q (‹D(•)

X]
(Z))

→l
∗
Q //

forgD,Z9.1.1.4

��

D−(D†
X]

(†Z)Q)

forgD,Z9.1.1.4

��
LD−→
−
Q (‹D(•)

X]
(D))

→l
∗
Q // D−(D†

X]
(†D)Q),

(9.1.6.1.1)

which justifies why this harmless to write→l
∗
Q instead of→l

∗
Q,Z .

Theorem 9.1.6.2. Let E(•) ∈ LD−→
b
Q,coh(‹D(•)

X]
(D)) and E :=→l

∗
Q,D(E(•)) ∈ Db

coh(D†
X]

(†D)Q). We suppose
that the morphism E → (†Z,D)(E) is an isomorphism of Db(D†

X]
(†D)Q). Then, the canonical morphism

E(•) → (†Z,D)(E(•)) is an isomorphism of LD−→
b
Q,coh(‹D(•)

X]
(D)).

Proof. 0) We reduce to the case where E(•) ∈ LM−−→Q,coh(‹D(•)
X]

(D)).

For any integer n ∈ Z, following the lemma 8.4.5.4, we haveHn(E(•)) ∈ LM−−→Q,coh(‹D(•)
X]

(D)). Moreover,
following the corollary 8.1.5.11, the canonical morphism φ : E(•) → (†Z,D)(E(•)) is an isomorphism in
LD−→

b
Q(‹D(•)

X]
(D)), if and only if, for any integer n ∈ Z, the morphismHn(φ) : Hn(E(•))→ Hn((†Z,D)(E(•)))

is an isomorphism of LM−−→Q(‹D(•)
X]

(D)). Let ψn : (†Z,D)0(Hn(E(•)))→ Hn((†Z,D)(E(•))) be the morphism

of LM−−→Q,coh(‹D(•)
X]

(Z)) induced by adjunction from the morphism Hn(φ).
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a) Let us check that ψn is an isomorphism. Since the functor→l
∗
Q is fully faithful on LM−−→Q,coh(‹D(•)

X]
(Z)),

we reduce to check that→l
∗
Q (ψn) is an isomorphism. Moreover, since the functor→l

∗
Q commutes canonically

to Hn up to canonical isomorphism (see the diagram 8.4.1.10.1), via the isomorphisms 9.1.1.12.2 and
9.1.5.6.3, we get that →l

∗
Q (ψn) is canonically isomorphic to the canonical morphism (†Z,D)(HnE) →

Hn((†Z,D)(E)). Since the functor (†Z,D) : Db
coh(D†

X]
(†D)Q)→ Db

coh(D†
X]

(†Z)Q) is exact, the morphism
(†Z,D)(HnE)→ Hn((†Z,D)(E)) is therefore an isomorphism. Hence we are done.

b) If the theorem holds when E(•) ∈ LM−−→Q,coh(‹D(•)
X]

(D)), then this impies in general context that
the canonical morphism Hn(E(•)) → (†Z,D)0(Hn(E(•))) is an isomorphism. By composing the latter
isomorphism with ψn we get Hn(φ) which is therefore an isomorphism. Hence, we are done.

1) It follows from 8.4.5.2 that the statement (a) and (b) are local on X. Hence, we can suppose X is
affine. According to lemma 8.4.5.10, since this theorem is closed under isomorphism of LM−−→Q,coh(‹D(•)

X]
(D)),

we can suppose that there exists m0 ∈ N such that E(•) is a ‹D(•+m0)

X]
(D)-module having a global finite

presentation, where we set ‹D(•+m0)

X]
(D) := ‹D(•)

X]
(D)|(m0,X). Following Lemma 8.4.2.1, we thus obtain

the equalities (up to canonical isomorphisms): E(•) = ‹D(•+m0)

X]
(D) ⊗D̃(m0)

X]
(D)
E(m0). Put E := Γ(X, E),

F := Γ(X,F), E(•) = Γ(X, E(•)), F (•) := (†Z,D)0(E(•)), F (•) = Γ(X,F (•)). Let us check in this step
1) that the canonical morphism E(•) → F (•) of M(‹D(•+m0)

X]
(D)) is a lim-ind-isogeny, with ‹D(m)

X]
(D) :=

Γ(X, ‹D(m)

X]
(D)) for any m ∈ N. (Recall that from 8.3.1.3.1, this means that the image of the morphism

E(•) → F (•) via the composition of functor M(‹D(•+m0)

X]
(D)) → LM−−→Q(‹D(•+m0)

X]
(D)) → LM−−→Q(‹D(•)

X]
(D))

is an isomorphism.)
a) Let E := lim−→mE

(m) and N (m) the kernel of the morphism canonical E(m) → E. It follows from
the theorem of type A (see the second point of the remark 8.4.2.2) that, for any integer m ∈ N, E(m)

is a ‹D(m+m0)

X]
(D)-module of finite type. By noetherianity of ‹D(m+m0)

X]
(D), the ‹D(m+m0)

X]
(D)-module

N (m) is therefore of finite type. This implies there exists λ(m) ≥ m such that E(m) → E(λ(m)) factors
through E(m)/N (m) → E(λ(m)). We can choose λ : N → N such that λ ∈ L(N). This implies that
E(•) → E(•)/N (•) is a lim-ind-isogeny. Replacing E(•) by E(•)/N (•) if necessary, we can therefore
assume that the transition maps E(m) → E(m+1) are injective. Let E(•)

t be the sub-‹D(•+m0)

X]
(D)-module

of E(•) of p-torsion sections, since E(m)
t is a ‹D(m+m0)

X]
(D)-module of finite type, then we can check that

the morphism E(•) → E(•)/E
(•)
t is an ind-isogeny. Hence, replacing E(•) by E(•)/E

(•)
t if necessary, we

can therefore assume that E(m) is p-torsion free for any m ∈ N.
Put F := lim−→m F

(m) and, for any integer m ≥ 0, let G(m) be the quotient of F (m) by the kernel of
the canonical morphism F (m) → FQ. Hence, the transition maps G(m) → G(m+1) are injective and the
G(m) are p-torsion free ‹D(m+m0)

X]
(Z)-modules of finite type. As above, we see that the canonical arrow

F (•) → G(•) is a lim-ind-isogeny of M(‹D(•+m0)

X]
(Z)) and therefore of M(‹D(•+m0)

X]
(D)). Hence, we reduce

to check that the canonical morphism E(•) → G(•) is a lim-ind-isogeny of M(‹D(•+m0)

X]
(D)).

b) Since the functor Γ(X,−) commutes with filtrant inductive limites and with the functor −⊗D Q,
then it commutes with→l

∗
Q. Moreover, it follows from 9.1.1.12.2 that the canonical morphism→l

∗
Q(E(•))→

→l
∗
Q(F (•)) is an isomorphism of D†

X]
(†D)Q-modules. Hence, the canonical morphism EQ → FQ is an

isomorphism of D†
X]

(†D)Q-modules. Since F (•) → G(•) is a lim-ind-isogeny of M(‹D(•+m0)

X]
(D)) (see

part a), then by applying →l
∗
Q we get that the canonical morphism FQ → GQ is an isomorphism of

D†
X]

(†Z)Q-modules, where G := lim−→mG
(m). By composition, the canonical morphism EQ → GQ is thus

an isomorphism of D†
X]

(†D)Q-modules.
c) The K-spaces E(m)

Q and G(m)
Q are endowed with canonical structure of Banach K-spaces induced

respectively by their structure of ‹D(m+m0)

X]
(D)Q-module of finite type and of ‹D(m+m0)

X]
(Z)Q-module of

finite type. For theses topologies, the canonical morphisms E(m)
Q → G

(m)
Q are continuous morphisms

of Banach K-spaces. Denote by W := lim−→mG
(m)
Q endowed with the inductive limit topology of locally

convex K-space. Denote by im : E
(m)
Q → W the composite of continuous maps E(m)

Q → G
(m)
Q → W .

Moreover, following the part b), the canonical morphism EQ → W is an isomorphism of D†
X]

(†D)Q-
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modules and is in particular bijective. Since E(m)
Q → EQ is injective, then so is im. We have also

the equality of sets W = ∪m∈Nim(E
(m)
Q ). Following [Sch02, 8.9], for any integer m, since E(m)

Q and

G
(m)
Q are both Banach K-spaces and since the canonical morphism αm : G

(m)
Q → W is continuous, this

yields there exists λ(m) ≥ m and a unique continuous morphism β(m) : G
(m)
Q → E

(λ(m))
Q such that

αm = iλ(m) ◦ β(m). We choose such a λ(m) ≥ m as small as possible. Since iλ(m) is injective, since iλ(m)

and αm are both ‹D(m+m0)

X]
(D)Q-linear, then so is β(m). Moreover, by unicity of such factorisations, the

morphisms β(m) are compatible with transition maps. Hence, we get the morphism of ‹D(•+m0)

X]
(D)Q-

modules β(•) : G
(•)
Q → λ∗E

(•)
Q .

Since the family (pnG(m))n∈N forms a basis of neighborhood of 0, since E(λ(m)) is an open of E(λ(m))
Q ,

(recall that E(λ(m)) and G(m) are both p-torsion free), the fact that β(m) is continuous implies then there
exists χ(m) ∈ N large enough such that β(m)(pχ(m)G(m)) ⊂ E(λ(m)) (or we can invoke the ‹D(•+m0)

X]
(D)Q-

linearity of β(m) and the type finiteness of G(m)). We can choose the χ(m) such that the induced map
χ : N → N is increasing. Denote by γ(•) the composition of β(•) : G

(•)
Q → λ∗E

(•)
Q with the canonical

morphism λ∗E
(•)
Q → χ∗λ∗E

(•)
Q . From what we have just seen, γ(•) factors through (in a unique way) the

morphism of the form g(•) : G(•) → χ∗λ∗E(•). Denote by f (•) : E(•) → G(•) the canonical morphism.
Since for any m ∈ N, the canonical morphisms E(m) → W and G(m) → W are injective, we can check
that g(•) ◦ f (•) and χ∗λ∗(f (•)) ◦ g(•) are the canonical morphisms. Hence, we are done.

2) We deduce from the step 1) that the canonical morphism‹D(•+m0)

X]
(D)“⊗

D̃
(•+m0)

X]
(D)

E(•) → ‹D(•+m0)

X]
(D)“⊗

D̃
(•+m0)

X]
(D)

F (•)

is a lim-ind-isogeny of M(‹D(•+m0)

X]
(D)).

3) By quasi-coherence of both sheaves ‹D(m)

X]
i

(D) and ‹D(m)

X]
i

(Z), we get that the canonical morphism‹D(m)

X]
i

(D) ⊗
D̃

(m)

Xi
(D)

‹D(m)
Xi

(Z) → ‹D(m)

X]
i

(Z) is an isomorphism. This implies that the canonical morphism‹D(m)

X]
i

(D) ⊗
D̃

(m)

Xi
(D)

F
(m)
i → ‹D(m)

X]
i

(Z) ⊗
D̃

(m)

Xi
(Z)

F
(m)
i is an isomorphism. Passing to the projective limit,

this implies the canonical morphism‹D(•+m0)

X]
(D)“⊗

D̃
(•+m0)

X]
(D)

F (•) → ‹D(•+m0)

X]
(Z)“⊗

D̃
(•+m0)

X]
(Z)
F (•)

is an isomorphism of M(‹D(•+m0)

X]
(D)).

4) Il follows from the steps 2) and 3) that the canonical morphism‹D(•+m0)

X]
(D)“⊗

D̃
(•+m0)

X]
(D)

E(•) → ‹D(•+m0)

X]
(Z)“⊗

D̃
(•+m0)

X]
(Z)
F (•)

is a lim-ind-isogeny of M(‹D(•+m0)

X]
(D)). Hence, it follows from Lemma 9.1.5.4.b (and also from the

Lemma 9.1.5.3) that the top morphism of the canonical commutative diagram:‹D(•+m0)

X]
(D)⊗

D̃
(•+m0)

X]
(D)

E(•) //

��

‹D(•+m0)

X]
(Z)⊗

D̃
(•+m0)

X]
(Z)

F (•)

��
E(•) // F (•)

is a lim-ind-isogeny of M(‹D(•+m0)

X]
(D)). Moreover, we deduce from the theorem of type A of the remark

8.4.2.2.b that the vertical morphisms are isomorphisms of M(‹D(•+m0)

X]
(D)). Hence we are done.

Corollary 9.1.6.3. Let E ′(•) ∈ LD−→
b
Q,coh(‹D(•)

X]
(Z)) and E ′ := →l

∗
Q(E ′(•)) ∈ Db

coh(D†
X]

(†Z)Q). If E ′ ∈
Db

coh(D†
X]

(†D)Q), then E ′(•) ∈ LD−→
b
Q,coh(‹D(•)

X]
(D)).

Proof. Assume E ′ ∈ Db
coh(D†

X]
(†D)Q). Then it follows from Theorem 8.4.1.15 there exists E(•) ∈

LD−→
b
Q,coh(‹D(•)

X]
(D)) and a D†

X]
(†D)Q-linear isomorphism of the form E ′ ∼−→ →l

∗
Q(E(•)). Moreover, since
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the canonical morphism E ′ → (†Z,D)(E ′) is a morphism of Db
coh(D†

X]
(†Z)Q) which an isomorphism out-

side Z, this yields following 8.7.6.11 that it is an isomorphism. This implies that the canonical morphism
E ′ → (†Z,D)(E ′) of Db(D†

X]
(†D)Q) is an isomorphism. By applying the theorem 9.1.6.2 to E(•), this im-

plies that the canonical morphism E(•) → (†Z,D)(E(•)) is therefore an isomorphism in LD−→
b
Q,coh(‹D(•)

X]
(D)).

Since (†Z,D)(E(•)), E ′(•) ∈ LD−→
b
Q,coh(‹D(•)

X]
(Z)) and since

→l
∗
Q ◦ (†Z,D)(E(•))

9.1.1.12.2
∼−→ (†Z,D) ◦→l

∗
Q(E(•))

∼−→ (†Z,D)(E ′) ∼−→ E ′ ∼−→→l
∗
QE
′(•),

by fully faithfulness of the functor→l
∗
Q on LD−→

b
Q,coh(‹D(•)

X]
(Z)) we get that (†Z,D)(E(•))

∼−→ E ′(•).

Corollary 9.1.6.4. The equivalence of categories→l
∗
Q,Z factors through the equivalence of categories

→l
∗
Q : LD−→

b
Q,coh(

l“D(•)
X]

(D)) ∩ LD−→
b
Q,coh(

l“D(•)
X]

(Z)) ∼= Db
coh(

l

D†
X]

(†D)Q) ∩Db
coh(

l

D†
X]

(†Z)Q). (9.1.6.4.1)

Proof. This is a straightforward consequence of 9.1.6.3 and of the full faithfulness of the functor→l
∗
Q on

LD−→
b
Q,coh(‹D(•)

X]
(D)) (see Theorem 8.4.1.15).

Proposition 9.1.6.5. Suppose D ⊂ Z ⊂ Z ′.

(a) Let E(•) ∈ LD−→
b
Q,coh(‹D(•)

X]
(D)) ∩ LD−→

b
Q,coh(‹D(•)

X]
(Z ′)). Then E(•) ∈ LD−→

b
Q,coh(‹D(•)

X]
(Z)).

(b) Let E ∈ Db
coh(D†

X]
(†D)Q) ∩Db

coh(D†
X]

(†Z ′)Q). Then E ∈ Db
coh(D†

X]
(†Z)Q).

Proof. Using 9.1.2.3.1, we check that the canonical morphism (†Z, D)◦forgD,Z(forgZ,Z′(E(•)))→ forgZ,Z′(E(•))

of LD−→
b
Q,qc(‹D(•)

X]
(Z)) is an isomorphism. Hence, we get the first assertion. Using 9.1.6.4, we get (b) from

(a).

In order to define the bifunctor 9.1.6.8.1, we need to introduce the following notation.

Notation 9.1.6.6. Let X]1 → S] and X]2 → S] be two log smooth morphisms of log formal schemes. We
suppose the underlying formal schemes X1 and X2 are p-torsion free, noetherian of finite Krull dimension.
For i = 1, 2, for Ti = Di, choose (→l

∗
Q,T1

)−1 : Db
coh(D†

X]
i

(†Ti)Q)→ LD−→
b
Q,coh(‹D(•)

X]
i

(Ti)) a functor quasi-inverse

functor of the equivalence of categories→l
∗
Q,T1

(see notation 9.1.6.1).

Let D1 ⊂ Z1 be two divisors of X1, D2 ⊂ Z2 be two divisors of X2. Let φ(•) : LD−→
b
Q,qc(“D(•)

X]1
(Z1)) →

LD−→
b
Q,qc(“D(•)

X]
(Z)) be a functor and

ψ(•) : LD−→
b
Q,qc(“D(•)

X]1
(Z1))× LD−→

b
Q,qc(“D(•)

X]2
(Z2))→ LD−→

b
Q,qc(“D(•)

X]
(Z))

be a bifunctor. This yields a functor CohZ1
(φ(•)) : Db

coh(D†
X]

(†Z1)Q) → Db(D†
X]

(†Z)Q) by setting
CohZ1

(φ(•)) :=→l
∗
Q ◦ φ

(•) ◦ (→l
∗
Q,Z1

)−1. In the same way, we obtain the bifunctor

CohZ1,Z2
(ψ(•)) : Db

coh(D†
X]

(†Z1)Q)×Db
coh(D†

Y](
†Z2)Q)→ Db(D†

X]
(†Z)Q)

by setting CohZ1,Z2(ψ(•)) :=→l
∗
Q ◦ ψ

(•) ◦ ((→l
∗
Q,Z1

)−1 × (→l
∗
Q,Z2

)−1). Beware that these functors is only well
defined up to non-canonical isomorphism. Hence, it is more convenient to work with categories of the
form LD−→

b
Q,coh(“D(•)

X]
(Z)) than with Db

coh(D†
X]

(†Z)Q).

Remark 9.1.6.7. We keep notation 9.1.6.6. It follows from 9.1.6.4.1 that the functors CohZ1(φ(•)) and
CohD1

(φ(•)) are (non-canonically) isomorphic on Db
coh(D†

X]1
(†D1)Q) ∩ Db

coh(D†
X]1

(†Z1)Q). Similarly, the

bifunctors CohZ1,Z2
(ψ(•)) and CohD1,D2

(ψ(•)) are isomorphic on (Db
coh(D†

X]1
(†D1)Q)∩Db

coh(D†
X]1

(†Z1)Q))×

(Db
coh(D†

X]2
(†D2)Q) ∩Db

coh(D†
X]2

(†Z2)Q)).

560



Notation 9.1.6.8. Let E(•) ∈ LD−→
b
Q,coh(

l“D(•)
X]/S]

(Z)), M(•) ∈ LD−→
b
Q,coh(∗“D(•)

X]/S]
(Z)). Let us denote by

E :=→l
∗
Q(E(•)) ∈ Db

coh(
lD†

X]/S]
(†Z)Q) andM :=→l

∗
Q(M(•)) ∈ Db

coh(∗D†
X]/S]

(†Z)Q). With the notations of

9.1.6.6, we get the bifunctor −
L
⊗†OX(†Z)Q

− := CohT,(−“⊗L
B̃(•)

X
(Z)
−) of the form:

−
L
⊗†OX(†Z)Q

− : Db
coh(∗D†

X]/S]
(†Z)Q)×Db

coh(
l

D†
X]/S]

(†Z)Q)→ Db(∗D†
X]/S]

(†Z)Q). (9.1.6.8.1)

Recall this functor is well defined up to non-canonical isomorphism. Via the equivalence 8.4.1.15, then
we have the (non-canonical) functorial isomorphisms

M
L
⊗†OX(†Z)Q

E ∼−→→l
∗
Q

Å
M(•)“⊗L

B̃(•)
X

(Z)
E(•)

ã
. (9.1.6.8.2)

Proposition 9.1.6.9. Let E ,F ∈ Db
coh(

lD†X(†Z)Q) ∩ Db
coh(

lD†X(†D)Q). We have the canonical isomor-
phism

E
L
⊗†OX(†D)Q

F ∼−→ E
L
⊗†OX(†Z)Q

F . (9.1.6.9.1)

Proof. Following 9.1.6.4.1, there exist E(•), F (•) ∈ LD−→
b
Q,coh(

l“D(•)
X (D)) ∩ LD−→

b
Q,coh(

l“D(•)
X (Z)) such that

E ∼−→→l
∗
Q(E(•)), F ∼−→→l

∗
Q(F (•)). Then, this is a consequence of 9.1.2.8.1.

Remark 9.1.6.10. (a) For any divisors D ⊂ Z, following 9.1.1.12.2, we have the isomorphism of functors
CohD((†Z ′, D))

∼−→ (†Z ′, D).

(b) Let Z and D ⊂ D′ be some divisors of X. Suppose X is regular. Following 9.1.3.3, the functors
(†Z) and (†Z ∪ D) are canonically isomorphic on LD−→

b
Q,qc(∗“D(•)

X]
(D)) and similarly replacing D by

D′. We obtain the functor (†Z ∪D,D) : Db
coh(D†

X]
(†D)Q) → Db

coh(D†
X]

(†Z ∪D)Q) is isomorphic to
CohD((†Z)), and similarly replacing D by D′. With the remark 9.1.6.7, this yields the functors
(†Z∪D,D) and (†Z∪D′, D′) are (canonically) isomorphic over Db

coh(D†
X]

(†D)Q)∩Db
coh(D†

X]
(†D′)Q).

Hence, it is harmless to remove D in the notation.

9.2 Extraordinary inverse image, direct image, duality, base change,
exterior tensor product

9.2.1 Extraordinary inverse images
Let

X′]
f //

p
X′]

��

X]

p
X]

��
S′]

φ // S],

(9.2.1.0.1)

be a commutative diagram of very nice (see definition 3.3.1.10.(b)) fine V-log formal schemes, where
pX] and pX′] are log smooth morphisms. We suppose S, S], S′, S′], X and X ′ are regular (to have
an idea about theses hypotheses, see [GR, 12.5.19]) and noetherian. Let Z and Z ′ be some divisors of
respectively X and X ′ such that f(X ′ \ Z ′) ⊂ X \ Z.

We suppose the underlying formal schemes of S, S′, X and X′ are p-torsion free. Let a := πhOS

for some integer h. By flatness of the structural morphism S → Spf V we get from 1.2.4.2.a that a has
a canonical m-PD-structure if hpm ≥ e/(p − 1), where e is the absolute ramification of V. Choosing h
large enough, we can endowing S and S′ with these canonical m-PD-structures, the bottom arrow φ
can be viewed as an m-PD-morphism.

We define in this section the extraordinary inverse image by f with overconvergent singularities along
Z and Z ′. We fix λ0 ∈ L(N). We set B̃(•)

X (Z) := λ∗0B
(•)
X (Z) and ‹D(•)

X]/S]
(Z) := B̃(•)

X (Z)“⊗O(•)
X

“D(•)
X]/S]

.

Finally, we set D(m)

X]
i
/S]
i

(Z) := V/πi+1 ⊗V “D(m)

X]/S]
(Z) = B(m)

Xi
(Z) ⊗OXi D

(m)

X]
i
/S]
i

and ‹D(m)

X]
i
/S]
i

(Z) :=

B̃(m)
Xi

(Z)⊗OXi D
(m)

X]
i
/S]
i

for any m ∈ N. We use similar notation by adding some primes, e.g. B̃(m)
X′ (Z ′) :=
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B(λ0(m))
X′ (Z ′). Recall also, following 7.3.2.1, ‹D(m)

X]/S]
(Z) and ‹D(m)

X′]/S′]
(Z) satisfy the conditions of 7.3.2,

i.e. in particular ‹D(•)
X]/S]

(Z) is O(•)
X -quasi-coherent in the sense of 8.5.1.6 and ‹D(m)

X]•/S
′]
•

(Z) is O(•)
X•

-quasi-
coherent in the sense of 8.5.1.7.

We denote by X̃(•) := (X], B̃(•)
X (Z)) and by X̃′](•) := (X′], B̃(•)

X′ (Z ′)) the associated N-ringed V-log
formal schemes (see 8.5.5.1). With notation 8.5.5.2, let f̃ (•) : X̃′(•)/S′] → X̃(•)/S] be the morphism of
relative N-ringed V-log formal schemes induced by the diagram 9.2.1.0.1 and by f∗B̃(•)

X (Z) → B̃(•)
X′ (Z ′)

(see definition 8.5.5.1). When φ : S′] → S] in understood, by abuse of notation, we also denote by f̃ (•)

the induced morphism X̃′(•)/S′] → X̃(•)/S] of N-ringed V-log formal schemes.
We denote by ‹X(•)

• := (X]
•, B̃(•)

X•
(Z)) and ‹X ′(•)• := (X]

•, B̃(•)
X•

(Z)) the induced ringed topoi. Let
f̃

(•)
• : ‹X ′(•)• /S′]• → X̃(•)/S]• be the induced morphism of relative ringed topoi.

Following 8.7.4.2.(b), X̃(•)/S] and X̃′(•)/S] are strongly quasi-flat (see definition 8.5.5.3). In fact,
using the proof of 8.7.4.2.(b) we can check that f̃ (•) is strongly quasi-flat (more precisely, in the definition
8.5.5.3, we can choose S] = Spf V). In particular, we can apply 8.5.4.5 and 8.5.4.15 in this context where
D(•) = ‹D(•)

X]/S]
, or also similarly D′(•) = ‹D(•)

X′]/S′]
.

Let U := X]∗ be the open of X whereMX] is trivial and jU : U ↪→ X] be the canonical open immersion.
Let U′ := X′]∗ be the open of X′ whereMX′] is trivial and jU′ : U′ ↪→ X′] be the canonical open immersion.

9.2.1.1 (Decomposition into a regular exact closed immersion and a log smooth morphism). Suppose
the morphism φ of the diagram 9.2.1.0.1 is the identity. Etale locally on X, there exists an exact
closed immersion X′] ↪→ X′′] and a log etale morphism X′′] → X′] ×S] X

] whose composite map gives
X′] ↪→ X′] ×S] X

], the graph of f (see 3.3.3.2). Since X′′] → S] is log flat and since S] is very nice,
then so is X′′] is very nice. Since X ′′] → S] is log smooth, since S] is regular, then it follows from
[Ogu18, IV.3.5.3] (or [GR, 12.5.28]) that X ′′] is regular. Hence, it follows from [GR, 12.5.14] that the
underlying morphism of schemes of the exact closed immersion X ′] ↪→ X ′′] is a regular closed immersion.
Hence, following [Gro67, 19.1.2], the underlying scheme of X ′′] is regular. Denoting by g the composite
morphism X′′] → X′]×S] X

] → X], since f−1(Z) is a divisor of X ′′ then Z ′′ := g−1(Z) is a divisor of X ′′.
In other words, we can decompose f by a regular exact closed immersion and a log smooth morphism,
both morphisms satisfying the hypotheses of 9.2.1.

Following [Liu02, 6.3.15], we get a similar decomposition X ′]i ↪→ X ′′]i → X ′]i ×S]
i
X]
i → X]

i such that

the underlying morphism of schemes of X ′]i ↪→ X ′′]i is a regular closed immersion.

9.2.1.2 (Finite tor-dimension). It follows from [Sta22, 066P], that since X is regular, then f−1OY → OX
has finite tor dimension, i.e. the functor Lf∗ = OX′ ⊗L

f−1OX f
−1− from the category of OX -modules to

that of OX′-modules has bounded cohomological dimension (see definition 4.6.1.4). Since X is noetherian
and is flat over Spf V, since X is regular then so is X and f−1OX → OX′ has finite tor dimension. Since
the functor Lf∗ = OX′ ⊗L

f−1OX
f−1− has finite cohomological dimension, then following 7.5.5.1 so is the

functor f̃∗• = O(•)
X′•
⊗
f−1O(•)

X•
f−1−.

9.2.1.3. We have the functors

Lf̃ (•)∗
alg := B̃(•)

X′ (Z ′)⊗L
f−1B̃(•)

X
(Z)

f−1(−) : D−(B̃(•)
X (Z))→ D−(B̃(•)

X′ (Z ′)), (9.2.1.3.1)

Lf̃ (•)∗
• = B̃(•)

X′•
(Z ′)⊗L

f−1B̃(•)
X•

(Z)
f−1(−) : D−(B̃(•)

X•
(Z))→ D−(B̃(•)

X′•
(Z ′)). (9.2.1.3.2)

Let F (•)
• ∈ D−(B̃(•)

X•
(Z)). It follows from 7.1.3.6.1 that we have the isomorphism:(

Lf̃ (•)∗
• (F (•)

• )
)(m)

i

∼−→ Lf̃ (m)∗
i (F (m)

i ). (9.2.1.3.3)

Since B̃(•)
X′
i
(Z ′)⊗L

B̃(•)
X′
i+1

(Z′)
Lf̃ (•)∗

i+1 (F (•)
i+1)

∼−→ Lf̃ (•)∗
i (B̃(•)

Xi
(Z)⊗L

B̃(•)
Xi+1

(Z)
F (•)
i+1), then it follows from 7.5.4.4

that the bottom functor of 9.2.1.3.1 preserves the quasi-coherence (in the sense of 8.5.1.7), i.e. induces
the functor

Lf̃ (•)∗
• : D−qc(B̃(•)

X•
(Z))→ D−qc(B̃(•)

X′•
(Z ′)). (9.2.1.3.4)

562



Since B̃(•)
X•

(Z) → ‹D(•)
X]•/S

]
•
(Z) is flat, then a K-flat complex of left ‹D(•)

X]•/S
]
•
(Z)-modules is a K-flat

complex of B̃(•)
X•

(Z)-modules. Hence, we get the functor Lf̃ (•)∗
• : D−qc(l‹D(•)

X]•/S
]
•
(Z))→ D−qc(l‹D(•)

X′]• /S
′]
•

(Z ′))

making commutative the diagram:

D−qc(l‹D(•)
X]•/S

]
•
(Z))

��

Lf̃(•)∗
• // D−qc(l‹D(•)

X′]• /S
′]
•

(Z ′))

��
D−qc(B̃(•)

X•
(Z))

Lf̃(•)∗
• // D−qc(B̃(•)

X′•
(Z ′))

(9.2.1.3.5)

where the vertical functors are the forgetful ones.

Notation 9.2.1.4. We deduce by functoriality from 7.5.5.2 that we get a structure of (‹D(•)
X′]• /S

′]
•

(Z ′), f−1‹D(•)
X]•/S

]
•
(Z))-

bimodule on ‹D(•)
X′]• /S

′]
• →X

]
•/S

]
•
(Z ′, Z) := f̃

(•)∗
• ‹D(•)

X]•/S
]
•
(Z) = B̃(•)

X′•
(Z ′) ⊗

f−1B̃(•)
X•

(Z)
f−1‹D(•)

X]•/S
]
•
(Z). When

S′] → S] is the identity, we may simply write ‹D(•)
X′]• →X

]
•/S
′]
•

(Z ′, Z) and when moreover there is no doubt

about S] we write ‹D(•)
X′]• →X

]
•
(Z ′, Z). By functoriality from 7.5.5.2 and 7.5.4.6, with notation 9.1.1.6, we

get a structure of (f−1‹D(•)
X]•/S

]
•
(Z), ‹D(•)

X′]• /S
′]
•

(Z ′))-bimodule on‹D(•)
X]•/S

]
•←X

′]
• /S

′]
•

(Z,Z ′) := ω̃
(•)
X′]• /S

′]
•

(Z ′)⊗B̃(•)
X′•

(Z′)
f̃

(•)∗
•r

Å‹D(•)
X]•/S

]
•
(Z)⊗B̃(•)

X•
(Z)

ω̃
(•)
X]•/S

]
•
(Z)−1

ã
,

where the index “r” means that we have chosen the right (i.e. the twisted) structure of left ‹D(•)
X]•/S

]
•
(Z)-

module on ‹D(•)
X]•/S

]
•
(Z) ⊗B̃(•)

X•
(Z)

ω̃
(•)
X]•/S

]
•
(Z)−1 to compute the structure of left ‹D(•)

X′]• /S
′]
•

(Z ′)-module via

the functor f̃ (•)∗
• .

When S′] → S] is the identity, we can simply write ‹D(•)
X]•←X

′]
• /S

′]
•

(Z,Z ′) and when moreover there is

no doubt about S] we write ‹D(•)
X]•←X

′]
•

(Z,Z ′).

We have the isomorphism of left (f−1‹D(•)
X]•/S

]
•
(Z), ‹D(•)

X′]• /S
′]
•

(Z ′))-bimodules

f̃
(•)∗
•r

Å‹D(•)
X]•/S

]
•
(Z)⊗B̃(•)

X•
(Z)

ω̃
(•)
X]•/S

]
•
(Z)−1

ã
∼−→

f̃
(•)∗
• (4.2.5.6.3)

f̃
(•)∗
•l

Å‹D(•)
X]•/S

]
•
(Z)⊗B̃(•)

X•
(Z)

ω̃
(•)
X]•/S

]
•
(Z)−1

ã
,

where the index “l” (resp. “r ”) means that we have chosen the left (resp. right) structure to compute
f̃

(•)∗
• . By tensoring this latter isomorphism with ω̃

(•)
X′]• /S

′]
•

(Z ′) ⊗B̃(•)
X′•

(Z′)
−, we get the isomorphism of

(f−1‹D(•)
X]•/S

]
•
(Z), ‹D(•)

X′]• /S
′]
•

(Z ′))-bimodules‹D(•)
X]•/S

]
•←X

′]
• /S

′]
•

(Z,Z ′)
∼−→ ω̃

(•)
X′]• /S

′]
•

(Z ′)⊗B̃(•)
X′•

(Z′)
‹D(•)
X′]• /S

′]
• →X

]
•/S

]
•
(Z ′, Z)⊗

f−1B̃(•)
X•

(Z)
f−1ω̃

(•)
X]•/S

]
•
(Z)−1.

(9.2.1.4.1)

Definition 9.2.1.5. We keep notation 9.2.1.4. Set df := δX′]/S′] − δX]/S] ◦ f , δX′]/S′] , δX]/S] are
respectively the rank (as a locally constant function on X ′ or X respectively) of the locally free modules
ΩX′]/S′] and ΩX]/S] .

(a) The (left version of the) extraordinary inverse image functor by f̃ (•)
• is the functor f̃ (•)!

• : D(l‹D(•)
X]•/S

]
•
(Z))→

D(l‹D(•)
X′]• /S

′]
•

(Z ′)) which is defined by setting

f̃
(•)!
• (F (•)

• ) := ‹D(•)
X′]• /S

′]
• →X

]
•/S

]
•
(Z ′, Z)⊗L

f−1
• D̃

(•)

X
]
•/S

]
•

(Z)
f−1
• F

(•)
• [df ],

where F (•)
• ∈ D(‹D(•)

X]•/S
]
•
(Z)).
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(b) The (right version of the) extraordinary inverse image functor by f̃ (•) is the functor f̃ (•)!
• : D(r‹D(•)

X]•/S
]
•
(Z))→

D(r‹D(•)
X′]• /S

′]
•

(Z ′)) which is defined by setting

f̃
(•)!
• (M•) := f−1

• M• ⊗L
f−1
• D̃

(•)

X
]
•/S

]
•

(Z)
‹D(•)
X]•/S

]
•←X

′]
• /S

′]
•

(Z,Z ′) [df ],

whereM• ∈ D(r‹D(•)
X]•/S

]
•
(Z)).

(c) For any ∗ ∈ {r, l}, the extraordinary inverse image functor f̃ (•)! : D(∗‹D(•)
X]/S]

(Z))→ D(∗‹D(•)
X′]/S′]

(Z ′))

by f̃ is defined by setting

f̃ (•)!(F (•)) := R←lX′(N),∗ ◦ f̃
(•)!
• ◦ L←l

∗
X(N)(F (•))

where F (•) ∈ D(∗‹D(•)
X]/S]

(Z)).

9.2.1.6 (Left to right). For any M• ∈ D(r‹D(•)
X]•/S

]
•
(Z)), by copying the proof of 5.1.1.5.1 (replace the

use of 5.1.1.2.1 by that of 9.2.1.4.1), we get the canonical isomorphism:

f̃
(•)!
• (M• ⊗B̃(•)

X•
(Z)

ω̃
(•)
X]•/S

]
•
(Z)−1)

∼−→ f̃
(•)!
• (M•)⊗B̃(•)

X′•
(Z′)

ω̃
(•)
X′]• /S

′]
•

(Z ′)−1. (9.2.1.6.1)

For any E• ∈ D(l‹D(•)
X]•/S

]
•
(Z)), this yields the isomorphism

f̃
(•)!
• (E• ⊗B̃(•)

X•
(Z)

ω̃
(•)
X]•/S

]
•
(Z))

∼−→ f̃
(•)!
• (E•)⊗B̃(•)

X′•
(Z′)

ω̃
(•)
X′]• /S

′]
•

(Z ′). (9.2.1.6.2)

Hence, for any E ∈ D−(l‹D(•)
X]/S]

(Z)) we get the isomorphisms

f̃ (•)!(E ⊗BX
ω̃

(•)
X]/S]

(Z)
∼−→

7.5.4.13.1
R←lX′(N),∗ ◦ f̃

(•)!
• (L←l

∗
X(N)(E)⊗B̃(•)

X•
(Z)

ω̃
(•)
X]•/S

]
•
(Z))

∼−→
9.2.1.6.2

R←lX′(N),∗(f̃
(•)!
• ◦ L←l

∗
X(N)(E)⊗B̃(•)

X′•
(Z′)

ω̃
(•)
X′]• /S

′]
•

(Z ′))
∼−→

7.5.4.13.2
R←lX′(N),∗ ◦ f̃

(•)!
• ◦ L←l

∗
X(N)(E)⊗BX′ ω̃

(•)
X′]/S′]

(Z ′)

= f̃ (•)!(E)⊗BX′ ω̃
(•)
X′]/S′]

(Z ′). (9.2.1.6.3)

Notation 9.2.1.7. We have a structure of (‹D(•)
X′]/S′]

(Z ′), f−1‹D(•)
X]/S]

(Z))-bimodule on‹D(•)
X′]/S′]→X]/S]

(Z ′, Z) :=←lX′(N),∗
‹D(•)
X′]• /S

′]
• →X

]
•/S

]
•
(Z ′, Z)

∼−→ R←lX′(N),∗
‹D(•)
X′]• /S

′]
• →X

]
•/S

]
•
(Z ′, Z).

We get a structure of (f−1‹D(•)
X]/S]

(Z), ‹D(•)
X′]/S′]

(Z ′))-bimodule on‹D(•)
X]/S]←X′]/S′]

(Z,Z ′) :=←lX′(N),∗
‹D(•)
X]•/S

]
•←X

′]
• /S

′]
•

(Z,Z ′)
∼−→ R←lX′(N),∗

‹D(•)
X]•/S

]
•←X

′]
• /S

′]
•

(Z,Z ′).

Proposition 9.2.1.8. We have the following properties.

(a) For any F (•) ∈ D(l‹D(•)
X]/S]

(Z)), we have the canonical morphism

f̃
(•)!
alg (F (•)) := ‹D(•)

X′]/S′]→X]/S]
(Z ′, Z)⊗L

f−1D̃(•)
X]/S]

f−1F (•) [df ]→ f̃ (•)!(F (•)). (9.2.1.8.1)

(b) For any F (•) ∈ D(r‹D(•)
X]/S]

(Z)), we have the canonical morphism

f̃
(•)!
alg (F (•)) := f−1F (•) ⊗L

f−1D̃(•)
X]/S]

‹D(•)
X]/S]←X′]/S′]

(Z,Z ′) [df ]→ f̃ (•)!(F (•)). (9.2.1.8.2)
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(c) For any ∗ ∈ {r, l}, if F (•) ∈ Db
coh(∗‹D(•)

X]/S]
(Z)), then the morphism 9.2.1.8.1 or 9.2.1.8.2 is an

isomorphism.

Proof. Let us construct 9.2.1.8.1. Denoting by G the left term of 9.2.1.8.1, we have the adjoint morphism
G → R←lX′(N),∗ ◦ L←l

∗
X′(N)(G). Since L←l

∗
X′(N)(G) is isomorphic to f̃ (•)!

• (L←l
∗
X(N)F (•)), we are done. Similarly, we

construct 9.2.1.8.2. Finally, to check the last statement, we reduce to the case where F (•) = ‹D(•)
X]/S]

(Z),
which is obvious.

Proposition 9.2.1.9. For any F (•) ∈ D−qc(∗‹D(•)
X]/S]

(Z)), we have f̃ (•)!(F (•)) ∈ D−qc(∗‹D(•)
X′]/S′]

(Z ′)). For

any F (•)
• ∈ D−qc(∗‹D(•)

X]•/S
]
•
(Z)), we have f̃ (•)!

• (F (•)
• ) ∈ D−qc(∗‹D(•)

X′]• /S
′]
•

(Z ′)).

Proof. By using the equivalence of categories 8.5.1.10 and the isomorphims 9.2.1.6.2, we reduce to check
that for any F (•)

• ∈ D−qc(l‹D(•)
X]•/S

]
•
(Z)), we have f̃ (•)!

• (F (•)
• ) ∈ D−qc(l‹D(•)

X′]• /S
′]
•

(Z ′)). Since the canonical
morphism

B̃(•)
X′•

(Z ′)⊗L
f−1B̃(•)

X•
(Z)

f−1‹D(•)
X]•/S

]
•
(Z)→ ‹D(•)

X′]• /S
′]
• →X

]
•/S

]
•
(Z ′, Z)

is an isomorphism, then so is the canonical morphism

Lf̃ (•)∗
• (F (•)

• ) = B̃(•)
X′•

(Z ′)⊗L
f−1B̃(•)

X•
(Z)

f−1F (•)
• → ‹D(•)

X′]• /S
′]
• →X

]
•/S

]
•
(Z ′, Z)⊗L

f−1D̃(•)

X
]
•/S

]
•

(Z)
f−1F (•)

• .

(9.2.1.9.1)
Since the functor Lf̃ (•)∗

• induces Lf̃ (•)∗
• : D−qc(B̃(•)

X•
(Z)) → D−qc(B̃(•)

X′•
(Z ′)) (see 9.2.1.3.4), then we are

done.

Lemma 9.2.1.10. Let F (•) ∈ LD−→
−
Q,qc(“D(•)

X]/S]
(Z)). With notation 9.2.1.15.3, the canonical morphism

B̃(•)
X′ (Z ′)“⊗L

f−1B̃(•)
X

(Z)
f−1F (•) → ‹D(•)

X′]/S′]→X]/S]
(Z ′, Z)“⊗L

f−1D̂(•)
X]/S]

(Z)
f−1F (•) = f̃ (•)!(F (•))[−df ]

is an isomorphism.

Proof. This follows from 9.2.1.9.1.

9.2.1.11. It follows from 7.1.3.6.1 that we have the isomorphism for any F (•)
• ∈ D−(∗‹D(•)

X]•/S
]
•
(Z)) :

(
f̃

(•)!
• (F (•)

• )
)(m)

i

∼−→ f̃
(m)!
i (F (m)

i ). (9.2.1.11.1)

By using the equivalences of categories 7.3.3.3, it follows from 9.2.1.9 that for any F (•) ∈ D−qc(l‹D(•)
X]/S]

(Z)),

L←l
∗
X′(N) f̃

(•)!(F (•))
∼−→ f̃

(•)!
• (L←l

∗
X(N)F (•)). Since (L←l

∗
X(N)F (•))i

∼−→ ‹D(•)
X]
i
/S]
i

(Z) ⊗L
D̃(•)

X]/S]
(Z)
F (•) and since

we have the isomorphism
(
L←l
∗
X′(N) f̃

(•)!(F (•))
)
i

∼−→ ‹D(•)
X]
i
/S]
i

(Z)⊗L
D̃(•)

X]/S]
(Z)

f̃ (•)!(F (•)), this yields‹D(•)
X]
i
/S]
i

(Z)⊗L
D̃(•)

X]/S]
(Z)

f̃ (•)!(F (•))
∼−→ f̃

(•)!
i (‹D(•)

X]
i
/S]
i

(Z)⊗L
D̃(•)

X]/S]
(Z)
F (•)), (9.2.1.11.2)

and similarly for right modules.

Notation 9.2.1.12. Let
X′′]

g //

p
X′′]

��

X′]

p
X′]

��
S′′]

φ′ // S′],

(9.2.1.12.1)

be a commutative diagram of nice fine V-log formal schemes where pX′′] is log smooth morphism. We
suppose the underlying formal schemes of S′′, X′ are p-torsion free. We suppose S′′], S′′ are regular and
that S′′ is noetherian. We suppose X ′′ is regular. Let Z ′′ be some divisor of X ′′ such that g(X ′′ \Z ′′) ⊂
X ′\Z ′. We set X̃′′](•) := (X′′], B̃(•)

X′ (Z ′′)). We denote by g̃(•) the induced morphism X̃′′(•)/S′] → X̃′(•)/S]

of N-ringed V-log formal schemes.
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Lemma 9.2.1.13. We keep notation 9.2.1.12.

(a) We have the canonical isomorphism of D(‹D(•)
X′′]• /S′′]•

(Z ′′), (f ◦ g)−1
•
‹D(•)
X]•/S

]
•
(Z)):‹D(•)

X′′]• /S′′]• →X
′]
• /S

′]
•

(Z ′′, Z ′)⊗L
g−1
• D̃

(•)

X
′]
• /S

′]
•

g−1
•
‹D(•)
X′]• /S

′]
• →X

]
•/S

]
•
(Z ′, Z)

∼−→ ‹D(•)
X′′]• /S′′]• →X

]
•/S

]
•
(Z ′′, Z).

(9.2.1.13.1)

(b) We have the canonical isomorphism of D((f ◦ g)−1
•
‹D(•)
X]•/S

]
•
(Z), ‹D(•)

X′′]• /S′′]•
(Z ′′)):

g−1
•
‹D(•)
X]•/S

]
•←X

′]
• /S

′]
•

(Z,Z ′)⊗L
g−1
• D̃

(•)

X
′]
• /S

′]
•

‹D(•)
X′]• /S

′]
• ←X

′′]
• /S′′]•

(Z ′, Z ′′)
∼−→ ‹D(•)

X]•/S
]
•←X

′′]
• /S′′]•

(Z,Z ′′).

(9.2.1.13.2)

Proof. By quasi-flatness of f̃ , it follows from 5.1.1.3 that the morphisms are well defined. a) Let us check
9.2.1.13.1. i) We have the isomorphism of leftD(•)

X′′]• /S′′]•
(Z ′′)-modules ‹D(•)

X′′]• /S′′]• →X
′]
• /S

′]
•

(Z ′′, Z ′)⊗
g−1
• D̃

(•)

X
′]
• /S

′]
•

(Z′)

g−1
•
‹D(•)
X′]• /S

′]
• →X

]
•/S

]
•
(Z ′, Z)

∼−→ g̃
(•)∗
• f̃∗•

‹D(•)
X]•/S

]
•
(Z) and ‹D(•)

X′′]• /S′′]• →X
′]
• /S

′]
•

(Z ′′, Z ′)
∼−→ (f̃ ◦ g̃)∗•

‹D(•)
X]•/S

]
•
(Z).

Hence, it follows from 4.4.5.6 that we get the canonical isomorphism of left D(•)
X′′]• /S′′]•

(Z ′′)-modules‹D(•)
X′′]• /S′′]• →X

′]
• /S

′]
•

(Z ′′, Z ′)⊗
g−1
• D̃

(•)

X
′]
• /S

′]
•

(Z′)
g−1
•
‹D(•)
X′]• /S

′]
• →X

]
•/S

]
•
(Z ′, Z)

∼−→ ‹D(•)
X′′]• /S′′]• →X

]
•/S

]
•
(Z ′′, Z).

We obtain by functoriality the fact that this isomorphism is an isomorphism of (‹D(•)
X′′]• /S′′]•

(Z ′′), (f ◦

g)−1
•
‹D(•)
X]•/S

]
•
(Z))-bimodules.

ii) Moreover, since f̃∗• ‹D(•)
X]•/S

]
•
(Z) is B̃(•)

X′•
(Z ′)-flat then Lg̃(•)∗

•

(
f̃∗• ‹D(•)

X]•/S
]
•
(Z)
)
∼−→ g̃

(•)∗
•

(
f̃∗• ‹D(•)

X]•/S
]
•
(Z)
)
.

Hence, it follows from 9.2.1.9.1 the isomorphism‹D(•)
X′′]• /S′′]• →X

′]
• /S

′]
•

(Z ′′, Z ′)⊗L
g−1
• D̃

(•)

X
′]
• /S

′]
•

(Z′)
f−1
•
‹D(•)
X′]• /S

′]
• →X

]
•/S

]
•
(Z ′, Z)

∼−→ ‹D(•)
X′′]• /S′′]• →X

′]
• /S

′]
•

(Z ′′, Z ′)⊗
g−1
• D̃

(•)

X
′]
• /S

′]
•

(Z′)
g−1
•
‹D(•)
X′]• /S

′]
• →X

]
•/S

]
•
(Z ′, Z).

b) Finally, we get the isomorphism 9.2.1.13.2 from 9.2.1.13.1 by twisting (use 9.2.1.4.1 and 4.3.5.6.1).

Proposition 9.2.1.14. With notation 9.2.1.12, let ∗ ∈ {r, l}.

(a) For any E• ∈ D−qc(∗‹D(•)
X]•/S

]
•
(Z)), we have the canonical isomorphism

g̃
(•)!
• ◦ f̃ (•)!

• (E•)
∼−→ (fif ◦ g)

(•)!
• (E•). (9.2.1.14.1)

(b) For any E ∈ D−qc(∗‹D(•)
X]/S]

(Z)), we have the canonical isomorphism

g̃(•)! ◦ f̃ (•)!(E)
∼−→ (fif ◦ g)(•)!(E). (9.2.1.14.2)

Proof. By using the equivalence of categories 8.5.1.10, we reduce to check the isomorphism 9.2.1.14.1.
This latter one can be checked similarly to 5.1.1.13 by using 9.2.1.13.

9.2.1.15. For any ∗ ∈ {r, l}, similarly to 8.5.4.8.1, the extraordinary inverse image functors f̃ (•)!
• and

f̃ (•)! of 9.2.1.5 send lim-ind-isogenies to lim-ind-isogenies and preserve the quasi-coherence. This yields
the factorizations denoted by:

(f, φ)
(•)!
•Z′,Z : LD−→

−
Q,qc(∗‹D(•)

X]•/S
]
•
(Z))→ LD−→

−
Q,qc(∗‹D(•)

X′]• /S
′]
•

(Z ′)), (9.2.1.15.1)

(f, φ)
(•)!
Z′,Z : LD−→

−
Q,qc(∗‹D(•)

X]/S]
(Z))→ LD−→

−
Q,qc(∗‹D(•)

X′]/S′]
(Z ′)). (9.2.1.15.2)
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They are called the extraordinary inverse image by (f, φ) (or simply f when φ is understood) with
overconvergent singularities along Z and Z ′. Remark that (id, φ)

(•)!
Z′,Z = (†Z ′, Z). When φ = idS] , we

replace idS] by /S] and idS]•
by /S]•

, e.g. f (•)!
•/S]•,Z′,Z

:= (f, idS]•
)
(•)!
•Z′,Z and f (•)!

/S],Z′,Z
:= (f, idS])

(•)!
Z′,Z . To

lighten the notations, when φ is understood, we simply write f instead of (f, φ), e.g. f (•)!
Z′,Z instead of

(f, φ)
(•)!
Z′,Z . We also denote by

L(f, φ)
∗(•)
•Z′,Z := (f, φ)

(•)!
•Z′,Z [−df ] L(f, φ)

∗(•)
Z′,Z := (f, φ)

(•)!
Z′,Z [−df ], (9.2.1.15.3)

or simply Lf∗(•)•Z′,Z and Lf∗(•)Z′,Z ; when f is smooth, we remove L. When Z ′ = f−1(Z), we remove Z ′ in

the notation, e.g. (f, φ)
(•)!
Z := (f, φ)

(•)!
f−1(Z),Z . If moreover Z is empty, we remove Z in the notation.

For any E(•) ∈ LD−→
−
Q,qc(l‹D(•)

X]/S]
(Z)), M(•) ∈ LD−→

−
Q,qc(r‹D(•)

X]/S]
(Z))) we have the isomorphisms of

D−(‹D(•)
X′]/S′]

(Z ′)):

(f, φ)
(•)!
Z′,Z(E(•))

∼−→ ‹D(•)
X′]/S′]→X]/S]

(Z ′, Z)“⊗L
f−1D̃(•)

X]/S]
(Z)
f−1E(•)[dX′/X],

(f, φ)
(•)!
Z′,Z(M(•))

∼−→ M(•)“⊗L
f−1D̃(•)

X]/S]
(Z)
f−1‹D(•)

X]/S]←X′]/S′]
(Z,Z ′)[dX′/X] (9.2.1.15.4)

where the tensor product is defined at 8.5.4.8.3.

9.2.1.16. For any ∗ ∈ {r, l}, the extraordinary inverse image functors f̃ (•)!
alg of 9.2.1.8 send lim-ind-

isogenies to lim-ind-isogenies but beware they do not preserve the quasi-coherence. This yields the
factorizations denoted by:

(f, φ)
(•)!
algZ′,Z : LD−→

−
Q (∗‹D(•)

X]/S]
(Z))→ LD−→

−
Q (∗‹D(•)

X′]/S′]
(Z ′)). (9.2.1.16.1)

We can slightly improve 9.2.1.8.(c) with the following lemma. When φ is understood, we simply write f
instead of (f, φ), etc.

Lemma 9.2.1.17. Let E(•) ∈ LD−→
b
Q,coh(‹D(•)

X]/S]
(Z)). The canonical morphism f

(•)!
algZ′,Z(E(•))→ f

(•)!
Z′,Z(E(•))

is an isomorphism in LD−→Q(‹D(•)
X′]/S′]

(Z ′)).

Proof. By definition, there exist λ ∈ L and an isomorphism LD−→
b
Q(‹D(•)

X]/S]
(Z)) of the form E(•) ∼−→ F (•)

such that F (m) ∈ Db
coh(‹D(λ(m))

X]/S]
(Z)) (plus another condition that we do not need here). We reduce

to check the lemma for F (•) in the place of E(•). Denote by f !λ(•)
algZ′,Z(F (•)) := (f

!(λ(m))
algZ′,Z(F (m)))m∈N ∈

Db(λ∗‹D(•)
X]/S]

(Z)) and f
!λ(•)
Z′,Z (F (•)) := (f

!(λ(m))
Z′,Z (F (m)))m∈N ∈ Db(λ∗‹D(•)

X]/S]
(Z)). Moreover, we have

canonical morphism f
!λ(•)
Z′,Z (F (•))→ λ∗

Ä
f

(•)!
Z′,Z(F (•))

ä
inducing the canonical commutative diagram:

f
(•)!
Z′,Z(F (•)) //

��

f
!λ(•)
Z′,Z (F (•))

��tt
λ∗
Ä
f

(•)!
Z′,Z(F (•))

ä
// λ∗
Ä
f

!λ(•)
Z′,Z (F (•))

ä
.

This yields that f !λ(•)
Z′,Z (F (•)) is canonically isomorphic to f (•)!

Z′,Z(F (•)) in LD−→
b
Q(‹D(•)

X]/S]
(Z)). Similarly,

we get that f !λ(•)
algZ′,Z(F (•)) is canonically isomorphic to f (•)!

algZ′,Z(F (•)) in LD−→
b
Q(‹D(•)

X]/S]
(Z)). Hence, we

reduce to check that the canonical morphism

f
!λ(•)
algZ′,Z(F (•))→ f

!λ(•)
Z′,Z (F (•)) (9.2.1.17.1)

is an isomorphism ofDb(λ∗‹D(•)
X]/S]

(Z)), which is a consequence of the fact that F (m) ∈ Db
coh(‹D(λ(m))

X]/S]
(Z)).
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Proposition 9.2.1.18. Let D and D′ be some divisors of respectively X and X ′ such that f(X ′ \D′) ⊂
X\D, D ⊂ Z, and D′ ⊂ Z ′. Let E(•) ∈ D−qc(‹D(•)

X]/S]
(D)). We have the isomorphism in D−qc(‹D(•)

X′]/S′]
(Z ′))

of the form
(†Z ′, D′) ◦ f (•)!

D′,D(E(•))
∼−→ f

(•)!
Z′,D(E(•))

∼−→ f
(•)!
Z′,Z ◦ (†Z,D)(E(•)).

Proof. This is a consequence of the transitivity of the extraordinary inverse image (see 9.2.1.14).

Proposition 9.2.1.19. The functors 9.2.1.15.1 and 9.2.1.15.2 preserves bounded complexes, i.e. it
induces

f
(•)!
•Z′,Z : LD−→

b
Q,qc(∗‹D(•)

X]•/S
]
•
(Z))→ LD−→

b
Q,qc(∗‹D(•)

X′]• /S
′]
•

(Z ′)), (9.2.1.19.1)

f
(•)!
Z′,Z : LD−→

b
Q,qc(∗‹D(•)

X]/S]
(Z))→ LD−→

b
Q,qc(∗‹D(•)

X′]/S′]
(Z ′)). (9.2.1.19.2)

Proof. Since the functors R←lX′(N),∗ and L←l
∗
X(N) preserve the boundedness, then we reduce to only check

9.2.1.19.1. Let E(•)
• ∈ LD−→

b
Q,qc(∗‹D(•)

X]•/S
]
•
(Z)). We deduce from 9.2.1.18 the isomorphism (†Z ′)◦f (•)!

• (forgZ(E(•)
• ))

∼−→

f
(•)!
•Z′,Z◦(†Z)(forgZ(E(•)

• )). Following 9.1.2.3.1, we have the isomorphism (†Z)(forgZ(E(•)
• ) of LD−→

b
Q,qc(∗‹D(•)

X]/S]
(Z)).

Since the boundedness is preserved by the functors (†Z ′) (see 9.1.1.5 ) and f (•)!
• (see 9.2.1.2 and 9.2.1.9.1),

then we are done.

Notation 9.2.1.20. By passing to the limit on the level, we get the following bimodules.

(a) We get a (D†
X′]/S′]

(†Z ′)Q, f
−1D†

X]/S]
(†Z)Q)-bimodule by setting

D†
X′]/S′]→X]/S]

(†Z ′, Z)Q := lim−→
m

‹D(m)

X′]/S′]→X]/S]
(Z ′, Z)Q.

(b) We get the (f−1D†
X/S]

(†Z)Q, D†X′]/S′](
†Z ′)Q)-bimodule by setting

D†
X]/S]←X′]/S′]

(†Z,Z ′)Q := lim−→
m

‹D(m)

X]/S]←X′]/S′]
(Z,Z ′)Q.

(c) By taking the projective limits and then inductive limits on the level, it follows from 5.1.1.2.1, that
we have the isomorphism:

D†
X]/S]←X′]/S′]

(†Z,Z ′)Q
∼−→ ωX′]/S′] ⊗OX′ D

†
X′]/S′]→X]/S]

(†Z ′, Z)Q ⊗f−1OX
f−1ω−1

X]/S]
.

(9.2.1.20.1)

Notation 9.2.1.21 (Extraordinary inverse image). Let ∗ ∈ {l, r}.

(a) The extraordinary inverse image by (f, φ) (or simply f when φ is understood) with overconvergent sin-
gularities along Z and Z ′ is also a functor of the form f !

Z′,Z : D−(∗D†
X]/S]

(†Z)Q)→ D−(∗D†
X′]/S′]

(†Z ′)Q)

which is defined for any E ∈ D−(lD†
X]/S]

(†Z)Q) andM∈ D−(rD†
X]/S]

(†Z)Q) by setting:

f !
Z′,Z(E) := D†

X′]/S′]→X]/S]
(†Z ′, Z)Q ⊗L

f−1D†
X]/S]

(†Z)Q
f−1E [df ], (9.2.1.21.1)

f !
Z′,Z(M) := f−1M⊗L

f−1D†
X]/S]

(†Z)Q
D†

X]/S]←X′]/S′]
(†Z,Z ′)Q[df ]. (9.2.1.21.2)

(b) We can also consider the functors Lf∗Z′,Z := f !
Z′,Z [−df ], which is the left derived functor of the

functor denoted by f∗Z′,Z which corresponds to the above tensor product without L and shift.

(c) When Z ′ = f−1(Z), we simply write respectively f !
Z and Lf∗Z . If moreover Z is empty, we write f !

and Lf∗.
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9.2.1.22 (Log-étale case). Suppose the bottom square of 9.2.1.0.1 is the identity and f is log-étale. Then,
following 5.1.3.6, the canonical morphism of left ‹D(•)

X′]• /S
′]
•

(Z ′)-modules ‹D(•)
X′]• /S

′]
•

(Z ′) → ‹D(•)
X]•→X

′]
• /S

]
•
is

an isomorphism and the composite induced map f−1‹D(•)
X′]• /S

]
•
→ ‹D(•)

X]•→X
′]
• /S

]
•

∼←− ‹D(•)
X′]• /S

′]
•

(Z ′) is a
ring homomorphism. Taking the projective and inductive limits, tensoring with Q, this yields that the
canonical morphism D†

X′]/S]
(†Z ′)Q → D†X′]→X]/S]

(†Z ′, Z)Q is an isomorphism and the induced map

f−1D†
X]/S]

(†Z)Q → D†X′]/S](
†Z ′)Q is a ring homomorphism. For any E ∈ D−(lD†

X]/S]
(†Z)Q), we have

therefore the isomorphism:

f !
Z′,Z(E)

∼−→ D†
X′]/S]

(†Z ′)Q ⊗L
f−1D†

X]/S]
(†Z)Q

f−1E [df ]. (9.2.1.22.1)

Similarly, the canonical morphism of right ‹D(•)
X′]• /S

′]
•

(Z ′)-modules ‹D(•)
X′]• /S

′]
•

(Z ′) → ‹D(•)
Y ]•←X

]
•/S

]
•
is an

isomorphism and the composite induced map f−1‹D(•)
X′]• /S

]
•
→ ‹D(•)

Y ]•←X
]
•/S

]
•

∼←− ‹D(•)
X′]• /S

′]
•

(Z ′) is the ring

homomorphism. For anyM∈ D−(rD†
X]/S]

(†Z)Q), this yields the isomorphism:

f !
Z′,Z(M)

∼−→ f−1M⊗L
f−1D†

X]/S]
(†Z)Q

D†
X′]/S]

(†Z ′)Q[df ]. (9.2.1.22.2)

9.2.1.23. Similarly to 5.1.1.5.1, it follows from 9.2.1.20.1 that for any E ∈ D−(lD†
X]/S]

(†Z)Q), we check
the isomorphism

ωX′]/S′] ⊗OX′ f
!
Z′,Z(E)

∼−→ f !
Z′,Z(ωX]/S] ⊗OX

E). (9.2.1.23.1)

Proposition 9.2.1.24. Let E(•) ∈ LD−→
b
Q,coh(∗‹D(•)

X]/S]
(Z)). The functors 9.2.1.15.2 and 9.2.1.21.1 are

compatible with the functor→l
∗
Q (see notation 9.1.6.1), i.e. we have the functorial isomorphism:

f !
Z′,Z ◦→l

∗
Q(E(•))

∼−→→l
∗
Q ◦ f

(•)!
Z′,Z(E(•)).

Proof. This follows from 9.2.1.17.

9.2.1.25. With notation 9.1.6.6, the proposition 9.2.1.24 means that we have the isomorphism of functors
CohZ(f

(•)!
Z′,Z)

∼−→ f !
Z′,Z .

Lemma 9.2.1.26 (Tor independence). Suppose Z ′ := f−1(Z). We have the canonical isomorphism

OX′
i
⊗L
f−1OXi

f−1B(m)
Xi

(Z)
∼−→ B(m)

X′
i

(Z ′).

We have also the canonical isomorphism f (•)!(B̃(•)
X (Z))

∼−→ B̃(•)
X′ (Z ′)[df ] in LD−→

b
Q,qc(‹D(•)

X′]/S′]
(Z ′)).

Proof. 1) To check the first isomorphism, since the canonical morphism OX′
i
⊗f−1OXi f

−1B(m)
Xi

(Z)
∼−→

B(m)
X′
i

(Z ′) is an isomorphism, we reduce to check that the canonical morphismOX′
i
⊗L
f−1OXi

f−1B(m)
Xi

(Z)→

OX′
i
⊗f−1OXi f

−1B(m)
Xi

(Z) is an isomorphism. Since this is local, we can suppose X = Spf A affine,
integral and there exist a ∈ OX lifting a local equation of Z ⊂ X. We get a′ := f∗(a) ∈ OX′ a
lifting of a local equation of Z ′ ⊂ X ′. Since X is p-torsion free, we have the short exact sequence
0 → OX{T} −→

apm+1
OX{T} → B(m)

X (Z) → 0. Since B(m)
X (Z) is p-torsion free (see 8.7.4.1), this yields the

short exact sequence 0→ OXi [T ] −→
ap
m+1

T−p
OXi [T ]→ B(m)

Xi
(Z)→ 0 where a is the reduction of a modulo

πi+1, which is a resolution of B(m)
Xi

(Z) by free OXi-modules. By applying OX′
i
⊗f−1OXi f

−1− to this

resolution, we get the sequence 0→ OX′
i
[T ] −→

a′
pm+1

T−p
OX′

i
[T ]→ B(m)

X′
i

(Z ′)→ 0 where a′ is the reduction

of a′ modulo πi+1, which is exact (for the same reason as above) and we are done.
2) Since, for any nonnegative integer m, the V-modules B̃(m)

X′ (Z ′) and B̃(m)
X (Z) are p-torsion free, we

get the second isomorphism from the first one.

Proposition 9.2.1.27. Let E(•),F (•) ∈ LD−→
−
Q,qc(“D(•)

X]/S]
(Z)).
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(a) We have the canonical isomorphism in LD−→
−
Q,qc(“D(•)

X′]/S′]
(Z ′)):

f
(•)!
Z′,Z

Å
F (•)“⊗L

B̃(•)
X

(Z)
E(•)

ã
[df ]

∼−→ f
(•)!
Z′,Z(F (•))“⊗L

B̃(•)
X′

(Z′)
f

(•)!
Z′,Z(E(•)). (9.2.1.27.1)

(b) With notation 9.2.1.12, the isomorphisms of the form 9.2.1.27.1 are transitive, i.e., the following
diagram

g
(•)!
Z′′,Z′ ◦ f

(•)!
Z′,Z(E(•)⊗̂LF (•))[df◦g]

9.2.1.27.1��

∼ // (f ◦ g)
(•)!
Z′′,Z(E(•)⊗̂LF (•))[df◦g]

9.2.1.27.1

��

g
(•)!
Z′′,Z′(f

(•)!
Z′,Z(E(•))⊗̂Lf

(•)!
Z′,Z(F (•)))[df ]

9.2.1.27.1��
g
(•)!
Z′′,Z′ ◦ f

(•)!
Z′,Z(E(•))⊗̂Lg

(•)!
Z′′,Z′ ◦ f

(•)!
Z′,Z(F (•))

∼ // (f ◦ g)
(•)!
Z′′,Z(E(•))⊗̂L(f ◦ g)

(•)!
Z′′,Z(F (•))

(9.2.1.27.2)

is commutative.

Proof. Since pullback commutes with tensor products (see 7.5.5.9), we get

f
(•)!
•Z′,Z

Å
F (•)
• ⊗L

B̃(•)
X

(Z)
E(•)
•

ã
[df ]

∼−→ f
(•)!
•Z′,Z(F (•)

• )⊗L
B̃(•)
X′•

(Z′)
f

(•)!
•Z′,Z(E(•)

• ). (9.2.1.27.3)

This yields the isomorphism 9.2.1.27.1 by construction.
Following 8.5.4.5, the functors R←lX(N)∗ and L←l

∗
X(N) induce canonically quasi-inverse equivalences of

categories between LD−→
−
Q,qc(“D(•)

X]/S]
(Z)) and LD−→

−
Q,qc(“D(•)

X]•/S
]
•
(Z)). Hence, to get the commutative diagram

9.2.1.27.2, we reduce to check that the isomorphisms of the form 9.2.1.27.3 is transitive, which is obvious.

By using Lemma 9.2.1.26, we get a derived functor version of 4.4.5.2:

Proposition 9.2.1.28. Suppose Z ′ = f−1(Z).

(a) Let E(•) ∈ LD−→
−
Q,qc(‹D(•)

X]/S]
). We have the canonical isomorphism f (•)! ◦ forgZ ◦ (†Z)(E(•))

∼−→
forgZ′ ◦ (†Z ′) ◦ f (•)!(E(•)), which we can simply write f (•)! ◦ (†Z)(E(•))

∼−→ (†Z ′) ◦ f (•)!(E(•)).

(b) Let E(•) ∈ LD−→
−
Q,qc(‹D(•)

X]/S]
(Z)). We have the canonical isomorphism forgZ′ ◦ f

(•)!
Z (E(•))

∼−→ f (•)! ◦
forgZ(E(•)). Hence, it is harmless to write by abuse of notation f (•)! instead of f (•)!

Z .

Proof. Using 9.2.1.27.1,9.2.1.26, for any E(•) ∈ LD−→
−
Q,qc(‹D(•)

X]/S]
(Z)), we get the isomorphism

f (•)! ◦ forgZ ◦ (†Z)(E(•)) = f (•)!
(
B̃(•)
X (Z)“⊗L

O(•)
X

E(•)
)

∼−→ B̃(•)
X′ (Z ′)“⊗L

O(•)
X′
f (•)!(E(•)) = forgZ′ ◦ (†Z ′) ◦ f (•)!(E(•)).

By using 9.1.2.3.1 and 9.2.1.18, we check the second part from the first one.

Remark 9.2.1.29. With notation 9.2.1.28, using the remark 9.1.6.7 we check that the functors CohZ(f
(•)!
Z )

and Coh(f (•)!) are isomorphic over Db
coh(D†X,Q) ∩Db

coh(D†X(†Z)Q). Since we have the canonical isomor-

phisms of functors CohZ(f
(•)!
Z )

∼−→ f !
Z and CohZ(f (•)!)

∼−→ f ! (9.2.1.25), then it is harmless to write f !

instead of f !
Z .

9.2.2 Glueing pullbacks
We keep notation 9.2.1 and 9.2.1.12. Let f ′, f ′′ : X′] → X] be two other S] morphisms such that
f0 = f ′0 = f ′′0 . Let g′, g′′ : X′′] → X′] be two other S] morphisms such that g0 = g′0 = g′′0 .
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9.2.2.1. It follows from 4.4.5.3 that we have the canonical glueing isomorphism of functors LD−→
b
Q,qc(‹D(•)

X]/S]
(†Z))→

LD−→
b
Q,qc(‹D(•)

X′]/S′]
(†Z ′)) of the form

τ
(•)
f,f ′ : f

′(•)!
Z′,Z

∼−→ f
(•)!
Z′,Z ,

where to lighten notation we have avoid indicating Z and Z ′. It follows from 4.4.5.9 that these iso-
morphisms satisfy the following formulas τ (•)

f,f = id, τ (•)
f,f ′′ = τ

(•)
f,f ′ ◦ τ

(•)
f ′,f ′′ , g

(•)!
Z′′,Z′ ◦ τ

(•)
f,f ′ = τ

(•)
f◦g,f ′◦g and

τ
(•)
g,g′ ◦ f

(•)!
Z′,Z = τ

(•)
f◦g,f◦g′ .

Proposition 9.2.2.2. Let E(•),F (•) ∈ LD−→
−
Q,qc(“D(•)

X]/S]
(Z)). We have the commutative diagram :

f
(•)!
Z′,Z

Å
F (•)“⊗L

B̃(•)
X

(Z)
E(•)

ã
[df ] ∼

9.2.1.27.1//

∼ τ
(•)
f′,f��

f
(•)!
Z′,Z(F (•))“⊗L

B̃(•)
X′

(Z′)
f

(•)!
Z′,Z(E(•))

∼ τ
(•)
f′,f
⊗τ(•)

f′,f��
f
′(•)!
Z′,Z

Å
F (•)“⊗L

B̃(•)
X

(Z)
E(•)

ã
[df ] ∼

9.2.1.27.1// f ′(•)!Z′,Z(F (•))“⊗L
B̃(•)

X′
(Z′)

f
′(•)!
Z′,Z(E(•)),

(9.2.2.2.1)

the isomorphisms of glueing τ (•)
f ′,f having been defined at 9.2.2.1.

Proof. This is a consequence of 4.4.5.8.2.

Proposition 9.2.2.3. We have the following properties.

(a) There exists a canonical glueing isomorphism of functors D(D†
X]/S]

(†Z)Q) → D(D†
X′]/S′]

(†Z ′)Q) of
the form

τf,f ′ : f
′!
Z′,Z

∼−→ f !
Z′,Z , (9.2.2.3.1)

such that τf,f = id, τf,f ′′ = τf,f ′◦τf ′,f ′′ . For any E ∈ D(D†
X]/S]

(†Z)Q), we write τf,f ′(E) : f ′!Z′,Z(E)
∼−→

f !
Z′,Z(E) or τEf,f ′ this corresponding canonical isomorphism.

(b) The diagram of functors LD−→
b
Q,coh(D†

X]/S]
(†Z))→ Db(D†

X′]/S′]
(†Z ′)Q)

→l
∗
Q ◦ f

′(•)!
Z′,Z

∼

→l
∗
Q
◦τ(•)
f,f′

//

∼
��

→l
∗
Q ◦ f

(•)!
Z′,Z

∼
��

f ′!Z′,Z ◦→l
∗
Q

τf,f′◦→l
∗
Q// f !
Z′,Z ◦→l

∗
Q

is commutative up to canonical isomorphism.

(c) Let E(•) ∈ LD−→
b
Q,coh(‹D(•)

X]/S]
(†Z)) such that f (•)!

Z′,Z(E(•)) ∈ LD−→
b
Q,coh(‹D(•)

X]/S]
(†Z)). Set E := →l

∗
Q(E).

Then g!
Z′′,Z′(τf,f ′(E)) = τf◦g,f ′◦g(E) and τg,g′(f !

Z′,Z(E)) = τf◦g,f◦g′(E).

Proof. Let us prove a). Let E ∈ D(D†
X]/S]

(†Z)Q). Tensoring by Q the inductive limit on the level

of the inverse limits on i of the glueing isomorphisms D(m)

X′]
i
/S′]
i

gi→iX]/S
]
i

(†Z)
∼−→ D(m)

X′]
i
/S′]
i

fi→X]
i
/S]
i

(†Z)

of 4.4.5.3, we get the isomorphism τf,g : D†
X′]/S′]

g→X]/S]
(†Z)Q

∼−→ D†
X′]/S′]

f→X]/S]
(†Z)Q. Finally, we

construct τf,g(E) to be the composition f ′!Z′,ZE = D†
X′]/S′]

g→X]/S]
(†Z)Q⊗L

f−1
0 D

†
X]/S]

(†Z)Q
f−1

0 F [df ]
∼−→

τf,g⊗Lid

D†
X′]/S′]

f→X]/S]
(†Z)Q ⊗L

f−1
0 D

†
X]/S]

(†Z)Q
f−1

0 F [df ] = f !
Z′,ZE . It follows from 4.4.5.3 the desired properties

of the part a).
By construction of both τf,g and τ (•)

f,g , we can easily check b). The part c) follows from the part b)
and from 9.2.1.24 and 9.2.2.1.
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9.2.2.4. To define pullbacks (or the pushforwards) with notation 9.2.1, we do not need that the morphism
f0 has a lifting. More precisely, let be the commutative diagram

X ′]

f0

��

� �
X′]

p
X′] // S′]

φ

��
X] �
�

X]
p
X] // S],

(9.2.2.4.1)

where pX] and pX′] are log smooth morphisms of very nice (see definition 3.3.1.10.(b)) fine V-log formal
schemes. We suppose S, S], S′, S′], X and X ′ are regular (to have an idea about theses hypotheses,
see [GR, 12.5.19]) and noetherian. Let Z and Z ′ be some divisors of respectively X and X ′ such that
f(X ′ \ Z ′) ⊂ X \ Z. Then similarly to 9.2.1.15.1 and 9.2.1.15.2, it follows from 4.4.5.11 that we get the
functors

(f0, φ)
(•)!
•Z′,Z : LD−→

−
Q,qc(∗‹D(•)

X]•/S
]
•
(Z))→ LD−→

−
Q,qc(∗‹D(•)

X′]• /S
′]
•

(Z ′)), (9.2.2.4.2)

(f0, φ)
(•)!
Z′,Z : LD−→

−
Q,qc(∗‹D(•)

X]/S]
(Z))→ LD−→

−
Q,qc(∗‹D(•)

X′]/S′]
(Z ′)). (9.2.2.4.3)

In the case where f0 is the relative Frobenius, we will study more precisely later at 9.5.1.2.

9.2.2.5. Suppose f is finite and Z ′ = f−1
0 (Z). Then using 7.2.1.4, we can check that the canonical

morphism
B̃(m)
X′ (Z ′)⊗L

f−1
0 B̃

(m)

X
(Z)

f−1
0
‹D(m)

X]/S]
(Z)→ ‹D(m)

X′]/S′]
f→X]/S]

(Z)

is an isomorphism. Tensoring by Q and taking the inductive limit over the level, this yields the canonical
isomorphism

OX′(
†Z ′)Q ⊗L

f−1
0 OX(†Z)Q

f−1
0 D

†
X]/S]

(†Z)Q
∼−→ D†

X′]/S′]
f→X]/S]

(†Z)Q.

Let E ∈ D−(D†
X]/S]

(†Z)Q). Hence, by associativity of the tensor product, so is the canonical morphism

OX′(
†Z ′)Q ⊗L

f−1
0 OX(†Z)Q

f−1
0 E → D

†

X′]/S′]
f→X]/S]

(†Z)Q ⊗L
f−1
0 D

†
X]/S]

(†Z)Q
f−1

0 F = Lf∗ZE = f !
ZE [−df ]

is an isomorphism. Hence, if P is a complex of left D†
X]/S]

(†Z)Q-modules which are OX(†Z)Q-flat, if

P → E is a quasi-isomorphism of K−(D†
X]/S]

(†Z)Q) then we get the isomorphism f∗Z(P)
∼−→ Lf∗ZE of

D−(D†
X]/S]

(†Z)Q).

Remark 9.2.2.6. Let E ∈ D−(D†
X]/S]

(†Z)Q).

(a) Let P be a complex of flat left D†
X]/S]

(†Z)Q-modules endowed with a quasi-isomorphism P → E .
The isomorphism τf,f ′ : f

′!
Z′,ZE

∼−→ f !
Z′,ZE is represented (up to the shift [df0

]) by the isomorphism
of τf,f ′ : f ′∗Z′,Z(P)

∼−→ f∗Z′,Z(P) of C(D†
X′]/S′]

(†Z ′)Q) which is computed term by term.

(b) Suppose f and g are finite morphisms. Suppose Z ′ = f−1
0 (Z) and Z ′′ = g−1

0 (Z ′). Let P be a complex
of flat left D†

X]/S]
(†Z)Q-modules which are OX(†Z)Q-flat together with a quasi-isomorphism P → E .

It follows from 9.2.2.5 that the isomorphism τf,f ′ : f
′!
ZE

∼−→ f !
ZE is represented (up to the shift [df0

])
by the isomorphism of τf,f ′ : f ′∗Z (P)

∼−→ f∗Z(P) of C(D†
X′]/S′]

(†Z ′)Q) which is computed term by
term.

9.2.3 Projection formula given by a ringed topoi morphism
We keep notation 9.2.1. In order to check later that the pushforwards are compatible with the quasi-
inverse functors −⊗B̃(•)

X•
(Z)

ω̃
(•)−1

X]•/S
]
•
and ω̃(•)

X]•/S
]
•
⊗B̃(•)

X•
(Z)
− exchanging left and right ‹D(•)

X]•/S
]
•
(Z)-module

structures, we will need the following projection formula (see 9.2.4.8).
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Proposition 9.2.3.1. Let F (•)
• ∈ D(r‹D(•)

X]•/S
]
•
(Z)) and G(•)

• ∈ D(
l
f−1
•
‹D(•)
X]•/S

]
•
(Z)).

(i) We have the canonical morphism in D(ZX•):

F (•)
• ⊗L

D̃(•)

X
]
•/S

]
•

(Z)
Rf•∗(G(•)

• )→ Rf•∗

(
f−1
• F

(•)
• ⊗L

f−1
• D̃

(•)

X
]
•/S

]
•

(Z)
G(•)
•

)
. (9.2.3.1.1)

Let D• be a sheaf of rings on X• such that (D•, ‹D(•)
X]•/S

]
•
(Z)) is solvable by R• and F (•)

• ∈

D(D•,R•, ‹D(•)
X]•/S

]
•
(Z)) (see definition and notation 4.6.3.2). Then the morphism 9.2.3.1.1 can also

be viewed as a morphism of D(D•).

(ii) Suppose f is quasi-compact and quasi-separated. Suppose moreover for any i ∈ Z one of the
following conditions hold:

(a) either F (•)
i ∈ Db

qc(r‹D(•)
X]
i
/S]
i

(Z)), and G(•)
i ∈ D(

l
f−1‹D(•)

X]
i
/S]
i

(Z)),

(b) or Si is a noetherian scheme of finite Krull dimension, and F (•)
i ∈ D−qc(r‹D(•)

X]
i
/S]
i

(Z)), and

G(•)
i ∈ D−(

l
f−1‹D(•)

X]
i
/S]
i

(Z)).

Then the morphism 9.2.3.1.1 is an isomorphism.

Proof. We construct 9.2.3.1.1 as 5.1.2.5.1. The second statement is a consequence of 5.1.2.5.1.

Remark 9.2.3.2. Inverting r and l, we get the morphism

Rf•∗(G•)⊗L
D̃(•)

X
]
•/S

]
•

(Z)
F (•)
• → Rf•∗

(
G• ⊗L

f−1D̃(•)

X
]
•/S

]
•

(Z)
f−1F (•)

•

)
, (9.2.3.2.1)

which is an isomorphism when we invert the corresponding hypotheses.

Corollary 9.2.3.3. Let ∗, ∗∗ ∈ {l, r} such that both are not equal to r. Suppose f is quasi-compact and
quasi-separated.

(a) either F (•)
i ∈ Db

qc(∗‹D(•)
X]
i
/S]
i

(Z)), and Gi ∈ D(
∗∗
f−1‹D(•)

X]
i
/S]
i

(Z)),

(b) or Si is a noetherian scheme of finite Krull dimension, and F (•)
i ∈ D−qc(∗‹D(•)

X]
i
/S]
i

(Z)), and Gi ∈

D−(
∗∗
f−1‹D(•)

X]
i
/S]
i

(Z)).

Then we have the following isomorphism of D−(
∗∗‹D(•)

X]
i
/S]
i

(Z)):

F (•)
• ⊗L

B̃(•)
X•

(Z)
Rf•∗(G•)

∼−→ Rf•∗

Å
f−1F (•)

• ⊗L
f−1B̃(•)

X•
(Z)
G•
ã
. (9.2.3.3.1)

Proof. As 5.1.2.8, this is a consequence of 9.2.3.1.

Proposition 9.2.3.4. Let F ∈ D(rD†
X]/S]

(†Z)Q) and G ∈ D(
l
f−1D†

X]/S]
(†Z)Q).

(i) We have the canonical morphism in D(ZX):

F ⊗L
D†

X]/S]
(†Z)Q

Rf∗(G)→ Rf∗

Å
f−1F ⊗L

f−1D†
X]/S]

(†Z)Q
G
ã
. (9.2.3.4.1)

LetD be a sheaf of rings on X such that (D,D†
X]/S]

(†Z)Q) is solvable byR and F ∈ D(D,R,D†
X]/S]

(†Z)Q).
Then the morphism 9.2.3.4.1 can also be viewed as a morphism of D(D).

(ii) Suppose f is quasi-compact and quasi-separated. Suppose moreover F ∈ Db
coh(rD†

X]/S]
(†Z)Q).

Then the morphism 9.2.3.4.1 is an isomorphism.

Proof. We construct 9.2.3.4.1 as 5.1.2.5.1. The second statement is a consequence of 5.1.2.5.1. To check
that this is an isomorphism, using the remark 5.1.2.1 and using [Har66, I.7.1 (ii), (iii) and (iv)] and
5.1.2.4, we reduce to the case where F = D†

X]/S]
(†Z)Q, which is obvious.
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9.2.4 Direct image and duality
We keep notation 9.2.1. Assume that f is quasi-compact and quasi-separated, S, S′, X, X ′ have finite
Krull dimension,

Definition 9.2.4.1. We keep notation 9.2.1.4.

(a) The (left version of the) direct image functor of level m by f̃• is the functor f̃
(•)
•+ : D(l‹D(•)

X′]• /S
′]
•

(Z ′))→

D(l‹D(•)
X′]• /S

′]
•

(Z ′)) which is defined by setting

f̃
(•)
•+ (E ′•) := Rf•∗

(‹D(•)
X]•/S

]
•←X

′]
• /S

′]
•

(Z,Z ′)⊗L
D̃(•)

X
′]
• /S

′]
•

(Z′)
E ′•

)
,

where E ′• ∈ D(l‹D(•)
X′]• /S

′]
•

(Z ′)).

(b) The (right version of the) direct image functor of levelm by f̃• is the functor f̃
(•)
•+ : D(r‹D(•)

X′]• /S
′]
•

(Z ′))→

D(r‹D(•)
X′]• /S

′]
•

(Z ′)) which is defined by setting

f̃
(•)
•+ (M′•) := Rf•∗

(
M• ⊗L

D̃(•)

X
′]
• /S

′]
•

(Z′)
‹D(•)
X′]• /S

′]
• →X

]
•/S

]
•
(Z ′, Z)

)
,

whereM′• ∈ D(r‹D(•)
X′]• /S

′]
•

(Z ′)).

(c) For any ∗ ∈ {r, l}, the direct image functor of level m by f̃ of the form f̃
(•)
+ : D(∗‹D(•)

X′]/S′]
(Z ′)) →

D(∗‹D(•)
X]/S]

(Z)) is defined by setting

f̃
(•)
+ (E ′) := R←lY ∗(f̃

(•)
•+ (L←l

∗
X
E ′))

where E ′ ∈ D(∗‹D(•)
X′]/S′]

(Z ′)).

9.2.4.2. For any E ′(•) ∈ D−(‹D(•)
X′]/S′]

(Z ′)), we have the isomorphism of D−(‹D(•)
X]/S]

(Z)):

f̃
(•)
+ (E ′(•)) ∼−→ Rf∗(‹D(•)

X]/S′]←X′]/S]
(Z,Z ′)“⊗L

D̃(•)
X′]/S′]

(Z′)
E ′(•)). (9.2.4.2.1)

where the tensor product is defined at 8.5.4.8.3, and similarly for complexes of right modules.

Proposition 9.2.4.3. We have the following properties.

(a) For anyM′ ∈ D(r‹D(•)
X′]/S′]

(Z ′)), we have the canonical morphism

f̃
(•)
alg +(M′) := Rf∗

Ç
M′ ⊗L

D̃(•)
X′]/S′]

(Z′)
‹D(•)
X]/S]→Y]/T]

å
→ f̃

(•)
+ (M′). (9.2.4.3.1)

(b) For any E ′ ∈ D(l‹D(•)
X′]/S′]

(Z ′)), we have the canonical morphism

f̃
(•)
alg +(E ′) := Rf∗

Ç‹D(•)
X]/S]←X′]/S′]

(Z,Z ′)⊗L
D̃(•)

X′]/S′]
(Z′)
E ′
å
→ f̃

(•)
+ (E ′). (9.2.4.3.2)

(c) For any ∗ ∈ {r, l}, if E ′ and respectively M′ belong to D−coh(∗‹D(•)
X′]/S′]

(Z ′)), then the morphisms
9.2.4.3.1 and 9.2.4.3.2 are isomorphisms.

Proof. We can copy 7.5.8.2.
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9.2.4.4. We have the following boundedness preservation results.

(a) Since S is a noetherian scheme of finite Krull dimension, then it follows from 5.1.2.4.i that we get
the factorization f̃ (•)

•+ : D−(∗‹D(•)
X′]• /S

′]
•

(Z ′))→ D−(∗‹D(•)
X]•/S

]
•
(Z)).

(b) Suppose log-structures are trivial. Then, by copying the proof of 5.3.2.4, we can check the right
(resp. left) ‹D(•)

X]•/S
]
•
(Z)-module ‹D(•)

X]•/S
]
•←X

′]
• /S

′]
•

(Z,Z ′) (resp. ‹D(•)
X′]• /S

′]
• →X

]
•/S

]
•
(Z ′, Z)) has finite tor-

dimension. Hence, we get the induced functor

f̃
(•)
•+ : Db(∗‹D(•)

X′]• /S
′]
•

(Z ′))→ Db(∗‹D(•)
X]•/S

]
•
(Z)). (9.2.4.4.1)

Proposition 9.2.4.5. Let ∗ ∈ {r, l}. Then, we have the following properties.

(a) For any E• ∈ D−qc(∗‹D(•)
X′]• /S

′]
•

(Z ′)), f̃ (•)
•+ (E•) ∈ D−qc(∗‹D(•)

X]•/S
]
•
(Z)).

(b) For any E ∈ D−qc(∗‹D(•)
X′]/S′]

(Z ′)), f̃ (•)
+ (E) ∈ D−qc(∗‹D(•)

X]/S]
(Z)).

Proof. This is checked similarly to 7.5.8.7.

9.2.4.6. For any ∗ ∈ {r, l}, for any E(•)
• ∈ D(∗‹D(•)

X′]• /S
′]
•

(Z ′)), it follows from 7.1.3.15.2 and 7.1.3.6.1 that
we have for any i,m ∈ N: (

f̃
(•)
•+ (E(•)

• )
)(m)

i

∼−→ f̃
(m)
i+ (E(m)

i ). (9.2.4.6.1)

9.2.4.7. Suppose the bottom square of 9.2.1.0.1 is the identity and f is log-étale. Then, it follows
from 9.2.1.22 that for any M′• ∈ D(r‹D(•)

X′]• /S
′]
•

(Z ′)) and for any E ′• ∈ D(l‹D(•)
X′]• /S

′]
•

(Z ′)) we have the
isomorphisms:

f̃
(•)
•+ (M•)

∼−→ Rf•∗(M•), f̃
(•)
•+ (E•)

∼−→ Rf•∗(M•).

9.2.4.8. The functors of 9.2.4.1 are compatible with the quasi-inverse functors −⊗B̃(•)
X•

(Z)
ω̃

(•)
X]•/S

]
•
(Z)−1

and ω̃(•)
X]•/S

]
•
(Z)⊗B̃(•)

X•
(Z)
− exchanging left and right ‹D(•)

X]•/S
]
•
(Z)-module structures. More precisely, sim-

ilarly to 7.5.8.10.1, for any E ′• ∈ D(l‹D(•)
X′]• /S

′]
•

(Z ′)) we construct the canonical isomorphism

ω̃
(•)
X]•/S

]
•
(Z)⊗B̃(•)

X•
(Z)

f̃
(•)
•+ (E ′•)

∼−→ f̃
(•)
•+ (ω̃

(•)
X′]• /S

′]
•

(Z ′)⊗B̃(•)
X′•

(Z′)
E ′•). (9.2.4.8.1)

Let ? ∈ {−,b}, E ′ ∈ D?
qc(l‹D(•)

X′]/S′]
(Z ′)). Since L←l

∗
X′

(ω̃
(•)
X′]/S′]

(Z ′)⊗B̃(•)
X′

(Z′)
E ′) ∼−→ ω̃

(•)
X′]• /S

′]
•

(Z ′)⊗B̃(•)
X′•

(Z′)

E ′• and since L←l
∗
X

(ω̃
(•)
X]/S]

(Z) ⊗B̃(•)
X

(Z)
f̃

(•)
+ (E ′)) ∼−→ ω̃

(•)
X]•/S

]
•
(Z) ⊗B̃(•)

X•
(Z)

f̃
(•)
•+ (E ′•), then we deduce from

9.2.4.8.1 the canonical isomorphism

ω̃
(•)
X]/S]

(Z)⊗B̃(•)
X

(Z)
f̃

(•)
+ (E ′) ∼−→ f̃

(•)
+ (ω̃

(•)
X′]/S′]

(Z ′)⊗B̃(•)
X′

(Z′)
E ′). (9.2.4.8.2)

Proposition 9.2.4.9. With notation 9.2.1.12, we suppose X ′′ has finite Krull dimension and g is quasi-
compact and quasi-separated. Let ∗ ∈ {r, l}, and ? ∈ {−,b}. We have the following properties.

1. For any E ′• ∈ D?
qc(∗‹D(•)

X′]• /S
′]
•

), we have the canonical isomorphism of D?
qc(∗‹D(•)

X′′]• /S′′]•
(Z ′′)):

f̃
(•)
•+ ◦ g̃

(•)
•+(E ′•)

∼−→ ‡(f ◦ g)
(•)

•+(E ′•). (9.2.4.9.1)

2. For any E ′ ∈ D?
qc(∗‹D(•)

X′]/S′]
(Z ′)), we have the canonical isomorphism of D?

qc(∗‹D(•)
X′′]/S′′]

(Z ′′)):

f̃
(•)
+ ◦ g̃(•)

+ (E ′) ∼−→ ‡(f ◦ g)
(•)

+ (E ′). (9.2.4.9.2)
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Proof. By using 9.2.3.1 and 9.2.1.13.2, we can check 9.2.4.9.1 by copying the proof of 5.1.3.8. By using
the equivalence of categories 8.5.1.10 (see also example 8.5.1.1), this yields 9.2.4.9.2.

9.2.4.10. For any ∗ ∈ {r, l}, similarly to 8.5.4.8.1, the pushforward functors f̃ (•)
•+ and f̃ (•)

+ of 9.2.4.1 send
lim-ind-isogenies to lim-ind-isogenies and preserve the quasi-coherence. This yields the factorizations
denoted by:

(f, φ)
(•)
Z,Z′,•+ : LD−→

−
Q,qc(∗‹D(•)

X′]• /S
′]
•

(Z ′))→ LD−→
−
Q,qc(∗‹D(•)

X]•/S
]
•
(Z)), (9.2.4.10.1)

(f, φ)
(•)
Z,Z′+ : LD−→

−
Q,qc(∗‹D(•)

X′]/S′]
(Z ′))→ LD−→

−
Q,qc(∗‹D(•)

X]/S]
(Z)). (9.2.4.10.2)

They are called the push forward by (f, φ) (or simply f when φ is understood) with overconvergent
singularities along Z and Z ′. When φ = id, we will see that the functor f (•)

Z,Z+ preserves bounded
complexes (see 9.4.2.3), even when log structures are not trivial.

9.2.4.11. For any ∗ ∈ {r, l}, the pushforward functors f̃ (•)
alg + of 9.2.4.3 send lim-ind-isogenies to lim-ind-

isogenies (but do not preserve the quasi-coherence). Hence, they induces the functors:

(f, φ)
(•)
algZ,Z′+ : LD−→

−
Q (∗‹D(•)

X′]/S′]
(Z ′))→ LD−→

−
Q (∗‹D(•)

X]/S]
(Z)). (9.2.4.11.1)

The following lemma improves 9.2.4.3.(c).

Lemma 9.2.4.12. Let E ′(•) ∈ LD−→
b
Q,alg(‹D(•)

X′]/S′]
(Z ′)). The canonical morphism f

(•)
algZ,Z′+(E ′(•)) →

f
(•)
Z,Z′+(E ′(•)) is an isomorphism in LD−→Q(‹D(•)

X]/S]
(Z)).

Proof. We proceed similarly to 9.2.1.17 (and use 7.5.8.2).

Notation 9.2.4.13 (Pushforwards). Let ∗ ∈ {l, r}. The direct image by (f, φ) (or simply f when φ is un-
derstood) with overconvergent singularities along Z and Z ′ is also a functor of the form fZ,Z′,+ : D−(∗D†

X′]/S′]
(†Z ′)Q)→

D−(∗D†
X]/S]

(†Z)Q) which is defined for any E ′ ∈ D−(lD†
X′]/S′]

(†Z ′)Q) and M′ ∈ D−(rD†
X′]/S′]

(†Z ′)Q)

by setting:

(f, φ)Z,Z′+(E ′) := Rf∗

Å
D†

X]/S]→X′]/S′]
(†Z,Z ′)Q ⊗L

D†
X′]/S′]

(†Z′)Q
E ′
ã
, (9.2.4.13.1)

(f, φ)Z,Z′+(M′) := Rf∗

Å
M′ ⊗L

D†
X′]/S′]

(†Z′)Q
D†

X′]/S′]→X]/S]
(†Z ′, Z)Q

ã
. (9.2.4.13.2)

Notation 9.2.4.14. In the notation 9.2.4.13 and 9.2.4.10 of the pushforwards, when Z ′ = f−1(Z), we
simply write respectively f (•)

•Z,+, f
(•)
Z,+ and fZ,+. If moreover Z is empty, we write f (•)

•+ , f (•)
+ and f+.

When Z ′ = f−1(Z), we remove Z ′ in the notation, e.g. (f, φ)
(•)
Z,•+ := (f, φ)

(•)
Z,f−1(Z),+. If moreover Z

is empty, we remove Z in the notation.
When φ = idS] , we replace idS] by /S] and idS]•

by /S]•
, e.g. f

(•)
•/S]•,Z,Z′+

:= (f, idS]•
)
(•)
•Z,Z′+ and

f
(•)
/S],Z,Z′+

:= (f, idS])
(•)!
Z,Z′+. To lighten the notations, when φ is understood, by abuse of notation we

simply write f instead of (f, φ), e.g. f (•)
Z,Z′,•+ instead of (f, φ)

(•)
Z,Z′,•+.

9.2.4.15 (Log-étale case). Suppose the bottom square of 9.2.1.0.1 is the identity and f is log-étale.
Then, using 9.2.1.22 we get the following properties:

(a) For any E ′(•) ∈ LD−→
b
Q,qc(l‹D(•)

X′]/S]
(Z ′)), we have the isomorphism:

f
(•)
Z,Z′,+(E ′(•)) ∼−→ Rf∗

Ä
E ′(•)

ä
; (9.2.4.15.1)

If f is moreover finite then the functor f (•)
Z,Z′,+ is t-exact.
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(b) For any E ′ ∈ Db
coh(lD†

X′]/S]
(†Z ′)Q), we have the isomorphism:

fZ,Z′,+(E ′) ∼−→ Rf∗E ′. (9.2.4.15.2)

If f is moreover finite then the functor fZ,Z′,+ is exact.

Remark 9.2.4.16. This is not clear (except when complexes are coherent thanks to 9.2.4.8.2) that the
functors of 9.2.4.13 commute with the quasi-inverse functors −⊗OX

ω−1
X and ωX ⊗OX

− exchanging left
and right ‹D(•)

X]
-module structures. However, when f is an exact closed immersion, this will be checked

later (see 9.3.2.2.1).

Proposition 9.2.4.17. Let E ′(•) ∈ LD−→
b
Q,coh(∗‹D(•)

X′]/S′]
(Z ′)). The functors 9.2.4.10.2 and 9.2.1.21.1 are

compatible with the functor→l
∗
Q (see notation 9.1.6.1), i.e. we have the functorial isomorphism:

fZ,Z′,+ ◦→l
∗
Q(E ′(•)) ∼−→→l

∗
Q ◦ f

(•)
Z,Z′+(E ′(•)).

Proof. This follows from 9.2.4.12.

Remark 9.2.4.18. With notation 9.1.6.6, the proposition 9.2.4.17 means that we have the isomorphism
of functors CohZ′(f

(•)
Z,Z′,+)

∼−→ fZ,Z′,+.

Proposition 9.2.4.19. Let D ⊂ Z and D′ ⊂ Z ′ be some divisors of respectively X and X ′ such that
f(X ′ \D′) ⊂ X \D.

(a) Let E ′(•) ∈ LD−→
−
Q,qc(‹D(•)

X′]/S′]
(Z ′)). We have the canonical isomorphism

forgD,Z ◦ f
(•)
Z,Z′,+(E ′(•)) ∼−→ f

(•)
D,D′,+ ◦ forgD′,Z′(E ′(•)).

Hence, it is harmless to write by abuse of notation f (•)
+ instead of f (•)

Z,Z′,+.

(b) Let E ′ ∈ Db
coh(D†

X′]/S′],Q) ∩Db
coh(D†

X′]/S′]
(†Z ′)Q). We have the canonical isomorphism

forgD,Z ◦ fZ,Z′,+(E ′) ∼−→ fD,D′,+ ◦ forgD′,Z′(E ′).

Hence, it is harmless to write by abuse of notation f+ instead of fZ,Z′,+ for coherent complexes.

Proof. It follows from 5.1.3.3 that we have the canonical isomorphism forgZ ◦ f
(•)
Z,Z′,+(E ′(•)) ∼−→ f

(•)
+ ◦

forgZ′(E ′(•)). Hence, we conclude the first part from 9.1.2.3. Using the remark 9.1.6.7 this yields
that the functors forgD,Z ◦ CohZ′(f

(•)
Z,Z′,+) and CohD′(f

(•)
D,D′,+) are isomorphic over Db

coh(D†X′(†D′)Q) ∩
Db

coh(D†X′(†Z ′)Q). Since we have the canonical isomorphisms of functors CohZ′(f
(•)
Z,Z′,+)

∼−→ fZ,Z′,+ and

CohD′(f
(•)
D,D′,+)

∼−→ fD,D′,+ (9.2.4.18), then we are done.

Notation 9.2.4.20 (Duality in LD). Suppose X is quasi-compact. With notation 8.6.2.7, we get the
functor:

D(•)
Z := RLDHomD(•)(−, ‹D(•)

X]/S]
(Z)⊗OX

ω
(•)−1

X]/S]
)[δX]/S] ] : LD−→

b
Q,perf(

l‹D(•)
X]/S]

(Z))→ LD−→
b
Q,perf(

l‹D(•)
X]/S]

(Z)),

(9.2.4.20.1)

D(•)
Z := RLDHomD(•)(−, ω(•)

X]/S]
⊗OX

‹D(•)
X]/S]

(Z))[δX]/S] ] : LD−→
b
Q,perf(

r‹D(•)
X]/S]

(Z))→ LD−→
b
Q,perf(

r‹D(•)
X]/S]

(Z)),

(9.2.4.20.2)

that we call the dual functor. It follows from 5.1.4.3.1, that for any E(•) ∈ LD−→
b
Q,perf(

l‹D(•)
X]/S]

(Z)) we get
the isomorphism:

D(•)
Z (ω

(•)
X]/S]

⊗OX
E(•))

∼−→ ω
(•)
X]/S]

⊗OX
D(•)
Z (E(•)). (9.2.4.20.3)

By using 4.6.4.7.1, we can check that dual functors commute with extensions, i.e. for any divisor Z ′
containing Z, we have the isomorphism

D(•)
Z′ ◦ (†Z ′)

∼−→ (†Z ′) ◦ D(•)
Z (9.2.4.20.4)

of functors LD−→
b
Q,perf(

l‹D(•)
X]/S]

(Z))→ LD−→
b
Q,perf(

l‹D(•)
X]/S]

(Z ′)).
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9.2.4.21 (Empty divisor). If follow from 8.7.7.10 that the dual functors of 9.2.4.20 are for any ∗ ∈ {l, r},
we get the functor:

D(•) : LD−→
b
Q,coh(∗‹D(•)

X]/S]
)→ LD−→

b
Q,coh(∗‹D(•)

X]/S]
), (9.2.4.21.1)

Notation 9.2.4.22 (Duality). Suppose X is quasi-compact.

(a) We have theDX]/S](
†Z)Q-linear functor denoted by Dalg

X],Z
: Dperf(DX]/S](

†Z)Q)→ Dperf(DX]/S](
†Z)Q)

defined by setting for any E ∈ Dperf(DX]/S](
†Z)Q)

Dalg
X],Z

(E) := RHomD
X]/S]

(†Z)Q
(E ,DX]/S](

†Z)Q ⊗OX
ω−1
X]/S]

))[dX/S ]. (9.2.4.22.1)

If there is no risk of confusion, we simply write Dalg
Z := Dalg

X],Z
.

(b) We have theD†
X]/S]

(†Z)Q-linear functor denoted by DX],Z : Dperf(D†X]/S](
†Z)Q)→ Dperf(D†X]/S](

†Z)Q)

defined by setting for any E ∈ Dperf(D†X]/S](
†Z)Q)

DX],Z(E) := RHomD†
X]/S]

(†Z)Q
(E ,D†

X]/S]
(†Z)Q ⊗OX

ω−1
X]/S]

))[dX/S ]. (9.2.4.22.2)

If there is no risk of confusion, we simply write DZ := DX],Z .

(c) Similarly to 8.7.7.3, we can check we have the biduality isomorphism DX],Z ◦ DX],Z(G)
∼−→ G for

any E ∈ Dperf(D†X](
†Z)Q).

(d) We have the functor (†Z) : Dperf(D†X]Q)→ Dperf(D†X](
†Z)Q) defined by setting (†Z)(G) := D†

X]
(†Z)Q⊗D†

X]Q

G for any G ∈ Dperf(D†X]Q). Dual functors commute with extensions (see 4.6.4.7.1), i.e. for any divisor
Z ′ containing Z, we have the isomorphism

DZ′ ◦ (†Z ′, Z)
∼−→ (†Z ′, Z) ◦ DZ (9.2.4.22.3)

of functors Dperf(D†X](
†Z)Q)→ Dperf(D†X](

†Z ′)Q).

(e) Following 8.7.7.9, when log structure are trivial, we get Db
coh(D†

X]/S]
(†Z)Q) = Db

perf(D
†
X]/S]

(†Z)Q) =

Dperf(D†X]/S](
†Z)Q) (recall X is quasi-compact).

(f) For any E(•) ∈ LD−→
b
Q,perf(

l‹D(•)
X]/S]

(Z)), it follows from 8.6.2.7.3 that we have the isomorphism

→l
∗
Q ◦ D(•)

Z (E(•))
∼−→ DZ ◦→l

∗
Q(E(•)).

9.2.5 External tensor products
Let S] be a nice (see definition 3.3.1.10) fine V-log formal scheme. Assume that S has finite Krull
dimension. Let X] and Q] be two log smooth, quasi-compact and quasi-separated formal log schemes
over S], p : X] ×S] Q

] → X], q : X] ×S] Q
] → Q] be the structural maps. Let ∗ ∈ {r, l}.

We suppose S, S], X and Q are regular. Let Z1 be a divisor of X, Z2 be a divisor of Q and
Z := p−1(Z1) ∪ q−1(Z2). Set R] := X] ×S] Q

] and r : X] ×S] Q
] → S] be the structural map.

9.2.5.1. We get the bifunctor

−�L
OS• ,Z1,Z2

− : LD−→
b
Q,qc(∗“D(•)

X]•/S
]
•
(Z1))× LD−→

b
Q,qc(∗“D(•)

Q]•/S
]
•
(Z2))→ LD−→

b
Q,qc(∗“D(•)

R]•
(Z)), (9.2.5.1.1)

for any E(•)
• ∈ LD−→

b
Q,qc(∗‹D(•)

X]•/S
]
•
(Z1)), F (•)

• ∈ LD−→
b
Q,qc(∗‹D(•)

Q]•/S
]
•
(Z2)), we set

E(•)
• �L

OS• ,Z1,Z2
F (•)
• := p

(•)!
•Z,Z1

(E(•)
• )⊗L

B(•)
R•

(Z)
q

(•)!
•Z,Z2

(F (•)
• )[dR].
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When Z1 and Z2 are empty, we simply write −�L
OS•−.

Using the tensor product defined in 9.1.2.6.2, we get the bifunctor

−“�L
OS,Z1,Z2

− : LD−→
b
Q,qc(∗“D(•)

X]/S]
(Z1))× LD−→

b
Q,qc(∗“D(•)

Q]/S]
(Z2))→ LD−→

b
Q,qc(∗“D(•)

R]
(Z)), (9.2.5.1.2)

defined as follows: for any E(•) ∈ LD−→
b
Q,qc(∗‹D(•)

X]/S]
(Z1)), F (•) ∈ LD−→

b
Q,qc(∗‹D(•)

Q]/S]
(Z2)), we set

E(•)“�L
OS,Z1,Z2

F (•) := R←lR(N)∗

Ä
L←l
∗
X(N)(E(•))“�L

OS• ,Z1,Z2
L←l
∗
Q(N)(F (•))

ä ∼−→ p
(•)!
Z,Z1

(E(•))“⊗L
B(•)

R
(Z)
q

(•)!
Z,Z2

(F (•))[dR].

(9.2.5.1.3)
When Z1 and Z2 are empty, we simply write −“�L

OS
−.

Similarly we define the functor:

−“�OS,Z1,Z2
− : LM−−→Q(‹D(•)

X]/S]
(Z1))× LM−−→Q(‹D(•)

Q]/S]
(Z2))→ LM−−→Q(‹D(•)

R]/S]
(Z)), (9.2.5.1.4)

defined as follows: for any E(•) ∈ LM−−→Q(∗‹D(•)
X]/S]

(Z1)), F (•) ∈ LM−−→Q(∗‹D(•)
Q]/S]

(Z2)), we set

E(•)“�OS,Z1,Z2
F (•) := p

∗(•)
Z,Z1

(E(•))“⊗B(•)
R

(Z)
q
∗(•)
Z,Z2

(F (•)). (9.2.5.1.5)

9.2.5.2. It follows from 7.5.9.4 (or from 9.1.2.7.1 and 9.2.1.18) that for any E(•) ∈ LD−→
b
Q,qc(“D(•)

X]/S]
),

F (•) ∈ LD−→
b
Q,qc(“D(•)

Q]/S]
), we have the isomorphism

(†Z)
Ä
E(•)“�L

OS
F (•)

ä ∼−→ (†Z1)(E(•))“�L
OS,Z1,Z2

(†Z2)(F (•)). (9.2.5.2.1)

9.2.5.3. Modulo the forgetful functors of divisors forgZ1
, forgZ2

, forgZ which are fully faithful, the
external tensor products do not depend on the divisors Z1 or Z2. Indeed, it follows from 9.1.2.8.1 and
9.2.1.28 that for any E(•) ∈ LD−→

b
Q,qc(“D(•)

X]/S]
(Z1)), F (•) ∈ LD−→

b
Q,qc(“D(•)

Q]/S]
), by omitting the indication of

the functor forgZ1
, forgZ2

and forgZ we get the isomorphisms

E(•)“�L
OS
F (•)

9.2.5.1.5
∼−→ p(•)!(E(•))“⊗L

O(•)
R

q(•)!(F (•))[dR]

∼−→
9.2.1.28

Ä
(†p−1Z1)(p(•)!(E(•)))

ä“⊗L
O(•)

R

Ä
(†q−1Z2)(q(•)!(F (•)))

ä
[dR]

∼−→
9.1.3.2

(†Z)
(
p(•)!(E(•))“⊗L

O(•)
R

q(•)!(F (•))
)

[dR]
∼−→

9.2.5.1.5
(†Z)(E(•)“�L

OS
F (•))

∼−→
9.2.5.2.1

(†Z1)(E(•))“�L
OS,Z1,Z2

(†Z2)F (•) ∼−→
9.1.2.3

E(•)“�L
OS,Z1,Z2

F (•). (9.2.5.3.1)

By abuse of notation, it is harmless to avoid indicating the divisors Z1 and Z2 in the notation −“�L
OS
−.

9.2.5.4. Set B(•)
R•,top(Z1, Z2) := B(•)

X•
(Z1)�

top
B(•)
Q•

(Z2) := p−1B(•)
X•

(Z1)⊗OS• q
−1B(•)

Q•
(Z2). SetD(•)

R]•,top
(Z1, Z2) :=

D(•)
X]•

(Z1) �
top
D(•)
Q]•

(Z2) := p−1D(•)
X]•

(Z1)⊗OS• q
−1D(•)

Q]•
(Z2).

(a) Since B(•)
X•

(Z1) and B(•)
Q•

(Z2) are flat overOS• , then similarly to 5.1.5.4.2, for any E(•)
• ∈ LD−→

b
Q,qc(∗‹D(•)

X]•/S
]
•
(Z1)),

F (•)
• ∈ LD−→

b
Q,qc(∗‹D(•)

Q]•/S
]
•
(Z2)), we get the isomorphisms:

E(•)
• �

top

L F (•)
• :=

Å
B(•)
R•,top(Z1, Z2)⊗L

p-1B(•)
X•

(Z1)
p-1E(•)

•

ã
⊗L
B(•)
R•,top

(Z1,Z2)

Å
B(•)
R•,top(Z1, Z2)⊗L

q-1B(•)
Q•

(Z2)
q-1F (•)

•

ã
∼−→
Å
B(•)
R•,top(Z1, Z2)⊗L

p-1B(•)
X•

(Z1)
p-1E(•)

•

ã
⊗L
q-1B(•)

Q•
(Z2)

q-1F (•)
•

∼−→ p-1E(•)
• ⊗L

OS• q
-1F (•)
• .

(9.2.5.4.1)

When ∗ = l, viewing D(•)
R]•,top

(Z1, Z2) as a (lD(•)
R]•,top

(Z1, Z2), rp-1D(•)
X]•

(Z1), rq-1D(•)
Q]•

(Z2))-trimodule,

we get the D(•)
R]•,top

(Z1, Z2)-linear isomorphism:

p-1E(•)
• ⊗L

OS• q
-1F (•)
•

∼−→

(
D(•)
R]•,top

(Z1, Z2)⊗L
p-1D(•)

X
]
•

(Z1)
p-1E(•)

•

)
⊗L
q-1D(•)

Q
]
•

(Z2)
q-1F (•)

• . (9.2.5.4.2)
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(b) Similarly to 5.1.5.2.2, for any E(•)
• ∈ LM−−→Q,qc(∗‹D(•)

X]•/S
]
•
(Z1)), F (•)

• ∈ LM−−→Q,qc(∗‹D(•)
Q]•/S

]
•
(Z2)), we get

the isomorphism:

E(•)
• �

top
F (•)
• :=

(
B(•)
R•,top(Z1, Z2)⊗

p-1B(•)
X•

(Z1)
p-1E(•)

•

)
⊗B(•)

R•,top
(Z1,Z2)

(
B(•)
R•,top(Z1, Z2)⊗

q-1B(•)
Q•

(Z2)
q-1F (•)

•

)
∼−→ p-1E(•)

• ⊗OS• q
-1F (•)
• . (9.2.5.4.3)

9.2.5.5. The functor B(•)
R•

(Z)⊗B(•)
R•,top

(Z1,Z2)
− : LM−−→Q(B(•)

R•,top(Z1, Z2))→ LM−−→Q(B(•)
R•

(Z)) is exact. More-

over the functor B(•)
R•

(Z) ⊗B(•)
R•,top

(Z1,Z2)
− : LD−→

b
Q,qc(B(•)

R•,top(Z1, Z2)) → LD−→
b
Q,qc(B(•)

R•
(Z)) is well defined

and is isomorphic to B(•)
R•

(Z) ⊗L
B(•)
R•,top

(Z1,Z2)
−. Indeed, setting O(•)

R•,top := p−1O(•)
X•
⊗O

S
(•)
•

q−1O(•)
Q•

,

similarly to 5.1.5.2.2, we check the isomorphism

O(•)
R•
⊗O(•)

R•,top

B(•)
R•,top(Z1, Z2)

∼−→ p∗•B
(•)
X•

(Z1)⊗OR• q
∗
•B

(•)
Q•

(Z2) =: B(•)
R•

(Z1, Z2).

Since the extension O(•)
R•,top → O

(•)
R•

is flat, then so is B(•)
R•,top(Z1, Z2)→ B(•)

R•
(Z1, Z2). Moreover, following

9.1.3.(d), the canonical ring homomorphism

B(•)
R (Z1, Z2) := p∗B(•)

X (Z1)“⊗OR
q∗B(•)

Q (Z2)
∼−→ B(•)

R (p−1Z1)“⊗OR
B(•)
R (q−1Z2)→ B(•)

R (Z) (9.2.5.5.1)

is an isomorphism of LM−−→Q,qc(O(•)
R]

). This yields that the canonical ring homomorphism

B(•)
R•

(Z1, Z2) := p∗•B
(•)
X•

(Z1)⊗OR• q
∗
•B

(•)
Q•

(Z2)→ B(•)
R•

(Z) (9.2.5.5.2)

is an isomorphism of LM−−→Q(“O(•)
R]•

). Hence, we are done.

9.2.5.6. Similarly to 9.2.5.5, the functorD(•)
R]•

(Z)⊗D(•)

R
]
•,top

(Z1,Z2)
− : LM−−→Q(D(•)

R]•,top
(Z1, Z2))→ LM−−→Q,qc(D(•)

R]•
(Z))

is exact. Moreover the functor D(•)
R]•

(Z)⊗D(•)

R
]
•,top

(Z1,Z2)
− : LD−→

b
Q,qc(D(•)

R]•,top
(Z1, Z2))→ LD−→

b
Q,qc(D(•)

R]•
(Z)) is

well defined and is isomorphic toD(•)
R]•

(Z)⊗L
D(•)

R
]
•,top

(Z1,Z2)
−. Moreover, for any G(•) ∈ LD−→

b
Q,qc(D(•)

R]•,top
(Z1, Z2)),

the canonical morphism

B(•)
R•

(Z)⊗B(•)
R•,top

(Z1,Z2)
G(•) → D(•)

R]•
(Z)⊗D(•)

R
]
•,top

(Z1,Z2)
G(•)

is an isomorphism.

9.2.5.7. Let E(•)
• ∈ LD−→

b
Q,qc(l‹D(•)

X]•/S
]
•
(Z1)), F (•)

• ∈ LD−→
b
Q,qc(l‹D(•)

Q]•/S
]
•
(Z2)). We get the isomorphisms

D(•)
R]•

(Z)⊗D(•)

R
]
•,top

(Z1,Z2)

Å
E(•)
• �

top

L F (•)
•

ã
∼−→ B(•)

R•
(Z)⊗B(•)

R•,top
(Z1,Z2)

Å
E(•)
• �

top

L F (•)
•

ã
∼−→
Å
B(•)
R•

(Z)⊗L
p−1B(•)

X•
(Z1)

p−1E(•)
•

ã
⊗L
B(•)
R•

(Z)

Å
B(•)
R•

(Z)⊗L
q−1B(•)

Q•
(Z2)

q−1F (•)
•

ã
∼−→ p

(•)!
•Z,Z1

(E(•)
• )⊗L

B(•)
R•

(Z)
q

(•)!
•Z,Z2

(F (•)
• )[dR] = E(•)

• �L
OS• ,Z1,Z2

F (•)
• . (9.2.5.7.1)

Similarly, for any E(•)
• ∈ LM−−→Q,qc(l‹D(•)

X]•/S
]
•
(Z1)), F (•)

• ∈ LM−−→Q,qc(l‹D(•)
Q]•/S

]
•
(Z2)), we get the isomorphism

B(•)
R•

(Z)⊗B(•)
R•

(Z1,Z2)
(E(•)
• �

top
F (•)
• )

∼−→ p∗•Z,Z1
(E(•)
• )⊗B(•)

R•
(Z)
q∗•Z,Z2

(F (•)
• ) =: E(•)

• “�OS• ,Z1,Z2
F (•)
• .

By using the composition of 9.2.5.4.1 and 9.2.5.4.2, we get the last isomorphism

E(•)
• �L

OS• ,Z1,Z2
F (•)
•

9.2.5.7.1
∼−→ D(•)

R]•
(Z)⊗D(•)

R
]
•,top

(Z1,Z2)

Å
E(•)
• �

top

L F (•)
•

ã
∼−→

(
D(•)
R]•

(Z)⊗L
p-1D(•)

X
]
•

(Z1)
p-1E(•)

•

)
⊗L
q-1D(•)

Q
]
•

(Z2)
q-1F (•)

• . (9.2.5.7.2)
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9.2.5.8 (Preservation of the coherence). It follows from 7.5.9.3.1 that the bifunctor exterior tensor
product of 9.2.5.1.2 induces the bifunctor

−“�L
OS
− : LD−→

b
Q,coh(∗“D(•)

X]/S]
(Z1))× LD−→

b
Q,coh(∗“D(•)

Q]/S]
(Z2))→ LD−→

b
Q,coh(∗“D(•)

R]
(Z)). (9.2.5.8.1)

Lemma 9.2.5.9. Suppose S] = Spf V. The bifunctor 9.2.5.1.4 induces therefore the exact bifunctor

−“�OS,Z1,Z2
− : LM−−→Q,coh(‹D(•)

X]/S]
(Z1))× LM−−→Q,coh(‹D(•)

Q]/S]
(Z2))→ LM−−→Q,coh(‹D(•)

R]/S]
(Z)).

Moreover, it is compatible with the functor 9.2.5.8.1, i.e., for any E(•) ∈ LM−−→Q,coh(∗‹D(•)
X]/S]

(Z1)), F (•) ∈
LM−−→Q,coh(∗‹D(•)

Q]/S]
(Z2)), we have the canonical isomorphism

E(•)“�OS,Z1,Z2F (•) ∼−→ E(•)“�L
OS,Z1,Z2

F (•).

Proof. 1) Let E(•) ∈ LM−−→Q,coh(‹D(•)
X]/S]

(Z1)), F (•) ∈ LM−−→Q,coh(‹D(•)
Q]/S]

(Z2)). It follows from 8.4.5.12(a)
that we can suppose E(•) and F (•) are p-torsion free. If no confusion is possible, the sheaf r−1OS• will
be denoted by OS• . Since E(m) and F (m) are p-torsion free for any m ≥ 0, then E(•)

• := L←l
∗
X(N)(E(•))

∼−→

←l
∗
X(N)(E(•)) and F (•)

• := L←l
∗
X(N)(F (•))

∼−→ ←l
∗
X(N)(F (•)). Using again the p-torsion freeness, we get the

middle isomorphism

E(•)
• �

top

L F (•)
•

9.2.5.4.1
∼−→ p−1E(•)

• ⊗L
OS• q

−1F (•)
•

∼−→ p−1E(•)
• ⊗OS• q

−1F (•)
•

9.2.5.4.3
∼−→ E(•)

• �
top
F (•)
• . (9.2.5.9.1)

By using 9.2.5.9.1 and 9.2.5.7, we get

E(•)
• “�L

OS• ,Z1,Z2
F (•)
•

∼−→ E(•)
• “�OS• ,Z1,Z2

F (•)
• . (9.2.5.9.2)

This yields the first isomorphism

R←lR(N)∗(E
(•)
• “�L

OS• ,Z1,Z2
F (•)
• )

9.2.5.9.2
∼−→ R←lR(N)∗(p

∗
•Z,Z1

(E(•)
• )⊗B(•)

R•
(Z)
q∗•Z,Z2

(F (•)
• ))

∼−→←lR(N)∗(p
∗
•Z,Z1

(E(•)
• )⊗B(•)

R•
(Z)
q∗•Z,Z2

(F (•)
• ))

∼−→ E(•)“�OS,Z1,Z2
F (•) (9.2.5.9.3)

where the second one is checked by using Mittag-Leffler.

Corollary 9.2.5.10. Suppose S] = Spf V. We get the t-exact bifunctor“�OS,Z1,Z2
: Db(LM−−→Q,coh(‹D(•)

X]/S]
(Z1)))×Db(LM−−→Q,coh(‹D(•)

Q]/S]
(Z2)))→ Db(LM−−→Q,coh(‹D(•)

R]/S]
(Z))).

(9.2.5.10.1)

Proposition 9.2.5.11. Suppose S] = Spf V and X affine. Let E(•) ∈ LD−→
b
Q,coh(‹D(•)

X]/S]
(Z1)), F (•) ∈

LD−→
b
Q,coh(‹D(•)

Q]/S]
(Z2)). Choose E(•) ∈ Db(LM−−→Q,coh(‹D(•)

X]/S]
(Z1))), F(•) ∈ Db(LM−−→Q,coh(‹D(•)

Q]/S]
(Z2)))

such that e(E(•))
∼−→ E(•) and e(F (•))

∼−→ F(•) (see 8.4.5.11). Then we have the isomorphism of
Db(LM−−→Q(‹D(•)

R]/S]
(Z))):

E(•)“�OS,Z1,Z2
F(•) ∼−→ e(E(•)“�L

OS,Z1,Z2
F (•)). (9.2.5.11.1)

Proof. Following 8.4.5.13 there exist a representant E(•)• ∈ Kb(‹D(•)
X]/S]

(Z1)) of E(•) such that E(•)n is

p-torsion free and e(E(•)n) ∈ LM−−→Q,coh(‹D(•)
X]/S]

(Z1)) for any n ∈ Z. We can choose E(•)• := e(E(•)•) ∈
Kb(LM−−→Q,coh(‹D(•)

X]/S]
(Z1))) as a representant ofE(•) ; and similarly we choose such an F (•)• andF(•)• :=

e(F (•)•). Set E(•)•
• := L←l

∗
X(N)(E(•)•)

∼−→ ←l
∗
X(N)(E(•)•) and F (•)•

• := L←l
∗
X(N)(F (•)•)

∼−→ ←l
∗
X(N)(F (•)•). We

have the canonical morphism of D−(‹D(•)
R]•/S

]
•
(Z)):

p
(•)!
•Z,Z1

(E(•)•
• )⊗L

B(•)
R•

(Z)
q

(•)!
•Z,Z2

(F (•)•
• )[dR]→ p

∗(•)
•Z,Z1

(E(•)•
• )⊗B(•)

R•
(Z)
q
∗(•)
•Z,Z2

(F (•)•
• ). (9.2.5.11.2)

To check that 9.2.5.11.2 is an isomorphism, by induction using exact triangles, we reduce to the case
where E(•)• and F (•)• are modules, which was already checked (see 9.2.5.9.2). Using Mittag-Leffler, we
conclude by applying the functor R←lR(N)∗.
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Proposition 9.2.5.12. (a) Let E(•) ∈ Db(LM−−→Q,coh(‹D(•)
X]/S]

(Z))), F (•) ∈ Db(LM−−→Q,coh(‹D(•)
Q]/S]

(Z2))).

We get the spectral sequence in LM−−→Q,coh(‹D(•)
R]/S]

) of the form

Hr(E(•))“�OS,Z1,Z2
Hs(F (•)) =: Er,s2 ⇒ En := Hn

Ä
E(•)“�OS,Z1,Z2

F (•)
ä
.

In particular, when E(•) ∈ LM−−→Q,coh(‹D(•)
X]/S]

(Z1)), this yieldsHn
(
E(•)“�OS,Z1,Z2

F (•)) ∼−→ E(•)“�OS,Z1,Z2
Hn(F (•)).

(b) Suppose S] = Spf V and X affine. Let E(•) ∈ LM−−→Q,coh(‹D(•)
X]/S]

(Z1)), F (•) ∈ LD−→
b
Q,coh(‹D(•)

Q]/S]
(Z2)).

We have Hn
Ä
E(•)“�L

OS,Z1,Z2
F (•)

ä ∼−→ E(•)“�OS,Z1,Z2H
n(F (•)).

Proof. The first statement is a consequence of the t-exactness of the functor 9.2.5.10.1. Moreover, when
Q] is affine, this follows from Proposition 9.2.5.11 and the commutativity of the diagram 8.4.5.7.1.

We end this subsection with exterior tensor products for coherent complexes.

9.2.5.13 (Exterior tensor products of complexes coherent). With the notations of 9.1.6.6, it follows from
9.2.5.8.1 that we get the bifunctor −

L
�†OS,Z1,Z2

− := CohZ1,Z2(−“�L
OS,Z1,Z2

−) of the form:

−
L
�†OS,Z1,Z2

− : Db
coh(D†

X]/S]
(†Z1)Q)×Db

coh(D†
Q]/S]

(†Z2)Q)→ Db
coh(D†

R]/S]
(†Z)Q). (9.2.5.13.1)

For instance
D†

X]/S]
(†Z1)Q

L
�†OS,Z1,Z2

D†
Q]/S]

(†Z2)Q
∼−→ D†

R]/S]
(†Z)Q.

Remark 9.2.5.14. Let D1 ⊂ Z1 be a second divisor of X, D2 ⊂ Z2 be a second divisor of Q. Let E ∈
Db

coh(D†
X]/S]

(†D1)Q) ∩ Db
coh(D†

X]/S]
(†Z1)Q) and F ∈ Db

coh(D†
Q]

(†D2)Q) ∩ Db
coh(D†

Q]
(†Z2)Q). Following

9.1.6.6 and 9.2.5.3, the canonical morphism

E
L
�†OS,D1,D2

F → E
L
�†OS,Z1,Z2

F (9.2.5.14.1)

is an isomorphism.
Remark 9.2.5.15. Let us suppose X] = Q], Z1 = Z2. Denoting by δ : X] ↪→ X] × X] the diagonal
immersion, for any E(•), F (•) ∈ LD−→

b
Q,qc(l“D(•)

X]/S]
(Z1)), then we have the canonical isomorphism

E(•)“⊗L
B̃(•)

X
(Z1)
F (•) ∼−→ δ

(•)!
Z (E(•)“�L

OS,Z1,Z1
F (•))[−dX ]. (9.2.5.15.1)

This yields, for any E ,F ∈ Db
coh(D†

X]/S]
(†Z1)Q), the canonical isomorphism

E
L
⊗†OX(†Z1)Q

F ∼−→ δ!
Z(E

L
�†OS,Z1,Z1

F)[−dX ]. (9.2.5.15.2)

Lemma 9.2.5.16. We have, for any E ∈ Db
coh(D†

X]/S]
(†Z1)Q), F ∈ Db

coh(D†
Q]

(†Z2)Q), of the canonical

isomorphism in Db
coh(D†

R]
(†Z)Q):

E
L
�†OS,Z1,Z2

F ∼−→ f∗Z,Z1
(E)

L
⊗†OR(†Z)Q

g∗Z,Z2
(F). (9.2.5.16.1)

Proof. For any complexes E(•) ∈ LD−→
b
Q,coh(∗“D(•)

X]/S]
(Z1)), F (•) ∈ LD−→

b
Q,coh(∗“D(•)

Q]/S]
(Z2)) such that E =

→l
∗
Q E

(•) and F =→l
∗
Q F

(•), as (†Z) ◦ p∗(•)(E(•)) and (†Z) ◦ q∗(•)(F (•)) are objects of LD−→
b
Q,coh(∗“D(•)

R]
(Z)), by

applying the functor→l
∗
Q to 9.2.5.1.5, we get 9.2.5.16.1 from 9.2.5.8.1.

Lemma 9.2.5.17. Let Z ′1 ⊃ Z1 be a second divisor of X, Z ′2 ⊃ Z2 be a second divisor of Q and
Z ′ := p−1(Z ′1) ∪ q−1(Z ′2).

(a) For any E(•) ∈ LD−→
b
Q,qc(∗“D(•)

X]/S]
(Z1)), F (•) ∈ LD−→

b
Q,qc(∗“D(•)

Q]/S]
(Z2)), we have the canonical isomor-

phism in LD−→
b
Q,qc(∗“D(•)

R]
(Z ′)):

(†Z ′)
Ä
E(•)“�L

OS
F (•)

ä ∼−→ (†Z ′1)(E(•))“�L
OS

(†Z ′2)(F (•)). (9.2.5.17.1)
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(b) We have, for any E ∈ Db
coh(D†

X]/S]
(†Z1)Q), F ∈ Db

coh(D†
Q]

(†Z2)Q), the canonical isomorphism in

Db
coh(D†

R]
(†Z ′)Q):

(†Z ′)
Ä
E

L
�†OS,Z1,Z2

F
ä ∼−→ (†Z ′1)(E)

L
�†OS,Z′1,Z

′
2
(†Z ′2)(F). (9.2.5.17.2)

Proof. To check 9.2.5.17.1, we proceed similarly to 9.2.5.3. By applying the functor→l
∗
Q to 9.2.5.17.1, we

obtain therefore 9.2.5.17.2.

Proposition 9.2.5.18. For any E(•) ∈ LD−→
b
Q,qc(l“D(•)

X]/S]
(Z1)), F (•) ∈ LD−→

b
Q,qc(l“D(•)

Q]/S]
(Z2)), we have the

canonical isomorphism in LD−→
b
Q,qc(l“D(•)

R]
(Z)):

E(•)“�L
OS,Z1,Z2

F (•) ∼−→
(
D(•)

R]
(Z)“⊗L

p-1D(•)
X]

(Z1)p
-1E(•)

)“⊗L
q-1D(•)

Q]
(Z2)q

-1F (•). (9.2.5.18.1)

Proof. This follows from 9.2.5.7.2.

Corollary 9.2.5.19. For any E ∈ Db
coh(lD†

X]/S]
(†Z1)Q), F ∈ Db

coh(lD†
Q]/S]

(†Z2)Q), we have the canon-

ical isomorphism in Db
coh(lD†

R]/S]
(†Z)Q):Å

D†
R]S]

(†Z)Q ⊗q−1D†
Q]/S]

(†Z2)Q
q−1F

ã
⊗L
p−1D†

X]/S]
(†Z1)Q

p−1E ∼−→ E
L
�†OS,Z1,Z2

F . (9.2.5.19.1)

Moreover, by taking E = D†
X]/S]

(†Z1)Q, the isomorphism

D†
R]/S]

(†Z)Q ⊗q−1D†
Q]/S]

(†Z2)Q
q−1F ∼−→ D†

X]/S]
(†Z1)Q

L
�†OS,Z1,Z2

F (9.2.5.19.2)

is (D†
R]/S]

(†Z)Q, p
−1D†

X]/S]
(†Z1)Q)-bilinear.

9.2.6 Base change and their commutation with cohomological operations
We keep notation 9.2.1 and we suppose φ = id. Moreover, let

Y] $ //

p
Y]

��
�

X]

p
X]

��
T]

ψ // S],

(9.2.6.0.1)

be a commutative diagram of very nice fine V-log formal schemes. We denote by Y′] := Y] ×X] X
′] and

by $′ : Y′] → X′], g : Y′] → Y] the projection. We suppose T , T ] are regular, D := $−1(Z) is a divisor
of Y and D′ := $−1(Z ′) is a divisor of Y ′.

9.2.6.1. Let ? ∈ {−,b}. With notation 9.2.1.15, it follows from 9.2.1.19 that we get the functors

$
(•)!
•Z := ($,ψ)

(•)!
•Z : LD−→

?
Q,qc(∗‹D(•)

X]•/S
]
•
(Z))→ LD−→

−
Q,qc(∗‹D(•)

Y ]• /T
]
•
(D)), (9.2.6.1.1)

$
(•)!
Z := ($,ψ)

(•)!
Z : LD−→

−
Q,qc(∗‹D(•)

X]/S]
(Z))→ LD−→

?
Q,qc(∗‹D(•)

Y]/T]
(D)). (9.2.6.1.2)

These functors are called the base change by ψ : S] → T] with overconvergent singularities along Z.

9.2.6.2. The morphisms appearing in the propositions 4.4.4.1 or 7.5.6.1 are compatible with the level
change. In particular, we get the composite map

$−1‹D(•)
X]/S]

(Z)→ ‹D(•)
Y]/T]→X]/S]

(D,Z)
∼←− ‹D(•)

Y]/T]
(D). (9.2.6.2.1)
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is a homomorphism of sheaves of rings which fits into the commutative diagram

$−1‹D(•)
X]/S]

(Z)
9.2.6.2.1// ‹D(•)

Y]/T]
(D)

$−1B(•)
X (Z)
?�

OO

// B(•)
Y (D);
?�

OO
(9.2.6.2.2)

and similarly by replacing gothic letters by their corresponding roman letter with a bullet as an index.
For any E(•)

• ∈ LD−→
?
Q,qc(l‹D(•)

X]•/S
]
•
(Z)) (resp. E(•) ∈ LD−→

?
Q,qc(l‹D(•)

X]/S]
(Z))), similarly to 4.4.4.1.4 (resp.

7.5.6.4.1) we get the first (resp. second) isomorphism of D(∗‹D(•)
Y ]• /T

]
•
(D)) (resp. D(∗‹D(•)

Y]/T]
(D)):‹D(•)

Y ]• /T
]
•
(D)⊗L

$−1D̃(•)

X
]
•/S

]
•

(Z)
$−1E(•) ∼−→ $

(•)!
Z (E(•)

• ), (9.2.6.2.3)‹D(•)
Y]/T]

(D)“⊗L
$−1D̃(•)

X]/S]
(Z)$

−1E(•) ∼−→ $
(•)!
Z (E(•)). (9.2.6.2.4)

Remark this do have a meaning since the functors 9.2.6.1.1 and 9.2.6.1.2 are well defined before localising
by lim-ind-isogenies. It follows from 5.1.1.15.3 and 7.5.6.4.2 the isomorphisms:

O(•)
T•
⊗L
O(•)
S•
$−1E(•) := p−1

Y]O(•)
T•
⊗L
$−1p−1

X]
O(•)
S•
$−1E(•) ∼−→ $

(•)!
Z (E(•)

• ), (9.2.6.2.5)

O(•)
T
“⊗L
O(•)

S
$−1E(•) := p−1

Y]O(•)
T
“⊗L
$−1p−1

X]
O(•)

S
$−1E(•) ∼−→ $

(•)!
Z (E(•)). (9.2.6.2.6)

9.2.6.3 (Preservation of the coherence). For any E(•) ∈ LD−→
b
Q,coh(l‹D(•)

X]/S]
(Z)), similarly to 9.2.1.17, we

can check that the canonical morphism‹D(•)
Y]/T]

(D)⊗L
$−1D̃(•)

X]/S]
(Z)

$−1E(•) → ‹D(•)
Y]/T]

(D)“⊗L
$−1D̃(•)

X]/S]
(Z)$

−1E(•) (9.2.6.3.1)

is an isomorphism of LD−→Q,qc(l‹D(•)
Y]/T]

(D)). With 9.2.6.2.4, this yields the isomorphism‹D(•)
Y]/T]

(D)⊗L
$−1D̃(•)

X]/S]
(Z)

$−1E(•) ∼−→ $
(•)!
Z (E(•)). (9.2.6.3.2)

We deduce from 9.2.6.3.2 that the base change preserves the coherence, i.e. the functor 9.2.6.1.2 induces:

$
(•)!
Z : LD−→

b
Q,coh(

l‹D(•)
X]/S]

(Z))→ LD−→
b
Q,coh(

l‹D(•)
Y]/T]

(D)). (9.2.6.3.3)

Via 9.2.1.24 and via the equivalence of categories 8.4.1.15, this yields

$!
Z : Db

coh(D†
X]/S]

(†Z)Q)→ Db
coh(D†

Y]/T]
(†Z)Q) (9.2.6.3.4)

9.2.6.4. Taking inductive limits, we deduce from 7.5.6.1 the following assertions : the canonical mor-
phism

D†
Y]/T]

(†D)Q → D†Y]/T]→X]/S]
(†D,Z)Q (9.2.6.4.1)

is an isomorphism. Moreover, the composite map

$−1D†
X]/S]

(†Z)Q → D†Y]/T]→X]/S]
(†D,Z)Q

∼←− D†
Y]/T]

(†D)Q. (9.2.6.4.2)

is a homomorphism of sheaves of rings which fits into the commutative diagram

$−1D†
X]/S]

(†Z)Q
9.2.6.4.2// D†

Y]/T]
(†D)Q

$−1OX(†Z)Q

?�

OO

// OY(†D)Q.
?�

OO
(9.2.6.4.3)

The canonical morphism of left D†
Y]/T]

(†D)Q-modules 9.2.6.4.1 is more precisely an isomorphism of

(D†
Y]/T]

(†D)Q, $
−1D(m)

Y]/T]
)-bimodules, where the structure of right$−1D†

X]/S]
(†Z)Q-module onD†

Y]/T]
(†D)Q

is given via 9.2.6.4.2.
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9.2.6.5. For any E ∈ Db
coh(D†

X]/S]
(†Z)Q), we get from 9.2.6.3.2 the isomorphism of Db

coh(D†
Y]/T]

(†D)Q):

$!
Z(E)

∼−→ D†
Y]/T]

(†D)Q ⊗L
$−1D†

X]/S]
(†Z)Q

$−1E . (9.2.6.5.1)

For any E ∈ Db
coh(‹D(m)

X]/S]
(Z)Q), via 7.5.6.6.1 and 9.2.6.5.1 we get the isomorphism ofDb

coh(D†
Y]/T]

(†D)Q):

D†
Y]/T]

(†D)Q ⊗D̃(m)

X′/S′,Q
$

(m)!
Z (E(m))

∼−→ $!
Z(D†

X]/S]
(†Z)Q ⊗D̃(m)

X]/S]
(Z)Q
E(m)). (9.2.6.5.2)

Proposition 9.2.6.6. Let E(•) ∈ LD−→
b
Q,qc(

l‹D(•)
X]/S]

(Z)). With notation 9.2.1.15, there exists a canonical

isomorphism in LD−→
b
Q,qc(

l“D(•)
Y′]/T]

) of the form:

$
′(•)!
Z′ ◦ f

(•)!
/S],Z′,Z

(E(•))
∼−→ g

(•)!
/T],D′,D

◦$(•)!
Z (E(•)). (9.2.6.6.1)

Proof. This follows from 9.2.1.14 and 9.2.1.19.

Proposition 9.2.6.7. For any M(•) ∈ LD−→
−
Q,qc(∗‹D(•)

X]/S]
(Z)) and E(•) ∈ LD−→

−
Q,qc(

l‹D(•)
X]/S]

(Z)), we have

the canonical isomorphism in LD−→
−
Q,qc(∗‹D(•)

Y]/T]
(D)):

$
(•)!
Z (M(•)“⊗L

B(•)
X

(Z)
E(•))

∼−→ $
(•)!
Z (M(•))“⊗L

B(•)
Y

(D)
$

(•)!
Z (E(•)). (9.2.6.7.1)

Proof. This is a particular case of 9.2.1.27.1.

Corollary 9.2.6.8. Let Z1 ↪→ Z2 be two divisor of X. Let Di := $−1(Zi) for i = 1, 2. For any
E(•) ∈ LD−→

−
Q,qc(

l‹D(•)
X]/S]

(Z1)), we have the isomorphism

(†D2, D1) ◦$(•)!
Z1

(E(•))
∼−→ $

(•)!
Z2
◦ (†Z2, Z1)(E(•)) (9.2.6.8.1)

Proof. This is contained in 9.2.1.18.

Theorem 9.2.6.9. Let E ′(•) ∈ LD−→
b
Q,qc(

l‹D(•)
X′]/S]

(Z ′)). With notation 9.2.4.14, there exists a canonical

isomorphism in LD−→
b
Q,qc(

l‹D(•)
Y]/T]

(D)) of the form:

$
(•)!
Z ◦ f (•)

/S],Z,Z′,+
(E ′(•)) ∼−→ g

(•)
/T],D,D′,+

◦$′(•)!Z′ (E ′(•)). (9.2.6.9.1)

Proof. By using the equivalence of categories 8.5.4.5,

$
(•)!
•Z ◦ f

(•)
/S]•,Z,Z

′,+
(L←l
∗
X′(N)(E ′(•)))

∼−→ g
(•)
/T ]• ,D,D

′,+
◦$′(•)!•Z′ (L←l

∗
X′(N)(E ′(•))) (9.2.6.9.2)

which follows from 5.3.3.3 (more precisely, the isomorphism is even valid in D(∗‹D(•)
Y ]• /T

]
•
(D))).

9.2.6.10. It follows from 7.5.6.5.4 by going through to the limit on the level and tensorisation with Q
the isomorphism:

D†
Y]/T]

(†D)Q ⊗L
$−1D†

X]/S]
(†Z)Q

f−1(‹D(m)

X]/S]
⊗OX

ω−1
X]/S]

)r
∼−→ D†

Y]/T]
(†D)Q ⊗OY

ω−1
Y]/T]

(9.2.6.10.1)

where the index r means that we take the right structure of left D-module.

Proposition 9.2.6.11. Let E ∈ Db
coh(D†

X]/S]
(†Z)Q). We have the canonical isomorphism

$!
Z(DX]/S](E))

∼−→ DY]/T]($
!
Z(E)). (9.2.6.11.1)
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Proof. Since Db
coh(D†

X]/S]
(†Z)Q) = Db

perf(D
†
X]/S]

(†Z)Q), then we have the last canonical isomorphism

$!
Z(DX]/S](E))

∼−→ D†
Y]/T]

(†D)Q ⊗L
$−1D†

X]/S]
(†Z)Q

$−1RHomD†
X]/S]

(†Z)Q
(E ,D†

X]/S]
(†Z)Q ⊗OX

ω−1
X]/S]

)[dX]/S] ]

∼−→ D†
Y]/T]

(†D)Q ⊗L
$−1D†

X]/S]
(†Z)Q

RHom$−1D†
X]/S]

(†Z)Q
($−1E , $−1(D†

X]/S]
(†Z)Q ⊗OX

ω−1
X]/S]

))[dX]/S] ]

∼−→
4.6.3.6.1

RHom$−1D†
X]/S]

(†Z)Q
($−1E ,D†

Y]/T]
(†D)Q ⊗L

$−1D†
X]/S]

(†Z)Q
(D†

X]/S]
(†Z)Q ⊗OX

ω−1
X]/S]

)r)[dX]/S] ]

∼−→
9.2.6.10.1

RHom$−1D†
X]/S]

(†Z)Q
($−1E ,D†

Y]/T]
(†D)Q ⊗OY

ω−1
Y]/T]

)[dX]/S] ]

∼−→ RHomD†
Y]/T]

(†D)Q
($!

ZE ,D
†
Y]/T]

(†D)Q ⊗OY
ω−1
Y]/T]

))[dY]/T] ] = DY]/T]($
!
Z(E)).

Definition 9.2.6.12. We define the category DVR(V) as follows: an object is the data of a complete
discrete valued ring W of mixed characteristic (0, p) together with a morphism of local algebras V → W.
A morphism W →W ′ is the data of a morphism of local V-algebras W →W ′.

Notation 9.2.6.13 (Base change of DVR). Let α : W → W ′ be a morphism of DVR(V) (see notation
9.2.6.12), T := SpfW, T′ := SpfW ′. let X be a smooth formal scheme over W, E(•) ∈ LD−→

b
Q,qc(“D(•)

X/T),
X′ := X ×T Spf T′, and π : X′/T′ → X/T be the morphism induced by the projection. The base change
of E(•) by α is the object π(•)!(E(•)) of LD−→

b
Q,qc(“D(•)

X′/T′) According to notation 9.2.6.2.6, we can simply
write

W ′“⊗L
WE(•) := π(•)!(E(•)).

9.2.7 Coherence descent by base change of a finite morphism of complete
DVR

Let V ′ be an object of DVR(V) and ρ : V → V ′ be its structural morphism. We set S′ := Spf V ′. Let
X]/S be a flat, log smooth very nice fine V-log formal scheme, X′] := X ×S S′, and f : X′ → X be the
canonical projection. We suppose X and X ′ are regular. Let Z be a divisor of X and Z ′ := f−1(Z). We
denote by f !

Z the extraordinary inverse image of X′ → X above S′ → S with overconvergent singularities
along Z, i.e. f !

Z is the base change functor via ρ (see 9.2.6.1).

Lemma 9.2.7.1. We have the following properties.

(a) For any open U of X, setting U′ := f−1(U), the ring homomorphisms Γ(U,D(•)
X]•/S•

(Z))→ Γ(U′,D(•)
X′]• /S

′
•
(Z ′)),

Γ(U,D(•)
X]/S

(Z))→ Γ(U′, “D(•)
X′]/S′

(Z ′)) and Γ(U,D†
X]/S

(†Z)Q)→ Γ(U′,D†
X′]/S′

(†Z ′)Q) are flat.

(b) For any E ∈ Db
coh(D†

X]/S
(†Z)Q), we have the isomorphism:

f !
Z(E)

∼−→ D†
X′]/S′

(†Z ′)Q ⊗f−1D†
X]/S

(†Z)Q
f−1E .

Proof. a) Since V ′ is ideally Hausdorff for the p-adic topology, then if follows from [Bou61a, Theorem 1
of III.§5.2] that V ′ is a flat V-algebra. Hence S′• → S• is flat. It follows from 5.1.1.15.3 the isomorphism:

O(•)
S′•
⊗L
O(•)
S•
$−1D(•)

X]•/S•
(Z)

∼−→ D(•)
X′]• /S

′
•
(Z ′). (9.2.7.1.1)

This yields the flatness of Γ(U,D(•)
X]•/S•

(Z)) → Γ(U′,D(•)
X′]• /S

′
•
(Z ′)). Tensoring with Q and passing to the

limits, we get the two other ones.
b) It follows from the part (a) that the ring homomorphism f−1D†

X]/S
(†Z)Q → D†X′]/S′(

†Z ′)Q is flat.
Using 9.2.6.5.1, we are done.

Lemma 9.2.7.2. Suppose V → V ′ is finite.
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(a) Suppose X is affine. Let E be a coherent D†
X]/S

(†Z)Q-module. Then the canonical morphisms

V ′ ⊗V Γ(X, E)→ D†
X′]/S′

(†Z ′)Q ⊗D†
X]/S

(†Z)Q
Γ(X, E)→ Γ(X′, f !

Z(E)) (9.2.7.2.1)

are isomorphisms. Moreover, D†
X′]/S′

(†Z ′)Q is a faithfully flat D†
X]/S

(†Z)Q-module for both left or
right structure.

(b) For any D†
X]/S

(†Z)Q-module E, the canonical morphisms

f∗(E) := OX′ ⊗f−1OX
f−1E → OX′(

†Z ′)Q ⊗f−1OX(†Z)Q
f−1E → D†

X′]/S′
(†Z ′)Q ⊗f−1D†

X]/S
(†Z)Q

f−1E

are isomorphisms.

(c) Let φ : E ′ → E be a morphism of OX-modules. Then φ is an isomorphism if and only if f∗(φ) is an
isomorphism.

Proof. a) i) Since E is a coherent D†
X]/S

(†Z)Q-module and f !
Z(E) is a coherent D†

X′]/S
(†Z ′)Q, then via

the corresponding theorems of type A the canonical morphisms D†
X]/S

(†Z)Q ⊗D†
X]/S

(†Z)Q
Γ(X, E) → E ,

and D†
X′]/S

(†Z ′)Q ⊗D†
X′]/S

(†Z′)Q
Γ(X′, f !

Z(E))→ f !
Z(E) are isomorphisms. This yields by associativity of

tensor products that the canonical morphism D†
X′]/S′

(†Z ′)Q ⊗D†
X]/S

(†Z)Q
Γ(X, E) → Γ(X′, f !

Z(E)) is an

isomorphism.
ii) By associativity of tensor products, to check the first morphism of 9.2.7.2.1 is an isomorphism, we

reduce to the case where E = D†
X]/S

(†Z)Q, which easily follows from the fact that the morphism V → V ′

is finite. Since the homomorphism V → V ′ is faithfully flat (e.g. use [Bou61a, I.3.5, Proposition 9 and
III.5.2, Theorem 1]), then D†

X′]/S′
(†Z ′)Q is a faithfully flat D†

X]/S
(†Z)Q-module for both left or right

structure.
b) By associativity of tensor products, to check the third statement we reduce to the case where

E = D†
X]/S

(†Z)Q, which is easy.
c) Let us prove the forth assertion. Since V ′ is a finite faithfully flat V-algebra, since V and V ′ are

complete for the p-adic topology then V ′ is a free V-module of finite type (e.g. use [Bou61a, II.3.2,
Proposition 5]). Let U be an affine open of X and U′ := f−1(U). Then, Γ(U′,OX′) is also a free Γ(U,OX)-
module of finite type, and we can conclude.

Remark 9.2.7.3. Suppose X is affine. It is likely that we do not need the finiteness of V → V ′ to get that
D†

X′]/S′
(†Z ′)Q is a faithfully flat D†

X]/S
(†Z)Q-module for both left or right structure.

Proposition 9.2.7.4. Suppose V → V ′ finite. Let E be a D†
X]/S

(†Z)Q-coherent module. Then E is a

coherent D†
X]/S,Q-module if and only if f !

Z(E) is a coherent D†
X′]/S′,Q-module.

Proof. 1) Using Lemma 9.2.7.2.b (for both cases Z and the empty set), we check that the canonical
morphism

D†
X′]/S′,Q ⊗f−1D†

X]/S,Q

f−1E → D†
X′]/S′

(†Z ′)Q ⊗f−1D†
X]/S

(†Z)Q
f−1E = f !

Z(E)

is an isomorphism. If E is also a coherent D†
X]/S,Q-module, this implies that f !

Z(E) is D†
X′]/S′,Q-coherent.

2) Conversely, suppose f !
Z(E) is a coherent D†

X′]/S′,Q-module.

a) Since the D†
X]/S,Q-coherence of E is local on X, we can suppose X is affine. Using theorem of

type A, this yields that Γ(X′, f !
Z(E)) is a D†

X′]/S′,Q-module of finite presentation. Set E := Γ(X, E).

Following 9.2.7.2.a, this implies that D†
X′]/S′

(†Z ′)Q ⊗D†
X]/S

(†Z)Q
E is a D†

X′]/S′,Q-module of finite pre-

sentation. Using again 9.2.7.2.a, we get both isomorphism V ′ ⊗V D†X]/S(†Z)Q
∼−→ D†

X′]/S′
(†Z ′)Q, and
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V ′ ⊗V D†X]/S,Q
∼−→ D†

X′]/S′,Q. Hence, the canonical morphisms V ′ ⊗V E → D†
X′]/S′,Q ⊗D†

X]/S,Q

E →

D†
X′]/S′

(†Z ′)Q ⊗D†
X]/S

(†Z)Q
E are isomorphisms. This yields that D†

X′]/S′,Q ⊗D†
X]/S,Q

E is a D†
X′]/S′,Q-

module of finite presentation. By full faithfulness of D†
X]/S,Q → D†

X′]/S′,Q, then E is a D†
X]/S,Q-module

of finite presentation.
c) Let E∆ := D†

X]/S,Q ⊗D†
X]/S,Q

E. By applying the functor f∗ = OX′ ⊗f−1OX
− to the morphism

E∆ → E , we get (up to canonical isomorphisms) the homomorphism of coherent D†
X′]/S′,Q-modules

f !(E∆)→ f !
Z(E). Since Γ(X′, f !(E∆))

∼−→ V ′ ⊗V Γ(X, E∆)
∼−→ V ′ ⊗V E and Γ(X′, f !

Z(E))
∼−→ V ′ ⊗V E,

then by applying the functor Γ(X′,−) to f !(E∆) → f !
Z(E), we get an isomorphism. Since X′] is affine,

using the theorem of type A satisfied by coherent D†
X′]/S′,Q-modules, this yields that the morphism

f !(E∆)→ f !
Z(E) of coherent D†

X′]/S′,Q-modules is an isomorphism. Using 9.2.7.2.c, this implies that the
morphism E∆ → E is an isomorphism.

9.3 Exact closed immersions
Let S] be a p-torsion free noetherian nice fine V-log formal scheme as defined in 3.3.1.10). Moreover, let
u : Z] ↪→ X] be an exact closed immersion of p-torsion free log smooth S]-log formal schemes such that
the underlying closed immersion of schemes of u0 is regular. Let Y] be the open of X] complementary
to the underlying topological space of Z]. Let I be the ideal defining u.

Suppose S0, X0, Z0 are regular. Let D be some divisor of respectively X0 such that E := D ∩ Z0 is
a divisor of Z0. We fix λ0 ∈ L(N). We set B̃(•)

X (D) := λ∗0B
(•)
X (D), B̃(•)

Z (E) := λ∗0B
(•)
Z (E), ‹D(•)

X]/S]
(D) :=

B̃(•)
X (D)“⊗O(•)

X

“D(•)
X]/S]

, ‹D(•)
Z]/S]

(E) := B̃(•)
Z (E)“⊗O(•)

Z

“D(•)
Z]/S]

. We denote by respectively X̃](m) and Z̃](m) the

ringed V-log formal scheme (X], B̃(m)
X (D)) and (Z], B̃(m)

Z (E)), and by u(m)
D = ũ(m) : Z̃]/S](m) → X̃]/S](m)

the induced morphism of relative ringed V-log formal schemes. In this subsection, by ‹DX] we mean
B̃(m)
X (D) ⊗OX

D(m)

X]/S]
(resp. ‹D(m)

X]/S]
(D), resp. ‹D(m)

X]/S]
(D)Q, resp. D†X]/S](D)Q) ; and by ‹DZ] we mean

B̃(m)
Z (E)⊗OZ

D(m)

Z]/S]
(resp. ‹D(m)

Z]/S]
(E), resp. ‹D(m)

Z]/S]
(E)Q, resp. D†Z]/S](E)Q). By BX we means B̃(m)

X (D)

(resp. B̃(m)
X (D), resp. B̃(m)

X (D)Q, resp. OX(†D)Q) and by BZ we means B̃(m)
Z (E) (resp. B̃(m)

Z (E), resp.
B̃(m)
Z (E)Q, resp. OZ(†E)Q).
We get the (‹DZ] , u

−1‹DX])-bimodule ‹DZ]→X] := u−1(‹DX]/I‹DX]) (e.g. see 9.2.1.20 for the last re-
spective case). We have the (u−1‹DX] , ‹DZ])-bimodule ‹DX]←Z]/S] := B̃(m)

X (D)“⊗OX
“D(m)

X]←Z]/S]
(resp.‹DX]←Z]/S] := B̃(m)

X (D)“⊗OX
“D(m)

X]←Z]/S],Q, resp. ‹DX]←Z]/S] := D†
X]←Z]/S]

(D)Q).

9.3.1 The fundamental isomorphism for formal schemes

The following lemma implies that we can apply 5.2 in the case where ‹DX] (resp. ‹DZ]) is equal to
B̃(m)
X (D)⊗OX

D(m)

X]/S]
(resp. B̃(m)

Z (E)⊗OZ
D(m)

Z]/S]
)).

Lemma 9.3.1.1. For any m ∈ N, OZ and u−1B̃(m)
X (D) are tor independent over u−1OX. The sheaves

OZ and u−1OX(†D)Q are tor independent over u−1OX. For any m, i ∈ N, OZi and u−1B̃(m)
Xi

(D) are tor
independent over u−1OXi .

Proof. Since this is local on X, we can suppose X = Spf A affine, integral and there exist f ∈ OX

lifting a local equation of D in X0. Since X is p-torsion free, we have the short exact sequence
0 → OX{T} −→

fpm+1T−p
OX{T} → B(m)

X (D) → 0, which gives a flat resolution B(m)
X (D). By applying

OZ⊗u−1OX
u−1(−), this yields the short exact sequence 0→ OZ{T} −→

[fpm+1T−p]Z
OZ{T} → B(m)

Z (E)→ 0

where [−]Z is the reduction modulo I and we get the first tor independence. By flatness of the ex-
tension B̃(m)

X (D) → OX(†D)Q, we get the second one. Finally, the last part was already checked (see
9.2.1.26).
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9.3.1.2 (Local description). Suppose X] is affine and there exist some integers 0 ≤ r ≤ d and a cartesian
diagram of morphisms of p-torsion free nice fine log smooth S]-log-formal schemes) of the form:

X]
α //

�

Ad,r
S]

Z]
?�

u

OO

// Ar,r
S]

?�

OO

such that the horizontal morphisms are log-étale and the right morphism is the canonical exact closed
immersion whose ideal is generated by tr+1, . . . , td. Recall following 5.2.1.1, this is Zariski locally possible.
We denote by straight letter, the global section of a sheaf on X or on Z, e.g. ‹DX] := Γ(X, ‹DX]) and‹DZ] := Γ(Z, ‹DZ]).

Let Y := α−1(Bn,r
S]

) be the open S]-(formal) subscheme of X] with trivial log-structure (see [Ogu18,
III.1.2.8]). Let t1, . . . , tr ∈MX] and tr+1, . . . , td ∈ Γ(X,OX) be the element given by α. Then tr+1, . . . , td
generate I := Γ(X, I), t1, . . . , tr are semi-logarithmic coordinates of Z] over S], and tr+1, . . . , td is a basis
of I/I2, where t1, . . . , tr ∈ Γ(Z,MZ]) (resp. tr+1, . . . , td ∈ Γ(X,OZ)) are the images of t1, . . . , tr (resp.
tr+1, . . . , td) via Γ(X,MX]) → Γ(Z,MZ]) (resp. Γ(X, I) → Γ(Z,OZ)). Remark that since the closed
immersion u is regular then it follows from [Gro67, 16.9.3] that tr+1, . . . , td is a quasi-regular sequence
of I := Γ(X, I) and then by noetherianity (see [Gro67, 16.9.10]) is a regular sequence of I.

We simply write τi] := µn(m),γ(ti)−1 ∈ B̃(m)
X (D)⊗OX

PnX]/S],(m) for i = 1, . . . , r (see notation 3.2.2.4),

τj := 1 ⊗ tj − tj ⊗ 1 ∈ B̃(m)
X (D) ⊗OX

PnX]/S],(m) for j = r + 1, . . . , d. We write τ i] := µn(m),γ(ti) − 1 ∈
B̃(m)
Z (E)⊗OZ

PnZ]/S],(m) for i = 1, . . . , r. The sheaf of B̃(m)
X (D)-algebras B̃(m)

X (D)⊗OX
PnX]/S],(m) is a free

B̃(m)
X (D)-module with the basis {τ (r)

{(i,0)}(m) = τ ]
{(i,0)}(m) | i ∈ Nr, such that |i| ≤ n}, and B̃(m)

Z (E)⊗OX

PnZ]/S],(m) is a free B̃(m)
Z (E)-module with the basis {τ{i}(m)

] | i ∈ Nr such that |i|| ≤ n}. According to

4.5.1.1, the corresponding dual basis of B̃(m)
X (D)⊗OX

D(m)

X]/S],n
is denoted {∂〈k〉(m)

(r) | k ∈ Nd, |k| ≤ n} and

the corresponding dual basis of B̃(m)
Z (E)⊗OZ

D(m)

Z]/S],n
is denoted by {∂〈i〉(m)

] | i ∈ Nr, |i| ≤ n} The sheaf

B̃(m)
X (D)⊗OX

D(m)

X]/S]
is a free B̃(m)

X (D)-module with the basis {∂〈k〉(m)

(r) | k ∈ Nd}, and B̃(m)
Z (E)⊗OZ

D(m)

Z]/S]

is a free B̃(m)
Z (E)-module with the basis {∂〈i〉(m)

] | i ∈ Nr}.

9.3.1.3. Let I (resp. Ii) be the ideal of OX (resp. OXi) induced by the exact closed immersion
u : Z] ↪→ X] (resp. ui : Z

]
i ↪→ X]

i ).

(a) Since OZi = u−1OXi/u−1Ii, then we check‹D(m)

Z]
i
→X]

i
/S]
i

(D) = ũ∗i ‹D(m)

X]
i
/S]
i

(D) = u−1(‹D(m)

X]
i
/S]
i

(D)/Ii‹D(m)

X]
i
/S]
i

(D)).

Since I is OX-coherent, since ‹D(m)

X]/S]
(D) is a coherent ring, then I ⊗OX

‹D(m)

X]/S]
(D) is a coherent

right ‹D(m)

X]/S]
(D)-module. Since I is OX-flat (recall X and Z are regular and use [Gro66, 15.4.2]),

this yields that I‹D(m)

X]/S]
(D)

∼−→ I ⊗OX
‹D(m)

X]/S]
(D) and ‹D(m)

X]/S]
(D)/I‹D(m)

X]/S]
(D) are coherent right‹D(m)

X]/S]
(D)-modules. Moreover, since ‹D(m)

X]/S]
(D) ⊗V (V/πi+1V)

∼−→ ‹D(m)

X]
i
/S]
i

(D), then we get the
isomorphisms

I‹D(m)

X]/S]
(D)/πi+1I‹D(m)

X]/S]
(D)

∼−→ (I ⊗OX
‹D(m)

X]/S]
(D))⊗D̃(m)

X]/S]
(D)

‹D(m)

X]/S]
(D)/πi+1‹D(m)

X]/S]
(D)

∼−→ I ⊗OX
‹D(m)

X]
i
/S]
i

(D)
∼−→ Ii ⊗OXi ‹D(m)

X]
i
/S]
i

(D)
∼−→ Ii‹D(m)

X]
i
/S]
i

(D).

Via 7.2.3.16.(i), this yields that the canonical morphism‹D(m)

X]/S]
(D)/I‹D(m)

X]/S]
(D)→ lim←−

i

‹D(m)

X]
i
/S]
i

(D)/Ii‹D(m)

X]
i
/S]
i

(D) (9.3.1.3.1)

is an isomorphism.
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Recall ‹D(m)

Z]→X]/S]
(D) := lim←−

i

‹D(m)

Z]
i
→X]

i
/S]
i

(D) (see 7.5.5.10). Since u∗ commutes with projective limits,

we deduced from 9.3.1.3.1 the isomorphism

u∗‹D(m)

Z]→X]/S]
(D)

∼−→ ‹D(m)

X]/S]
(D)/I‹D(m)

X]/S]
(D). (9.3.1.3.2)

Recall D†
Z]→X]/S]

(†D)Q := lim−→
m

‹D(m)

Z]→X]/S]
(D)Q (see 9.2.1.20). Taking the tensor product by Q on Z

and next to the inductive limit on the level, we get therefore:

D†
Z]→X]/S]

(†D)Q
∼−→ u−1(D†

X]/S]
(†D)Q/ID†X]/S](

†D)Q) (9.3.1.3.3)

(b) Suppose X is affine and put ‹D(m)

X]/S]
(D) := Γ(X, ‹D(m)

X]/S]
(D)), ‹D(m)

Z]→X]/S]
(D) := Γ(X, ‹D(m)

Z]→X]/S]
(D)).

We prove similarly that ‹D(m)

X]/S]
(D)/I‹D(m)

X]/S]
(D) is a coherent right ‹D(m)

X]/S]
(D)-module. Since‹D(m)

X]/S]
(D)⊗V (V/πi+1V)

∼−→ ‹D(m)

X]
i
/S]
i

(D), with 7.2.1.3, this implies that the canonical morphism‹D(m)

X]/S]
(D)/I‹D(m)

X]/S]
(D)→ lim←−

i

‹D(m)

X]
i
/S]
i

(D)/Ii‹D(m)

X]
i
/S]
i

(D) (9.3.1.3.4)

is an isomorphism. Since the functor Γ(X,−) commutes with projective limits, the isomorphisms
9.3.1.3.1 and 9.3.1.3.4 induce Γ(X, ‹D(m)

X]/S]
(D)/I‹D(m)

X]/S]
(D))

∼−→ ‹D(m)

X]/S]
(D)/I‹D(m)

X]/S]
(D). This

yields: ‹D(m)

Z]→X]/S]
(D)

∼−→ ‹D(m)

X]/S]
(D)/I‹D(m)

X]/S]
(D). (9.3.1.3.5)

Taking the tensor product by Q on Z and next to the inductive limit on the level, we get

D†
Z]→X]/S]

(†D)Q
∼−→ D†

X]/S]
(†D)Q/ID

†
X]/S]

(†D)Q. (9.3.1.3.6)

9.3.1.4. Suppose we are in the local situation of 9.3.1.2.

(a) According to 5.2.2.3, we denote by B̃(m)
X (D)⊗OX

D(m)

X],Z],t/S]
the free B̃(m)

X (D)-module with the basis

{∂〈(i,0)〉(m)

(r) | i ∈ Nr}, where 0 := (0, . . . , 0) ∈ Nd−r. The sheaf B̃(m)
X (D) ⊗OX

D(m)

X],Z],t/S]
is equal to

the sub-OS-algebra of B̃(m)
X (D)⊗OX

D(m)

X]/S]
which is generated by B̃(m)

X (D), by ∂〈p
h〉(m)

],i and ∂〈p
h〉(m)

j

for any 1 ≤ i ≤ r, r + 1 ≤ j ≤ d and 0 ≤ h ≤ pm.

(b) Let ‹D(m)

X],Z],t
(D) be the p-adic completion of B̃(m)

X (D) ⊗OX
D(m)

X],Z],t/S]
. A section of the sheaf‹D(m)

X]/S]
(D) can uniquely be written of the form

∑
k∈Nd ak∂

〈k〉(m) such that ak ∈ B̃(m)
X (D) con-

verges to 0 when |k| → ∞. A section of the sheaf ‹D(m)

Z]/S]
(E) can uniquely be written of the

form
∑
l∈Nr bl∂

〈l〉(m) such that bl ∈ OZ converges to 0 when |l| → ∞. Then ‹D(m)

X],Z],t
(D) is a sub-

ring of ‹D(m)

X]/S]
(D) whose elements can uniquely be written of the form

∑
l∈Nr al∂

〈(l,0)〉(m) (recall

0 := (0, . . . , 0) ∈ Nd−r) where al ∈ B̃(m)
X (D) converges to 0 when |l| → ∞. Taking p-adic completion

of the diagram 5.2.2.5.7, with notation 7.5.5.10 we get the canonical diagram‹D(m)

X],Z],t
(D)/I‹D(m)

X],Z],t
(D)
� � // ‹D(m)

X]/S]
(D)/I‹D(m)

X]/S]
(D)

u∗‹D(m)

Z]/S]
(E)

∼ ϑ

OO

θ // u∗‹D(m)

Z]→X]/S]
(D)

∼ 9.3.1.3

OO
(9.3.1.4.1)

where ϑ : u∗‹D(m)

Z]/S]
(E)

∼−→ ‹D(m)

X],Z],t
(D)/I‹D(m)

X],Z],t
(D) is an isomorphism of V-algebras.

(c) We set D†
X],Z],t

(D) := lim−→m
‹D(m)

X],Z],t
(D). We get a similar diagram than 9.3.1.4.1 by replacing ‹D(m)

with D† and by adding applying the functor Q⊗Z −.
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(d) By ‹DX],Z],t we mean B̃(m)
X (D)⊗OX

D(m)

X],Z],t/S]
(resp. ‹D(m)

X],Z],t
(D), resp. ‹D(m)

X],Z],t
(D)Q, resp. D†X],Z],t(D)Q).

9.3.1.5. LetM be a right ‹DX]-module. We set ũ[0(M) := u−1HomBX
(u∗BZ,M).

(a) We endow ũ[0(M) with a structure of right ‹DZ] -module as follows. Suppose X affine. Let x ∈
Γ(Z, ũ[0(M)) and Q ∈ ‹DZ. Choose QX ∈ ‹DX such that ϑ(Q) = QX (see 9.3.1.4.1). We define x ·Q
so that we get the equality

ev1(x ·Q) := ev1(x) ·QX, (9.3.1.5.1)

where ev1 : Γ(Z, ũ[0(M)) ↪→ Γ(X,M) is the evaluation at 1 homomorphism (which is injective).
Since I annihilates ev1(x), we remark that this is well defined.

(b) When ‹DX] = B̃(m)
X (D) ⊗OX

D(m)

X]/S]
, we have a canonical way to endow ũ[0(M) with a canonical

structure of right D(m)
Z -module (see 5.2.5.1). It follows from the computation 5.2.5.2.1 that both

structures are identical.

9.3.1.6 (Local description of the right ‹DX] -module structure of ũ[0(M)). Suppose we are in the local
situation of 9.3.1.2. LetM be a right ‹DX]-module. Since ϑ : u∗BZ ⊗BX

‹DX],Z],t
∼−→ ‹DX],Z],t/I‹DX],Z],t,

we have the isomorphism

ũ[0(M)
∼−→ u−1HomD̃

X],Z],t

(‹DX],Z],t/I‹DX],Z],t,M). (9.3.1.6.1)

Following 9.3.1.4.1, we have the isomorphism of OS-algebras ϑ : u∗‹DZ]
∼−→ ‹DX],Z],t/I‹DX],Z],t (see

notation 9.3.1.4.1). Hence, we get from 9.3.1.6.1 the isomorphism

ũ[0(M)
∼−→ u−1HomD̃

X],Z],t

(u∗‹DZ] ,M) (9.3.1.6.2)

By using 9.3.1.5.1 formula, we compute that this isomorphism 9.3.1.6.2 is an isomorphism of right u∗‹DZ] -
modules, and 9.3.1.6.1 is therefore an isomorphism of right ‹DX],Z],t/I‹DX],Z],t-modules. If there is no
ambiguity, we can avoid writing u−1 or u∗, e.g. we can simply write HomD̃

X],Z],t

(‹DZ] ,M) instead of

u−1HomD̃
X],Z],t

(u∗‹DZ] ,M).

9.3.1.7. Suppose we are in the local situation of 9.3.1.2. LetM be a right ‹DX/S-module.

(a) By derivating 9.3.1.6.2, we get the isomorphism of Db(r‹DX],Z],t) of the form

ũ[(M)
∼−→ RHomD̃

X],Z],t

(‹DX],Z],t/I‹DX],Z],t,M). (9.3.1.7.1)

Let s := d− r, and f1 = tr+1, . . . , fs := td. Let K•(f) be the Koszul complex of f = (f1, . . . , fs) (see
notation 5.2.5.4). We set ‹K•(f) := BX ⊗OX

K•(f).

Since f1, . . . , fs is a regular sequence of I, since OZ and u−1BX are tor independent over u−1OX

(see 9.3.1.1), then the canonical morphism ‹K•(f)→ BX/IBX (given by the canonical map ‹K0(f) =

BX → BX/IBX) is a quasi-isomorphism. Hence, we get the isomorphism of Db(BX)

φf : ũ[(M)
∼−→ HomBX

(‹K•(f),M).

Since f1, . . . fs are in the center of ‹DX],Z],t and since ‹DX],Z],t is a flat BX-algebra, then the quasi-
isomorphism ‹DX],Z],t ⊗BX

‹K•(f)
∼−→ ‹DX],Z],t/I‹DX],Z],t in the category of complexes of ‹DX],Z],t-

bimodules. We get the commutativity of diagram

ũ[(M)
φf

∼
//

∼9.3.1.7.1

��

φt

++

HomBX
(‹K•(f),M)

∼
��

RHomD̃
X],Z],t

(‹DX],Z],t/I‹DX],Z],t,M) HomD̃
X],Z],t

(‹DX],Z],t ⊗BX
‹K•(f),M),∼

oo

(9.3.1.7.2)

591



where φt is the homomorphism making commutative the upper triangle. By commutativity of
5.2.5.4.2, φt is an isomorphism of Db(r‹DX],Z],t). Hence, we get the isomorphism of right ‹DX],Z],t-
modules

φst := Hs(φt) : Rsũ[0(M)
∼−→ HsHomD̃

X],Z],t

(‹DX],Z],t ⊗BX
‹K•(f),M). (9.3.1.7.3)

We have the homomorphism of right ‹DX],Z],t-modules HomD̃
X],Z],t

(‹DX],Z],t ⊗BX
‹Ks(f),M) → M

(the structure of right ‹DX],Z],t-module onM comes from its structure of ‹DZ] via ϑ) given by φ 7→
φ(e1 ∧ · · · ∧ es). SinceM→M/IM is a morphism of right ‹DX],Z],t-modules, then this induces the
morphism of complex of right ‹DX],Z],t-modules of the form HomD̃

X],Z],t

(‹DX],Z],t ⊗BX
‹K•(f),M)→

M/IM. This yields the isomorphism of right ‹DX],Z],t-modules

HsHomD̃
X],Z],t

(‹DX],Z],t ⊗BX
‹K•(f),M)

∼−→ M/IM. (9.3.1.7.4)

Notation 9.3.1.8. Let E ∈ D(l‹DX]). We set:

ũ!(E) := ‹DZ]→X] ⊗L
u−1D̃

X]
u−1E [du]. (9.3.1.8.1)

Beware, in the first respective case, this notation has not to be confused with its completed version
denoted by ũ(m)! of 7.5.5.6. We will work with the completed version functor in the subsection 9.3.3.
Using 9.3.1.3.2 and 9.3.1.3.3 for the less obvious cases, we can check the canonical morphism

Lũ∗(E) := BZ ⊗L
u−1BX

u−1E ∼−→ u−1(BX/IBX ⊗L
BX
E)

∼−→ u−1(‹DX]/I‹DX] ⊗L
D̃

X]
E)→ ‹DZ]→X] ⊗L

u−1D̃
X]
u−1E (9.3.1.8.2)

is an isomorphism, which yields Lũ∗(E)[du]
∼−→ ũ!(E).

Suppose now we are in the local situation of 9.3.1.2. Let Q ∈ ‹DZ] . Choose QX ∈ ‹DX],Z],t such that
[QX]Z = ϑ(Q) (use 9.3.1.4.1). For any section x of E , we have the formula in ũ∗(E):

Q(ũ∗(x)) = ũ∗(QX · x)). (9.3.1.8.3)

Indeed, by fonctoriality, we reduce to the case where E =, which easily follows from 5.2.2.6.1 by p-adic
completion (and inductive limits on the level). Via the monomorphism of rings ‹DX],Z],t ↪→ ‹DX] , we
check the canonical homorphism ‹DZ] ⊗L

u−1D̃
X],Z],t

u−1E → Lũ∗(E)

is an isomorphism ofD(l‹DZ]). Via the isomorphisms ‹DX],Z],t⊗BX
‹K•(f)

∼−→ ‹DX],Z],t/I‹DX],Z],t

ϑ
∼←− ‹DZ] ,

this yields the isomorphism of D(‹DX],Z],t):

(‹DX],Z],t ⊗BX ‹K•(f))⊗
u−1D̃

X],Z],t

u−1E ∼−→ Lũ∗(E). (9.3.1.8.4)

9.3.1.9. Suppose we are in the local situation of 9.3.1.2. Since u∗‹DX],Z],t = ‹DX]/I‹DX] , then ‹DX]/I‹DX]

is a (u∗‹DZ] , ‹DX])-bimodule. Using the formula 9.3.1.8.3 applied to the case E = ‹DX] , we compute
that ‹DX],Z],t/I‹DX],Z],t is also a left u∗‹DZ]-submodule of ‹DX]/I‹DX] , and then a (u∗‹DZ] , ‹DX],Z],t)-sub-
bimodule of ‹DX]/I‹DX] .

Since u∗θ : u∗‹DZ] → u∗‹DX],Z],t is a homomorphism of left u∗‹DZ] -modules, then via the commutativity
of 9.3.1.4.1, this implies that the bijection ϑ : u∗‹DZ]

∼−→ ‹DX],Z],t/I‹DX],Z],t is an isomorphism of left
u∗‹DZ] -modules.
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9.3.1.10 (Semi-logarithmic adjoint operator). Suppose we are in the local situation of 9.3.1.2. Let
k ∈ Nd. We still denote by τ∂

〈k〉(m)

(r) the image of the operator τ∂〈k〉(m)

(r) defined at 4.5.1.1.2 via the ring

homomorphism D
(m)

Ad,r
S]
/S]
→ ‹DX] → ‹DX] .

Let P =
∑
k∈Nd bk∂

〈k〉(m)

(r) ∈ ‹D(m)

X]/S]
(D), with bk ∈ BX converging to 0 for the p-adic topology. We

define the “semi-logarithmic adjoint operator” of P by setting τP :=
∑
k
τ∂
〈k〉(m)

(r) bk, which is a mixed
version of the logarithmic and non-logarithmic adjoint operator. By tensoring with or by taking the
inductive limits on the level, we define the “semi-logarithmic adjoint operator” τ : ‹DX] → ‹DX] .

Let P,Q be two differential operators of ‹DX] . It follows from 9.3.1.10 (e.g. by p-adic completion,
tensorisation by Q and inductive limits on the level if necessary) that the following properties hold:

(a) We have τ (τP ) = P and τ (PQ) = τQτP

(b) We have the equality

ρ(τP ) = ρ

Ç
t(r)

tP
1

t(r)

å
, (9.3.1.10.1)

where t(r) = t1 · · · tr and where ρ is the canonical map ‹DX] → ‹D(m)
Y (which is an inclusion when

BX = OX).

Hence, τ : (‹DX])
o → ‹DX] is an involution of OT -algebras, which is called the semi-logarithmic adjoint

automorphism. Beware that this depends on the choice of the semi-logarithmic coordinates t1, . . . , td.
This induces τ : ‹DX],Z],t → ‹DX],Z],t such that τ (I‹DX],Z],t) = I‹DX],Z],t. This yields the automorphism
τ : ‹DX],Z],t/I‹DX],Z],t → ‹DX],Z],t/I‹DX],Z],t. On the other hand, via the local logarithmic coordinates
t1, . . . , tr+s of Z] over T ], we get the logarithmic adjoint operator automorphism τ : ‹DZ] → ‹DZ] given
by Q =

∑
i∈Nr+s bi∂

〈i〉(m)

(r) 7→ τ (Q) :=
∑
i∈Nr+s

τ∂
〈i〉(m)

(r) bi.

Since ϑ(∂
〈i〉(m)

(r) ) = ∂
〈(i,0)〉(m)

(r) , ϑ(τ∂
〈i〉(m)

(r) ) = τ∂
〈(i,0)〉(m)

(r) (use the formula 3.4.1.2.2) for any i ∈ Nr+s,
then the following diagram ‹DZ]

∼
ϑ
//

∼ τ

��

‹DX],Z],t/I‹DX],Z],t

∼ τ

��‹DZ] ,
∼
ϑ
// ‹DX],Z],t/I‹DX],Z],t

(9.3.1.10.2)

is commutative.

Lemma 9.3.1.11. The sheaf ω̃X]/S] is a free BX-module of rank one with the basis ẽ0 := d log t1 ∧ · · · ∧
d log tr ∧ dtr+1 ∧ · · · ∧ td and ω̃Y/S] is a free BY -module of rank one with the basis dt1 ∧ · · · ∧ dtd.

The sheaf ω̃X]/S] is a right ‹DX]-submodule of j∗ω̃Y/S] . More precisely, the action of P ∈ ‹DX] on
the section b ẽ0, where b is section of BX is given by the formula

(b ẽ0) · P = τP (b) ẽ0. (9.3.1.11.1)

Proof. This is a consequence of 4.5.1.6 (e.g. by p-adic completion, tensorisation by Q and inductive limits
on the level if necessary).

9.3.1.12. It follows from 4.2.5.5.1 (e.g. by p-adic completion, tensorisation by Q and inductive limits
on the level if necessary, we get a structure of right ‹DX] -modules on ω̃X]/S] ⊗BX

‹DX] . It follows from
4.2.5.5.1 (e.g. by p-adic completion, tensorisation by Q and inductive limits on the level if necessary)
that there exists a unique involution of right ‹D(m)

X]/S]
-bimodules

δ
ω̃

: ω̃X]/S] ⊗BX
‹DX]

∼−→ ω̃X]/S] ⊗BX
‹DX] (9.3.1.12.1)

exchanging the two structures of right ‹D(m)

X]/S]
-modules and such that, for each section m ofM, δ

ω̃
(m⊗

1) = m⊗ 1. In semi-logarithmic coordinates, we have the following formula

δM(m⊗ τ∂
〈k〉
(r) ) =

∑
h≤k

mτ∂
〈k−h〉
(r) ⊗ ∂〈h〉(r) . (9.3.1.12.2)
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9.3.1.13 (Left to right D-module). Suppose now we are in the local situation of 9.3.1.2. Let E be a left‹DX] -module. LetM be a right ‹DX]-module. We denote by ẽ0 := d log t1 ∧ · · · ∧d log tr ∧dtr+1 ∧ · · · ∧dtd
a basis of the free BX-module ω̃X]/S] has the basis, and by ẽ∨0 its corresponding dual basis of the free
BX-module ω̃−1

X]/S]
.

(a) We compute that the right ‹DX]-module structure on ω̃X]/S] ⊗BX
E (see its definition 7.5.1.13.(f) or

8.7.2) is given by the formula
(ẽ0 ⊗ x)P = ẽ0 ⊗ τPx, (9.3.1.13.1)

for any local section x of E and P of ‹DX] .

(b) On the other hand, the left ‹DX]-module structure onM⊗BX
ω̃−1
X]/S]

is given by the formula

P (y ⊗ ẽ∨0 ) = yτP ⊗ ẽ∨0 , (9.3.1.13.2)

for any local section y ofM and P of ‹DX] .

9.3.1.14. Suppose now we are in the local situation of 9.3.1.2. For any left (resp. right) ‹DX] -module E
(resp. M), we denote by [−]Z : E → E/IE (resp. [−]′Z : M →M/MI) the canonical surjections. Remark
we add a prime to avoid some confusion in the case of a bimodule.

It follows from 5.2.2.14.1 (e.g. by p-adic completion, tensorisation by Q and inductive limits on the
level if necessary) that we get the isomorphism of abelian sheaves:

ι̃
t
: u∗‹DX]←Z]

∼−→ ‹DX]/‹DX]I. (9.3.1.14.1)

Via this map, we get a structure of (‹DX] , u∗‹DZ])-bimodule on ‹DX]/‹DX]I. By functoriality of the con-
struction of the structure of (u−1‹DX] , ‹DZ])-bimodule of ‹DX]←Z] , we check that the underlying structure
of left ‹DX] -module on ‹DX]/‹DX]I is equal to its natural structure. The structure of right u∗‹DZ] -module
of ‹DX]/‹DX]I is characterized by the following formula:

[y]′Z ·Q = [y ·QX]′Z, (9.3.1.14.2)

where y ∈ M , Q ∈ ‹DZ] and QX ∈ ‹DX],Z],t is an element such that [QX]Z = ϑ(Q) (use 9.3.1.4.1).
Moreover, we compute that ‹DX],Z],t/I‹DX],Z],t is also a left u∗‹DZ] -submodule of ‹DX]/I‹DX] , and therefore
a (u∗‹DZ] , ‹DX],Z],t)-sub-bimodule of ‹DX]/I‹DX] .

Proposition 9.3.1.15. Let E be a left ‹DX]-module (resp. a ‹DX]-bimodule). Set n := −du ∈ N. We
have the canonical isomorphism of right ‹DZ]-modules (resp. of right (‹DZ] , u

−1‹DX])-bimodules):

Rnũ[0(ωX]/S] ⊗OX
E)

∼−→ ωZ]/S] ⊗OZ
ũ∗(E). (9.3.1.15.1)

Proof. Using 9.3.1.7 and 9.3.1.8, thanks to respectively 7.5.1.13 or 8.7.2.2, we can proceed as in 5.2.5.6.

Remark 9.3.1.16. Since complexes are not coherent, Proposition 9.3.1.15 is not a straightforward conse-
quence of Theorem 5.2.5.6 (but the check is similar).

Theorem 9.3.1.17. Let ∗ ∈ {l, r} and let E ∈ D(l‹DX]) (resp. E ∈ D(l‹DX] ,
∗‹DX])). With notation

9.3.1.8, we have the canonical isomorphism of D(r‹DZ]) (resp. D(r‹DZ] ,
∗u−1‹DX])) of the form

ωZ]/S] ⊗OZ
ũ!(E)

∼−→ ũ[(ωX]/S] ⊗OX
E). (9.3.1.17.1)

Proof. Using [Har66, I.7.4], this is a consequence of 9.3.1.15 and of the isomorphism Lũ∗(E)[du]
∼−→ ũ!(E)

(see 9.3.1.8).
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9.3.1.18. By using the same arguments as in 9.3.1.3, it follows from 5.2.2.14.1 that we have the canonical
isomorphism ‹DX]←Z]/S]

∼−→ u−1(‹DX]/‹DX]I). (9.3.1.18.1)

We get the functor ũ! : D(r‹DX])→ D(r‹DZ]) by setting for anyM∈ D(r‹DX]),

ũ!(M) := u−1E ⊗L
u−1D̃

X]

‹DX]←Z] [du]. (9.3.1.18.2)

With notation 9.3.1.17, following 5.1.1.5.1 or 9.2.1.23.1, the functor ũ! : D(r‹DX]) → D(r‹DZ]) (resp.
ũ! : D(r‹DX] ,

∗‹DX])→ D(r‹DZ] ,
∗u−1‹DX])) satisfies the isomorphism

ωZ]/S] ⊗OZ
ũ!(E)

∼−→ ũ!(ωX]/S] ⊗OX
E). (9.3.1.18.3)

Hence, with 9.3.1.17.1, we get the isomorphism

ũ[
∼−→ ũ! (9.3.1.18.4)

of functors D(r‹DX])→ D(r‹DZ]) (resp. D(r‹DX] ,
∗‹DX])→ D(r‹DZ] ,

∗u−1‹DX])).

Corollary 9.3.1.19. (a) We have the canonical isomorphism of right (‹DZ] , u
−1‹DX])-bimodules of the

form
ωZ]/S] ⊗OZ

‹DZ]→X]
∼−→ ũ[l (ωX ⊗OX

‹DX])[−du], (9.3.1.19.1)

where “l” means that in we have chosen the left structure of right ‹DX]-module of the right ‹DX]-
bimodule ωX ⊗OX

‹DX] .

(b) We have the canonical isomorphism of (u−1‹DX] , ‹DZ])-bimodules of the form‹DX]←Z]
∼−→ ũ[(‹DX])[−du]. (9.3.1.19.2)

Proof. By applying Theorem 9.3.1.17 in the case E = ‹DX] , we get the isomorphism 9.3.1.19.1. By
applying Theorem 9.3.1.17 in the case E = ‹DX] ⊗OX

ω−1
X , and by using the transposition isomorphism

ωX ⊗OX
(‹DX] ⊗OX

ω−1
X )

∼−→ ‹DX] , we get the isomorphism 9.3.1.19.2.

9.3.1.20. Suppose we are in the local situation of 9.3.1.2. Let E be a left ‹DX] -module. Following 5.2.5.7.1
we have the isomorphism of right ‹D(m)

Z]/T ]
-modules:

ω̃Z]/S] ⊗BZ
H0ũ!(E)

∼−→ ũ[0(ω̃X]/S] ⊗BX
E). (9.3.1.20.1)

The sheaf ω̃X]/S] is a free BX-module of rank one with the basis d log t1 ∧ · · · ∧ d log tr ∧ dtr+1 ∧ · · · ∧ td
and ω̃Y/T ] is a free BY -module of rank one with the basis dt1 ∧ · · · ∧ dtd (see 4.5.1.6). Using these bases,
we get the isomorphism of BZ-modules:

u∗H
0ũ!(E)

∼−→ HomBX
(BX/IBX, E) = ∩ds=r+1 ker(E ts−→ E). (9.3.1.20.2)

This yields on HomBX
(BX/IBX, E) a structure of left ‹D(m)

Z]/T ]
-module extending its structure of BX

(beware this structure depends a priori on the choice of the semi-logarithmic coordinates). Let us
denote by ev1 : HomBX

(BX/IBX, E) ↪→ E the canonical inclusion (this is the evaluation at 1) and by
ev1 : H0ũ!(E) ↪→ E its composition with 9.3.1.20.2. Let x ∈ Γ(Z,H0u!(E)), y ∈ HomBX

(BX/IBX, E) and
Q ∈ ‹D(m)

Z]/S]
. Choose any QX ∈ ‹DX],Z],t such that ϑ(Q) = [QX]Z (see 5.2.2.5.7 or 9.3.1.4.1). It follows

from 5.2.5.2.1 or 9.3.1.5.1 that we have the formula

ev1(Q · x) = QX · ev1(x), ev1(Q · y) = QX · ev1(y). (9.3.1.20.3)
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9.3.2 Adjunction, relative duality isomorphism

Notation 9.3.2.1. For any ∗ ∈ {r, l}, we get the acyclic functor ũ+ : D(∗‹DZ]) → D(∗‹DX]) by setting
for any F ∈ D(l‹DZ]) and N ∈ D(r‹DZ]),

ũ+(F) := u∗(‹DX]←↩Z] ⊗D̃
Z]
F), (9.3.2.1.1)

ũ+(N ) := u∗(M⊗D̃
Z]

‹DZ]→X])
∼−→ u∗(M)⊗D̃

Z]
(‹DX]/I‹DX]) (9.3.2.1.2)

These functors preserve the coherence. Beware, in the first respective case, this notation has not to be
confused with its completed version denoted by ũ(m)! (see 7.5.8.1). We will work with the completed
version functor in the subsection 9.3.3.

9.3.2.2. Let G ∈ D(lu−1‹DX]). Via the isomorphism

u−1ω̃X]/S] ⊗u−1BX
G ∼−→

Ä
u−1ω̃X]/S] ⊗u−1BX

u−1‹DX]

ä
⊗
u−1D̃

X]
G ∼−→ u−1

Ä
ω̃X]/S] ⊗BX

‹DX]

ä
⊗
u−1D̃

X]
G,

we get u−1ω̃X]/S] ⊗u−1BX
G ∈ D(ru−1‹DX]). Similarly to 5.1.2.8.1, we have the isomorphism of D(r‹DX])

ω̃X]/S] ⊗BX
u∗(G)

∼−→ u∗

(
u−1ω̃X]/S] ⊗u−1D̃

X]
G
)
. (9.3.2.2.1)

By using 8.7.2.5.1 (resp. 9.3.2.2.1) instead of 4.3.5.6.1 (resp. 5.1.2.8.1), by copying the proof of 5.1.3.2.1,
for any F ∈ D(l‹DZ]) we get the canonical isomorphism

ω̃X ⊗BX
ũ+(F)

∼−→ ũ+(ω̃Z]/S] ⊗BZ
F). (9.3.2.2.2)

Proposition 9.3.2.3. LetM be a right (resp. left) ‹DX]-module, N be a right (resp. left) ‹DZ]-module.

(a) We have the canonical adjunction morphisms adj : ũ+H
0ũ!(M) → M and adj : N → H0ũ!ũ+(N ).

Moreover, the compositions H0ũ!(M)
adj−→ H0ũ!ũ+H

0ũ!(M)
adj−→ H0ũ!(M) and ũ+(N )

adj−→ ũ+H
0ũ!ũ+(N )

adj−→
ũ+(N ) are the identity.

(b) Using the above adjunction morphisms, we construct maps

HomD̃
X]

(ũ+(N ),M)→ u∗HomD̃
Z]

(N , H0ũ!(M)), u∗HomD̃
Z]

(N , H0ũ!(M))→ HomD̃
X]

(ũ+(N ),M),

which are inverse of each other.

(c) IfM is an injective right ‹DX]-module, then H0ũ!(M) is an injective right ‹DZ]-module.

Proof. We can copy the proof of 5.2.6.1.

Remark 9.3.2.4. The local computations of the adjunction morphisms in the left case detailed at 5.2.6.2
still hold in the context 9.3.2.3.

Corollary 9.3.2.5. Let ∗ ∈ {r, l}. LetM∈ D+(∗‹DX]), N ∈ D(∗‹DZ]). We have the isomorphisms:

RHomD̃
X]

(ũ+(N ),M)
∼−→ u∗RHomD̃

Z]
(N , ũ!(M)). (9.3.2.5.1)

Proof. Taking a K-injective object representingM, this isomorphism is a consequence of 9.3.2.3.b–c.

Notation 9.3.2.6. Moreover, we get the functor D : D(∗‹DX]) → D(∗‹DX]) by setting for any M ∈
D(r‹DX]), E ∈ D(l‹DX])

D(M) := RHomD̃
X]

(M, ωX ⊗OX
‹DX])[dX ],D(E) := RHomD̃

X]
(E , ‹DX] ⊗OX

ω−1
X )[dX ], (9.3.2.6.1)

which are computed respectively by taking an injective resolution of ωX ⊗OX
‹DX] and ‹DX] ⊗OX

ω−1
X .

These functors preserve the perfectness and commute with the quasi-inverse functors − ⊗OX
ω−1
X and

ωX ⊗OX
− exchanging left and right ‹DX] -module structures, i.e. similarly to 9.2.4.20.3, we get the

isomorphisms:
ωX ⊗OX

D(E)
∼−→ D(ωX ⊗OX

E). (9.3.2.6.2)
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Lemma 9.3.2.7. Let N ∈ Db
perf(

∗‹DZ]) with ∗ = r or ∗ = l. We have ũ+(N ) ∈ Db
perf(

∗‹DX]).

Proof. We can copy 5.2.6.4.

Corollary 9.3.2.8. Let N ∈ Db
perf(

∗‹DZ]) with ∗ = r or ∗ = l. We have the isomorphism of Db
perf(

∗‹DX]):

D ◦ ũ+(N )
∼−→ ũ+ ◦ D(N ). (9.3.2.8.1)

Proof. Using 9.3.1.19.1 and 9.3.2.5, we can copy the proof of 5.2.6.6.

We can complete the subsection with the case of quasi-coherent complexes as follows.

Proposition 9.3.2.9. Let M(•)
• be a right (resp. left) ‹D(•)

X]•/S
]
•
-module, N (•)

• be a right (resp. left)‹D(•)
Z]•/S

]
•
-module.

(a) There exists a canonical functorial ‹D(•)
X]•/S

]
•
-linear morphism adj : ũ

(•)
•+H

0ũ
(•)!
• (M(•)

• ) →M(•)
• and a

canonical functorial ‹D(•)
Z]•/S

]
•
-linear morphism adj : N (•)

• → H0ũ
(•)!
• ũ

(•)
•+(N (•)

• ) so that the compositions

H0ũ
(•)!
• (M(•)

• )
adj−→ H0ũ

(•)!
• ũ

(•)
•+H

0ũ
(•)!
• (M(•)

• )
adj−→ H0ũ

(•)!
• (M(•)

• ) and ũ(•)
•+(N (•)

• )
adj−→ ũ

(•)
•+H

0ũ
(•)!
• ũ

(•)
•+(N (•)

• )
adj−→

ũ
(•)
•+(N (•)

• ) are the identity.

(b) Using the above adjoint morphisms, we construct maps

HomD̃(•)

X
]
•/S

]
•

(ũ
(•)
•+(N (•)

• ),M(•)
• )→ HomD̃(•)

Z
]
•/S

]
•

(N (•)
• , H0ũ

(•)!
• (M(•)

• )),

HomD̃(•)

Z
]
•/S

]
•

(N (•)
• , H0ũ

(•)!
• (M(•)

• ))→ HomD̃(•)

X
]
•/S

]
•

(ũ
(•)
•+(N (•)

• ),M(•)
• ),

which are inverse of each other.

(c) If M(•)
• is an injective right (resp. left) ‹D(•)

X]•/S
]
•
-module, then H0ũ

(•)!
• (M(•)

• ) is an injective right

(resp. left) ‹D(•)
Z]•/S

]
•
-module.

Proof. It follows from the fact that the adjunction morphisms of 5.2.6.1 are compatible with base changes
and level changes.

Corollary 9.3.2.10. Let ∗ ∈ {r, l}, M(•)
• ∈ D(∗‹D(•)

X]•/S
]
•
), N (•)

• ∈ D(∗‹D(•)
Z]•/S

]
•
). We have the isomor-

phisms

R HomD̃(•)

X
]
•/S

]
•

(ũ
(•)
•+(N (•)

• ),M(•)
• )

∼−→ R HomD̃(•)

Z
]
•/S

]
•

(N (•)
• , ũ

(•)!
• (M(•)

• )).

Proof. Taking an injective resolution ofM, this is a consequence of 9.3.2.9.b–c.

Corollary 9.3.2.11. Let ∗ ∈ {r, l}, N (•) ∈ LD−→
b
Q,qc(∗‹D(•)

Z]
(E)), M(•) ∈ LD−→

b
Q,qc(∗‹D(•)

X]
(D)). We have the

isomorphisms

Hom
LD−→

b
Q,qc

(∗D̃(•)
X]

(D))
(ũ

(•)
+ (N (•)),M(•))

∼−→ Hom
LD−→

b
Q,qc

(∗D̃(•)
Z]

(E))
(N (•), ũ(•)!(M(•))).

Proof. It follows by localisation from 9.3.2.10 that we have the adjoint paire ((ũ
(•)
•+, ũ

(•)!
• ) with respect

to categories of the form LD−→
b
Q,qc(∗‹D(•)

X]•
(D)) and LD−→

b
Q,qc(∗‹D(•)

Z]•
(E)). We conclude with the equivalence of

categories of 8.5.4.5.
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9.3.3 pushforwards and extraordinary pullbacks of p-torsion free separated
complete modules, adjunction

We suppose in this subsection that we are in the local context of 9.3.1.2. When we deal with complexes
of ‹D(m)-modules which are only quasi-coherent and not necessarily coherent, the extraordinary pullbacks
and the pushforwards we prefer to work with are that defined respectively at 7.5.5.6 and 7.5.8.1 instead of
9.3.1.8.1 and 9.3.2.1. To consider the case of quasi-coherent complexes of ‹D(m)

X]/S]
(D)-modules which are

in fact a ‹D(m)

X]/S]
(D)-modules, the notion of p-torsion free, separated and complete (for the topology p-

adic topology) ‹D(m)

X]/S]
(D)-module appears naturally. Unfortunately, this category is a priori not stable

by the functor H0u
(m)!
D (see 9.3.3.2). To overcome this problem, in this subsection we focus on the

categories of p-torsion free, separated and complete (for the topology p-adic) ‹D(m)

X]/S]
(D)-modules (or‹D(m)

Z]/S]
(E)-modules), where ‹D(m)

X]/S]
(D) := Γ(X, ‹D(m)

X]/S]
(D)). We define on these categories the notion

of direct image (resp. of extraordinary inverse image) of level m with overconvergent singularities along
D by u denoted by u(m)

D+ and (resp. H0u
(m)!
D ). We also check the adjunction morphisms are still valid in

this context, which extends 9.3.2. The results of this subsections will be useful in order to prove the key
lemma 15.3.5.3.

9.3.3.1. We explain in this paragraph why the functor u(m)
D,+ preserves p-torsion free quasi-coherent left‹D(m)-modules.

Let F be a p-torsion free quasi-coherent ‹D(m)

Z]/S]
(E)-module (see 7.2.3.5 and 7.3.1.7). We have the

ringed topoi morphism←lX : (X•, ‹D(m)

X]•/S
]
•
(D))→ (X, ‹D(m)

X]/S]
(D)), and←lZ : (Z•, ‹D(m)

Z]•/S
]
•
(E))→ (Z, ‹D(m)

Z]/S]
(E)).

We get the quasi-coherent ‹D(m)

Z]•/S
]
•
(E)-module by setting

F• := L←l
∗
X

(F) = ‹D(m)

Z]•/S
]
•
(E)⊗L

D̃(m)

Z]/S]
(E)
F ∼−→ ‹D(m)

Z]•/S
]
•
(E)⊗D̃(m)

Z]/S]
(E)
F .

By definition (see 7.5.8.1, here uD = ũ), the direct image of level m with overconvergent singularities
along D of F by u is defined by setting

u
(m)
D,+(F) := R←lZ∗(u

(m)
•D,+(F•)) (9.3.3.1.1)

Now, applying the base change isomorphisms (5.2.5.11), for any integer i′ ≥ i, we get an isomorphism
of left ‹D(m)

X]
i
/S]
i

(D)-modules ‹D(m)

X]
i
/S]
i

(D) ⊗D̃(m)

X
]

i′
/S
]

i′
(D)

ui′D+(Fi′ (m))
∼−→ uiD+(Fi(m)) (recall the functor

uiD+ is exact following 5.2.5.11). By Mittag-Leffler of 7.3.1.3, we get the first isomorphism below

u
(m)
D,+(F)

∼←−←lZ∗(u
(m)
•D,+(F•)) = lim←−uiD,+Fi

(m) ∼←− u∗

Å‹D(m)

X]←↩Z]/S](D)“⊗D̃(m)

Z]/S]
(E)
F
ã
, (9.3.3.1.2)

whilst the second isomorphism follows from the fact that u∗ commutes with projective limit. According
to the stability of quasi-coherence under direct image by u (resp. via the local description of 9.3.3), we
deduce that u(m)

D,+(F) is a quasi-coherent (resp. p-torsion free) ‹D(m)

X]/S]
(D)-module, and we are done.

9.3.3.2. We have defined the extraordinary inverse image functor of level m with overconvergent singu-
larities along D by u (see 7.5.5.6) that we denote by u(m)!

D : D(∗‹D(m)

X]/S]
(D)) → D(∗‹D(m)

Z]/S]
(E)) for any

∗ ∈ {r, l}, which preserves the boundedness and quasi-coherence (see 9.2.1.9). Let E be a p-torsion free
quasi-coherent ‹D(m)

X]/S]
(D)-module.

(a) As E ∈ Db
qc(‹D(m)

X]/S]
(D)), by stability of quasi-coherence (see 9.2.1.9), we get u(m)!

D (E) ∈ Db
qc(‹D(m)

Z]/S]
(E)).

(b) The canonical morphism
H0u

(m)!
D (E)→ lim←−

i

H0u
(m)!
iD (Ei) (9.3.3.2.1)
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is an isomorphism. Indeed, this follows from the isomorphism u
(m)!
D (E)

∼−→ Rlim←−
i

u
(m)!
iD (Ei), to which

we apply the functor H0. As u(m)!
iD (Ei)

∼−→ ‹D(m)

Z]
i
/S]
i

(E) ⊗L
D̃(m)

Z]/S]
(E)

u
(m)!
D (E), we obtain the isomor-

phism H0u
(m)!
iD (Ei)

∼−→ H0(‹D(m)

Z]
i
/S]
i

(E) ⊗L
D̃(m)

Z]/S]
(E)

u
(m)!
D (E)). In particular, the ‹D(m)

Z]
i
/S]
i

(E)-modules

appearing in the projective limit 9.3.3.2.1 are quasi-coherent. We recall that u∗H0u
(m)!
iD (Ei) =

∩ds=r+1 ker(Ei
ts−→ Ei) (see 9.3.1.20.2). Hence, we get the inclusion:

H0u
(m)!
D (E)

∼−→ lim←−
i

H0u!
iD(Ei) ⊂ lim←−

i

Ei = E . (9.3.3.2.2)

This yields that H0u
(m)!
D (E) is p-torsion free and we compute u∗H0u

(m)!
D (E) = ∩ds=r+1 ker(E ts−→ E).

Notice this is not clear that the isomorphism 9.3.3.2.1 is still valid by replacing H0u(m)! by u∗. But,
we further finiteness condition hypothesis, we have such an equality after applying the global section
functor (see 9.3.4.9).

(c)
�

Since H0u
(m)!
D (E) is p-torsion free then we get

(H0u
(m)!
D (E))i := ‹D(m)

Z]
i
/S]
i

(E)⊗L
D̃(m)

Z]/S]
(E)

H0u
(m)!
D (E)

∼←− ‹D(m)

Z]
i
/S]
i

(E)⊗D̃(m)

Z]/S]
(E)

H0u
(m)!
D (E).

It seems false that (H0u
(m)!
D (E))i is a quasi-coherent ‹D(m)

Z]
i
/S]
i

(E)-module (beware this has not to be

confused withH0u!
iD(Ei) which is quasi-coherent: see 9.3.3.11). Hence, we have a prioriH0u

(m)!
D (E) 6∈

Db
qc(‹D(m)

Z]/S]
(E)). This means that the category of p-torsion free quasi-coherent D-modules is not

stable under the functor H0u(m)!. It is for this reason why we will work in this section with global
sections and not with the whole sheaves. In the next section (see 9.3.3.10), we will have locally some
stability of the separated completeness p-torsion free for global sections (see also 7.2.3.13.(ii) to recall
the link with pseudo quasi-coherence).

Notation 9.3.3.3. We denote by V{∂r+1, . . . , ∂d}(m) the sub-V-algebra of Γ(X,D(m)

X]/S]
) ⊂ Γ(X, B̃(m)

X (D)⊗OX

D(m)

X]/S]
) generated by the elements {∂〈j1〉(m)

r+1 , ∂
〈j2〉(m)

r+2 , . . . , ∂
〈jd−r〉(m)

d | j1, . . . , jd−r ∈ N}. It is equal to the

free V-module whose basis is given by {∂〈(0,j)〉(m)

(r) | j ∈ Nd−r}, where 0 := (0, . . . , 0) ∈ Nr.

9.3.3.4 (p-adic completed maps). By taking global section of the isomorphism ϑ of 5.2.2.1, we get the
isomorphism of V-algebras

ϑ̂ : ‹D(m)

Z]/S]
(E)

∼−→ ‹D(m)

X],Z],t
(D)/I‹D(m)

X],Z],t
(D) (9.3.3.4.1)

where ‹D(m)

X],Z],t
(D) are the global sections of ‹D(m)

X],Z],t
(D). Remark that for unified notation reason ϑ̂

was simply denoted by ϑ in 9.3.1.4 ; we hope this will not be too much confusing. We denote by
[−]Z : ‹D(m)

X]/S]
(D) → ‹D(m)

X]/S]
(D)/I‹D(m)

X]/S]
(D) and by [−]′Z : ‹D(m)

X]/S]
(D) → ‹D(m)

X]/S]
(D)/‹D(m)

X]/S]
(D)I the

canonical projections.
By taking the global section of the p-adic completion of 5.2.2.5.3, we get the homomorphism of‹B(m)

X (D) and of V-algebras (see 5.2.2.7):

σ̂
(m)

Z],X] ,̃t
: ‹D(m)

X],Z],t/S]
(D)→ ‹D(m)

Z]/S]
(E), (9.3.3.4.2)

which is given by the formula σ̂(m)

Z],X] ,̃t
(
∑
i∈Nr bi∂

〈(i,0)〉(m)

(r) ) =
∑
i∈Nr [bi]Z∂

〈i〉(m)

(r) , where bi ∈ ‹B(m)
X (D). The

map σ̂(m)

Z],X] ,̃t
is surjective with kernel equal to I‹D(m)

X],Z],t
(D) ; the induced factorisation is an inverse of ϑ̂.

By taking the global section of the bijection 9.3.1.18.1, we get

ι̂̃
t
: ‹D(m)

X]←Z]/S]
(D)

∼−→ ‹D(m)

X]/S]
(D)/‹D(m)

X]/S]
(D)I. (9.3.3.4.3)
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Via this bijection, we get a structure of (‹D(m)

X]/S]
(D), ‹D(m)

Z]/S]
(D))-bimodule on ‹D(m)

X]/S]
(D)/‹D(m)

X]/S]
(D)I

such that the underlying structure of left ‹D(m)

X]/S]
(D)-module is equal to its natural structure.

By taking the global section of the p-adic completion of the morphism 5.2.2.16.1, we get the ‹B(m)
X (D)-

linear homomorphism

(ς
(m)

X] ,̃t
)̂ : ‹D(m)

X]/S]
(D)→ V{∂r+1, . . . , ∂d}(m)“⊗V‹D(m)

Z]/S]
(E). (9.3.3.4.4)

Moreover, (ς
(m)

X] ,̃t
)̂ is surjective with kernel equal to ‹D(m)

X]/S]
(D)I and we denote by

(ς
(m)

X] ,̃t
)̂ : ‹D(m)

X]/S]
(D)/‹D(m)

X]/S]
(D)I

∼−→ V{∂r+1, . . . , ∂d}(m)“⊗V‹D(m)

Z]/S]
(E) (9.3.3.4.5)

the induced ‹D(m)

Z]/S]
(E)-linear isomorphism (use 5.2.2.18).

The elements of ‹D(m)

X]/S]
(D) can be written uniquely of the form

∑
j∈Nd−r ∂

〈(0,j)〉(m)Pj , with Pj ∈‹D(m)

X],Z],t/S]
(D), the sequence Pj converges to 0 for the p-adic topology. It follows from 5.2.2.16.3 that

we get the formula

(ς
(m)

X] ,̃t
)̂

Ñ ∑
j∈Nd−r

∂〈(0,j)〉(m)Pj

é
= (ς

(m)

X] ,̃t
)̂

Ö ∑
j∈Nd−r

∂〈(0,j)〉(m)Pj

′
Z

è
=

∑
j∈Nd−r

∂〈(0,j)〉(m) ⊗ σ̂(m)

Z],X] ,̃t
(Pj).

(9.3.3.4.6)
In particular, we get the formula ς(m)

X] ,̃t
(∂
〈(i,j)〉(m)

(r) ) = ς
(m)

X] ,̃t
(ξ
〈(i,j)〉(m)

(r) ) = ∂〈(0,j)〉(m) ⊗ ∂〈i〉(m)

(r) , for any i ∈ Nr

and j ∈ Nd−r.

9.3.3.5 (Local computation of the pushforward). By composing 9.3.3.4.3 with 9.3.3.4.5, we get the
isomorphism: ‹D(m)

X]←Z]/S]
(D)

∼−→ V{∂r+1, . . . , ∂d}(m)“⊗V‹D(m)

Z]/S]
(E). (9.3.3.5.1)

This yields the isomorphism

Γ(X, u
(m)
+ (F))

∼−→ ‹D(m)
X←↩Z“⊗D̃(m)

Z]/S]
(E)
F

∼−→
9.3.3.5.1

V{∂r+1, . . . , ∂d}(m)“⊗VF. (9.3.3.5.2)

Notation 9.3.3.6. Let F be a p-torsion free ‹D(m)

Z]/S]
(E)-module which is separated and complete for

the p-adic topology. We define the direct image of F by u of level m as

u
(m)
D,+(F ) := ‹D(m)

X]←↩Z]/S](D)“⊗
D̃

(m)

Z]/S]
(E)
F

∼−→
9.3.3.5.1

V{∂r+1, . . . , ∂d}(m)“⊗VF. (9.3.3.6.1)

The formula 9.3.3.5.2 justifies the notation. The set u(m)
D,+(F ) is endowed with a p-torsion free left‹D(m)

X]/S]
(D)-module structure which is separated and complete for the p-adic topology. Since F is p-

torsion free, separated and complete, then it follows from 9.3.3.6.1 that the elements of u(m)
D,+(F ) can

uniquely be written as
∑
k∈Nd−r ∂

〈(0,k)〉 ⊗ xk, with xk ∈ F and lim|k|→∞ xk = 0 (for the p-adic topology

of F ). The elements of
Ä
u

(m)
D,+(F )

ä
Q
can be uniquely written as

∑
k∈Nd−r ∂

〈(0,k)〉⊗ xk, with xk ∈ FQ and
lim|k|→∞ xk = 0 (for the topology of FQ induced by the p-adic topology of F ).

Lemma 9.3.3.7. Let F ↪→ G be a monomorphism of p-torsion free separated and complete (for the
p-adic topology) ‹D(m)

Z]/S]
(E)-modules.

(a) The morphism u
(m)
D,+(F )→ u

(m)
D,+(G) (resp. (u

(m)
D,+(F ))Q → (u

(m)
D,+(G))Q) is a monomorphism.

(b) The canonical morphism u
(m)
D,+(F )→ u

(m)
D,+(G) (resp. (u

(m)
D,+(F ))Q → (u

(m)
D,+(G))Q) is an isomorphism

if and only if the canonical morphism F ↪→ G (resp. FQ ↪→ GQ) is an isomorphism.

Proof. It follows from the description of the writing of the elements of u(m)
D,+(F ) given at 9.3.3.6.
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Lemma 9.3.3.8. Let F be a p-torsion free ‹D(m)

Z]/S]
(E)-module which is separated and complete for the

p-adic topology. Then F is a coherent ‹D(m)

Z]/S]
(E)-module if and only if u(m)

D,+(F ) is a coherent ‹D(m)

X]/S]
(D)-

module.

Proof. Since the functor u(m)
D,+ defined at 9.3.3.1.1 for the sheaves preserve the coherence, since we have

the theorems of type A (see 7.2.3.10), the isomorphism 9.3.3.5.2 allows us to conclude the necessity of
the assertion of the lemma. Conversely, suppose that F is not a coherent ‹D(m)

Z]/S]
(E)-module. Then

there exists a strictly increasing sequence (Fn)n∈N of coherent ‹D(m)

Z]/S]
(E)-submodule of F . Then it

comes from the lemma 9.3.3.7.(b) that we get the strictly increasing sequence (u
(m)
D,+(Fn))n∈N of coherent‹D(m)

X]/S]
(D)-submodule of u(m)

D,+(F ). Since ‹D(m)

X]/S]
(D) is noetherian, this last one is not a coherent‹D(m)

X]/S]
(D)-module.

Remark 9.3.3.9. Let H(m) be a ‹D(m)

Z]/S]
(E)Q-module such that there exists a p-torsion free , separated

and complete (for the topology p-adic) ‹D(m)

Z]/S]
(E)-module

◦
H(m), endowed with an isomorphism of‹D(m)

Z]/S]
(E)Q-modules of the form

◦
H

(m)
Q

∼−→ H(m). We remark that the topology on H(m) induced
by the basis of neighborhood of pn

◦
H(m) makes H(m) a Banach K-vector space.

Moreover, if H(m) is a coherent ‹D(m)

Z]/S]
(E)-module, then this topology is independent of the choice

of such a ‹D(m)

Z]/S]
(E)-module

◦
H(m) and this latter is necessarily ‹D(m)

Z]/S]
(E)-coherent. Indeed, this comes

from the theorem of Banach (e.g. see [BGR84, 2.8.1]) and from the noetherianity of ‹D(m)

Z]/S]
(E).

This implies that ifH(m) is a coherent ‹D(m)

Z]/S]
(E)-module then

Ä
u

(m)
D,+(

◦
H(m))

ä
Q
is a coherent ‹D(m)

X]/S]
(D)-

module and does not depend of the ‹D(m)

Z]/S]
(E)-module separated complete

◦
H(m) p-torsion free , such

that
◦
H

(m)
Q

∼−→ H(m). Then we write u(m)
D,+(H(m)).

Notation 9.3.3.10. Let E be a p-torsion free, separated and complete for the p-adic topology ‹D(m)

X]/S]
(D)-

module Put Ei := D
(m)

X]
i
/S]
i

(D) ⊗
D̃

(m)

X]/S]

E
∼←− D

(m)

X]
i
/S]
i

(D) ⊗L
D̃

(m)

X]/S]
(D)

E. We define the extraordinary

inverse image of E by u by setting

H0u
(m)!
D (E) := lim←−

i

H0u!
iD(Ei) ⊂ lim←−

i

Ei = E. (9.3.3.10.1)

It follows from 9.3.3.2.1 that for any p-torsion free quasi-coherent ‹D(m)

X]/S]
(D)-module E , by applying the

functor Γ(Z,−) to 9.3.3.2.2, we get the isomorphism

Γ(Z, H0u
(m)!
D (E))

∼−→ H0u
(m)!
D (Γ(Z, E)), (9.3.3.10.2)

which justifies the notation 9.3.3.10.1.
We calculate H0u

(m)!
D (E)

∼−→ ∩ds=r+1 ker(E
ts−→ E). By composing with the canonical inclusion in E,

this yields the map denoted by ev1 : H0ũ(m)!(E) ↪→ E. We equip H0u
(m)!
D (E) with a canonical structure

of left ‹D(m)

Z]/S]
(E)-module as follows: for any Q ∈ ‹D(m)

Z]/S]
(E), for any x ∈ H0u

(m)!
D (E), put

ev1(Q · x) := QX · ev1(x) (9.3.3.10.3)

where QX ∈ ‹D(m)

X],Z],t
(D) is such that [QX]Z = ϑ̂(Q) where [−]Z is the canonical projection ‹D(m)

X],Z],t
(D)→‹D(m)

X],Z],t
(D)/I‹D(m)

X],Z],t
(D) and where ϑ̂ is the isomorphism 9.3.3.4.1. Indeed, since I is generated by

tr+1, . . . , td, this definition do not depend on the choice of such QX. By using 9.3.1.20.3, we remark
that the isomorphism 9.3.3.10.2 becomes an isomorphism of left ‹D(m)

Z]/S]
(E)-modules, which explains the

definition.
Since for s = r + 1, . . . , d the maps ts : E → E are continuous (for the p-adic topology), since

H0u
(m)!
D (E)

∼−→ ∩ds=r+1 ker(E
ts−→ E), then H0u

(m)!
D (E) is separated and complete for the topology
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induced by the p-adic topology of E. Since E is p-torsion free, then we deduce from H0u
(m)!
D (E) =

∩ds=r+1 ker(E
ts−→ E) the equality H0u

(m)!
D (E) ∩ pi+1E = pi+1H0u

(m)!
D (E). In particular, the p-adic

topology ofH0u
(m)!
D (E) and the topology ofH0u

(m)!
D (E) induced by the p-adic topology of E are identical.

This yields that H0u
(m)!
D (E) is a p-torsion free, separated and complete left ‹D(m)

Z]/S]
(E)-module.

9.3.3.11. Let E be a p-torsion free, separated and complete for the p-adic topology ‹D(m)

X]/S]
(D)-module.

Put
Ä
H0u

(m)!
D (E)

ä
i

:= D
(m)

Z]
i
/S]
i

(E) ⊗
D̃

(m)

Z]/S]
(E)

H0u
(m)!
D (E), as H0u

(m)!
D (E) ∩ pi+1E = pi+1H0u

(m)!
D (E),

we get the inclusion Ä
H0u

(m)!
D (E)

ä
i
⊂ H0u

(m)!
iD (Ei). (9.3.3.11.1)

When we take the structure ofD(m)

Z]
i
/S]
i

(E)-module on
Ä
H0u

(m)!
D (E)

ä
i
induced by the structure of ‹D(m)

Z]/S]
(E)-

module of H0u
(m)!
D (E) defined by the formula (9.3.3.10.3) and the structure of D(m)

Z]
i
/S]
i

(E)-module of

H0u
(m)!
iD (Ei) given by (9.3.1.20.3), we check that the inclusion 9.3.3.11.1 is D(m)

Z]
i
/S]
i

(E)-linear.

�

Beware, it seems false that the map 9.3.3.11.1 is bijective in general. However, this becomes a
bijection by taking projective limits (see 9.3.3.12).

Remark 9.3.3.12. With the notations of 9.3.3.11, the canonical morphism

u+H
0u

(m)!
D (E) = lim←−

i

uiD,+
Ä
H0u

(m)!
D (E)

ä
i
→ lim←−

i

uiD,+H
0u

(m)!
iD (Ei)

is an isomorphism, i.e. that the canonical morphism

V{∂r+1, . . . , ∂d}(m)“⊗VH0u
(m)!
D (E)→ lim←−

i

(OSi{∂r+1, . . . , ∂d}(m) ⊗OSi H
0u

(m)!
i (Ei))

is an isomorphism. Indeed, the elements x ∈ V{∂r+1, . . . , ∂d}(m)“⊗VH0u
(m)!
D (E) can be uniquely writ-

ten of the form x =
∑
l∈Nd−r ∂

〈(0,l)〉 ⊗ xl, with xl ∈ H0u
(m)!
D (E) (and converging to 0). Let (xi)i ∈

lim←−
i

(OSi{∂r+1, . . . , ∂d}(m)⊗OSiH
0u

(m)!
i (Ei)). We can write uniquely xi of the form xi =

∑
l∈Nd−r ∂

〈(0,l)〉⊗

xl,i, with xl,i ∈ H0u
(m)!
D (Ei) and the sum being this time finite. By unicity, we get that (xl,i)i ∈

lim←−
i

H0u
(m)!
iD (Ei). The equality H0u(m)!(E) = lim←−

i

H0u
(m)!
iD (Ei) allows us then to conclude.

Proposition 9.3.3.13 (Adjunction morphism I). Let F (m) be a p-torsion free, separated and complete
left ‹D(m)

Z]/S]
(E)-module. By identifying H0u

(m)!
D

Ä
u

(m)
D+(F (m))

ä
with

∩ds=r+1 ker
(
V{∂r+1, . . . , ∂d}(m)“⊗VF ts−→ V{∂r+1, . . . , ∂d}(m)“⊗VF) ⊂ V{∂r+1, . . . , ∂d}(m)“⊗VF

(see 9.3.3.6.1 and 9.3.3.10), we define the canonical adjunction morphism

adj : F (m) → H0u
(m)!
D

Ä
u

(m)
D+(F (m))

ä
, (9.3.3.13.1)

by putting adj(x) = 1⊗x for any x ∈ F (m). The morphism adj is an isomorphism of ‹D(m)

Z]/S]
(E)-modules.

Proof. a) Let us prove that adj is ‹D(m)

Z]/S]
(E)-linear. For any left ‹D(m)

Z]/S]
(E)-module G, we write [−]i for

the canonical morphism G→ G/πi+1G. We have the commutative diagram:

F (m) adj //

[−]i

��

H0u
(m)!
D ◦ u(m)

D+(F (m))

[−]i

��
Fi

(m) //
Ä
H0u

(m)!
D ◦ u(m)

D+(F (m))
ä
i

� � // H0u
(m)!
iD ◦ u(m)

iD+(Fi
(m)),

(9.3.3.13.2)
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Here the bottom right arrow is derived from (9.3.3.11.1).- We compute that the composition of the bottom
two morphisms is the morphism adj of (5.2.6.1) (see 5.2.6.2.4) which isD(m)

Z]
i
/S]
i

(E)-linear. As the inclusion

(9.3.3.11.1) is D(m)

Z]
i
/S]
i

(E)-linear, it follows that the bottom left arrow of 9.3.3.13.2 is also D(m)

Z]
i
/S]
i

(E)-

linear. By passing to projective limit, we get that the top morphism of 9.3.3.13.2 is ‹D(m)

Z]/S]
(E)-linear.

b) Let us check that adj is bijective. Since the injectivity is clear, we reduce to prove the surjectivity
as follows. Modulo the isomorphism 9.3.3.6, an element of u(m)

D,+(F (m)) can uniquely be written in form∑
k∈Nd−r ∂

〈(0,k)〉⊗xk with xk ∈ F (m) and lim|k|→∞ xk = 0. For r+1 ≤ i ≤ d, we compute in u(m)
D,+(F (m))

the relation
ti ·

∑
k∈Nd−r

(∂〈(0,k)〉 ⊗ xk) = −
∑

k∈Nd−r|ki−r≥1

{
ki−r

1

}
∂〈(0,k)−1i〉 ⊗ xk,

where 1i = (0, . . . , 0, 1, 0, . . . , 0) with 1 at the i-th place (in fact, il suffices to verify the equality modulo
πi+1, which follows from the formulas 1.4.2.7 and 9.3.3.4.6. Since F (m) is p-torsion free, then this yields
that any element of H0u

(m)!
D ◦ u(m)

D+(F (m)) must be of the form 1⊗ x with x ∈ F (m).

Proposition 9.3.3.14 (Adjunction morphism II). Let E(m) be a p-torsion free ‹D(m)

X]/S]
(D)-module which

is separated and complete for the p-adic topology. By identifying u(m)
D+ ◦H0u

(m)!
D (E(m)) with

V{∂r+1, . . . , ∂d}(m)“⊗V ∩ds=r+1 ker
(
E

ts−→ VE
)
,

we define the map
adj : u

(m)
D+ ◦H

0u
(m)!
D (E(m))→ E(m) (9.3.3.14.1)

by setting adj(
∑
k∈Nd−r ∂

〈(0,k)〉⊗xk) =
∑
k∈Nd−r ∂

〈(0,k)〉 ·xk, with xk ∈ H0u
(m)!
D (E(m)) and lim|k|→∞ xk =

0. The map adj is a morphism of ‹D(m)

X]/S]
(D)-modules.

Proof. Consider the following canonical diagram

u
(m)
D+ ◦H0u

(m)!
D (E(m))

adj

9.3.3.14.1
//

[−]i

��

E(m)

[−]i

��
u

(m)
iD,+

Ä
H0u

(m)!
D (E(m))

ä
i

� �9.3.3.11.1// u(m)
iD,+ ◦H0u!

iD(Ei
(m))

adj

5.2.6.1
// Ei(m).

(9.3.3.14.2)

We already know both morphisms of the bottom of the diagram (9.3.3.14.2) are D(m)

X]
i
/S]
i

(D)-linear.

Moreover, by using the description of 5.2.6.2.3, we get the commutativity of (9.3.3.14.2) by calculating
the map carrying an element of the form

∑
k∈Nd−r ∂

〈(0,k)〉 ⊗ xk to
∑
k∈Nd−r ∂

〈(0,k)〉 · [xk]i along the two
possible paths of the diagram. The proposition now follows by passage to projective limit.

9.3.3.15. Let E (resp. F ) be a p-torsion free ,separated and complete ‹D(m)

X]/S]
(D)-module (resp.‹D(m)

Z]/S]
(E)-module). Via the adjunction morphism 9.3.3.13.1, the functor H0u

(m)!
D induces the appli-

cation
Hom

D̃
(m)

X]/S]
(D)

(u
(m)
D+(F ), E)→ Hom

D̃
(m)

Z]/S]
(E)

(F,H0u
(m)!
D E). (9.3.3.15.1)

Via the adjunction morphism 9.3.3.14.1, the functor u(m)
D+ induces the application

Hom
D̃

(m)

Z]/S]
(E)

(F,H0u
(m)!
D E)→ Hom

D̃
(m)

X]/S]
(D)

(u
(m)
D+(F ), E). (9.3.3.15.2)

We compute that the composition morphism

u
(m)
D+(F )

9.3.3.13.1−→ u
(m)
D+ ◦H

0u
(m)!
D ◦ u(m)

D+(F )
9.3.3.14.1−→ u

(m)
D+(F ), (9.3.3.15.3)
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whose first arrow is the image by u
(m)
D+ of 9.3.3.13.1 and whose second one is 9.3.3.14.1 used for E =

u
(m)
D+(F ), is the identity. Since the first arrow is an isomorphism, so is the second one. By a computation,

we check moreover that the composition morphism

H0u
(m)!
D (E)

9.3.3.14.1−→ H0u
(m)!
D ◦ u(m)

D+ ◦H
0u

(m)!
D (E)

9.3.3.13.1−→ H0u
(m)!
D (E)

is the identity. This implies that the applications 9.3.3.15.1 and 9.3.3.15.2 above are converse one from
the other.

Remark 9.3.3.16. By lack of stability of the category of quasi-coherent sheaves highlighted in the section
9.3, we do not have a priori an analogue in this context.

9.3.4 Inverse image by an exact closed immersion of affine V-formal schemes

We suppose X is affine. We denote by straight letter, the global section of a sheaf on X, e.g. ‹DX]/S] :=

Γ(X, ‹DX]/S]).

9.3.4.1. For any left ‹DX]/S]-module G, for any left ‹DX]/S] -module G, we define a complex of left‹DZ]/S] -modules or respectively of left ‹DZ]/S] -modules by setting

Lũ∗(G) := ‹DZ]→X]/S] ⊗L
u−1D̃

X]/S]
u−1G, (9.3.4.1.1)

Lũ∗(G) := ‹DZ]→X]/S] ⊗L
D̃

X]/S]
G. (9.3.4.1.2)

We define in the same way the functor Lũ∗i on the category of left D(m)

X]
i
/S]
i

(D)-modules (resp. of left

D
(m)

X]
i
/S]
i

(D)-modules).

9.3.4.2. Let G be a left ‹DX]/S]-module. Let G be a left ‹DX]/S] -module. In accordance with notation
9.2.1.21 (in the D† case), we have the isomorphisms:

u!
D(G)[du] = Lũ∗(G)

9.3.1.3.(a)
∼−→ u−1(‹DX]/S]/I‹DX]/S] ⊗L

D̃
X]/S]

G), (9.3.4.2.1)

Lũ∗(G)
9.3.1.3.(b)
∼−→ ‹DX]/S]/I‹DX]/S] ⊗L

D̃
X]/S]

G. (9.3.4.2.2)

9.3.4.3. It follows from 9.3.1.3.6 that the canonical morphism

u∗D†
X]/S]

(†D)Q → Γ(X, u∗D†
X]/S]

(†D)Q) (9.3.4.3.1)

is an isomorphism. We extend later this commutation isomorphism (see 9.3.4.9.1).

9.3.4.4. For any right ‹DX]/S](D)-moduleM, for any right ‹DX]/S](D)-module M , we define a complex
of right ‹DZ]/S](E)-modules or respectively of right ‹DZ]/S](E)-modules by setting

Lũ∗r (M) := u−1M⊗L
u−1D̃

X]/S]
(D)

‹DX]←Z]/S](D), (9.3.4.4.1)

Lũ∗r (M) := M ⊗L
u−1D̃

X]/S]
(D)

‹DX]←Z]/S](D). (9.3.4.4.2)

We define in the same way the functor Lũ∗i,r on the category of right D(m)

X]
i
/S]
i

(D)-modules (resp. of right

D
(m)

X]
i
/S]
i

(D)-modules).

9.3.4.5. Let M be a right ‹DX]/S]-module. Let M be a right ‹DX]/S] -module. In accordance with
notation 9.2.1.21, we have the isomorphisms:

u!
D(M)[du] = Lũ∗r (M)

9.3.1.18.1
∼−→ u−1(‹DX]/S]/I‹DX]/S] ⊗L

D̃
X]/S]

M), (9.3.4.5.1)

Lũ∗r (M)
9.3.3.4.3
∼−→ ‹DX]/S]/I‹DX]/S] ⊗L

D̃
X]/S]

M. (9.3.4.5.2)
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9.3.4.6 (Inverse image for bimodules). By functoriality, the functor Lu∗ defined at 9.3.4.1 induces
a functor Lu∗ : D(‹DX]/S] , ‹DX]/S]) → D(‹DZ]/S] , ‹DX]/S]) etc. To avoid confusion with the functor
Lu∗r : D(‹DX]/S] , ‹DX]/S])→ D(‹DX]/S] , ‹DZ]/S]) we prefer to denote Lu∗ by Lu∗l .

Lemma 9.3.4.7. For any integer q ≥ 1, we have Hq(Z, ‹DZ]→X]/S]) = 0.

Proof. Let q ≥ 1. Recall B̃(m)
X (D)“⊗OX

“D(m)

Z]→X]/S]
= u−1(‹D(m)

X]/S]
(D)/I‹D(m)

X]/S]
(D)). Since the functor

Hq(Z,−) commutes with projective limits, then it follows from Theorem B for quasi-coherent modules
that Hq(Z, B̃(m)

X (D)“⊗OX
“D(m)

Z]→X]/S]
) = 0. As the functor Hq(Z,−) and the tensor product commute

with the tensorization by Q (because Z is noetherian) and with filtrant inductive limits of sheaves on Z,
this yields the two other vanishing formulas.

Lemma 9.3.4.8. The functors RΓ(Z,−) and Lu∗ commute : For any left ‹DX]/S]-module G, we have
the canonical isomorphism

Lu∗(G)
∼−→ RΓ(Z,Lu∗(G)). (9.3.4.8.1)

Proof. Let P • be a left resolution of G by free ‹DX] -modules of finite type (see 4.6.1.7). The complex
P• := ‹DX]/S] ⊗D̃

X]
P • is then a left resolution of G by free finite type ‹DX]/S] -modules. Hence we get

the canonical isomorphisms: ‹DZ]→X]/S] ⊗L
D̃

X]
G
∼←− ‹DZ]→X]/S] ⊗D̃

X]
P •

∼−→ Γ(Z, ‹DZ]→X]/S] ⊗D̃
X]
P •)

∼−→ Γ(Z, ‹DZ]→X]/S] ⊗u−1D̃
X]/S]

u−1P•) ∼−→

RΓ(Z, ‹D†
Z]→X]/S]

⊗
u−1D̃

X]/S]
u−1P•) ∼−→ RΓ(Z, ‹DZ]→X]/S] ⊗L

u−1D̃
X]/S]

u−1G),

the penultimate isomorphism resulting from the fact that Γ(Z,−) has bounded cohomological dimension
and that (‹DZ]→X]/S])

n is Γ(Z,−)-acyclic for any nonnegative integer n (see the lemma 9.3.4.7) which
allows us to use 4.6.1.6.

The following Lemma will be useful when we deal with overcoherent module (see 15.3.4.17.1).

Lemma 9.3.4.9. Suppose that the ideal of OX given by u is principal. Let G be a coherent ‹DX]/S]-module
such that H0u!

D(G) is a coherent ‹DZ]/S]-module. Then we get the canonical isomorphism:

ũ∗(G)
∼−→ Γ(Z, ũ∗(G)). (9.3.4.9.1)

Proof. Let t be an element generating the ideal of definition of a. Via the flat resolution

0→ ‹DX]/S]
t·−→ ‹DX]/S] → ‹DX]/S]/t‹DX]/S] → 0, (9.3.4.9.2)

we deduced from 9.3.4.2.1 the two equalities u∗ũ∗(G) = G/tG and u∗H0u!
D(G) = ker(t : G → G). Likewise,

since the sequence 9.3.4.9.2 is a sequence of coherent right ‹DX]/S] -modules, then it remains exact after
applying the functor Γ(X,−). Hence, via 9.3.4.2.2, we get ũ∗(G) = G/tG. Since H0u!

D(G) is a coherent‹DZ]/S] -module, it satisfies the theorems of type A and B. Since the functor u∗ is exact and preserve
injective objects (since its left adjoint u−1 is exact), this yields that, for any i ≥ 1,Hi(X, u∗H

0u!
D(G)) = 0.

Since G satisfies also the theorem of type B, by applying the functor RΓ(X,−) to the exact sequence
0 → u∗H

0u!
D(G) → G → G/u∗H0u!

D(G) → 0, we obtain that, for any i ≥ 1, Hi(X,G/u∗H0u!
D(G)) = 0

and Γ(X,G/u∗H0u!
D(G)) = G/Γ(Z, H0u!

D(G)). This implies that by applying the functor Γ(X,−) to
the exact sequence 0 → G/u∗H0u!

D(G)
t−→ G → G/tG → 0, we get the isomorphism Γ(X,G/tG)

∼−→
G/tG.

Lemma 9.3.4.10. Let
◦
G(m) be a p-torsion free coherent “D(m)

X]/S]
(D)-module such that for any i ∈ N

the canonical morphism Lũ∗i (
◦
Gi(m)) → ũ∗i (

◦
Gi(m)) is an isomorphism. Set

◦
G(m) := Γ(X,

◦
G(m)),

◦
G(m)
i :=
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◦
G(m)⊗L

V V/πi+1V ∼←−
◦
G(m)⊗V V/πi+1V,

◦
G

(m)
i := Γ(X,

◦
G(m)
i ). Then we have the canonical isomorphisms:

Lũ∗(
◦
G(m))

∼−→ ũ∗(
◦
G(m))

∼−→ lim←−
i

ũ∗i (
◦
Gi(m)), (9.3.4.10.1)

Lũ∗(
◦
G(m))

∼−→ ũ∗(
◦
G(m))

∼−→ lim←−
i

ũ∗i (
◦
Gi

(m)), (9.3.4.10.2)

ũ∗(
◦
G(m))

∼−→ Γ(Z, ũ∗(
◦
G(m))). (9.3.4.10.3)

Proof. Following 7.5.5.13.(c), since
◦
G(m) is a coherent “D(m)

X]/S]
(D)-module then we have the isomorphism

Lũ∗(
◦
G(m))

∼−→ Rlim←−
i

Lũ∗i (
◦
Gi(m)). By using the two other properties satisfied by

◦
G(m) and by using

Mittag-Leffler, we obtain therefore the canonical isomorphisms

ũ∗(
◦
G(m))

∼←− Lũ∗(
◦
G(m))

∼−→ Rlim←−
i

Lũ∗i (
◦
Gi(m))

∼−→ Rlim←−
i

ũ∗i (
◦
Gi(m))

∼←− lim←−
i

ũ∗i (
◦
Gi(m)). (9.3.4.10.4)

Hence, we get the isomorphisms 9.3.4.10.1.
Now let us deal with the second isomorphism. Via the theorem of type A for quasi-coherent‹D(m)

X]
i
/S]
i

(D)-modules, we get by associativity of the tensor product the canonical isomorphism Lũ∗i (
◦
Gi(m))

∼−→

D(m)

Z]
i
/S]
i

(E)⊗
D

(m)

Z
]
i
/S
]
i

(E)
Lũ∗i (

◦
Gi

(m)). Via the theorem of type A for quasi-coherent complexes of D(m)

Z]
i
/S]
i

(E)-

modules (see 4.6.1.7), since Lũ∗i (
◦
Gi(m))

∼−→ ũ∗i (
◦
Gi(m)), this yields the isomorphism Lũ∗i (

◦
Gi

(m))
∼−→

ũ∗i (
◦
Gi

(m)). Moreover, we have following 7.2.3.13.1 the canonical isomorphism
◦
G

(m)
i

∼−→
◦
G(m) ⊗V

V/πi+1V. Then we obtain analogously (we use the appendice B of [BO78] instead of 7.5.5.13.(c)) the
isomorphisms 9.3.4.10.4 with some straight letters. In particular, we have checked 9.3.4.10.2. Since the
functor Γ(Z,−) commutes with projective limits, since Γ(Z, ũ∗i (

◦
Gi(m)))

∼−→ ũ∗i (
◦
Gi

(m)), we can deduce
the isomorphism 9.3.4.10.3 from 9.3.4.10.1 and 9.3.4.10.2.

9.3.5 Berthelot-Kashiwara theorem
In this subsection, we give a proof of Berthelot-Kashiwara theorem (see 9.3.5.9). Suppose X is noetherian
of finite Krull dimension.

9.3.5.1. Let (B(m))m∈N be an inductive system of commutative p-torsion free OX-algebras satisfying
the conditions of 7.5.1.1. We suppose that B(m) is endowed with a compatible structure of left D(m)

X]/S]
-

module such that the homomorphism of OX-algebra B(m) → B(m+1) is flat and is a monomorphism of
D(m)

X]/S]
-modules. We set ‹D(m)

X]/S]
:= B(m)“⊗OX

“D(m)

X]/S]
and ‹D(m)

Z]/S]
:= (u∗B(m))“⊗OZ

“D(m)

Z]/S]
. We suppose

that for any affine open formal subscheme U of X, the extensions Γ(U, ‹D(m)

X]/S]
) → Γ(U, ‹D(m+1)

X]/S]
) and

Γ(U ∩ Z, ‹D(m)

Z]/S]
) → Γ(U ∩ Z, ‹D(m+1)

Z]/S]
) are flat for any m ∈ N. Recall, following 7.2.3.3 and 7.2.3.16, for

any m ∈ N, the ring ‹D(m)

X]/S]
:= B(m)“⊗OX

D(m)

X]/S]
is coherent and satisfies the theorems of type A and B.

Example 9.3.5.2. We can choose B(m) = B̃(•)
X (D) (e.g. see 8.7.5.2).

Notation 9.3.5.3. Suppose the local condition of 9.3.1.2 are satisfied in the case where r = d− 1. We
simply denoting by t := td and ∂ := ∂d. We write ‹D(m)

X]/S]
:= Γ(X, ‹D(m)

X]/S]
) and similarly we use straight

letter to mean the global sections.

Lemma 9.3.5.4 (Berthelot’s key lemma). With the notation 9.3.5.3, let m ∈ N, s ≥ 1 be an integer,
R ∈Ms(‹D(m)

X]/S]
) be a matrix. There exists a large enough integer m′ ≥ m and a matrix P ∈Ms(‹D(m′)

X]/S]
)

such that the following properties hold:

(a) P ≡ Is mod πMs(‹D(m′)

X]/S]
), where Is is the identity matrix ;

(b) tp
m

P = P (tp
m

Is−πR), where R is viewed as an element ofMs(‹D(m′)

X]/S]
) via the inclusionMs(‹D(m)

X]/S]
) ⊂

Ms(‹D(m′)

X]/S]
).
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Proof. Since the proof for s > 1 is identical, we shall suppose that s = 1.
0) i) Notations. Let Q ∈ “DX]/S]

“⊗OX
B(m) (beware that “DX]/S]

“⊗OX
B(m) is a (“DX]/S] , B

(m))-
bimodule but not a B(m)-algebra). The element Q can uniquely be written of the form Q =

∑
i∈Nd ∂

[i]

(r)bi,

with bi ∈ B(m) converging π-adically to 0 when |i| goes to infinity and where the term ∂
[i]

(r) is defined at
the end of 4.5.1.1. Put ci(Q) := bi. When Q ∈ DX]/S] ⊗OX

B(m), the sum is finite and we can therefore
define ord(Q) to be the maximal of the elements |i| such that ci(Q) 6= 0. Put [Q]l := π−l

∑
i∈El ∂

[i]

(r)ci(Q),
where El is the (finite) sub-set of Nd consisting of the elements i such that vπ(ci(Q)) = l, where vπ means
the π-adic valuation on B(m). Put σl(Q) :=

∑
l′≤l π

l′ [Q]l′ .
ii) a-boundedness. Let Q ∈ “DX]/S]

“⊗OX
B(m). Similarly to 8.7.1.8, we can check that the following

properties:

(i) there exists an integer m′ ≥ m such that Q ∈ “D(m′)

X]/S]
“⊗OX

B(m) ;

(ii) there exists a real number a > 0 such that ord(σl(Q)) ≤ a(l + 1) for any l ∈ N ;

(iii) there exists a real number a > 0 such that ord([Q]l) ≤ a(l + 1) for any l ∈ N

are equivalent. If a > 0 is a real number, we say then that Q is a-bounded if, for any i ∈ Nd, the
following unequality is satisfied: vπ(ci(Q)) ≥ |i|

a − 1. We notice that Q is a-bounded if and only if we
have ord([Q]l) ≤ a(l + 1) for any integer l.

1) By using the left unequality of 8.7.1.7.1 and the right formula of 8.7.1.5.2, we compute that for
any a > pm(p − 1), there exists b ≥ a large enough such that for any P ∈ “D(m)

X]/S]
“⊗OX

B(m) we have

vπ(ci(P )) ≥ |i|a −
b
a for any i ∈ Nd (which is equivalent to saying that ord([Q]l) ≤ al + b for any l ∈ N).

This implies there exists a large enough real number α (e.g. a+b) such that for any P ∈ “D(m)

X]/S]
“⊗OX

B(m),
P is α-bounded. We fix now such an α and we set β := α+ pm.

2) Let P be a β-bounded element of DX]/S]⊗OX
B(m) ⊂ “DX]/S]

“⊗OX
B(m). It is straightforward that

Pb is β-bounded for any b ∈ B(m). Moreover, by using the formula 4.2.5.7.3 (in the case where m =∞
with the constant coefficient BX = OX), we get that for any a ∈ OX the element aP is still β-bounded.

3) Let P ∈ DX]/S] ⊗OX
B(m).

i) We have PR ∈ “DX]/S]
“⊗OX

B(m). Indeed since “D(m)

X]/S]
“⊗OX

B(m) is a ring, then for any b ∈ B(m),

bR ∈ “D(m)

X]/S]
“⊗OX

B(m) ⊂ “DX]/S]
“⊗OX

B(m). Since DX]/S] ⊗OX
B(m) is a left DX]/S] -module generated

by the elements of B(m), then we are done.
ii) Suppose that P is β-bounded. The operator P is therefore a finite sum of elements of the form

πl2∂
[i

2
]

(r) b, with b ∈ B
(m) and |i2| ≤ β(l2 + 1). Since bR ∈ “D(m)

X]/S]
“⊗OX

B(m) (because “D(m)

X]/S]
“⊗OX

B(m) is
a ring), then following the part 2) the element bR is α-bounded. We can therefore write bR as a sum
of elements of the form πl1∂

[i
1
]

(r) b
′ with b′ ∈ B(m) and |i1| ≤ α(l1 + 1). Hence, PR is equal to a sum of

elements of the form πl1+l2∂
[i

1
]

(r)∂
[i

2
]

(r) b
′ with b′ ∈ B(m), |i1| ≤ α(l1 + 1) and |i2| ≤ β(l2 + 1). Since α ≤ β,

by using the formula 1.1.4.4.1 and 3.2.3.13.1 (this latter is still available for m = +∞), PR is therefore
equal to a sum of elements of the form πl∂

[i]

(r)b
′′ with b′′ ∈ B(m) and |i| ≤ α + β(l + 1). Remark PR is

only a priori “almost” β-bounded.
4) We can easily check the formula for any N ∈ N:

tp
m

∂[N+pm] − ∂[N+pm]tp
m

≡ −∂[N ] mod πDX]/S] .

This implies that for any operator U ∈ DX]/S]⊗OX
B(m) there exists an operator Q ∈ DX]/S]⊗OX

B(m)

such that
tp
m

Q−Qtp
m

≡ U mod π“DX]/S]
“⊗OX

B(m)

and ord(Q) ≤ ord(U) + pm.
5) In this step, let us build by induction on l ≥ 0, some operators Pl ∈ DX]/S] ⊗OX

B(m) satisfying
for any l ≥ 0 the following conditions:

(i) P0 = 1 and for l ≥ 1 on a Pl ≡ Pl−1 mod πlDX]/S] ⊗OX
B(m) ,
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(ii) Pl is β-bounded,

(iii) tp
m

Pl ≡ Pl(tp
m − πR) mod πl+1“DX]/S]

“⊗OX
B(m).

Remark that following the step 3), the elements of the congruence of the property (iii) belong to“DX]/S]
“⊗OX

B(m). We have necessarily P0 = 1. Let l ∈ N and suppose built P0, . . . , Pl satisfying
the conditions (i), (ii) and (iii). Put U := −[tp

m

Pl − Pl(tp
m − πR)]l+1 ∈ DX]/S] ⊗OX

B(m). Following
the property (iii) satisfied by Pl, we have tp

m

Pl − Pl(tp
m − πR) ≡ 0 mod πl+1“DX]/S]

“⊗OX
B(m). This

implies the congruence:

− πl+1U ≡ tp
m

Pl − Pl(tp
m

− πR) mod πl+2“DX]/S]
“⊗OX

B(m). (9.3.5.4.1)

Following the step 3.ii), since Pl is β-bounded then σl+1(πPlR) = πσl(PlR) is a differential operator
of order bounded by α + β(l + 1). It follows from that the step 2), that ord(σl(t

pmPl − Pl(t
pm) ≤

β(l + 1). This yields ord(U) ≤ β(l + 1) + α. Following the part 4) of the proof, there exists therefore
Q ∈ DX]/S] ⊗OX

B(m) such that tp
m

Q−Qtpm ≡ U mod π“DX]/S]
“⊗OX

B(m) and ord(Q) ≤ ord(U) +pm.
This implies ord(Q) ≤ β(l+1)+α+pm = β(l+2) (recall that β := α+pm). Hence, πl+1Q is β-bounded.

Following the step 3.i), QR ∈ “DX]/S]
“⊗OX

B(m). By using 9.3.5.4.1, we get the congruences

tp
m

(Pl + πl+1Q)− (Pl + πl+1Q)(tp
m

− πR) = tp
m

Pl − Pl(tp
m

− πR) + πl+1(tp
m

Q−Qtp
m

) + πl+2QR

≡ −πl+1U + πl+1(tp
m

Q−Qtp
m

) mod πl+2“DX]/S]
“⊗OX

B(m)

≡ 0 mod πl+2“DX]/S]
“⊗OX

B(m).

Hence, Pl+1 := Pl+π
l+1Q is β-bounded and the equality tp

m

Pl+1 ≡ Pl+1(tp
m−πR) mod πl+2“DX]/S]

“⊗OX
B(m)

holds.
6) Finally, following the step 5), we get the element P := liml→∞ Pl of “DX]/S]

“⊗OX
B(m) which is

β-bounded and tp
m

P = P (tp
m − πR) holds. Following the step 0.ii), since P is β-bounded, there exists

therefore m′ ≥ m such that P ∈ “D(m′)

X]/S]
“⊗OX

B(m) ⊂ ‹D(m′)

X]/S]
. Such operator P verifies the required

properties.

Notation 9.3.5.5. According to the notation 7.5.5.14 (this is also a respective case of 9.3.1.8), for any
E ∈ (l‹D(m)

X]/S],Q) we set

ũ(m)!(E) := ‹D(m)

Z]→X]/S],Q ⊗
L
f−1D̃(m)

X]/S],Q

u−1(E)[du].

According to 7.5.8.3 (or a respective case of 9.3.2.1) for any F ∈ D(r‹D(m)

Z]/S],Q), we set

ũ
(m)
+ (F) := u∗

Ç‹D(m)

X]←Z]/S],Q ⊗
L
D̃(m)

Z]/S],Q

F
å
.

For coherent complexes, both functors are compatible with that of the subsection 9.3.3. More pre-
cisely, on one hand for any G ∈ Db

coh(l‹D(m)

X]/S]
), following 7.5.5.16.(b) we have the isomorphism

ũ(m)!(GQ)
∼−→ (ũ(m)!(G))Q, (9.3.5.5.1)

where ũ(m)!(G) is the usual pullbacks (see definition 7.5.5.6.(c). On the other hand for any H ∈
Db

coh(l‹D(m)

Z]/S]
) following 7.5.8.4.(b)

ũ
(m)
+ (HQ)

∼−→ (ũ
(m)
+ (H))Q, (9.3.5.5.2)

where ũ(m)
+ (H) is the usual pushforward (see definition 7.5.8.1.(c)).
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Notation 9.3.5.6. Suppose the local condition of 9.3.1.2 are satisfied. Following 9.3.1.14.1, we have the
isomorphism

ũ
(m)
+ (F)

∼−→
ι
t̃
⊗id

(‹D(m)

X]/S],Q/
‹D(m)

X]/S],QI)⊗D̃(m)

X]/S],Q

u∗F .

By taking the global section of the bijection 9.3.1.18.1, we get Γ(Z, ‹D(m)

X]←Z]/S],Q)
∼−→ ‹D(m)

X]/S]
/‹D(m)

X]/S],QI,

which yields a structure of (‹D(m)

X]/S]
, ‹D(m)

Z]/S]
)-bimodule on this latter term. Hence, for any left ‹D(m)

Z]/S]
-

module G, we get a left ‹D(m)

X]/S]
-module by setting:

ũ
(m)
+ (G) := ‹D(m)

X]/S]
/‹D(m)

X]/S],QI ⊗D̃(m)

Z]/S],Q

G, (9.3.5.6.1)

i.e. this is a global version of the notation 9.3.2.1 (do not confuse with 9.3.3.6.1). By setting G :=‹D(m)

Z]/S]
⊗
D̃

(m)

Z]/S]

G, we get the isomorphism

Γ(X, ũ
(m)
+ (G))

∼−→ ũ
(m)
+ (G). (9.3.5.6.2)

Indeed, by associativity of the tensor product, we reduce to the case where G = ‹D(m)

Z]/S]
, which is easy.

Following 9.3.1.20.2, for any left ‹D(m)

X]/S],Q-module E , we have the isomorphism of left ‹D(m)

Z]/S],Q-
modules:

H0ũ(m)!(E)
∼−→ ∩ds=r+1 ker(E ts−→ E). (9.3.5.6.3)

For any left ‹D(m)

X]/S],Q-module E, we set

H0ũ(m)!(E) := HomBX
(BX/IBX, E) ∩ds=r+1 ker(E

ts−→ E). (9.3.5.6.4)

Then H0ũ(m)!(E) is endowed with a structure of left ‹D(m)

Z]/S],Q-module which is (well) defined by the
formula

Q · x := QX · x. (9.3.5.6.5)

for any x ∈ H0u(m)!(E), Q ∈ ‹D(m)

Z]/S]
and any choice QX ∈ ‹DX],Z],t such that ϑ(Q) = [QX]Z (see

5.2.2.5.7). Comparing 9.3.1.20.3 and 9.3.5.6.5, for any left ‹D(m)

X]/S],Q-module E , we have the isomorphism

of left ‹D(m)

Z]/S],Q-modules:

Γ(X, H0ũ(m)!(E))
∼−→ Γ(X,∩ds=r+1 ker(E ts−→ E))

∼−→ H0ũ(m)!(Γ(X, E)). (9.3.5.6.6)

Lemma 9.3.5.7. Let F be a coherent ‹D(m)

Z]/S],Q-module with support in Z. Then ũ(m)
+ (F) is a coherent‹D(m)

X]/S],Q-module with support in Z. Moreover, we have a canonical isomorphism

H0ũ(m)!ũ
(m)
+ (F)

∼−→ (F). (9.3.5.7.1)

Proof. The stability of the coherence comes from the fact that u is proper (see 7.5.11.4). The morphism
9.3.5.7.1 is constructed in 9.3.2.3. The fact that this is an isomorphism is local and we can therefore
suppose the local condition of 9.3.1.2 are satisfied. Hence, via 7.5.8.4.(b), this is a consequence of 9.3.3.13
(see also 9.3.5.6 and use theorem of type A).

Theorem 9.3.5.8 (Berthelot). Let E be a coherent ‹D(m)

X]/S],Q-module with support in Z (i.e. such that
E|Y = 0).

Then there exist a large enough integer m′ ≥ m, a coherent ‹D(m′)

Z]/S],Q-module F and an isomorphism

of ‹D(m′)

X]/S],Q-modules of the form

ũ
(m′)
+ (F)

∼−→ ‹D(m′)

X]/S],Q ⊗D̃(m)

X]/S],Q

E .
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Proof. 0) For any coherent ‹D(m′)

Z]/S],Q-module G, we have the canonical isomorphism H0ũ!(m′)ũ
(m′)
+ (G)

∼−→

G (see 9.3.5.7). This implies that the functor ũ(m′)
+ is fully faithful. The theorem is therefore local, and

thanks to 5.2.1.1 we can suppose X is affine and there exist some integers d ≥ r and a cartesian diagram
of formal log S-schemes of the form:

X] //

�

Ad,r
S]

Z]
?�

u

OO

// Ar,r
S]

?�

OO

such that horizontal morphisms are log-étale and the right morphism is the canonical exact closed
immersion. By proceeding by induction on d, we can suppose d = r + 1, i.e. Z] = V (t) where t is the
section of OX image of tn via X] → Ad,d−1

S]
. In other words, we reduce to the context 9.3.5.3 and we will

use its notation.
1) Let

◦
E be a π-torsion free coherent ‹D(m)

X]/S]
-module endowed with a ‹D(m)

X]/S]
-linear isomorphism

of the form
◦
EQ

∼−→ E (see 7.4.5.2). Since X is affine, we can choose some generators e1, . . . , es of
◦
E

as ‹D(m)

X]/S]
-module (use theorem of type A of 7.2.3.10). Put e :=

Ö
e1

...
es

è
. Since

◦
E/π

◦
E is a quasi-

coherent OX -module with support in Z (i.e. (
◦
E/π

◦
E)|Y = 0), then tp

m

ei ≡ 0 mod π
◦
E (by increasing

m if necessary). There exists therefore a matrix R ∈ Ms(‹D(m)

X]/S]
) such that tp

m

e = πRe. Let m′ and

P ∈ Ms(‹D(m′)

X]/S]
) satisfying the conditions of the Lemma 9.3.5.4. Put E(m′) := ‹D(m′)

X]/S],Q ⊗D̃(m)

X]/S],Q

E.

We denote by 1 ⊗ e1, . . . , 1 ⊗ es the images of e1, . . . , es in E(m′). Put e′ := P (1 ⊗ e). We compute
tp
m

e′ = tp
m

P (1⊗ e) = P (tp
m

Is − πR)(1⊗ e) = P (1⊗ (tp
m

e− πRe)) = 0.
2) Recall H0ũ!(m′)(E(m′)) is the set some elements of E(m′) which are killed by t. Denote by K(m′)

the sub-‹D(m′)

X]/S],Q-module of E(m′) generated by H0ũ!(m′)(E(m′)). Let us check by induction on i ≥ 1 that

for any x ∈ E(m′) if tix = 0 then x ∈ K(m′). When i = 1, this is straightforward. Suppose i ≥ 2 and the
property holds for i− 1. Let x ∈ E(m′) such that tix = 0. From the formula ∂ti−1 = ti−1∂ + (i− 1)ti−2,
we get by right multiplication by t the following equality ∂ti = ti−1∂t+ (i− 1)ti−1 = ti−1(∂t+ (i− 1)).
Since ∂ti · x = 0, by induction hypothesis, we get (∂t + (i − 1)) · x ∈ K(m′) (resp. t · x ∈ K(m′) and
therefore ∂t · x ∈ K(m′)). This yields (i − 1)x ∈ K(m′) and therefore x ∈ K(m′), which concludes the
induction. Since E(m′) is generated as ‹D(m′)

X]/S],Q-module by some elements killed by tp
m

(see the step 1),

then this implies that K(m′) = E(m′), i.e. that E(m′) is generated as ‹D(m′)

X]/S],Q-module by some elements
killed by t.

3) Following 9.3.2.3 (still valid in our coefficient B(m′)
X ) and more explicitly following 9.3.2.4 the

description given at 5.2.6.2.a) is still valid in our context, i.e., we get the morphism of ‹D(m′)

X]/S],Q-modules
given by

adj : ũ
(m′)
+ ◦H0ũ!(m′)(E(m′))→ E(m′) (9.3.5.8.1)

given by
∑
k[Pk]⊗xk 7→

∑
k P ·xk, with xk ∈ H0ũ!(m′)(E(m′)), such that lim|k|→∞ xk = 0 (where [∂〈k〉]′

is the image of ∂〈k〉 in the bimodule ‹D(m′)

X]←Z]/S],Q
∼−→ ‹D(m′)

X]/S],Q/
‹D(m′)

X]/S],QI). Since E
(m′) is generated as‹D(m′)

X]/S],Q-module by a finite number of elements of H0ũ!(m′)(E(m′)), this yields a surjective morphism of

(coherent) ‹D(m′)

X]/S],Q-modules of the form ũ
(m′)
+ (L)→ E(m′) where L is a free ‹D(m′)

Z]/S],Q-module of finite

rank and which splits of the form ũ
(m′)
+ (L) → ũ

(m′)
+ ◦ H0ũ!(m′)(E(m′)) → E(m′), where the last map is

9.3.5.8.1. This yields the map ũ(m′)
+ ◦H0ũ!(m′)(E(m′))→ E(m′) is surjective.

4) Denote by N the kernel of the surjection ũ(m′)
+ (L) → E(m′). Since N is the global section of the

kernel of a morphism of coherent ‹D(m)

X]/S],Q-modules with support in Z (see theorem of type A and B),

then N is the global section of a coherent ‹D(m)

X]/S],Q-modules with support in Z. Hence, by proceeding
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as above (see the step 3) and increasing m′ if necessary (use 7.5.8.15 and the fact that the extension‹D(m′)

X]/S],Q → ‹D(m′′)

X]/S],Q is flat for any m′ ≤ m′′), the adjunction morphism ũ
(m′)
+ H0ũ!(m′)(N) → N is

surjective. Since H0ũ!(m′)(N) is a sub-module of L, then H0ũ!(m′)(N) is a coherent ‹D(m′)

Z]/S],Q-module

and the composite ũ(m′)
+ H0ũ!(m′)(N)→ N → ũ

(m′)
+ L is injective (because ũ(m′)

+ is exact). In particular,
ũ

(m′)
+ H0ũ!(m′)(N) → N is also injective. Since this latter map is also surjective, then the canonical

arrow ũ
(m′)
+ H0ũ!(m′)(N) → N is an isomorphism. Hence, by exactness of ũ(m′)

+ , we get E(m′) ∼−→
ũ

(m′)
+ (L)/N

∼−→ ũ
(m′)
+ (L)/ũ

(m′)
+ H0ũ!(m′)(N)

∼−→ ũ
(m′)
+ (L/H0ũ!(m′)(N)).

�

Theorem 9.3.5.8 is false if you fix m, i.e. do not allow m to increase; for example D(0)
X /D(0)

X (tp − p).
This theorem is the first step in the proof of the Berthelot-Kashiwara theorem, it shows that essential
surjectivity is true asymptotically.

Theorem 9.3.5.9 (Berthelot-Kashiwara). The extraordinary inverse image u!
D and the direct image

uD+ functors (see 9.2.1.21.1 and 9.2.4.13) induce quasi-inverse equivalences between the category of
coherent D†

X]/S]
(†D)Q-modules with support in Z and that of coherent D†

Z]/S]
(†E)Q-modules. Theses

functors u!
D and uD+ are exact on theses categories.

Proof. We reduce to the geometical situation of the step 1) of the proof of 9.3.5.8. For any coherent
D†

X]/S]
(†D)Q-module F with support in Z, it follows from 9.3.5.7 that we have the canonical isomor-

phism H0u!
DuD+(F)

∼−→ F . By using theorem 9.3.5.8, this yields that the functors H0u!
D and uD+

induce some equivalences quasi-inverse between the category of coherent D†
X]/S]

(†D)Q-modules with

support in Z and that of coherent D†
Z]/S]

(†E)Q-modules. The acyclicity of uD+ follows from a computa-
tion in local coordinates. It remains to check the acyclicity of ũ!. Following 1.4.2.5.2, the morphism‹D(m)

X]/S],Q → ‹D(m+1)

X]/S],Q sends
∑
k∈N bk∂

〈k〉(m) to
∑
k∈N bk

q
(m)

k
!

q
(m+1)

k
!
∂〈k〉(m+1) . Via the formula 1.4.2.7.1

(still valid for formal schemes), we compute t∂〈k+1〉(m+1) − ∂〈k+1〉(m+1)t =
{
k+1

1

}
(m+1)

∂〈k〉(m+1) =

q
(m+1)

k+1
!

q
(m+1)

k
!
∂〈k〉(m+1) By using 8.7.1.7.1, vp(

q
(m+1)

k+1
!

q
(m+1)

k
!
) < logp(k + 1) + 1

pm+1(p−1) + p
(p−1) and vp(

q
(m)

k
!

q
(m+1)

k
!
) >

k
pm(p−1) − logp(k+ 1)− p

(p−1) −
k

pm+1(p−1) = k
pm+1(p−1) − logp(k+ 1)− p

(p−1) . Hence, there exists N ∈ N

large enough such that for any k ≥ N we get bk
q
(m)

k
!

q
(m+1)

k
!
∂〈k〉(m+1) = b′k

q
(m+1)

k+1
!

q
(m+1)

k
!
∂〈k〉(m+1) , with b′k ∈ B

(m+1)
X

converging to zero for the p-adic topology. Hence,
∑
k≥N bk

q
(m)

k
!

q
(m+1)

k
!
∂〈k〉(m+1) =

∑
k≥N b

′
k

q
(m+1)

k+1
!

q
(m+1)

k
!
∂〈k〉(m+1) =

t
(∑

k≥N b
′
k∂
〈k+1〉(m+1)

)
−
(∑

k≥N b
′
k∂
〈k+1〉(m+1)

)
t ∈ I‹D(m+1)

X]/S],Q+‹D(m+1)

X]/S],QI. Similarly, since the sum is fi-

nite, we get
∑
k≥N bk

q
(m)

k
!

q
(m+1)

k
!
∂〈k〉(m+1) ∈ I‹D(m+1)

X]/S],Q+‹D(m+1)

X]/S],QI. Hence, for any coherent ‹D(m)

Z]/S],Q-module

F (m), denoting by F (m+1) := ‹D(m+1)

Z]/S],Q ⊗D̃(m)

Z]/S],Q

F (m), the canonical arrow H1ũ(m)! ◦ ũ(m)
+ (F (m)) →

H1ũ(m+1)! ◦ ũ(m+1)
+ (F (m+1)) is the zero morphism. Indeed, by using H1ũ(m)! = H1ũ(m+1)! = ũ∗ for

coherent modules, this latter morphism corresponds to the map‹D(m)

X]/S]
/(I‹D(m)

X]/S],Q +‹D(m)

X]/S],QI)⊗
D̃

(m)

Z]/S],Q

F (m) → ‹D(m+1)

X]/S]
/(I‹D(m+1)

X]/S],Q +‹D(m+1)

X]/S],QI)⊗
D̃

(m+1)

Z]/S],Q

F (m+1).

This implies that H1u!
D ◦uD+(F) = 0. Since we have Hiu!

D ◦uD+(F) = 0 for i 6∈ {0, 1}, then this implies
the acyclicity of u!

D.

Remark 9.3.5.10. C. Huyghe and T. Schmidt establish Kashiwara’s theorem for twisted arithmetic dif-
ferential operators, which is a variation of 9.3.5.9 (see [HS24]).

Corollary 9.3.5.11. With notation 9.3.5.9, let E be a coherent D†
X]/S]

(†D)Q-modules with support in

Z. Then we have the isomorphism of coherent D†
Z]/S]

(†E)Q-modules:

DZ],E ◦ u!
D(E)

∼−→ u!
D ◦ DX],D(E). (9.3.5.11.1)
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Proof. We have the isomorphisms of coherent D†
Z]/S]

(†E)Q-modules:

uD+ ◦ DZ],E ◦ u!
D(E)

∼−→
9.3.2.8

DZ],E ◦ uD+ ◦ u!
D(E)

∼−→
9.3.5.9

DZ],E(E)
∼−→

9.3.5.9
uD+ ◦ u!

D ◦ DZ],E(E).

Since the functor uD+ is fully faithful on the category of coherent D†
Z]/S]

(†E)Q-modules, then we are
done.

9.3.5.12. For any E(•) ∈ D−(‹D(•)
X]/S]

(D)), we have the isomorphism of D−(‹D(•)
Z]/S]

(E)))

BZ(E)(•) ⊗L
u−1BX(D)(•) u

−1E(•)[du]
∼−→ u

(•)!
D alg(E(•)) := ‹D(•)

Z]→X]/S]
(D)⊗L

f−1D̃(•)
X]/S]

(D)
f−1F (•) [du].

(9.3.5.12.1)
Moreover, for any left ‹D(•)

X]/S]
(D)-module E(•), it follows from the local computation 9.3.1.8.4 that

Hi(u
(•)!
D alg(E(•))) = 0 for any integer i 6∈ [0,−du]. Hence, by using 9.2.1.17, this yields that for any object

of LM−−→Q,coh(‹D(•)
X]/S]

(D)), we have Hi(u
(•)!
D (E(•))) = 0 in LM−−→Q,coh(‹D(•)

Z]/S]
(E)) for any integer i 6∈ [0,−du].

defined by setting,
Beware that this functor do not preserve the quasi-coherence. We benefit for any E(•) ∈ LD−→

b
Q,qc(‹D(•)

X]/S]
(D))

from a canonical morphism u
(•)!
D,alg(E(•)) → u

(•)!
D (E(•)) (this morphism is even build in D(‹D(•)

X]/S]
(D)),

i.e. before the localisation).

Theorem 9.3.5.13 (LD-version of Berthelot-Kashiwara Theorem). Let F (•) ∈ LD−→
b
Q,coh(l‹D(•)

Z]
(E)),

E(•) ∈ LD−→
b
Q,coh(l‹D(•)

X]
(D)) such that E(•)|U ∼−→ 0 in LD−→

b
Q,coh(l‹D(•)

U]
(D)).

(a) We have the canonical isomorphism in LD−→
b
Q,coh(l‹D(•)

Z]
(E)):

F (•) ∼−→ u
(•)!
D ◦ u(•)

D+(F (•)). (9.3.5.13.1)

(b) We have u(•)!
D (E(•)) ∈ LD−→

b
Q,coh(l‹D(•)

Z]
(E)) and we benefit from the canonical isomorphism

u
(•)
D+ ◦ u

(•)!
D (E(•))

∼−→ E(•). (9.3.5.13.2)

(c) The functors u(•)
D+ and u(•)!

D induce t-exact quasi-inverse equivalences between the category LD−→
b
Q,coh(l‹D(•)

Z]
(E))

and the full subcategory of LD−→
b
Q,coh(l‹D(•)

X]
(D)) consisting of complexes E(•) such that E(•)|U ∼−→ 0.

Proof. 1) Let us check the isomorphism 9.3.5.13.1. It follows from 5.2.6.3 that we have the canonical
adjunction morphism F (•) → u

(•)!
D ◦u

(•)
D+(F (•)) ofD(l‹D(•)

Z]
(E)). It is a question of checking that this arrow

is an isomorphism of LD−→
b
Q(l‹D(•)

Z]
(E)). Following the proposition 8.3.3.5, this is local. By transitivity of

the adjunction morphisms, we reduce to the case where X]/S] is endowed with logarithmic coordinates
t1, . . . , td such that Z] = V (t1). In this case, it follows from 9.3.5.12 that, for any integer l 6∈ {0, 1}, we
have H lu

(•)!
D = 0 on LD−→

b
Q,coh(l‹D(•)

X]
(D)). Since the functor u(•)

D+ preserves the coherence and is exact, the

functor u(•)!
D ◦ u(•)

D+ is therefore left way-out (this has a meaning by using the equivalence of categories
LD−→

b
Q,coh(‹D(•)

Z]
(E)) ∼= Db

coh(LM−−→Q(‹D(•)
Z]

(E))) of 8.4.5.6). By copying the beginning of the proof of 8.4.5.3,

we reduce therefore to the case where F (•) = λ∗‹D(•)
Z]

(E), for some λ ∈ L. Hence, following 9.3.3.13, we

get the canonical isomorphism F (•) ∼−→ H0u
(•)!
D ◦u

(•)
D+(F (•)) is an isomorphism ofD(‹D(•)

Z]
(E)). Moreover,

following the proof of 9.3.5.8, the canonical arrow H1u
(m)!
D ◦ u(m)

D+(F (m))→ H1u(m+1)! ◦ u(m+1)
+ (F (m+1))

is the zero morphism. This implies H1u
(•)!
D ◦ u(•)

D+(F (•)) = 0 in LM−−→Q,coh(‹D(•)
Z]

(E)). Hence, we are done.
2) Now, let us check 9.3.5.13.2. Put E :=→l

∗
Q(E(•)). Following the theorem of Berthelot-Kashiwara

of 9.3.5.9, since E ∈ Db
coh(D†

X]
(†D)Q) and is with support in Z, then u!

D(E) ∈ Db
coh(D†

Z]
(†E)Q). Let

H(•) ∈ LD−→
b
Q,coh(l‹D(•)

Z]
(E)) such that u!

D(E)
∼−→ →l

∗
Q(H(•)). Via 9.2.4.17, this implies uD+(u!

D(E))
∼−→
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→l
∗
Q u

(•)
D+H(•). Since following the theorem of Berthelot-Kashiwara E ∼−→ uD+(u!

D(E)), since E(•), u
(•)
D+H(•) ∈

LD−→
b
Q,coh(l‹D(•)

X]
(D)) and since the functor→l

∗
Q is fully faithful on LD−→

b
Q,coh(l‹D(•)

X]
(D)), this implies E(•) ∼−→

u
(•)
D+H(•). This yields u(•)!

D (E(•))
∼−→ u

(•)!
D ◦ u(•)

D+H(•) ∼−→
9.3.5.13.1

H(•). By applying the functor u(•)
D+ to this

composite morphism, we get the desired isomorphism 9.3.5.13.2.
3) The third point is straightforward from the first two.

Remark 9.3.5.14. Let F (•) ∈ LD−→
b
Q,qc(l‹D(•)

Z]
(E)). It is not clear that the property→l

∗
Q(F (•)) ∈ Db

coh(D†
Z]/S]

(†E)Q)

implies F (•) ∈ LD−→
b
Q,coh(l‹D(•)

Z]
(E)). Hence, the version 9.3.5.13 is slightly more precise than 9.3.5.9.

Remark 9.3.5.15. Let E(•) ∈ LD−→
b
Q,coh(‹D(•)

P]
(D)). Then E(•)|U ∼−→ 0 in LD−→

b
Q,coh(‹D(•)

U]
(D ∩U)) if and only

if the cohomology spaces of→l
∗
QE

(•) are D†
P]

(†D)Q-coherent with support in X, i.e.→l
∗
QE

(•)|U = 0.

9.3.6 Adjunction morphism associated to the base change of an exact closed
immersion by log smooth morphisms, transitivity, compatibility with
glueing isomorphisms

Proposition 9.3.6.1. Let S] be a nice fine V-log formal scheme (see definition 3.3.1.10). Consider the
following diagram of fine log formal schemes which are log smooth over S]:

P′′]
g // P′]

f // P]

X′′]
u′′
OO

b // X′]
u′
OO

a // X],
u
OO (9.3.6.1.1)

where f , g, a and b are log-smooth, where u, u′ and u′′ are exact closed immersions. We suppose that the
diagram 9.3.6.1.1 is commutative modulo π. Moreover, let T be a divisor of P such that T ′ := f−1(T )
(resp. T ′′ := g−1(T ′), Z := u−1(T ), Z ′ := u′−1(T ′) and Z ′′ := u′′−1(T ′′)) is a divisor of P ′ (resp. P ′′,
X, X ′ and X ′′).

(a) We have the canonical adjunction morphisms

u′+ ◦ a! → f ! ◦ u+, u
′(•)
+ ◦ a(•)! → f (•)! ◦ u(•)

+ (9.3.6.1.2)

of functors of respectively of the form Db
coh(D†

X]/S]
(†Z)Q)→ Db

coh(D†
P′]/S]

(†T ′)Q) and LD−→
b
Q,coh(l‹D(•)

X]/S]
(Z))→

LD−→
b
Q,coh(l‹D(•)

P′]/S]
(T ′))). If the right square of 9.3.6.1.1 is cartesian modulo π then both morphisms

9.3.6.1.2 are isomorphisms.

(b) Denoting by φ : u′+ ◦ a! → f ! ◦u+, (resp. φ′ : u
′′

+ ◦ b! → g! ◦u′+, resp. φ′′ : u
′′

+ ◦ (a ◦ b)! → (f ◦ g)! ◦u+)
the morphism of adjunction of the right square 9.3.6.1.1 (resp. the left square, resp. the outer of
9.3.6.1.1), then the following diagram

u′′+ ◦ (a ◦ b)!
∼
//

φ′′��

u′′+ ◦ b! ◦ a!

(g!◦φ)◦(φ′◦a!)��
(f ◦ g)! ◦ u+ ∼

// g! ◦ f ! ◦ u+,

is commutative ; and similarly the LD−→
b
Q,coh is valid. By abuse of notation, we get the transitivity

equality φ′′ = (g! ◦ φ) ◦ (φ′ ◦ a!).

(c) Let a′ : X′ → X (resp. f ′ : X′ → X) be a morphism whose reduction X ′ → X (resp. P ′ → X) is equal
to that of a (resp. f). Then the following diagram

u′+a
! φ // f ! ◦ u+

u′+a
′! ψ //

u′+(τa,a′ ) ∼
OO

f ′! ◦ u+,

τf,f′u+ ∼
OO

where ψ means the morphism of adjunction of the right square of 9.3.6.1.1 whose a and f have been
replaced respectively by a′ and f ′, is commutative. Similarly the LD−→

b
Q,coh is valid
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Proof. a) Since we have the equivalence of categories→l
∗
Q : LD−→

b
Q,coh(‹D(•)

X]
(Z))→ Db

coh(D†
X]

(†Z)Q) (and the
other similar ones), it follows from the compatibility of the pullbacks and pushforwards of 9.2.1.24 and
9.2.4.17 and from their coherence stability properties of 9.4.1.7 and 9.4.2.4 that we reduce to check the
respective case.

Let E(•) ∈→l
∗
Q : LD−→

b
Q,coh(‹D(•)

X]
(Z)). Let’sconstruct the morphism φ(E(•)) : u

′(•)
+ ◦ a(•)! → f (•)! ◦u(•)

+ . By

applying the functor u′(•)+ ◦a(•)! to the adjunction morphism of u applied to E(•) (see 9.3.2.11), we obtain:
u′+a

(•)!(E(•)) → u
′(•)
+ a(•)!u(•)!u

(•)
+ (E(•)). Now, as (f ◦ u′)(•)! ∼−→ u′(•)!f (•)! and (u ◦ a)(•)! ∼−→ a(•)!u(•)!,

we have isomorphism u
′(•)
+ τ

(•)
f◦u′,u◦au

(•)
+ (E(•)) : u

′(•)
+ a(•)!u(•)!u

(•)
+ (E(•))

∼−→ u
′(•)
+ u′(•)!f (•)!u

(•)
+ (E(•)) (nota-

tions of 9.2.2.1). Following 9.3.2.11, we have the adjunction morphism of u′ applied to f (•)!u
(•)
+ (E(•)):

u
′(•)
+ u′(•)!f (•)!u

(•)
+ (E(•)) → f (•)!u

(•)
+ (E(•)). By composing these three morphisms, it comes: φ(E(•)) :=

u
′(•)
+ a(•)!(E(•))→ f (•)!u

(•)
+ (E(•)).

Now let us establish that the morphism φ(E(•)) is an isomorphism when the right diagram of 9.3.6.1.1
is Cartesian. First, since u is an exact closed immersion, the first arrow in the construction of φ(E(•))

is an isomorphism. Furthermore, the cartesian hypothesis implies than the complex f (•)!u
(•)
+ (E(•)) has

support in X ′ and therefore the adjunction morphism of u′ in f (•)!u
(•)
+ (E(•)) is an isomorphism (see

9.3.5.13).
b) Let us now prove the transitivity formula of (b). For this, since the respective case is checked

similarly, to simplify notation we consider the non-respective one. We have the following diagram:

u′′+(a ◦ b)! //

adju��

u′′+b
!a!

adju′ //

adju��

u′′+b
!u′!u′+a

! τ //

adju��

u′′+u
′′!g!u′+a

!
adju′′ //

adju��

g!u′+a
!

adju��
u′′+(a ◦ b)!u!u+

//

τ

��

u′′+b
!a!u!u+

adju′ //

τ��

u′′+b
!u′!u′+a

!u!u+
τ //

τ��

u′′+u
′′!g!u′+a

!u!u+

adju′′ //

τ��

g!u′+a
!u!u+

τ��
u′′+b

!u′!f !u+

adju′ // u′′+b
!u′!u′+u

′!f !u+
τ //

adju′��

u′′+u
′′!g!u′+u

′!f !u+

adju′′ //

adju′��

g!u′+u
′!f !u+

adju′��
u′′+b

!u′!f !u+

τ��

u′′+b
!u′!f !u+

τ //

τ��

u′′+u
′′!g!f !u+

adju′′ // g!f !u+

u′′+u
′′!(f ◦ g)!u+

adju′′��

// u′′+u
′′!g!f !u+

adju′′��

u′′+u
′′!g!f !u+

adju′′��

u′′+u
′′!g!f !u+

adju′′ //

adju′′��

g!f !u+

(f ◦ g)!u+
// g!f !u+ g!f !u+ g!f !u+ g!f !u+.

(9.3.6.1.3)
The commutativity of the rectangle (the only rectangle: on the left and in the middle) from 9.3.6.1.3 is
deduced of all the properties, given in 9.2.2.3, isomorphisms of the form τ , as well as from the following
diagram

X′′]
b //

τ��
X′]

a //

τ��
X]

u // P]

X′′]
b //

τ��
X′]

u′ // P′]
f // P

X′′]
u′′ // P′′]

g // P′]
f // P].

Moreover, we notice that the composite morphism u′!
adju′−→ u′!u′+u

′! adju′−→ u′! is the identity. Indeed, this re-
sults from the bifunctor adjunction isomorphism θ: HomD†

P′
(†TP ′ )

(u′+(−), −)
∼−→ HomD†

X′
(†TX′ )

(−, u′!(−))

(we will only use the right functoriality), and because the identity morphism u′+u
′! Id−→ u′+u

′! is sent via

θ on u′!
adju′−→ u′!u′+u

′! while u′+u′!
adju′−→ id is sent over u′! Id−→ u′!. This results in the commutativity of the

left square of the third row of 9.3.6.1.3.
We then check, by definition or by functoriality, the commutativity of the other squares of 9.3.6.1.3.

This diagram is therefore commutative.
However, we note that the left composite morphism of 9.3.6.1.3, u

′′

+ ◦ (a◦ b)! ∼−→ (f ◦ g)! ◦u+, is none
other than φ′′, while the one constructing taking the path that goes from the top then to the right of
the contour of 9.3.6.1.3, u′′+ ◦ b! ◦ a! ∼−→ g! ◦ f ! ◦ u+, matches (g! ◦ φ) ◦ (φ′ ◦ a!). Hence (i).
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Let us now prove (c). It follows from 9.2.2.3 that the diagram below

u′+a
!(E)

adju // u′+a
!u!u+(E)

u′+τf◦u′,u◦au+ // u′+u
′!f !u+(E)

adju′ // f !u+(E)

u′+a
′!(E)

adju

//
u′+(τa,a′ )

OO

u′+a
′!u!u+(E)

u′+τf′◦u′,u◦a′u+

//
u′+τu◦a,u◦a′u+

OO

u′+u
′!f ′!u+(E)

adju′
//

u′+τf◦u′,f′◦u′u+

OO

f ′!u+(E).

τf,f′u+
OO

is commutative. We conclude by noting that its contour corresponds to the diagram of (ii).

9.3.7 Coherent arithmetic D-modules over a realizable log smooth scheme
Let S] be a nice fine V-log formal scheme (see definition 3.3.1.10). Let P] be a log smooth separated
formal scheme over S]. Let u0 : X] → P ] be an exact closed immersion of log smooth schemes over S].
Let T be a divisor of P such that Z := T ∩X is a divisor of X. We set Y ] := X] \Z. Let (P]

α)α∈Λ be an
open covering ofP]. We setP]

αβ := P]
α∩P

]
β , P

]
αβγ := P]

α∩P
]
β∩P]

γ , X]
α := X]∩Pα, X]

αβ := X]
α∩X

]
β and

X]
αβγ := X]

α∩X
]
β∩X]

γ . We denote by Y ]α := X]
α∩Y ], Y

]
αβ := Y ]α∩Y

]
β , Y

]
αβγ := Y ]α∩Y

]
β∩Y ]γ , Zα := Xα∩Z,

Zαβ := Zα ∩ Zβ , Zαβγ := Zα ∩ Zβ ∩ Zγ , jα : Y ]α ↪→ X]
α, jαβ : Y ]αβ ↪→ X]

αβ and jαβγ : Y ]αβγ ↪→ X]
αβγ the

canonical open immersions. We suppose that for every α ∈ Λ, X]
α is affine, (for instance when the

covering (P]
α)α∈Λ is affine). Since P is separated, for any α, β, γ ∈ Λ, X]

αβ and X]
αβγ are also affine.

For any 3uple (α, β, γ) ∈ Λ3, fix X]α (resp. X]αβ , X
]
αβγ) some log smooth formal S]-schemes lifting

X]
α (resp. X]

αβ , X
]
αβγ), p

αβ
1 : X]αβ → X]α (resp. pαβ2 : X]αβ → X]β) some flat lifting of X]

αβ → X]
α (resp.

X]
αβ → X]

β).
Similarly, for any (α, β, γ) ∈ Λ3, fix some lifting pαβγ12 : X]αβγ → X]αβ , p

αβγ
23 : X]αβγ → X]βγ , p

αβγ
13 : X]αβγ →

X]αγ , p
αβγ
1 : X]αβγ → X]α, p

αβγ
2 : X]αβγ → X]β , p

αβγ
3 : X]αβγ → X]γ , uα : X]α ↪→ P]

α, uαβ : X]αβ ↪→ P]
αβ and

uαβγ : X]αβγ ↪→ P]
αβγ .

Definition 9.3.7.1. For any α ∈ Λ, let Eα be a coherent D†
X]α/S]

(†Zα)Q-module. A glueing data on

(Eα)α∈Λ is the data for any α, β ∈ Λ of a D†
X]
αβ
/S]

(†Zαβ)Q-linear isomorphism

θαβ : pαβ!
2 (Eβ)

∼−→ pαβ!
1 (Eα),

satisfying the cocycle condition: θαβγ13 = θαβγ12 ◦ θαβγ23 , where θαβγ12 , θαβγ23 and θαβγ13 are the isomorphisms
making commutative the following diagram

pαβγ!
12 pαβ!

2 (Eβ)
τ
∼
//

pαβγ!
12 (θαβ)∼ ��

pαβγ!
2 (Eβ)

θαβγ12��
pαβγ!

12 pαβ!
1 (Eα)

τ
∼
// pαβγ!

1 (Eα),

pαβγ!
23 pβγ!

2 (Eγ)
τ
∼
//

pαβγ!
23 (θβγ)∼ ��

pαβγ!
3 (Eγ)

θαβγ23��
pαβγ!

23 pβγ!
1 (Eβ)

τ
∼
// pαβγ!

2 (Eβ),

pαβγ!
13 pαγ!

2 (Eγ)
τ
∼
//

pαβγ!
13 (θαγ)∼ ��

pαβγ!
3 (Eγ)

θαβγ13��
pαβγ!

13 pαγ!
1 (Eα)

τ
∼
// pαβγ!

1 (Eα),

(9.3.7.1.1)
where τ are the glueing isomorphisms defined in 9.2.2.3.1.

Definition 9.3.7.2. We define the category Coh((X]α)α∈Λ, Z/S
]) as follows:

(a) an object is a family (Eα)α∈Λ of coherent D†
X]α/S]

(†Zα)Q-modules together with a glueing data
(θαβ)α,β∈Λ,

(b) a morphism ((Eα)α∈Λ, (θαβ)α,β∈Λ)→ ((E ′α)α∈Λ, (θ′αβ)α,β∈Λ) is a family of morphisms fα : Eα → E ′α of
coherent D†

X]α/S]
(†Zα)Q-modules commuting with glueing data, i.e., such that the following diagrams

are commutative:

pαβ!
2 (Eβ)

pαβ!
2 (fβ) ��

θαβ

∼
// pαβ!

1 (Eα)

pαβ!
1 (fα)��

pαβ!
2 (E ′β)

θ′αβ

∼
// pαβ!

1 (E ′α).

(9.3.7.2.1)
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Remark 9.3.7.3. For all α, β ∈ Λ, let fα: Eα → E ′α a morphism of D†
X]α

(†Zα)Q-coherent modules,

θαβ : pαβ!
2 (Eβ)

∼−→ pαβ!
1 (Eα) and θ′αβ : pαβ!

2 (E ′β)
∼−→ pαβ!

1 (E ′α) isomorphisms D†
X]
αβ

(†Zαβ)Q-linear. It is

further assumed that the morphisms fα and the isomorphisms θαβ and θ′αβ induce the commutative
diagram 9.3.7.2.1.

Then, the isomorphisms θαβ satisfy the cocycle condition if and only if the same is true of the
isomorphisms θ′αβ . Indeed, by transforming, via 9.3.7.2.1, the squares 9.3.7.1.1 in three commutative
cubes, we get the following commutative squares for any 1 ≤ i < j ≤ 3:

pαβγ!
2 (Eβ)

θαβγ12
∼ ��

pαβγ!
2 (fβ) // pαβγ!

2 (E ′β)

θ′αβγ12
∼ ��

pαβγ!
1 (Eα)

pαβγ!
1 (fα) // pαβγ!

1 (E ′α),

pαβγ!
3 (Eγ)

θαβγ23
∼ ��

pαβγ!
3 (fγ) // pαβγ!

3 (E ′γ)

θ′αβγ23
∼ ��

pαβγ!
2 (Eβ)

pαβγ!
2 (fβ) // pαβγ!

2 (E ′β),

pαβγ!
3 (Eγ)

θαβγ13
∼ ��

pαβγ!
3 (fγ) // pαβγ!

3 (E ′γ)

θ′αβγ13
∼ ��

pαβγ!
1 (Eα)

pαβγ!
1 (fα) // pαβγ!

1 (E ′α).

Definition 9.3.7.4. We denote by Coh(X],P], T/S]) the category of coherent D†
P]/S]

(†Z)Q-modules
with support in X. When T is the empty divisor, we simply write Coh(X,X]/S]).

Lemma 9.3.7.5 (Construction of u!
0). There exists a canonical functor

u!
0 : Coh(X],P], T/S])→ Coh((X]α)α∈Λ, Z/S

])

extending the usual functor u!
0 when X] has a log smooth formal S]-scheme lifting.

Proof. Let E ∈ Coh(X],P], T/S]). Thanks to Berthelot-Kashiwara’s theorem (see 9.3.5.9), we get a
coherent D†

X]α/S]
(†Zα)Q-module by setting Eα := H0u!

α(E|X]α)
∼−→ u!

α(E|X]α). Via the isomorphisms

of the form τ (9.2.2.3.1), we obtain the glueing D†
X]
αβ
/S]

(†Zαβ)Q-linear isomorphism θαβ : pαβ!
2 (Eβ)

∼−→

pαβ!
1 (Eα), as the single arrow making the following diagram commutative

pαβ!
2 u!

β(E|P]
β
)

τ
∼
//

θαβ��

u!
αβ((E|P]

β
)|P]

αβ
)

pαβ!
1 u!

α(E|P]α)
τ
∼
// u!
αβ((E|P]α)|P]

αβ
).

(9.3.7.5.1)

Via the isomorphism τ : pαβγ!
12 u!

αβ((E|P]α)|P]
αβ

)
∼−→ u!

αβγ((E|P]
β
)|P]

αβγ
), by applying the functor pαβγ!

12

squared 9.3.7.5.1 and with 9.3.7.1.1, we get the commutative diagram:

pαβγ!
2 (u!

β(E|P]
β
))

θαβγ12
∼ ��

τ
∼
// u!
αβγ((E|P]

β
)|P]

αβγ
)

pαβγ!
1 (u!

α(E|P]α))
τ
∼
// u!
αβγ((E|P]α)|P]

αβγ
),

where the horizontal isomorphisms are of the form τ , thanks to the transitivity formula and its com-
mutation with extraordinary inverse images of isomorphisms of the form τ (9.2.2.3.1). Similarly, we
construct the two other analogous diagrams. With these three diagrams, we verify that u!

0(E) :=

((u!
α(E|P]α))α∈Λ, (θαβ)α,β∈Λ) satisfies the cocycle condition θαβγ13 = θαβγ12 ◦ θαβγ23 and is thus an object

of Coh((X]α)α∈Λ, Z/S
]).

Also, if f : E → E ′ is a morphism of Coh(X],P], T/S]), then, by functoriality in E of 9.3.7.5.1
(we transform the square 9.3.7.5.1 into a cube), the family (u!

α(f |P]α))α∈Λ commutes with the glueing
data.

Lemma 9.3.7.6. There exists a canonical functor

u0+ : Coh((X]α)α∈Λ, Z/S
])→ Coh(X], P], T/S])

extending the usual functor u0+ when X] has a log smooth formal S]-scheme lifting.
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Proof. Let (Eα)α∈Λ be a family of coherentD†
X]α/S]

(†Zα)Q-modules together with a gluing data (θαβ)α,β∈Λ.

Let’s prove that (uα+(Eα))α∈Λ glues via (θαβ)α,β∈Λ to a coherent D†
P]/S]

(†T )Q-module with support in

X. Let φαβ1 (resp. φαβ2 ) be the adjunction morphism (see the definition 9.3.6.1) of the left (resp. the
right) square of

P]
αβ

// P]
α

X]αβ
pαβ1 //

uαβ
OO

X]α,

uα
OO

P]
αβ

// P]
β

X]αβ
pαβ2 //

uαβ
OO

X]β .

uβ
OO

(9.3.7.6.1)

For every α, β ∈ Λ we define the isomorphism ταβ : (uβ+(Eβ))|X]
αβ

∼−→ (uα+(Eα))|X]
αβ

to be the one
making commutative the following diagram:

uαβ+ ◦ pαβ!
1 (Eα)

φαβ1 (Eα)

∼
// (uα+(Eα))|X]

αβ

uαβ+ ◦ pαβ!
2 (Eβ)

φαβ2 (Eβ)

∼
//

uαβ+(θαβ) ∼
OO

(uβ+(Eβ))|X]
αβ
.

ταβ
OO

(9.3.7.6.2)

It now remains to establish that the isomorphisms ταβ satisfy the condition of reattachment. To this
end, note φαβγ12 (resp. φαβγ23 and φαβγ13 ) the adjunction morphism (always 9.3.6.1) of the next left (resp.
center and right) square

P]
αβγ

// P]
αβ

X]αβγ
pαβγ12 //

uαβγ
OO

X]αβ ,

uαβ
OO

P]
αβγ

// P]
βγ

X]αβγ
pαβγ23 //

uαβγ
OO

X]βγ ,

uβγ
OO

P]
αβγ

// P]
αγ

X]αβγ
pαβγ13 //

uαβγ
OO

X]αγ ,

uαγ
OO

(9.3.7.6.3)

and φαβγ1 (resp. φαβγ2 and φαβγ3 ) that of the diagram from the left (resp. from the center and from the
right):

P]
αβγ

// P]
α

X]αβγ
pαβγ1 //

uαβγ
OO

X]α,

uα
OO

P]
αβγ

// P]
β

X]αβγ
pαβγ2 //

uαβγ
OO

X]β ,

uβ
OO

P]
αβγ

// P]
γ

X]αβγ
pαβγ3 //

uαβγ
OO

X]γ .

uγ
OO

(9.3.7.6.4)
Consider the following commutative diagram

uαβγ+p
αβγ!
1 (Eα)

uαβγ+(τ)

∼
// uαβγ+ ◦ pαβγ!

12 (pαβ!
1 (Eα))

φαβγ12 (pαβ!
1 (Eα))

∼
// uαβ+(pαβ!

1 (Eα))|P]
αβγ

uαβγ+p
αβγ!
2 (Eβ)

uαβγ+(θαβγ12 ) ∼
OO

uαβγ+(τ)

∼
// uαβγ+ ◦ pαβγ!

12 (pαβ!
2 (Eβ))

φαβγ12 (pαβ!
2 (Eβ))

∼
//

uαβγ+◦pαβγ!
12 (θαβ) ∼

OO

uαβ+(pαβ!
2 (Eβ))|P]

αβγ
.

uαβ+(θαβ)|
P
]
αβγ

∼ OO

(9.3.7.6.5)
Thanks to 9.3.6.1.a) and 9.3.6.1.b), we then obtain

(φαβ1 (Eα)|P]
αβγ

) ◦ φαβγ12 (pαβ!
1 (Eα)) ◦ uαβγ+(τ) = φαβγ1 (Eα), (9.3.7.6.6)

(φαβ2 (Eβ)|P]
αβγ

) ◦ φαβγ12 (pαβ!
2 (Eβ)) ◦ uαβγ+(τ) = φαβγ2 (Eβ), (9.3.7.6.7)

(φβγ1 (Eβ)|P]
αβγ

) ◦ φαβγ23 (pβγ!
1 (Eβ)) ◦ uαβγ+(τ) = φαβγ2 (Eβ), (9.3.7.6.8)

(φβγ2 (Eγ)|P]
αβγ

) ◦ φαβγ23 (pβγ!
2 (Eγ)) ◦ uαβγ+(τ) = φαβγ3 (Eγ), (9.3.7.6.9)

(φαγ1 (Eα)|P]
αβγ

) ◦ φαβγ13 (pαγ!
1 (Eα)) ◦ uαβγ+(τ) = φαβγ1 (Eα), (9.3.7.6.10)

(φαγ2 (Eγ)|P]
αβγ

) ◦ φαβγ13 (pαγ!
2 (Eγ)) ◦ uαβγ+(τ) = φαβγ3 (Eγ). (9.3.7.6.11)
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By composing 9.3.7.6.2 restricted to P]
αβγ and 9.3.7.6.5, via equalities 9.3.7.6.6 and 9.3.7.6.7, we get the

commutative square:

uαβγ+p
αβγ!
1 (Eα)

φαβγ1 (Eα)

∼
// (uα+(Eα))|P]

αβγ

uαβγ+p
αβγ!
2 (Eβ)

φαβγ2 (Eβ)

∼
//

uαβγ+(θαβγ12 ) ∼
OO

(uβ+(Eβ))|P]
αβγ

.

ταβ |
P
]
αβγ

∼ OO
(9.3.7.6.12)

Analogously, using 9.3.7.6.8 and 9.3.7.6.9 (resp. 9.3.7.6.10 and 9.3.7.6.11) we obtain the following com-
mutative diagrams:

uαβγ+ ◦ pαβγ!
2 (Eβ)

φαβγ2 (Eβ)

∼
// (uβ+(Eβ))|P]

αβγ

uαβγ+ ◦ pαβγ!
3 (Eγ)

φαβγ3 (Eγ)

∼
//

uαβγ+(θαβγ23 ) ∼
OO

(uγ+(Eγ))|P]
αβγ

,

τβγ |
P
]
αβγ

∼ OO
uαβγ+ ◦ pαβγ!

1 (Eα)
φαβγ1 (Eα)

∼
// (uα+(Eα))|P]

αβγ

uαβγ+ ◦ pαβγ!
3 (Eγ)

φ−3 αβγ(Eγ)

∼
//

uαβγ+(θαβγ13 ) ∼
OO

(uγ+(Eγ))|P]
αβγ

.

ταγ |
P
]
αβγ

∼
OO

(9.3.7.6.13)
Of these last three diagrams, since the functor uαβγ+ is (fully) faithful (for coherent modules), it follows
that the isomorphisms θαβ verify the condition of cocycle if and only if the isomorphisms ταβ stick
together.

Let f = (fα)α∈Λ: ((Eα)α∈Λ, (θαβ)α,β∈Λ)→ ((E ′α)α∈Λ, (θ
′
αβ)α,β∈Λ), be a morphism of Coh((X]α)α∈Λ, Z/S

]).
We associate the family u0+(f) : (uα+(fα))α∈Λ. By noting ταβ (resp. τ ′αβ) the isomorphism making
9.3.7.6.2 commutative for θαβ (resp. θ′αβ), we get the cube

uαβ+ ◦ pαβ!
1 (E ′α)

φαβ1 (E′α) // (uα+(E ′α))|P]
αβ

uαβ+ ◦ pαβ!
1 (Eα)

φαβ1 (Eα) //

uαβ+◦pαβ!
1 (fα) 33

(uα+(Eα))|P]
αβ

(uα+(fα))|
P
]
αβ

33

uαβ+ ◦ pαβ!
2 (E ′β)

uαβ+(θ′αβ)

OO

φαβ2 (E′β)

// (uβ+(E ′β))|P]
αβ

τ ′αβ

OO

uαβ+ ◦ pαβ!
2 (Eβ)

φαβ2 (Eβ)

//

uαβ+(θαβ)

OO

uαβ+◦pαβ!
2 (fβ) 33

(uβ+(Eβ))|P]
αβ
,

ταβ

OO

(uβ+(fβ))|
P
]
αβ

33

(9.3.7.6.14)
whose front, back, bottom and top squares are commutative by functoriality or thanks to 9.3.7.6.2. As
the one on the left is (via 9.3.7.2.1), it follows that it is the same for the square on the right. The
morphisms uα+(fα) therefore stick together.

Theorem 9.3.7.7. The functors u!
0 and u0+ constructed in respectively 9.3.7.5 and 9.3.7.6 are quasi-

inverse equivalences of categories between Coh((X]α)α∈Λ, Z/S
]) and Coh(X], P], T/S]).

Proof. Let ((Eα)α∈Λ, (θαβ)α,β∈Λ) an object of Coh((X]α)α∈Λ, Z/S
]). At first, it is a question of estab-

lishing a functorial isomorphism u!
0 ◦ u0+((Eα)α∈Λ, (θαβ)α,β∈Λ)

∼−→ ((Eα)α∈Λ, (θαβ)α,β∈Λ).
Note E := u0+((Eα)α∈Λ, (θαβ)α,β∈Λ), u!

0(E) = ((u!
α(E|P]α))α∈Λ, (θ

′′
αβ)α,β∈Λ) and τα: uα+(Eα)

∼−→
E|P]α the canonical isomorphisms satisfying ταβ = τ−1

α |P]
αβ
◦ τβ |P]

αβ
, where ταβ was defined via 9.3.7.6.2.
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Consider the following diagram

pαβ!
1 ◦ u!

α(E|P]α)
τ // u!

αβ((E|P]α)|P]
αβ

)

pαβ!
1 ◦ u!

α(uα+(Eα))
τ //

pαβ!
1 ◦u!

α(τα) 33

u!
αβ(uα+(Eα)|P]

αβ
)
u!
αβ(τα|

P
]
αβ

)

33

pαβ!
2 ◦ u!

β(E|P]
β
)

τ //

θ′′αβ

OO

u!
αβ((E|P]

β
)|P]

αβ
)

pαβ!
2 ◦ u!

β(uβ+(Eβ))
τ //

pαβ!
2 ◦u!

β(τβ) 33
θ′αβ

OO

u!
αβ(uβ+(Eβ)|P]

αβ
),

u!
αβ(τβ |

P
]
αβ

)

33u!
αβ(ταβ)

OO

(9.3.7.7.1)
where the arrow θ′αβ is by definition the one making the front square commutative. The bottom and
right squares are commutative by definition and the top and bottom are commutative by functoriality.
Thanks to the remark 9.3.7.3, we deduce that the isomorphisms θ′αβ satisfy the cocycle condition and
we are reduced to proving that the adjunction isomorphism Eα

∼−→ u!
α ◦ uα+(Eα) is compatible with the

respective glueing data, i.e., that the following left square

pαβ!
1 (Eα)

adjuα
∼

// pαβ!
1 ◦ u!

α ◦ uα+(Eα)
τ
∼

// u!
αβ(uα+(Eα)|P]

αβ
)

pαβ!
2 (Eβ)

adjuβ

∼
//

θαβ ∼
OO

pαβ!
2 ◦ u!

β ◦ uβ+(Eβ)
τ
∼

//

θ′αβ ∼
OO

u!
αβ(uβ+(Eβ)|P]

αβ
)

u!
αβ(ταβ) ∼

OO
(9.3.7.7.2)

is commutative. However, by applying the functor uαβ+ to the diagram 9.3.7.7.2 and composing with
the commutative diagram

uαβ+u
!
αβ(uα+(Eα)|P]

αβ
)

adjuαβ

∼
// uα+(Eα)|P]

αβ

uαβ+u
!
αβ(uβ+(Eβ)|P]

αβ
)

uαβ+u
!
αβ(ταβ) ∼

OO
adjuαβ

∼
// uβ+(Eβ)|P]

αβ
,

ταβ ∼
OO

we obtain 9.3.7.6.2 (by construction of the addition arrow of the proposition 9.3.6.1), which is commuta-
tive. The functor uαβ+ being faithful, we thus demonstrate the commutativity of the contour of 9.3.7.7.2.
Since the right square of 9.3.7.7.2 is commutative (it corresponds to the front square from 9.3.7.7.1), it
follows that of the left square.

Conversely, let E be a D†
P]

(†T )Q-coherent module with support in X. Let us check that we have the
isomorphism u0+◦u!

0(E)
∼−→ E functorial in E . Note (θαβ)αβ∈Λ, the gluing data of (u!

α(E|P]α))α∈Λ defined
in 9.3.7.5.1 and (ταβ)αβ∈Λ, the glueing data of (uα+u

!
α(E|P]α))α∈Λ deduced from that of (u!

α(E|P]α))α∈Λ

via 9.3.7.6.2. Let us now prove that the adjunction isomorphisms uα+u
!
α(E|P]α)→ E|P]α are compatible

with the respective glueing data, i.e., than the following square on the right (the commutativity of the
other two is tautological)

uαβ+ ◦ u!
αβ(E|P]

αβ
)
uαβ+(τ)

∼
// uαβ+ ◦ pαβ!

1 (u!
α(E|P]α))

φαβ1 (u!
α(E|

P
]
α

))

∼
// (uα+u

!
α(E|P]α))|P]

αβ

adjuα |P]
αβ

∼
// E|P]

αβ

uαβ+ ◦ u!
αβ(E|P]

αβ
)
uαβ+(τ)

∼
// uαβ+ ◦ pαβ!

2 (u!
β(E|P]

β
))

φαβ2 (u!
β(E|

P
]
β

))

∼
//

uαβ+θαβ ∼
OO

(uβ+u
!
β(E|P]

β
))|P]

αβ

adjuβ |P]
αβ

∼
//

ταβ ∼
OO

E|P]
αβ

(9.3.7.7.3)
is commutative. Moreover, we have the following commutative diagram:

uαβ+p
αβ!
1 u!

α(E|P]α)
adjuα
∼

// uαβ+p
αβ!
1 u!

αuα+u
!
α(E|P]α)

uαβ+τ

∼
//

adjuα∼ ��

uαβ+u
!
αβ(uα+u

!
α(E|P]α))|P]

αβ

adjuα∼ ��

adjuαβ

∼
// uα+u

!
α(E|P]α)|P]

αβ

adjuα∼ ��
uαβ+p

αβ!
1 u!

α(E|P]α) uαβ+p
αβ!
1 u!

α(E|P]α)
uαβ+τ

∼
// uαβ+u

!
αβ(E|P]

αβ
)

adjuαβ

∼
// E|P]

αβ
.

(9.3.7.7.4)
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Indeed, the two squares on the right of 9.3.7.7.4 are commutative by functoriality, while the one on the
left is so for the same reasons as that of the second square from the left of the third row of 9.3.6.1.3.
However, the morphism φαβ1 (u!

α(E|P]α)) is, by construction (see the proof of 9.3.6.1), equal to the hori-
zontal composite morphism from the top of 9.3.7.7.4. Via the commutativity of the diagram 9.3.7.7.4,
it follows that the horizontal composite morphism from the top of 9.3.7.7.3 is the adjunct morphism
uαβ+u

!
αβ(E|P]

αβ
) → E|P]

αβ
. Similarly, we verify that the bottom horizontal composite morphism of

9.3.7.7.3 is equal to the adjunction morphism by uαβ .

Definition 9.3.7.8. For any α ∈ Λ, let E(•)
α ∈ LM−−→Q,coh(l‹D(•)

X]α
(Zα)) A glueing data on (E(•)

α )α∈Λ is the

data for any α, β ∈ Λ of an isomorphism in LM−−→Q,coh(l‹D(•)
X]α

(Zα)) of the form

θαβ : p
αβ(•)!
2 (E(•)

β )
∼−→ p

αβ(•)!
1 (E(•)

α ),

satisfying the cocycle condition: θαβγ13 = θαβγ12 ◦ θαβγ23 , where θαβγ12 , θαβγ23 and θαβγ13 are the isomorphisms
making commutative the similar to 9.3.7.1.1 square, e.g.

p
αβγ(•)!
12 p

αβ(•)!
2 (E(•)

β )
τ(•)

∼
//

p
αβγ(•)!
12 (θαβ)∼ ��

p
αβγ(•)!
2 (E(•)

β )

θαβγ
ij��

p
αβγ(•)!
12 p

αβ(•)!
1 (E(•)

α )
τ(•)

∼
// pαβγ(•)!

1 (E(•)
α ),

(9.3.7.8.1)

where τ (•) are the glueing isomorphisms defined in 9.2.2.1.

Definition 9.3.7.9. We define the category LM−−→Q,coh((X]α)α∈Λ, Z/S
]) as follows:

(a) an object is a family (E(•)
α )α∈Λ of objects of LM−−→Q,coh(l‹D(•)

X]α
(Zα)) together with a glueing data

(θαβ)α,β∈Λ,

(b) a morphism ((E(•)
α )α∈Λ, (θαβ)α,β∈Λ)→ ((E ′(•)α )α∈Λ, (θ′αβ)α,β∈Λ) is a family of morphisms f (•)

α : E(•)
α →

E ′(•)α of LM−−→Q,coh(l‹D(•)
X]α

(Zα)) commuting with glueing data, i.e., such that the following diagrams are
commutative:

p
αβ(•)!
2 (E(•)

β )

p
αβ(•)!
2 (f

(•)
β

) ��

θαβ

∼
// pαβ(•)!

1 (E(•)
α )

p
αβ(•)!
1 (f(•)

α )��
p
αβ(•)!
2 (E ′(•)β )

θ′αβ

∼
// pαβ(•)!

1 (E ′(•)α ).

(9.3.7.9.1)

9.3.7.10. With notation 9.3.7.9, via the equivalence of categories→l
∗
Q : LM−−→Q,coh((X]α)α∈Λ, Z/S

]) ∼= Coh((X]α)α∈Λ, Z/S
])

(see 8.7.5.4.1), we get the (still denoted by→l
∗
Q) equivalence of categories

→l
∗
Q : LM−−→Q,coh((X]α)α∈Λ, Z/S

]) ∼= Coh((X]α)α∈Λ, Z/S
]). (9.3.7.10.1)

Definition 9.3.7.11. We denote by LM−−→Q,coh(X],P], T/S]) the full subcategory of LM−−→Q,coh(l‹D(•)
P]

(T ))

consisting of objects with support inX. When T is the empty divisor, we simply write LM−−→Q,coh(X,X]/S]).
We have the equivalence of categories→l

∗
Q (see 8.7.5.4.1) induces→l

∗
Q : LM−−→Q,coh(X],P], T/S]) ∼= Coh(X],P], T/S]).

Theorem 9.3.7.12. We have the following properties.

(a) There exists a canonical functor

u
(•)!
0 : LM−−→Q,coh(X],P], T/S])→ LM−−→Q,coh((X]α)α∈Λ, Z/S

])

extending the usual functor u!
0 when X] has a log smooth formal S]-scheme lifting. Via notation

9.3.7.5 and 9.3.7.10.1, we have the canonical isomorphism→l
∗
Q ◦ u

(•)!
0

∼−→ u!
0 ◦→l

∗
Q.
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(b) There exists a canonical functor

u
(•)
0+ : LM−−→Q,coh((X]α)α∈Λ, Z/S

])→ LM−−→Q,coh(X], P], T/S])

extending the usual functor u0+ when X] has a log smooth formal S]-scheme lifting. Via notation
9.3.7.6 and 9.3.7.10.1, we have the canonical isomorphism→l

∗
Q ◦ u

(•)
0+

∼−→ u0+ ◦→l
∗
Q.

(c) The functors u(•)!
0 and u(•)

0+ are quasi-inverse equivalences of categories between LM−−→Q,coh((X]α)α∈Λ, Z/S
])

and LM−−→Q,coh(X], P], T/S]).

Proof. Since extraordinary pullback by open immersions preserves the categories of the form LM−−→Q,coh(l‹D(•)
P]

(T )),
using the LD-version of Berthelot-Kashiwara Theorem (see 9.3.5.13), we can copy word by word the proof
of 9.3.7.5, 9.3.7.6 and 9.3.7.7.

9.4 Stability of the coherence, base change, relative duality, Fourier
transform

9.4.1 Log smooth morphisms: Spencer resolutions, stability of the coherence
by pullbacks, pushforwards as relative de Rham complexes complexes

We keep notation 9.2.1 and we suppose f is a log-smooth and φ = id. We suppose T is a noetherian
scheme of finite Krull dimension.

Notation 9.4.1.1. For all integers m ≤ m′, we set D(m,m′)

X′]/X]
(Z ′) := B(m′)

X′]
(Z ′)⊗OX′ D

(m)

X′]/X]
, B̃(m)

X′]
(Z ′) :=

B(nm)

X′]
(Z ′), ω̃(m)

X′]/X]
(Z ′) := B̃(m)

X′]
(Z ′)⊗OX′ ωX′]/X] , ‹D(m)

X′]/X]
(Z ′) := “D(m,nm)

X′]/X]
(Z ′).

9.4.1.2. It follows from 8.4.2.8 and from 7.5.10.1.3 that the canonical morphism‹D(•)
X′]/S]

(Z ′)⊗D̃(0)

X′]/S]
(Z′)

‹D(0)

X′]→X]/S]
(Z ′)→ ‹D(•)

X′]→X]/S]
(Z ′, Z)

is an ind-isogeny of M(‹D(•)
X′]/S]

(Z ′)). Hence ‹D(•)
X′]→X]/S]

(Z ′, Z) ∈ LM−−→Q,coh(‹D(•)
X′]/S]

(Z ′)). Since the

(induced by extension from 7.5.10.2.1) morphism of LD−→
b
Q,coh(l‹D(•)

X′]/S]
(Z ′))

S̃p
(•)
X′]/X]

(Z ′, Z)→ ‹D(•)
X′]→X]/S]

(Z ′, Z) (9.4.1.2.1)

is an isomorphism after applying the equivalence of categories→l
∗
Q : LD−→

b
Q,coh(‹D(•)

X′]/S]
(Z ′)) ∼= Db

coh(D†
X′]/S]

(Z ′)Q)

(see 8.7.5.4.1), then 9.4.1.2.1 is an isomorphism (of LD−→
b
Q,coh(‹D(•)

X′]/S]
(Z ′))).

Notation 9.4.1.3. LetM′(•) ∈ LD−→
b
Q,qc(r‹D(•)

X′]/S]
(Z ′)). The canonical map

M′(•) ⊗L
D̃(•)

X′]/S]
(Z′)

S̃p
(•)
X′]/X

(Z ′, Z)→M′(•)“⊗L
D̃(•)

X′]/S]
(Z′)

S̃p
(•)
X′]/X

(Z ′, Z) (9.4.1.3.1)

is an isomorphism and will be denoted byM′(•) ⊗OX′ T
•
X′]/X] .

9.4.1.4. Let us denote by D̃R
(•)
X′]/X

(Z,Z ′) the complex‹D(•)
X′]/S]

−→
d

Ω1
X′]/X] ⊗OX′

‹D(•)
X′]/S]

−→
d
· · · −→

d
ωX′]/X] ⊗OX′

‹D(•)
X′]/S]

,

where ‹D(•)
X′]/S]

is the 0th term. By using the similar to 9.4.1.2.1 argument, we get by extension from

7.5.10.3.1 the canonical isomorphism of LD−→
b
Q,coh(r‹D(•)

X′]/S]
(Z ′)) of the form

D̃R
(•)
X′]/X

(Z,Z ′)[df ]
∼−→ ‹D(•)

X]←X′]/S]
(Z,Z ′). (9.4.1.4.1)
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Notation 9.4.1.5. Let E ′(•) ∈ LD−→
b
Q,qc(l‹D(•)

X′]/S]
(Z ′)). The canonical map

D̃R
(•)
X′]/X

(Z,Z ′)⊗L
D̃(•)

X′]/S′]
(Z′)
E ′(•) → D̃R

(•)
X′]/X

(Z,Z ′)“⊗L
D̃(•)

X′]/S′]
(Z′)
E ′(•) (9.4.1.5.1)

is an isomorphism and will be denoted by Ω•X′]/X] ⊗OX′ E
′(•).

Proposition 9.4.1.6. Assume f is a quasi-compact and quasi-separated morphism.

(a) For any E ′(•) ∈ LD−→
b
Q,qc(l‹D(•)

X′]/S]
(Z ′)), we have the isomorphism:

f
(•)
Z,Z′,+(E ′(•)) ∼−→ Rf∗

Ä
Ω•X′]/X] ⊗OX′ E

′(•)
ä

[df ]; (9.4.1.6.1)

For any E ′ ∈ D(lD†
X′]/S]

(†Z ′)Q), we have the isomorphism:

fZ,Z′,+(E ′) ∼−→ Rf∗
Ä
Ω•X′]/X] ⊗OX′ E

′
ä

[df ]; (9.4.1.6.2)

(b) For anyM′(•) ∈ LD−→
b
Q,qc(r‹D(•)

X′]/S]
(Z ′)), we have the isomorphism:

f
(•)
Z,Z′,+(M′(•)) ∼−→ Rf∗

Ä
M′(•) ⊗OX′ T

•
X′]/X]

ä
. (9.4.1.6.3)

For anyM∈ D(rD†
X′]/S]

(†Z ′)Q), we have the isomorphism:

fZ,Z′,+(M′) ∼−→ Rf∗
Ä
M′ ⊗OX′ T

•
X′]/X]

ä
. (9.4.1.6.4)

Proof. By using 9.2.4.2.1, the isomorphism 9.4.1.6.1 (resp. 9.4.1.6.3) is a consequence of 9.4.1.2.1 (resp.
9.4.1.4.1). Recalling the definition 9.2.4.13, we get the other isomorphisms by using the isomorphism
equal to the image via→l

∗
Q of 9.4.1.2.1 (resp. 9.4.1.4.1)

Proposition 9.4.1.7. Suppose moreover f is flat (e.g. when log structures are trivial).

(a) The functor f (•)!
Z′,Z sends LD−→

b
Q,coh(‹D(•)

X]/S]
(Z)) to LD−→

b
Q,coh(‹D(•)

X′]/S]
(Z ′)).

(b) For any E ∈ Db
coh(D†

X]
(†Z)Q), we have f !

Z′,Z(E) ∈ Db
coh(D†

X′]
(†Z ′)Q).

(c) For any E(m) ∈ Db
coh(‹D(m)

X]/S]
(Z)) we have in Db

coh(D†
X′]

(†Z ′)Q) the canonical isomorphism:

D†
X′]

(†Z ′)Q ⊗D̃(m)

X′]/S]
(Z′)

f
(m)!
Z′,Z(E(m))

∼−→ f !
Z′,Z(D†

X]
(†Z)Q ⊗D̃(m)

X]/S]
(Z)
E(m)). (9.4.1.7.1)

Proof. Since f is flat, then the functor f (•)! preserves the boundedness. It follows from 9.2.1.18 and
9.2.1.28 that we have the isomorphism f

(•)!
Z′,Z

∼−→ (†Z ′) ◦ f (•)! ◦ forgZ . Hence, the functor f
(•)!
Z′,Z preserves

boundedness. The first part is therefore a consequence of 7.5.10.8. The second and third parts are a
consequence of the previous one, of 7.5.10.8 and of the isomorphism of 9.2.1.24.

9.4.2 Pushforwards: way-out properties, stability of the coherence, tor di-
mension finiteness, perfectness

We keep notation 9.2.1.

Lemma 9.4.2.1. We suppose f is a (non necessary exact) closed immersion and φ = id.

(a) The left (resp. right) ‹D(•)
X′]• /S

]
•
(Z ′)-module ‹D(•)

X′]• →X
]
•/S

]
•
(Z ′, Z) (resp. ‹D(•)

X]•←X
′]
• /S

]
•
(Z,Z ′)) is locally

free.

(b) The left (resp. right) ‹D(•)
X′]/S]

(Z ′)-module ‹D(•)
X′]→X]/S]

(Z ′, Z) (resp. ‹D(•)
X]←X′]/S]

(Z,Z ′)) is flat.
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Proof. This is checked similarly to 7.5.11.1.

Proposition 9.4.2.2. We have ‹D(•)
X′]/S′]→X]/S]

(Z ′, Z) ∈ LD−→
b
Q,tdf(

l‹D(•)
X′]/S]

(Z ′)) and ‹D(•)
X]/S]←X′]/S′]

(Z,Z ′) ∈
LD−→

b
Q,tdf(

r‹D(•)
X′]/S′]

(Z ′)).

Proof. By using 9.4.2.1, we can copy the proof of 7.5.11.2.

Corollary 9.4.2.3. Assume that S and T are noetherian of finite Krull dimension, f is quasi-compact
and quasi-separated.

f
(•)
Z,Z′,•+ : LD−→

b
Q,qc(∗‹D(•)

X′]• /S
′]
•

(Z ′))→ LD−→
b
Q,qc(∗‹D(•)

X]•/S
]
•
(Z)), (9.4.2.3.1)

f
(•)
Z,Z′+ : LD−→

b
Q,qc(∗‹D(•)

X′]/S′]
(Z ′))→ LD−→

b
Q,qc(∗‹D(•)

X]/S]
(Z)). (9.4.2.3.2)

Proof. This follows from 9.4.2.2, 8.5.4.14.2 and 9.2.4.2.1.

Proposition 9.4.2.4. Suppose f is proper and Z ′ = f−1(Z). Let ? ∈ {−,b} and ∗ ∈ {r, l}.

(a) The functor f (•)
Z,+ sends LD−→

?
Q,coh(‹D(•)

X′]/S′]
(Z ′)) to LD−→

?
Q,coh(‹D(•)

X]/S]
(Z)).

(b) For any E ′(m) ∈ Db
coh(‹D(m)

X′]/S′]
(Z ′)Q), we have in Db

coh(D†
X]/S]

(†Z)Q) the canonical isomorphism:

D†
X]/S]

(†Z)Q ⊗D̃(m)

X]/S]
(Z)Q

f
(m)
Z,+(E ′(m))

∼−→ fZ,+(D†
X′]/S′]

(†Z ′)Q ⊗D̃(m)

X′]/S′]
(Z′)Q

E ′(m)) (9.4.2.4.1)

(c) For any E ′ ∈ Db
coh(D†

X′/S′]
(†Z ′)Q), we have fZ,+(E ′) ∈ Db

coh(D†
X]/S]

(†Z)Q).

Proof. The first part is a consequence of 7.5.11.4 and 7.5.8.14.1 (which can be applied in the case of over-
convergent coefficients thanks to 9.2.1.26) and of 9.4.2.3 when ? = b. For any F ′ ∈ Db

coh(D†
X′/S′]

(†Z ′)).
We get the isomorphism:‹D(•)

X]/S]
(Z)Q ⊗D̃(m)

X]/S]
(Z)Q

f
(m)
Z,+(E ′(m))

∼−→ f
(•)
+ (‹D(•)

X′]/S′]
(Z ′)Q ⊗D̃(m)

X′]/S′]
(Z′)Q

E ′(m)) (9.4.2.4.2)

Using the equivalence of categories of 7.4.6.6.1 and 8.4.1.15, using the comparison isomorphism between
both pushforwards 9.2.4.17, by applying the functor→l

∗
Q to 9.4.2.4.2, we get 9.4.2.4.1. The third part is a

consequence of the second one.

Proposition 9.4.2.5. Suppose Z ′ = f−1(Z) and φ = id. Suppose S is a noetherian scheme of fi-
nite Krull dimension, f is quasi-compact and quasi-separated. Let ∗ ∈ {r, l}. The functor f (•)

Z,+ sends

LD−→Q,qc,tdf(‹D(•)
X′]/S′]

(Z ′)) to LD−→Q,qc,tdf(‹D(•)
X]/S]

(Z)) (see notation 8.5.4.11).

Proof. This is a consequence of 7.3.2.15 (and 7.1.3.6) and 5.3.2.12 (and the fact that the tor amplitude
does not depend on i).

Proposition 9.4.2.6. Suppose Z ′ = f−1(Z) and φ = id. Suppose S and X are noetherian scheme
of finite Krull dimension, f is proper. Let ∗ ∈ {r, l}. With notation 8.6.1.4, the functor f (•)

Z,+ sends

LD−→
b
Q,perf(

‹D(•)
X′]/S′]

(Z ′)) to LD−→
b
Q,perf(

‹D(•)
X]/S]

(Z)).

Proof. Following [Sta22, 08G8], a complex is perfect if and only if it is pseudo-coherent and locally has
finite tor dimension. Hence, this is a consequence of (the proofs of) 9.4.2.4 and 9.4.2.5.
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9.4.3 Projection formula: commutation of pushforwards with localization
functors outside of a divisor

We keep notation 9.2.1.

Proposition 9.4.3.1. Let E(•) ∈ LD−→
b
Q,qc(

l‹D(•)
X]/S]

(Z)), and E ′(•) ∈ LD−→
b
Q,qc(

l‹D(•)
X′]/S′]

(Z ′)). We have the

following isomorphism of LD−→
b
Q,qc(

l‹D(•)
X]/S]

(Z))

f
(•)
Z,Z′,+(E ′(•))“⊗L

B̃(•)
X

(Z)E
(•)[df ]

∼−→ f
(•)
Z,Z′,+

(
E ′(•)“⊗L

B̃(•)
X′

(Z′)f
(•)!
Z′,Z(E(•))

)
. (9.4.3.1.1)

Proof. This is a consequence of 5.3.4.1.

Corollary 9.4.3.2. Let E(•) ∈ LD−→
b
Q,qc(

l‹D(•)
X]/S]

(Z)). We have the isomorphism

f
(•)
Z,Z′,+

Ä
B̃(•)
X′ (Z ′)

ä“⊗L
B̃(•)

X
(Z)E

(•)[df ]
∼−→ f

(•)
Z,Z′,+ ◦ f

(•)!
Z′,Z(E(•)). (9.4.3.2.1)

Proof. We apply 9.4.3.1 to the case where E ′(•) = B̃(•)
X′ (Z ′).

Corollary 9.4.3.3. Let ∗ ∈ {l, r}, E ′(•) ∈ LD−→
b
Q,qc(∗“D(•)

X′]/S′]
). We suppose Z ′ = f−1(Z). We have the

isomorphism of LD−→
b
Q,qc(

l‹D(•)
X]/S]

(Z)):

f
(•)
Z+ ◦ (†Z ′)(E ′(•)) ∼−→ (†Z) ◦ f (•)

+ (E ′(•)).

Proof. It follows from 9.1.1.7.4 and 9.2.4.8.2 that we reduce to the case ∗ = l. Using 9.4.3.1 (in the case
where Z and Z ′ are empty and E(•) = B̃(•)

X (Z)) and 9.2.1.26, we get the isomorphism

f
(•)
+ (E ′(•))“⊗L

O(•)
X
B̃(•)
X (Z)

∼−→ f
(•)
+ (E ′(•)“⊗L

O(•)
X′
B̃(•)
X′ (Z ′)). (9.4.3.3.1)

We conclude using 9.2.4.19.

Remark 9.4.3.4. Using 9.2.4.19, the isomorphism of 9.4.3.3 could be written f
(•)
+ ◦ (†Z ′)(E ′(•)) ∼−→

(†Z) ◦ f (•)
+ (E ′(•)). Moreover, this isomorphism is also a consequence of 5.1.3.4 and 9.2.1.26.

Corollary 9.4.3.5. With the notations of 9.4.3.1, We suppose that f is an exact closed immersion and
φ = id. Then we have, for any F (•), G(•) ∈ LD−→

b
Q,coh(

l“D(•)
X′ (Z ′)), of the canonical isomorphism

f
(•)
Z,Z′,+(F (•))“⊗L

B̃(•)
X

(Z)f
(•)
Z,Z′,+(G(•))[df ]

∼−→ f
(•)
Z,Z′,+(F (•)“⊗L

B̃(•)
X′

(Z′)G
(•)). (9.4.3.5.1)

Proof. We have the canonical isomorphism:

f
(•)
Z,Z′,+(F (•))“⊗L

B̃(•)
X

(Z)f
(•)
Z,Z′,+(G(•))[df ]

∼−→
9.4.3.1.1

f
(•)
Z,Z′,+(F (•)“⊗L

B̃(•)
X′

(Z′)f
(•)!
Z′,Z ◦ f

(•)
Z,Z′,+(G(•))).

Moreover, as f is a closed immersion, we deduce from 9.3.5.13.1 the canonical isomorphism G(•) ∼−→
f

(•)!
Z′,Z ◦ f

(•)
Z,Z′,+(G(•)). Hence we are done.

9.4.4 Base change isomorphism in the projection case and relative duality
isomorphism in the projective case

Let S] be a nice (see definition 3.3.1.10) fine V-log formal scheme. Assume that S is noetherian of
finite Krull dimension. Let X] and Q] be two log smooth, quasi-compact and quasi-separated formal log
schemes over S], p : X] ×S] Q

] → X], q : X] ×S] Q
] → Q] be the structural maps. Let ∗ ∈ {r, l}.

We suppose S, S], X and Q are regular. Let Z1 be a divisor of X, Z2 be a divisor of Q and
Z := p−1(Z1) ∪ q−1(Z2). Set R := X] ×S] Q

] and r : X] ×S] Q
] → S] be the structural map.

Proposition 9.4.4.1. Let u : X′] → X] and v : Q′] → Q] be two morphisms of log smooth formal
S]-schemes. Let R′] := X′] ×S] Q

′], and w := (u, v) : R′] → R] be the induced morphism. Suppose
Z ′1 := u−1(Z1) is a divisor of X ′ and Z ′2 := v−1(Z2) is a divisor of Q′. Set Z ′ := w−1(Z).
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(a) For any E(•) ∈ LD−→
b
Q,qc(l‹D(•)

X]/S]
(Z1)) and F (•) ∈ LD−→

b
Q,qc(l‹D(•)

Q]/S]
(Z2)), with notation 9.2.1.15.3, we

have in LD−→
b
Q,qc(l‹D(•)

R′]/S]
(Z ′)) the isomorphism:

Lw∗(•)Z (E(•)“�L
OS,Z1,Z2

F (•))
∼−→ Lu∗(•)Z1

(E(•))“�L
OS,Z′1,Z

′
2
Lv∗(•)Z2

(F (•)). (9.4.4.1.1)

(b) For any E ′(•) ∈ LD−→
b
Q,qc(l‹D(•)

X′]/S]
(Z ′1)) and F ′(•) ∈ LD−→

b
Q,qc(l‹D(•)

Q′]/S]
(Z ′2)), we have in LD−→

b
Q,qc(l‹D(•)

R]/S]
(Z))

the isomorphism:

w
(•)
Z+(E ′(•)“�L

OS,Z′1,Z
′
2
F ′(•)) ∼−→ u

(•)
Z1+(E ′(•))“�L

OS,Z1,Z2
v

(•)
Z2+(F ′(•)). (9.4.4.1.2)

Proof. The first statement is a consequence of 5.3.5.2 and 9.2.5.1.5 (use also 9.2.5.5.2). The second one
is a consequence of 5.3.5.13 and 9.2.5.1.5.

Corollary 9.4.4.2. We keep notation 9.4.4.1.

(a) We suppose u and v smooth. For any E ∈ Db
coh(D†

X]/S]
(†Z1)Q), F ∈ Db

coh(D†
Q]/S]

(†Z2)Q), then we

have the isomorphism in Db
coh(D†

R′]/S]
(†Z ′)Q):

w∗Z,+(E
L
�†OS,Z1,Z2

F)
∼−→ u∗Z1,+(E)

L
�†OS,Z′1,Z

′
2
v∗Z2,+(F). (9.4.4.2.1)

(b) We suppose u and v proper. Then, for any E ′ ∈ Db
coh(D†

X′]/S]
(†Z ′1)Q), F ′ ∈ Db

coh(D†
Q′]/S]

(†Z ′2)Q),

then we have the isomorphism in Db
coh(D†

R]/S]
(†Z)Q):

wZ,+(E ′
L
�†OS,Z′1,Z

′
2
F ′) ∼−→ uZ1,+(E ′)

L
�†OS,Z1,Z2

vZ2,+(F ′). (9.4.4.2.2)

Proof. Via 9.2.5.13, 9.2.1.24 and 9.2.4.17, this is a consequence of Proposition 9.4.4.1.

Corollary 9.4.4.3. We keep notation 9.4.4.1 and we suppose v is the identity. Let p′ : X′]×S]Q
] → X′]

be the natural projection. Let E ′(•) ∈ LD−→
b
Q,qc(

l‹D(•)
X′]/S]

(Z ′1)). There exists a canonical isomorphism in

LD−→
b
Q,qc(

l‹D(•)
R]/S]

(Z)) of the form:

p
(•)!
Z,Z1
◦ u(•)

Z1+(E ′(•)) ∼−→ w
(•)
Z,+ ◦ p

′(•)!
Z′,Z′1

(E ′(•)). (9.4.4.3.1)

Proof. We construct the isomorphism by compositing the following isomorphisms:

p
(•)!
Z,Z1
◦ u(•)

Z1+(E ′(•)) ∼−→ u
(•)
Z1+(E ′(•))“�L

OS,Z′1,Z2
B(•)
Q (Z2)

9.4.4.1.2
∼−→ w

(•)
Z+(E ′(•)“�L

OS,Z′1,Z2
B(•)
Q (Z2))

∼−→ w
(•)
Z,+ ◦ p

′(•)!
Z′,Z′1

(E ′(•)).

Remark 9.4.4.4. We will prove later (see 13.2.3.7) a coherent version of Corollary 9.4.4.3. In this
version, we can use for instance Berthelot-Kashiwara theorem which allow us to extend geometrically
the context.

The following corollary is weaker than 9.4.5.2 but the reader can check that is the proof is much
easier.

Corollary 9.4.4.5. We assume the log structure of S] is trivial (and we simply write S). Let X → Y
be a morphism of smooth formal S-schemes which is the composition of a closed immersion of the form
X ↪→ P̂dY and of the projection P̂dY → Y.

(a) For any E(•) ∈ LD−→
b
Q,coh(

l“D(•)
X ), we have a canonical isomorphism of LD−→

b
Q,coh(“D(•)

Y ) of the form:

D(•) ◦ f (•)
+ (E(•))

∼−→ f
(•)
+ ◦ D(•)(E(•)). (9.4.4.5.1)
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(b) Let E ∈ Db
coh(D†X,Q), and F ∈ Db

coh(D†Y,Q). We have the isomorphisms

RHomD†
Y,Q

(f+(E),F)
∼−→ Rf∗RHomD†

X,Q
(E , f !(F)), (9.4.4.5.2)

RHomD†
Y,Q

(f+(E),F)
∼−→ RHomD†

X,Q
(E , f !(F)). (9.4.4.5.3)

Proof. The first statement is a consequence of 5.3.8.4. Similarly to 9.4.5.4, we check that 9.4.4.5.1 implies
the second statement.

Remark 9.4.4.6. Following Virrion (see [Vir04]), we have the relative duality isomorphisms and adjoint
pairs (f+, f

!) for proper morphisms f . In the projective case (see 9.4.4.5), we have retrieve theses
theorems. They are at least four reasons for this specific study: because this case is much easier than
Virrion’s one, because in the case of a closed immersion we can remove the coherence hypotheses to build
the adjunction morphisms and these adjunction morphisms have a clear description and will be used in
chapter 9.3.5 (or also Proposition 9.3.6.1), and because the case of projective morphisms is enough for
instance to check the coherence of the constant coefficient in 12.2.7.1).

9.4.5 Relative duality isomorphism in the case of a proper morphism with
overconvergent singularities

We complete below Virrion’s relative duality isomorphisms by adding some overconvergent singularities.
Let S be a noetherian of finite Krull dimension V-formal scheme. Let f : X′ → X be a proper

morphism of smooth formal schemes overS, Z and Z ′ be some divisors of respectivelyX andX ′ such that
Z ′ := f−1(Z). We will extend later for realizable morphisms the following theorem and its first corollary
(see 13.2.4.1, 13.2.4.2). Recall that we only get a priori a fully faithful functor→l

∗
Q : LD−→

b
Q,perf(

∗“D(•)
X (Z))→

Db
perf(D

†
X(†Z)Q) following (see 8.7.7.10).

Proposition 9.4.5.1. With notations 9.1.1.6, there exists in LD−→
b
Q,coh(r“D(•)

X (Z)) a natural trace mor-
phism:

f
(•)
Z,+(ω̃

(•)
X′ (Z ′))[dX′ ] = Rf∗(ω̃

(•)
X′ (Z ′)“⊗L

D̃(•)
X′

(Z′)
‹D(•)
X′→X(Z ′, Z))[dX′ ]→ ω̃

(•)
X (Z)[dX ].

Proof. Following [Vir04, III.7.1], we have the trace morphism

f
(•)
+ (ω

(•)
X′ )[dX′ ] = Rf∗(ω

(•)
X′
“⊗L
D̂(•)

X′

“D(•)
X′→X)[dX′ ]→ ω

(•)
X [dX ]. (9.4.5.1.1)

Since the functor (†Z) commutes with pushforwards (see 9.4.3.3), since (†Z)(ω
(•)
X )

∼−→ ω̃
(•)
X (Z) and

(†Z ′)(ω
(•)
X′ )

∼−→ ω̃
(•)
X′ (Z ′), then by applying (†Z) to 9.4.5.1.1, this results in a morphism

f
(•)
Z+(ω̃

(•)
X′ (Z ′))[dX′ ] = Rf∗(ω̃

(•)
X′ (Z ′)“⊗L

D(•)
X′
D(•)

X′→X)[dX′ ]→ ω̃
(•)
X (Z)[dX ].

Theorem 9.4.5.2. Let ∗ ∈ {l, r}. Let E ′ ∈ Db
coh(D†X′(†Z ′)Q). We have in Db

coh(D†X(†Z)Q) the isomor-
phism

fZ+ ◦ DZ′(E ′)
∼−→ DZ ◦ fZ+(E ′). (9.4.5.2.1)

Proof. We construct the morphism 9.4.5.2.1 similarly to that of 5.3.7.4: We can suppose ∗ = r. To
simplify notations, let us drope (Z), (Z ′) and (Z ′, Z), e.g. let us denote by B̃(•)

X := B̂(•)
X (Z), ‹D(•)

X′ :=‹D(•)
X′ (Z ′), ‹D(•)

X′→X := ‹D(•)
X′→X(Z ′, Z). Moreover, set B̃X := OX(†Z)Q, ω̃X := ωX ⊗OX

OX(†Z)Q, ‹DX :=

D†X(†Z)Q, ‹DX′→X := D†X′→X/S(Z ′, Z)Q (and similarly with some primes). We construct the composite
morphism:

fZ,+ ◦ DX′,Z′(E ′)
∼−→ Rf∗

(
RHomD̃X′

(E ′, ω̃X′ ⊗B̃X′
‹DX′)⊗L

D̃X′
‹DX′→X

)
[dX′ ]

∼−→
4.6.3.6.1

Rf∗RHomD̃X′
(E ′, ω̃X′ ⊗B̃X′

‹DX′→X)[dX′ ]

→ Rf∗RHomf−1D̃X
(E ′ ⊗L

D̃X′
‹DX′→X, (ω̃X′ ⊗B̃X′

‹DX′→X)⊗L
D̃X′

‹DX′→X)[dX′ ]

−→
4.6.5.7.1

RHomD̃X

(
Rf∗(E ′ ⊗L

D̃X′
‹DX′→X),Rf∗

(
(ω̃X′ ⊗B̃X′

‹DX′→X)⊗L
D̃X′

‹DX′→X

))
[dX′ ]. (9.4.5.2.2)
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According to notation 8.4.1.8, we have the functors→l
∗
X′,Q : LD−→

b
Q(rf−1‹D(•)

X )→ Db(rf−1‹DX) and→l
∗
X,Q : LD−→

b
Q,qc(r‹D(•)

X )→
Db(r‹DX). We get the morphisms

Rf∗
(

(ω̃X′ ⊗B̃X′
‹DX′→X)⊗L

D̃X′
‹DX′→X

)
∼−→ Rf∗ ◦→l

∗
X′,Q

Å
(ω̃

(•)
X′ ⊗

L
B̃(•)

X′

‹D(•)
X′→X)⊗L

D̃(•)
X′

‹D(•)
X′→X

ã
∼−→→l

∗
X,Q ◦ Rf∗

Å
(ω̃

(•)
X′ ⊗

L
B̃(•)

X′

‹D(•)
X′→X)⊗L

D̃(•)
X′

‹D(•)
X′→X

ã
. (9.4.5.2.3)

We have the ringed topoi morphisms←lX′(•) : (X
′(•)
• , f−1‹D(•)

X•
)→ (X′(•), f−1‹D(•)

X ) and←lX(•) : (X•, ‹D(•)
X•

)→
(X, ‹D(•)

X ) such that R←lX(•)∗ ◦ Rf∗
∼−→ Rf∗ ◦ R←lX′(•)∗. This yields by adjunction the first morphism:

Rf∗

Å
(ω̃

(•)
X′ ⊗B̃(•)

X′

‹D(•)
X′→X)⊗L

D̃(•)
X′

‹D(•)
X′→X

ã
→ Rf∗ ◦ R←lX′(•)∗ ◦ L←l

∗
X′(•)

Å
(ω̃

(•)
X′ ⊗B̃(•)

X′

‹D(•)
X′→X)⊗L

D̃(•)
X′

‹D(•)
X′→X

ã
∼−→ R←lX(•)∗ ◦ Rf∗

Ç
(ω̃

(•)
X′•
⊗B̃(•)

X′•

‹D(•)
X′•→X•

)⊗L
D̃(•)
X′•

‹D(•)
X′•→X•

å
. (9.4.5.2.4)

By using flat resolutions, it follows by functoriality from 4.2.6.1.1 that we have the isomorphism of
complexes of right ‹D(•)

X•
-bimodules:

Rf∗

Ç
(ω̃

(•)
X′•
⊗B̃(•)

X′•

‹D(•)
X′•→X•

)⊗L
D̃(•)
X′•

‹D(•)
X′•→X•

å
∼−→ Rf∗

Ç
ω̃

(•)
X′•
⊗L
D̃(•)
X′•

(‹D(•)
X′•→X•

⊗B̃(•)
X′•

‹D(•)
X′•→X•

)

å
.

(9.4.5.2.5)
We have the isomorphism of left ‹DX′• ⊗OS• f−1(‹D(•)

X•
)op ⊗OS• f

−1(‹D(•)
X•

)op-modules‹D(•)
X′•→X•

⊗BX′• D
(•)
X′•→X•

∼−→ f̃∗• (‹D(•)
X•
⊗l,l
BX•

‹D(•)
X•

)
∼←−
γ

f̃∗• (‹D(•)
X•
⊗r,l
BX•

‹D(•)
X•

)

∼−→ ‹D(•)
X′•→X•

⊗f−1
• BX•

f−1
•
‹D(•)
X•
, (9.4.5.2.6)

where “ l” and “r” mean that we choose respectively the left and the right structure to define the tensor
product (we get by functoriality two others structures of ‹D(•)

X•
-module and more precisely left, right, right‹D(•)

X•
-trimodules), f̃∗• of a left, right, right ‹D(•)

X•
-trimodule gives a (l‹D(•)

X′•
, rf−1‹D(•)

X•
, rf−1‹D(•)

X•
)-trimodule

and where γ is the transposition isomorphism of ‹D(•)
X•

(see 4.2.5.1.1). This yields

Rf∗

Ç
ω̃

(•)
X′•
⊗L
D̃(•)
X′•

(‹D(•)
X′•→X•

⊗B̃(•)
X′•

‹D(•)
X′•→X•

)

å
∼−→ Rf∗

Ç
(ω̃

(•)
X′•
⊗L
D̃(•)
X′•

‹D(•)
X′•→X•

)⊗f−1
• BX•

f−1
•
‹D(•)
X•

å
.

(9.4.5.2.7)
By applying the projection isomorphism 7.5.7.3, we get

Rf∗

Ç
(ω̃

(•)
X′•
⊗L
D̃(•)
X′•

‹D(•)
X′•→X•

)⊗f−1
• BX•

f−1
•
‹D(•)
X•

)

å
∼−→ Rf∗

Ç
ω̃

(•)
X′•
⊗L
D̃(•)
X′•

‹D(•)
X′•→X•

å
⊗BX• ‹D(•)

X•
. (9.4.5.2.8)

By applying the functor (−⊗BX• ‹D(•)
X•

) ◦ L←l
∗
X(•) to the trace map 9.4.5.1, we get

Rf∗

Ç
ω̃

(•)
X′•
⊗L
D̃(•)
X′•

‹D(•)
X′•→X•

å
⊗BX• ‹D(•)

X•
→ ω̃

(•)
X•
⊗BX• ‹D(•)

X•
[−dX′/X ] (9.4.5.2.9)

By composing 9.4.5.2.5, 9.4.5.2.7, 9.4.5.2.8, 9.4.5.2.9, we get

Rf∗

Ç
(ω̃

(•)
X′•
⊗B̃(•)

X′•

‹D(•)
X′•→X•

)⊗L
D̃(•)
X′•

‹D(•)
X′•→X•

å
→ ω̃

(•)
X•
⊗BX• ‹D(•)

X•
[−dX′/X ]. (9.4.5.2.10)

By applying the functor→l
∗
X,Q ◦ R←lX(•)∗ to 9.4.5.2.10 and composing it with 9.4.5.2.3, we get

Rf∗
(

(ω̃X′ ⊗B̃X′
‹DX′→X)⊗L

D̃X′
‹DX′→X

)
[dX′ ]→ ω̃X ⊗B̃X

‹DX[dX ]. (9.4.5.2.11)
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By applying the functor RHomD̃X
(Rf∗(E ′ ⊗L

D̃X′

‹DX′→X),−) to 9.4.5.2.11 and composing it to 9.4.5.2.2,
we get the first morphism:

fZ,+ ◦ DX′,Z′(E ′)→ RHomD̃X
(Rf∗(E ′ ⊗L

D̃X′
‹DX′→X), ω̃X ⊗B̃X

‹DX)[dX ]
∼−→ DX,Z ◦ fZ,+(E ′). (9.4.5.2.12)

To verify that 9.4.5.2.12 is an isomorphism, according to 8.7.6.11, we reduce to check it above X \Z,
i.e. to the case where the divisor is empty. This then results by p-adic completion and inductive limit
on the level from 5.3.7.4 (see [Vir04, IV.3.1]).

Remark 9.4.5.3. When the divisor Z is not empty, it is not clear that the categories used in [Vir04]
correspond to complexes with bounded and coherent cohomology. This is precisely what we had led to
check 9.4.5.2 for E ′ ∈ Db

coh(D†X′(†Z ′)Q).
Moreover, when f is a closed immersion, we have checked in [Car09d, 2.4.3] that 9.4.5.2 commutes

with Frobenius (more precisely, with the inverse images by Frobenius F ∗).

Corollary 9.4.5.4. Let E ′ ∈ Db
coh(D†X′(†Z ′)Q), and E ∈ Db

coh(D†X(†Z)Q). We have the isomorphisms

RHomD†
X

(†Z)Q
(fZ+(E ′), E)

∼−→ Rf∗RHomD†
X′

(†Z′)Q
(E ′, f !

Z(E)). (9.4.5.4.1)

RHomD†
X

(†Z)Q
(fZ+(E ′), E)

∼−→ RHomD†
X′

(†Z′)Q
(E ′, f !

Z(E)). (9.4.5.4.2)

Proof. Similarly to 5.3.7.5, this is a formal consequence of the relative duality isomorphism 9.4.5.2:
following 8.7.7.9, we have Db

coh(D†X/S(†Z)Q) = Db
perf(D

†
X/S(†Z)Q). Hence, using 4.6.3.6.1, we construct

the canonical isomorphism:

RHomD†
X

(†Z)Q
(fZ+(E ′), E)

∼−→ (ωX ⊗OX
E)⊗L

D†
X

(†Z)Q
RHomD†

X
(†Z)Q

Ä
fZ+(E ′),D†X(†Z)Q ⊗OX

ω−1
X

ä
.

It follows from 9.4.5.2 that we get by composition the isomorphism

RHomD†
X

(†Z)Q
(fZ+(E ′), E)

∼−→ (ωX ⊗OX
E)⊗L

D†
X

(†Z)Q
fZ+ (DZ(E ′)) [−dX ]. (9.4.5.4.3)

Using the projection formula of 9.2.3.4, the right term of 9.4.5.4.3 is isomorphic to

Rf∗

Å
f−1 (ωX ⊗OX

E)⊗L
f−1D†

X
(†Z)Q

D†X←X′(
†Z)Q ⊗L

D†
X′

(†Z′)Q
DZ(E ′)

ã
[−dX ]. (9.4.5.4.4)

Using the isomorphisms
(
f−1 (ωX ⊗OX

E)⊗L
f−1D†

X
(†Z)Q

D†X←X′(
†Z)Q

)
⊗OX′ ω

−1
X′ [df ]

∼−→
9.2.1.23.1

f !
Z(E) and

ωX′ ⊗OX′ DZ(E ′)[−dX′ ]
∼−→ RHomD†

X′
(†Z′)Q

(E ′,D†X′(†Z ′)Q), the term of 9.4.5.4.4 is isomorphic to

Rf∗

Å
RHomD†

X′
(†Z′)Q

(E ′,D†X′(
†Z ′)Q)⊗L

D†
X′

(†Z′)Q
f !
Z(E)

ã
∼−→

4.6.3.6.1
Rf∗

(
RHomD†

X′
(†Z′)Q

(E ′, f !
Z(E)

)
.

Corollary 9.4.5.5. We have the following properties.

(a) Let E ′ ∈ Db
coh(D†X′(†Z ′)Q). We have the adjunction morphism E ′ → f !

ZfZ+(E ′).

(b) Let E ∈ Db
coh(D†X(†Z)Q) such that f !

Z(E) ∈ Db
coh(D†X′(†Z ′)Q). We have the adjunction morphism

fZ+f
!
Z(E)→ E.

(c) Suppose f is proper and smooth. Then fZ+ : Db
coh(D†X′(†Z ′)Q) → Db

coh(D†X(†Z)Q) is a right adjoint
functor of f !

Z : Db
coh(D†X(†Z)Q)→ Db

coh(D†X′(†Z ′)Q).

628



9.4.6 Fourier transform
Let N now be an integer, X be the formal projective space of dimension N over V, Z be the hyperplane
at infinity of X, and Y = X \ Z the formal affine space of dimension N on V. Let t1, . . . , tN be the
canonical coordinates on the affine space, ∂1, . . . , ∂N the corresponding derivations. The K-algebra of
global sections of D†X(†Z)Q is then identified with the “p-adic weak completion” of the Weyl algebra:

Proposition 9.4.6.1. There exists a canonical isomorphism of K-algebras

Γ(X,D†X(†Z)Q)
∼−→ AN (K)†,

where AN (K)† is the K-algebra of differential operators defined by

AN (K)† :=

∑
i,k

ai,k ∈ K ‖ ∃c, λ such that η < 1 and ∀i, k, |ai,k| ≤ cη|i|+|k|
 .

9.4.6.2. Now suppose that K contains an element $ such that $p−1 = −p. and fix such an element.
We easily verify that there exists a unique automorphism φ of the K-algebra AN (K)† such that

φ(∂) = $ti, φ(ti) = −∂i/$.

For all AN (K)†-module E, we therefore obtain by making AN (K)† act on E via φ a new AN (K)†-module,
which we denote by φ∗E. The functor which associates φ∗E with E is the naive Fourier transformation
(defined by $). Let E be a coherent D†X(†Z)Q-module, and E = Γ(X, E). According to 9.4.6.1, E has
a canonical AN (K)†-module structure, for which it is coherent according to 8.7.3.31. As the AN (K)†-
module φ∗E is still coherent, it exists, thanks to the theorem 8.7.3.31, a unique D†X(†Z)Q-coherent module
Eφ such that Γ(X, Eφ) = φ∗E.

The problem of the geometric Fourier transformation is to give an interpretation of the functor E 7→ Eφ
by means of the cohomological operations of the theory of D†X,Q-modules, in a manner analogous to the
geometric Fourier transformation of Malgrange in characteristic 0 [Mal88], or to the Fourier l-adique
transformation of Deligne-Katz-Laumon [KL85].

9.4.6.3. Let us first specify how the data of $ determines the kernel N$ of the geometric Fourier
transform. Let P1 (resp. A1) be the formal projective (resp. affine) space of dimension 1 on V. We
denote by L$ = sp∗L$ the D†P1(†∞)Q-coherent module defined by the Dwork F -isocrystal L$ associated
with $: the OP1(†∞)Q-module underlying L$ is equal to OP1(†∞)Q, and its structure of D†P1(†∞)Q-
module compatible with that of OP1(†∞)Q-module is given by the formula ∂ · 1 = −$ (see [Ber90]).

Let X′ (resp. Y′) be the dual projective (resp. affine) space, Z ′ := X ′ \Y ′ and let µ : Y×Y′ → A1 be
the duality pairing. There exists a smooth formal scheme U, and a projective morphism f : U→ X× X′

such that, if we denote by W = f−1(Y×Y′), the morphism W→ Y×Y′ induced by f is an isomorphism,
and the composite morphism µ◦f is extended to a morphism λ : U→ P1. Let Z ′′ be the reduced divisor
of X ×X ′ which is complementary to Y × Y ′ and T = f−1(Z ′′) ⊂ U . Following Katz-Laumon [KL85],
we agree to consider L$ as a complex reduced to a single module, placed in degree 1. If we apply the
functor

λ!
T,∞ : D−coh(D†P1(†∞)Q)→ D−coh(D†U(†T )Q),

to L$[−1], we verify, thanks to the fact that L$ is defined by an overconvergent isocrystal, that
λ!
T,∞(L$[−1]) reduces to a single coherent D†U(†T )Q-module, placed in degree 2− 2N . Using the equiva-

lence of Theorem 8.7.3.32, we identify it via fZ′′,T+ to a coherent D†X×X′(†Z ′′)Q-module, placed in degree
2− 2N , we will set

N$ := fZ′′,T+λ
!
T,∞(L$[−1]).

Let p1, p2 be the projections of X×X′ onto X and X′. The geometric Fourier transform then associates
with a complex E ∈ Db

coh(D†X(†Z)Q) the complex

φ+E := p2,Z′,Z′′,+(N$ ⊗OX×X′ (Z
′′)Q

p!
1,Z′′,Z(E [−2N ])).

By describing the calculation of these functors, Huyghe proves that we thus obtain a transformation
associating to any coherent D†X(†Z)Q-module a coherent D†X′(†Z ′)Q-module (up to shift), and establishes
the relation with the naive Fourier transformation on global sections:
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Theorem 9.4.6.4. With the previous notations, let E be a coherent D†X(†Z)Q-module. So:

(a) The complex φ∗E is reduced to a single D†X′(†Z ′)Q-module, coherent and placed in degree N − 2.

(b) There exists a canonical isomorphism of Γ(X′,D†X′(†Z ′)Q)-modules

Γ(X′, φ∗E [2−N ])
∼−→ φ∗Γ(X, E)

The transform Eφ constructed in 9.4.6.2 is therefore identified with the module φ∗E [2−N ].

9.4.6.5. There is also a Fourier transform with compact supports. To define it, we provide X×X′ with
the divisor Z ′ := p−1

2 (Z ′) (by abuse of notation). Huyghe then shows that, for all coherent D†X(†Z)Q-
module the complex DZ′′(N$⊗OX×X′ (Z

′′)Q
p!

1,Z′′,Z(E) has coherent cohomology on D†X×X′(†Z ′)Q. We can
then take its dual DZ′ . The functor DZ′ ◦DZ′′ here plays the role of direct image with compact support
for the open immersion Y × Y′ ↪→ X × Y′. We therefore define the Fourier transform with compact
supports by setting, for E ∈ Db

coh(D†X(†Z)Q)

φ!E := p2,Z′,+(DZ′ ◦ DZ′′(N$ ⊗OX×X′ (Z
′′)Q

p!
1,Z′′,Z(E [−2N ]))).

Using the relative duality theorem, we can then show, as in characteristic 0 or in l-adic cohomology, the
equality of Fourier transforms with or without support conditions:

Theorem 9.4.6.6. There exists on Db
coh(D†X(†Z)Q) a functorial isomorphism

φ!E
∼−→ φ∗E .

9.4.6.7. In 1996, Rothstein and Laumon simultaneously constructed a Fourier-Mukai transform for
D-modules over a locally noetherian base of characteristic 0. This functor induces an equivalence of
categories between quasi-coherent sheaves of D-modules over an abelian variety A and quasi-coherent
sheaves of O-modules over its universal vectorial extension A\. In the article [Vig22], F. Viguier defines
a Fourier-Mukai transform for arithmetic D-modules on an abelian formal scheme A over Spf(V) and
get some extensions of some classical results of Fourier-Mukai transform to this arithmetic case.

9.5 Frobenius structure

9.5.1 F -complexes
Let S be a flat V-formal scheme. Let a ⊂ m be an ideal containing p. Fix a PD-ideal b ⊂ a (e.g. b = (p)).
Let m0 ∈ N be large enough such that b endows a with an m0-PD-structure (see 1.2.4.2.a). Replacing
m0 by m0 + 1 if necessary, we can suppose that this structure is topologically m0-PD-nilpotent. By
flatness of the structural morphism S→ Spf V we get that bOS endows aOS with an m0-PD-structure.
For any integer i ∈ N, for any flat formal S-scheme X, we denote in this subsection by Xi the reduction
of S modulo ai+1 (and not mi+1).

Suppose the residue field k of V is a perfect field of characteristic p > 0. Suppose there exists an
automorphism σ : V ∼−→ V which is a lifting of the sth Frobenius power of k. The data s and σ are
fixed in the remaining. We denote by X′ := Xσ the V-formal scheme deduced from X by the base change
defined by σ. We denote by Z ′ := Zσ.

Let I be the set the integers ≥ m0. We fix λ0 ∈ L(I). We get the inductive systems indexed by I
of the form B̃(•)

X (Z) := λ∗0B
(•)
X (Z) and ‹D(•)

X/S(Z) := B̃(•)
X (Z)“⊗O(•)

X

“D(•)
X/S. Finally, we set D(m)

Xi/Si
(Z) :=

V/πi+1 ⊗V “D(m)
X/S(Z) = B(m)

Xi
(Z) ⊗OXi D

(m)
Xi/Si

and ‹D(m)
Xi/Si

(Z) := B̃(m)
Xi

(Z) ⊗OXi D
(m)
Xi/Si

for any m ∈ N.

We use similar notation by adding some primes, e.g. B̃(m)
X′ (Z ′) := B(λ0(m))

X′ (Z ′).

9.5.1.1. Following 6.1.5.3, for any i ∈ N, we have the functor (F sX0/S0
)∗ (resp. (F sX0/S0

)[) from the

category of left (resp. right) D(m)
X′
i
/Si

(Z ′)-modules to that of left (resp. right) D(m+s)
Xi/Si

(Z)-modules. To

avoid confusion (since m and i vary), we denote this functor by ‹F ∗(m)
Xi

(resp. ‹F [(m)
Xi

).
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(a) We set ‹D(•)
X•→X′•/S•

(Z,Z ′) := ‹F ∗(•)X•
‹D(•)
X′•/S•

(Z). Hence, ‹D(•)
X′•→X•/S•

(Z ′, Z) is endowed with a struc-

ture of (‹D(•+s)
X•/S•

(Z), ‹D(•)
X′•/S•

(Z ′))-bimodule. This yields the functor: ‹F ∗(•)X•
: D(l‹D(•)

X•/S•
(Z))→ D(l‹D(•+s)

X′•/S
′
•
(Z ′))

which is defined by setting‹F ∗(•)X•
(E ′(•)• ) := ‹D(•)

X•→X′•/S•
(Z,Z ′)⊗D̃(•)

X′•/S•
(Z)
E ′(•)• , (9.5.1.1.1)

where E ′(•)• ∈ D(‹D(•)
X′•/S•

(Z)).

(b) For any ∗ ∈ {r, l}, the inverse image by Frobenius functor ‹F (•)
X : D(l‹D(•)

X′/S(Z ′))→ D(l‹D(•+s)
X/S (Z)) is

defined by setting ‹F ∗(•)X (E ′(•)) := R←lX(I),∗ ◦ ‹F ∗(•)X•
◦ L←l

∗
X′(I)

(E ′(•)) (9.5.1.1.2)

for any E ′(•) ∈ D(l‹D(•)
X′/S(Z ′)).

(c) We have a non-completed version of the pullback under Frobenius. With notations 8.8.1.4, we
get the (‹D(•+s)

X/S (Z), ‹D(•)
X′/S(Z ′))-bimodule (F sX0/S0

)∗(‹D(•)
X′/S(Z ′)), where (F sX0/S0

)∗(‹D(•)
X′/S(Z ′)) is the

inductive system with transitive maps (F sX0/S0
)∗(‹D(m)

X′/S(Z ′)) → (F sX0/S0
)∗(‹D(m+1)

X′/S (Z ′)) given by
functoriality from 8.8.1.4.1. We set

(F sX0/S0
)∗E ′(•) := (F sX0/S0

)∗(‹D(•)
X′/S(Z ′))⊗D̃(•)

X′/S
(Z′)
E ′(•), (9.5.1.1.3)

for any E ′(•) ∈ D(l‹D(•)
X′/S(Z ′)).

(d) For any E ′(•) ∈ Db
coh(l‹D(•)

X′/S(Z ′)), the canonical morphism

(F sX0/S0
)∗E ′(•) → ‹F ∗(•)X (E ′(•)) (9.5.1.1.4)

is an isomorphism, i.e. both functors 9.5.1.1.2 and 9.5.1.1.3 are canonically isomorphic with coherent
complexes.

Notation 9.5.1.2. We keep notation 9.5.1.1. The functors 9.5.1.1.1, 9.5.1.1.2, 9.5.1.1.3 induce‹F ∗(•)X•
: LD−→

−
Q,qc(l‹D(•)

X′•/S•
(Z ′))→ LD−→

−
Q,qc(l‹D(•)

X•/S•
(Z)). (9.5.1.2.1)‹F ∗(•)X : LD−→

−
Q,qc(l‹D(•)

X′/S(Z ′))→ LD−→
−
Q,qc(l‹D(•)

X/S(Z)), (9.5.1.2.2)

(F sX0/S0
)∗ : LD−→

−
Q (l‹D(•)

X′/S(Z ′))→ LD−→
−
Q (l‹D(•)

X/S(Z)). (9.5.1.2.3)

The functors 9.5.1.2.1 and 9.5.1.2.2 are some particular cases of the functors 9.2.2.4. This is not straight-
forward (but this is likely true) that the functor 9.5.1.2.3 preserves the quasi-coherence. By construction
of both functors (F sX0/S0

)∗ of 9.5.1.2.3 and 8.8.2.4.1, we get for any E ′(•) ∈ LD−→
b
Q(l‹D(•)

X′/S(Z ′)) the canon-
ical isomorphism

→l
∗
Q ◦ (F sX0/S0

)∗E ′(•) ∼−→ (F sX0/S0
)∗ ◦→l

∗
Q(E ′(•)). (9.5.1.2.4)

Moreover, it follows from 9.5.1.1.4 that, for any E ′(•) ∈ LD−→
b
Q,coh(l‹D(•)

X′/S(Z ′)), the canonical morphism of

LD−→
b
Q,coh(l‹D(•)

X/S(Z)):

(F sX0/S0
)∗E ′(•) → ‹F ∗(•)X (E ′(•)) (9.5.1.2.5)

is an isomorphism.

Notation 9.5.1.3. With notation 9.5.1.2, suppose S = Spf V and V satisfies properties of 8.8.3.1. Let
E(•)
• ∈ LD−→

−
Q,qc(l‹D(•)

X•/S•
(Z)). We denote by E(•)σ

• the object of LD−→
−
Q,qc(l‹D(•)

X′•/S•
(Z ′)) induced from E(•)

•

by base change via σ. We set F ∗E(•)
• := ‹F ∗(•)X•

(E(•)σ
• ).

Let E(•) ∈ LD−→
−
Q,qc(l‹D(•)

X/S(Z)). We denote by E(•)σ the object of LD−→
−
Q,qc(l‹D(•)

X′/S(Z ′)) induced from

E(•) by base change via σ. We set F ∗E(•) := ‹F ∗(•)X (E(•)σ).
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Definition 9.5.1.4. With notation and hypotheses of 9.5.1.3, a “F -complex (or F s-complex if there is
a risk of confusion) of LD−→

−
Q,qc(l‹D(•)

X•/S•
(Z))” is the data of an object E(•)

• ∈ LD−→
−
Q,qc(l‹D(•)

X•/S•
(Z)) together

with an isomorphism Φ: E(•)
•

∼−→ F ∗E(•)
• of LD−→

−
Q,qc(l‹D(•)

X•/S•
(Z)). A morphism u : (E(•)

• ,Φ)→ (F (•)
• ,Ψ)

of F -complexes of LD−→
−
Q,qc(l‹D(•)

X•/S•
(Z)) is a morphism of complexes of LD−→

−
Q,qc(l‹D(•)

X•/S•
(Z)) of the form

u : E(•)
• → F (•)

• such that Ψ ◦ u = F ∗(u) ◦ Φ.
Similarly a “F -complex (or F s-complex if there is a risk of confusion) of LD−→

−
Q,qc(l‹D(•)

X/S(Z))” is

the data of an object E(•) ∈ LD−→
−
Q,qc(l‹D(•)

X/S(Z)) together with an isomorphism Φ: E(•) ∼−→ F ∗E(•) of

LD−→
−
Q,qc(l‹D(•)

X/S(Z)). A morphism u : (E(•),Φ) → (F (•),Ψ) of F -complexes of LD−→
−
Q,qc(l‹D(•)

X/S(Z)) is a

morphism of complexes of LD−→
−
Q,qc(l‹D(•)

X/S(Z)) of the form u : E(•) → F (•) such that Ψ ◦ u = F ∗(u) ◦ Φ.

We denote by F -LD−→
−
Q,qc(l‹D(•)

X•/S•
(Z)) (resp. F -LD−→

−
Q,qc(l‹D(•)

X/S(Z))) the corresponding category of F -

complexes. The functors R←lX(I),∗ and L←l
∗
X(I) induce equivalences of categories between F -LD−→

−
Q,qc(l‹D(•)

X•/S•
(Z))

and F -LD−→
−
Q,qc(l‹D(•)

X/S(Z)).
With notation 8.8.3.2, by using 9.5.1.2.4 and 9.5.1.2.5, the equivalence of categories 8.4.1.15 commutes

with Frobenius and we get the equivalence of categories:

→l
∗
Q : F -LD−→

b
Q,coh(l‹D(•)

X/S(Z)) ∼= F -Db
coh(lD†X/S(†Z)Q). (9.5.1.4.1)

Definition 9.5.1.5 (Tate twist). Let (E(•),Φ) be a F -complex of LD−→
−
Q,qc(l‹D(•)

X/S(Z)). For any integer

d, we define an F -complex of LD−→
−
Q,qc(l‹D(•)

X/S(Z)) denoted by (E(•),Φ)(d) = (E(•),Φ(d)) called the dth
Tate twist of (E(•),Φ) as follows: the underlying complex is E(•) and Φ(d) := q−dΦ. The F -complex
(E(•),Φ)(d) is called the dth Tate twist of (E(•),Φ). The equivalence of categories 9.5.1.4.1 commutes
with the Tate twist (see definition 8.8.3.3), i.e., for any (E(•),Φ) ∈ F -LD−→

b
Q,coh(l‹D(•)

X/S(Z)), we have

→l
∗
Q((E(•),Φ)(d)) = (→l

∗
Q(E(•),Φ))(d).

9.5.2 Commutations to Frobenius of pullbacks, push forwards, duality, in-
ternal or external tensor products for (quasi-)coherent complexes

Let
Y

f //

pY

��

X

pX

��
T

φ // S,

(9.5.2.0.1)

be a commutative diagram of V-formal schemes, where pX and pY are smooth morphisms. We suppose
S, T are regular and of finite Krull dimension. Let Z and D be some divisors of respectively X and Y
such that f(Y \D) ⊂ X \ Z.

We suppose S, T are p-torsion free. Let a ⊂ m be an ideal containing p. Fix a PD-ideal b ⊂ a (e.g.
b = (p)). Let m0 ∈ N be large enough such that b endows a with an m0-PD-structure (see 1.2.4.2.a).
Replacingm0 bym0+1 if necessary, we can suppose that this structure is topologicallym0-PD-nilpotent.
The bottom arrow φ can be viewed as an m0-PD-morphism.

For any integer i ∈ N, for any flat formal V-scheme E, we denote here Ei the reduction of S modulo
ai+1 (and not mi+1).

Suppose the residue field k of V is a perfect field of characteristic p > 0. Suppose there exists an
automorphism σ : V ∼−→ V which is a lifting of the sth Frobenius power of k. The data s and σ are
fixed in the remaining. We denote by X′ := Xσ (resp. Y′ := Yσ) the V-formal scheme deduced from
X (resp. Y) by the base change defined by σ. We denote by Z ′ := (F sX0/S0

)−1(Z), D′ := (F sY0/T0
)(D),

f ′ : Y′ → X′ the morphism induced from f by base change via σ.
Let I be the set the integers ≥ m0. We fix λ0 ∈ L(I). We get the inductive systems indexed by I

of the form B̃(•)
X (Z) := λ∗0B

(•)
X (Z) and ‹D(•)

X/S(Z) := B̃(•)
X (Z)“⊗O(•)

X

“D(•)
X/S. Finally, we set D(m)

Xi/Si
(Z) :=

V/πi+1 ⊗V “D(m)
X/S(Z) = B(m)

Xi
(Z) ⊗OXi D

(m)
Xi/Si

and ‹D(m)
Xi/Si

(Z) := B̃(m)
Xi

(Z) ⊗OXi D
(m)
Xi/Si

for any m ∈ N.

632



We use similar notation by adding some primes, e.g. B̃(m)
X′ (Z ′) := B(λ0(m))

X′ (Z ′), or replacing X by Y and
Z by D etc. We keep notation 9.5.1.2 with respect to X/S and the analogous one for Y/T.

9.5.2.1 (Extraordinary inverse images). With notation 9.5.1.2.1, it follows from 6.2.4.2.1 that for any
E ′(•)• ∈ LD−→

−
Q,qc(l‹D(•)

X′•/S•
(Z ′)) we have the functorial commutation isomorphism in LD−→

−
Q,qc(l‹D(•)

Y•/T•
(D)):

(f, φ)
(•)!
•D,Z ◦ ‹F ∗X•(E ′(•)• )

∼−→ ‹F ∗Y• ◦ (f ′, φ)
(•)!
•D′,Z′(E

′(•)
• ). (9.5.2.1.1)

Hence, when φ = id, S = Spf V and V satisfies properties of 8.8.3.1, the extraordinary inverse image
functor 9.2.1.15.1 induces

f
(•)!
•D,Z : F -LD−→

−
Q,qc(l‹D(•)

X•/S•
(Z))→ F -LD−→

−
Q,qc(l‹D(•)

Y•/T•
(D)). (9.5.2.1.2)

With notation 9.5.1.2.2, it follows from 9.5.2.1.1 that we get for any E ′(•) ∈ LD−→
−
Q,qc(l‹D(•)

X′/S(Z ′)) the

isomorphism of LD−→
−
Q,qc(l‹D(•)

Y/T(D)):

(f, φ)
(•)!
D,Z ◦ ‹F ∗(•)X (E ′(•)) ∼−→ ‹F ∗(•)Y ◦ (f ′, φ)

(•)!
D′,Z′(E

′(•)). (9.5.2.1.3)

Suppose φ = id, f is smooth, S = Spf V and V satisfies properties of 8.8.3.1. We get the functor

f
(•)!
D,Z : F -LD−→

−
Q,qc(l‹D(•)

X/S(Z))→ F -LD−→
−
Q,qc(l‹D(•)

Y/S(D)). (9.5.2.1.4)

Moreover, with 9.5.1.4.1, it follows from 9.4.1.7 that we get the functors:

f
(•)!
D,Z : F -LD−→

b
Q,coh(l‹D(•)

X/S(Z))→ F -LD−→
b
Q,coh(l‹D(•)

Y/T(D)), (9.5.2.1.5)

f !
D,Z : F -Dcoh(lD†X/S(Z)Q)→ F -Db

coh(lD†Y/T(D)Q). (9.5.2.1.6)

9.5.2.2 (Pushforwards). It follows from 6.2.6.2 that for any F ′(•)• ∈ LD−→
−
Q,qc(l‹D(•)

Y ′•/T•
(D′)) (resp. F ′(•) ∈

LD−→
−
Q,qc(l‹D(•)

Y′/T(D′))) we have the first (resp. second) functorial commutation isomorphism in LD−→
−
Q,qc(l‹D(•)

X′•/S•
(Z ′))

(resp. LD−→
−
Q,qc(l‹D(•)

X′/S(Z ′))):

(f, φ)
(•)
•+Z,D ◦ F

∗
Y•(F

′(•)
• )

∼−→ F ∗X• ◦ (f ′, φ)
(•)
•+Z′,D′(F

′(•)
• ), (9.5.2.2.1)

(f, φ)
(•)
+Z,D ◦ ‹F ∗(•)Y (F ′(•)) ∼−→ ‹F ∗(•)X ◦ (f ′, φ)

(•)
+Z′,D′(F

′(•)). (9.5.2.2.2)

Suppose φ = id, S = Spf V and V satisfies properties of 8.8.3.1. This yields the functors of 9.2.4.10
commutes with Frobenius and induce

f
(•)
•+Z,D : F -LD−→

−
Q,qc(l‹D(•)

Y•/T•
(D))→ F -LD−→

−
Q,qc(l‹D(•)

X•/S•
(Z));

f
(•)
+Z,D : F -LD−→

−
Q,qc(l‹D(•)

Y/T(D))→ F -LD−→
−
Q,qc(l‹D(•)

X/S(Z)).

9.5.2.3 (Pushforwards: proper case). Suppose φ = id, f is proper and D = f−1(Z). Since the coherence
is stable under f+Z (see 9.4.2.4), we get from 9.5.2.2.2 and 9.5.1.2.5 the isomorphisms:

f
(•)
+Z ◦ (F sY0/S0

)∗(F ′(•)) ∼−→ (F sX0/S0
)∗ ◦ f ′(•)+Z′(F

′(•)), (9.5.2.3.1)

for any F ′(•) ∈ LD−→
b
Q,coh(l‹D(•)

Y′/S(D′)). By using 9.2.4.17 and the equivalence of categories of 8.4.1.15,
this yields the isomorphism

f+Z ◦ (F sY0/S0
)∗(F ′) ∼−→ (F sX0/S0

)∗ ◦ f ′+Z′(F ′), (9.5.2.3.2)

for any F ′ ∈ Db
coh(lD†Y′/S(D′)Q). With 9.5.1.4.1, when S = Spf V we get the functors:

f
(•)
+Z,D : F -LD−→

b
Q,coh(l‹D(•)

Y/S(D))→ F -LD−→
b
Q,coh(l‹D(•)

X/S(Z)) (9.5.2.3.3)

f+Z,D : F -Db
coh(lD†Y/S(D)Q)→ F -Db

coh(lD†X/S(Z)Q). (9.5.2.3.4)
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9.5.2.4. The dual functor DX,Z (see notation 9.2.4.22.2 commutes canonically with Frobenius. More
precisely, denoting by D̃X′,Z′ = RHomD†

X′/S
(Z′)Q

(−,D†X′/S(Z ′)Q), which is canonically isomorphic to

the composition of the functors DX′,Z′ (see notation 9.2.4.22.2), and − ⊗OX ωX, we have for any E ′ ∈
Db

coh(D†X′/S(Z ′)Q) the isomorphisms

F [DX′,Z′(E ′)
∼−→

4.6.3.6.1
RHomD†

X′/S
(Z′)Q

(E ′, F [D†X′/S(Z ′)Q)
∼−→
F∗

∼−→
F∗

RHomD†
X/S

(Z)Q
(F ∗E ′, F ∗F [D†X′/S(Z ′)Q)

∼−→ D̃X,Z(F ∗E ′). (9.5.2.4.1)

This yields:

F ∗DX′,Z′(E ′)
8.8.2.3.1
∼−→ F [DX′,Z′(E ′)⊗OX

ω−1
X/S

9.5.2.4.1
∼−→ DX,Z(F ∗E ′)⊗OX

ω−1
X/S

∼−→ DX,Z(F ∗E ′). (9.5.2.4.2)

9.5.2.5 (Internal tensor products). It follows from 6.2.2.1.1 that for any E ′(•)• ,F ′(•)• ∈ LD−→
−
Q,qc(l‹D(•)

X′•/S•
(Z ′)),

we have the functorial commutation isomorphism in LD−→
−
Q,qc(l‹D(•)

X•/S•
(Z)):

F ∗X•(E
′(•)
• )⊗L

B(•)
X•

(Z)
F ∗X•(F

′(•)
• )

∼−→ F ∗X•(E
′(•)
• ⊗L

B(•)
X′•

(Z)
F ′(•)• ).

When S = Spf V, this yields that the functor of 9.1.1.3.1 induces the following ones:

−⊗L
B(•)
X•

(Z)
− : F -LD−→

−
Q (l‹D(•)

X•/S•
(Z))× F -LD−→

−
Q (

l‹D(•)
X•/S•

(Z))→ F -LD−→
−
Q (l‹D(•)

X•/S•
(Z)), (9.5.2.5.1)

−“⊗L
B̃(•)

X
(Z)
− : F -LD−→

−
Q (l‹D(•)

X/S(Z))× F -LD−→
−
Q (

l‹D(•)
X/S(Z))→ F -LD−→

−
Q (l‹D(•)

X/S(Z)). (9.5.2.5.2)

9.5.2.6 (External tensor products). Let X and Q be two smooth, quasi-compact and quasi-separated
formal schemes over S = Spf V, p : X×S Q→ X, q : X×S Q→ Q be the structural maps. Let Z1 be a
divisor of X, Z2 be a divisor of Q and Z := p−1(Z1) ∪ q−1(Z2). Set R := X×S Q and r : X×S Q→ S
be the structural map.

It follows from 9.5.2.1.2 and 9.5.2.5.1 (resp. 9.5.2.1.4 and 9.5.2.5.2) that for any ? ∈ {qc, coh}, the
bifunctor 9.2.5.1.1 (resp. 9.2.5.1.2) induces the bifunctor:

−�L
OS• ,Z1,Z2

− : F -LD−→
b
Q,?(

l“D(•)
X•/S•

(Z1))× F -LD−→
b
Q,?(

l“D(•)
Q•/S•

(Z2))→ F -LD−→
b
Q,?(

l“D(•)
R•

(Z)); (9.5.2.6.1)

−“�L
OS,Z1,Z2

− : F -LD−→
b
Q,?(

l“D(•)
X/S(Z1))× F -LD−→

b
Q,?(

l“D(•)
Q/S(Z2))→ F -LD−→

b
Q,?(

l“D(•)
R (Z)). (9.5.2.6.2)

Via 9.5.1.4.1, this yields the functor:

−“�L
OS,Z1,Z2

− : F -Db
coh(l“D(•)

X/S(Z1)Q)× F -Db
Q,coh(l“D(•)

Q/S(Z2)Q)→ F -Db
coh(l“D(•)

R (Z)Q). (9.5.2.6.3)

9.5.3 Commutation with Frobenius of the pullbacks for complexes of D†-
modules

We keep notation 9.5.2.

9.5.3.1. Let E ′ be a p-adically complete (and separated) left “D(m)
X′/S(Z ′)-module.

(a) Suppose F sX0/S0
has a lifting F : X→ X′. The canonical map

OX ⊗OX′ E
′ → F ∗“D(m)

X′/S(Z ′)⊗D̂(m)

X′/S
(Z′)
E ′

is an isomorphism (where the extension OX′ → OX is given by F ). Since F is finite and E ′ is
p-adically complete (and separated), then the canonical morphism

F ∗“D(m)
X′/S(Z ′)⊗D̂(m)

X′/S
(Z′)
E ′ → F ∗“D(m)

X′/S(Z ′)“⊗D̂(m)

X′/S
(Z′)
E ′ (9.5.3.1.1)

is an isomorphism of left “D(m+s)
X′/S (Z ′)-modules.
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(b) Since this is local, we get from (a) that the canonical morphism

(F sX0/S0
)∗“D(m)

X′/S(Z ′)⊗D̂(m)

X′/S
(Z′)
E ′ → (F sX0/S0

)∗“D(m)
X′/S(Z ′)“⊗D̂(m)

X′/S
(Z′)
E ′ (9.5.3.1.2)

is an isomorphism.

9.5.3.2. Since “D(•)
X′/S(Z ′) is coherent, then following 9.5.1.2.5 we have the isomorphism of LD−→

b
Q,coh(l‹D(•)

X/S(Z)):

(F sX0/S0
)∗(“D(•)

X′/S(Z ′))→ ‹F ∗(•)X (“D(•)
X′/S(Z ′))

Since ‹D(•)
Y′→X′/T→S(D′, Z ′) is (in particular) a p-torsion free, separated complete left “D(•)

Y′/T(D′)-
module, then it follows from 9.5.3.1.2 that the canonical morphism

(F sY0/T0
)∗“D(•)

Y′/T(D′)⊗D̂(•)
Y′/T

(D′)
‹D(•)
Y′→X′/T→S(D′, Z ′)→ ‹F ∗(•)Y (‹D(•)

Y′→X′/T→S(D′, Z ′)), (9.5.3.2.1)

where ‹F ∗(•)Y is the functor defined at 9.5.1.1.2 and (F sY0/T0
)∗ is that defined at 9.5.1.2.3, is an isomorphism

ofD(l‹D(•+s)
Y/T (D), f ′−1“D(•)

X′/S(Z ′)). We have the following isomorphisms of LD−→
b
Q(‹D(•)

Y/T(D), f−1‹D(•)
X′/S(Z ′))‹D(•)

Y→X/T→S(D,Z)⊗L
f−1D̂(•)

X/S
(Z)

f−1(F sX0/S0
)∗(“D(•)

X′/S(Z ′))[df ]
∼−→ (f, φ)

(•)!
algD,Z ◦ ‹F ∗(•)X (“D(•)

X′/S(Z ′))

∼−→
9.2.1.17

(f, φ)
(•)!
D,Z ◦ ‹F ∗(•)X (“D(•)

X′/S(Z ′))
∼−→

9.5.2.1.3
‹F ∗(•)Y ◦ (f ′, φ)

(•)!
D′,Z′(

“D(•)
X′/S(Z ′))

∼←−
9.2.1.17

‹F ∗(•)Y (‹D(•)
Y′→X′/T→S(D′, Z ′))[df ]

∼←−
9.5.3.2.1

(F sY0/T0
)∗“D(•)

Y′/T(D′)⊗D̂(•)
Y′/T

(D′)
‹D(•)
Y′→X′/T→S(D′, Z ′)[df ].

By applying the functor→l
∗
Q, with notation 8.8.3.1 we get the isomorphism:

D†Y→X/T→S(†D,Z)Q ⊗L
f−1D†

Y/T
(†D)Q

f−1(F sX0/S0
)∗D†X′/S(†Z ′)Q

∼−→ (F sY0/T0
)∗D†Y′/S(†D′)Q ⊗L

D†
Y′/S

(†D′)Q
D†Y′→X′/T→S(†D′, Z ′)Q. (9.5.3.2.2)

Lemma 9.5.3.3. The functor (f, φ)!
D,Z defined at 9.2.1.21.1 commutes with Frobenius in the sense that

we have (with notation 8.8.3.1) the canonical isomorphism

(F sY0/T0
)∗(f ′, φ)!

D′,Z′(E ′)
∼−→ (f, φ)!

D,Z((F sX0/S0
)∗(E ′)), (9.5.3.3.1)

for any E ′ ∈ Db(D†X′(†Z ′)Q).

Proof. We build 9.5.3.3.1 by composition as follows:

(F sY0/T0
)∗(f ′, φ)!

D′,Z′(E ′)[−df ]

∼−→ (F sY0/T0
)∗D†Y′/T(†D′)Q ⊗D†

Y′/T
(†D′)Q

Å
D†Y′→X′/T→S(†D′, Z ′)Q ⊗L

f ′−1D†
X′/S

(†Z′)Q
f ′−1E ′

ã
∼−→
Å

(F sY0/T0
)∗D†Y′/T(†D′)Q ⊗D†

Y′/T
(†D′)Q

D†Y′→X′/T→S(†D′, Z ′)Q

ã
⊗L
f ′−1D†

X′/S
(†Z′)Q

f ′−1E ′

∼←−
9.5.3.2.2

Å
D†Y→X/T→S(†D,Z)Q ⊗L

f−1D†
Y/T

(†D)Q
f−1(F sX0/S0

)∗D†X′/S(†Z ′)Q

ã
⊗L
f ′−1D†

X′/S
(†Z′)Q

f ′−1E ′

∼−→ D†Y→X/T→S(†D,Z)Q ⊗L
f−1D†

Y/T
(†D)Q

f−1

Å
(F sX0/S0

)∗D†X′/S(†Z ′)Q ⊗L
D†

X′/S
(†Z′)Q

E ′
ã

∼−→ (f, φ)!
D,Z((F sX0/S0

)∗(E ′))[−df ].

9.5.3.4. Suppose φ = id, f is proper, S = Spf V and V satisfies properties of 8.8.3.1. Let E ∈
Db(D†X(†Z)Q). With notation 8.8.3.1, it follows from 9.5.3.3.1 that we have the isomorphism ofDb(D†Y(†D)Q):

θf,D,Z : F ∗f !
D,Z(E)

∼−→ f !
D,Z(F ∗(E)). (9.5.3.4.1)
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When D = f−1(Z), we simply write θf,Z .
Let g : P → Y be a morphism of smooth V-formal schemes. Let T be a divisor of P such that

g(P \ T ) ⊂ Y \D. Then the canonical isomorphism g!
T,Df

!
D,Z(E)

∼−→ (f ◦ g)!
T,Z(E) is compatible with

Frobenius, i.e., we have the following commutative diagram:

F ∗g!
T,Df

!
D,Z(E)

∼
��

θg,T,D◦f !
D,Z // g!

T,DF
∗f !
D,Z(E)

g!
T,D◦θf,D,Z // g!

T,Df
!
D,Z(F ∗(E))

∼
��

F ∗(f ◦ g)!
T,Z(E)

θg◦f,T,Z // (f ◦ g)!
T,ZF

∗(E).

(9.5.3.4.2)

9.5.4 Compatibility with Frobenius: relative duality isomorphism, adjunc-
tion (f+, f

!) for proper morphisms and coherent complexes
With notation 9.5.2, suppose φ = id, f is proper, D = f−1(Z), S = Spf V and V satisfies properties
of 8.8.3.1. We have already constructed the isomorphism of commutation to Frobenius of the direct
image by f for coherent complexes of D†-modules (see 9.5.2.3.2). We will redefine this isomorphism in
paragraph 9.5.2.3.2. The aim of this change is to obtain automatically the Frobenius compatibility of
adjunction morphisms between the direct image and the extraordinary inverse image (see 9.5.4.4 and
9.5.4.5) We further obtain the compatibility with the composition of the commutation to Frobenius
isomorphism of the direct image (9.5.4.8).

9.5.4.1. Let F ∈ Db
coh(D†Y(†D)Q), E ∈ Db

coh(D†X(†Z)Q). Following 9.4.5.4.2, we have the functorial in E
and F canonical adjonction isomorphism of abelian groups:

adjf,Z : HomD†
X

(†Z)Q
(fZ,+(F), E)

∼−→ HomD†
Y

(†D)Q
(F , f !

Z(E)), (9.5.4.1.1)

where we set HomD†
Y

(†D)Q
(−,−) := H0 ◦ RHomD(D†

Y
(†D)Q

(−,−) = HomD(D†
Y

(†D)Q)(−,−).

Lemma 9.5.4.2. For any F ∈ Db
coh(D†Y(†D)Q), we uniquely define a functorial isomorphism in F :

σf,Z : F ∗ ◦ fZ,+(F)
∼−→ fZ,+ ◦ F ∗(F) (9.5.4.2.1)

as being the only one making commutative, for all E ∈ Db
coh(D†X(†Z)Q), the following diagram

HomD†
Y

(†D)Q
(F , f !

ZE)
F∗

∼
// HomD†

Y
(†D)Q

(F ∗F , F ∗ ◦ f !
Z E)

Hom(id,θf,Z)

∼
// HomD†

Y
(†D)Q

(F ∗F , f !
Z ◦ F ∗ E)

HomD†
X

(†Z)Q
(fZ,+F , E)

adj ∼

OO

F∗

∼
// HomD†

X
(†Z)Q

(F ∗ ◦ fZ,+F , F ∗E) HomD†
X

(†Z)Q
(fZ,+ ◦ F ∗F , F ∗E)

Hom(σf,Z ,id)

oo

adj ∼

OO

(9.5.4.2.2)
where all arrows are isomorphisms of abelian groups.

Proof. With F fixed, denote φE : HomD†
X,Q(†Z)(F

∗ ◦ fZ,+F , F ∗E) → HomD†
X,Q(†Z)(fZ,+ ◦ F

∗F , F ∗E),
the unique bijection making the diagram 9.5.4.2.2 commutative. We set ρf, Z := φfZ,+F ◦ F ∗(idfZ,+F ):
fZ,+F

∗F → F ∗fZ,+F . It remains to verify that ρf, Z is an isomorphism (and then we set σf, Z := ρ−1
f, Z).

Now, by functoriality in E , for any morphism u : fZ,+F → E , φE ◦ F ∗(u) is the composite morphism:

fZ,+F
∗F ρf, Z−→ F ∗◦fZ,+F

F∗(φ)−→ F ∗E . Furthermore, as the functor F ∗ induces an equivalence of categories,
there exists an object E0 of Db

coh(D†X,Q(†Z)) and an isomorphism ε: fZ,+F ∗F
∼−→ F ∗E0. There is thus

a unique morphism u0: fZ,+F → E0 such that F ∗(u0) ◦ ρf, Z = ε. However, noting τf, Z := ε−1 ◦F ∗(u0):
F ∗fZ,+F → fZ,+F

∗F , it follows: τf, Z ◦ ρf, Z = idfZ,+F∗F . We deduce: ρf, Z ◦ τf, Z ◦ ρf, Z = ρf, Z and
therefore ρf, Z ◦ τf, Z = idF∗fZ,+F (by injectivity of φfZ,+F ◦ F ∗).
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Remark 9.5.4.3. The lemma 9.5.4.2 corresponds to second way to build the commutation to Frobe-
nius isomorphism fZ+F

∗(E)
∼−→ F ∗fZ+(E). This is not clear that both constructions 9.5.2.3.2 and

9.5.4.2.1 coincide. However, when f is a closed immersion, this is already known (see [Car09d, 2.5.4]).
Moreover, still when f is a closed immersion, we have established (see [Car09d, 2.4.3]) that, for any
E ′ ∈ Db

coh(D†X′(†Z ′)Q), the relative duality isomorphism

fZ,+ ◦ DD(E ′) ∼−→ DZ ◦ fZ,+(E ′)

of 9.4.5.2 is compatible with Frobenius.
Since we mainly work with proper morphisms of V-formal scheme, we prefer in this book to use the

isomorphism fZ+F
∗(E)

∼−→ F ∗fZ+(E) constructed in 9.5.4.2.1

Lemma 9.5.4.4. Let F ∈ Db
coh(D†Y(†D)Q). Let us denote by adjF : F → f !

ZfZ,+(F) the adjunction
isomorphism given by 9.5.4.1.1. The morphism adjF is compatible with Frobenius, i.e. the following
diagram:

F ∗F
F∗adjF // F ∗f !

ZfZ+F
(f !
Zσf,Z)◦(θf, ZfZ,+)∼

��
F ∗F

adjF∗F // f !
ZfZ+F

∗F

(9.5.4.4.1)

is commutative.

Proof. We have the commutative diagram:

Hom(F , f !
Z , fZ+F)

F∗

∼
// Hom(F ∗F , F ∗f !

ZfZ+F) ∼
// Hom(F ∗F , f !

ZF
∗fZ+F) ∼

// Hom(F ∗F , f !
ZfZ+F

∗F)

Hom(fZ+F , fZ+F)
F∗

∼
//

adj ∼

OO

Hom(F ∗fZ+F , F ∗fZ+F) ∼
// Hom(fZ+F

∗F , F ∗fZ+F) ∼
//

adj ∼

OO

Hom(fZ+F
∗F , fZ+F

∗F),

adj ∼

OO

where the top right arrow is Hom(id, f !
Zσf,Z) and the bottom right arrow is Hom(id, σf,Z). Indeed, the

rectangle on the left is commutative by construction of ρf,Z (see the diagram 9.5.4.2.2), while the one on
the right is verified by functoriality in E of the adjunction isomorphism adjf, Z (9.5.4.1.1). The application
Hom(fZ+F , fZ+F)→ Hom(F ∗F , f !

ZfZ+F
∗F) induced by the bottom and right path, sends the identity

to adjF∗F . The arrow Hom(fZ+F , fZ+F) → Hom(F ∗F , F ∗f !
ZfZ+F) induced by the left vertical and

the left top maps sends the identity to F ∗adjF . This results in the commutativity of 9.5.4.4.1.

Lemma 9.5.4.5. If f !
Z(E) has D†Y(†D)Q-coherent cohomology (e.g. if f is smooth) we get from 9.5.4.1.1

the adjunction morphism adjE : fZ,+f
!
Z(E) → E. The morphism adjE is compatible with Frobenius, i.e.,

that the following canonical diagram is commutative:

F ∗fZ+f
!
ZE

F∗adjE //

(fZ,+θf, Z)◦(σf,Z)f !
Z
∼
��

F ∗E

fZ+f
!
ZF
∗E

adjF∗E // F ∗E .

Proof. This is checked similarly to 9.5.4.4.

We know that the direct image of the composition of two morphisms is isomorphic to the compo-
sition of the direct image of these two morphisms. However, the compatibility with Frobenius of this
isomorphism does not seem easy. In order to obtain it tautologically (see 9.5.4.8), we will first rebuild
this in the context of the proposition which follows.

Proposition 9.5.4.6. Let g: P → Y and h: Q → P be two proper morphisms of V-smooth formal
schemes such that g−1(D) (resp. h−1g−1(D)) is a divisor of P (resp. Q). By abuse of notation, we set
D := g−1(D) (resp. D := h−1(D)). We further assume f smooth.
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For all G ∈ Db
coh(D†P,Q(†D)), there exists a unique isomorphism (f ◦ g)Z,+(G)

∼−→ fZ,+gD,+(G)

functorial in G and inducing, for all E ∈ Db
coh(D†X,Q(†Z)), the commutative diagram:

HomD†
X,Q(†Z)((f ◦ g)D+G, E)

adjf◦g

∼
// HomD†

P,Q(†D)(G, (f ◦ g)!
ZE)

HomD†
X,Q(†Z)(fZ+gD+G, E)

adjf

∼
//

OO

HomD†
X,Q(†Z)(gZ+G, f !

ZE)
adjg

∼
// HomD†

P,Q(†D)(G, g
!
Df

!
ZE)

∼
OO

Furthermore, these are “transitive”, i.e., if f and g are smooth then, for all H ∈ Db
coh(D†Q(†D′)Q),

the two composite morphisms (f ◦ g ◦ h)Z,+(H)
∼−→ (f ◦ g)Z,+ ◦ hD,+(H)

∼−→ fZ,+gD,+hD,+(H) and
(f ◦ g ◦ h)Z,+(H)

∼−→ fZ,+(g ◦ h)D,+(H)
∼−→ fZ,+gD,+hD,+(H) are equal.

Proof. First of all, we notice that the diagram of 9.5.4.6 makes sense because, as f is smooth, f !
Z(E) is

D†Y(†D)Q-coherent. The first assertion of the proposition is then immediate. Next, consider the following
diagram:

HomD†
Q

(†D′)Q
(H, h!

D(f ◦ g)!
ZE) // HomD†

Q
(†D′)Q

(H, (f ◦ g ◦ h)!
ZE)

HomD†
X

(†Z)Q
((f ◦ g)Z+hD+H, E)

adjh◦adjf◦g
77

// HomD†
X

(†Z)Q
((f ◦ g ◦ h)Z+H, E)

adjf◦g◦h
77

HomD†
Q

(†D′)Q
(H, h!

Dg
!
Df

!
ZE)

OO

// HomD†
Q

(†D′)Q
(H, (g ◦ h)!

Df
!
ZE)

OO

HomD†
X

(†Z)Q
(fZ+gD+hD+H, E)

adjh◦adjg◦adjf
77

OO

// HomD†
X

(†Z)Q
(fZ+(g ◦ h)D+H, E).

adjg◦h◦adjf
77

OO

The commutativity of the left square follows from that of the following diagram:

Hom((f ◦ g)D+hD+H, E)
adjf◦g

∼
// Hom(hD+H, (f ◦ g)!

ZE)
adjh
∼
// Hom(H, h!

D(f ◦ g)!
ZE)

Hom(fZ+gD+hD+H, E)
adjf

∼
//

∼

OO

Hom(gD+hD+H, f !
ZE)

adjg

∼
// Hom(hD+H, g!

Df
!
ZE)

∼

OO

adjh
∼
// Hom(H, h!

Dg
!
Df

!
ZE),

∼

OO

where, substituting hD+H for G, the rectangle on the left is, by construction, that of the proposi-
tion 9.5.4.6, while the commutativity of the right square is verified by functoriality of the isomorphism
g!
Df

!
ZE

∼−→ (f ◦ g)!
ZE .

In the same way, we see that the right, top and bottom squares are commutative. As the one at the
bottom is also and the arrow at the top right is an isomorphism, this results in the commutativity of the
square in front.

Remark 9.5.4.7. We keep the notations of 9.5.4.6, but we replace the hypothesis that “f smooth” by
the fact property “f !

ZfZ,+gD,+(G) is D†Y(†D)Q-coherent”. (For example, if G is a complex D†P(†D)Q-
overcoherent (see 15.3.6) then the condition “f !

ZfZ,+gD,+(G) is D†Y(†D)Q-coherent” is checked.) With
this hypothesis, the diagram of 9.5.4.6 is still valid if we choose E = fZ,+gD,+(G). Hence, the image of
the identity of fZ,+gD,+(G) by the left bijection of diagram 9.5.4.6 provides a morphism (f ◦ g)Z,+(G)→
fZ,+gD,+(G). Furthermore, since f !

Z(f ◦ g)Z,+(G) is also D†Y(†D)Q-coherent, by taking E = (f ◦ g)Z,+(G)
in the diagram 9.5.4.6, we construct an inverse. Modulo this condition, the proposition 9.5.4.6 (and also
9.5.4.8) then still remains valid when f and g are any two proper morphisms.

Proposition 9.5.4.8. Let g: P → Y be a proper morphism of V-smooth formal schemes such that
g−1(D) is a divisor of P . We assume f smooth. The isomorphism (f ◦g)Z,+

∼−→ fZ,+ ◦gD,+ constructed

638



in 9.5.4.6 is then compatible with Frobenius, i.e. ,

F ∗fZ+gD,+(E)

∼
��

σf,Z◦gD,+ // fZ,+F ∗gD,+(E)
fZ,+◦σg,D // fZ,+gD,+F ∗(E)

∼
��

F ∗(f ◦ g)Z,+(E)
σf◦g,Z // (f ◦ g)Z,+F

∗(E)

(9.5.4.8.1)

which can be translated (by abuse of notation) by the following equality: (fZ,+ ◦ σg,D) ◦ (σf,Z ◦ gD,+) =
σf◦g,Z .

Proof. For all G ∈ Db
coh(D†P(†D)Q) and E ∈ Db

coh(D†X(†Z)Q), we verify that the following diagram

Hom(F ∗(f ◦ g)Z+G, F ∗E)
F∗adjf◦g //

��

Hom(F ∗G, F ∗(f ◦ g)!
ZE)

��
Hom(F ∗fZ+gD+(G), F ∗E)

F∗adjf //

��

Hom(F ∗g+G, F ∗f !
ZE)

F∗adjg//

��

''

Hom(F ∗G, F ∗g!
Df

!
ZE)

((
Hom(gD+F

∗G, F ∗f !
ZE)

adjg //

��

Hom(F ∗G, g!
DF
∗f !
ZE)

��

Hom(fZ+F
∗gD+(G), F ∗E)

adjf //

))

Hom(F ∗gD+G, f !
ZF
∗E)

''
Hom(fZ+gD+F

∗G, F ∗E)
adjf//

��

Hom(gD+F
∗G, f !

ZF
∗E)

adjg // Hom(F ∗G, g!
Df

!
ZF
∗E)

��
Hom((f ◦ g)Z+F

∗G, F ∗E)
adjf◦g // Hom(F ∗G, (f ◦ g)!

ZF
∗E),

(9.5.4.8.2)
is commutative. Indeed, the top and bottom rectangles are commutative by construction (9.5.4.6), the
middle and left diamond as well as the right square are by functoriality while that of the left square and
the right diamond results from 9.5.4.2.2. Now, the isomorphism (f ◦ g)Z+F

∗(G)
∼−→ F ∗(f ◦ g)Z+(G) is

the unique morphism making commutative the following diagram:

Hom(F ∗(f ◦ g)Z+G, F ∗E)
F∗adjf◦g

∼
//

��

Hom(F ∗G, F ∗(f ◦ g)!
ZE)

∼
��

Hom((f ◦ g)Z+F
∗G, F ∗E)

adjf◦g

∼
// Hom(F ∗G, (f ◦ g)!

ZF
∗E).

(9.5.4.8.3)

It results from the Frobenius compatibility of the canonical isomorphism g!
D ◦ f !

Z
∼−→ (f ◦ g)!

Z (see
9.5.3.4.2) that the right arrow of 9.5.4.8.3 is the right composite morphism of 9.5.4.8.2. Hence we are
done.
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Chapter 10

Overconvergent isocrystals

Let S be a V-formal scheme locally of finite type and S be its special fiber. For rigid geometry we refer
to [BGR84], [Ber96b, §0] , [LS07] or [dJ95, §7] .

10.1 Overconvergent sections
In this section, we summarize the construction and consequences of the functor j†. These results are due
to Berthelot [Ber90], [Ber96b] which contain all the proofs; but see also Le Stum [LS07].

10.1.1 Specialisation morphism, tubes, strict neighborhood
10.1.1.1. For a V-formal scheme X locally of finite type, let XK be the set of closed subschemes Z of X
which are integral, finite and flat over V. The support of such a subscheme Z is closed point of X, which
we call the specialization of the point x ∈ X corresponding to Z. This yields the map

sp: XK → X. (10.1.1.1.1)

We define on XK a structure of rigid analytic space as follows:

Proposition 10.1.1.2. Let X be a V-formal scheme locally of finite type.

(i) There exists on XK a unique structure of quasi-separated rigid analytic variety over K and a map
sp : XK → X satisfying the following:

(a) the inverse image by the map sp : XK → X of any open (resp. open covering) of X is an open
(resp. admissible covering) of XK ;

(b) for any affine open U = Spf A ⊂ X, the structure induced by XK on UK = sp−1U coincide
with that defined by Spm( A⊗K).

(ii) The application sp of 10.1.1.1.1 defines in a natural way a morphism of ringed sites ([SGA4.2, IV
4.9]) .

(iii) Let X,X′ be two V-formal schemes locally of finite presentation. For any formal scheme morphism
u : X→ X′ the diagram of ringed topoi commutes

X

u

��

XK
spoo

uK

��
X′ X′K

spoo

.

10.1.1.3 (Tubes). Let P be a V-formal scheme locally of finite type. Let X (resp. U) be a closed
(resp. open) subscheme of P . Set Y = X ∩ U . We write ]Y [P (or sometimes simply ]Y [) for the inverse
image sp−1(Y ) which we shall call the tube of Y where sp: PK → P is the specialization morphism
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(see 10.1.1.1.1). We say that ]Y [P is the tube of Y in P. This tube is a rigid analytic subvariety of
PK which has the following local description: suppose P = Spf A is a formal affine S-scheme and there
exist sections f1, . . . , fr, g1, . . . , gs ∈ Γ(P,OP) with reductions f̄1, . . . , f̄r, ḡ1, . . . , ḡs ∈ Γ(P,OP ) such
that Y = X ∩ U with X = V (f̄1, . . . , f̄r) and U = D(ḡ1) ∪ . . . ∪D(ḡs), then

]Y [P:={x ∈ PK , |f1(x)|, . . . , |fr(x)| < 1

and ∃ j ∈ {1, . . . , s}, |gj(x)| = 1}.

For any real |π| ≤ η < 1 (resp. |π| ≤ η < 1), we can define by gluing the closed (resp. open) tube
of radius η of X in P , which is a rigid analytic subvariety of PK . More precisely, in the above local
description, we define

[X]Pη :={x ∈ PK , |f1(x)|, . . . , |fr(x)| ≤ η}

and

]X[Pη:={x ∈ PK , |f1(x)|, . . . , |fr(x)| < η}.

Since |π| ≤ η < 1 (resp. |π| ≤ η < 1), we check that the closed (resp. open) tube of radius η do not
depend on the choice of such f1, . . . , fr and therefore we can glue.

Definition 10.1.1.4. We define the category of S-frames as follows:

(a) By an S-frame we shall mean a commutative diagram

Y �
� j //

w

��

X �
� i //

v

��

P

u

��
S S // S

where u is an adic morphism of formal schemes of finite type, i is a closed immersion of formal
schemes, j is an open immersion of S-schemes, v and w are of finite type. When u is affine we say
that this an affine S-frame. We write this data as (Y

j−→ X
i−→ P)/S or simply (Y,X,P)/S or even

(Y,X,P).

(b) A morphism f = (w, v, u) : (Y ′
j′−→ X ′

i′−→ P′)/S→ (Y
j−→ X

i−→ P)/S of S-frames is a commutative
diagram (over S)

Y ′ �
� j′ //

w

��

X ′ �
� i′ //

v

��

P′

u

��
Y �
� j // X �

� i // P.

(10.1.1.4.1)

When u is smooth in a neighbourhood of Y ′ (resp. u is quasi-compact, resp. u is affine) we say
that the morphism (w, v, u) is weakly smooth (resp. quasi-compact, resp. affine). Beware in [LS07,
3.3.5] this is called “smooth” and not weakly smooth (in order to get a coherent notion with smooth
d-frames of 12.2.1.1 or of c-frames of 16.2.1.8). When v is proper (resp. finite, resp. projective), we
say that f is proper (resp. finite, resp. projective).

The category of S-frames as the final object (S, S,S). By definition, an S-frame is weakly smooth
(resp. quasi-compact, resp. affine, resp. proper) if so is its structural morphism toward the final
object.

10.1.1.5. Let (Y
j−→ X

i−→ P)/S be an S-frame. We say an admissible open subset V of ]X[ is a “strict
neighborhood of ]Y [P in ]X[P” if ]X[= V ∪]X \ Y [ is an admissible covering in the rigid topology.

Example 10.1.1.6. Let (Y
j−→ X

i−→ P)/S be a quasi-compact S-frame and Z be the complement for
X in Y Then, for λ < 1, ]X[P\]Z[Pλ is a strict neighborhood of ]Y [P in ]X[P (see [LS07, 3.3.1]).

The proposition 10.1.1.7 below describes strict neighborhoods.
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Proposition 10.1.1.7. Let (Y
j−→ X

i−→ P)/S be a quasi-compact S-frame and Z be the complement
for X in Y . For any λ, η < 1, we write

V λ :=]X[P\]Z[Pλ, V λη := [X]Pη ∩ V λ.

If V is an admissible open subset of ]X[P, the following are equivalent:

(a) V is a strict neighborhood of ]Y [P in ]X[P.

(b) For any affinoid open subset W ⊂]X[P, there exists λ < 1 such that

V λ ∩W ⊂ V.

(c) For any quasi-compact admissible open subset W ⊂]X[P, there exists λ < 1 such that

V λ ∩W ⊂ V.

(d) For any η < 1, there exists λ < 1 such that

V λη ⊂ V.

Proof. A proof is given at [LS07, 3.3.2].

10.1.2 Adding overconvergent singularities: the functor j†

10.1.2.1. Suppose we have a frame Y j−→ X → P. Let V be an admissible open subset of ]X[, A be a
sheaf of (not necessarily commutative) ring on V and E an A-module. Define

j†V E := lim−→ jV V ′∗j
−1
V V ′E

where V ′ runs through all the strict neighborhoods of ]Y [ in ]X[ and

jV V ′ : V ∩ V ′ ↪→ V

denotes the inclusion map. This sheaf j†V E on V is called the “sheaf of germs of sections of the sheaf E
on V overconvergent along Z := X \ Y ”. If W is a quasi-compact open subset of V then

Γ(W, j†V E) = lim−→
V ′⊂V

Γ(W ∩ V ′, E), (10.1.2.1.1)

where V ′ runs through all the strict neighborhoods of ]Y [ in ]X[.
Let jV : V →]X[, define j†E := jV ∗j

†
V E . Suppose we have strict neighborhoods W ⊂ V of ]Y [ in ]X[.

Then the functor j† does not change if we replace V by W .

Example 10.1.2.2. Let X be a V-formal scheme. Let Z be a divisor of X, Y be the open of X
complementary to the support of Z and j : Y → X be the canonical morphism. We have YX =]Y [X
and XK =]X[X. For any m ∈ N, we set λm := p−1/pm+1

, Vm := XK\]Z[Xλm and jm : Vm → XK
be the canonical immersion. Then it follows from 10.1.1.7 that the family Vm forms a basis of strict
neighborhoods of YK in XK .

Let V be a strict neighborhood of ]Y [P in ]X[P and E be an OV -module. Hence, by definition of the
functor j† (see 10.1.2.1), we get

j†E
∼−→ lim−→m jm∗(E|Vm ∩ V ). (10.1.2.2.1)

Proposition 10.1.2.3. We keep notation 10.1.2.2.

(a) There exist canonical isomorphisms of OX-algebras

B(m)
X (Z)Q

∼−→ sp∗jm∗j
∗
mOXK , OX(†Z)Q

∼−→ sp∗j
†OXK . (10.1.2.3.1)
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(b) The functor (sp ◦ jm)∗ induces a equivalence between coherent (resp. locally free of finite type)
OVm -modules and coherent (resp. locally projective of finite type) B(m)

X (Z)Q-modules.

(c) The functors sp∗ and sp∗ induce quasi-inverse equivalences between coherent (resp. locally free of
finite type) j†OXK -modules and coherent (resp. locally projective of finite type) OX(†Z)Q-modules.

(d) Let E be a coherent j†O]X[X -module, let Em be a coherent OVm -module. For any integer n 6= 0,

HnR(sp ◦ jm)∗(Em) = 0, HnRsp∗(E) = 0. (10.1.2.3.2)

Proof. By copying the proof of [Ber96c, 4.3.2 and 4.4.2], we get the first statements. The check of the
last one is similar: when X is affine and there exists f ∈ OX giving an equation of Z in X, then XK and
Vm are affinoid. Hence, using Kiehl’s theorem A and B (see [Kie67]), we get 10.1.2.3.2.

Notation 10.1.2.4. Let f = (w, v, u) : (Y ′
j′−→ X ′

i′−→ P′)/S → (Y
j−→ X

i−→ P)/S be a morphism of
S-frames. We denote by (v, u)K : ]X ′[P′→]X[P. By abuse of notation (when u is understood), we can
write vK instead of (v, u)K . This yields the inverse image by setting for any O]X[P-module E

v∗KE = O]X′[P′
⊗v−1

K
O]X[P

v−1
K E. (10.1.2.4.1)

When i and i′ are the canonical inclusions of the special fibers P ↪→ P and P ′ ↪→ P′, then u∗K = v∗K .

Proposition 10.1.2.5. Given a frame Y ⊂ X ⊂ P. Let V be a strict neighbourhood of ]Y [ in ]X[ and
E be an OV -module.

(a) (i) The canonical homomorphism E → j†V E is an epimorphism. If E is a j†VOV -module then this
is an isomorphism.

(ii) The canonical homomorphism E ⊗OV j
†
VOV → j†V E is an isomorphism.

(iii) The functors j†V and j† are exact on the category of OV -modules.

(b) Let f = (w, v, u) : (Y ′
j′−→ X ′

i′−→ P′)/S → (Y
j−→ X

i−→ P)/S be a morphism of S-frames, V ′ a
strict neighborhood of ]Y ′[P′ in ]X ′[P′ such that uK(V ′) ⊂ V . Let fV ′,V : V ′ → V be the morphism
induced by uK . Then there exist canonical OV -linear homomorphisms

j†V E → fV ′V ∗j
′†
V ′f
−1
V ′V E, j†E → vK∗j

′†f−1
V ′V E. (10.1.2.5.1)

If moreover we suppose that Y ′ = Y ×X X ′, then the induced homomorphisms

fV ′V ∗j
†
V E → j′†V ′f

∗
V ′V E, v∗Kj

†E → j′†f∗V ′V E (10.1.2.5.2)

are isomorphisms.

(c) Suppose we have a morphism of frames

Y ′ �
� j′ //

w

��

X ′ �
� i′ //

v

��

X′

u

��
Y �
� j // X �

� i // X

,

where i, i′ are the canonical inclusions of the special fibers and u : X′ → X is an open immersion.
Let F be an OX′

K
-module. Then the canonical homomorphism

uK∗j
′†F → j†uK∗j

′†F (10.1.2.5.3)

is an isomorphism. Moreover if Y ′ = Y ∩ X′ then we have canonical isomorphism

j†uK∗F → uK∗j
′†F. (10.1.2.5.4)
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Proof. See [Ber96b, 2.1.3-4] and [Ber90, 4.1.2].

Definition 10.1.2.6. Let f = (w, v, u) : (Y ′
j′−→ X ′

i′−→ P′)/S → (Y
j−→ X

i−→ P)/S be a morphism of
S-frames. With notation 10.1.2.4.1, we get a functor f∗K , from the category of j†O]X[P -modules to that
of j′†O]X′[P′

-modules which is defined for any j†O]X[P-module E by setting

f∗KE := j′†v∗KE. (10.1.2.6.1)

The functor f∗K is the (overconvergent) pullback by the morphism of frames f . By abuse of notation
(when v and w are understood), we can write u†E instead of f∗KE.

10.1.3 Sheaves of section supported on a tube
Proposition 10.1.3.1. Given a frame Y ⊂ X ⊂ P. Let V be a strict neighbourhood of ]Y [ in ]X[
and E a coherent OV -module. Write u :]Y [→ V for the immersion. Then the canonical homomorphism
j†V E → u∗u

∗E is injective.

Proof. Exercice.

Definition 10.1.3.2. Given a frame Y ⊂ X ⊂ P, put Z = X \ Y . Let V be a strict neighbourhood of
]Y [ in ]X[, A a sheaf of rings on V and E an A-module. Define a subsheaf Γ†]Z[P

E of E by the following
exact sequence

0 −→ Γ†]Z[P
(E) −→ E −→ j†V E −→ 0. (10.1.3.2.1)

That is Γ†]Z[P
E = Ker(E → j†V E) and we say Γ†]Z[P

E is the sheaf of sections of E with support in ]Z[.

We can simply write Γ†]Z[ instead of Γ†]Z[P
.

It follows from Proposition 10.1.2.5.a.iii) that the functor Γ†]Z[ is exact.

Lemma 10.1.3.3. Let Y1, Y2 be two open subschemes of X with complements Z1, Z2 and let Y = Y1∪Y2,
Z = Z1 ∩ Z2, Y ′ = Y1 ∩ Y2, Z ′ = Z1 ∪ Z2, j1, j2, j′ the immersions of Y1, Y2, Y

′ in X. Let V be a strict
neighbourhood of ]Y [ (so also of ]Y1[, ]Y2[ , ]Y ′[ ) in ]X[, A a sheaf of rings on V . Then there exists
isomorphisms of functors:
(i) j†1 ◦ j

†
2 = j†2 ◦ j

†
1 = j′

†

(ii) Γ†]Z1[ ◦ Γ†]Z2[ = Γ†]Z2[ ◦ Γ†]Z1[ = Γ†]Z[.

Proof. Exercice.

Proposition 10.1.3.4. Given a frame Y ⊂ X ⊂ P. Let Y := {Yi}i=1,...,n be a finite open covering of
Y . Let ji1···ik : Yi1 ∩ · · · ∩ Yik → Y be the inclusions. Let V be a strict neighbourhood of ]Y [, A a sheaf
of rings on V and E an A-module. Then we have the exact sequence

0→ j†E →
∏
i

j†iE →
∏
i1<ij

j†iiijE → · · · → j†1···nE → 0 (10.1.3.4.1)

Proof. Put Z = X \Y . As the sequence is null on ]Z[, it suffices to prove the exactness for the restriction
to V . We shall keep the same notation j†ii···ikE for its restriction to V . The proof will be by induction
on n.

Put Y ′ = Y2 ∪ · · · ∪ Yn, Z ′ = X − Y ′, j′ : Y ′ → X. Let K• be the complex

0→ E →
∏
1<i

j†iE → · · · → j†2···nE → 0.

By induction hypothesis and proposition 10.1.2.5.(a),K• is a resolution of Γ†]Z′[E. According to Definition
10.1.3.2 we have an exact sequence of complexes

0→ Γ†]Z1[K
• → K• → j†1K

• → 0.
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By 10.1.3.3 (i) we identify the complex j†1K
• with the complex

0→ j†1E →
∏
1<i

j†1iE → · · · → j†1···nE → 0

and so we identify the complex associated to the double complex K• → j†1K
• with the complex

0→ E →
∏
i

j†iE → · · · → j†1···nE → 0.

By 10.1.3.2 Γ†]Z1[K
• is a resolution of Γ†]Z1[(Γ

†
]Z′[E) which is Γ†]Z[E ( 10.1.3.3 (ii)). Thus the sequence

0→ Γ†]Z[E → E →
∏
i

j†iE → · · · → j†1···nE → 0

is exact and the proof is completed.

Notation 10.1.3.5. With notation 10.1.3.4, we denote by Č†•(X,Y, E) the unordered (by default)
version of the Cech complex

· · · → 0→
n∏
i=1

j†iE →
∏

1≤i0,i1≤n
j†i0i1E → · · · →

∏
1≤i0,...,ih≤n

j†i1...inE → . . . , (10.1.3.5.1)

whose 0th term is
∏n
i=1 j

†
iE. The exactness of 10.1.3.4.1 (i.e. of the ordered version) means that

Č†•(X,Y, E) is a resolution of j†Y E.

Proposition 10.1.3.6. Given a frame Y ⊂ X ⊂ P. Let E,F be coherent j†O]X[-modules.
(i) There exists a strict neighbourhood V of ]Y [ and coherent OV -modules E ,F such that E = j†E,
F = j†F.
(ii) We have a natural isomorphism

lim−→
V ′

HomOV (E|V ′ ,F|V ′)→ Homj†O]Y [
(E,F )

where V ′ runs through the strict neighbourhoods of ]Y [ contained in V .

Proof. Exercice.

10.1.4 Resolution of j† by Čech complexes
Let X be a smooth V-formal scheme, E be an abelian sheaf on XK , X = {Xi}i∈I be a finite open covering
of X. Let Y be an open subscheme of X and j : Y ↪→ X be the open immersion. Let Yi = {Yij : j ∈ Ji}
be a finite open covering of Yi = Y ∩ Xi.

Fix h, k ∈ N. For i = (i0, . . . , ih) ∈ Ih+1, put Xi = Xi0 ∩ · · · ∩ Xih and ui : Xi ↪→ X. For
j = (j0, . . . , jh) ∈ Ji0 × · · · × Jih , put Yij = Yi0j0 ∩ · · · ∩ Yihjh . Then Yi = {Yij}j∈Ji0×···×Jih is a finite
open covering of Yi = Y ∩ Xi. The intersection of k + 1-opens of the covering Yi will be denoted by

Yij = ∩kα=0 ∩hβ=0 Yiβjαβ ,

where j = (j
0
, · · · , j

k
) and j

α
= (jα0, . . . , jαh) ∈ Ji0 × · · · × Jih for α = 0, . . . , h. We denote the

corresponding open immersions by

ji : Yi ↪→ Xi, jij : Yij ↪→ Xi.

Set Ei := u∗i (E). According to notation 10.1.3.5, we get a resolution for j†iEi by the Čech complex
on XiK

· · · → 0→
∏
i

j†ijEi →
∏
j
0
j
1

j†i(j
0
j
1
)Ei → · · · →

∏
j

j†ijEi → · · ·
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which is denoted by Č†•(Xi,Yi, Ei) or simply Č†•(Yi, Ei).
If i = (i0, . . . , ih) and iα̌ = (i0, . . . , ǐα, . . . , ih), then we can define a morphism of complexes

ρ•i iα̌ : ui
α̌
K∗Č

†•(Xi
α̌
,Yi

α̌
, Ei

α̌
)→ uiK∗Č

†•(Xi,Yi, Ei)

extending the morphism uiα̌K∗Eiα̌ → uiK∗Ei. For any j = (j
0
, · · · , j

h
), we put j

α̌
= (j

0α̌
, · · · , j

hα̌
). For

any section s of uiα̌K∗Č
†•(Xiα̌ ,Yiα̌ , Eiα̌), we put

ρ•i iα̌(s)ij := ρj j
α̌

(si
α̌
j
α̌

)

where ρj j
α̌

comes from the immersion Xi ↪→ Xi
α̌

which carries Yij into Yi
α̌
j
α̌

. As i varies, these

morphisms give rise to a bicomplex Č†••(X, (Yi)i, E), which has the following term in degree (h, k) -

Č†hk(X, (Yi)i, E) =
∏

i=(i0,...,ih)

uiK∗(
∏

j=(j
0
,··· ,j

h
)

j†ijEi).

Examples 10.1.4.1. Let us give the two extreme examples. On one hand, when Ji has only one element
for any i ∈ I, then Č†••(X, (Yi)i∈I , E) is equal to the usual topological Check complex Č†•(X, E) given
by Č†h(X, E) :=

∏
i∈I1+h uiK∗u

∗
iK(E). On the other hand, when I = {i} has only one element, the

complex Č†•(X, (Yi)i∈I , E) is equal to the complex Č†•(X,Yi, E).

Proposition 10.1.4.2. Let E be an abelian sheaf on XK . The simple complex associated to the Čech
bicomplex Č†••(X, (Yi)i, E) is a resolution of j†E.

Proof. Consider the complex j†E → j†E → j†E → · · · in which the differential in even degree is 0
and in odd degree is Idj†E . A morphism from this complex to the complex Č†0∗(X, (Yi)i, E) is given
by the canonical morphisms j†E → Č†0k(X, (Yi)i, E) which are defined by the family of morphisms
j†E → uiK∗j

†
ijEi. Thus we only need to show that

Č†0k(X, (Yi)i, E)→ Č†1k(X, (Yi)i, E)→ · · · (10.1.4.2.1)

is a resolution of j†E.
As the XiK

uiK
↪→ XK form an admissible covering of XK , it suffices to prove the assertion on XiK . We

have u∗iK(j†E) = j†iEi and the functor Č†•(Yi,−) applied to the complex u∗iKČ
†•k(X, (Yi)i, E) gives a

bicomplex Č†•(Yi, u∗iK(Č†•k(X, (Yi)i, E))). By Proposition 10.1.3.4, for any sheaf F on XiK , Č†•(Yi, F )

is a resolution of j†iF . The simple complex associated to the bicomplex Č†•(Yi, u∗iK(Č†•k(X, (Yi)i, E)))

is quasi-isomorphic to j†i u
∗
iKČ

†•k(X, (Yi)i, E). Similarly, the complex Č†•(Yi, j
†
iEi) is a resolution of

j†i j
†
iEi. By Proposition 10.1.2.5.(a), for any j†iOXiK - module F , we have F ∼−→ j†iF and so it remains

to prove the following assertions:
(a) for any i, h, k, we have

u∗iKČ
†hk(X, (Yi)i, E)

∼−→ j†i u
∗
iKČ

†hk(X, (Yi)i, E)

(b) for all j = (j0, . . . , jk) the complex

j†iju
∗
iKČ

†0k(X, (Yi)i, E)→ j†iju
∗
iKČ

†1k(X, (Yi)i, E)→ · · ·

is a resolution of j†ijj
†
iEi.

Let i = (i0, . . . , ih), i′ = (i, i0, . . . , ih), u′iK : Xi′K = XiK ∩ XiK → XiK the inclusion, u′iK : Xi′K ↪→
XiK , Y ′ij = XiK ∩ Yij , and j′ij : Y ′ij → Xi′K . Then, it follows from 10.1.2.5.3 that we get the
isomorphisms

j†i u
∗
iKČ

†hk(X, (Yi)i, E) '
∏

i=(i0,...,ih)

∏
j=(j

0
,··· ,j

h
)

j†i u
′
iK∗u

′∗
iKj
†
ijEi)

11 '
∏

i=(i0,...,ih)

∏
j=(j

0
,··· ,j

h
)

j†i u
′
iK∗j

′†
ijEi '

∏
i=(i0,...,ih)

∏
j=(j

0
,··· ,j

h
)

u′iK∗j
′†
ijEi ' u∗iKČ†hk(X, (Yi)i, E).

646



This implies the assertion (a) holds.
To prove (b) we construct a homotopy on the complex

0→ j†ijj
†
iEi → j†iju

∗
iKČ

†0k(X, (Yi)i, E)→ j†iju
∗
iKČ

†1k(X, (Yi)i, E)→ · · ·

which is going to be a endomorphism κ on j†iju
∗
iK(
∏
i=(i0,...,ih) uiK∗(

∏
j=(j

0
,··· ,j

h
) j
†
ijEi)).

Claim: For any j ∈ (Ji0 × · · · × Jih)k+1, the next morphism is an isomorphism

j†iju
∗
iKuiK∗j

†
ijEi −→ j†iju

∗
iKui′K∗j

†
i′j′Ei′

First we have
j†iju

∗
iKuiK∗j

†
ijEi

∼−→ j†iju
′
iK∗u

′∗
iKj
†
ijEi

∼−→ j†iju
′
iK∗j

′†
ijEi′ ,

and also
j†iju

∗
iKui′K∗j

†
i′j′Ei′

∼−→ j†iju
′
iK∗j

†
i′j′Ei′ .

As Yi′j′ = Y ′ij ∩ Y ′ij , we get j†i′j′ ' j′
†
ijj
′†
ij . Using (10.1.2.5.4) we get the isomorphisms

j†iju
′
iK∗j

†
i′j′Ei′

∼−→ j†iju
′
iK∗j

′†
ijj
′†
ijEi′

∼−→ j†iju
′
iK∗j

′†
ijEi′

This proves the claim. Hence we can define for s ∈ j†ijČ†h+1 k(X, (Yi)i, E), κ(s)ij := si′j′ . It remains to
check that κ is a well-defined homotopy, which is easy.

10.2 Isocrystals

10.2.1 Stratification, integrable connection and left D-module structure
Notation 10.2.1.1 (nth infinitesimal neighborhood). Let p : V → SK be a morphism of rigid varieties.
Let δ : V ↪→ V ×SK V be the diagonal embedding. For any n ∈ N, write V (n) for the n-th infinitesimal
neighborhood of V in V ×SK V so that we have the factorisation V → V (n) → V ×SK V and projections
p

(n)
1 , p

(n)
2 : V (n) → V . Remark that V (n) depends a priori on the base SK but since the base is fixed

we do not care in the notation. For any n ∈ N, write V (n)
2 for the n-th infinitesimal neighborhood of

V in V ×SK V ×SK V , and pij : V
(n)
2 → V (n) is the homomorphism corresponding to the projection of

V ×SK V ×SK V to V ×SK V along the i and j factors.

10.2.1.2 (Stratification, integrable connection and D-module). Let p : V → SK be a smooth morphism
of rigid varieties . We denote by DV/SK (or simply DV is there is no doubt on the base), the sheaf of
differential operators on V/SK . Let E be an OV -module.

(a) A relative to V/SK stratification on E is a compatible sequence of linear isomorphisms called the
Taylor isomorphisms

{ε(n) : p
(n)∗
2 E ∼= p

(n)∗
1 E}n∈N

on V (n) with ε(0) = idE that satisfy the following cocycle condition: for all n ∈ N, we have

p∗12(ε(n)) ◦ p∗23(ε(n)) = p∗13(ε(n)).

(b) A relative to V/SK connection on E is an OSK -linear map

∇ : E → E ⊗OV Ω1
V/SK

satisfying the Leibniz rule. Say it is an integrable connection if ∇2 = 0.

Similarly to 2.3.2.6 and 2.1.1.5, the following data are equivalent:

(i) a relative to V/SK stratification on E
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(ii) a relative to V/SK integrable connection on E ;

(iii) a left DV/SK -module structure on E which extends its structure of OV -module.

Notation 10.2.1.3 (MIC(V/SK)). A ∇-module on V/SK is defined to be a coherent OV -module E
on V , equipped with a relative to SK integrable connection. Denote by MIC(V/SK) the category of
∇-module on V/SK .

10.2.1.4 (MIC(Y,X,P/S)). Let (Y
j
↪→ X ↪→ P) be a weakly smooth S-frame. Let E be coherent

j†O]X[P -module. A “relative to (Y,X,P/S) integrable connection” on E is the data of

(i) a strict neighbourhood V of ]Y [P in ]X[P , a coherent OV -module E such that V/SK is smooth,
E = j†Y E ,

(ii) an integrable connection ∇ : E → E ⊗OV Ω1
V/SK

.

This is equivalent to saying that E has a structure of left j†DV/SK -module which extends its structure
of j†O]X[P -module. The category of such modules E will be denoted by MIC(Y,X,P/S).

10.2.2 Overconvergent stratification, overconvergent connections
Definition 10.2.2.1. Let (Y ↪→ X ↪→ P) be a weakly smooth S-frame and Z the complement of Y in
X. Let V be a strict neighborhood of ]Y [P in ]X[P which is smooth over SK . With notation 10.2.1.1,
for any n ∈ N, V ′′ := (V ×SK V )∩]X[P×SP is a strict neighborhood of ]Y [P×SP in ]X[P×SP, and
V ′′∩]X[

(n)
P = V (n) (see [LS07, 4.3.2]). Let E be an OV -module.

(a) An overconvergent (along Z) stratification on E is a relative to V/SK stratification {ε(n)}n∈N on E
for which there exists a strict neighbourhood

V ′ ⊂ V ′′ = (V ×SK V )∩]X[P×SP

of ]Y [P×SP in ]X[P×SP and an isomorphism

ε : (p∗2E)|V ′ ∼= (p∗1E)|V ′

such that the Taylor isomorphisms of E is induced on Un := V ′∩]X[
(n)
P by ε for each n, i.e., ε(n)|Un =

ε|Un . When X = Y we say the stratification is “convergent”.

(b) An overconvergent (along Z) connection on E is a relative to V/SK integrable connection ∇ : E →
E ⊗OV Ω1

V/SK
whose associated stratification (see 10.2.1.2) is overconvergent along Z. When X = Y

we say the connection is “convergent”.

Definition 10.2.2.2. A “local frame” on S is a (weakly smooth) affine S-frame (Y ⊂ X ⊂ P) endowed
with some elements t1, . . . , tm ∈ Γ(P,OP) which induce étale coordinates on U/S, where U is an open
of P containing Y . We will simply say that t1, . . . , tm is a set of coordinates on the local frame. The
local frame is said to be “strictly local” if the closed complement Z of Y in X is a hypersurface.

10.2.2.3. Any weakly smooth S-frame (Y ⊂ X ⊂ P) has an open covering

Yi
� � //
� _

��

Xi
� � //
� _

��

Pi� _

��
Y �
� // X �

� // P

by strictly local frame (see [LS07, 4.3.8]).

Theorem 10.2.2.4. Let (Y ⊂ X ⊂ P) be a strictly local S-frame with coordinates t1, . . . , tm (see
definition 10.2.2.2) and corresponding derivations ∂1, . . . , ∂m. Let Z be the closed complement of Y in
X and λ, η < 1. We write

V λ :=]X[P\]Z[Pλ, V λη := [X]Pη ∩ V λ.
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Let V be a smooth strict neighbourhood of ]Y [P in ]X[P and E a coherent OV -module with an integrable
connection ∇.

Then ∇ is overconvergent if and only if for each η < 1, there exists η ≤ δ < λ0 < 1 such that for all
λ0 ≤ λ < 1, we have

∀ s ∈ Γ(V λδ , E), ‖∂[k](s)‖η|k| → 0

with ‖ · ‖ a Banach norm on Γ(V λδ , E).
If t1, . . . , tm are actually étale in a neighborhood of X (i.e. are étale coordinates on U/S, where U is

an open of P containing X), we may choose δ = η.

Proof. See a proof at [LS07, Theorem 4.3.9].

Corollary 10.2.2.5. Let P be smooth affine formal S-scheme with étale coordinates in the neighbourhood
of a closed subvariety X of P . An integrable connection ∇ on a coherent O]X[P-module E is convergent
if and only if for each η < 1, we have

∀ s ∈ Γ([X]Pη, E), ‖∂[k](s)‖η|k| → 0, as |k| → ∞

Proof. This is simply the particular case Y = X.

10.2.2.6 (MIC†(Y,X,P/SK)). Let (Y
j
↪→ X ↪→ P) be a weakly smooth S-frame. Let E be a coherent

j†O]X[P -module.

(a) A “(relative to (Y,X,P/S)) overconvergent stratification” on E is an isomorphism of j†O]X[P×SP
-

modules ε : p∗2E
∼−→ p∗1E such that the cocycle condition p∗13(ε) = p∗12(ε) ◦ p∗23(ε) holds, where

pi : ]X[P×SP→]X[P is the ith projection and pij : ]X[P×SP×SP→]X[P×SP is the projection along
the i and j factors.

(b) A “(relative to (Y,X,P/S)) overconvergent connection” on E is the data of

(i) a strict neighborhood V of ]Y [P in ]X[P , a coherent OV -module E such that V/SK is smooth,
E = j†Y E ,

(ii) an overconvergent connection ∇ : E → E ⊗OV Ω1
V/SK

.

We have a canonical bijection between the data of an overconvergent stratification on E and of an over-
convergent connexion on E (this is almost by definition 10.2.2.1). We denoted by MIC†(Y,X,P/SK)
the category of coherent j†O]X[P -module endowed with a (relative to (Y,X,P/S)) overconvergent con-
nection.

Notation 10.2.2.7. Let (Y
j
↪→ X ↪→ P) be a weakly smooth Spf V-frame. We write MIC†(Y,X,P/K)

instead of MIC†(Y,X,P/(Spf V)K). Then (similarly to 1.1.4.5) any object of MIC†(Y,X,P/K) is a
locally free j†O]X[P -module (finite type). Beware this is not true for more general S. Since the category
MIC†(Y,X,P/K) is independent (up to canonical isomorphism) on the weakly smooth Spf V-frame

enclosing Y
j
↪→ X, then we can simply MIC†(Y,X/K).

10.2.2.8. Let f = (a, b, u) : (Y ′, X ′,P′) → (Y,X,P) be a morphism of weakly smooth S-frames. The
functor 10.1.2.6.1 induces the functor f∗K : MIC†(Y,X,P/SK)→ MIC†(Y ′, X ′,P′/SK), the pullback by
f , which is defined for an object EP ∈ MIC†(Y,X,P/SK) by setting

f∗K(EP) := j′†O]X′[P′
⊗v−1

K
j†O]X[P

v−1
K EP, (10.2.2.8.1)

where vK : ]X ′[P′→]X[P is the morphism of ringed spaces induced by f . When X ′ = u−1(X) and
Y ′ = u−1(Y ), the functor f∗K can simply be denoted by u∗K .
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10.2.3 Isocrystals
Definition 10.2.3.1. According to [LS07, 7.1.1], a finitely presented overconvergent isocrystal E on an
S-frame (Y ↪→ X ↪→ P) consists of the following data:

(i) a family of coherent j†O]X′[P′
-modules EP′ for each morphism of S-frames

Y ′
� � //

��

X ′
� � //

��

P′

��
Y �
� // X �

� // P

(ii) a family of isomorphisms
ϕu : u†EP′

∼= EP′′ (10.2.3.1.1)

for each commutative diagram

Y ′

��

� � // X ′

��

� � // P′

��

Y ′′

  

f

>>

� � // X ′′

!!

g

>>

� � // P′′

u

>>

��

Y �
� // X

((
S

subject to the cocyle condition
ϕv◦u = ϕv ◦ v∗ϕu. (10.2.3.1.2)

We call EP′the realization of E on (Y ′ ↪→ X ′ ↪→ P′/S).

A morphism of overconvergent isocrystals is a family of compatible morphisms of j†O]X′[P -modules.
When X = Y we say E is a convergent isocrystal.
The category of finitely presented overconvergent isocrystal on (Y ↪→ X ↪→ P) is denoted by

Isoc†(Y,X,P/K).

Proposition 10.2.3.2. If (Y ⊂ X ⊂ P) is a weakly smooth S-frame, then the realisation functor on
the frame (Y ⊂ X ⊂ P)/S induces an equivalence of categories

real(Y⊂X⊂P)/S : Isoc†(Y,X,P/SK) ∼= MIC†(Y,X,P/SK). (10.2.3.2.1)

We can simply write this functor realP.

Proof. This realization functor is constructed as follows. Let E ∈ Isoc†(Y,X,P/SK) and EP :=
real(Y⊂X⊂P)S(E). Let q0, q1 : P ×S P → P be the left and the right projections. This yields the mor-
phisms of frames p0 := (id, id, q0), p1 := (id, id, q1) : (Y,X,P×S P)→ (Y,X,P). We denote by EP×SP

the realization of E on the frame (Y,X,P×SP). We get the isomorphisms φp0 : p∗0EP
∼−→ EP×SP and

φp1 : p∗1EP
∼−→ EP×SP (see notation 10.2.3.1.1). This yields the Taylor isomorphism of EP

ε = φ−1
p0
◦ φp1

: p∗1EP
∼−→ p∗0EP, (10.2.3.2.2)

which corresponds to the overconvergent stratification on EP. The check that this is an equivalence is
left to the reader.

10.2.3.3. Let f = (a, b, u) : (Y ′, X ′,P′) → (Y,X,P) be a morphism of weakly smooth S-frames. This
yields a functor

f∗ : Isoc†(Y,X,P/SK)→ Isoc†(Y ′, X ′,P′/SK). (10.2.3.3.1)

The functor realP of 10.2.3.2.1 commutes with both pullbacks by f (see 10.2.2.8.1): for any E ∈
Isoc†(Y,X,P/SK) we have the natural isomorphism f∗K ◦ realP(E)

∼−→ realP′ ◦ f∗(E) which can also
be written f∗K(EP)

∼−→ f∗(E)P′ .
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10.2.4 Glueing data
10.2.4.1. Let f = (a, b, u) and g = (a, b, v) be two morphisms of weakly smooth S-frames of the form
(Y ′, X ′,P′)→ (Y,X,P).

(a) The morphism (u, v) : P′ → P×SP induce the morphism of frames δu,v = (b, a, (u, v)) : (Y ′, X ′,P′)→
(Y,X,P ×S P). We get the morphisms of frames f = p0 ◦ δu,v and g = p1 ◦ δu,v. Let EP ∈
MIC†(Y,X,P/K). From the isomorphism ε : p∗1EP

∼−→ p∗0EP (see the construction at 10.2.3.2.2),
we get the glueing isomorphism

εu,v := δ∗u,v(ε) : g∗EP
∼−→ f∗EP. (10.2.4.1.1)

Using the transitivity of the isomorphism φ (see 10.2.3.1.2), we have the equality εu,v := δ∗u,v(ε) =

φ−1
f ◦ φg. In particular, εu,u = id.

(b) Let w : P′ → P be a third morphism of formal schemes over S such that we get the morphism of
smooth S-frames h := (b, a, w) : (Y ′, X ′,P′) → (Y,X,P). We have the transitive formula εu,w =
εu, v ◦ εv, w.

(c) Let f ′ = (a′, b′, u′) and g′ = (a′, b′, v′) be two morphisms of weakly smooth S-frames of the form
(Y ′′, X ′′,P′′)→ (Y ′, X ′,P′). We check the formulas εu◦u′,v◦u′ = f ′∗K ◦εu,v and εu′,v′ ◦f∗K = εu◦u′,u◦v′ .

10.2.4.2. We suppose S = Spf V. Let (Y ↪→ X ↪→ P) be an S-frame and Z the complement of Y in X.
We suppose P/S and X/S are smooth and P is separated. Let (Pα)α∈Λ be an open covering of P. We
set Pαβ := Pα∩Pβ , Pαβγ := Pα∩Pβ∩Pγ , Xα := X∩Pα, Xαβ := Xα∩Xβ and Xαβγ := Xα∩Xβ∩Xγ .
We denote by Yα := Xα ∩ Y , Yαβ := Yα ∩ Yβ , Yαβγ := Yα ∩ Yβ ∩ Yγ . jα : Yα ↪→ Xα, jαβ : Yαβ ↪→ Xαβ

and jαβγ : Yαβγ ↪→ Xαβγ the canonical open immersions. We suppose that for every α ∈ Λ, Xα is affine,
(for instance when the covering (Pα)α∈Λ is affine).

For any triple (α, β, γ) ∈ Λ3, fix Xα (resp. Xαβ , Xαβγ) some smooth formal S-schemes lifting Xα

(resp. Xαβ , Xαβγ), p
αβ
1 : Xαβ → Xα (resp. pαβ2 : Xαβ → Xβ) some flat lifting of Xαβ → Xα (resp.

Xαβ → Xβ).
Similarly, for any (α, β, γ) ∈ Λ3, fix some lifting pαβγ12 : Xαβγ → Xαβ , p

αβγ
23 : Xαβγ → Xβγ , p

αβγ
13 : Xαβγ →

Xαγ , p
αβγ
1 : Xαβγ → Xα, p

αβγ
2 : Xαβγ → Xβ , p

αβγ
3 : Xαβγ → Xγ , uα : Xα ↪→ Pα, uαβ : Xαβ ↪→ Pαβ and

uαβγ : Xαβγ ↪→ Pαβγ .

Definition 10.2.4.3. With notation 10.2.4.2, we define the category MIC†(Y, (Xα)α∈Λ/K) as follows.

- An object of MIC†(Y, (Xα)α∈Λ/K) is a family (Eα)α∈Λ of objects Eα of MIC†((Yα, Xα,Xα)/K)
together with a glueing data, i.e., a collection of isomorphisms in MIC†((Yαβ , Xαβ ,Xαβ)/K) of the
form ηαβ pαβ∗2K (Eβ)

∼−→ pαβ∗1K (Eα) satisfying the cocycle condition: ηαβγ13 = ηαβγ12 ◦ ηαβγ23 , where
ηαβγ12 , ηαβγ23 and ηαβγ13 are defined so that the following diagrams

pαβγ∗12K pαβ∗2K (Eβ)
ε
∼
//

pαβγ∗
12K

(ηαβ)∼ ��

pαβγ∗2K (Eβ)
ηαβγ12��

pαβγ∗12K pαβ∗1K (Eα)
ε
∼
// pαβγ∗1K (Eα),

pαβγ∗23K pβγ∗2K (Eγ)
ε
∼
//

pαβγ∗
23K

(ηβγ)∼ ��

pαβγ∗3K (Eγ)
ηαβγ23��

pαβγ∗23K pβγ∗1K (Eβ)
ε
∼
// pαβγ∗2K (Eβ),

pαβγ∗13K pαγ∗2K (Eγ)
ε
∼
//

pαβγ∗
13K

(ηαγ)∼ ��

pαβγ∗3K (Eγ)
ηαβγ13��

pαβγ∗13K pαγ∗1K (Eα)
ε
∼
// pαβγ∗1K (Eα),

(10.2.4.3.1)
where the isomorphisms ε are those of the form 10.2.4.1.1, are commutative.

- A morphism f = (fα)α∈Λ: ((Eα)α∈Λ, (ηαβ)α,β∈Λ)→ ((E′α)α∈Λ, (η′αβ)α,β∈Λ) of MIC†(Y, (Xα)α∈Λ/K)
is by definition a family of morphisms fα : Eα → E′α commuting with glueing data.

Proposition 10.2.4.4. With notation 10.2.4.3, there exists a canonical equivalence of categories

u∗0K : MIC†(Y,X,P/K) ∼= MIC†(Y, (Xα)α∈Λ/K). (10.2.4.4.1)

Proof. 1) Let φα := (id, id, uα) : (Yα, Xα,Xα) → (Yα, Xα,Pα) be the proper morphism of frames. We
remark that φα is the composition of the morphism of frames γuα : (Yα, Xα,Xα)→ (Yα, Xα,Xα ×S Pα)
induced by the graph of uα and of p2 : (Yα, Xα,Xα ×S Pα) → (Yα, Xα,Pα) induced by the second
projection. Since p2 is proper and weakly smooth (see Definitions 10.1.1.4), then following Theorem
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[LS07, 7.1.8] we get the equivalence of categories p∗2K : MIC†((Yα, Xα,Pα)/K) ∼= MIC†((Yα, Xα,Xα ×S

Pα)/K). Since γuα has a retraction (the first projection), then using Corollary [LS07, 7.1.7] we get that
γ∗uαK is also an equivalence of categories. Hence, by composition, so is φ∗αK : MIC†((Yα, Xα,Pα)/K) ∼=
MIC†((Yα, Xα,Xα)/K).

1’) Let φαβ := (id, id, uαβ) : (Yαβ , Xαβ ,Xαβ) → (Yαβ , Xαβ ,Pαβ) be the morphism of frames. Using
the same arguments than in 1), we get the equivalence of categories φ∗αβK : MIC†((Yαβ , Xαβ ,Pαβ)/K) ∼=
MIC†((Yαβ , Xαβ ,Xαβ)/K).

2) Let EP ∈ MIC†(Y,X,P/K). Using the properties of the glueing isomorphisms 10.2.4.1.1, we get
canonically on the object (φ∗αK(EP|]Xα[Pα

))α∈Λ a glueing data making it an object of MIC†(Y, (Xα)α∈Λ/K).
The functoriality is obvious and this yields the canonical functor u∗0K : MIC†(Y,X,P/K) ∼= MIC†(Y, (Xα)α∈Λ/K).
Since φ∗αK is fully faithful and φ∗αβK is faithful, we easily check that the functor u∗0K is fully faithful.
The proof of the essential surjectivity is left as an exercise for the reader.

10.3 Log-isocrystals

10.3.1 Shiho’s convergent log-isocrystals
10.3.1.1. Let (X,M) be a log scheme of finite type over k. This yields (X,M) → Spec k ↪→ Spf V.1
Let τ be the Zariski or the etale topology. We denote by Iconv,τ ((X,M)/ Spf V) the category of
isocrystals on the log convergent site ((X,M)/ Spf V)conv,τ (see [Shi02, Definition 2.1.5]. We denote
by Iconv((X,M)/ Spf V) the category of isocrystals on the log convergent site ((X,M)/Spf V)conv de-
fined at [Shi00]. Following [Shi02, 2.1.7], we have the equivalences of categories

Iconv((X,M)/ Spf V) ∼= Iconv,et((X,M)/ Spf V).

10.3.1.2 (Logarithmic tube). Let (X,M) be a fine log scheme over k, and let i : (X,M) ↪→ (P,L) be a
closed immersion into a noetherian fine log formal scheme (P,L) over Spf V and Pk is of finite type over
k. Shiho defines the logarithmic tube ](X,M)[log

(P,L) as follows.

(a) Assume that there exists a factorization of i of the form

(X,M)
i′−→ (P′,L′)

f ′−→ (P,L) (10.3.1.2.1)

in which i′ is an exact closed immersion and f is a formally log etale morphism. Let Q be the comple-
tion of P′ along X. Then following [Shi02, Lemma 2.2.2], the rigid analytic space QK is independent
of the choice of the factorization, up to canonical isomorphism. Denote QK by ](X,M)[log

(P,L).

(b) Following [Shi02, Remark 2.2.6], since our log structures are of Zariski type, then Zariski locally in
P, there exists a factorization of i of the form of 10.3.1.2.1. A. Shiho checked at [Shi02, Proposition
2.2.4] that the tube ](X,M)[log

(P,L) admits a natural sheafification for the Zariski topology, i.e. we get

by gluing the construction of ](X,M)[log
(P,L).

(c) By abuse of notation, we might simply write ]X[log
P instead of ](X,M)[(P,L).

10.3.1.3. Suppose given the following commutative diagram

(X,M)
i //

f

��

(P,L)

g

��
Spec k

ι // Spf V

(10.3.1.3.1)

where the bottom row has trivial log structure, (P,L) is a fine log formal scheme over Spf V, its structural
morphism g is formally log smooth, i is a (non necessarily exact) closed immersion. For an integer j, let

1We might add logarithmic structures on V but we will not need it here.
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(P(j),L(j)) denote the (j+1)-th fibre product of (P,L) over Spf V, and let i(j) : (X,M)→ (P(j),L(j))
be the locally closed immersion induced by i (and the diagonal P→ P(j)). Moreover, the projections

p′i : (P(1),L(1))→ (P,L) (i = 1, 2),

p′ij : (P(2),L(2))→ (P(1),L(1)) (1 ≤ i < j ≤ 3),

and the diagonal morphism

∆′ : (P,L)→ (P(1),L(1)),

induce the morphisms of rigid analytic spaces

pi : ]X[log
P(1)→]X[log

P (i = 1, 2),

pij : ]X[log
P(2)→]X[log

P(1) (1 ≤ i < j ≤ 3),

∆: ]X[log
P →]X[log

P(1).

Following [Shi02, 2.2.6], we denote by Str′′((X,M) ↪→ (P,L)/ Spf V) the category of pairs (E, ε), where
E is a coherent O]X[log

P
-module and ε : p∗2(E)

∼−→ p∗1(E) is an isomorphism of O]X[log

P(1)

-modules such that

∆∗(ε) = idE , and the cocycle condition p∗12(E) ◦ p∗23(E) = p∗13(E) holds on ]X[log
P(2). Following [Shi02,

2.2.7], we have the canonical and functorial equivalence of categories

Iconv((X,M)/ Spf V) ∼= Str′′((X,M) ↪→ (P,L)/ Spf V).

In particular, the category Str′′((X,M) ↪→ (P,L)/ Spf V) does not depend, up to canonical equivalence
of categories, on the choice of the diagram 10.3.1.3.1 factorising (X,M)→ Spec k ↪→ Spf V. The objects
of Str′′((X,M) ↪→ (P,L)/ Spf V) are called “convergent log-isocrystals on (X,M)/Spf V with respect to
i” or “convergent log-isocrystals on (X,M) ↪→ (P,L)/ Spf V”.

If (E, ε) is a pair of Str′′((X,M) ↪→ (P,L)/ Spf V) such that E is a locally free O]X[log
P
-module, then

(E, ε) is called a “locally free convergent log-isocrystal on (X,M)/ Spf V with respect to i” or “locally
free convergent log-isocrystal on (X,M) ↪→ (P,L)/ Spf V”. The corresponding isocrystal on the log
convergent site ((X,M)/ Spf V)conv,τ will be said to be “locally free”. Beware that following Kedlaya’s
terminology a convergent log-isocrystal is by definition locally free (see [Ked07, 6.1.7]), but we prefer to
add “locally free” to remember this property.

10.3.2 Log-isocrystal with overconvergent singularities: the lifted case of
relative strict normal crossing divisors

We will mostly need later, specially when working with the arithmetic D-module analogue, to deal with
convergent log-isocrystals in the specific context where the log structure is given by relative SNCD. We
will also need to add overconvergent singularities.

We will fix some notation: let g : X→ S be a smooth morphism of smooth V-formal schemes, of pure
relative dimension d, let Z be a relative X/S strict normal crossing divisor, let X∗ be the complement
of Z in X, let T be a divisor of X and Y the complement of T in X. Let X] = (X,M(Z)) be the
logarithmic formal V-scheme with the logarithmic structure associated to Z (see 4.5.2.14), j : Y ↪→ X
the open immersion and Y] the restriction of X] on Y.

10.3.2.1 (Specialization and log connections). We have the specialization morphism of locally ringed
spaces: sp: XK → X. For any coherent OXK -module E, the OX,Q-module sp∗E is coherent and the
adjunction morphism sp∗sp∗E → E is an isomorphism. Indeed, a coherent sheaf on an affinoid rigid
space (resp. an affine formal scheme) is determined by its global sections, and for any affine open
V = Spf A ⊂ X, sp−1(V) = SpmA ⊗K is affinoid. For any coherent OX,Q-module E , the OXK -module
sp∗E is coherent and the adjunction morphism E → sp∗sp

∗E is an isomorphism. Moreover, the functors
sp∗ and sp∗ induce quasi-inverse equivalences between locally free of finite type OXK -modules and locally
projective of finite type OX,Q-modules.

We get the locally free of finite type OXK -module Ω•
X]
K
/SK

:= sp∗(OX,Q ⊗OX
Ω•X]/S). From the

morphism dOX,Q : OX → Ω1
X]/S (see notation 4.7.1.5.(c)), we get the map d : OXK → Ω1

X]
K
/SK

.
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Let V be an open of XK . We set Ω1
V ]/SK

:= Ω1
X]
K
/SK
|V . Let E be an OV -module. A “logarithmic

connection relative to V ]/SK” on E is an additive map ∇ : E → E ⊗OV Ω1
V ]/SK

such that for any
open W ⊆ V , the map ∇W : E(W ) → (E ⊗OV Ω1

V ]/SK
)(W ) satisfies the condition : for x ∈ E(W ),

a ∈ OV (W ) we have
∇(ax) = a∇(x) + x⊗ d(a). (10.3.2.1.1)

When V = XK , the functors sp∗ and sp∗ induce quasi-inverse equivalences between coherent (resp.
locally free of finite type) OXK -modules together with a logarithmic connection relative to X]K/SK and
coherent (resp. locally projective of finite type) OX,Q-modules together with a logarithmic connection
relative to X]/S with coefficients in OX,Q (compare 4.7.1.8 and 10.3.2.1.1). Via this correspondance, we
say that a logarithmic connection relative to X]K/SK on E is integrable if the connexion on sp∗(E,∇)
is integrable.

10.3.2.2 (Integrable log-connections with overconvergent singularities). Let E be a coherent j†OXK -
module. A “logarithmic connection relative to X]K/SK with overconvergent singularities along T ” on
E is an additive map ∇ : E → E ⊗j†OXK

j†Ω1
X]
K
/SK

such that for any open V ⊆ XK , the map

∇V : E|V → E|V ⊗j†
V
OV j

†Ω1
X]
K
/SK
|V satisfies the condition : for x ∈ E(V ), b ∈ j†OXK (V ) we have

∇(bx) = b∇(x) + x⊗ d(b), (10.3.2.2.1)

where d : j†OXK → j†Ω1
X]
K
/SK

is the map induced by applying j† to d : OXK → Ω1
X]
K
/SK

The functors sp∗ and sp∗ induce exact quasi-inverse equivalences between coherent (resp. locally free
of finite type) j†OXK -modules together with a logarithmic connection relative to X]K/SK with over-
convergent singularities along T and coherent (resp. locally projective of finite type) OX(†T )Q-modules
together with a logarithmic connection relative to X]/S with coefficients in OX(†T )Q (use 10.1.2.3 and
compare 4.7.1.8 and 10.3.2.1.1). Via this correspondance, we say that a logarithmic connection relative to
X]K/SK with overconvergent singularities along T on E is integrable if so is the connexion on sp∗(E,∇).

Definition 10.3.2.3 (Convergent connections: local context). Suppose T is empty. Suppose S is affine,
X is affine and endowed with nice coordinates t1, . . . , tn (see definition 4.5.2.15) such that Z is the zero
locus of t1 . . . tm on X with m ≤ n and let us keep the notations of 4.5.2.18. The OXK -module Ω1

X]
K
/K

is free with the basis d log t1, . . . , d log tm, dtm+1, . . . , dtn.
Let (E,∇) be a coherent OXK -module E endowed with an integrable logarithmic connection ∇

relative to X]K/SK . The logarithmic connection ∇ : E → Ω1
X]
K
/SK
⊗O]X[X

E is “convergent” if it satisfies

the following convergence condition: for any η ∈ |K×|Q∩ ]0, 1[, for any e ∈ Γ(XK , E), we have

‖ ∂[k]
] e ‖ η

|k| → 0 for |k| → ∞, (10.3.2.3.1)

with ‖ · ‖ a Banach norm on Γ(XK , E).

Definition 10.3.2.4 (Overconvergent connections: local context). Suppose S is affine, X is affine and
endowed with nice coordinates t1, . . . , tn (see definition 4.5.2.15) such that Z is the zero locus of t1 . . . tm
on X with m ≤ n and let us keep the notations of 4.5.2.18. The OXK -module Ω1

X]
K
/K

is free with the
basis d log t1, . . . , d log tm, dtm+1, . . . , dtn. We suppose T is a divisor which is defined by f = 0 in X for
f ∈ Γ(X,OX). For any 0 ≤ λ < 1, set Yλ := {x ∈ XK | |f(x)| ≥ λ}.

Let (E,∇) be a coherent j†OXK -module E endowed with an integrable logarithmic connection ∇
relative to X]K/SK with overconvergent singularities along T . The logarithmic connection ∇ : E →
j†Ω1

X]
K
/SK

⊗j†O]X[X
E is “overconvergent” if there exist a strict neighborhood V of ]Y [X in ]X[X and a

coherent OV -module EV of finite type furnished with an integrable logarithmic connection ∇V : EV →
(Ω1

V ]/SK
)⊗OV EV such that j†(EV ,∇V ) = (E,∇), which satisfies the following overconvergence condition:

for any η ∈ |K×|Q∩ ]0, 1[, there exist 0 ≤ λη < 1 such that such that Yλη ⊂ V and such that for any
λη ≤ λ < 1 and each section e ∈ Γ(Yλ, E), we have

‖ ∂[k]
] e ‖ η

|k| → 0 for |k| → ∞, (10.3.2.4.1)
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with ‖ · ‖ a Banach norm on Γ(Yλ, E).
Remark that the convergent condition of 10.3.2.3 is simply the overconvergent condition in the case

where the divisor T is empty.

Definition 10.3.2.5. Let (E,∇) be a coherent j†OXK -module endowed with an integrable logarithmic
connection relative to X]K/K with overconvergent singularities along T . We say the logarithmic connec-
tion ∇ : E → j†Ω1

X]
K
/K
⊗j†O]X[X

E is “overconvergent over T ” if for any affine open S′ of S and X′ of X

such that X′ ⊂ f−1(S′) and T ∩X ′ is defined by the vanishing of a section of OX(X ′), the connection
∇|X′K is overconvergent in the sense of 10.3.2.4.

A “locally free log-isocrystal on X]K/SK overconvergent along T ” is by definition a coherent j†OXK -
module endowed with an overconvergent along T logarithmic connection relative to X]K/SK with over-
convergent singularities along T .

We denote by MIC†(X]K , T/SK) the category of log-isocrystals on X]K/SK overconvergent along T .
When T is empty, we simply write MIC†(X]K/SK) and its objects are called “convergent log-isocrystal
on X]K/SK”. An object (E,∇) of MIC†(X]K , T/SK) is said to be locally free (of finite type) if E is
locally free.

When T is empty, we say the connection or the log-isocrystal is “convergent” to say it is overconvergent
along the empty set.

Example 10.3.2.6. We keep notation 10.3.2.5.

(a) It follows from [Ked07, 6.3.4 and 6.4.1] (see definitions [Ked07, 2.3.7 and 6.3.1]), when T is empty
and when S = Spf V, the full subcategory of MIC†(X]K/SK) consisting in locally free objects is
equivalent to full subcategory of Iconv(X]/ Spf V) consisting in locally free isocrystals on the log
convergent site ((X,M)/ Spf V)conv (see 10.3.1.1).

(b) When Z is empty, the category MIC†(XK , T/SK) is equivalent to the category MIC†(Y,X,X/SK) of
coherent j†OXK -module endowed with a (relative to (Y,X,X/S)) overconvergent connection (indeed,
the overconvergent conditions of 10.2.2.4 and 10.3.2.4 are the same).

Proposition 10.3.2.7. Suppose T is empty. Let (E,∇) be a locally free of finite type OXK -module
endowed with an integrable logarithmic connection relative to X]K/SK . The logarithmic connection ∇ :
E → Ω1

X]
K
/SK

⊗OXK
E is convergent if and only if ∇|X∗K : E|X∗K → Ω1

X∗
K
/SK

⊗OX∗
K

E is convergent in
the sense of 10.2.2.5.

Proof. If ∇ is convergent, then this is obvious that so is ∇|X∗K . Let us check the converse. Since this is
local, we can suppose S is affine, X is affine and endowed with nice coordinates t1, . . . , tn (see definition
4.5.2.15) such that Z is the zero locus of t1 . . . tm on X with m ≤ n and let us keep the notations
of 4.5.2.18. The OXK -module Ω1

X]
K
/SK

is free with the basis d log t1, . . . , d log tm, dtm+1, . . . , dtn. Let

η ∈ |K×|Q∩ ]0, 1[. By hypotheses, the connection ∇|X∗K : E|X∗K → Ω1
X∗
K
/SK

⊗OX∗
K

E|X∗K satisfies the
condition 10.3.2.3.1, i.e., for any e ∈ Γ(X∗K , E), we have

‖ ∂[k]e ‖ η|k| → 0 for |k| → ∞, (10.3.2.7.1)

with ‖ · ‖ a Banach norm on Γ(X∗K , E). Since the logarithmic coordinates t1, . . . , tn are invertible on
X∗, then it follows from 3.2.3.9.4 that we can replace ‖ ∂[k]e ‖ by ‖ ∂[k]

] e ‖ in the convergent condition
10.3.2.7.1. Since X∗ is dense in X, this yields that for any e ∈ Γ(XK , E), we have

‖ ∂[k]
] e ‖ η

|k| → 0 for |k| → ∞, (10.3.2.7.2)

with ‖ · ‖ a Banach norm on Γ(XK , E).

Remark 10.3.2.8. Beware that the case where T is not empty, the proposition 10.3.2.7 seems false (e.g.
take T = Z).

10.3.2.9 (Local computations, residues, exponents). Suppose we are in the local situation 10.3.2.4. Let
E be a locally free log-isocrystal on X]K/SK overconvergent along T . Let Zi = V (ti) be an irreducible
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component of Z which is not included in T . For any i = 1, . . . ,m, by composition ∇ with the projection
E⊗j†OXK

j†Ω1
X]
K
/SK

→ E⊗j†OXK
d log tij

†OXK
∼−→ E we get the map ∂]i : E → E given by x 7→ ∂]i(x).

Since ∂]iti = ti∂]i + ti, then the map ∂]i : E → E preserves tiE.

(a) The “residue of ∇ along V (ti)” is the map resi : E/tiE → E/tiE, given by the reduction modulo ti
of the map ∂]i : E → E corresponding to the action of ∂]i.

(b) The eigenvalues of the residue of ∇ along ZiK , i.e., the eigenvalues of the matrix of resi contained in
an algebraic closure of the field of fractions of Γ(ZiK , j

†
Zi∩YOZiK ), are called “exponent of E along

Zi”.

(c) We say “E has nilpotent residues” if the residue of ∇ along each irreducible component of Z which
is not contained in T is nilpotent. An “exponent of E” is an exponent of E along some irreducible
component of Z which is not contained in T . Any exponent is contained in Zp by 10.3.2.4.1.

Definition 10.3.2.10. Let X be a smooth scheme over Spec k, let Z be a strict normal crossing divisor
of X, X] = (X,MZ) be the logarithmic Spec k-scheme with the logarithmic structure associated to Z.
Let E be a locally free convergent log-isocrystal of Iconv(X]/ Spf V).

(a) Suppose there exists a lifting of X (resp. Z) in a smooth over Spf V formal scheme X (resp. Z in a
relative strict normal crossing divisor of X over Spf V. Let X] = (X,M(Z)) be the logarithmic formal
V-scheme (see 4.5.2.14). We say that E has nilpotent residues if so is the corresponding object (via
the equivalence 10.3.2.6.(a)) of MIC†(X]K/K) in the sense of 10.3.2.9. Moreover, an “exponent of E”
is an exponent of the corresponding object of MIC†(X]K/K) in the sense of 10.3.2.9.

(b) Locally, such liftings of X (resp. Z) exist. We say that E has nilpotent residues, if E has locally
nilpotent residues. An exponent of E is an exponent of the restriction of E on some open subset
(where it has a meaning).

10.3.3 Kedlaya’s semistable reduction theorem
We recall the following Kedlaya’s definitions (see [Ked08, 3.2.1, 3.2.4]):

Definition 10.3.3.1. Let X be a smooth irreducible variety over Spec k, Z be a strict normal crossing
divisor of X, MZ the induced log-structure and let E be a convergent isocrystal on X \Z. We say that E
is log-extendable on X if there exists a locally free convergent isocrystal of Iconv((X,MZ)/ Spf V) having
nilpotent residues (in the sense of 10.3.2.10) whose induced convergent isocrystal on X \ Z is E.

Definition 10.3.3.2. Let Y be a smooth irreducible variety over Spec k, let X be a partial compact-
ification of Y , and let E be an F -isocrystal on Y overconvergent along X \ Y . We say that E admits
semistable reduction if there exists

(a) a proper, surjective, generically étale morphism f : X1 → X,

(b) an open immersion X1 ↪→ X1 into a smooth projective variety over k such that T1 := f−1(X \ Y ) ∪
(X1 \X1) is a strict normal crossing divisor of X1

such that the isocrystal f∗(E) on Y1 := f−1(Y ) overconvergent along T1 ∩X1 is log-extendable on X1

(see 10.3.3.1).

With the previous definitions, Kedlaya has proved in [Ked11, 2.4.4] (see also [Ked07], [Ked08],
[Ked09]) the following theorem which answers positively to Shiho’s conjecture in [Shi02, 3.1.8]:

Theorem 10.3.3.3 (Kedlaya). Let Y be a smooth irreducible k-variety, X be a partial compactification
of Y , Z := X \ Y , E be an F -isocrystal on Y overconvergent along Z. Then E admits semistable
reduction.

Remark 10.3.3.4. This conjecture was previously checked by Tsuzuki when E is unit-root in [Tsu02].
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10.3.4 A comparison theorem between relative log-rigid cohomology and rel-
ative rigid cohomology

Let g : X → S be a smooth morphism of smooth V-formal schemes, of pure relative dimension d, let
Z be a relative to X/S strict normal crossing divisor, let X∗ be the complement of Z in X, let D be a
closed subscheme of X and Y the complement of D in X. Let X] = (X,M(Z)) be the logarithmic formal
V-scheme with the logarithmic structure associated to Z (see 4.5.2.14), and Y] the restriction of X] on
Y. If U is an open of X, we denote by jU : U ↪→ X the induced open immersion and j†UE the sheaf of
germs of sections of a sheaf E on XK overconvergent along X \ U (see 10.1.2.1).

Let IZ be the sheaf of ideals of Z in X. Since IZ is invertible, IZ,Q is a coherent D†
X],Q-module which

is an invertible OX,Q-module. Hence, IZ,Q = sp∗IZ,Q is a convergent isocrystal on X/K with logarithmic
pole along Z. Let E be a locally free log-isocrystal on Y ]/SK overconvergent along D. For an integer
m, we put

E(mZ) = E ⊗j†
Y
O]X[X

j†Y I
⊗−m
Z,Q .

E(mZ) is a locally free overconvergent log-isocrystal and the exponents of E(mZ) are the exponents of
E minus m. Then there is a natural commutative diagram

E
⊂−→ E(mZ)

=↓ ↓
E −→ j†X∗∩Y E

(10.3.4.0.1)

for any nonnegative integer m.

Definition 10.3.4.1. A p-adic integer α is a “p-adic Liouville number” if the radius of convergence of
formal power series, either

∑
n∈Z≥0,n6=α x

n/(n − α) or
∑
n∈Z≥0,n6=−α x

n/(n + α), is less than 1. Note
that (1) a p-adic integer which is an algebraic number is not a p-adic Liouville number and (2) a p-adic
integer α is a p-adic Liouville number if and only if so is −α (resp. α+m for any integer m). For p-adic
Liouville numbers, we refer to [DGS94, VI, 1] and [BC92, 1.2].

Theorem 10.3.4.2. With the above notation, let E be a locally free log-isocrystal on X]K/SK overcon-
vergent along D. Suppose that

(a) none of differences of exponents of E is a p-adic Liouville number, and

(b) none of exponents of E is a p-adic Liouville number

along each irreducible component Zi of Z such that Zi 6⊂ D. Let c be the nonnegative integer defined by

c = max{e | e is a positive integral exponent of E along some irreducible component Zi of Z such that Zi 6⊂ D}∪ {0}

Then the diagram 10.3.4.0.1 induces an isomorphism

RgK∗Γ
†
]Z[X

(j†Y Ω•
X]
K
/SK
⊗j†

Y
O]X[X

E) ∼= RgK∗Cone
(
j†Y Ω•

X]
K
/SK

⊗j†
Y
O]X[X

E → j†Y Ω•
X]
K
/SK

⊗j†
Y
O]X[X

E(mZ)
)

[−1]

(10.3.4.2.1)
for any m ≥ c. In particular, if none of exponents along each irreducible component Zi of Z such that
Zi 6⊂ D is a positive integer, then the restriction induces an isomorphism

RgK∗(j
†
Y Ω•

X]
K
/SK

⊗j†
Y
O]X[X

E)
∼−→ RgK∗(j

†
X∗∩Y Ω•XK/SK ⊗j†

X∗∩YO]X[X

j†X∗∩Y E). (10.3.4.2.2)

Remark 10.3.4.3. (a) In fact, we will see in 18.3.1.13 that the comparison homomorphism corresponding
to 10.3.4.2.2 is an isomorphism on the formal scheme side without the functor g]+. But the first step
towards this result is to establish 10.3.4.2.

(b) Note that j†X∗∩Y E is a locally free isocrystal on X∗ ∩ Y/SK overconvergent along Z ∪ D and the
right handside of the isomorphism in the theorem above is a relative rigid cohomology with respect
to the closed immersion S → S. It is independent of the choice of X which is smooth over S around
Y [CT03, sect. 10]. The left handside of 10.3.4.2.2 in the theorem above is regarded as a relative
logarithmic rigid cohomology.
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(c) This type of comparison theorem between p-adic cohomology with logarithmic pole and rigid coho-
mology was studied in [BC94, 3.1], [Tsu99, 3.5.1], [Shi02, 2.2.4 and 2.2.13] (see also the definition
[Shi02, 2.1.5]) and [BB04, A.1]BC94. They suppose that an overconvergent isocrystal is locally free
on the formal side or for [Shi02, 2.2.4 and 2.2.13] it concerns the absolute case. In the theorem above
we relax this assumption and suppose that an overconvergent isocrystal is locally free only on the
analytic side.

(d) One can also prove the comparison theorem in the case g is smooth around Y replacing 10.3.4.9
and 10.3.4.19 (the weak fibration theorem) by the strong forms (the strong fibration theorem) with
modifications.

Remark 10.3.4.4. For a locally free log-isocrystal E on X]K/SK overconvergent along D, we denote by
Exp(E) ⊂ Zp (resp. Exp(E)gr ⊂ Zp) the monoid (resp. abelian group) generated by all exponents along
irreducible components Zi of Z such that Zi 6⊂ D. Exp(E) and Exp(E)gr do not depend on the choice
of local coordinates.

(a) Let X] = (X,Z) and X′
]

= (X′,Z′) be smooth V-formal schemes with relative strict normal crossing
divisors over S, let Y, D,Y],Y′, D′,Y′] as above, and let h : X′ → X be a morphism over S such
that h−1(D ∪ Z) ⊂ D′ ∪ Z ′. Suppose that h induces a log-morphism (h|Y′)] : Y′

] → Y]. Then
the inverse image h]∗KE is a locally free log-isocrystal on X′]K/SK overconvergent along D′ because
hK induces a log-morphism of rigid analytic spaces between suitable strict neighborhoods by our
assumption. Suppose furthermore that none of elements in Exp(E) (resp. Exp(E)gr) is a p-adic
Liouville number. Then the same holds for the inverse image h]∗KE. Indeed, for a suitable choice of
local coordinates zi (1 ≤ i ≤ s) and z′j (1 ≤ j ≤ s′) along the normal crossing divisors Z and Z′ of X
and X′ respectively, we have zi = uiz

′
1
mi1 · · · z′s′

mis′ locally at a generic point of Z′. Here ui is a unit
of OY′ andmij is a nonnegative integer. Since the residues of E with respect to Zi1 and Zi2 commute
with each other by the integrability of the log-connection and dzi/zi ≡

∑
j mijdz

′
j/z
′
j (mod Ω1

Y′/S),
Exp(h]∗KE) is a submonoid of Exp(E). (See [AB01, 6.2.5].)

Even if any exponent of E is not a positive integer, it might happen that some exponent of the inverse
image h]∗KE is a positive integer. Since Exp(E)∩Q≥0 is finitely generated as a monoid where Q≥0 is
the monoid consisting of nonnegative rational numbers, Exp(E(mZ)) does not contain any positive
rational numbers for a sufficiently large integer m. Therefore, none of exponents of an arbitrary
inverse image h]∗KE(mZ) is a positive integer.

(b) Let h] : X′
] → X] be a log-morphism such that h−1(D) = D′ and h−1(Z) = Z′. Suppose that the

underlying morphism h is finite étale. Note that local parameters of X] becomes local parameters of
X′
]. Then, for a locally free log-isocrystal E′ on X′]K/SK overconvergent along D′, h]K∗E

′ is a locally
free log-isocrystal on X]K/SK overconvergent along D. Moreover, for an irreducible component Zi of
Z such that Zi 6⊂ D, the exponents of h]K∗E

′ along Zi coincide with the exponents of E′ along h−1(Z)

(including multiplicities). In particular, Exp(h]K∗E
′) = Exp(E′). (See [AB01, 6.5.4].) The first part

easily follows from our geometric situation and we have rankj†O
]X[X

h]K∗E
′ = deg(h)rankj†O

]X
′
[
X′
E′,

where deg(h) is the degree of the underlying morphism of h. The second part is a problem only
along the generic point of Zi. We may assume that X and X′ are affine, Z is irreducible and is not
included in D. Let (j†O]X[X

)̂Z be the completion along ZK . Then there is a natural K-algebra

homomorphism from the ring of global sections of (j†O]X[X
)̂Z into K(Z)[[z]], where K(Z) is the

field of fractions of Γ(Z, j†OZ) and z is a local coordinate of Z. This K-algebra homomorphism
naturally extends to a K-algebra homomorphism from the ring of global sections of (j†O

]X
′
[X′

)̂Z′

into a direct sum of finite unramified extensions of K(Z)[[z]]. We may replace the residue field K(Z)
of K(Z)[[z]] by its algebraic closure K(Z) since all exponents are contained in Zp and invariant under
any automorphism of K(Z). Hence, (j†O

]X
′
[X′

)̂Z′ goes to a direct sum of deg(h) copies of K(Z)[[z]].
Now our second assertion is clear.

First we prove a special case.
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Proposition 10.3.4.5. Under the hypothesis in 10.3.4.2, suppose that Z is irreducible such that Z 6⊂ D,
and that the composition g ◦ i : Z → S of the closed immersion i : Z → X and g : X → S is an
isomorphism. If we define S ∩ Y = Z ∩ Y through the isomorphism g ◦ i : Z → S, then gK∗∇ :
gK∗(E(mZ)/E) → gK∗(j

†
Y Ω1

X]
K
/SK

⊗j†
Y
O]X[X

E(mZ)/E) is a j†S∩YO]S[S-homomorphism of locally free

j†S∩YO]S[S-modules of finite type and the natural morphism 10.3.4.2.1 induces an isomorphism

RgK∗Γ
†
]Z[X

(j†Y Ω•
X]
K
/SK
⊗j†

Y
O]X[X

E) ∼=
[
gK∗(E(mZ)/E)

gK∗∇−→ gK∗(j
†
Y Ω1

X]
K
/SK

⊗j†
Y
O]X[X

E(mZ)/E)
]

[−1]

(10.3.4.5.1)
for any m ≥ c in the derived category of complexes of j†S∩YO]S[S-modules. Here [A → B] means a
complex consisting of the terms of degree 0 and degree 1.

We will see that, in 10.3.4.23, the overconvergence of the induced Gauss-Manin connection on
gK∗(E(mZ)/E) in the relative case. An example such that the cokernel of gK∗∇ : gK∗(E(mZ)/E) →
gK∗(j

†
Y Ω1

X]
K
/SK

⊗j†
Y
O]X[X

E(mZ)/E) is not locally free is also given in 10.3.4.24.

Proof. At first we shall define j†S∩YO]S[S -module structures we both sides of 10.3.4.5.1.
We shall prove that RqgK∗(E(Z)/E) = 0 for q 6= 0 and the locally freeness of gK∗(E(Z)/E). Since

i−1(X \ Y ) = Z \ Y as underlying topological spaces, i∗KE(Z) = j†Z∩YO]Z[Z ⊗i−1
K
j†
Y
O]X[X

i−1
K E(Z) is a

locally free j†Z∩YO]Z[Z-module of finite type and the adjoint gives an isomorphism iK∗i
∗
KE(Z) ∼= E(Z)/E.

Because i is a closed immersion, iK :]Z[Z→]X[X is an affinoid morphism. Hence RiK∗M = iK∗M for
any coherent j†Z∩YO]Z[Z -moduleM by i−1(X \ Y ) = Z \ Y [CT03, 5.2.2]. Since g ◦ i is an isomorphism,
we have

RgK∗(E(Z)/E) = RgK∗(iK∗i
∗
KE(Z)) = RgK∗RiK∗i

∗
KE(Z) = R(g ◦ i)K∗i∗KE(Z) = (g ◦ i)K∗i∗KE(Z)

and the two assertions above. Therefore, we show, for m ≥ 0, RqgK∗(E(mZ)/E) = 0 for q 6= 0 and
gK∗(E(mZ)/E) is a locally free j†S∩YO]S[S -module of finite type by induction on m.

For a j†YO]X[X -module H, the j†YO]X[X -module Γ†]Z[X
(j†YH) is not a priori a g−1

K (j†S∩YO]S[S)-module

because Y ⊂ g−1(S∩Y ) might not hold. The following lemma says that Γ†]Z[X
(j†YH) has a g−1

K (j†S∩YO]S[S)-
module structure. Hence the left hand side of 10.3.4.5.1 belongs to the derived category of complexes of
j†S∩YO]S[S -modules.

Lemma 10.3.4.6. Ynder the hypothesis in 10.3.4.5, let us put Y ′ = g−1(S ∩ Y ) ∩ Y . If A is a sheaf of
rings on ]X[X, then the restriction morphism

Γ†]Z[X
(j†YH)→ Γ†]Z[X

(j†Y ′H)

is an isomorphism for any A-module H.

Proof. Since S ∩Y = Z ∩Y via g ◦ i and X∗ ∩Y = Y \Z, we have (Z ∩Y ) ⊂ Y ′ and Y = Y ′ ∪ (X∗ ∩Y ).
Hence, the natural morphism [j†YH → j†X∗∩YH] → [j†Y ′H → j†X∗∩Y ′H] of complexes is an isomorphism
by [Ber96b, 2.1.8].

We divide the proof of 10.3.4.5 into 7 parts.

0◦ Reduce to the case where none of the exponents of E along Z is a positive integer, that is, c = 0.
Since the natural morphism j†X∗∩Y E → j†X∗∩Y E(mZ) is an isomorphism, the natural morphism of

complexes induces a triangle

RgK∗Cone
(
j†Y Ω•

X]
K
/SK

⊗j†
Y
O]X[X

E → j†Y Ω•
X]
K
/SK

⊗j†
Y
O]X[X

E(mZ)
)

[−1]

↙ ↖ +1

RgK∗Γ
†
]Z[X

(j†Y Ω•
X]
K
/SK

⊗j†
Y
O]X[X

E) → RgK∗Γ
†
]Z[X

(j†Y Ω•
X]
K
/SK

⊗j†
Y
O]X[X

E(mZ))
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for any m ≥ 0. If we prove the vanishing RgK∗Γ
†
]Z[X

(j†Y Ω•
X]
K
/SK
⊗j†

Y
O]X[X

E) = 0 for c = 0, then, for any
c, the triangle above induces the desired isomorphism when m ≥ c. Hence, we may assume m = c = 0
and we shall prove the vanishing.

1◦ Local problem on X and Y .
By the Čech spectral sequences associated to a finite open covering {Xi} of X (resp. a finite open

covering {Yij} of each Xi ∩ Y) 10.1.4.2 [CT03, 8.3.3], the vanishing is local on X and Y . Since the
vanishing of RgK∗Γ

†
]Z[X

(j†Y Ω•
X]
K
/SK
⊗j†

Y
O]X[X

E) is trivial in the case where Z = ∅, we may assume that

X is affine, D is defined by a single equation f = 0 in X for some f ∈ Γ(X,OX), and there is a coordinate
z of X over S such that Z is defined by z = 0 in X. Indeed, it is enough to take a certain covering
consisting of X \ Z and a covering of Z.

2◦ Reduction to the local case by rigid analytic geometry.
Let us add some notation. Let us put ]Y [X,λ= {x ∈]X[X | |f(x)| ≥ λ} (resp. ]X∗[X,λ= {x ∈

]X[X | |z(x)| ≥ λ}, resp. ]Z ∩ Y [Z,λ= {x ∈]Z[Z | |f(x)| ≥ λ}, resp. [Z]X,λ = {x ∈]Z[X | |z(x)| ≤ λ})
for λ ∈ |K×|Q∩]0, 1[, where f is the reduction of f in Γ(Z,OZ). We define ]S ∩ Y [S,λ=]Z ∩ Y [Z,λ by the
identification through g ◦ i. Note that the set {]Y [X,λ}λ∈|K×|Q∩]0,1[ forms a fundamental system of strict
neighborhoods of ]Y [X in ]X[X. Let αV : V →]X[X denote the canonical morphism for admissible open
subsets V in ]X[X.

Take ν ∈ |K×|Q∩ ]0, 1[ such that there is a locally free O]Y [X,ν -module E of finite type endowed with a
logarithmic connection ∇ : E → (Ω1

X]
K
/SK
|]Y [X,ν )⊗O]Y [X,ν

E which satisfies the overconvergence condition

10.3.2.4.1. Hence, there exist a strictly increasing sequence ξ = (ξl) in |K×|Q∩ ]0, 1[ with ξl → 1− as
l→∞ and an increasing sequence λ = (λl) in |K×|Q ∩ [ν, 1[ such that, for any l,

||∂[n]
] (e)||ξnl → 0 (as n→∞) (10.3.4.6.1)

for any section e ∈ Γ(]Y [X,λl , E). Here ∂] = ∇(z d
dz ) and ∂[l]

] = 1
l!

∏l−1
j=0(∂] − j).

Let A be a sheaf of rings on ]X[X. Let η ∈ |K×|Q∩ ]0, 1[. We define a functor Γ†]Z[X,η
from the

category of A-modules to itself by the exact sequence

0 −→ Γ†]Z[X,η
(H) −→ H −→ lim

µ→η−
α]X∗[X,µ∗(H|]X∗[X,µ) −→ 0 (10.3.4.6.2)

for any A-module H. Here the morphism H → lim
µ→η−

α]X∗[X,µ∗(H|]X∗[X,µ) is an epimorphism for the

same reason than for the epimorphism H → j†X∗H. One can easily see that Γ†]Z[X,η
(H)|]X∗[X,η = 0 and

Γ†]Z[X,η
is an exact functor by the snake lemma. For ξ ∈ |K×|Q∩ [η, 1[, the restriction induces a morphism

Γ†]Z[X,η
(H)→ Γ†]Z[X,ξ

(H)

of A-modules. By definition we have

Proposition 10.3.4.7. With the same notation as above, the inductive system induces an isomorphism

lim
η→1−

Γ†]Z[X,η
(H) ∼= Γ†]Z[X

(H).

Proposition 10.3.4.8. Let λ ∈ |K×|Q∩]0, 1[.

(a) The functor Γ†]Z[X,η
commutes with direct limits. Also, for any A-module H, the natural morphism

α]Y [X,λ∗(Γ
†
]Z[X,η

(H)|]Y [X,λ)→ Γ†]Z[X,η
(α]Y [X,λ∗(H|]Y [X,λ))

is an isomorphism. Moreover, j†Y Γ†]Z[X,η
= Γ†]Z[X,η

j†Y .

(b) For any coherent O]Y [X,λ-module Hλ and any q ≥ 1 we have Rqα]Y [X,λ∗(Γ
†
]Z[X,η

(α]Y [X,λ∗Hλ)|]Y [X,λ) =
0.
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Proof. (1) Since the morphism α]X∗[X,µ is quasi-compact and quasi-separated, we obtain from 10.3.4.6.2
the first assertion. By applying the functor α]Y [X,λ∗α

−1
]Y [X,λ

to the exact sequence 10.3.4.6.2, we get the
sequence

0 −→ α]Y [X,λ∗(Γ
†
]Z[X,η

(H)|]Y [X,λ) −→ α]Y [X,λ∗(H|]Y [X,λ) −→ α]Y [X,λ∗

ÅÅ
lim
µ→η−

α]X∗[X,µ∗(H|]X∗[X,µ)

ã
|]Y [X,λ

ã
−→ 0,

which is exact by a similar proof to that of [Ber96b, 2.1.3.(i)]. The quasi-compactness and quasi-
separateness of α]Y [X,λ implies the assertions.

(2) Because Hλ is a coherent O]Y [X,λ -module and both ]Y [X,λ and ]X∗[X,µ are affinoid subdomains

of the affinoid ]X[X, Rqα]Y [X,λ∗(Hλ) = 0 and Rqα]Y [X,λ∗

ÅÅ
lim
µ→η−

α]X∗[X,µ∗(Hλ|]X∗[X,µ)

ã
|]Y [X,λ

ã
= 0 for

q ≥ 1 by Kieh the Theorem B [Kie67, 2.4]. These facts and the exactness of the sequence in the proof of
(1) imply the vanishing of higher direct images.

Since gK is an affinoid morphism, it is quasi-compact and RgK∗ commutes with direct limits [Ber96b,
0.1.8]. Hence we have

RqgK∗Γ
†
]Z[X

(j†Y Ω•
X]
K
/SK

⊗j†
Y
O]X[X

E)

∼= RqgK∗

Å
lim
η→1−

Γ†]Z[X,η
(j†Y (Ω•

X]
K
/SK

⊗O]X[X
α]Y [X,ν∗E))

ã
∼= lim

η→1−
RqgK∗Γ

†
]Z[X,η

Å
lim
λ→1−

α]Y [X,λ∗((Ω
•
X]
K
/SK
|]Y [X,λ)⊗O]Y [X,λ

E|]Y [X,λ)

ã
∼= lim

η→1−
lim
λ→1−

RqgK∗Γ
†
]Z[X,η

(α]Y [X,λ∗((Ω
•
X]
K
/SK
|]Y [X,λ)⊗O]Y [X,λ

E|]Y [X,λ))

∼= lim
η,λ→1−

RqgK∗Γ
†
]Z[X,η

(α]Y [X,λ∗((Ω
•
X]
K
/SK
|]Y [X,λ)⊗O]Y [X,λ

E|]Y [X,λ))

for any q. Indeed, the first isomorphism follows from 10.3.4.7 and the other ones from the commutation
of the functors RgK∗ and Γ†]Z[X,η

(by 10.3.4.8) with direct limits. We will consider the family of open
subsets indexed by the directed set

Λξ,λ =

ß
(λ, η) ∈

(
|K×|Q∩]0, 1[

)2 ∣∣∣∣ λ > η, λ ≥ max{λl, ν},
η < ξl for some l

™
. (10.3.4.8.1)

Here the condition λ〉η comes from 10.3.4.9 (2). This family is cofinal for η, λ → 1−, so that the limit
with respect to Λξ,λ is the same as the original one.

Let gλ : ]Y [X,λ→]S[S and gλ,η : ]Y [X,λ∩[Z]X,η →]S[S denote the restrictions of g for (λ, η) ∈ Λξ,λ.
Then

RgK∗Γ
†
]Z[X,η

(α]Y [X,λ∗((Ω
•
X]
K
/SK
|]Y [X,λ)⊗O]Y [X,λ

E|]Y [X,λ))

∼= Rgλ∗(Γ
†
]Z[X,η

(α]Y [X,λ∗((Ω
•
X]
K
/SK
|]Y [X,λ)⊗O]Y [X,λ

E|]Y [X,λ))|]Y [X,λ)

by 10.3.4.8. Since Γ†]Z[X,η
((Ω•

X]
K
/SK
|]Y [X,λ)⊗O]Y [X,λ

E)|]X∗[X,η = 0 and {]Y [X,λ∩ ]X∗[X,η, ]Y [X,λ∩[Z]X,η}
is an admissible covering of ]Y [X,λ, we have

Rgλ∗(Γ
†
]Z[X,η

(α]Y [X,λ∗((Ω
•
X]
K
/SK
|]Y [X,λ)⊗O]Y [X,λ

E|]Y [X,λ))|]Y [X,λ)

∼= Rgλ,η∗(Γ
†
]Z[X,η

(α]Y [X,λ∗((Ω
•
X]
K
/SK
|]Y [X,λ)⊗O]Y [X,λ

E|]Y [X,λ))|]Y [X,λ∩[Z]X,η ).

Hence, in order to prove the vanishing RgK∗Γ
†
]Z[X

(j†Y Ω•
X]
K
/SK

⊗j†
Y
O]X[X

E) = 0, we have only to prove
the vanishing

Rgλ,η∗(Γ
†
]Z[X,η

(α]Y [X,λ∗((Ω
•
X]
K
/SK
|]Y [X,λ)⊗O]Y [X,λ

E|]Y [X,λ))|]Y [X,λ∩[Z]X,η ) = 0 (10.3.4.8.2)

for any (λ, η) ∈ Λξ,λ.

3◦ Reduce to the local computations.
Let us denote the 1-dimensional open (resp. closed) unit disk over SpmK of radius η ∈ |K×|Q by

D(0, η−) (resp. D(0, η+)). Since Z 6⊂ D, we have the lemma below by the weak fibration theorem
[Ber96b, 1.3.1, 1.3.2] (see also [BC94, 4.3].).
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Lemma 10.3.4.9. With the notation as above, we have

(a) There is an admissible covering {Vβ}β of ]S[S such that there exists an isomorphism

g−1
K (Vβ)∩]Z[X∼= Vβ ×SpmK D(0, 1−)

of rigid analytic K-vector spaces, under which the coordinate of D(0, 1−) is z as above.

(b) Under the isomorphism in (1),

g−1
λ,η(Vβ) ∼= (Vβ∩]S ∩ Y [S,λ)×SpmK D(0, η+)

for any λ, η ∈ |K×|Q∩]0, 1[ with λ〉η.
In order to prove 10.3.4.9 (2), the condition λ〉η is needed because of using f for the definition of

]S ∩ Y [S,λ.
Let S = SpmR be an integral smooth K-affinoid subdomain of Vβ∩ ]S ∩ Y [S,λ with a complete

K-algebra norm | - |R on R. Since R is an integral K-Banach algebra, all complete K-algebra norms are
equivalent [BGR84, 3.8.2, Cor. 4]. In order to prove the vanishing 10.3.4.8.2, it is sufficient to prove the
vanishing

RΓ
(
g−1
λ,η(S), Γ†]Z[X,η

([
E ∇−→ (Ω1

X]
K
/SK
|]Y [X,ν )⊗O]Y [X,ν

E
]))

= RΓ

Å
g−1
λ,η(S), Γ†]Z[X,η

Åï
E ∂]−→ E

òãã
= 0

of hypercohomology for any such S by 10.3.4.9 (2) since ]S[S=]Z[Z is integral and smooth and Ω1
X]
K
/SK

is a free O]X[X -module of rank 1 generated by dz
z . The hypercohomology above can be computation ated

by

RqΓ
Å
g−1
λ,η(S),Γ†]Z[X,η

Åï
E ∂]−→ E

òãã
∼= Hq

Ü
Tot


Γ(g−1

λ,η(S), E) → lim
µ→η−

Γ(g−1
λ,η(S)∩]X∗[X,µ, E)

∂] ↓ ↓ ∂]
Γ(g−1

λ,η(S), E) → lim
µ→η−

Γ(g−1
λ,η(S)∩]X∗[X,µ, ∗E)


ê

.

Here Tot means the total complex induced by the commutative bicomplex, the left top item in the
bicomplex is located at degree (0, 0) and the horizontal arrows in the bicomplex are the natural injections.
Indeed, the cohomological functor commutes with filtered direct limits since gλ,η is an affinoid morphism,
and the vanishings Hq(g−1

λ,η(S), E) = 0 and Hq(g−1
λ,η(S)∩ ]X∗[X,µ, E) = 0 for q ≥ 1 hold by Kieh the

Theorem B [Kie67, 2.4] since g−1
λ,η(S) and g−1

λ,η(S)∩ ]X∗[X,µ are affinoid.
More explicitly, the following formula 10.3.4.9.1 holds when E|g−1

λ,η
(S) is a free Og−1

λ,η
(S)-module of rank

r. We will prove the freeness in the next step 4◦. Put R-algebras

AR(η) = Γ(g−1
λ,η(S),O]X[X) =

{ ∞∑
n=0

anz
n

∣∣∣∣∣ an ∈ R, |an|Rηn → 0 as n→∞

}

AR(η−) = Γ

Å
∪
µ<η

g−1
λ,µ(S),O]X[X

ã
=

{ ∞∑
n=0

anz
n

∣∣∣∣∣ an ∈ R, |an|Rµn → 0 as n→∞ for any µ < η

}
RR(η) = lim

µ→η−
Γ(g−1

λ,η(S), α]X∗[X,µ∗O]X∗[X.µ)

=

{ ∞∑
n=−∞

anz
n

∣∣∣∣∣ an ∈ R, |an|Rηn → 0 as n→∞
|an|Rµn → 0 as n→ −∞ for someµ < η

}
,

and define a norm on AR(η) by |
∑
n anz

n|AR(η) = supn|an|ηn. AR(η),AR(η−) and RR(η) are inde-
pendent of the choice of complete K-algebra norms on R since there exist positive real numbers ρ1 and
ρ2 such that ρ1|-| ≤ |-|′ ≤ ρ2|-| for equivalent norms |-| and |-|′ by [BGR84, 2.1.8, Cor. 4]. Let v be a
basis of vectors of Γ(g−1

λ,η(S), E) over AR(η) such that the derivation along z is given by ∂](v) = vG for
a matrix G with entries in AR(η). Then we have

RqΓ
Å
g−1
λ,η(S),Γ†]Z[X,η

Åï
E ∂]−→ E

òãã
∼= Hq

Ñ
Tot

 AR(η)r → RR(η)r

∂] +G ↓ ↓ ∂] +G
AR(η)r → RR(η)r

é
∼= Hq

Åï
(RR(η)/AR(η))

r ∂]+G−→ (RR(η)/AR(η))
r
ò

[−1]

ã
.

(10.3.4.9.1)
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4◦ Local classification of logarithmic connections along a smooth divisor.

Proposition 10.3.4.10. Let S = SpmR be a smooth integral K-affinoid variety, and let W = S×SpmK

D(0, ξ−) be a quasi-Stein space over S for some ξ ∈ |K×|Q∩]0, 1]. Let M be a locally free OW -module
of finite type furnished with an R-derivation ∂] = z d

dz : M →M , where M = Γ(W,M), such that

(i) for any η ∈ |K×|Q∩ ]0, ξ[, if Wη = S ×SpmK D(0, η+) is an affinoid subdomain of W and if || - ||
is a Banach AR(η)-norm on Mη = Γ(Wη,M), then || 1

n!

∏n−1
j=0 (∂]− j)(e)||µn → 0 (n→∞) for any

e ∈Mη and 0 < µ < 1, and

(ii) any difference of exponents of (M, ∂]) along z = 0 is neither a p-adic Liouville number nor a
non-zero integer.

Then there are a projective R-module L of finite type furnished with a linear R-operator N : L→ L such
that || 1

n!

∏n−1
j=0 (N−j)(e)||µn → 0 (n→∞) for any e ∈ L and 0 < µ < 1, where || - || is a Banach R-norm

on L, and an isomorphism (M, ∂]) ∼= (OW ⊗R L, ∂]N ) in which the R-derivation ∂]N on OW ⊗R L is
defined by ∂]N (a⊗ e) = ∂](a)⊗ e+ a⊗N(e).

IfM is a free OW -module in the proposition above, then the assertion is a part of Christo the transfer
theorem [Chr84, Thm. 2] and its generalization in [BC92]. Christol’s transfer theorem is in the case
where R is a field K. By the argument in [BC92, 4.1], the transfer theorem also works on an integral
K-affinoid algebra R. A part means that we consider solutions not in meromorphic functions but only
in holomorphic functions. When M is free, one has a formal matrix solution by the hypothesis that any
difference of exponents is not an integer except 0, and then all entries are contained in AR(ξ−) because
of the conditions (i) and (ii).

Lemma 10.3.4.11. Let R be an integral K-affinoid algebra.

(a) There exists a finite injective morphism Tl → R of K-affinoid algebras from a free Tate K-algebra
Tl of some dimension l.

(b) Suppose furthermore that R is Cohen-Macaulay. Then, for any finite injective morphism Tl → R of
K-affinoid algebras, R is projective of finite type over Tl. Moreover, if M is a projective R-module
of finite type, then M is free over Tl.

Proof. (1) The assertion is the Noether normalization theorem [BGR84, 6.1.2 Cor. 2].
(2) Since Tl is regular and R is Cohen-Macaulay,[Ked04a] R is projective over Tl by [Nag, 25.16]. If

M is a projective R-module of finite type, then M is also projective of finite type over Tl, hence M is
free over Tl by [Ked04a, 6.5].

With the notation as in 10.3.4.10, let us fix a finite injective morphism Tl → R of K-affinoid algebras
10.3.4.11 (1). Considering the norm on R which is defined by the maximum of norms of tuple under
an identification R ∼= Tml by 10.3.4.11 (2), we regard Mη as an ATl(η)[∂]]-module by the natural finite
injective morphism ATl(η) → AR(η) of K-affinoid algebras for η ∈ |K×|Q∩ ]0, ξ[. Moreover, ATl(η)[∂]]-
module Mη satisfies the hypothesis in 10.3.4.10 (see b) and Mη is a free ATl(η)-module 10.3.4.11 (2).
Fix a basis v of Mη over ATl(η) and let Gη be a matrix with entries in ATl(η) such that ∂](v) = vGη.
By applying a generalization of Christol’s transfer theorem (as we explain after 10.3.4.10), there is an
invertible matrix Y with entries in ATl(η−) such that

∂] Y +GηY = Y Gη(0), (10.3.4.11.1)

where Gη(0) = Gη (mod zATl(η)) is a matrix with entries in Tl. Then there is a free Tl-module Lη
with a Tl-linear homomorphism Nη defined by the matrix Gη(0) such that (ATl(η−) ⊗ATl (η) Mη, ∂]) ∼=
(ATl(η−)⊗Tl Lη, ∂]Nη ). If we put H0(Mη) = Ker(∂] : Mη →Mη), then H0(Mη) ∼= Ker(Nη : Lη → Lη).

Lemma 10.3.4.12. With the notation as above, the followings hold.

(a) The pair (Lη, Nη) is independent of the choices of η ∈ |K×|Q∩ ]0, ξ[ up to canonical isomorphisms.
Moreover, (M,∂]) ∼= (ATl(ξ−)⊗Tl Lη, ∂]Nη ) for any η.

(b) If we put H0(M) = Ker(∂] : M → M), then the natural R-homomorphism H0(M)→ H0(Mη) (not
only the Tl structure) induced by the restriction is an isomorphism.
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Proof. (1) For η′ ≤ η, there is an invertible matrix Q with entries in ATl(η′) such that ∂]Q+Gη′(0)Q =
QGη(0) by the restriction. Since none of the differences of exponents is an integer except 0, Q is an
invertible matrix with entries in Tl. Hence the pair is independent of the choices of η. Note that
{Wη}η∈|K×|Q∩]0,ξ[ is an affinoid covering of the quasi-Stein space W and M is the projective limit of
Mη (η ∈ |K×|Q∩]0, ξ[). Therefore, the assertion holds.

(2) follows from (1).

Lemma 10.3.4.13. Let R be an integral domain over Qp with field of fractions F , and let (L,N) be a
pair such that L is a free R-module of finite rank and N : L→ L is an R-linear endomorphism. Suppose
that e1, · · · , es are distinct eigenvalues of N ⊗ F with multiplicities m1, · · · ,ms, respectively, such that
e1, · · · , es are contained in Zp and let ϕN (x) = (x − e1)m1 · · · (x − es)

ms ∈ Zp[x] the characteristic
polynomial of N . If we put L(ei) = ϕi(N)L where ϕi(x) = ϕN (x)/(x − ei)mi , then L is a direct sum
of R-sub module L(e1), · · · , L(es) of L such that all eigenvalues of N |L(ei) ⊗ F are ei for any i. Such a
decomposition is unique.

Lemma 10.3.4.14. With the notation in 10.3.4.10, let e1, · · · , es be distinct exponents of (M,∂]) along
z = 0. ThenM is a direct sum of AR(ξ−)[∂]]-submodulesM(e1), · · · ,M(es) ofM such that all exponents
of (M(ei), ∂]) are ei for any i.

Proof. With the notation in 10.3.4.12 and 10.3.4.13, take a free Tl-module L of finite type furnished with
a Tl-linear homomorphism N such that (M,∂]) ∼= (ATl(ξ−)⊗Tl L, ∂]N ). Since L(ei) is a direct summand
of the free Tl-module L, L(ei) is free. Put M(ei) = (ATl(ξ−) ⊗Tl L(ei), ∂]N |L(ei)

). Then M is a direct
sum ofM(e1), · · · ,M(es) as ATl(ξ−)[∂]]-modules. Since any ATl(ξ−)[∂]]-homomorphism betweenM(ei)
and M(ej) for i 6= j is a zero map, M(ei) is an AR(ξ−)[∂]]-module for all i. Hence, the decomposition
is the desired one.

Lemma 10.3.4.15. Let S = SpmR be a K-affinoid variety, W = S×SpmKD(0, ξ+) for some ξ ∈ |K×|Q,
and letM be a locally free OW -module of finite type. Then there exist a finite affinoid covering {Si} of
S and a real number ξ′ ∈ |K×|Q∩ ]0, ξ] such that, if WSi,ξ′ denotes the affinoid subdomain Si×D(0, ξ′+)
of W , thenM|WSi,ξ

′ is a free OWSi,ξ
′ -module for all i.

Proof. SinceM/zM is regarded as a locally free OS-module, there is a finite affinoid covering {Si} of S
such that (M/zM)|Si is a free OSi -module for all i. SinceWi = Si×SpmKD(0, ξ+) is an affinoid,M/zM
is generated by Γ(Wi,M) by Kieh the Theorems A and B [Kie67, 2.4]. Let v1, · · · , vr ∈ Γ(Wi,M) be
elements whose reductions form a basis of (M/zM)|Si over OSi . The support ofM|Wi

/(v1, · · · , vr) is
an analytic closed subset ofWi which does not intersect with the closed subspace defined by z = 0. Since
M is locally free, there is a real number ξ′i ∈ |K×|Q∩]0, ξ[ such that M|Si×SpmKD(0,ξ′

i
+) is free and is

generated by v1, · · · , vr because of the maximum modulus principle [BGR84, 6.2.1, Prop.4]. Then it is
enough to take ξ′ = mini ξ

′
i.

Proof of 10.3.4.10. We may assume that any exponent ofM along z = 0 is 0 by 10.3.4.14 and by twisting
by an object of rank 1 with a suitable exponent. We may also assume thatM|Wξ′ is a free OWξ′ -module
for some ξ′ ∈ |K×|Q∩ ]0, ξ[ by 10.3.4.15. By applying the transfer theorem 10.3.4.10 for the free cases
with the conditions (i) and (ii), if one takes an η ∈ |K×|Q∩]0, ξ′[, then there is a free R-module L
furnished with an R-linear operator N : L→ L such that βη : (M, ∂])|Wη

∼−→ (OWη
⊗R L, ∂]N ). Denote

the dual ofM by (M∨,−∂]). Then we have a natural commutative diagram

HomOW [∂]](M,OW ⊗R L) −→ HomOWη [∂]](M|Wη
,OWη

⊗R L)
∼=↓ ↓∼=

H0(M∨ ⊗R L)
∼−→ H0(M∨η ⊗R L),

where the vertical arrows are isomorphisms since M is locally free and the bottom horizontal arrow is
an isomorphism by 10.3.4.12 (2) since all differences of exponents of (M∨⊗R L,−∂]⊗ 1 + 1⊗ ∂N ) along
z = 0 are 0.

Let β : (M, ∂]) → (OW ⊗R L, ∂]N ) be the OW [∂]]-homomorphism corresponding to βη via the
isomorphisms above. We will prove that β is an isomorphism. In the case where R is a field, β is an
isomorphism since the support of an AR(ξ−)[∂]]-module, which is finitely generated over AR(ξ−), is
either W or one point z = 0 by Bézout property of AR(ξ−) [Cre98, 4.6]. Let us return to the case of
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general R. For a maximal ideal x of R, the induced homomorphism β (modx) is an isomorphism by the
case where R is a field. Hence, β is an isomorphism around x ×SpmK D(0, ξ−) by Nakayama’s lemma.
Since both sides of β are coherent, β is an isomorphism [BGR84, 9.4.2, Corollary 7]. �

5◦ The vanishing 10.3.4.8.2 in special cases: any difference of exponents is neither a p-adic Liouville
number nor an integer except 0.

Let us first suppose that (ii) in 10.3.4.10 and c = 0 for the exponents along z = 0 by 0◦.

Lemma 10.3.4.16. With the notation in 10.3.4.13, the followings hold.

(a) Let j be an integer. Then there is a monic polynomial gj(x) ∈ Zp[x] of degree r − 1 such that
(N − j)gj(N) + ϕN (j)IL = 0. Here IL is the identity of L.

(b) If all of e1, · · · , es are neither p-adic Liouville numbers nor positive integers, then (N−j) is invertible
and, for any 0 < η < 1, |ϕN (j)−1|ηj → 0 as j →∞

Take (λ, η) ∈ Λξ,λ such that λ ≥ λm and η < ξm for some m. Then the restriction (E , ∂]) on
S×SpmKD(0, ξ−m) for an integral smoothK-affinoid S = SpmR in Vβ∩ ]Z∩Y [Z,λm satisfies the assumption
of 10.3.4.10 by the overconvergence condition in 2◦. Considering an admissible affinoid covering of S, we
may assume that there is a basis of Γ(g−1

λ,η(S), E) over AR(η) such that G is a matrix with entries in R.
Since any eigenvalue of G is not a positive integer, ∂] +G is injective on (RR(η)/AR(η))

r. Since any
eigenvalue of G is neither a p-adic Liouville nor a positive integer, ∂]+G is surjective on (RR(η)/AR(η))

r.
Indeed, with the notation in 10.3.4.16 (1), ∂] +G maps −

∑∞
j=1 ϕG(j)−1gj(G)ajz

−j to
∑∞
j=1 ajz

−j and∑∞
j=1 ϕG(j)−1gj(G)ajz

−j is contained in (RR(η)/AR(η))
r by 10.3.4.16 (2). Hence, the cohomology

groups in 10.3.4.9.1 vanish for any q and it implies the vanishing 10.3.4.8.2.

6◦ The vanishing 10.3.4.8.2 in general cases: any difference of exponents is not a p-adic Liouville number.
Let us suppose the conditions (a) in 10.3.4.2 and c = 0 for the exponents along z = 0 by 0◦.

Proposition 10.3.4.17. With the notation as in 10.3.4.10, we assume the conditions (i) in 10.3.4.10,
(a) in 10.3.4.2 and c = 0 for exponents of (M, ∂]) along z = 0. Then there is a locally free OW -submodule
M′ ofM which is stable under ∂] such that (1) (M′, ∂]) satisfies the conditions (i) and (ii) in 10.3.4.10,
(2) none of exponents of (M′, ∂]) along z = 0 is a positive integer, (3) the support ofM/M′ is included
in the closed subset defined by z = 0 and it is a locally free OS-module of finite type, and (4) the induced
homomorphism ∂] :M/M′ →M/M′ is an isomorphism.

Lemma 10.3.4.18. Let R be an integral K-affinoid algebra and let η ∈ |K×|Q. Suppose that M is a
free AR(η)-module of finite rank furnished with an R-derivation ∂] = z d

dz : M →M such that e1, · · · , es
are distinct exponents of (M,∂]) along z = 0 with multiplicities m1, · · · ,ms, respectively.

(a) There exists a basis v of M such that, if G is the matrix with entries in AR(ξ) defined by ∂](v) = vG,

then G(0) =

Ö
G1(0) 0

. . .
0 Gs(0)

è
and all eigenvalues of the R-matrix Gi(0) of degree mi are

ei for any i.

(b) Let vi be the part bottom is as in (1) corresponding to the i-th direct summand modulo z, that is,
∂](vi) ≡ viGi(0) (mod zAR(η)). Let M ′ be the AR(η)-submodule of M generated by zv1, v2, · · · , vs.
Then M ′ is stable under ∂] with exponents e1 + 1, e2, · · · , es and multiplicities m1,m2, · · · ,ms,
respectively. Moreover, M/M ′ is a free R-module of rank m1, and, if e1 6= 0, then the induced
R-homomorphism ∂] : M/M ′ →M/M ′ is an isomorphism.

Proof. (1) follows from 10.3.4.13.
(2) The stability follows from (1). If we denote the matrix which represents the derivation of M ′ by

G′, then

G′ = P−1z
d

dz
P + P−1GP ≡

á
G1(0) + Im1

∗
G2(0)

. . .
0 Gs(0)

ë
(mod zAR(η))
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for P =

Å
zIm1 0

0 Ir−m1

ã
. Here r = m1 + · · · + ms and It is the identity matrix of degree t. The

induced R-homomorphism ∂] : M/M ′ →M/M ′ is given by the matrix G1(0).

Proof of 10.3.4.17. We use the induction on the largest integral difference of exponents and its multiplicity.
By 10.3.4.15 we may assume thatM|Wη

is free for some η ∈ |K×|Q∩]0, ξ[. We have an OWη
-submodule

M′η ofM|Wη
such that exponents are improved by 10.3.4.18. Indeed, we apply 10.3.4.18 to an exponent

which is neither a positive integer nor 0 because of the condition c = 0. Since the support ofM|Wη
/M′η

is included in z = 0, one can glueM′η andM|W\{z=0}. Hence, the induction works. �

We use the same notation in 5◦. Considering an admissible affinoid covering of S, we may assume
that E|g−1

λ,µ
(S) is free for some µ ∈ |K×|Q∩ ]0, ξm] by 10.3.4.15 and, then, we can apply 10.3.4.17. Let

E ′ be a locally free Og−1
λ,ξm

(S)-submodule of E|g−1
λ,ξm

(S) which is stable under ∂] such that it satisfies the
condition (1), (2) and (3) in 10.3.4.17. Now we computation ate the difference of the local computation
of cohomology between E and E ′ by the module version of the second form of 10.3.4.8.2. If Eη =
Γ(g−1

λ,η(S), E) and E′η = Γ(g−1
λ,η(S), E), then E′⊗RR(η) = E⊗RR(η) by the condition (2) on the support

of E/E ′. The difference is computation ated by the complex

Tot

 E′η → Eη
∂] ↓ ↓ ∂]
E′η → Eη

 ∼= ï
Eη/E

′
η

∂]−→ Eη/E
′
η

ò
,

and it is 0 by (3). Hence, the vanishing 10.3.4.8.2 for E follows from the vanishing for E ′ by 5◦.

This completes the proof of Proposition 10.3.4.5.

Proof of Theorem 10.3.4.2. By the same reason of 0◦ in the proof of 10.3.4.5, we may assume c = 0 and
have only to prove the vanishing RgK∗Γ

†
]Z[X

(j†Y Ω•
X]
K
/SK

⊗j†
Y
O]X[X

E) = 0.

By the Čech spectral sequence the problem of the vanishing is local on X and Y as in 1◦ in the proof
of 10.3.4.5. We may assume that X is affine, D is defined by a single equation f = 0 in X for some
f ∈ Γ(X,OX), and there is a system of relative local coordinates z1, z2, · · · , zd ∈ Γ(X,OX) of X over
S such that each irreducible component Zi of the relative strict normal crossing divisor Z = ∪si=1 Zi is
defined by zi = 0. Let us denote by Zi (resp. X∗i ) the closed subscheme of X defined by zi = 0 (resp.
the complement of Zi in X).

Let us define ]Y [X,λ (resp. ]X∗i [X,λ, resp. [Zi]X,λ) as in 2◦ of the proof of 10.3.4.5 (resp. replacing Z,
Z by Zi, Zi).

By the hypothesis on (E,∇) there exist a strict neighborhood ]Y [X,ν of ]Y [X in ]X[X for some
ν ∈ |K×|Q∩ ]0, 1[ and a locally freeO]Y [X,ν -module E of finite type furnished with a logarithmic connection
∇ : E → (Ω1

X]
K
/SK
|]Y [X,ν ) ⊗O]Y [X,ν

E such that j†Y (E ,∇) = (E,∇), which satisfies the overconvergence
condition 10.3.2.4.1.

7◦ Induction on the number s of irreducible components of the strict normal crossing divisor Z.
If s = 0, then the assertion is trivial. Put Z ′ = ∪si=2 Zi. Applying the natural exact sequence

0 −→ Γ†]Z1[X
(H) −→ Γ†]Z[X

(H) −→ Γ†]Z′[X(j†X∗1
H) −→ 0

for a sheaf H of abelian groups on ]X[X (see the proof of [Ber96b, 2.1.7]), we have a triangle

RgK∗Γ
†
]Z′[X

(j†X∗1∩Y
Ω•

X]
K
/SK

⊗j†
X∗

1
∩YO]X[X

j†X∗1∩Y
E)

+1↙ ↖
RgK∗Γ

†
]Z1[X

(j†Y Ω•
X]
K
/SK

⊗j†
Y
O]X[X

E) −→ RgK∗Γ
†
]Z[X

(j†Y Ω•
X]
K
/SK

⊗j†
Y
O]X[X

E).

Hence we have only to prove the vanishing

RgK∗Γ
†
]Z1[X

(j†Y Ω•
X]
K
/SK

⊗j†
Y
O]X[X

E) = 0
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by the induction on s. If Z1 ⊂ D, the vanishing is trivial. Hence, we may assume that Z1 is not included
in D.

8◦ Reduction to the case of sections.
Let us denote the formal affine space of relative dimension r over S by ÂrS. By our hypothesis there

is a commutative diagram
Z1 −→ X
↓ ↓

Âd−1
S −→ ÂdS −→ Âd−1

S

(10.3.4.18.1)

of V-formal schemes such that the vertical arrow X→ ÂdS, which is étale, (resp. Z1 → Âd−1
S ) is induced

by z1, · · · , zd (resp. z2, · · · , zd) and the composition of bottom arrows is the identity. Since the diagonal
morphism ∆ : Z1 → Z1×Âd−1

S

Z1 is étale and a closed immersion, X̃ = Z1×Âd−1
S

X \ (Z1×Âd−1
S

Z1 \∆(Z1))

is an open formal subscheme of Z1 ×Âd−1
S

X. Let now us consider the commutative diagram

X̃
∆

↗ ↓
h

↘
Z1

∆−→ Z1 ×Âd−1
V

X −→
pr2

X

=↓ ↓
Z1 ←−

pr1

Z1 ×Âd−1
V

ÂdV

(10.3.4.18.2)

of formal S-schemes, and define h : X̃ → X (resp. g̃1 : X̃ → Z1, g̃′ : Z1 → S, resp. g̃ = g̃′ ◦ g̃1) as in
the diagram (resp. by the composition X̃ → Z1 ×Âd−1

V
X → Z1 ×Âd−1

V
ÂdV → Z1, resp. by the canonical

morphism, resp. by the composition). We identify ∆(Z1) (resp. ∆(Z1)) with Z1 (resp. Z1), and denote
the special fiber of X̃ (resp. the complement of Z1, resp. the inverse image of Y by h) by ‹X (resp. ‹X∗1 ,
resp. ‹Y ). Z1 is a smooth divisor over S and note that, étale locally, h−1(Z) is a relative normal crossing
divisor. X̃]K denotes the V-formal scheme with the logarithmic structure over SK which is induced by
the logarithmic structure of X]K , and Ω1

X̃]
K
/SK

denotes the sheaf of logarithmic Kähler differentials on

X̃]K over SK . Then h∗KΩ•
X]
K
/SK

∼= Ω•
X̃]
K
/SK

.

Let us define ]‹Y [
X̃,λ

(resp. ]‹X∗1 [
X̃,λ

, resp. [Z1]
X̃,λ

) as in 2◦ of the proof of 10.3.4.5.

Lemma 10.3.4.19. With the notation as above, we have

(a) h−1
K (]Z1[X) =]Z1[

X̃
.

(b) The restriction of hK gives an isomorphism ]Z1[
X̃

∼−→ ]Z1[X.

(c) Under the isomorphism in (2),

]‹Y [
X̃,λ
∩[Z1]

X̃,η

∼−→ ]Y [X,λ∩[Z1]X,η

for any λ, η ∈ |K×|Q∩]0, 1[.

Proof. Since (Z1 ×Âd−1
S

Z1 \ ∆(Z1)) is removed, we get (1). The other assertion (2) (resp. (3)) follow
from [Ber96b, 1.3.1] and the fact that h is étale (resp. and Z1 6⊂ D).

Proposition 10.3.4.20. With the notation as above, we have the followings.

(a) If H is a sheaf of Abelian groups on ]‹X[
X̃
, then

RhK∗Γ
†
]Z1[

X̃

(H) ∼= hK∗Γ
†
]Z1[

X̃

(H).
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(b) Let A and B be a sheaf of rings on ]X[X and ]‹X[
X̃
, respectively, with a morphism h−1

K A → B of rings
such that A|]Z1[X

∼−→ B|]Z1[
X̃

under the isomorphism in 10.3.4.19 (2). If H is an A-module, then
the adjoint map

Γ†]Z1[
X̃

(H)→ hK∗Γ
†
]Z1[

X̃

(B ⊗h−1
K
A h
−1
K H).

is an isomorphism of A-modules.

Proof. Let us define a functor

Γ†]Z1[
X̃
,η(H) = Ker

Å
H → lim

µ→η−
α

]X̃∗1 [
X̃,µ
∗(H|]X̃∗1 [

X̃,µ

)

ã
as in 2◦ of the proof of 10.3.4.5, where α

]X̃∗1 [
X̃,µ

:]‹X∗1 [
X̃,µ
→]‹X[

X̃
is the canonical open immersion. Then

the analog of 10.3.4.7 and 10.3.4.8 hold.
(1) Since Γ†]Z1[

X̃
,η(H)|]X∗1 [

X̃,η

= 0, we have RqhK∗Γ
†
]Z1[

X̃
,η(H) = 0 for any q ≥ 1 by 10.3.4.19 (2). Be-

cause the cohomological functor RqhK∗ commutes with filtered inductive limits by the quasi-compactness
and quasi-separateness of hK , we have

RqhK∗Γ
†
]Z1[

X̃

(H) ∼= RqhK∗

Å
lim
η→1−

Γ†]Z1[
X̃
,η(H)

ã
∼= lim

η→1−
RqhK∗Γ

†
]Z1[

X̃
,η(H) = 0

for any q ≥ 1 by 10.3.4.7.
(2) Since H|[Z1]X,η

∼−→ (B⊗h−1
K
A h
−1
K H)|[Z1]

X̃,η

, the assertion follows from 10.3.4.7 and 10.3.4.19.

Let (‹E,‹∇) be the inverse image of (E,∇) by hk, i.e.,‹E = h∗KE = j†
Ỹ
O

]X̃[
X̃

⊗h−1
K

(j†
Y
O]X[X

) h
−1
K E‹∇ : ‹E → j†

Ỹ
Ω1

X̃]
K
/SK

⊗j†
Ỹ

O
]X̃[

X̃

‹E,
where ‹∇ is the induced O]S[S-linear connection by ∇ because of the étaleness of h. We also de-
note the induced basis of Ω1

X̃]
K
/SK

by dz1
z1
, · · · , dzszs , dzs+1, · · · , dzd and the dual basis of derivations

by z1
∂
∂z1

, · · · , zs ∂
∂zs

, ∂
∂zs+1

, · · · , ∂
∂zd

.

Proposition 10.3.4.21. (a) If we put (Ẽ ,‹∇) = h∗K(E ,∇), then the natural morphism j†
Ỹ

(Ẽ ,‹∇) →
(‹E,‹∇) is an isomorphism.

(b) The derivation ∂̃]1 = ∇(z1
∂
∂z1

) on Ẽ satisfies the overconvergence condition 10.3.4.6.1.

Proof. (1) easily follows from the fact E is locally free.
(2) It is enough to check the overconvergence condition for pr∗2K(E ,∇) along z1 = 0. Fix a complete

K-algebra norm on the affinoid algebra associated to ]X[X. Then one can take a contractive complete
K-algebra norm on the affinoid algebra associated to ]Z1 ×Ad−1

k
X[Z1×

Âd−1
S

X [BGR84, 6.1.3, Prop. 3].

The induced norms ||-||X on Γ(]Y [X,λ, E) and ||-||Z1×X on Γ
(
pr−1

2K(]Y [X,λ),pr∗2KE
)
satisfy the inequality

||e||Z1×X ≤ ||e||X for any e ∈ Γ(]Y [X,λ, E). The overconvergence condition for pr∗2K(E ,∇) along z1 = 0
follows from the inequality.

Remark 10.3.4.22. The connection (Ẽ ,‹∇) satisfies the overconvergence condition 10.3.2.4.1. It should be
called a locally free log-isocrystal on X]K/SK overconvergent along ‹D.

Since (j†YO]X[X)|]Z1[X
∼−→ (j†

Ỹ
O

]X̃[
X̃

)|]Z1[
X̃

, we have

RgK∗Γ
†
]Z1[X

(j†Y Ω•
X]
K
/SK

⊗j†
Y
O]X[X

E) ∼= RgK∗(hK∗Γ
†
]Z1[

X̃

(j†
Ỹ

Ω•
X̃]
K
/SK

⊗j†
Ỹ

O
]X̃[

X̃

‹E))

∼= RgK∗RhK∗Γ
†
]Z1[

X̃

(j†
Ỹ

Ω•
X̃]
K
/SK

⊗j†
Ỹ

O
]X̃[

X̃

‹E)

∼= Rg̃K∗Γ
†
]Z1[

X̃

(j†
Ỹ

Ω•
X̃]
K
/SK

⊗j†
Ỹ

O
]X̃[

X̃

‹E)
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by 10.3.4.20. Hence we have only to prove the vanishing

Rg̃K∗Γ
†
]Z1[

X̃

(j†
Ỹ

Ω•
X̃]
K
/SK

⊗j†
Ỹ

O
]X̃[

X̃

‹E) = 0.

9◦ An argument of Gauss-Manin type.
Let Ωq0 (resp. Ωq1) be the freeO]X̃[

X̃

-submodule of Ωq
X̃]
K
/SK

generated by wedge products of dz2z2 , · · · ,
dzs
zs
, dzs+1, · · · , dzd

(resp. dz1
z1
∧ ω for ω ∈ Ωq−1

X̃]
K
/SK

). Then Ωq0
∼−→ Ωq+1

1 by ω 7→ dz1
z1
∧ ω. Define‹∇0 =

∑s
i=2

dzi
zi
⊗ ∂]i +

∑d
i=s+1 dzi ⊗ ∂i : ‹E → j†

Ỹ
Ω1

0 ⊗j†
Ỹ

O
]X̃[

X̃

‹E‹∇1 = id⊗ ∂]1 : j†
Ỹ

Ωq0 ⊗j†
Ỹ

O
]X̃[

X̃

‹E → j†
Ỹ

Ωq1 ⊗j†
Ỹ

O
]X̃[

X̃

‹E, (10.3.4.22.1)

where id is the identity of j†
Ỹ

Ωq0. The definition of ‹∇0 and ‹∇1 is independent of the choices of local

parameters z1, z2, · · · , zd of X over S as above. Then the exterior power of j†
Ỹ

Ω1
0 induces a complex

(j†
Ỹ

Ω•0 ⊗j†
Ỹ

O
]X̃[

X̃

‹E,‹∇0) and there is an isomorphism

j†
Ỹ

Ω•
X̃]
K
/SK
⊗j†

Ỹ

O
]X̃[

X̃

‹E ∼−→

[
(j†
Ỹ

Ω•0 ⊗j†
Ỹ

O
]X̃[

X̃

‹E,‹∇0)
∇̃1−→ (j†

Ỹ
Ω•1 ⊗j†

Ỹ

O
]X̃[

X̃

‹E, dz1

z1
∧ ‹∇0)

]
(10.3.4.22.2)

of complexes of O]S[S -modules. Note that ‹∇1 is the relative connection ‹E → j†
Ỹ

Ω1

X̃]
K
/Z]

1K

⊗j†
Ỹ

O
]X̃[

X̃

‹E
induced by ‹∇.

One can easily see that (‹E,‹∇1) satisfies the hypothesis (a) and (b) along z1 = 0 in 10.3.4.2 by
10.3.4.19 and the overconvergence condition in 10.3.4.5, so that

Rg̃1K∗Γ
†
]Z1[

X̃

([
j†
Ỹ

Ωq0 ⊗j†
Ỹ

O
]X̃[

X̃

‹E ∇̃1−→ j†
Ỹ

Ωq+1
1 ⊗j†

Ỹ

O
]X̃[

X̃

‹E]) = 0

for any q by 10.3.4.5. Hence,

Rg̃K∗Γ
†
]Z1[

X̃

(j†
Ỹ

Ω•
X̃]
K
/SK

⊗j†
Ỹ

O
]X̃[

X̃

‹E) = Rg̃′K∗Rg̃1K∗Γ
†
]Z1[

X̃

(j†
Ỹ

Ω•
X̃]
K
/SK

⊗j†
Ỹ

O
]X̃[

X̃

‹E) = 0.

This completes the proof of 10.3.4.2. �

Proposition 10.3.4.23. With the notation in 10.3.4.2, we assume furthermore that g : X→ S factors
through an irreducible component Z1 of Z by a smooth morphism g1 : X → Z1 over S such that the
composition g1 ◦ i1 : Z1 → Z1 of the closed immersion i1 : Z1 → X and g1 is the identity of Z1 and that
the inverse image of the relative strict normal crossing divisor Z′1 = ∪si=2 Z1∩Zi of Z1 by g1 is ∪si=2 Zi. Let
E be a locally free log-isocrystal on X]/SK overconvergent along D. Then, for any nonnegative integer
m, g1K∗‹∇0 (resp. g1K∗(

dz1
z1
∧ ‹∇0)) in 10.3.4.22.1 induces an integrable logarithmic O]S[S-connection of

the locally free j†Z1∩YO]Z1[Z1
-module g1K∗(E(mZ1)/E) (resp. g1K∗(j

†
Y Ω1

X]
K
/Z]

1K

⊗j†
Y
O]X[X

E(mZ1)/E)) of

finite type on Z]1K := (Z1K ,Z
′
1K)/SK which satisfies the overconvergence condition as a log-isocrystal on

(Z1 ∩ Y )]/SK overconvergent along Z1 ∩D.
Suppose furthermore that Z1 6⊂ D and that E satisfies the conditions (a) and (b) in 10.3.4.2. Then

Rg1K∗Γ
†
]Z1[X

(j†Y Ω•
X]
K
/Z]

1K

⊗j†
Y
O]X[X

E) ∼=
[
g1K∗(E(mZ1)/E)

g1K∗∇−→ g1K∗(j
†
Y Ω1

X]
K
/Z]

1K

⊗j†
Y
O]X[X

E(mZ1)/E)
]

[−1]

(10.3.4.23.1)
and g1K∗(E(mZ1)/E) (resp. g1K∗(j

†
Y Ω1

X]
K
/Z]

1K

⊗j†
Y
O]X[X

E(mZ1)/E)) also satisfies the same conditions

(a) and (b) for any m ≥ max{e | e is a positive integral exponent of ∇ along Z1} ∪ {0}.
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Proof. The locally freeness has been already proved at the beginning of the proof of 10.3.4.5. From
the definition of ‹∇0 in 10.3.4.22.1, it induces an integrable connection. Since Z1 is a section of X
over S, one can use on an affinoid open subset of ]Z1[Z1

a Banach norm induced by a Banach norm
on some affinoid open subset of ]X[X. Hence the logarithmic connections on g1K∗(E(mZ1)/E) and
g1K∗(j

†
Y Ω1

X]
K
/Z]

1K

⊗j†
Y
O]X[X

E(mZ1)/E) satisfy the overconvergence condition. Their exponents along Zi

are m copies of those of E by the definition of ‹∇0 for i 6= 1. Therefore, the conditions (a) and (b) also
hold.

Example 10.3.4.24. Let X be the formal projective scheme P̂1
V ×Spf V P̂1

V over S = Spf V with homoge-
neous coordinates (x0, x1), (y0, y1), let Z1 (resp. Z2) be the divisor defined by x1 = 0 (resp. y1 = 0) in X,
and put Z = Z1∪Z2 and X] = (X,Z). Let X (resp. Z, resp. Z1, resp. Z2) be the special fiber of X (resp.
Z, resp. Z1, resp. Z2), let D be a closed subscheme of X defined by x0 = 0 or y0 = 0, put Y = X \D,
and let z1 = x1/x0, z2 = y1/y0 be the affine coordinates. For integers e > 0 and h ≥ 0, we define a
locally free log-isocrystal E on X]K/SK of rank 2 overconvergent along D (E = j†YO]X[Xv1⊕ j†YO]X[Xv2)
by

∇(v1, v2) = (v1, v2)

Å
e zh2
0 e

ã
dz1

z1
+ (v1, v2)

Å
0 0
0 h

ã
dz2

z2

for some strict neighborhood of ]Y [X in ]X[X. Indeed, since the exponents along Z1 (resp. Z2) are e and e
(resp. 0 and h), the logarithmic connection satisfies the overconvergence condition and is overconvergent
along D. Moreover, it satisfies the conditions (a) and (b) in 10.3.4.2. If g1 : X → Z1 is the second
projection (note that the coordinate of Z1 ∩Y is z2), then

Rg1K∗Γ
†
]Z1[X

(j†Y Ω•
X]
K
/Z]

1K

⊗j†
Y
O]X[X

E)

∼=
ñ
g1K∗ (E(mZ1)/E)

gK∗(
dz1
z1
⊗∂]1)

−→ g1K∗(j
†
Y Ω1

X]
K
/Z]

1K

⊗j†
Y
O]X[X

E(mZ1)/E)

ô
[−1]

for m ≥ e by 10.3.4.5. Hence Rqg1K∗Γ
†
]Z1[X

(j†Y Ω•
X]
K
/Z]

1K

⊗j†
Y
O]X[X

E) = 0 for q 6= 1, 2 and

Rqg1K∗Γ
†
]Z1[X

(j†Y Ω•
X]
K
/Z]

1K

⊗j†
Y
O]X[X

E) ∼=
®
j†Z1∩YO]Z1[Z1

z−e1 v1 if q = 1,

(j†Z1∩YO]Z1[Z1
/zh2 j

†
Z1∩YO]Z1[Z1

)z−e1 v1 ⊕ j†Z1∩YO]Z1[Z1
z−e1 v2 if q = 2.

Therefore, R2g1K∗Γ
†
]Z1[X

(j†Y Ω•
X]
K
/Z]

1K

⊗j†
Y
O]X[X

E) is not always locally free. By 10.3.4.22.2 and using a
spectral sequence, the dimensions of total cohomology groups are as follow:

dimK Hq(]X[X,Γ
†
]Z1[X

(j†Y Ω•
X]
K
/SK

⊗j†
Y
O]X[X

E)) =


1 if q = 1,
2 if q = 2,
1 if q = 3,
0 if q 6= 1, 2, 3.

10.4 Theorems of full faithfulness for overconvergent isocrystals

10.4.1 Pullback -restriction functor
The proper descent theorem of Shiho (see [Shi07, 7.3]) implies that the canonical functor of the theorem
10.4.1.1 below is fully faithful. When we have a Frobenius structure, we will establish that this functor
induced an equivalence of categories (see 10.4.1.3).

Theorem 10.4.1.1. Let a : X(0) → X be a proper surjective morphism of k-varieties, Y a dense open
subset of X, j : Y ↪→ X the open immersion, Y (0) := a−1(Y ). The canonical functor

(a∗, j∗) : MIC†(Y,X/K)→ MIC†(Y (0), X(0)/K)×MIC†(Y (0),Y (0)/K) MIC†(Y, Y/K) (10.4.1.1.1)

is fully faithful.
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Proof. Since the canonical functor MIC†(Y,X/K)→ MIC†(Y, Y/K) is faithful, this yields that so is the
canonical functor of 10.4.1.1.1.

Let E1, E2 two objects of MIC†(Y,X/K). Denote by E
(0)
1 , E

(0)
2 (resp. “E1, “E2) the associated

objects of MIC†(Y (0), X(0)/K) (resp. MIC†(Y, Y/K)). Let α(0) : E
(0)
1 → E

(0)
2 be a morphism of

MIC†(Y (0), X(0)/K), β : “E1 → “E2 be a morphism of MIC†(Y, Y/K) such that α(0) and β induce canon-
ically the same morphism of MIC†(Y (0), Y (0)/K) of the form b∗(“E1) → b∗(“E2). We have to build a
morphism α : E1 → E2 of MIC†(Y,X/K) inducing α(0) and β.

Denote by b : Y (0) → Y the morphism induced by a and, for i = 1, 2, ai : X(0) ×X X(0) → X(0) and
bi : Y

(0) ×Y Y (0) → Y (0) the respectively left and right canonical projections. Consider the diagram of
MIC†(Y (0) ×Y Y (0), X(0) ×X X(0)/K) of left below

a∗1a
∗(E1)

∼

��

a∗1(E
(0)
1 )

a∗1(α(0))//

∼
��

a∗1(E
(0)
2 )

∼
��

a∗1a
∗(E2)

∼

��
a∗2a
∗(E1) a∗2(E

(0)
1 )

a∗2(α(0))// a∗2(E
(0)
2 ) a∗2a

∗(E2),

b∗1b
∗(“E1)

b∗1b
∗(β)//

∼
��

b∗1b
∗(“E2)

∼
��

b∗2b
∗(“E1)

b∗2b
∗(β)// b∗2b

∗(“E2)

(10.4.1.1.2)

whose vertical isomorphisms follow from the equality a ◦ a1 = a ◦ a2. By applying the canonical functor
of restriction MIC†(Y (0) ×Y Y (0), X(0) ×X X(0)/K)→ MIC†(Y (0) ×Y Y (0), Y (0) ×Y Y (0)/K) to the left
diagram of 10.4.1.1.2, we get the diagram to its right which is commutative by functoriality. Since this
functor is faithful, this yields then the commutativity of the left diagram of 10.4.1.1.2. By using proper
descent theorem of Shiho (see [Shi07, 7.3]), this yields the existence of one of the morphism α : E1 → E2

of MIC†(Y,X/K) inducing α(0) and β.

We will need later de Jong ’s desingularisation theorem in the following form:

10.4.1.2 (Desingularization of de Jong). Let X be a k-variety (always reduced by convention). Denote
by X1, . . . , Xr the irreducible components of X and i ∈ {1, . . . , r}. Let Z be a subvariety of X that do
not contain any Xi. Since k is perfect, since Xi is integral, following the de Jong ’s desingularisation
theorem (see [dJ96] or [Ber97a]), then there exists a projective, surjective, generically finite and etale
morphism fi : X

′
i → Xi such that X ′i is integral and smooth and f−1(Z∩Xi) is a normal crossing divisor

of X ′i. Denoting by X ′ the disjoint union of X ′i, this yields a projective, surjective morphism of the form
f : X ′ → X which is moreover generically finite and etale (i.e, there exists a dense open set Y of X such
that f−1(Y ) → Y is finite and etale) and such that f−1(Z) is the support a normal crossing divisor
strict of X ′.

With some Frobenius structures, we get thanks to theorem of full faithfulness of Kedlaya the theorem
below which extends [Éte02, Theorem 2]:

Theorem 10.4.1.3. Let a : X(0) → X be a proper surjective morphism of k-varieties, Y an open set of
X, Y (0) := a−1(Y ). The canonical functor

(a∗, j∗) : F -MIC†(Y,X/K)→ F -MIC†(Y (0), X(0)/K)×F -MIC†(Y (0),Y (0)/K) F -MIC†(Y, Y/K)
(10.4.1.3.1)

is an equivalence of categories.

Proof. (I) following 10.4.1.1, the functor is fully faithful. Denote by X(1) := X(0) ×X X(0), Y (1) :=
Y (0) ×Y Y (0), X(2) := X(0) ×X X(0) ×X X(0), Y (2) := Y (0) ×Y Y (0) ×Y Y (0) (following our conventions,
these fibered products are computed In the category of schemes reduced). For i = 1, 2, let us denote by
ai : X

(1) → X(0) the respectively left and right canonical projections.
(II) Let us establish now that this functor is essentiellement surjective.
Let (E(0), “E, ρ) an object of F -MIC†(Y (0), X(0)/K)×F -MIC†(Y (0),Y (0)/K)F -MIC†(Y, Y/K). Following

the de Jong ’s desingularisation theorem (of the form 10.4.1.2 and by recalling that X(1) is reduced by
convention), there exists a′ : X ′′ → X(1) be a morphism projective, surjective such that X ′′ is smooth.
Denote by Y ′′ := X ′′ \ a′−1(Y (1)), b′ : Y ′′ → Y (1) the morphism induced by a′, j′′ : Y ′′ ⊂ X ′′ and, for
i = 0, 1, 2, j(i) : Y (i) ⊂ X(i) the canonical open immersions. We denote by j′′∗ : F -MIC†(Y ′′, X ′′/K) →
F -MIC†(Y ′′, Y ′′/K) and j(i)∗ : F -MIC†(Y (i), X(i)/K)→ F -MIC†(Y (i), Y (i)/K) the functors restrictions.
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i) Construction of the glueing isomorphism θ : a∗2(E(0))
∼−→ a∗1(E(0)). To do so, we use the full

faithfulness (checked in the part (I) of the denoting by) of the canonical functor below denoted by

φ := (a′∗, j(1)∗) : F -MIC†(Y (1), X(1)/K)→ F -MIC†(Y ′′, X ′′/K)×F -MIC†(Y ′′,Y ′′/K) F -MIC†(Y (1), Y (1)/K).
(10.4.1.3.2)

For i = 1, 2, denote by ρi the canonical isomorphism j′′∗ ◦ a′∗[a∗i (E(0))]
∼−→ b′∗ ◦ j(1)∗[a∗i (E

(0))]. Hence,
the image of a∗i (E(0)) by φ is φ(a∗i (E

(0))) = (a′∗[a∗i (E
(0))], j(1)∗[a∗i (E

(0))], ρi).
We define canonically the isomorphisms θY (1) : j(1)∗[a∗2(E(0))]

∼−→ j(1)∗[a∗1(E(0))] and θ̂ : b∗2(j(0)∗(E(0)))
∼−→

b∗1(j(0)∗(E(0))) from ρ as that making commutative the canonical diagram below:

j(1)∗[a∗2(E(0))]

θ
Y (1)

��

∼ // b∗2(j(0)∗(E(0)))
∼

b∗2(ρ)
//

θ̂
��

b∗2(b∗(“E))

∼
��

j(1)∗[a∗1(E(0))]
∼ // b∗1(j(0)∗(E(0)))

∼
b∗1(ρ)

// b∗1(b∗(“E)).

(10.4.1.3.3)

We define canonically the isomorphism θY ′′ : j
′′∗a′∗[a∗2(E(0))]

∼−→ j′′∗a′∗[a∗1(E(0))] from ρ via the com-
mutative diagram :

j′′∗a′∗[a∗2(E(0))]

θY ′′

��

∼
ρ2

// b′∗j(1)∗[a∗2(E(0))]

∼b′∗(θ
Y (1) )

��
j′′∗a′∗[a∗1(E(0))]

∼
ρ1

// b′∗j(1)∗[a∗1(E(0))].

(10.4.1.3.4)

Since X ′′ is smooth, following the theorem [Ked08, 4.2.1], the functor j′′∗ is fully faithful. Then there
exists one and only one isomorphism θ′′ : a′∗a∗2(E(0))

∼−→ a′∗a∗1(E(0)) such that j′′∗(θ′′) = θY ′′ . It follows
from the commutativity of 10.4.1.3.4, that (θ′′, θY (1)) induced an isomorphism of the form φ(a∗2(E(0)))

∼−→
φ(a∗1(E(0))). By full faithfulness of φ, we get an isomorphism θ : a∗2(E(0))

∼−→ a∗1(E(0)) such that a′∗(θ) =
θ′′ and j(1)∗(θ) = θY (1) .

ii) Let us check now that θ satisfies the cocycle condition. Moreover, it is sufficient to check after
applying the functor j(2)∗ since this is faithful. Since j(1)∗(θ) = θY (1) , this is a consequence of the
construction of θY (1) (see 10.4.1.3.3).

iii) By using proper descent theorem of Shiho (see [Shi07, 7.3]), this yields the existence of an object
E ∈ F -MIC†(Y,X/K) (unique up to canonical isomorphism) and of an isomorphism ρ(Y (0),X(0)) : a∗(E)

∼−→
E(0) which can be included in the commutative diagram

a∗2a
∗(E)

∼
a∗2ρ(Y (0),X(0))

//

∼
��

a∗2(E(0))

∼θ

��
a∗1a
∗(E)

∼
a∗1ρ(Y (0),X(0))

// a∗1(E(0)).

(10.4.1.3.5)

We define the isomorphism ρ(Y (0),Y (0)) : b∗j∗(E)
∼−→ b∗“E via the commutative diagram :

j(0)∗a∗(E)
∼

j(0)∗ρ
(Y (0),X(0))

//

∼ρcan

��

j(0)∗(E(0))

∼ρ

��
b∗j∗(E)

∼
ρ

(Y (0),Y (0))

// b∗“E,
(10.4.1.3.6)

where ρcan is the canonical isomorphism. Consider now the “cube A” whose face of the front side is the
image by the functor b∗2 of 10.4.1.3.6, the face of the back is the image by the functor b∗1 of 10.4.1.3.6,
the right face corresponds to the right square of 10.4.1.3.3 and whose isomorphisms of the left face are
canonical. The left face of the cube A is canonically commutative. The right side (resp. of the front side,
resp. of the back side) the is by definition. To ensure the commutativity of the cube A, then it is sufficient
to validate that of the top face. For this Consider the “cube B” whose face of the bottom is the face of
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the top of the cube A, whose face of the top is the image by j(1)∗ of the commutative square 10.4.1.3.5,
whose face of the front side (resp. of the back side) is the commutative square by functoriality in the
isomorphism j(1)∗ ◦a∗2

∼−→ b∗2 ◦ j(0)∗ (resp. j(1)∗ ◦a∗1
∼−→ b∗1 ◦ j(0)∗). We remark that the right face of the

cube B is the left square of 10.4.1.3.3 (this has a meaning since j(1)∗(θ) = θY (1)). Hence it is commutative.
That of the left face of the cube B can be checked canonically. The cube B is then commutative. Hence
so is the cube A. Hence, the face of the bottom of the cube A is commutative, i.e., the isomorphism
ρ(Y (0),Y (0)) : b∗j∗(E)

∼−→ b∗“E commutes with glueing data. This yields there exists an isomorphism
ρ(Y,Y ) : j∗(E)

∼−→ “E such that ρ(Y (0),Y (0)) = b∗(ρ(Y,Y )). The commutativity of the diagram 10.4.1.3.6
means then that we have the isomorphism (ρ(Y (0),X(0)), ρ(Y,Y )) : (a∗(E), j∗(E), ρcan)

∼−→ (E(0), “E, ρ).
Hence we are done.

10.4.2 Restriction functor
Theorem 10.4.2.1. Let X be a k-variety, Y an open set of X and j : Y ↪→ X the corresponding open
immersion. The functor j∗ : F -MIC†(Y,X/K)→ F -MIC†(Y, Y/K) is fully faithful.

Proof. Since the faithfulness is well known, then it remains to prove that this one is full. Following
the de Jong ’s desingularisation theorem (of the form 10.4.1.2), there exists a morphism projective,
surjective, generically finite and etale of k-varieties of the form a : X(0) → X such that X(0) is smooth.
Let Y (0) := a−1(Y ). Let E1, E2 ∈ F -MIC†(Y,X/K) and φ̂ : j∗E1 → j∗E2. Moreover, since X(0)

is smooth, the canonical functor F -MIC†(Y (0), X(0)/K) → F -MIC†(Y (0), Y (0)/K) is fully faithful (see
[Ked08, 4.2.1]). The morphism φ̂ induced then canonically a morphism φ(0) : a∗(E1)→ a∗(E2). Following
theorem 10.4.1.3 there exists a morphism φ : E1 → E2 inducing φ(0) and φ̂.

Remark 10.4.2.2. N. Tsuzuki conjecture (see the conjecture [Tsu02, 1.2.1]) that the functor j∗ of 10.4.2.1
remains fully faithful without Frobenius structure.

10.4.3 Localisation and inverse image-localisation functors
10.4.3.1 (Reminders over the functor extension). Let X be a variety over k, Y an open set of X
with Y normal, ‹Y a dense open subset of Y , j̃ : ‹Y ↪→ X the corresponding open immersion. Tsuzuki
has proved in [Tsu09] t (see also [Tsu02, 4.1.1], [Ked07, 5.2.1] for previous versions) hat the canonical
functor j̃† : MIC†(Y,X/K) → MIC†(‹Y ,X/K) is fully faithful. This theorem was previously established
by Tsuzuki whenX is smooth (see [Tsu02, 4.1.1]), next extended by Kedlaya when Y is smooth in [Ked07,
5.2.1] (we will not need that in the case where the variety is smooth). We denote by MIC†(‹Y ⊂ Y,X/K)

the essential image of the functor j̃† : MIC†(Y,X/K)→ MIC†(‹Y ,X/K).

The lemma below is obvious considering the paragraph 10.4.3.1 and of its notations.

Lemma 10.4.3.2. Let a : X(0) → X be a proper surjective generically finite and etale morphism of
integral k-varieties, Y of X, ‹Y a dense open subset of Y , j̃ : ‹Y ↪→ X the corresponding open immersion,
Y (0) := a−1(Y ), ‹Y (0) := a−1(‹Y ). We suppose moreover Y and Y (0) smooth. The canonical functor

(a∗, j̃†) : MIC†(Y,X/K)→ MIC†(Y (0), X(0)/K)×
MIC†(Ỹ (0),X(0)/K)

MIC†(‹Y ⊂ Y,X/K) (10.4.3.2.1)

is an equivalence of categories.
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Chapter 11

Arithmetic D-modules associated with
overconvergent isocrystals: the lifted
case with divisorial singularities

11.1 Convergent log-isocrystals as arithmetic D-modules
Let S] be a nice fine V-log formal scheme (see definition 3.3.1.10). Moreover, let Y] → S] be a log
smooth morphism of log formal schemes. We suppose the underlying formal scheme X is p-torsion free,
noetherian of finite Krull dimension. For any integer i ≥ 0, set Y ]i := Y] ×Spf V Spec(V/πi+1V).

11.1.1 The category MIC††(Y]/S) of convergent log-isocrystals
Proposition 11.1.1.1. Let E be a left DY]/S],Q-module which is coherent as OY,Q-module. The following
conditions are equivalent.

(a) The structure of left DY]/S],Q-module extends to a structure of left D†
Y]/S],Q-modules.

(b) For any open U] endowed with logarithmic coordinates, for each η < 1, for all e ∈ Γ(U], E), the
following convergent condition holds

‖∂[k]
] (e)‖η|k| → 0, as |k| → ∞, (11.1.1.1.1)

where Γ(U], E) is endowed with the topology given by its structure of Γ(U,OY,Q)-module of finite type.

Proof. Suppose (b) holds. Let U] ⊂ Y] be an affine open endowed with logarithmic coordinates. Let
P ∈ Γ(U,D†

Y]/S],Q). Then P can be written of the form P =
∑
k ak∂

[k]
] with ak ∈ Γ(U,OY,Q) satisfying

the growth condition of Proposition 8.7.1.8.(c). Hence, for any e ∈ Γ(U, E), the convergence condition
11.1.1.1.1 implies that ak∂

[k]
] (e) → 0 as |k| → ∞. This yields we can define P (e) as the sum of the serie

P (e) =
∑
k ak∂

[k]
] (e). This gives a pairing

Γ(U,D†
Y]/S],Q)× Γ(U, E)→ Γ(U, E)

and a canonical structure of D†
Y]/S],Q-module on the given OY,Q-module E which extends the structure

of DY]/S],Q-module.
Suppose (a) holds. Take η < 1 and let U] be an affine open endowed with logarithmic coordinates.

By 8.7.1.7 and with notation 1.2.1.3.1, there exists m ∈ N such that η|k| < ck|q(m)
k !|, with ck → 0. As

q
(m)
k !∂

[k]
] = ∂

〈k〉(m)

] , it suffices to show that, for any m and any e ∈ Γ(U, E) = E, the elements ∂〈k〉(m)

] (e),
k ∈ Nd, form a bounded family in E for its natural topology of an AQ-module of finite type.
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Write “D(m)

U]/S],Q = Γ(U, “D(m)

Y]/S],Q). Take P =
∑
ak∂

〈k〉
] with ak → 0. We extend the Banach norm

‖ · ‖ on AQ = Γ(U,OY,Q) to “D(m)

U]/S],Q by setting ‖P‖ = sup ‖ak‖. As the topology on E as AQ-module of

finite type coincides with its topology as “D(m)

U]/S],Q-module of finite type (see 7.5.2.6), the elements ∂〈k〉(m)

]

form a bounded family in “D(m)

U]/S],Q, the same holds for their images under the map “D(m)

U]/S],Q → E given
by P 7→ P (e).

Corollary 11.1.1.2. Suppose that S → Spf V is smooth, and suppose there exist a smooth S-formal
scheme Y, a relative strict normal crossing divisor Z of Y over S, such that Y] = (Y,MZ) is the
logarithmic V-formal scheme whose underlying logarithmic structureMZ is the one associated with Z. We
have the morphism of ringed spaces sp: (YK ,OYK

)→ (Y,OY,Q) induced by the specialization morphism.
We get the inverse image functor sp∗ by setting sp∗(E) := OYK

⊗sp−1OY,Q
sp−1(E), for any OY,Q-modules

E.
The functors sp∗ and sp∗ induce quasi-inverse equivalences between the category of (locally free)

coherent OYK
-modules together with a convergent logarithmic connection relative to Y]

K/SK and that
of left D†

Y]/S,Q-modules which are (locally projective) coherent as OY,Q-module.

Proof. This is a consequence of 11.1.1.1 and of the fact that the convergent condition 10.3.2.5 corresponds
to that of 11.1.1.1.1..

Notation 11.1.1.3. We denote by MIC††(Y]/S]) the full subcategory of the category of DY]/S],Q-
modules consisting of D†

Y],Q-modules which are OY,Q-coherent. Its objects are called “convergent log-
isocrystals on Y]/S]”. When log structures are trivial, we drop log, i.e. we say “convergent isocrystals on
Y/S”. Remark that any morphism E → E ′ of MIC††(Y]/S]) is D†

Y]/S],Q-linear. Indeed, for any affine
open formal subscheme U ⊂ Y, the morphism Γ(U, E) → Γ(U, E ′) is continuous for the Banach space
topology.

Proposition 11.1.1.4. Let E be a left DY]/S],Q-module which is locally projective of finite type over
OY,Q. The object E is a convergent log-isocrystal on Y]/S] if and only if the structure of DY∗,Q-module
of E|Y∗ extends to a structure of coherent D†Y∗,Q-module.

Proof. By using the translation 11.1.1.1.(b) of the objects of MIC††(Y]/S]), we reduce to copy 10.3.2.7.

Proposition 11.1.1.5. Let E be a D(m)

Y]/S]
-module, coherent as OY-module.

(a) If Y is affine then E is globally of finite presentation on D(m)

Y]/S]
.

(b) The sheaf E is coherent on D(m)

Y]/S]
.

(c) The canonical homomorphism E → “D(m)

Y]/S]
⊗D(m)

Y]/S]

E is an isomorphism.

Proof. This is a particular case of 7.5.2.1.

Proposition 11.1.1.6. Let E be an object of MIC††(Y]/S]). Let m be an integer.

(a) There exists a p-torsion free “D(m)

Y]/S]
-module

◦
E, coherent over OY together with a “D(m)

Y]/S],Q-linear

isomorphism
◦
EQ

∼−→ E.

(b) The sheaf E is a coherent DY]/S],Q-module and a coherent “D(m)

Y]/S],Q-module. Moreover, the canonical

homomorphism E → “D(m)

Y]/S],Q ⊗DY]/S],Q
E is an isomorphism.

(c) The sheaf E is a coherent D†
Y]/S],Q-module and the canonical homomorphisms E → D†

Y]/S],Q⊗DY]/S],Q

E is an isomorphism.
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Proof. The assertion (a) (resp. (b)) is a particular case of 7.5.2.8.(a) (resp. 7.5.2.8.(b)). Taking the
inductive limit on the level, we get the last statement.

Proposition 11.1.1.7 (Theorem A). We assume that Y] is affine and Y]/S] has coordinates. Set
A := Γ(Y,OY), DY]/S] := Γ(Y,DY]/S]) and D†

Y]/S]
:= Γ(Y,D†

Y]/S]
). We denote by MIC†(AK/K)

the category of coherent D†
Y]/S],K

-module which are also coherent as AK-module.

(a) The functors D†
Y]/S],Q⊗D†

Y]/S],K

− and Γ(Y,−) are quasi-inverse equivalences between MIC†(AK/K)

and MIC††(Y]/S]).

(b) For any E ∈ MIC†(AK/K), the canonical morphisms

E → D†
Y]/S],Q ⊗DY]/S],Q

E, OY,Q ⊗AK E → D
†
Y]/S],Q ⊗D†

Y]/S],Q

E (11.1.1.7.1)

are isomorphisms.

Proof. 1) Let E ∈ MIC††(U/V). It follows from Theorem of type A for coherent D†U,Q-modules and
coherent OU,Q-modules that Γ(U, E) ∈ MIC†(AK/K) (recall also definition 11.1.1.3).

2) Let E ∈ MIC†(AK/K). Let us check that both morphisms of 11.1.1.7.1 are isomorphisms. By
copying the demonstration of 11.1.1.1, we prove that for all η < 1, for all e ∈ E, we have

‖ ∂[k] · e ‖ η|k| → 0 for |k| → ∞, (11.1.1.7.2)

where ‖ − ‖ denotes a Banach norm on E defined by its structure of Γ(Y,OY,Q)-module of finite type.
This condition 11.1.1.7.2 is the convergence condition 10.3.2.4.1 (still valid without log structures). By
copying the proof of 11.1.1.6, we then deduce that, for all m ∈ N, there exists a Γ(Y, “D(m)

Y]/S]
)-module

◦
E(m), which is furthermore a Γ(Y,OY)-module of finite type together with an isomorphism

◦
E

(m)
Q

∼−→ E.
Now, it follows by p-adic completion from 4.3.4.6.1 that the canonical morphism

OY“⊗Γ(Y,OY)

◦
E(m) → “D(m)

Y]/S]
“⊗

Γ(Y,D(m)

Y]/S]
)

◦
E(m)

is an isomorphism. Since
◦
E(m) is of finite type as Γ(Y,OY)-module and therefore as Γ(Y,D(m)

Y]/S]
)-

module, the morphisms

OY ⊗Γ(Y,OY)

◦
E(m) → OY“⊗Γ(Y,OY)

◦
E(m), “D(m)

Y]/S]
⊗

Γ(Y,D(m)

Y]/S]
)

◦
E(m) → “D(m)

Y]/S]
“⊗

Γ(Y,D(m)

Y]/S]
)

◦
E(m)

are also isomorphisms. The morphism OY ⊗Γ(Y,OY)

◦
E(m) → “D(m)

Y]/S]
⊗

Γ(Y,D(m)

Y]/S]
)

◦
E(m) is therefore an

isomorphism. Tensoring this isomorphism with Q and taking the inductive limit on m, this implies the
canonical morphism:

OY,Q ⊗Γ(Y,OY,Q) E → D†P,Q ⊗Γ(Y,D
Y]/S],Q) E (11.1.1.7.3)

is an isomorphism. Now, as
◦
E(m) is separated complete and of finite type as Γ(Y,D(m)

Y]/S]
)-module, the

morphism
◦
E(m) → Γ(Y, “D(m)

Y]/S]
) ⊗

Γ(Y,D(m)

Y]/S]
)

◦
E(m) is an isomorphism. Tensoring with Q and taking

the inductive limit on m, it follows that the canonical morphism

E → Γ(Y,D†
Y]/S],Q)⊗Γ(Y,D

Y]/S],Q) E (11.1.1.7.4)

is an isomorphism and we have checked the first isomorphism of 11.1.1.7.1. From 11.1.1.7.3 and 11.1.1.7.4,
we get the canonical morphism

OY,Q ⊗Γ(Y,OY,Q) E → D†Y]/S],Q ⊗Γ(Y,D†
Y]/S],Q

) E (11.1.1.7.5)

is an isomorphism, and we are done.
3) Let E ∈ MIC†(AK/K). Thanks to the isomorphism 11.1.1.7.1, it follows from Theorem of type A

for coherent D†U,Q-modules and coherent OU,Q-modules that E := D†U,Q ⊗D†
U,K

E ∈ MIC††(Y]/S]).
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Corollary 11.1.1.8. We assume that Y] is affine and Y]/S] has coordinates. Let E be a coherent
D†

Y]/S],Q-module. Then E is OY,Q-coherent if and only if Γ(Y, E) is a Γ(Y,OY,Q)-module of finite type.

Proposition 11.1.1.9. Suppose that S→ Spf V is smooth, and suppose there exist a smooth S-formal
scheme Y, a relative strict normal crossing divisor Z of Y over S, such that Y] = (Y,MZ) is the
logarithmic V-formal scheme whose underlying logarithmic structure MZ is the one associated with Z.

Let E be a left DY]/S,Q-module which is locally projective of finite type on OY,Q. The following
conditions are equivalent:

(a) E is a convergent log-isocrystal on Y]/S (in the sense of 11.1.1.3) ;

(b) the structure of OY(†Z)Q ⊗OY,Q DY]/S,Q-module of OY(†Z)Q ⊗OY,Q E extends to a structure of
coherent D†

Y]/S
(†Z)Q-module.

Proof. Since D†
Y]/S

(†Z)Q|Y∗ = D†Y∗/S,Q, then by using 11.1.1.4 we get the implication (b) ⇒ (a).

Conversely, suppose E be an object of MIC††(Y]/S). Since E is a topologically nilpotent “D(m)

Y]/S,Q-
module which is coherent over OY,Q (use 11.1.1.6 and 7.5.2.7), then it follows from 7.5.2.8.2 that the
canonical homomorphism

B(m)
Y (Z)Q ⊗OY,Q E → (B(m)

Y (Z)“⊗OY,Q
“D(m)

Y]/S
)Q ⊗D̂(m)

Y]/S,Q

E

is an isomorphism. Taking the limit, this yields that the canonical homomorphism

OY(†Z)Q ⊗OY,Q E → D
†
Y]/S

(†Z)Q ⊗D†
Y]/S,Q

E

is an isomorphism. Hence, we are done.

We finish the section with the following Lemmas which completes Theorems 11.1.1.2 and 11.1.1.6.
They will also be useful in order to prove Berthelot’s Theorem 11.2.1.12.

Lemma 11.1.1.10. Let m0 ∈ N, E(m0) be a coherent “D(m0)

Y]/S],Q-module. We put for any m ≥ m0,

E(m) := “D(m)

Y]/S],Q ⊗D̂(m0)

Y]/S],Q

E(m0), and E := D†
Y]/S],Q ⊗D̂(m0)

Y]/S],Q

E(m0).

If E is OY,Q-coherent, then there exists m1 ≥ m0 such that for any m ≥ m1 the canonical homomor-
phism E(m) → E is an isomorphism.

Proof. This is a consequence of Proposition 8.4.1.11 and of 11.1.1.6.

Lemma 11.1.1.11. Let E be a coherent D†
Y]/S],Q-module which is OY,Q-coherent, and

◦
E be a p-torsion

free coherent “D(m)

Y]/S]
-module together with a “D(m)

Y]/S],Q-linear isomorphism of the form E ∼−→
◦
EQ. Then

◦
E is OY-coherent and

◦
E/πi+1

◦
E is a nilpotent “D(m)

Y ]
i
/S]
i

-module (see definition 4.2.1.11).

Proof. Since E is a topologically nilpotent “D(m)

Y]/S],Q-module and is OY,Q-coherent (use 11.1.1.6), this is
a particular case of 7.5.2.9.

11.1.2 The category MIC(•)(Y]/S])

Notation 11.1.2.1. Below are some categories:

(a) According to 8.1.5.1, we denote byM(O(•)
Y ) the category of O(•)

Y -modules. We get a canonical functor

cst : M(OY) → M(O(•)
Y ) defined by F 7→ F (•) so that F (m) → F (m+1) is the identity of F . Since

this functor is exact, this yields the t-exact functor cst : D(OY)→ D(O(•)
Y ). According to 8.1.5.1, we

have the notion of ind-isogenies (resp. of lim-ind-isogenies) of M(O(•)
Y ). Following 8.4.3.4, we denote

by LM−−→Q,coh(O(•)
Y ) the category localized by lim-ind-isogenies. We remark that LM−−→Q,coh(O(•)

Y ) is the

subcategory of LM−−→Q(O(•)
Y ) consisting of objects which are locally isomorphic to an object of the

form cst(G) where G is a coherent OY-module (use 8.4.2.1 and 8.4.3.2).
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(b) Following notation 11.1.1.3, we denote by MIC††(Y]/S]) the category of D†
Y]/S],Q-modules which

are also OY,Q-coherent. Recall these objects are necessarily D†
Y]/S],Q-coherent (see 11.1.1.6), and

when S] = Spf V and log structures are trivial, they are OY,Q-locally projective of finite type. We
denote by MIC(•)(Y]/S]) the full subcategory of LM−−→Q,coh(“D(•)

Y]/S]
) consisting of objects E(•) such

that→l
∗
QE

(•) are OY,Q-coherent.

Remark 11.1.2.2. Let E ∈ MIC††(Y]/S]). Let ‹D := D†
Y]/S],Q or ‹D := “D(m)

Y]/S],Q. Let D := DY]/S],Q

or D := “D(0)

Y]/S],Q. By using the isomorphisms of 11.1.1.6.(b-c), we check that both morphisms E →‹D ⊗D E → E are isomorphisms. This yields that the first morphism is in fact ‹D-linear. Hence, if F is a‹D-module, then any D-linear morphism E → F is necessarily ‹D-linear.
Lemma 11.1.2.3. Let F (m) be a coherent “D(m)

Y]/S]
-module and f : F (m) → F (m) be a V-linear morphism

such that fQ : F (m)
Q → F (m)

Q is equal to pN id for some N ∈ N. Then, for N ′ ∈ N large enough, we have
pN
′
f = pN

′+N id.

Proof. Since X is quasi-compact and F (m) is a coherent “D(m)

Y]/S]
-module, then the p-torsion part of F (m)

is killed by some power of p. Hence, we are done.

Proposition 11.1.2.4. Let E ∈ MIC††(Y]/S]). Let F (0) be a “D(0)

Y]/S]
-module, coherent over OY

together with an isomorphism of “D(0)

Y]/S],Q-modules of the form F (0)
Q

∼−→ E. For any m ∈ N, let G(m) be

the quotient of “D(m)

Y]/S]
⊗D̂(0)

Y]/S]

F (0) by its p-torsion part. The following conditions hold.

(a) The module G(m) is OY-coherent.

(b) The first (resp. second) canonical morphism

F (0) → “D(m)

Y]/S]
⊗D̂(0)

Y]/S]

F (0) → G(m)

is an isogeny in the category of “D(0)

Y]/S]
-modules (resp. of coherent “D(m)

Y]/S]
-modules).

(c) “D(•)
Y]/S]

⊗D̂(0)

Y]/S]

F (0) ∈ MIC(•)(Y]/S]) and→l
∗
Q (“D(•)

Y]/S]
⊗D̂(0)

Y]/S]

F (0))
∼−→ E.

Proof. a) Following 11.1.2.2, the canonical morphism E → “D(m)

Y]/S],Q ⊗D̂(0)

Y]/S],Q

E is an isomorphism of“D(m)

Y]/S],Q-modules. The isomorphism F (0)
Q

∼−→ E of “D(0)

Y]/S],Q-modules induces the last isomorphism of“D(m)

Y]/S],Q-modules G(m)
Q

∼−→ “D(m)

Y]/S],Q ⊗D̂(0)

Y]/S],Q

F (0)
Q

∼−→ “D(m)

Y]/S],Q ⊗D̂(0)

Y]/S],Q

E . Using 11.1.1.11, this

yields G(m) is OY-coherent.
b) i) Let us denote by α(m) : “D(m)

Y]/S]
⊗D̂(0)

Y]/S]

F (0) → G(m) the canonical epimorphism of coherent“D(m)

Y]/S]
-modules. Since α(m) is a morphism of coherent “D(m)

Y]/S]
-modules which is an isomorphism after

tensoring by Q, then this is an isogeny in the category of “D(m)

Y]/S]
-modules (use 7.4.5.2).

ii) Let ι(m) : F (0) → “D(m)

Y]/S]
⊗D̂(0)

Y]/S]

F (0) be the canonical morphism. It remains to check that

ι(m) is an isogeny. Using b.i) in the case m = 0, we get a morphism β(0) : G(0) → F (0) of coher-
ent “D(0)

Y]/S]
-modules such that α(0) ◦ β(0) = pN id and β(0) ◦ α(0) = pN id for some integer N . Since

the canonical morphism E → “D(m)

Y]/S],Q ⊗D̂(0)

Y]/S],Q

E is an isomorphism, then the canonical morphism

G(0)
Q → “D(m)

Y]/S],Q ⊗D̂(0)

Y]/S],Q

G(0)
Q is an isomorphism. Since the canonical morphism “D(m)

Y]/S],Q ⊗D̂(0)

Y]/S],Q

G(0)
Q → G(m)

Q is an isomorphism, this yields by composition that the canonical “D(0)

Y]/S]
-linear mor-

phism G(0) → G(m) is an isomorphism after tensoring by Q. Let us denote by γ(m) : G(0) → G(m)
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this morphism and by γ
(m)
Q : G(0)

Q
∼−→ G(m)

Q the induced isomorphism. Since γ(m) is “D(0)

Y]/S]
-linear

(and then OY-linear), since G(m) is OY-coherent and G(0) is p-torsion free, then, for N ′ large enough,
pN
′
(γ

(m)
Q )−1 induces the morphism δ(m) : G(m) → G(0) of “D(0)

Y]/S]
-modules. We get κ(m) := β(0) ◦ δ(m) ◦

α(m) : “D(m)

Y]/S]
⊗D̂(0)

Y]/S]

F (0) → F (0). Using the Lemma 11.1.2.3, increasing N or N ′ if necessary in the

construction of κ(m), we get ι(m) ◦ κ(m) = pN+N ′ id and κ(m) ◦ ι(m) = pN+N ′ id. Hence, this morphism
ι(m) : F (0) → “D(m)

Y]/S]
⊗D̂(0)

Y]/S]

F (0) is an isogeny in the category of “D(0)

Y]/S]
-modules.

c) Finally →l
∗
Q (“D(•)

Y]/S]
⊗D̂(0)

Y]/S]

F (0))
∼−→ D†

Y]/S],Q ⊗D̂(0)

Y]/S]
,Q
F (0)

Q . Following the first part, the

canonical morphism F (0)
Q → D†

Y]/S],Q ⊗D̂(0)

Y]/S]
,Q
F (0)

Q is an isomorphism. We endow F (0)
Q with the

structure of D†
Y]/S],Q-module making D†

Y]/S],Q-linear the isomorphism F (0)
Q

∼−→ E . Following the

remark 11.1.2.2, this yields that the canonical isomorphism F (0)
Q → D†

Y]/S],Q ⊗D̂(0)

Y]/S]
,Q
F (0)

Q is in fact

D†
Y]/S],Q-linear. Hence, we get the isomorphism D†

Y]/S],Q ⊗D̂(0)

Y]/S]
,Q
F (0)

Q
∼−→ E of MIC††(Y]/S]).

Corollary 11.1.2.5. Let E(•) ∈ LM−−→Q(“D(•)
Y]/S]

). The following conditions are equivalent:

(a) The object E(•) belongs to MIC(•)(Y]/S]).

(b) There exists a “D(0)

Y]/S]
-module F (0), coherent over OY such that

(i) “D(•)
Y]/S]

⊗D̂(0)

Y]/S]

F (0) is isomorphic in LM−−→Q(“D(•)
Y]/S]

) to E(•)

(ii) and the canonical morphism cst(F (0))→ “D(•)
Y]/S]

⊗D̂(0)

Y]/S]

F (0) is an ind-isogeny in M(O(•)
Y ).

Moreover, when E(•) ∈ MIC(•)(Y]/S]), we can choose such F (0) without p-torsion.

Proof. Let E :=→l
∗
QE

(•) be the corresponding D†
Y]/S],Q-module. If such F (0) exists, then E is in par-

ticular OY,Q-coherent and then by definition E(•) ∈ MIC(•)(Y]/S]). Conversely, suppose E(•) ∈
MIC(•)(Y]/S]). Then E is a D†

Y]/S],Q-module which is also OY,Q-coherent. Using 11.1.1.6, there exists

a coherent “D(0)

Y]/S]
-module F (0) without p-torsion, coherent over OY together with an isomorphism of“D(0)

Y]/S],Q-modules E ∼−→ F (0)
Q . Hence, we conclude by using 11.1.2.4.

11.1.3 Stability under inverse images of convergent log-isocrystals
Let f : Y′] → Y] be a morphism of log smooth over S] log formal schemes.
Remark 11.1.3.1. This subsection is a particular case of 11.2.3 (when the divisor is empty). We have also
stability under tensor products and duality of convergent isocrystals (see 11.2.4, 11.2.5 in the particular
case where the divisor is empty). The convergent statements are left to the reader.

11.1.3.2. Let E(•) ∈M(“D(•)
Y]/S]

). With similar to 9.2.1.8.1 notation (with locally projective isocrystals,

we prefer to work with f∗ instead of f !), we get the functor f∗(•)alg : M(“D(•)
Y]/S]

)→M(“D(•)
Y′]/S]

) by setting

f
∗(•)
alg (E(•)) := “D(•)

Y′]→Y]/S]
⊗
f−1D̂(•)

Y/S

f−1E(•). By left deriving the functor f∗(•)alg , this yields the func-

tor Lf∗(•)alg : D−(“D(•)
Y]/S]

) → D−(“D(•)
Y′]/S]

), defined by setting Lf∗(•)alg (F (•)) := “D(•)
Y′]→Y]/S]

⊗L
f−1D̂(•)

Y]/S]

f−1F (•) for any F (•) ∈ D−(“D(•)
Y]/S]

). Since it preserves lim-ind-isogenies, this induces the functor

Lf∗(•)alg : LD−→
−
Q (“D(•)

Y]/S]
)→ LD−→

−
Q (“D(•)

Y′]/S]
). Remark Lf∗(•)alg = f

(•)!
alg [−df ] where f (•)!

alg is the functor defined
at 9.2.4.11.1 in the case where the divisors are empty and φ = id.

Following notation 9.2.1.15.3, we set Lf∗(•)(F (•)) := “D(•)
Y′]→Y]/S]

“⊗L
f−1D̂(•)

Y]/S]

f−1F (•), for any F (•) ∈

LD−→
b
Q,qc(“D(•)

Y]/S]
). We get the morphism Lf∗(•)alg (F (•)) → Lf∗(•)(F (•)) (beware the notation is slightly

misleading since Lf∗(•) is not necessarily the left derived functor of a functor).
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Lemma 11.1.3.3. We have the following properties.

(a) Let F (•) ∈ LD−→
b
Q,qc(“D(•)

Y]/S]
). With notation 9.2.1.15.3, the canonical morphism

O(•)
Y′
“⊗L
f−1O(•)

Y

f−1F (•) → “D(•)
Y′]→Y]/S]

“⊗L
f−1D̂(•)

Y]/S]

f−1F (•) = Lf∗(•)(F (•))

is an isomorphism.

(b) Let G(•) ∈ LD−→
b
Q,coh(O(•)

Y ). Then, the canonical morphism

O(•)
Y′ ⊗

L
f−1O(•)

Y

f−1G(•) → O(•)
Y′
“⊗L
f−1O(•)

Y

f−1G(•)

is an isomorphism of LD−→
b
Q,coh(O(•)

Y′ ).

Proof. By using 4.3.4.6.1, we get (a). We check (b) similarly to Lemma 9.2.1.17.

Proposition 11.1.3.4. We have the following properties.

(a) Let E ∈ MIC††(Y]/S]). Then the canonical morphism

OY′,Q ⊗L
f−1OY,Q

f−1E → D†
Y′]→Y]/S],Q ⊗

L
f−1D†

Y]/S],Q

f−1E

is an isomorphism. Hence, we can set f∗(E) := D†
Y′]→Y]/S],Q⊗f−1D†

Y]/S],Q

f−1E without ambiguity.

We have also f∗(E) ∈ MIC††(Y′]/S]).

(b) Let F be a “D(m)

Y]/S]
-module, coherent over OY. Then the morphisms

OY′ ⊗f−1OY
f−1F → OY′“⊗f−1OY

f−1F → “D(m)

Y′]→Y]/S]
“⊗
f−1D̂(m)

Y]/S]

f−1F

← “D(m)

Y′]→Y]/S]
⊗
f−1D̂(m)

Y]/S]

f−1F

are isomorphisms. Hence, we can set f∗(F) := “D(m)

Y′]→Y]/S]
⊗
f−1D̂(m)

Y]/S]

f−1F without ambiguity.

Moreover, f∗(F) is a “D(m)

Y′]/S]
-module, coherent over OY′ .

Proof. 1) Following 11.1.2.5, there exists E(•) ∈ LM−−→Q,coh(“D(•)
Y]/S]

)∩LD−→Q,coh(O(•)
Y]/S]

) such that→l
∗
Q(E(•))

∼−→
E . By applying Lemmas 9.2.1.17 and 11.1.3.3, this yields that the canonical morphism

O(•)
Y′ ⊗

L
f−1O(•)

Y

f−1E(•) → “D(•)
Y′]→Y]/S]

⊗L
f−1D̂(•)

Y]/S]

f−1E(•)

is an isomorphism. By applying the functor→l
∗
Q, we get the desired isomorphism. Since f∗(E) is OY′,Q-

coherent, this yields f∗(E) ∈ MIC††(Y′]/S]).
2) Since F is both “D(m)

Y]/S]
-coherent and OY-coherent, the first and the last morphisms are isomor-

phisms. Since the modulo πn+1 reduction of the middle morphism is an isomorphism for any n ∈ N (see
4.3.4.6.1), since this is a morphism of separated complete modules for the p-adic topology, this implies
that the middle morphism is an isomorphism.

Proposition 11.1.3.5. Let F (0) be a “D(0)

Y]/S]
-module, coherent over OY and such that the canonical

morphism cst(F (0))→ “D(•)
Y]/S]

⊗D̂(0)

Y]/S]

F (0) =: F (•) is an ind-isogeny in M(O(•)
Y ). For any m ∈ N, let

G(m) be the quotient of “D(m)

Y]/S]
⊗D̂(0)

Y]/S]

F (0) by its p-torsion part.

(a) The canonical morphism cst(f∗(F (0)))→ “D(•)
Y′]/S]

⊗D̂(0)

Y′]/S]
f∗(F (0)) is an ind-isogeny of M(O(•)

Y′ ).

In particular, cst(f∗(F (0))) belongs to MIC(•)(Y′]/S]).
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(b) The canonical morphisms f∗(•)alg (F (•)) → f
∗(•)
alg (G(•)), and “D(•)

Y′]/S]
⊗D̂(0)

Y′]/S]
f∗(F (0)) → f

∗(•)
alg (G(•))

are ind-isogenies of M(“D(•)
Y′]/S]

).

(c) The canonical morphism Lf∗(•)alg (F (•))→ Lf∗(•)(F (•)) is an isomorphism of LD−→
b
Q(“D(•)

Y′]/S]
).

(d) If→l
∗
Q(F (•)) is flat as OY,Q-module, then the canonical morphism Lf∗(•)alg (F (•)) → f

∗(•)
alg (F (•)) is an

isomorphism of LD−→
b
Q(“D(•)

Y′]/S]
).

Proof. a) Following 11.1.2.5, F (•) ∈ MIC(•)(Y]/S]). Set F :=→l
∗
Q F

(•) ∈ MIC††(Y]/S]). By applying

the functor→l
∗
Q to the canonical morphism cst(F (0))→ “D(•)

Y]/S]
⊗D̂(0)

Y]/S]

F (0) =: F (•), we get the canonical

morphism F (0)
Q → D†

Y]/S],Q ⊗D̂(0)

Y]/S],Q

F (0)
Q is an isomorphism. Via this isomorphism, we can view F (0)

Q

as an object of MIC††(Y]/S]). This yields that f∗(F (0)) is a “D(0)

Y′]/S]
-module, coherent over OY′

and such that
(
f∗(F (0))

)
Q
∼−→ f∗(F (0)

Q ) (see both notation 11.1.3.4.a and 11.1.3.4.b) is an object of
MIC††(Y′]/S]). Hence, via 11.1.2.4, we get the first statement.

b) Since F (•) → G(•) is an ind-isogeny of M(“D(•)
Y]/S]

), then f∗(•)alg (F (•)) → f
∗(•)
alg (G(•)) is an isogeny

of M(“D(•)
Y′]/S]

). We have the commutative diagram with canonical morphisms

f∗(F (0)) //

∼

��

“D(m)

Y′]/S]
⊗D̂(0)

Y′]/S]
f∗(F (0)) //

∼
��

f∗(G(m))

∼

��
f
∗(0)
alg (F (0)) // “D(m)

Y′]/S]
⊗D̂(0)

Y′]/S]
f
∗(0)
alg (F (0)) // f∗(m)

alg (G(m)),

(11.1.3.5.1)

where f∗ is the functor defined at 11.1.3.4.(b). Since F (0) and G(m) are OY-coherent (see 11.1.2.4, then
following 11.1.3.4.(b), the vertical arrows are isomorphisms. From the first statement, the left horizontal
arrows are isogenies of OY′ -modules. Since F (0) → G(m) are also isogenies, then the morphisms of
the diagram 11.1.3.5.1 become isomorphisms after tensoring by Q. Since “D(m)

Y′]/S]
⊗D̂(0)

Y′]/S]
f∗(F (0)) →

f
∗(m)
alg (G(m)) is a morphism of coherent “D(m)

Y′]/S]
-modules, this yields the second statement.

c) By using 11.1.3.3 and 9.2.1.17, since F (•) ∈ LM−−→Q,coh(O(•)
Y ) and F (•) ∈ LM−−→Q,coh(“D(•)

Y]/S]
), three

arrows of the diagram

Lf∗(•)alg (F (•))
∼ // Lf∗(•)(F (•))

O(•)
Y′ ⊗L

f−1O(•)
Y

f−1F (•)

OO

∼ // O(•)
Y′
“⊗L
f−1O(•)

Y

f−1F (•)

∼

OO

are isomorphisms. Hence so is the forth.
d) It remains to check that the canonical morphism O(•)

Y′ ⊗L
f−1O(•)

Y

f−1F (•) → O(•)
Y′ ⊗f−1O(•)

Y

f−1F (•)

is an isomorphism under the flatness assumption. Since this is a morphism in LD−→
b
Q,coh(O(•)

Y′ ), we reduce
to check it after applying the functor→l

∗
Q, which is a consequence of the flatness as OY,Q-module.

Corollary 11.1.3.6. Let E(•) ∈ MIC(•)(Y]/S]) such that E :=→l
∗
Q E

(•) is flat as OY,Q-module.

(a) Lf∗(•)(E(•)) ∈ MIC(•)(Y′]/S]) (i.e. is isomorphic to such an object) and→l
∗
QLf∗(•)(E(•))

∼−→ f∗(E).
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(b) Choose a “D(0)

Y]/S]
-module F (0), coherent over OY such that “D(•)

Y]/S]
⊗D̂(0)

Y]/S]

F (0) is isomorphic in

LM−−→Q(“D(•)
Y]/S]

) to E(•) and such that the canonical morphism cst(F (0)) → “D(•)
Y]/S]

⊗D̂(0)

Y]/S]

F (0) is

an ind-isogeny in M(O(•)
Y ). Then Lf∗(•)(E(•))

∼−→ “D(•)
Y′]/S]

⊗D̂(0)

Y′]/S]
f∗(F (0)).

11.2 Overconvergent log-isocrystals as arithmetic D-modules

11.2.1 MIC††(X], T/S]): Overconvergent connections and arithmetic D-modules
Let S] be a nice fine V-log formal scheme (see definition 3.3.1.10). Moreover, let X] → S] be a log
smooth morphism of log formal schemes. We suppose the underlying formal scheme X is p-torsion free,
noetherian of finite Krull dimension. For any integer i ≥ 0, set X]

i := X] ×Spf V Spec(V/πi+1V). We
suppose X0 is regular. Let T be a divisor of X0 and Y] the open subset of X] complementary to the
support of T .

Definition 11.2.1.1 (Overconvergent connections). Let E be a left DX]/S](
†T )Q-module which is co-

herent as OX(†T )Q-module.

(a) Suppose X is affine and endowed with logarithmic coordinates. We say that the induced con-
nection of E is “overconvergent along T ” if the following conditions holds: there exists n0 ∈ N,
and a B(n0)

X (T )Q ⊗OX
DX]/S]-module E0 which is coherent as B(n0)

X (T )Q-module together with a
DX]/S](

†T )Q-linear isomorphism

lim−→n≥n0B
(n)
X (T )Q ⊗B(n0)

X
(T )Q
E0

∼−→ E , (11.2.1.1.1)

satisfying the following condition: for any η ∈ |K×|Q∩ ]0, 1[, there exist n0 ≤ nη such that for any
nλ ≤ n and each section e ∈ Γ(X,B(n)

X (T )Q ⊗B(n0)

X
(T )Q
E0), we have

‖ ∂[k]
] e ‖ η

|k| → 0 for |k| → ∞, (11.2.1.1.2)

with ‖ · ‖ a Banach norm on Γ(X,B(n)
X (T )Q ⊗B(n0)

X
(T )Q
E0). Moreover, the isomorphism 11.2.1.1.1 is

DX]/S](
†T )Q-linear.

(b) In general, the connection of E is overconvergent along T if and only if it is overconvergent on any
affine open of X] having logarithmic coordinates.

Definition 11.2.1.2. Suppose T is empty. Let E be a left DX]/S],Q-module which is coherent as OX,Q-
module. We say that induced connection of E is “convergent” if it is overconvergent along the empty set.
We retrieve the convergent condition 11.1.1.1.1. In other word, the connection of E is convergent if and
only if the structure of left DX]/S],Q-module extends to a structure of left D†

X]/S],Q-modules.

11.2.1.3. Suppose that S→ Spf V is smooth, and suppose there exist a smooth S-formal scheme X, a
relative strict normal crossing divisor Z of X over S, such that X] = (X,MZ) is the logarithmic V-formal
scheme whose underlying logarithmic structure MZ is the one associated with Z.

We have the morphism of ringed spaces sp: (XK , j
†OXK )→ (X,OX(†T )Q) induced by the specializa-

tion morphism. We get the inverse image functor sp∗ by setting sp∗(E) := j†OXK ⊗sp−1OX(†T )Q
sp−1(E),

for any OX(†T )Q-modules E . The overconvergent condition 11.2.1.1 corresponds to that of 10.3.2.5.
More precisely, the functors sp∗ and sp∗ induce quasi-inverse equivalences between (locally free) coher-
ent j†OXK -modules together with an overconvergent logarithmic connection relative to X]K/SK with
overconvergent singularities along T and (locally projective) coherent OX(†T )Q-modules together with
an overconvergent logarithmic connection relative to X]/S with coefficients in OX(†T )Q

Notation 11.2.1.4. Let MIC††(X], T/S]) be the category of DX]/S](
†T )Q-modules which are coherent

as OX(†T )Q-module and such that the underlying connection is overconvergent along T . Its objects are
called “ overconvergent along T log-isocrystal on X]/S]”. When T is empty we remove it in the notation.
When S] = Spf V, we also write MIC††(X], T/K).
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Proposition 11.2.1.5. Suppose that S→ Spf V is smooth, and suppose there exist a smooth S-formal
scheme X, a relative strict normal crossing divisor Z of X over S, such that X] = (X,MZ) is the
logarithmic V-formal scheme whose underlying logarithmic structure MZ is the one associated with Z.

(a) The functors sp∗ and sp∗ (see 11.2.1.3) induce quasi-inverse equivalences of categories between
MIC†(X]K , T/S

]
K) and MIC††(X], T/S]). Moreover, an object E of MIC††(X], T/S]) is a locally

projective OX(†T )Q-module if and only if sp∗(E) is a locally free j†OXK -module.

(b) Suppose S = Spf V (and the divisor T is empty). The full subcategory of Iconv(X]/Spf V) consisting
in locally free isocrystals on the log convergent site ((X,M)/ Spf V)conv (see 10.3.1.1) is equivalent
to the full subcategory of MIC††(X]/S]) consisting of locally projective OX,Q-modules.

Proof. With notations 10.3.2.5 and 11.2.1.4, the first statement is a rewriting of 11.2.1.3. We get the
last part with 10.3.2.6.(a).

Remark 11.2.1.6. Let E be a left DX]/S](
†T )Q-module which is locally projective of finite type as

OX(†T )Q-module. It E ∈ MIC††(X], T/S]) then E|X∗ ∈ MIC††(X∗, T ∩X∗/S∗). Beware that contrary
to 11.1.1.4 the converse seems false in general.

Proposition 11.2.1.7. Let E be a left DX]/S](
†T )Q-module which is coherent as OX(†T )Q-module. The

following are equivalent:

(a) E ∈ MIC††(X], T/S]) ;

(b) for λ ∈ L(N) large enough, denoting by B̃(•)
X (T ) := λ∗B(•)

X (T ) and ‹D(•)
X]/S]

(T ) := B̃(•)
X (T )“⊗O(•)

X

“D(•)
X]/S]

,

there exist a B̃(0)
X (T )Q ⊗OX

DX]/S]-module E(0) which is coherent as B̃(0)
X (T )Q-module satisfying the

following both conditions:

(i) E(0) is endowed with a DX]/S](
†T )Q-linear isomorphism of the form

lim−→mB̃(m)
X (T )Q ⊗B̃(0)

X
(T )Q
E(0) ∼−→ E , (11.2.1.7.1)

(ii) the structure of B̃(m)
X (T )Q ⊗OX

DX]/S]-module on B̃(m)
X (T )Q ⊗B̃(0)

X
(T )Q
E(0) (uniquely) extends

to a structure of topologically nilpotent ‹D(m)

X]/S]
(T )Q-module so that the homomorphisms

B̃(m)
X (T )Q ⊗B̃(0)

X
(T )Q
E(0) → B̃(m+1)

X (T )Q ⊗B̃(0)

X
(T )Q
E(0) (11.2.1.7.2)

are ‹D(m)

X]/S]
(T )Q-linear.

Proof. 1) Let us check (a)→ (b). Suppose the connection is overconvergent along T . By using 8.4.1.11,
there exists n−1 ∈ N, and a coherent B(n−1)

X (T )Q-module E−1 together with an OX(†T )Q-linear isomor-
phism

lim−→n≥n−1
B(n)
X (T )Q ⊗B(n−1)

X
(T )Q
E−1

∼−→ E , (11.2.1.7.3)

By using 11.2.1.1.1 (and 8.4.1.11), increasing n−1 if necessary, we can suppose that E−1 is endowed with
a structure of left B(n−1)

X (T )Q ⊗OX
DX]/S]-module inducing its structure of B(n−1)

X (T )Q-module and the
isomorphism 11.2.1.7.3 is DX]/S](

†T )Q-linear.
Let m ∈ N. Following 8.7.1.7, there exists η < 1, c ∈ R such that |q(m)

k !| ≤ cηk for all k ∈ N. By
using the condition 11.2.1.1.2, there exist n−1 ≤ nm such that for any nm ≤ n, for any affine open U]

of X] and endowed with logarithmic coordinates, and each section e ∈ Γ(U,B(n)
X (T )Q ⊗B(n0)

X
(T )Q
E0), we

have
‖ ∂[k]

] e ‖ η
|k| → 0 for |k| → ∞. (11.2.1.7.4)
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Let nm ≤ n. Let U] be an affine open of X] and endowed with logarithmic coordinates. Let P ∈
Γ(U], (B(n)

X (T )“⊗“D(m)

X]/S]
)Q). We can write P =

∑
k bk∂

〈k〉(m)

] , with bk ∈ Γ(U,B(n)
X (T )Q) converging to 0

when |k| goes to infinity. Let e ∈ Γ(U,B(n)
X (T )Q ⊗B(n−1)

X
(T )Q
E−1). We get

‖ bk∂
〈k〉(m)

] (e) ‖=‖ bkq(m)
k

!∂
[k]
] (e) ‖≤ c ‖ bk ‖‖ ∂

[k]
] (e) ‖ η|k| → 0

and we can define P (e) as the image in Γ(U,B(n)
X (T )Q ⊗B(n−1)

X
(T )Q

E−1) of the converging sum of the

series of general terms bk∂
〈k〉(m)

] (e). This yields a structure of Γ(U], (B(n)
X (T )“⊗“D(m)

X]/S]
)Q)-module on

Γ(U,B(n)
X (T )Q ⊗B(n−1)

X
(T )Q
E−1). It is clear that this does not depend on the choice of the logarithmic

coordinates. Hence, this yields a structure of (B(n)
X (T )“⊗“D(m)

X]/S]
)Q-module on B(n)

X (T )Q ⊗B(n−1)

X
(T )Q
E−1.

We can suppose the sequence (nm) is increasing. We set E(m) := B(nm+1)
X (T )Q ⊗B(n−1)

X
(T )Q
E−1. We

get a element λ ∈ L(N) by setting λ(m) = nm+1. Following 7.5.2.7, E(m) is endowed with a structure of
topologically nilpotent (B(nm+1)

X (T )“⊗“D(m)

X]/S]
)Q-module and is a coherent B(nm+1)

X (T )Q-module. Hence,
we are done.

2) Conversely, suppose conditions 11.2.1.7.1 and 11.2.1.7.2 hold. Let U] be an affine open of X]

and endowed with logarithmic coordinates. Take η < 1. By 8.7.1.7 and with notation 1.2.1.3.1, there
exists m ∈ N such that η|k| < ck|q(m)

k !|, with ck → 0. As q(m)
k !∂[k] = ∂〈k〉(m) , it suffices to show that,

for any m and any e ∈ Γ(U, E(m)), the elements ∂〈k〉(m)(e) with k ∈ Nd, form a bounded family in
Γ(U, E(m)) for its natural topology of Γ(U, B̃(m)

X (T )Q)-module of finite type. Following 7.5.2.6, the action
of Γ(U], ‹D(m)

X]/S]
(T )Q) on Γ(U, E(m)) is continuous. Since the elements ∂〈k〉(m)

] form a bounded family of

Γ(U], ‹D(m)

X]/S]
(T )Q), then we are done.

Remark 11.2.1.8. Let E be a left DX]/S](
†T )Q-module which is coherent as OX(†T )Q-module. When the

connection of E has an overconvergent along T connection, then the structure of left DX]/S](
†T )Q of E

extends (uniquely) to a structure of left D†
X]/S]

(†T )Q-module so that 11.2.1.7.1 is D†
X]/S]

(†T )Q-linear.

But, contrary to Proposition 11.1.1.1, this is not clear that if E is a left D†
X]/S]

(†T )Q-module which is
coherent as OX(†T )Q-module then the connection of E is overconvergent.

Theorem 11.2.1.9. Let E ∈ MIC††(X], T/S]). For λ ∈ L(N) large enough, denoting by B̃(•)
X (T ) :=

λ∗B(•)
X (T ) and ‹D(•)

X]/S]
(T ) := B̃(•)

X (T )“⊗O(•)
X

“D(•)
X]/S]

, let E(0) be a topologically nilpotent ‹D(0)

X]/S]
(T )Q-

module, coherent as B̃(0)
X (T )Q-module satisfying both conditions of 11.2.1.7.(b). We get the ‹D(•)

X]/S]
(T )Q-

module by setting E(•) := B̃(•)
X (T )Q ⊗B̃(0)

X
(T )Q
E(0).

(a) The canonical homomorphism

E(m) → ‹D(m)

X]/S]
(T )Q ⊗D̃(0)

X]/S]
(T )Q
E(0) (11.2.1.9.1)

is an isomorphism.

(b) The sheaf E is a coherent D†
X]

(†T )Q-module.

(c) The sheaf E is DX]/S](
†T )Q-coherent and the canonical morphism

E → D†
X]/S]

(†T )Q ⊗D
X]/S]

(†T )Q
E (11.2.1.9.2)

is an isomorphism.
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Proof. a) Since E(m) is a topologically nilpotent ‹D(m)

X]/S]
(T )Q-module, then following 7.5.2.8.2 (resp.

7.5.2.8.1) the above (resp. below) canonical homomorphism

E(m) = B̃(m)
X (T )Q ⊗B̃(0)

X
(T )Q
E(0) → (B̃(m)

X (T )“⊗OX
“D(0)

X]/S]
)Q ⊗D̃(0)

X]/S]
(T )Q
E(0)

E(m) → ‹D(m)

X]/S]
(T )Q ⊗(B̃(m)

X
(T )⊗̂OX

D̂(0)

X]/S]
)Q
E(m)

is an isomorphism. This yields 11.2.1.9.1 is an isomorphism.
b) As E(0) is a topologically nilpotent ‹D(0)

X]/S]
(T )Q-module, coherent on B̃(0)

X (T )Q, then following

7.5.2.8 it is coherent on ‹D(0)

X]/S]
(T )Q. Let

(‹D(0)

X]/S]
(T )Q)s → ‹D(0)

X]/S]
(T )Q → E(0)

be a local presentation of E(0). Thanks to 11.2.1.9.1, this yields by extension the presentations

(‹D(m)

X]/S]
(T )Q)s → ‹D(m)

X]/S]
(T )Q → E(m)

which provide an analogous presentation of E on D†
X]

(†T )Q by passing to the inductive limit.
c) As E(0) is a topologically nilpotent ‹D(0)

X]/S]
(T )Q-module, coherent on B̃(0)

X (T )Q, then following

7.5.2.8 E(0) is B̃(0)
X (T )⊗OX

DX]/S],Q-coherent. Moreover, via 4.3.4.6.1 and 11.2.1.7.1, we obtain

DX(†T )Q ⊗B̃(0)

X
(T )Q⊗OX

D
X]/S],Q

E(0) ∼−→ E .

The sheaf E is then DX]/S](
†T )Q-coherent.

d) Using b) and c), we get that the map 11.2.1.9.2 is a morphism of coherent D†
X]

(†T )Q-modules.
Following 11.1.1.6.(c), the morphism 11.2.1.9.2 is an isomorphism apart from T . We conclude via 8.7.6.11.

Remark 11.2.1.10. Following the theorem 11.2.1.9, a log-isocrystal on X]/S] overconvergent along T is
a coherent D†

X]
(†T )Q-module, coherent as OX(†T )Q-module.

11.2.1.11 (Flatness, locally freeness, projectivity for coherent modules). It follows from 1.4.3.21.(1) that
a flat coherent OX(†T )Q-module is therefore a locally projective of finite type OX(†T )Q-module.

For any x ∈ X, beware that the sheaf (OX(†T )Q)x is not a local ring (even when T is empy). Hence,
we cannot apply 1.4.3.21.(2) and this is not clear that a flat coherent OX(†T )Q-module is therefore a
locally free of finite type OX(†T )Q-module.

Theorem 11.2.1.12. Suppose the log structures are trivial. Let E be a coherent D†X/S(†T )Q-module.
The following conditions are equivalent.

(a) E ∈ MIC††(X, T/S) and is locally projective of finite type over OX(†T )Q-module

(b) E|Y is locally projective of finite type over OY,Q.

Proof. 0) The implication (a)⇒ (b) is obvious.
I) Conversely, suppose E|Y is locally projective of finite type over OY,Q. For n ≥ m, we set“D(m,n)

X/S (T ) := B(n)
X (T )“⊗“D(m)

X/S, and “D(m)
X/S(T ) := “D(m,m)

X/S (T ). For m0 large enough, there exists a coherent“D(m0)
X/S (T )Q-module E(m0) together with a D†X/S(†T )Q-linear isomorphism D†X/S(†T )Q⊗D̂(m0)

X/S
(T )
E(m0) ∼−→

E (use 8.4.1.11 and the isomorphism lim−→m
“D(m)
X/S(T )

∼−→ D†X/S(†T )Q). Following 7.4.5.2, there exists

a coherent “D(m0)
X/S (T )-module G(m0) without p-torsion together with a “D(m0)

X/S (T )Q-linear isomorphism

G(m0)
Q

∼−→ E(m0). For any n ≥ m ≥ m0, we put G(m,n) := “D(m,n)
X/S (T )⊗D̂(m0)

X/S
(T )
G(m0)/p-torsion, G(m) :=

G(m,m). Following 7.4.5.1, G(m,n) is “D(m,n)
X/S (T )-coherent. From 11.1.1.6, we get G(m,n)

Q |Y ∼−→ E|Y. From
11.1.1.11, this yields that G(m,n)|Y is OY-coherent.
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II) Fix m ≥ m0. We will now prove that for n large enough G(m,n) is B(n)
X (T )-coherent.

1) Since this is local, we can suppose X = Spf A is affine, there exist f ∈ A such that T = SpecA/(f)
and local coordinates t1, . . . , td ∈ A of X/S. Let ∂1, . . . , ∂d be the induced derivations. Following 7.5.2.3,
we reduce to check that for n large enough, Γ(X,G(m,n)) is a Γ(X,B(n)

X (T ))-module of finite type.
Put D(m)

X/S(T ) := D(m)
X/S(T )/πD(m)

X/S(T ), G(m) := G(m)/πG(m), and G(m,n) := G(m,n)/πG(m,n). Let

x1, . . . , xr ∈ Γ(X,G(m0)) which generate G(m0) as D(m0)
X/S (T )-module.

From Lemma 11.1.1.11, G(m)|Y is a nilpotent D(m)
Y/S-module. Hence, there exists h ∈ N large enough

so that we get in Γ(Y,G(m)) the relation

∀i = 1, . . . , r, ∀j = 1, . . . , d, ∀l = 1, . . . ,m, (∂
[pl]
j )h · xi = 0,

where by abuse of notation we still denote by xi (resp. (∂
[pl]
j )h) the image of xi (resp. (∂

[pl]
j )h) via the

canonical map Γ(X,G(m0)) → Γ(Y,G(m)) (resp. Γ(X,D(m)
X/S) → Γ(Y,D(m)

Y/S)). Hence, for nm > m large
enough, we get in Γ(X,G(m)) the relation

∀i = 1, . . . , r, ∀j = 1, . . . , d, ∀l = 1, . . . ,m, f
pnm

(∂
[pl]
j )h · xi = 0.

Fix such nm. Since nm > m, then following 1.4.4.1 the section f
pnm

is in the center of Γ(X,D(m)
X/S). Let

P =
∏d
j=1

∏m
l=1(∂

[pl]
j )hjl ∈ Γ(X,D(m)

X/S) where hjl ∈ N. Since f
pnm

is in the center of Γ(X,D(m)
X/S), if

there exist j0 and l0 such that hj0l0 ≥ h, then we have in Γ(X,G(m)) the relation f
pnm

P ·xi = 0, for any
i.

2) Let x1, . . . , xr ∈ Γ(X,G(m0)) be some sections lifting respectively x1, . . . , xr.
i) Let P =

∏d
j=1

∏m
l=1(∂

[pl]
j )hjl ∈ Γ(X,D(m)

X/S) where hjl ∈ N are such that there exist j0 and l0

satisfying hj0l0 ≥ h. Then, we get in Γ(X,G(m)) the relation

∀i = 1, . . . , r, fp
nm
P · xi ∈ pΓ(X,G(m)),

where by abuse of notation we still denote by xi the image of xi via the canonical map Γ(X,G(m0)) →
Γ(X,G(m)). Let Tnm−1 ∈ B(nm−1)

X (T ) be the element such that fp
nm
Tnm−1 = p. Since the B(nm−1)

X (T )-
module G(m,nm−1) is π-torsion free then it is f -torsion free. Hence, for such P , we get in Γ(X,G(m,nm−1)):

∀i = 1, . . . , r, P · xi ∈ Tnm−1Γ(X,G(m,nm−1)). (11.2.1.12.1)

ii) Let y1, . . . , ys be the elements of the form
(∏d

j=1

∏m
l=1(∂

[pl]
j )hjl

)
·xi where hjl ∈ {0, . . . , h− 1} for

any j and l (beware that these elements and their number depend on m but remark that y1, . . . , ys ∈
Γ(X, E(m0))). Following 1.4.2.10, Γ(X,D(m)

X/S) is generated as Γ(X,OX)-module (for its left or right struc-

ture) by the elements of the form
∏d
j=1

∏m
l=1(∂

[pl]
j )hjl , where hjl ∈ N. Since x1, . . . , xr generate G(m0)

as D(m0)
X/S (T )-module, then for any n ≥ nm − 1, Γ(X,G(m,n)) is generated as Γ(X,B(n)

X (T ))-module by

pΓ(X,G(m,n)) and by the elements of the form
(∏d

j=1

∏m
l=1(∂

[pl]
j )hjl

)
· xi where hjl ∈ N. Since Tnm−1

divides p, since Γ(X,G(m,n)) has no p-torsion, then by using 11.2.1.12.1 we get

∀n ≥ nm − 1, Γ(X,G(m,n)) =
s∑
i=1

Γ(X,B(n)
X (T )) · yi + Tnm−1Γ(X,G(m,n)).

By iteration, this yields

∀n ≥ nm − 1, Γ(X,G(m,n)) =
s∑
i=1

Γ(X,B(n)
X (T )) · yi + T pnm−1Γ(X,G(m,n)).

For any n ≥ nm, we have T pnm−1 = pp−1Tnm . We get,

∀n ≥ nm, Γ(X,G(m,n)) =
s∑
i=1

Γ(X,B(n)
X (T )) · yi + pΓ(X,G(m,n)).
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Since Γ(X,G(m,n)) is p-adically separated and complete, this yields that Γ(X,G(m,n)) is generated as
Γ(X,B(n)

X (T ))-module by y1, . . . , ys.
III) We can suppose that the sequence (nm)m is increasing. Set Em := G(m,nm)

Q . Following II.2), the“D(m,nm)
X/S (T )Q-module Em is B(nm)

X (T )Q-coherent. Since Em0
|Y ∼−→ Em|Y is a coherent D†

Y]/S],Q-module
which is locally projective of finite type over OY,Q, then, with the remark 8.7.6.9, increasing m0 is
necessary, Em0

is a projective B(nm0 )

X (T )Q-module of finite type.
Following 11.2.1.7, it is sufficient to check that the canonical homomorphism

B(nm)
X (T )Q ⊗B(n0)

X
(T )Q
Em0
→ Em

is an isomorphism for any m ≥ m0. Fix m ≥ m0 and set Bm := Γ(X,B(nm)
X (T )Q), Em := Γ(X, Em),

Em0,m := Γ(X,B(nm)
X (T )Q ⊗B(n0)

X
(T )Q
Em0). We get the morphism Em0,m → Em of Bm-modules of finite

type. We end the proof by check this morphism Em0,m → Em is an isomorphism:
Following the part II.2) and its notations, Γ(X,G(m,nm)) is generated as Γ(X,B(nm)

X (T ))-module by
y1, . . . , ys. We remark that y1, . . . , ys ∈ Em0

. Hence, the morphism Em0,m → Em is surjective. After
applying Γ(Y,OY,Q) ⊗Bm − to the morphism Em0,m → Em, we get an isomorphism. Since Em0,m is a
projective Bm-module of finite type and since Bm → Γ(Y,OY,Q) is injective, we get the injectivity of
Em0,m → Em. We are done.

Corollary 11.2.1.13. Suppose the log structures are trivial. Let E be a left DX/S(†T )Q-module which
is locally projective of finite type as OX(†T )Q-module. The following conditions are equivalent:

(a) The structure of left DX/S(†T )Q-module of E extends to a structure of coherent left D†X/S(†T )Q-
modules ;

(b) E ∈ MIC††(X, T/S).

Proof. The implication (b)⇒ (a) is 11.2.1.9. Conversely, suppose (a) holds. By using 11.2.1.12, since E
is locally projective of finite type as OX(†T )Q-module, then we reduce to check E|Y ∈ MIC††(Y/S), i.e.
we can suppose first to the case where the divisor is empty. In this case, this is 11.1.1.1.

Proposition 11.2.1.14. Suppose the log structures are trivial and S = Spf V. Let E be a left DX/S(†T )Q-
module which is coherent as OX(†T )Q-module.

(a) The object E is a locally projective OX(†T )Q-module of finite type.

(b) If X is affine, then Γ(X, E) is a projective Γ(X,OX(†T )Q)-module of finite type.

(c) We have E = 0 if and only if there exists a dense open subset U of X such that E|U = 0.

(d) The category MIC††(X, T/V) is equal to the full category of that of coherent D†X/S(†T )Q-modules
consisting of objects which are coherent as OX(†T )Q-module.

(e) Set Y := X \ T . Let E be a coherent D†X/S(†T )Q-module. We have E ∈ MIC††(X, T/V) if and only if
E|Y ∈ MIC††(Y/V).

Proof. a) and b) By using 10.2.2.7 and 11.2.1.3, we get (a). More precisely, this is a consequence of (b)
which is checked as follows. Suppose X and Y affine. Since YK is affinoid, since sp∗(E) is a locally free
OYK

-module of finite type (see 10.2.2.7), then Γ(Y, E) = Γ(YK , sp
∗(E)) is a projective Γ(YK ,OYK

) =
Γ(Y,OY,Q)-module of finite type. Using theorem of type A concerning coherent OX(†T )Q-modules,
Γ(Y,OX(†T )Q)⊗Γ(X,OX(†T )Q) Γ(X, E)→ Γ(Y, E) is an isomorphism. Since Γ(Y,OX(†T )Q) = Γ(Y,OY,Q),
since Γ(X,OX(†T )Q) → Γ(Y,OY,Q) is faithfully flat (this is checked in the proof of 8.7.6.8), then this
implies that Γ(X, E) is a projective Γ(X,OX(†T )Q)-module of finite type.

c) Since the third part is local on X, we can suppose X is affine and that E is a direct summand (in
the category of coherent OX(†T )Q-modules) of a free OX(†T )Q-module L of finite type. Suppose E|U = 0.
Replacing U by a smaller open subset, we reduce to the case where U is a principal open subset (i.e.
given by a global section of X). Since Γ(X,L)→ Γ(U,L) is injective, we get Γ(X, E) = 0. Using theorem
of type A, this yields that E = 0. The converse is obvious.

d) This is a consequence of 11.2.1.13 and of (a).
e) The last statement follows from a) and d) and from 11.2.1.12.
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11.2.2 MIC(•)(X], T/S])

We keep notation 11.2.1.

Notation 11.2.2.1. We denote by MIC(•)(X], T/S]) the full subcategory of LM−−→Q,coh(“D(•)
X]/S]

(T )) con-
sisting of objects E(•) such that→l

∗
QE

(•) ∈ MIC††(X], T/S]) (see notation 11.2.1.4). Since the functor

→l
∗
Q : LM−−→Q,coh(D(•)) → Coh(D†Q) is an equivalence of category (e.g. see 8.4.5.9), then we get the equiva-
lence of categories

→l
∗
Q : MIC(•)(X], T/S]) ∼= MIC††(X], T/S]). (11.2.2.1.1)

Proposition 11.2.2.2. Let E ∈ MIC††(X], T/S]). For λ ∈ L(N) large enough, denoting by B̃(•)
X (T ) :=

λ∗B(•)
X (T ) and ‹D(•)

X]/S]
(T ) := B̃(•)

X (T )“⊗O(•)
X

“D(•)
X]/S]

, let E(0) be a topologically nilpotent ‹D(0)

X]/S]
(T )Q-

module, coherent as B̃(0)
X (T )Q-module satisfying both conditions of 11.2.1.7.(b). We get a ‹D(•)

X]/S]
(T )Q-

module by setting E(•) := B̃(•)
X (T )Q ⊗B̃(0)

X
(T )Q
E(0).

1. There exists F (0) a ‹D(0)

X]/S]
(T )-module, coherent over B̃(0)

X (T ) together with an isomorphism of‹D(0)

X]/S]
(T )Q-modules of the form F (0)

Q
∼−→ E(0).

2. Let F (m) := B̃(m)
X (T ) ⊗B̃(0)

X
(T )
F (0), let G(m) := ‹D(m)

X]/S]
(T ) ⊗D̃(0)

X]/S]
(T )
F (0) and let H(m) be the

quotient of F (m) by its p-torsion part for any m ∈ N. The following conditions hold.

(a) We have the isomorphisms G(m)
Q

∼−→ H(m)
Q

∼−→ E(m) of topologically nilpotent ‹D(m)

X]/S]
(T )Q-

modules.
(b) The module H(m) is B̃(m)

X (T )-coherent for any integer m.

(c) The canonical morphism F (•) → G(•) is an ind-isogeny of M(B̃(•)
X (T )). The canonical mor-

phism G(•) → H(•) is an ind-isogeny of M(‹D(•)
X]/S]

(T )).

(d) We have G(•) ∈ MIC(•)(X], T/S]) and the D†
X]/S]

(†T )Q-linear isomorphism→l
∗
Q G

(•) ∼−→ E.

(e) The canonical morphism

G(•) → ‹D(•)
X]/S]

(T )⊗B̃(•)
X

(T )⊗OX
D(•)

X]/S]

G(•) (11.2.2.2.1)

is an ind-isogeny of M(‹D(•)
X]/S]

(T )).

(f) We have F (0) ∈ Db
perf((

‹D(0)

X]/S]
(T ))) and the canonical morphism‹D(•)
X]/S]

(T )⊗L
D̃(0)

X]/S]
(T )
F (0) → G(•) (11.2.2.2.2)

is an isomorphism of D−→
b
Q(‹D(•)

X]/S]
(T )). In particular, G(•) ∈ LD−→

b
Q,perf(

‹D(•)
X]/S]

(T )) (see notation
8.6.1.4)

Proof. 1) The existence of F (0) follows from 7.5.2.8.(a).
2)a) Since the canonical morphisms G(m)

Q → H(m)
Q → E(m) are isomorphisms (use 11.2.1.9.1 for

the second isomorphism), since E(m) is a topologically nilpotent ‹D(m)

X]/S]
(T )Q-module then we get the

assertion.
b) Using 7.5.2.9, the part 2.a) of the proof implies that H(m) is B̃(m)

X (T )-coherent for any integer m.
c) Since the canonical epimorphism G(m) → H(m) of coherent ‹D(m)

X]/S]
(T )-modules is an isomorphism

after tensoring by Q, then G(•) → H(•) is an ind-isogeny of M(‹D(•)
X]/S]

(T )) (use 8.4.2.8).

Since the canonical morphism F (m) → H(m) of coherent B̃(m)
X (T )-modules is an isomorphism after

tensoring by Q (this follows from 11.2.1.9.1), then the canonical morphism F (•) → H(•) is an ind-isogeny
of M(B̃(•)

X (T )) (use 8.4.2.8). Hence so is F (•) → G(•).
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d) It follows from c) that the canonical morphisms F (•)
Q → G(•)

Q → H(•)
Q → E(•) are isomorphisms.

Hence, G(•)
Q satisfies both conditions of 11.2.1.7.(b) and is endowed with a D†

X]/S]
(†T )Q-linear isomor-

phism→l
∗
Q G

(•) ∼−→ E .
e) By using the part b) and 7.5.2.8.(b), we get that the canonical morphism

H(•) → ‹D(•)
X]/S]

(T )⊗B̃(•)
X

(T )⊗OX
D(•)

X]/S]

H(•) (11.2.2.2.3)

is an isomorphism of ‹D(•)
X]/S]

(T )-modules. We conclude with c).

f) It follows from 4.7.3.7 that F (0) ∈ Db
perf((

‹D(0)

X]/S]
(T ))). By flatness of ‹D(0)

X]/S]
(T )Q → ‹D(•)

X]/S]
(T )Q,

the morphism 11.2.2.2.2 of Db
coh(‹D(•)

X]/S]
(T )) becomes an isomorphism in Db

coh(‹D(•)
X]/S]

(T )Q). Hence, by

using 8.4.2.9 we get that the morphism 11.2.2.2.2 becomes an isomorphism in D−→
b
Q(‹D(•)

X]/S]
(T )). Since

the left term of 11.2.2.2.2 is an object of LD−→
b
Q,perf(

‹D(•)
X]/S]

(T )), then so is G(•).

Corollary 11.2.2.3. Let E(•) ∈ LM−−→Q(“D(•)
X]/S]

(T )). The following conditions are equivalent:

(a) The object E(•) belongs to MIC(•)(X], T/S]).

(b) For λ ∈ L(N) large enough, denoting by B̃(•)
X (T ) := λ∗B(•)

X (T ) and ‹D(•)
X]/S]

(T ) := B̃(•)
X (T )“⊗O(•)

X

“D(•)
X]/S]

,

there exist F (0) a p-torsion free ‹D(0)

X]/S]
(T )-module, coherent over B̃(0)

X (T ) such that

(i) F (•) := ‹D(•)
X]/S]

(T )⊗D̃(0)

X]/S]
(T )
F (0) is isomorphic in LM−−→Q(“D(•)

X]/S]
(T )) to E(•)

(ii) the canonical morphism

B̃(•)
X (T )⊗B̃(0)

X
(T )
F (0) → ‹D(•)

X]/S]
(T )⊗D̃(0)

X]/S]
(T )
F (0)

is an ind-isogeny in M(B̃(•)
X (T )),

(iii) F (m)
Q is a topologically nilpotent ‹D(m)

X]/S]
(T )Q-module for any m.

Proof. The implication (a) ⇒ (b) follows from 11.2.2.2. Conversely, if such λ ∈ L(N) and F (0) ex-
ist, then using properties (ii) and (iii) we can check that F (•)

Q satisfies both conditions of 11.2.1.7.(b).
Hence, it follows from 11.2.1.7 that→l

∗
QF

(•) ∈ MIC††(X], T/S]). The property (i) implies that E(•) ∈
LM−−→Q,coh(“D(•)

X]/S]
(T )) and→l

∗
QE

(•) ∼−→→l
∗
QF

(•) ∈ MIC††(X], T/S]). Hence E(•) belongs to MIC(•)(X], T/S]).

11.2.2.4. Let λ ∈ L(N), B̃(•)
X (T ) := λ∗B(•)

X (T ) and ‹D(•)
X]/S]

(T ) := B̃(•)
X (T )“⊗O(•)

X

“D(•)
X]/S]

, F (0) be a p-

torsion free ‹D(0)

X]/S]
(T )-module, coherent over B̃(0)

X (T ) such that the canonical morphism

B̃(•)
X (T )⊗B̃(0)

X
(T )
F (0) → ‹D(•)

X]/S]
(T )⊗D̃(0)

X]/S]
(T )
F (0) = F (•)

is an ind-isogeny in M(B̃(•)
X (T )).

It follows from 8.4.2.1 that F (•) is a ‹D(•)
X]/S]

(T )-module having global finite presentation. It follows

from 8.4.2.5 that F (•) is a B̃(•)
X (T )-module having global finite presentation up to an ind-isogeny. In

particular F (•) is an object of M−→Q,coh(l‹D(•)
X]/S]

(T )) ∩M−→Q,coh(B̃(•)
X (T ))

11.2.2.5. Let us denote by LD−→
b
Q,coh(l“D(•)

X]/S]
(T ))∩LD−→

b
Q,coh(B(•)

X]
(T )), the full subcategory of LD−→

b
Q,coh(l“D(•)

X]/S]
(T ))

of complexes whose image by the forgetful functor LD−→
b
Q,qc(“D(•)

X]/S]
(T ))→ LD−→

b
Q,qc(B(•)

X]
(T )) is in LD−→

b
Q,coh(B(•)

X]
(T )).

By replacing “LD−→
b” by “LM−−→”, we define similarly LM−−→Q,coh(l“D(•)

X]/S]
(T )) ∩ LM−−→Q,coh(B(•)

X]
(T )).
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Let E(•) ∈ MIC(•)(X], T/S]). With 8.4.3.2, 8.4.3.3 and 11.2.2.2, we get from 11.2.2.4 that E(•) is
coherent up to a lim-ind-isogeny both as “D(•)

X]/S]
(T )-module and as B(•)

X (T )-module, i.e. we have the
fully faithful functor (the identity on the objects):

MIC(•)(X], T/S]) ⊂ LM−−→Q,coh(l“D(•)
X]/S]

(T )) ∩ LM−−→Q,coh(B(•)
X]

(T )). (11.2.2.5.1)

When log structures are trivial and S = Spf V, it follows from 11.2.1.14.(d) that the functor 11.2.2.5.1
is essentially surjective, i.e. that we have the equality:

MIC(•)(X, T/K) = LM−−→Q,coh(l“D(•)
X/V(T )) ∩ LM−−→Q,coh(B(•)

X (T )). (11.2.2.5.2)

11.2.3 Stability by inverse images of isocrystals
We keep notation 9.2.1 except concerning the divisors which are denoted here respectively by T and
T ′ (instead of Z and Z ′). In particular, we fix λ0 ∈ L(N) and we set B̃(•)

X (T ) := λ∗0B
(•)
X (T ) and‹D(•)

X]/S]
(T ) := B̃(•)

X (T )“⊗O(•)
X

“D(•)
X]/S]

etc.

11.2.3.1. Let E(•) ∈M(“D(•)
X]/S]

(T )). With similar to 9.2.1.8.1 notation (with locally projective isocrys-

tals, we prefer to work with f̃∗ instead of f̃ !), we get the functor f̃∗(•)alg : M(“D(•)
X]/S]

(T )) → M(“D(•)
X′]/S′]

)

by setting f̃ (•)!
alg (E(•)) := ‹D(•)

X′]/S′]→X]/S]
(T ′, T ) ⊗

f−1D̃(•)
X]/S]

f−1F (•). By left deriving the functor f̃∗(•)alg ,

this yields the functor Lf̃∗(•)alg : D−(“D(•)
X]/S]

(T )) → D−(“D(•)
X′]/S′]

(T ′)), defined by setting Lf̃∗(•)alg (F (•)) :=‹D(•)
X′]/S′]→X]/S]

(T ′, T ) ⊗L
f−1D̂(•)

X]/S]
(T )

f−1F (•) for any F (•) ∈ D−(“D(•)
X]/S]

(T )). Since it preserves lim-

ind-isogenies, this induces the functor Lf̃∗(•)alg : LD−→
−
Q (“D(•)

X]/S]
(T ))→ LD−→

−
Q (“D(•)

X′]/S′]
(T ′)).

Following notation 9.2.1.15.3, we set Lf̃∗(•)(F (•)) := ‹D(•)
X′]/S′]→X]/S]

(T ′, T )“⊗L
f−1D̂(•)

X]/S]
(T )
f−1F (•),

for any F (•) ∈ LD−→
b
Q,qc(“D(•)

X]/S]
(T )). We get the morphism Lf̃∗(•)alg (F (•)) → Lf̃∗(•)(F (•)) (beware the

notation is slightly misleading since Lf̃∗(•) is not necessarily the left derived functor of a functor).

Lemma 11.2.3.2. Let G(•) ∈ LD−→
b
Q,coh(B̃(•)

X (T )). Then, the canonical morphism

B̃(•)
X′ (T ′)⊗L

f−1B̃(•)
X

(T )
f−1G(•) → B̃(•)

X′ (T ′)“⊗L
f−1B̃(•)

X
(T )
f−1G(•)

is an isomorphism of LD−→
b
Q,coh(B̃(•)

X′ (T ′)).

Proof. This is checked similarly to Lemma 9.2.1.17.

Proposition 11.2.3.3. We have the following assertions.

(a) Let F be a ‹D(m)

X]/S]
(T )-module, coherent over B̃(m)

X (T ). Then the morphism

B̃(m)
X′ (T ′)Q ⊗f−1B̃(m)

X
(T )

f−1F ∼−→ ‹D(m)

X′]/S′]→X]/S]
(T ′, T )⊗

f−1D̃(m)

X]/S]
(T )

f−1F

is an isomorphism. In particular, the inverse image f̃ (m)∗
alg (F) := ‹D(m)

X′]/S′]→X]/S]
(T ′, T )⊗

f−1D̃(m)

X]/S]
(T )

f−1F is a (coherent) ‹D(m)

X′]/S′]
(T ′)-module, coherent over B̃(m)

X′ (T ′).

(b) Let F be a topologically nilpotent ‹D(m)

X]/S]
(T )Q-module, coherent over B̃(m)

X (T )Q. Then the morphism

B̃(m)
X′ (T ′)Q ⊗f−1B̃(m)

X
(T )Q

f−1F ∼−→ ‹D(m)

X′]/S′]→X]/S]
(T ′, T )Q ⊗f−1D̃(m)

X]/S]
(T )Q

f−1F

is an isomorphism. The inverse image f̃ (m)∗
alg (F) := ‹D(m)

X′]/S′]→X]/S]
(T ′, T )Q⊗f−1D̃(m)

X]/S]
(T )Q

f−1F is

a topologically nilpotent ‹D(m)

X′]/S′]
(T ′)Q-module, coherent over B̃(m)

X′ (T ′)Q.
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Proof. Let us check the second statement. It follows from 7.5.2.8.(a) that there exists a p-torsion free‹D(m)

X]/S]
(T )-module

◦
F , coherent over B̃(m)

X (T ) together with an ‹D(m)

X]/S]
(T )Q-linear isomorphism

◦
FQ

∼−→
F . Then the canonical morphisms

B̃(m)
X′ (T ′)⊗

f−1B̃(m)

X
(T )

f−1
◦
F → B̃(m)

X′ (T ′)“⊗
f−1B̃(m)

X
(T )
f−1

◦
F → ‹D(m)

X′]/S′]→X]/S]
(T ′, T )“⊗

f−1D̃(m)

X]/S]
(T )
f−1

◦
F

← ‹D(m)

X′]/S′]→X]/S]
(T ′, T )⊗

f−1D̃(m)

X]/S]
(T )

f−1
◦
F

are isomorphisms. Indeed, since
◦
F is both ‹D(m)

X]/S]
(T )-coherent and B̃(m)

X (T ) -coherent, the first and
the last morphisms are isomorphisms. Since the modulo πn+1 reduction of the middle morphism is an
isomorphism for any n ∈ N (see 5.1.1.6), since this is a morphism of separated complete modules for the
p-adic topology, this implies that the middle morphism is an isomorphism. It follows from 4.4.2.10 that

the modulo πn+1 reduction of ‹D(m)

X′]/S′]→X]/S]
(T ′, T )“⊗

f−1D̃(m)

X]/S]
(T )
f−1

◦
F is nilpotent module for any n.

Hence, tensoring with Q, we get that f̃ (m)∗
alg (F) is a topologically nilpotent ‹D(m)

X′]/S′]
(T ′)Q-module.

We proceed similarly (without taking care of topological nilpotence) for the first statement.

Proposition 11.2.3.4. Let F (0) be a ‹D(0)

X]/S]
(T )-module, coherent over B̃(0)

X (T ) such that the canonical
morphism

B̃(•)
X (T )⊗B̃(0)

X
(T )
F (0) → ‹D(•)

X]/S]
(T )⊗D̃(0)

X]/S]
(T )
F (0) =: F (•) (11.2.3.4.1)

is an ind-isogeny in M(B̃(•)
X (T )) and such that F (m)

Q is a topologically nilpotent ‹D(m)

X]/S]
(T )Q-module for

any m.

(a) The canonical morphism ‹D(•)
X′]/S′]

(T ′) ⊗D̃(0)

X′]/S′]
(T ′)

f̃
(0)∗
alg F (0) → f̃

∗(•)
alg (F (•)) is an ind-isogeny of

M(‹D(•)
X′]/S′]

(T ′)).

(b) The canonical morphism

B̃(•)
X′ (T ′)⊗B̃(0)

X′
(T ′)

f̃
(0)∗
alg F

(0) → ‹D(•)
X′]/S′]

(T ′)⊗D̃(0)

X′]/S′]
(T ′)

f̃
(0)∗
alg F

(0) (11.2.3.4.2)

is an ind-isogeny of M(B̃(•)
X′ (T ′)) and ‹D(m)

X′]/S′]
(T ′)Q ⊗D̃(0)

X′]/S′]
(T ′)

f̃
(0)∗
alg F (0) is a topologically nilpo-

tent ‹D(m)

X′]/S′]
(T ′)Q-module for any m. In particular, ‹D(•)

X′]/S′]
(T ′) ⊗D̃(0)

X′]/S′]
(T ′)

f̃
(0)∗
alg F (0) belongs to

MIC(•)(X′], T ′/S′]).

(c) The canonical morphism Lf̃∗(•)alg (F (•))→ Lf̃∗(•)(F (•)) is an isomorphism of LD−→
b
Q(‹D(•)

X′]/S′]
(T ′)).

(d) If→l
∗
Q(F (•)) is flat as OX(†T )Q-module, then the canonical morphism Lf̃∗(•)alg (F (•)) → f̃

∗(•)
alg (F (•)) is

an isomorphism of LD−→
b
Q(‹D(•)

X′]/S′]
(T ′)).

Proof. 1) Since the canonical morphism B̃(m)
X (T )Q⊗B̃(0)

X
(T )Q
F (0)

Q → ‹D(m)

X]/S]
(T )⊗D̃(0)

X]/S]
(T )Q
F (0)

Q = F (m)
Q

is an isomorphism, then the coherent B̃(m)
X (T )Q-module B̃(m)

X (T )Q ⊗B̃(0)

X
(T )Q
F (0)

Q is canonically endowed

with a structure of topologically nilpotent ‹D(m)

X]/S]
(T )Q-module (extending its structure of B̃(m)

X (T )Q-
module). This yields the isomorphisms

B̃(m)
X′ (T ′)Q ⊗B̃(0)

X′
(T ′)Q

f̃
(0)∗
alg F

(0)
Q

∼←−
11.2.3.3

B̃(m)
X′ (T ′)Q ⊗B̃(0)

X′
(T ′)Q

(
B̃(0)
X′ (T ′)Q ⊗f−1B̃(0)

X
(T )Q

f−1F (0)
Q

)
∼−→ B̃(m)

X′ (T ′)Q ⊗f−1B̃(m)

X
(T )Q

f−1
(
B̃(m)
X (T )Q ⊗B̃(0)

X
(T )Q
F (0)

Q

)
∼−→

11.2.3.3
‹D(m)

X′]/S′]→X]/S]
(T ′, T )Q ⊗f−1D̃(m)

X]/S]
(T )Q

f−1
(
B̃(m)
X (T )Q ⊗B̃(0)

X
(T )Q
F (0)

Q

)
= f

(m)∗
alg

(
B̃(m)
X (T )Q ⊗B̃(0)

X
(T )Q
F (0)

Q

) 11.2.3.4.1
∼−→ f

(m)∗
alg (F (m)

Q ). (11.2.3.4.3)
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Hence, with 11.2.3.3, B̃(m)
X′ (T ′)Q ⊗B̃(0)

X′
(T ′)Q

f̃
(0)∗
alg F

(0)
Q is therefore canonically endowed with a structure of

topologically nilpotent ‹D(m)

X′]/S′]
(T ′)Q-module and is also B̃(m)

X′ (T ′)Q-coherent (for the induced structure

of B̃(m)
X (T )Q-module). This yields the isomorphisms:

B̃(m)
X′ (T ′)Q ⊗B̃(0)

X′
(T ′)Q

f̃
(0)∗
alg F

(0)
Q

∼−→
7.5.2.8.2

(B̃(m)
X′ (T ′)“⊗OX′

“D(0)

X′]/S′]
(T ))Q ⊗D̃(0)

X]/S]
(T )Q

f̃
(0)∗
alg F

(0)
Q

B̃(m)
X′ (T ′)Q ⊗B̃(0)

X′
(T ′)Q

f̃
(0)∗
alg F

(0)
Q

∼−→
7.5.2.8.1

‹D(m)

X′]/S′]
(T ′)⊗

(B̃(m)

X′
(T ′)⊗̂O

X′
D̂(0)

X′]/S′]
(T ))Q

Å
B̃(m)
X′ (T ′)Q ⊗B̃(0)

X′
(T ′)Q

f̃
(0)∗
alg F

(0)
Q

ã
.

Hence, the canonical map

B̃(m)
X′ (T ′)Q ⊗B̃(0)

X′
(T ′)Q

f̃
(0)∗
alg F

(0)
Q → ‹D(m)

X′]/S′]
(T ′)⊗D̃(0)

X]/S]
(T )Q

f̃
(0)∗
alg F

(0)
Q (11.2.3.4.4)

is an isomorphism. With 11.2.3.4.3 and 11.2.3.4.5 we get that the canonical map‹D(m)

X′]/S′]
(T ′)⊗D̃(0)

X]/S]
(T )Q

f̃
(0)∗
alg F

(0)
Q → f

(m)∗
alg (F (m)

Q ) (11.2.3.4.5)

is an isomorphism.
2) For any m ∈ N, let G(m) be the quotient of F (m) by its p-torsion part. i) Let us prove the part

(a). Since F (•) → G(•) is an ind-isogeny of M(‹D(•)
X]/S]

(T )), then f̃∗(•)alg (F (•))→ f̃
∗(•)
alg (G(•)) is an isogeny

of M(‹D(•)
X′]/S′]

(T ′)). Hence, to prove the part (a) we reduce to check that the canonical morphism‹D(•)
X′]/S′]

(T ′)⊗D̃(0)

X′]/S′]
(T ′)

f̃
(0)∗
alg F

(0) → f̃
∗(•)
alg (G(•)) (11.2.3.4.6)

is an ind-isogeny of M(‹D(•)
X′]/S′]

(T ′)). It follows from 11.2.3.3 that ‹D(m)

X′]/S′]
(T ′) ⊗D̃(0)

X′]/S′]
(T ′)

f̃
(0)∗
alg F (0)

is therefore a coherent ‹D(m)

X′]/S′]
(T ′)-module. Using 7.5.2.8, G(m) is a (coherent) ‹D(m)

X]/S]
(T )-module,

coherent over B̃(m)
X (T ). Hence, with 11.2.3.3 f̃ (m)∗

alg G(m) is a (coherent) ‹D(m)

X′]/S′]
(T ′)-module, coherent over

B̃(m)
X′ (T ′). We get the canonical morphism ‹D(m)

X′]/S′]
(T ′)⊗D̃(0)

X′]/S′]
(T ′)

f̃
(0)∗
alg F (0) → f̃

(m)∗
alg G(m) of coherent‹D(m)

X′]/S′]
(T ′)-modules. Hence, by using 8.4.2.8, to check that ‹D(•)

X′]/S′]
(T ′) ⊗D̃(0)

X′]/S′]
(T ′)

f̃
(0)∗
alg F (0) →

f̃
∗(•)
alg (G(•)) is an ind-isogeny of M(‹D(•)

X′]/S′]
(T ′)), we reduce to check that ‹D(•)

X′]/S′]
(T ′)Q ⊗D̃(0)

X′]/S′]
(T ′)Q

f̃
(0)∗
alg F

(0)
Q → f̃

∗(•)
alg (G(•)

Q ) is an isomorphism, which is a consequence of the isomorphism 11.2.3.4.5.
ii) To check that 11.2.3.4.2 is an ind-isogeny, we reduce to check that its composition with the ind-

isogeny 11.2.3.4.6
B̃(•)
X′ (T ′)⊗B̃(0)

X′
(T ′)

f̃
(0)∗
alg F

(0) → f̃
∗(•)
alg (G(•)) (11.2.3.4.7)

is an ind-isogeny. Since B̃(m)
X′ (T ′)⊗B̃(0)

X′
(T ′)

f̃
(0)∗
alg F (0) and f̃∗(•)alg (G(•)) are both B̃(m)

X′ (T ′)-coherent, by using

8.4.2.8 we reduce to prove that B̃(•)
X′ (T ′)Q ⊗B̃(0)

X′
(T ′)Q

f̃
(0)∗
alg F

(0)
Q → f̃

∗(•)
alg (G(•)

Q ) is an isomorphism, which
follows from 11.2.3.4.3.

3) The part c) follows from 9.2.1.17 and the coherence of F (•).
4) It remains to check that the canonical morphism B̃(•)

X′ (T ′)⊗L
f−1B̃(•)

X
(T )
f−1F (•) → B̃(•)

X′ (T ′)⊗
f−1B̃(•)

X
(T )

f−1F (•) is an isomorphism under the flatness assumption. Since this is a morphism in LD−→
b
Q,coh(B(•)

X′ (T ′)),
we reduce to check it after applying the functor→l

∗
Q, which is a consequence of the flatness as OX(†T )Q-

module.

Corollary 11.2.3.5. We have the following properties.

(a) Let E ∈ MIC††(X], T/S]). The canonical morphism

OX′(
†T ′)Q ⊗L

f−1OX(†T )Q
f−1E → D†

X′]/S′]→X]/S]
(†T ′, T )Q ⊗L

f−1D†
X]/S]

(†T )Q
f−1E
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is an isomorphism. We have f̃∗(E) := D†
X′]/S′]→X]/S]

(†T ′, T )Q⊗f−1D†
X]/S]

(†T )Q
f−1E ∈ MIC††(X′], T ′/S′]),

which induces the functor f̃∗ : MIC††(X], T/S])→ MIC††(X′], T ′/S′]).

(b) Let E(•) ∈ MIC(•)(X], T/S]). We have the isomorphism

→l
∗
Q ◦ Lf̃∗(•)(E(•))

∼−→ Lf̃∗ ◦→l
∗
Q(E(•)).

(c) Suppose log structures are trivial and S = Spf V. The functor Lf̃∗(•) factors through

Lf̃∗(•) : MIC(•)(X, T/S)→ MIC(•)(X′, T ′/S). (11.2.3.5.1)

Proof. We can suppose that E(•) satisfies the hypotheses of 11.2.2.3.(b). Hence, the part (a) and (b) are
a corollary of 11.2.3.4. The part (c) is a consequence of 11.2.1.14 and 11.2.3.4.

11.2.4 Stability by tensor product of isocrystals
We keep notation 11.2.1.

Proposition 11.2.4.1. Let E , E ′ ∈ MIC††(X], T/S]). For λ ∈ L(N) large enough, denoting by B̃(•)
X (T ) :=

λ∗B(•)
X (T ) and ‹D(•)

X]/S]
(T ) := B̃(•)

X (T )“⊗O(•)
X

“D(•)
X]/S]

, let E(0), E ′(0) be tow topologically nilpotent ‹D(0)

X]/S]
(T )Q-

module, coherent as B̃(0)
X (T )Q-module satisfying both conditions of 11.2.1.7.(b) for respectively E and E ′.

We get the ‹D(•)
X]/S]

(T )Q-module by setting E(•) := B̃(•)
X (T )Q⊗B̃(0)

X
(T )Q
E(0), E ′(•) := B̃(•)

X (T )Q⊗B̃(0)

X
(T )Q
E ′(0).

(a) E ⊗OX(†T )Q
E ′ ∈ MIC††(X], T/S])

(b) E(•) ⊗B̃(•)
X

(T )Q
E ′(•) both conditions of 11.2.1.7.(b) for E ⊗OX(†T )Q

E ′.

Proof. This follows from 7.5.2.10.

Proposition 11.2.4.2. Let λ ∈ L(N). Set B̃(•)
X (T ) := λ∗0B

(•)
X (T ) and ‹D(•)

X]/S]
(T ) := B̃(•)

X (T )“⊗O(•)
X

“D(•)
X]/S]

.

Let F (0) and F ′(0) be two p-torsion free ‹D(0)

X]/S]
(T )-modules, coherent over B̃(0)

X (T ) such that the canonical
morphism

B̃(•)
X (T )⊗B̃(0)

X
(T )
F (0) → ‹D(•)

X]/S]
(T )⊗D̃(0)

X]/S]
(T )
F (0) =: F (•),

and similarly for F ′(0), is an ind-isogeny in M(B̃(•)
X (T )) and such that F (m)

Q and F ′(m)
Q are topologically

nilpotent ‹D(m)

X]/S]
(T )Q-modules for anym. Set F ′′(0) := F (0)⊗B̃(0)

X
(T )
F ′(0), F ′′(•) := ‹D(•)

X]/S]
(T )⊗D̃(0)

X]/S]
(T )

F ′′(0).

(a) F ′′(m)
Q are topologically nilpotent ‹D(m)

X]/S]
(T )Q-modules for any m.

(b) The canonical morphism

B̃(•)
X (T )⊗B̃(0)

X
(T )
F ′′(0) → ‹D(•)

X]/S]
(T )⊗D̃(0)

X]/S]
(T )
F ′′(0) = F ′′(•) (11.2.4.2.1)

is an ind-isogeny of M(B̃(•)
X (T )).

(c) F ′′(•) belongs to MIC(•)(X], T/S]).

(d) The canonical morphism
F (•) ⊗B̃(•)

X
(T )
F ′(•) → F (•)“⊗B̃(•)

P
(T )
F ′(•). (11.2.4.2.2)

is an ind-isogeny of M(B̃(•)
X (T )⊗OX

D(•)
X]/S]

).

693



(e) The canonical morphism

F ′′(•) = ‹D(•)
X]/S]

(T )⊗D̃(0)

X]/S]
(T )
F ′′(0) → F (•)“⊗B̃(•)

X
(T )
F ′(•) (11.2.4.2.3)

is an ind-isogeny of M(‹D(•)
X]/S]

(T )). In particular, F (•)“⊗B(•)
X

(T )
F ′(•) belongs to MIC(•)(X], T/S]).

Proof. a) We have the isomorphism

B̃(m)
X (T )Q ⊗B̃(0)

X
(T )Q
F ′′(0)

Q
∼−→ (B̃(m)

X (T )Q ⊗B̃(0)

X
(T )Q
F (0)

Q )⊗B̃(m)

X
(T )Q

(B̃(m)
X (T )Q ⊗B̃(0)

X
(T )Q
F ′(0)

Q )

By using 7.5.2.10, this yields that B̃(m)
X (T )Q ⊗B̃(0)

X
(T )Q

F ′′(0)
Q is therefore canonically endowed with a

structure of topologically nilpotent ‹D(m)

X]/S]
(T )Q-module and is also B̃(m)

X (T )Q-coherent (for the induced

structure of B̃(m)
X (T )Q-module). Hence, we get the isomorphisms:

B̃(m)
X (T )Q ⊗B̃(0)

X
(T )Q
F ′′(0)

Q
∼−→

7.5.2.8.2
(B̃(m)

X (T )“⊗OX
“D(0)

X]/S]
(T ))Q ⊗D̃(0)

X]/S]
(T )Q
F ′′(0)

Q

B̃(m)
X (T )Q ⊗B̃(0)

X
(T )Q
F ′′(0)

Q
∼−→

7.5.2.8.1
‹D(m)

X]/S]
(T )⊗

(B̃(m)

X
(T )⊗̂OX

D̂(0)

X]/S]
(T ))Q

(
B̃(m)
X (T )Q ⊗B̃(0)

X
(T )Q
F ′′(0)

Q

)
.

This implies that the canonical map

B̃(m)
X (T )Q ⊗B̃(0)

X
(T )Q
F ′′(0)

Q → ‹D(m)

X]/S]
(T )Q ⊗D̃(0)

X]/S]
(T )Q
F ′′(0)

Q (11.2.4.2.4)

is an isomorphism.
b) Set E ′′(•) := B̃(•)

X (T ) ⊗B̃(0)

X
(T )
F ′′(0). For any m ∈ N, let G′′(m) be the quotient of F ′′(m) by its

p-torsion part. Since F ′′(•) → G′′(•) is an ind-isogeny, to check that E ′′(•) → F ′′(•) is an ind-isogeny we
reduce to prove that so is the composition E ′′(•) → G′′(•).

Using 7.5.2.8, the part 1) of the proof implies that G′′(m) is B̃(m)
X (T )-coherent for any integer m. Sim-

ilarly, F (0) and F ′(0) are B̃(0)
X (T )-coherent. This yields that E ′′(m) = B̃(m)

X (T )⊗B̃(0)

X
(T )
F ′′(0) is B̃(m)

X (T )-

coherent. Hence, by using 8.4.2.8, to check that E ′′(•) → G′′(•) is an ind-isogeny of M(‹D(•)
X]/S]

(T )), we

reduce to check that E ′′(•)Q → G′′(•)Q is an isomorphism. Since E ′′(•)Q → F ′′(•)Q is an isomorphism (see

11.2.4.2.4) and F ′′(•)Q
∼−→ G′′(•)Q , then we are done.

c) By using 11.2.2.3, this is a consequence of (a) and (b).
d) Let G(m) (resp. G′(m)) be the quotient of F (m) (resp. F ′(m)) by its p-torsion part for any

m ∈ N. Following 7.5.2.9, G(m) (resp. G′(m)) are B̃(m)
X (T )-coherent for any integer m. Hence, so is

G(m) ⊗B(m)

X
(T )
G′(m). By applying 7.5.2.1, this yields that the canonical morphism

G(•) ⊗B̃(•)
X

(T )
G′(•) → G(•)“⊗B̃(•)

P
(T )
G′(•). (11.2.4.2.5)

is an isomorphism. Hence, 11.2.4.2.2 is an ind-isogeny.
e) It follows from 8.4.2.8 that to check that the map

F ′′(•) = ‹D(•)
X]/S]

(T )⊗D̃(0)

X]/S]
(T )
F ′′(0) → G(•)“⊗B̃(•)

X
(T )
G′(•) (11.2.4.2.6)

is an ind-isogeny, we reduce to prove F ′′(•)Q → G(•)
Q
“⊗B̃(•)

X
(T )Q
G′(•)Q is an isomorphism. Since B̃(•)

X (T )Q⊗B̃(0)

X
(T )

F ′′(0) ∼−→ G(•)
Q ⊗B̃(•)

X
(T )Q
G′(•)Q , this follows from 11.2.4.2.1 and 11.2.4.2.5.

Proposition 11.2.4.3. Let F (•) and F ′(•) two objects of MIC(•)(X], T/S]).

(a) The canonical morphism of LD−→
b
Q(lD(•)

X]/S]
(T )) :

F (•) ⊗L
B(•)

X
(T )
F ′(•) → F (•)“⊗L

B(•)
P

(T )F ′(•). (11.2.4.3.1)

is an isomorphism. This yields F (•)“⊗L
B(•)

P
(T )F ′(•) ∈ LD−→

b
Q,coh(B(•)

X]
(T )).
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(b) Set F :=→l
∗
Q(F (•)), F ′ :=→l

∗
Q(F ′(•)). The canonical morphism

F ⊗L
OX(†T )Q

F ′ → F
L
⊗†OX(†T )Q

F ′. (11.2.4.3.2)

is an isomorphism.

(c) We have F (•)“⊗B(•)
X

(T )
F ′(•) ∈ MIC(•)(X], T/S]). By abuse of notation, we can simply write this

isocrystal F (•) ⊗B(•)
X

(T )
F ′(•).

Proof. By using 11.2.2.5.1, we get that 11.2.4.3.1 is an isomorphism. By applying→l
∗
Q to 11.2.4.3.1, we

get 11.2.4.3.2. The last assertion follows from 9.1.1.16, 11.2.2.3 and 11.2.4.2.

Corollary 11.2.4.4. Suppose S] = Spf V and log structures are trivial. For i = 1, 2, let Xi be a
noetherian of finite Krull dimension V-smooth formal scheme, For i = 1, 2, let Xi be a k-smooth closed
subscheme of P , Ti be a divisor of Pi such that Zi := Ti ∩ Xi is a divisor of Xi. Let X := X1 ×S X2.
For i = 1, 2, let pi : X → Xi be the natural projection, T := p−1

1 (T1) ∪ p−1
2 (T2), E(•)

i be an object of
MIC(•)(Xi, Ti/K). Then E(•)

1
“�L
OS
E(•)

2 ∈ MIC(•)(X, T/K).

Proof. Following Lemma 9.2.5.9 (see also 9.2.5.3), we already know E(•)
1
“�L
OS
E(•)

2
∼−→ E(•)

1
“�OS

E(•)
2 ∈

LM−−→Q,coh(“D(•)
X/S(T )). This follows from 11.2.4.3 and 11.2.3.5.1.

11.2.5 Stability by ‹B(•)
X (T )-linear duality of isocrystals

Proposition 11.2.5.1. Let E ∈ MIC††(X], T/S]). For λ ∈ L(N) large enough, denoting by B̃(•)
X (T ) :=

λ∗B(•)
X (T ) and ‹D(•)

X]/S]
(T ) := B̃(•)

X (T )“⊗O(•)
X

“D(•)
X]/S]

, let E(0) be a topologically nilpotent ‹D(0)

X]/S]
(T )Q-

module, coherent as B̃(0)
X (T )Q-module satisfying both conditions of 11.2.1.7.(b). We get the ‹D(•)

X]/S]
(T )Q-

module by setting E(•) := B̃(•)
X (T )Q ⊗B̃(0)

X
(T )Q
E(0).

(a) E∨ := HomOX(†T )Q
(E ,OX(†T )Q) ∈ MIC††(X], T/S]) ;

(b) E∨(•) := HomB̃(•)
X

(T )Q
(E(•), B̃(•)

X (T )Q) satisfies both conditions of 11.2.1.7.(b) for E∨.

Proof. Since E∨(0) is a left B̃(0)
X (T )Q ⊗OX

DX]/S] -module, then so is E∨(0). Via the canonical isomor-
phism of B̃(m)

X (T )Q ⊗OX
DX]/S]-modules B̃(m)

X (T )Q ⊗B̃(0)

X
(T )Q
E∨(0) ∼−→ E∨(m), we get the morphism of

B̃(m)
X (T )Q ⊗OX

DX]/S]-modules E∨(m) → E∨(m+1). We get the DX]/S](
†T )Q-linear isomorphism

lim−→mB̃(m)
X (T )Q ⊗B̃(0)

X
(T )Q
E∨(0) ∼−→ E∨. (11.2.5.1.1)

Since E(m) (uniquely) extends to a structure of topologically nilpotent ‹D(m)

X]/S]
(T )Q-module then so is

E∨(m) (see 7.5.2.10). By continuity, we get that the homomorphisms

E∨(m) → E∨(m+1) (11.2.5.1.2)

are ‹D(m)

X]/S]
(T )Q-linear.

Proposition 11.2.5.2. Let F (0) be a ‹D(0)

X]/S]
(T )-module, coherent over B̃(0)

X (T ) such that the canonical
morphism

B̃(•)
X (T )⊗B̃(0)

X
(T )
F (0) → ‹D(•)

X]/S]
(T )⊗D̃(0)

X]/S]
(T )
F (0) =: F (•) (11.2.5.2.1)

is an ind-isogeny in M(B̃(•)
X (T )) and such that F (m)

Q is a topologically nilpotent ‹D(m)

X]/S]
(T )Q-module for

any m. Set F∨(0) := HomB̃(0)

X
(T )

(F (0), B̃(0)
X (T )), F∨(•) := ‹D(•)

X]/S]
(T )⊗D̃(0)

X]/S]
(T )
F∨(0).
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(a) F∨(m)
Q

∼−→ HomB̃(m)

X
(T )Q

(F (m)
Q , B̃(m)

X (T )Q) is a topologically nilpotent ‹D(m)

X]/S]
(T )Q-modules for any

m.

(b) The canonical morphism

B̃(•)
X (T )⊗B̃(0)

X
(T )
F∨(0) → ‹D(•)

X]/S]
(T )⊗D̃(0)

X]/S]
(T )
F∨(0) = F∨(•) (11.2.5.2.2)

is an ind-isogeny of M(B̃(•)
X (T )).

(c) F∨(•) belongs to MIC(•)(X], T/S]).

Proof. a) We have the isomorphism

B̃(m)
X (T )Q ⊗B̃(0)

X
(T )Q
F∨(0)

Q
∼−→ HomB̃(m)

X
(T )Q

(F (m)
Q , B̃(m)

X (T )Q)

By using 7.5.2.10, this yields that B̃(m)
X (T )Q ⊗B̃(0)

X
(T )Q

F∨(0)
Q is therefore canonically endowed with a

structure of topologically nilpotent ‹D(m)

X]/S]
(T )Q-module and is also B̃(m)

X (T )Q-coherent. Hence, we get
the isomorphisms:

B̃(m)
X (T )Q ⊗B̃(0)

X
(T )Q
F∨(0)

Q
∼−→

7.5.2.8.2
(B̃(m)

X (T )“⊗OX
“D(0)

X]/S]
(T ))Q ⊗D̃(0)

X]/S]
(T )Q
F∨(0)

Q

B̃(m)
X (T )Q ⊗B̃(0)

X
(T )Q
F∨(0)

Q
∼−→

7.5.2.8.1
‹D(m)

X]/S]
(T )⊗

(B̃(m)

X
(T )⊗̂OX

D̂(0)

X]/S]
(T ))Q

(
B̃(m)
X (T )Q ⊗B̃(0)

X
(T )Q
F∨(0)

Q

)
.

This implies that the canonical map

B̃(m)
X (T )Q ⊗B̃(0)

X
(T )Q
F∨(0)

Q → ‹D(m)

X]/S]
(T )Q ⊗D̃(0)

X]/S]
(T )Q
F∨(0)

Q (11.2.5.2.3)

is an isomorphism.
By tensoring with Q the ind-isogeny 11.2.5.2.1, we get an isomorphism which yields the isomor-

phism F∨(m)
Q

∼−→ HomB̃(m)

X
(T )Q

(F (m)
Q , B̃(m)

X (T )Q) of ‹D(m)

X]/S]
(T )Q-modules for any m. Since F (m)

Q is a

topologically nilpotent ‹D(m)

X]/S]
(T )Q-module then so is F∨(m) (see 7.5.2.10).

b) Set E(•) := B̃(•)
X (T ) ⊗B̃(0)

X
(T )
F∨(0). For any m ∈ N, let G(m) be the quotient of F∨(m) by its

p-torsion part. Since F∨(•) → G(•) is an ind-isogeny, to check that E(•) → F∨(•) is an ind-isogeny we
reduce to prove that so is the composition E(•) → G(•).

Using 7.5.2.8, the part a) of the proof implies that G(m) is B̃(m)
X (T )-coherent for any integer m.

Similarly, F∨(0) is B̃(0)
X (T )-coherent. This yields that E ′′(m) = B̃(m)

X (T )⊗B̃(0)

X
(T )
F∨(0) is B̃(m)

X (T )-coherent.

Hence, by using 8.4.2.8, to check that E(•) → G(•) is an ind-isogeny of M(‹D(•)
X]/S]

(T )), we reduce to

check that E(•)
Q → G(•)

Q is an isomorphism. Since E(•)
Q → F (•)

Q is an isomorphism (see 11.2.5.2.3) and

F (•)
Q

∼−→ G(•)
Q , then we are done.

11.2.6 Comparison with the D-linear duality
We keep notation 11.2.1. Let E ∈ MIC††(X], T/S]) which is locally projective of finite type on OX(†T )Q.

Remark 11.2.6.1. Specially when T is not empty (see 8.7.7.7 to get example when T is empty), we
do not know a priori if D†

X]
(†T )Q has finite tor dimension. Be careful because standard isomorphisms

concerning the sheaves of homomorphisms require to work with perfect complexes instead of complexes
with bounded and coherent cohomology.

Proposition 11.2.6.2. We have E ∈ Dperf(
lDX](

†T )Q), E ∈ Dperf(
lD†

X]
(†T )Q).
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Proof. Following 4.7.3.7.1 (see also the remark 4.7.3.15), the first Spencer sequence Sp•D
X]

(†T )Q
(E) as-

sociated to the trivial filtration is exact. As E is locally projective of finite type on OX(†T )Q, then
this sequence gives a finite resolution of E by of locally projective of finite type left DX](

†T )Q-modules.
Hence, E ∈ Dperf(

lDX](
†T )Q). Since the extension DX](

†T )Q → D†X](
†T )Q is flat, with 11.2.1.9.2, this

yields that E ∈ Dperf(
lD†

X]
(†T )Q).

11.2.6.3. Let E ∈ MIC††(X], T/S]) (see notation 11.2.1.4) which is locally projective of finite type on
OX(†T )Q. Following 4.6.7.1, with notation 9.2.4.22.1 we have the canonical isomorphism of the form

θalg : Dalg
T (OX(†T )Q)⊗L

OX(†T )Q
RHomOX,Q(†T )(E , OX,Q(†T ))→ Dalg

T (E). (11.2.6.3.1)

Following 4.6.7.1, since OX(†T )Q ∈ Dperf(DX]/S](
†T )Q) and E ∈ Dperf(OX(†T )Q) (because it is locally

projective of finite type on OX,Q(†T )), then the map 11.2.6.3.1 is an isomorphism.
Since E is locally projective of finite type onOX,Q(†T ), the morphism E∨ := HomOX,Q(†T )(E , OX,Q(†T ))→

RHomOX,Q(†T )(E , OX,Q(†T )) is an isomorphism. Following 8.7.7.5.c), we have a canonical isomorphism
Dalg
T (OX(†T )Q)

∼−→ OX(†T )Q. Hence, we get the isomorphism of Db
perf(DX]/S](

†T )Q) (see 11.2.6.2):

E∨ ∼−→ Dalg
T (E). (11.2.6.3.2)

In particular, for any i 6= 0, Hi(Dalg
T (E)) = 0 and we can see Dalg

T (E) as a DX]/S](
†T )Q-module which is

locally projective of finite type on OX,Q(†T ).
Following 11.2.5.1, E∨ ∈ MIC††(X], T/S]). Hence, so is Dalg

T (E). This yields from of 11.2.1.9.2 that the
canonical morphisms E → D†

X]/S]
(†T )Q⊗D

X]/S]
(†T )Q

E and Dalg
T (E)→ D†

X]/S]
(†T )Q⊗D

X]/S]
(†T )Q

Dalg
T (E)

is an isomorphism. With notation 9.2.4.22.2, this yields the isomorphism:

ρT : Dalg
T (E)

∼−→ D†
X]/S]

(†T )Q⊗D
X]/S]

(†T )Q
Dalg
T (E)

∼−→
4.6.4.7.1

DT (D†
X]/S]

(†T )Q⊗D
X]/S]

(†T )Q
E)

∼−→ DT (E),

(11.2.6.3.3)
Hence, from 11.2.6.3.2 we get the D†

X]/S]
(†T )Q-linear isomorphism:

E∨ ∼−→ DT (E). (11.2.6.3.4)

In particular, for any r ∈ Z \ {0} we have Hr(DT (E)) = 0.

11.2.6.4. Beware the isomorphism 11.2.6.3.4 is not compatible with Frobenius. The key point is that
the isomorphism DT (OX(†T )Q)

∼−→ OX(†T )Q
1 is not compatible. Hence, the “twist” DT (OX(†T )Q)

is essential to obtain this one. To get a compatible with Frobenius morphism, let us consider the
isomorphism θ : DT (OX(†T )Q)⊗L

OX(†T )Q
E∨ ∼−→ DT (E) making commutative the following diagram:

Dalg
T (OX(†T )Q)⊗L

OX(†T )Q
E∨ θalg

∼
//

ρ⊗id∼
��

Dalg
T (E)

ρ∼

��
DT (OX(†T )Q)⊗L

OX(†T )Q
E∨ θ

∼
// DT (E).

(11.2.6.4.1)

We will check later its compatibility with Frobenius (see ??).

Corollary 11.2.6.5. Let F ∈ Db
coh(D†X(†T )Q). The following assertions are equivalent :

(a) For any r ∈ Z, Hr(F) ∈ MIC††(X], T/S]) and is locally projective of finite type on OX(†T )Q.

(b) For any r ∈ Z, Hr(DT (F)) ∈ MIC††(X], T/S]) and is locally projective of finite type on OX(†T )Q

for any r ∈ Z.

If F satisfies one of these equivalent conditions, then, for any r, s ∈ Z such that r 6= 0, Hr(DT (Hs(F)) =
0 and DT (Hs(F))

∼−→ Hs(DT (F)).

Proof. This is a consequence of 11.2.6.3.4.
1See Abe’s paper
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11.2.7 Commutation of sp∗ with inverse images, glueing isomorphisms and
duality

11.2.7.1. Let S→ Spf V be a smooth morphism. Let X (resp. X′) be a smooth S-scheme, Z (resp. Z′)
be a relative strict normal crossing divisor of X (resp. X′) over S, X] := (X,MZ) (resp. X′] := (X′,MZ′))
be the logarithmic V-formal scheme induced by the logarithmic structure MZ (resp. MZ′) associated
with Z (resp. Z′). Let T (resp. T ′) be a divisor of X0 (resp. X ′0) and Y] (resp. Y′]) the open subset of
X] (resp. X′]) complementary to the support of T (resp. T ′), let j : Y] \ X] (resp. j : Y′] \ X′]) be the
induced open immersion.

Let u : X′] → X] be a morphism of formal schemes such that T ′ ⊃ u−1
0 (T ). This yields the morphism

of smooth frames f := (b, a, u) : (Y ′, X ′,X′)→ (Y,X,X). According to notation 10.1.2.6.1, we have the
functor

f∗K := j′†u∗K , (11.2.7.1.1)

which induces the functor MIC†(X]K , T/SK) → MIC†(X′]K , T
′/SK). If this do not cause too much

confusion (the tilde symbol indicates the divisors T and T ′), we will write ũ∗K instead of f∗K .
Following 11.2.1.5.(a), the functors sp∗ and sp∗ (see 11.2.1.3) induce quasi-inverse equivalences of

categories between MIC†(X]K , T/S
]
K) and MIC††(X], T/S]). With notation 11.2.3.5, we have the functor

ũ∗ : MIC††(X, T/K)→ MIC††(X′, T ′/K) which is compatible with ũ∗K , i.e. for any E ∈ MIC†(X]K , T/S
]
K)

and E ∈ MIC††(X], T/S]), there exist canonical isomorphisms of respectively MIC††(X ′,X′, T ′/K) and
MIC†(Y ′, X ′,X′/K) of the form

sp∗ũ
∗
K(E)

∼−→ ũ∗sp∗(E), ũ∗Ksp∗(E)
∼−→ sp∗ũ∗(E). (11.2.7.1.2)

We leave as an exercice the check that these isomorphisms are transitive with respect to the composition
of morphisms.

Example 11.2.7.2. With notation 11.2.7.1, suppose u = id. For any E ∈ MIC†(X]K , T/S
]
K), following

11.2.3.5 and 11.2.7.1.2, we have the isomorphism:

sp∗(j
′†E)

∼−→ D†
X]

(†T ′)Q ⊗D†
X]

(†T )Q
sp∗(E) = (†T ′)(sp∗(E)). (11.2.7.2.1)

Proposition 11.2.7.3. We keep notation 11.2.7.1 and suppose log structures are trivial. Let u′ : X′] →
X] be a morphism of formal log smooth S-schemes such that u′0 = u0. Then, the following diagrams

sp∗ũ
′∗
K(E)

sp∗(εu, u′ )

∼
//

∼ 11.2.7.1.2��

sp∗ũ
∗
K(E)
∼ 11.2.7.1.2��

ũ′∗sp∗(E)
τu,u′

∼
// ũ∗sp∗(E),

ũ′∗Ksp∗(E)
εu, u′

∼
//

∼ 11.2.7.1.2��

ũ∗Ksp∗(E)
∼ 11.2.7.1.2��

sp∗ũ′∗(E)
sp∗(τu,u′ )

∼
// ũ∗sp∗(E),

where the glueing isomorphisms εu,u′ and τu,u′ are that of 10.2.4.1.1 and 9.2.2.3.1, are commutative.

Proof. This follows from the fact that both glueing isomorphisms εu,u′ and τu,u′ are built similarly using
some factorization via the closed imbedding (u, u′) : X′ ↪→ (X)(n) where (X)(n) is the nth infinitesimal
neighborhood of the diagonal immersion X ↪→ X ×S X.

Proposition 11.2.7.4. Let X → S → Spf V be two smooth morphisms, Z be a relative strict normal
crossing divisor of X over S, X] := (X,MZ) be the logarithmic V-formal scheme induced by the logarithmic
structure MZ associated with Z. Let T be a divisor of X0. Let E ∈ MIC††(X], T/S]) which is locally
projective of finite type as OX,Q(†T )-module. Let E ∈ MIC†(X]K , T/SK) which is locally free of finite type
j†OXK -module. We have the canonical isomorphisms (compatibility with Frobenius when log structures
are trivial):

sp∗HomOX,Q(†T )(E ,OX,Q(†T ))
∼−→ Homj†OXK

(sp∗E , j†OXK ) (11.2.7.4.1)

HomOX,Q(†T )(sp∗E,OX,Q(†T ))
∼−→ sp∗(Homj†OXK

(E, j†OXK )). (11.2.7.4.2)

Proof. Since E is an OX,Q(†T )-module locally projective of finite type, then the canonical homomorphism

sp∗HomOX,Q(†T )(E ,OX,Q(†T ))→ Homj†OXK
(sp∗E , j†OXK )
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is an isomorphism. By using the equivalence of categories 11.2.1.5, since HomOX,Q(†T )(E ,OX,Q(†T )) is
an isocrystal which is locally projective of finite type as OX,Q(†T )-module, by applying the functor sp∗
to 11.2.7.4.1, we get the isomorphism 11.2.7.4.2.

Corollary 11.2.7.5. With notation and hypotheses of 11.2.7.4, we have the canonical isomorphism

sp∗(E
∨)

∼−→ DT (sp∗E), (11.2.7.5.1)

where E∨ = Homj†OXK
(E, j†OXK ).

Proof. This is a consequence of 11.2.6.3.4 and 11.2.7.4.

Remark 11.2.7.6. The isomorphism 11.2.7.5.1 is not compatible with Frobenius. To get a compatible
with Frobenius version we need to add a twist (see 11.3.5.3).

11.3 Compatibility with Frobenius of the comparison isomor-
phism between both dual functors of isocrystals

We suppose there exists a lifting σ : V → V of the power s-th of Frobenius of k. Let X be a smooth
V-formal scheme, X′ be the V-formal scheme induced by X by the base change relative to σ, T be a
divisor X and T ′ the divisor of X ′ induced by T by the base change relative to σ. We prove in this
section that the isomorphism θ constructed at 11.2.6.4.1 is compatible with Frobenius (see 11.3.4.6.1).

11.3.1 Construction of θ̂(m)

Let m and i0 be two nonnegative integers, X will be either X or Xi0 (the case X = X can be seen as the
case where i0 =∞) and S will be either Spf V or SpecV/mVi+1, with m the ideal maximal of V.

The D(m)
X -linear functor, denoted by D(m) : Dperf(D(m)

X )→ Dperf(D(m)
X ), is defined by setting for any

E ∈ Dperf(D(m)
X )

D(m)
X (E) := RHomD(m)

X

(E ,D(m)
X ⊗OX ω−1

X/S))[dX ]. (11.3.1.0.1)

If there is no risk of confusion, we simply write D(m) instead of D(m)
X .

The “D(m)
X -linear functor, denoted by D̂(m) : Dperf(“D(m)

X )→ Dperf(“D(m)
X ), is defined by setting for any

E ∈ Db
perf(

“D(m)
X )

D̂(m)
X (E) := RHomD̂(m)

X

(E , “D(m)
X ⊗OX

ω−1
X/S))[dX ]. (11.3.1.0.2)

If there is no risk of confusion, we simply write D̂(m) instead of D̂(m)
X . Similarly to 8.7.7.3, we construct

for any E ∈ D(“D(m)
X ) the canonical morphism

E → D̂(m)
X ◦ D̂(m)

X (E) (11.3.1.0.3)

which is an isomorphism when E ∈ Db
perf(

“D(m)
X ).

In this subsection, we construct (see 11.3.1.16.2) , for any E ∈ Dperf(OX)∩D(lD(m)
X ), the isomorphism

θ̂(m) : D̂(m)(OX)⊗OX
E∨ → D̂(m)(E),

where E∨ := RHomOX
(E ,OX). In order to get its compatibility with Frobenius (see 11.3.2.9.1), the idea

is to take the p-adic completion of the isomorphism θ(m) : D(m)(OX)⊗L
OX
E∨ → D(m)(E) constructed at

6.3.4.15. To make later the link with the construction of θ (by extension from θ(m): see 11.2.6.4.1), we
also check that this morphism θ̂(m) is the one induced by extension from θ(m) (see below 11.3.1.19).

Remark 11.3.1.1. Let us recall that dim cohD(0)
X = dim coh “D(m)

X = 2dX + 1 (8.7.7.6). As the sheaves
D(m)

X and “D(m)
X are coherent, we obtain Db

perf(D
(0)
X ) = Db

coh(D(0)
X ), Db

perf(
“D(m)
X ) = Db

coh(“D(m)
X ) and

Db
perf(D

(m)
X ) = Db

coh(D(m)
X ) ∩Dtdf(D(m)

X ).
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Via 11.1.1.5, this yields that every object E of D(D(m)
X ) ∩Db

perf(OX) is also an object of Db
coh(D(m)

X )

and of Db
perf(

“D(m)
X ). Moreover, since the extension D(m)

X → “D(m)
X is flat, since E ∈ Dtdf(“D(m)

X ) then
E ∈ Dtdf(D(m)

X ). Hence, E belongs to Db
perf(D

(m)
X ).

Remark 11.3.1.2. Following 4.7.3.7 and 4.7.3.14, we have the canonical isomorphisms D(0)(OX)
∼−→ OX,

D̂(0)(OX)
∼−→ OX and D(0)(OXi)

∼−→ OXi for any nonnegative integer i. By Frobenius increasing of the
level (use 6.2.7.2), since the pullback under Frobenius of the constant coefficient is the constant coefficient,
then we get D̂(m)(OX)

∼−→ OX and for any positive integer i, D(m)(OXi)
∼−→ OXi . However, we do not

know if we have an isomorphism D(m)(OX)
∼−→ OX nor if D(m)(OX) ∈ Db

perf(OX) or OX ∈ Db
perf(

lD(m)
X ).

Notation 11.3.1.3. Let D = D(m)
X or “D(m)

X . For any integer i ≤ i0 and every E ∈ D(lD), the canonical
morphism

OXi ⊗L
OX E

∼−→ D(m)
Xi
⊗L
D E (11.3.1.3.1)

is an isomorphism and we set Ei := D(m)
Xi
⊗L
D E .

11.3.1.4. Let f : E → E ′ be a morphism of D(D(m)
X ), gi : Fi → F ′i be a morphism of D(D(m)

Xi
), α : E → Fi

and β: E ′ → F ′i be two morphisms of D(D(m)
X ) such that β ◦ f = gi ◦α. The morphisms α and β factors

through the morphisms αi : Ei → Fi and βi : E ′i → Fi. We get also the following commutative diagram :

E
f //

�� α

��

E ′
β

��

��
Ei

αi %%

// E ′i
βi %%

Fi gi
// F ′i .

11.3.1.5. The goal of this paragraph is to construct the functor 11.3.1.5.1. Let E ∈ D(lD(m)
X ), G ∈

D(lD(m)
Xi

). Let I → J be a quasi-isomorphism of K-injective complexes ofK(lD(m)
Xi

). Then, the morphism
HomOX (E , I)→ HomOX (E , J ) is a quasi-isomorphism ofK(lD(m)

Xi
) because it is canonically isomorphic

to HomOXi (OXi⊗OX E , I)→ HomOXi (OXi⊗OX E ,J ) and because I → J is also (by flatness of OXi →
D(m)
Xi

) a quasi-isomorphism of K-injective complexes of K(OXi). Hence, following [Sta22, 13.14.15], we
get the functor RIIHomOX (E , −) : D(lD(m)

Xi
)→ D(lD(m)

Xi
), i.e. the right derived functor (with respect to

quasi-isomophisms of K(lD(m)
Xi

)) of HomOX (E , −) : K(lD(m)
Xi

)→ D(lD(m)
Xi

) exists and is computed by K-
injective complexes. Moreover, the functor K(lD(m)

X )→ D(lD(m)
Xi

), given by E 7→ RIIHomOX (E , G) has
a derived functor (with respect to quasi-isomophisms of K(lD(m)

X )). Indeed, following [Sta22, 13.14.15],
it is sufficient to check that if P → P ′ is a quasi-isomorphism of K-flat complexes of K(lD(m)

X ) (and there-
fore a K-flat complexes of K(OX)), then RIIHomOX (P ′, G) → RIIHomOX (P, G) is an isomorphism.
Let I be a K-injective complex of K(lD(m)

Xi
) representing G. Then, the map RIIHomOX (P ′, G) →

RIIHomOX (P, G) corresponds to the map HomOX (P ′, I) → HomOX (P, I) induced by the quasi-
isomorphism P → P ′. Moreover, this latter is canonically isomorphic to HomOXi (OXi ⊗OX P

′, I) →
HomOXi (OXi ⊗OX P, I). Since OXi ⊗OX P → OXi ⊗OX P ′ is a quasi-isomorphism of K(lD(m)

Xi
), since I

is a K-injective complex of K(lD(m)
Xi

) then HomOXi (OXi ⊗OX P
′, I)→ HomOXi (OXi ⊗OX P, I) is an

isomorphism. We denote by RIRIIHomOX (−,G) : D(lD(m)
X )op → D(lD(m)

Xi
) the derived functor. Since

this is functorial in G, this yields the bifunctor

2RIRIIHomOX (−,−) : D(lD(m)
X )op ×D(lD(m)

Xi
)→ D(lD(m)

Xi
). (11.3.1.5.1)

We remark that RIRIIHomOX (E ,G) could have been directly defined by setting RIRIIHomOX (E ,G) =
HomOX (P, I) where P is a K-flat complex representing E and I is a K-injective complex representing G

2This can still be defined by adding log structure and coefficients
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and by checking its independence relatively to the choices (it is a way of defining analogous to the one
of [Sta22, 20.38.7]). By using [Sta22, 13.14.16], we check that we have the 2-commutative diagram

D(lD(m)
X )op ×D(lD(m)

Xi
)

RIRIIHomOX (−,−)
// D(lD(m)

Xi
)

D(lD(m)
X )op ×D(lD(m)

X )

OO

RHomOX (−,−)
// D(lD(m)

X ).

(11.3.1.5.2)

Hence, this is not confusing to simply denote by RHomOX (−,−) : D(lD(m)
X )op ×D(lD(m)

Xi
)→ D(lD(m)

Xi
),

instead of RIRIIHomOX (−,−).

Lemma 11.3.1.6. Let E ∈ D(lD(m)
X ), 0 ≤ i ≤ i0 be an integer, G ∈ D(lD(m)

Xi
). We have the canonical

isomorphism of D(lD(m)
Xi

):

RHomOX (E , G)
∼−→ RHomOXi (OXi ⊗

L
OX E , G) (11.3.1.6.1)

This isomorphism is transitive, i.e. for any integer 0 ≤ j ≤ i and any H ∈ D(lD(m)
Xj

) we have the
commutative diagram

RHomOX (E , H)

11.3.1.6.1

��

11.3.1.6.1 // RHomOXi (OXi ⊗
L
OX E , H)

11.3.1.6.1

��
RHomOXj (OXj ⊗L

OX E , H)
∼ // RHomOXj (OXj ⊗L

OXi
(OXi ⊗L

OX E), H).

(11.3.1.6.2)

Proof. We construct the morphism 11.3.1.6.1 by choosing a K-flat complex of K(lD(m)
X ) representing E

and a K-injective complex of K(lD(m)
Xi

) representing G. The transitivity is left to the reader as an easy
exercice.

Lemma 11.3.1.7. For any E ∈ D(lD(m)
X ), F ∈ D(lD(m)

X ), for any integer 0 ≤ i ≤ i0, we have the
canonical morphism of D(lD(m)

Xi
):

RHomOX (E , F)⊗L
OX OXi → RHomOX (E , F ⊗L

OX OXi). (11.3.1.7.1)

This one is an isomorphism if E ∈ Dperf(OX). Moreover, this is transitive, i.e., if j ≤ i ≤ i0 is a
nonnegative integer, we have the following commutative diagram :

(RHomOX (E , F)⊗L
OX OXi)⊗

L
OXi
OXj

11.3.1.7.1
∼

//

∼
��

RHomOX (E , F ⊗L
OX OXi)⊗

L
OXi
OXj

11.3.1.7.1∼
��

RHomOX (E , F)⊗L
OX OXj

11.3.1.7.1
∼

// RHomOX (E , F ⊗L
OX OXj ).

Proof. It follows from (the right version of) 4.6.4.1.1 (and 11.3.1.3.1) that the morphism RHomOX (E , F)⊗L
OX

OXi → RHomOX (E , F ⊗L
OX OXi) induces 11.3.1.7.1. The transitivity is an easy exercice.

Proposition 11.3.1.8. Let E ∈ D(lD(m)
X ) and F ∈ D(lD(m)

X ).

(i) For any i ≤ i0, with notation 11.3.1.3 we have the canonical morphisms of D(lD(m)
Xi

):

α : RHomOX (E , F)⊗L
OX OXi → RHomOXi (Ei, Fi), (11.3.1.8.1)

which is an isomorphism when E ∈ Dperf(OX).
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(ii) They are transitive, i.e., if j ≤ i ≤ i0 is a nonnegative integer, the following diagram

RHomOX (E , F)⊗L
OX OXi ⊗

L
OXi
OXj

α⊗L
OXi
OXj

//

��

RHomOXi (Ei, Fi)⊗
L
OXi
OXj

α

��
RHomOX (E , F)⊗L

OX OXj
α // RHomOXj (Ej , Fj)

(11.3.1.8.2)
is commutative.

Proof. We construct the morphism 11.3.1.8.1 by composition as follows

α : RHomOX (E , F)⊗L
OX OXi

11.3.1.7.1−→ RHomOX (E , Fi)
11.3.1.6.1
∼−→ RHomOXi (Ei, Fi).

Proposition 11.3.1.9. Let i ≤ i0 be a nonnegative integer and E ∈ Dperf(OX)∩D(D(m)
X ). There exists

the canonical isomorphisms

OXi ⊗L
OX [D(m)(OX)⊗L

OX E
∨]

∼−→ D(m)(OXi)⊗OXi E
∨
i , (11.3.1.9.1)

OXi ⊗L
OX

[D̂(m)(OX)⊗OX
E∨]

∼−→ D(m)(OXi)⊗OXi E
∨
i . (11.3.1.9.2)

Moreover, they are transitive.

Proof. First recall that thanks to 11.3.1.2 some L can be removed in both isomorphisms of the proposition.
Let us treat the isomorphism 11.3.1.9.1. Following 4.6.4.7, we have the last isomorphism OXi ⊗L

OX
D(m)(OX)

∼−→ D(m)
Xi
⊗L
D(m)

X

D(m)(OX)
∼−→ D(m)(OXi). Following 11.3.1.8, we have the isomorphisms

OXi ⊗L
OX E

∨ ∼−→ E∨i . We get then

OXi ⊗L
OX [D(m)(OX)⊗OX E∨]

∼−→ (OXi ⊗L
OX D(m)(OX))⊗OXi (OXi ⊗L

OX E
∨)

∼−→ D(m)(OXi)⊗OXi E
∨
i .

Since the isomorphism OXi ⊗L
OX [−⊗L

OX −]
∼−→ (OXi ⊗L

OX −)⊗L
OXi

(OXi ⊗L
OX −) is also transitive, we

obtain the transitivity by functoriality.
The second case is checked in a similar way

Lemma 11.3.1.10. Let i ≤ i0 be a nonnegative integer, E ∈ Dperf(OX) ∩D(D(m)
X ), F ∈ D(D(m)

X ) and
G ∈ D(D(m)

X ). The following canonical diagram of D(D(m)
Xi

)

OXi ⊗L
OX [RHomOX (E ,F)⊗L

OX G] ∼
//

∼ 6.3.4.12

��

RHomOXi (Ei,Fi)⊗
L
OXi
Gi

∼ 6.3.4.12

��
OXi ⊗L

OX [RHomOX (E ,F ⊗L
OX G)] ∼

// RHomOXi (Ei,Fi ⊗
L
OXi
Gi)

(11.3.1.10.1)

is commutative.

Proof. Let us consider the diagram

RHomOX (E ,F)⊗L
OX G //

∼
��

RHomOX (E ,Fi)⊗L
OX G ∼

//

∼
��

RHomOXi (Ei,Fi)⊗
L
OXi
Gi

∼
��

RHomOX (E ,F ⊗L
OX G) // RHomOX (E ,Fi ⊗L

OX G) ∼
// RHomOXi (Ei,Fi ⊗

L
OXi
Gi).

(11.3.1.10.2)

By functoriality, the left one is commutative. To check the right one, let Ii be a K-injective complex of
D(m)
Xi

-modules representing Fi, P (resp. P ′) be a K-flat complex of D(m)

X]
-modules representing E (resp.
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G) and I ′i be K-injective complex of D(m)
Xi

-modules representing Ii ⊗OX P ′ (
∼−→ Ii ⊗OXi P

′
i). Let us

recall that theses allow to compute the derived functors of the right square of the diagram of 11.3.1.10.2
(see 4.6.4.2). We compute that the canonical diagram

HomOX (P, Ii)⊗OX P ′ //

��

HomOX (P, Ii ⊗OX P ′) //

��

HomOX (P, I ′i)

��
HomOXi (Pi, Ii)⊗OXi P

′
i

// HomOXi (Pi, Ii ⊗OXi P
′
i)

// HomOXi (Pi, I
′
i)

is commutative. Hence so is the right diagram of 11.3.1.10.2. We conclude thanks to 11.3.1.4 (and
11.3.1.3.1).

Lemma 11.3.1.11. Let i ≤ i0 be a nonnegative integer, E ∈ D(lD(m)
X ) and F ∈ D(lD(m)

X ). The canonical
diagram

OXi ⊗L
OX [RHomD(m)

X]

(E ,F)] ∼
//

∼ 6.3.4.14

��

RHomD(m)

Xi

(Ei,Fi)

∼ 6.3.4.14

��
OXi ⊗L

OX [RHomD(m)

X]

(OX ,RHomOX (E ,F))] ∼
// RHomD(m)

Xi

(OXi ,RHomOXi (Ei,Fi))

(11.3.1.11.1)

is commutative.

Proof. By functoriality, the left square of the following diagram

RHomD(m)

X]

(E ,F) //

∼ ��

RHomD(m)

X]

(E ,Fi) ∼
//

∼ ��

RHomD(m)

Xi

(Ei,Fi)

∼ ��
RHomD(m)

X]

(OX ,RHomOX (E ,F)) // RHomD(m)

X]

(OX ,RHomOX (E ,Fi)) ∼ // RHomD(m)

Xi

(OXi ,RHomOXi (Ei,Fi))

(11.3.1.11.2)
is commutative. Let us now check the right one. Let P (resp. P ′) be a K-flat complex of D(m)

X]
-

modules representing OX (resp. E), Ii be a K-injective complex of D(m)
Xi

-modules representing Fi.
We remark that P ⊗OX P ′ is then a K-flat complex of D(m)

X]
-modules representing E . Moreover, as

HomOX (P ′, Ii)
∼−→ HomOXi (P

′
i, Ii), following 4.2.4.6, HomOX (P ′, Ii) is a K-injective complex of D(m)

Xi
-

modules. Hence, they allow us to compute the terms of the right square of the diagram of 11.3.1.11.2
(for its top arrow, recall the construction of 4.6.4.2.1). Its commutativity is then a consequence of that
of the square :

HomD(m)

X]

(P ⊗OX P ′, Ii) //

��

HomD(m)

Xi

(Pi ⊗OXi P
′
i, Ii)

��
HomD(m)

X]

(P,HomOX (P ′, Ii)) // HomD(m)

Xi

(Pi,HomOXi (P
′
i, Ii)).

Finally, via 11.3.1.4 (and 11.3.1.3.1), the commutativity of 11.3.1.11.1 follows from that of 11.3.1.11.2.

Lemma 11.3.1.12. For any nonnegative integer i ≤ i0, for any E ∈ D(lD(m)
X ), we have the commutative

diagram :

D(m)
Xi
⊗L
D(m)

X

[D(m)
X ⊗OX E ]

D(m)

Xi
⊗γE
∼

//

∼ ��

D(m)
Xi
⊗L
D(m)

X

[E ⊗OX D
(m)
X ]

∼ ��
D(m)
Xi
⊗OXi Ei

γEi
∼

// Ei ⊗OXi D
(m)
Xi

,

where γ is the logarithmic transposition isomorphism (see 4.2.5.1).
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Proof. Let P be a K-flat complex of left D(m)
X -modules representing E . Then D(m)

X ⊗OX P is a K-flat
complex of left D(m)

X -modules (for the underlying structure) representing D(m)
X ⊗OX E . It follows from

the logarithmic transposition isomorphism that P ⊗OX D
(m)
X is a K-flat complex of left D(m)

X -modules
(for the underlying structure) representing E ⊗OX D

(m)
X . Hence, we reduce to check the commutativity

of the diagram where E is replaced by P and without L. By D(m)
Xi

-linearity, it is sufficient to check that
for any both path, for any x ∈ P, 1⊗ [1⊗ x] is sent on (1⊗ x)⊗ 1, which is straightforward.

Lemma 11.3.1.13. Let i ≤ i0 be a nonnegative integer and E ∈ D(lD(m)
X ). The following diagram

OXi ⊗L
OX [RHomlD(m)

X

(OX , D(m)
X )⊗L

OX E ] ∼
//

∼
��

RHomlD(m)

Xi

(OXi , D
(m)
Xi

)⊗L
OXi
Ei

∼
��

OXi ⊗L
OX [RHomlD(m)

X

(OX , D(m)
X ⊗OX E)] ∼

// RHomlD(m)

Xi

(OXi , D
(m)
Xi
⊗OXi Ei),

(11.3.1.13.1)

where the horizontal isomorphisms follow from 4.6.4.7 and the vertical from 6.3.4.8, is commutative.

Proof. Since OX ∈ Dperf(
lD(m)
X ) and OXi ∈ Dperf(

lD(m)
Xi

) (see 11.3.1.2), the vertical arrows are therefore
isomorphisms. Moreover, we check by functoriality the commutativity of the left diagram below.

RHomlD(m)

X

(OX , D(m)
X )⊗L

OX E //

∼ ��

RHomlD(m)

X

(OX , D(m)
Xi

)⊗L
OX E ∼

//

∼ ��

RHomlD(m)

Xi

(OXi , D
(m)
Xi

)⊗L
OXi
Ei

∼ ��
RHomlD(m)

X

(OX , D(m)
X ⊗OX E) // RHomlD(m)

X

(OX , D(m)
Xi
⊗OX E) ∼

// RHomlD(m)

Xi

(OXi , D
(m)
Xi
⊗OXi Ei).

(11.3.1.13.2)
Let Ii be a K-injective complex of left D(m)

Xi
⊗OSiD

(m)
Xi

-modules representing D(m)
Xi

, P be a K-flat complex
of D(m)

X]
-modules representing E and I ′i be a K-injective complex of D(m)

Xi
⊗OSi D

(m)
Xi

-modules representing
Ii ⊗OX P ( ∼−→ Ii ⊗OXi Pi). The commutativity of the right diagram of 11.3.1.13.2 comes from that of

HomlD(m)

X

(OX , Ii)⊗OX P //

��

HomlD(m)

X

(OX , Ii ⊗OX P)

��

// HomlD(m)

X

(OX , I ′i)

��
HomlD(m)

Xi

(OXi , Ii)⊗OXi Pi // HomlD(m)

Xi

(OXi , Ii ⊗OXi Pi) // HomlD(m)

Xi

(OXi , I ′i).

(11.3.1.13.3)
Moreover, if φ ∈ HomlD(m)

X

(OX , Ii) and x ∈ P, we compute that φ ⊗ x is sent via both possible ways

of the left diagram of 11.3.1.13.3, on Pi ⊗ a 7→ Pi[φ(a) ⊗ (1 ⊗ x)] = (Piφ(a)) ⊗ (1 ⊗ x), with Pi ∈ D(m)
Xi

and a ∈ OX . As the right diagram of 11.3.1.13.3 is commutative by functoriality, this yields that of
11.3.1.13.3.

Finally, with the remark 11.3.1.4, we deduce from the commutativity of 11.3.1.13.2 that of 11.3.1.13.1.

Notation 11.3.1.14. For any E ∈ Dperf(OX) ∩ D(lD(m)
X ), we denote by E∨ := RHomOX (E ,OX) and

by θ(m) : D(m)(OX)⊗L
OX E

∨ → D(m)(E) and θ(m)
i : D(m)(OXi)⊗OXi E

∨
i
∼−→ D(m)(Ei) the homomorphism

constructed via 6.3.4.15. Following 11.3.1.2, θ(m)
i do is an isomorphism.

Proposition 11.3.1.15. Let i ≤ i0 be a nonnegative integer and E ∈ Dperf(OX) ∩ D(lD(m)
X ). The

following diagram

D(m)
Xi
⊗L
D(m)

X

[D(m)(OX)⊗L
OX E

∨] ∼
//

1⊗θ(m)

��

D(m)(OXi)⊗OXi E
∨
i

θ
(m)
i

∼

��
D(m)
Xi
⊗L
D(m)

X

[D(m)(E)] ∼
// D(m)(Ei),
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where the horizontal isomorphisms come from 4.6.4.7 (see also the example 4.6.4.5) and of 11.3.1.9, is
commutative.

Proof. By construction of θ(m) and θ(m)
i (6.3.4.15), this is a consequence of lemmas 11.3.1.10, 11.3.1.11.1,

11.3.1.12 and 11.3.1.13.1.

11.3.1.16 (Construction of θ̂(m)). For any nonnegative integer i ≤ i0, for any E ∈ Db
perf(OX)∩D(lD(m)

X ),
let θ′(m)

i be the morphism making commutative by definition the diagram

OXi ⊗L
OX

[D̂(m)(OX)⊗OX
E∨]

∼ ��

θ
′(m)
i

∼
// OXi ⊗L

OX
[D̂(m)(E)]

∼ ��
D(m)(OXi)⊗OXi E

∨
i

θ
(m)
i

∼
// D(m)(Ei),

(11.3.1.16.1)

where the vertical isomorphisms are constructed thanks to 4.6.4.7 (see also the remark 4.6.4.5.(i)) and
to 11.3.1.9. For any j ≤ i ≤ i0, let us consider the diagram

OXj ⊗L
OX

[D̂(m)(OX)⊗OX
E∨]

θ
′(m)
j //

��

OXj ⊗L
OX

[D̂(m)E ]

��

OXj ⊗L
OXi
OXi ⊗L

OX
[D̂(m)(OX)⊗OX

E∨]

22
OXj⊗

L
OXi

θ
′(m)
i
//

��

OXj ⊗L
OXi
OXi ⊗L

OX
[D̂(m)E ]

44

��

D(m)(OXj )⊗OXj E
∨
j

θ
(m)
j // D(m)(Ej)

OXj ⊗L
OXi

[D(m)(OXi)⊗OXi E
∨
i ]

22
OXj⊗

L
OXi

θ
(m)
i

// OXj ⊗L
OXi

[D(m)Ei].

44

The squares of the front side and of the back side are commutative by construction of θ′(m)
i (11.3.1.16.1).

Moreover, thanks to 11.3.1.15 (resp. 4.6.4.7 and 4.6.4.5.(i), resp. 11.3.1.9.2), so is the bottom (resp. right,
resp. left) one. Since the arrows are isomorphisms, then it follows that the top square is commutative.
In other words, the family of isomorphisms (θ

′(m)
i )i∈N induces the isomorphism of Db

qc(D(m)
X•

):

OX• ⊗L
OX

[D̂(m)(OX)⊗OX
E∨]

∼−→ OX• ⊗L
OX

[D̂(m)(E)].

By using 7.3.2.15 and 7.3.3.4, this yields the construction of an isomorphism

θ̂(m) : D̂(m)(OX)⊗OX
E∨ → D̂(m)(E)

inducing the following diagram

OXj ⊗L
OX

[D̂(m)(OX)⊗OX
E∨]

OXj⊗
L
OX

θ̂(m)∼
��

OXj ⊗L
OX

[D̂(m)(OX)⊗OX
E∨]

θ
′(m)
j

��

∼
// D(m)(OXi)⊗OXi E

∨
i

θ
(m)
i

∼
��

OXj ⊗L
OX

[D̂(m)E ] OXj ⊗L
OX

[D̂(m)E ] ∼
// D(m)(Ei).

(11.3.1.16.2)

Notation 11.3.1.17. For any E ∈ D(D(m)
X ) ∩Dperf(OX), we denote by ρ(m)

E or ρ(m) the morphism

ρ
(m)
E : D(m)(E)→ “D(m)

X ⊗D(m)

X

D(m)(E)
∼−→

4.6.4.7.1
D̂(m)(“D(m)

X ⊗D(m)

X

E)
∼−→ D̂(m)(E), (11.3.1.17.1)

the latter isomorphism coming from 11.1.1.5.

Lemma 11.3.1.18. Let f : E → E ′ be a morphism of Db
coh(D(m)

X ), g : F → F ′ be a morphism of
Db

coh(“D(m)
X ), α : E → F and β : E ′ → F be two morphisms of D(D(m)

X ).
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The left following diagram

E
f //

α

��

E ′

β

��
F

g // F ′,

OXi ⊗L
OX
E

id⊗f //

id⊗α
��

OXi ⊗L
OX
E ′

id⊗β
��

OXi ⊗L
OX
F

id⊗g // OXi ⊗L
OX
F ′

(11.3.1.18.1)

is commutative if and only if, for any nonnegative integer i, so is the right one.

Proof. The morphisms α and β factors through α′ : “D(m)
X ⊗D(m)

X

E → F and β′: “D(m)
X ⊗D(m)

X

E ′ → F ′. By
considering the diagram

E
f //

��
α

!!

E ′

β

""

��“D(m)
X ⊗D(m)

X

E

α′ ((

1⊗f // “D(m)
X ⊗D(m)

X

E ′

β′ ((F
g

// F ′,

(11.3.1.18.2)

we check that the left square of 11.3.1.18.1 is commutative if and only if so is the horizontal square of
11.3.1.18.2. We conclude via 7.3.2.15 and 7.3.3.4.

Proposition 11.3.1.19. For any E ∈ D(D(m)
X ) ∩Db

perf(OX), the following diagram

D(m)(OX)⊗L
OX
E∨ θ(m)

//

ρ
(m)

OX
⊗id

��

D(m)(E)

ρ
(m)

E
��

D̂(m)(OX)⊗OX
E∨ θ̂(m)

∼
// D̂(m)(E)

is commutative.

Proof. By using 11.3.1.18, it is sufficient to prove, for any nonnegative integer i, that the central square
of the diagram

D(m)(OXi)⊗OXi E
∨
i OXi ⊗L

OX
[D(m)(OX)⊗L

OX
E∨]

θ(m)
//

id⊗ρ(m)

OX
⊗id��

∼
oo OXi ⊗L

OX
[D(m)(E)]

id⊗ρ(m)

E��
∼
// D(m)(Ei)

D(m)(OXi)⊗OXi E
∨
i OXi ⊗L

OX
[D̂(m)(OX)⊗OX

E∨]∼
oo id⊗θ̂(m)

∼
// OXi ⊗L

OX
[D̂(m)(E)] ∼

// D(m)(Ei)
(11.3.1.19.1)

is commutative. Following 11.3.1.15, the composition of the morphisms of the top of 11.3.1.19.1 is equal
to θ(m)

i . By construction (11.3.1.16.2), so is that bottom. Since the thorizontal arrows at the end of
the diagram 11.3.1.19.1 are isomorphisms, to get the commutativity of the square of the center, it is
sufficient to prove that of the right and left squares. The right square of 11.3.1.19.1 corresponds to the
outer of the following diagram

OXi ⊗L
OX

D(E) //

��

OXi ⊗L
OX

[“DX ⊗DX
D(E)] //

��

OXi ⊗L
OX

D̂(“DX ⊗DX
E) //

��

OXi ⊗L
OX

D̂(E)

��
DXi ⊗L

DX
D(E) //

��

DXi ⊗L
D̂X

[“DX ⊗DX
D(E)] // DXi ⊗L

D̂X

D̂(“DX ⊗DX
E) //

��

DXi ⊗L
D̂X

D̂(E)

��
D(DXi ⊗L

DX
E)

��

D(DXi ⊗L
D̂X

“DX ⊗DX
E)oo // D(DXi ⊗D̂X

E)

��
D(OXi ⊗L

OX
E) D(OXi ⊗L

OX
E),

(11.3.1.19.2)
where we have omitted to write the indices (m). Moreover, we compute that the top right square (we
choose a K-flat complex representing D(m)(E)) and the bottom rectangle (by forgetting D(m), we choose
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a K-flat complex representing E) are commutative. Moreover, so is the rectangle of the middle thanks
to the transitivity of 4.6.4.7 (with also the remark 4.6.4.5.(i)). The commutativity of the other squares
is functorial. Hence we get that of the right diagram of 11.3.1.19.1.

Finally, the commutativity of the left square of 11.3.1.19.1 is a consequence of that of the diagram
below :

OXi ⊗L
OX

[D(m)(OX)⊗L
OX
E∨] ∼

//

id⊗ρ(m)⊗id��

[OXi ⊗L
OX

D(m)(OX)]⊗OXi [OXi ⊗L
OX
E∨] ∼

//

(id⊗ρ(m))⊗id��

D(m)(OXi)⊗OXi E
∨
i

OXi ⊗L
OX

[D̂(m)(OX)⊗OX
E∨] ∼

// [OXi ⊗L
OX

D̂(m)(OX)]⊗OXi [OXi ⊗L
OX
E∨] ∼

// D(m)(OXi)⊗OXi E
∨
i ,

whose that of the right square can be checked by functoriality thanks to that of the right square of
11.3.1.19.1.

11.3.2 Compatibility with Frobenius of θ̂(m)

For simplicity suppose 3 there exists F : X → X′ a morphism of smooth formal S-schemes which is a
lifting of the relative Frobenius F sX0/S0

: X0 → X
(s)
0 . We prove in this subsection that the isomorphism

θ̂(m) : D̂(m)(OX)⊗OX
E∨ → D̂(m)(E)

is compatible with Frobenius (see 11.3.2.9.1). The idea it to check it by p-adic completion.

11.3.2.1. The functor D̂(m) commutes canonically with Frobenius. More precisely, denoting by D̃(m) =

RHomD̂(m)

X′
(−, “D(m)

X′ )[dX′/S ], which is canonically isomorphic to the composition of the functors D̂(m) and

−⊗OX ωX, we have for any E ′ ∈ Db
coh(“D(m)

X′ ) the isomorphisms

F [D̃(m)(E ′) ∼−→
4.6.3.6.1

RHomD̂(m)

X′
(E ′, F [“D(m)

X′ )
∼−→
F∗

RHomD̂(m+s)

X

(F ∗E ′, F ∗F [“D(m)
X′ )

∼−→
8.8.1.1.1

D̃(m+s)(F ∗E ′).
(11.3.2.1.1)

This yields:

F ∗D̂(m)(E ′)
8.8.1.3.1
∼−→ F [D̃(m)(E ′)⊗OX

ω−1
X/S

11.3.2.1.1
∼−→ D̃(m+s)(F ∗E ′)⊗OX

ω−1
X/S

∼−→ D̂(m+s)(F ∗E ′).
(11.3.2.1.2)

Remark, replacing “D(m)
X′ by D(m)

X′
i

and “D(m+s)
Xi

by D(m+s)
Xi

, we get the construction of the commutation
with Frobenius of the dual functor of 6.2.7.2. The purpose of the following lemmas and facts is to check
the compatibility with base change of this isomorphism 11.3.2.1.1 (i.e. the commutativity of the diagram
11.3.2.7.1).

11.3.2.2. It follows by functoriality from 8.8.1.3 that the functors F ∗ and F [“D(m)
X′ ⊗D̂(m+s)

X

− induce

exact canonically quasi-inverse equivalences between the category of complexes of left “D(m)
X′ ⊗V (“D(m)

X′ )op-
modules (i.e. (“D(m)

X′ ,
“D(m)
X′ )-bimodules whose both induced structures of V-algebras coincide) and that

of complexes of left “D(m)
X′ ⊗V (“D(m+s)

X )op-modules (i.e. (“D(m)
X′ ,

“D(m+s)
X )-bimodules whose both induced

structures of V-algebras coincide).
Similarly, by functoriality, we can check that the functors F [ and − ⊗D̂(m+s)

X

F ∗“D(m)
X′ induce ex-

act canonically quasi-inverse equivalences between the category of complexes of left “D(m)
X′ ⊗V (“D(m)

X′ )op-
modules and that of complexes of left “D(m+s)

X ⊗V (“D(m)
X′ )op-modules.

11.3.2.3. 1) LetM′ be a K-flat complex of right “D(m)
X′ -modules. The functor F ∗ induces an equivalence of

categories between acyclic complexes of left “D(m)
X′ -modules and acyclic complexes of left “D(m+s)

X -modules.
For any acyclic complex E ′ of left “D(m)

X′ -modules, we get

F [M′ ⊗D̂(m+s)

X

F ∗(E ′) ∼−→ M′ ⊗D̂(m)

X′
F [“D(m)

X′ ⊗D̂(m+s)

X

F ∗“D(m)
X′ ⊗D̂(m)

X′
E ′ ∼−→ M′ ⊗D̂(m)

X′
E ′.

3This hypothesis is useless since we can define by glueing F ∗ etc.
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This yields that F [M′ is a K-flat complex of right “D(m+s)
X -modules.

Similarly, if E ′ is a K-flat complex of left “D(m)
X′ -modules then F ∗E ′ is a K-flat complex of left “D(m+s)

X -
modules.

1’) Similarly, letM′ be a K-flat complex of left “D(m)
X′ ⊗V (“D(m)

X′ )op-modules. Then, F [M′ is a complex
of left “D(m)

X′ ⊗V (“D(m+s)
X )op-modules which is both a K-flat complex of right “D(m+s)

X -modules and a K-flat
complex of left “D(m)

X′ -modules. Indeed, the first property is checked as above. Let us check the second
one. For any acyclic complex E ′ of left “D(m)

X′ -modules, we get

E ′ ⊗D̂(m)

X′
F [M′ ∼−→

Å
E ′ ⊗D̂(m)

X′
M′
ã
⊗D̂(m)

X′
F [“D(m)

X′ .

Since F [“D(m)
X′ is a flat right “D(m)

X′ -module, then we can conclude.
Moreover, similarly, we can check that F ∗M′ is a complex of left “D(m+s)

X ⊗V (“D(m)
X′ )op-modules which

is both a K-flat complex of left “D(m+s)
X -modules and a K-flat complex of right “D(m)

X′ -modules.
2) Let I ′ be a K-injective complex of right “D(m)

X′ -modules. The functor F [ induces an equivalence
of categories between acyclic complexes of right “D(m)

X′ -modules and acyclic complexes of right “D(m+s)
X -

modules. This yields that F [I ′ is a K-injective complex of right “D(m+s)
X -modules. Indeed, for any acyclic

complex N ′ of right “D(m)
X′ -modules, we have the isomorphism

HomD̂(m)

X′
(N ′, I ′) ∼−→ HomD̂(m+s)

X

(F [N ′, F [I ′).

Hence, we are done.
Similarly (use 11.3.2.2), if I ′ is a K-injective complex of left “D(m)

X′ ⊗V (“D(m)
X′ )op-modules. then F [I ′ is

a K-injective complex of left “D(m)
X′ ⊗V (“D(m+s)

X′ )op-modules. In particular, it is both a K-injective complex
of right “D(m+s)

X -modules and a K-injective complex of left “D(m)
X′ -modules.

To prove 11.3.2.7, that we will use in the proof of the theorem 11.3.2.9 of commutation to Frobenius
of θ̂(m), we will need the three lemmas below.

Lemma 11.3.2.4. Let i be a nonnegative integer and E ′ ∈ Dperf(
l“D(m)

X′ ). The following diagram of
Dperf(

lD(m+s)
Xi

)Å
RHomlD̂(m)

X′
(E ′, “D(m)

X′ )⊗D̂(m)

X′
F [“D(m)

X′

ã
⊗L
D̂(m+s)

X

D(m+s)
Xi ∼

4.6.4.7.1//

∼ 4.6.3.6.1
��

RHomlD(m)

X′
i

(E ′i ,D
(m)
X′
i

)⊗D(m)

X′
i

F [D(m)
X′
i

∼ 4.6.3.6.1
��

RHomlD̂(m)

X′
(E ′, F [“D(m)

X′ )⊗L
D̂(m+s)

X

D(m+s)
Xi ∼

4.6.4.7.1 // RHomlD(m)

X′
i

(E ′i , F [D
(m)
X′
i

),

(11.3.2.4.1)
is commutative.

Proof. By using the remark 11.3.1.4, we reduce to check the commutativity of (the outer of) the diagram:

RHomlD̂(m)

X′
(E ′, “D(m)

X′ )⊗D̂(m)

X′
F [“D(m)

X′ ∼
4.6.4.7.1 //

��

RHomlD̂(m)

X′
(E ′, F [“D(m)

X′ )

��
RHomlD̂(m)

X′
(E ′,D(m)

X′
i

)⊗D̂(m)

X′
F [“D(m)

X′ ∼
4.6.4.7.1//

��

RHomlD̂(m)

X′
(E ′,D(m)

X′
i
⊗D̂(m)

X′
F [“D(m)

X′ )

��
RHomlD(m)

X′
i

(E ′i ,D
(m)
X′
i

)⊗D(m)

X′
i

F [D(m)
X′
i

∼
4.6.4.7.1 // RHomlD(m)

X′
i

(E ′i , F [D
(m)
X′
i

).

(11.3.2.4.2)

By functoriality, we can check the commutativity of the top square. Let P ′ be a K-flat complex of
left “D(m)

X′ -modules representing E ′, let I ′i be a K-injective complex of left D(m)
X′
i
⊗V (D(m)

X′
i

)op-modules
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representing D(m)
X′
i
. We set P ′i := D(m)

X′
i
⊗D̂(m)

X′
P ′. We easily compute the commutativity of the diagram:

HomlD̂(m)

X′
(P ′, I ′i)⊗D̂(m)

X′
F [“D(m)

X′
//

��

HomlD̂(m)

X′
(P ′, I ′i ⊗D̂(m)

X′
F [“D(m)

X′ )

��
HomlD̂(m)

X′
(P ′, I ′i)⊗D(m)

X′
i

F [D(m)
X′
i

��

// HomlD̂(m)

X′
(P ′, I ′i ⊗D(m)

X′
i

F [D(m)
X′
i

)

��
HomlD(m)

X′
i

(P ′i,J ′i )⊗D(m)

X′
i

F [D(m)
X′
i

∼
// HomlD(m)

X′
i

(P ′i,J ′i ⊗D(m)

X′
i

F [D(m)
X′
i

),

(11.3.2.4.3)

Since J ′i ⊗D(m)

X′
i

F [D(m)
X′
i

= F [J ′i is a K-injective complex of left D(m)
X′
i
⊗V (D(m+s)

Xi
)op-modules representing

F [D(m)
X′
i

(see 11.3.2.3), this yields the commutativity of the bottom square of 11.3.2.4.2.

Lemma 11.3.2.5. Let i be a nonnegative integer, E ′ ∈ D(l“D(m)
X′ ) and F ′ ∈ D(l“D(m)

X′ ,
“D(m+s)
X

r) The
following diagram

RHomD̂(m)

X′
(E ′,F ′)⊗L

D̂(m+s)

X

D(m+s)
Xi

4.6.4.7.1 //

F∗⊗id∼
��

RHomD(m)

X′
i

(E ′i ,F ′i)

F∗∼
��

RHomD̂(m+s)

X

(F ∗E ′, F ∗F ′)⊗L
D̂(m+s)

X

D(m+s)
Xi

4.6.4.7.1// RHomD(m+s)

Xi

(F ∗E ′i , F ∗F ′i)

is commutative.

Proof. By using the remark 11.3.1.4, it is sufficient to prove the commutativity of the diagram below

RHomD̂(m)

X′
(E ′,F ′) //

F∗∼ ��

RHomD̂(m)

X′
(E ′,F ′i) ∼

//

F∗∼ ��

RHomD(m)

X′
i

(E ′i ,F ′i)
F∗∼ ��

RHomD̂(m+s)

X

(F ∗E ′, F ∗F ′) // RHomD̂(m+s)

X

(F ∗E ′, F ∗F ′i) ∼
// RHomD(m+s)

Xi

(F ∗E ′i , F ∗F ′i).

That of the left square is proved by functoriality, whereas we can check the right one by choosing a
K-injective complex of left D(m)

X′
i
⊗OSi D

(m+s)
Xi

-modules representing F ′i and a K-flat complex of left“D(m)
X′ -modules representing E ′ (the functor F ∗, by increasing the level, preserves the K-flatness and the

K-injectivity).

Lemma 11.3.2.6. Let i be a nonnegative integer. The following canonical diagram

RHomD̂(m+s)

X

(F ∗E ′, F ∗F [“D(m)
X′ )⊗L

D̂(m+s)

X

D(m+s)
Xi

4.6.4.7.1//

∼ 8.8.1.1.1��

RHomD(m+s)

Xi

(F ∗E ′i , F ∗F [D
(m)
X′
i

)

6.1.3.2.1∼ ��
RHomD̂(m+s)

X

(F ∗E ′, “D(m+s)
X )⊗L

D̂(m+s)

X

D(m+s)
Xi

4.6.4.7.1 // RHomD(m+s)

Xi

(F ∗E ′i ,D
(m+s)
Xi

)

is commutative.

Proof. Exercice.

Proposition 11.3.2.7. Let i be a nonnegative integer and E ′ ∈ Dperf(
l“D(m)

X′ ). The following canonical
diagram

D(m+s)
Xi

⊗L
D̂(m+s)

X

[F ∗D̂(m)(E ′)] ∼
//

∼ 11.3.2.1.2

��

F ∗[D(m)
X′
i
⊗L
D̂(m)

X′
D̂(m)(E ′)] ∼

4.6.4.7.1 // F ∗D(m)(E ′i)

∼ 11.3.2.1.2

��
D(m+s)
Xi

⊗L
D̂(m+s)

X

[D̂(m+s)F ∗(E ′)] ∼
4.6.4.7.1// D(m+s)(D(m+s)

Xi
⊗L
D̂(m+s)

X

F ∗(E ′)) ∼
// D(m+s)F ∗(E ′i),

(11.3.2.7.1)
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is commutative.

Proof. To get 11.3.2.7.1, we have just to By composing the commutative diagrams 11.3.2.4 with 11.3.2.5
in the case where F ′ = F [“D(m)

X′ and next with 11.3.2.6, we get the commutative diagramÅ
D̃(m)(E ′)⊗D̂(m)

X′
F [“D(m)

X′

ã
⊗L
D̂(m+s)

X

D(m+s)
Xi ∼

4.6.4.7.1//

∼ 11.3.2.1.1
��

D̃(m)(E ′i)⊗D(m)

X′
i

F [D(m)
X′
i

∼ 11.3.2.1.1
��

RHomD̂(m+s)

X

(F ∗E ′, “D(m+s)
X )⊗L

D̂(m+s)

X

D(m+s)
Xi

4.6.4.7.1 // D̃(m+s)(F ∗E ′i)

(11.3.2.7.2)

By applying the switching functor −⊗OX
ω−1
X/S to 11.3.2.7.2, we get 11.3.2.7.1.

Proposition 11.3.2.8. For any nonnegative integer i, for any E ′,F ′ ∈ D(D(m)
X′ ), the diagram

OXi ⊗L
OX

F ∗RHomOX′ (E
′,F ′) ∼

//

��

OXi ⊗L
OX

RHomOX
(F ∗E ′, F ∗F ′)

��
F ∗i RHomOX′

i

(E ′i ,F ′i) ∼
// RHomOXi (F

∗
i E ′i ,F ′i)

is commutative.

Proof. By using the remark 11.3.1.3.1 and 11.3.1.3.1, it is sufficient to prove the commutativity of the
diagram below

F ∗RHomOX′ (E
′,F ′) ∼

//

��

RHomOX
(F ∗E ′, F ∗F ′)

��
F ∗RHomOX′ (E

′,F ′i) ∼
//

��

RHomOX
(F ∗E ′, F ∗F ′i)

��
F ∗RHomOX′

i

(E ′i ,F ′i) ∼
// RHomOXi (F

∗
i E ′i , F ∗i F ′i).

(11.3.2.8.1)

The commutativity of the top square follows by functoriality. Choose a K-flat complex P ′ of left D(m)
X′ -

modules representing E ′ and a K-injective complex I ′i of left D
(m)
X′
i
-modules representing F ′i . Since F ∗P ′ is

a K-flat complex of left D(m+s)
X -modules representing f∗E ′, since F ∗P ′i is a K-flat complex of left D(m+s)

Xi
-

modules representing F ∗E ′i since F ∗I ′i is a K-injective complex of left D(m+s)
Xi

-modules representing F ∗F ′i ,
to check the commutativity of the bottom square by replacing E ′ by P ′ and F ′ by I ′, we can remove R.
Hence, the check of the commutativity is elementary.

Theorem 11.3.2.9. For any E ′ ∈ D(D(m)
X′ ) ∩Dperf(OX′), the diagram below

F ∗(E ′∨ ⊗L
OX′

D̂(m)(OX′))
F∗θ̂(m)

∼
//

∼
��

F ∗D̂(m)(E ′)

∼
��

(F ∗E ′)∨ ⊗OX
D̂(m+s)(OX)

θ̂(m+s)

∼
// D̂(m+s)(F ∗E ′)

(11.3.2.9.1)

is commutative.

Proof. Following 7.3.2.15 and 7.3.3.4, it is sufficient to prove that for any nonnegative integer i, the
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square of the front side of the cube

F ∗(E ′∨i ⊗OX′
i

D(m)OX′
i
)

F∗θ
(m)
i //

��

F ∗D(m)(E ′i)

��

OXi ⊗L
OX′

[F ∗(E ′∨ ⊗L
OX′

D̂(m)(OX′))]

33
id⊗F∗θ̂(m)

//

��

OXi ⊗L
OX′

[F ∗D̂(m)(E ′)]

55

��

(F ∗E ′i)∨ ⊗OXi D(m+s)OXi
θ
(m+s)
i // D(m+s)(F ∗E ′i)

OXi ⊗L
OX′

[(F ∗E ′)∨ ⊗OX
D̂(m+s)(OX)]

22

id⊗θ̂(m+s)

// OXi ⊗L
OX′

D̂(m+s)(F ∗E ′)

55

(11.3.2.9.2)
is commutative. Following 11.3.2.7, this is the case for the right square. Moreover, by using 11.3.2.7 and
of 11.3.2.8 so is the left one. For the bottom square, this is a consequence (modulo the isomorphism
F ∗E ′i

∼−→ OXi ⊗L
OX

F ∗E ′) of the definitions (11.3.1.16.2). The square of the top corresponds to the outer
of

OXi ⊗L
OX

[F ∗(E ′∨ ⊗L
OX′

D̂(m)(OX′))] ∼
//

id⊗F∗(θ̂(m))∼ ��

F ∗[OX′
i
⊗L
OX′

(E ′∨ ⊗L
OX′

D̂(m)(OX′))] ∼
//

F∗(id⊗θ̂(m))∼ ��

F ∗(E ′∨i ⊗OX′
i

D(m)OX′
i
)

F∗θ
(m)
i∼ ��

OXi ⊗L
OX

[F ∗D̂(m)(E ′)] ∼
// F ∗[OX′

i
⊗L
OX′

D̂(m)(E ′)] ∼
// F ∗D(m)(E ′i).
(11.3.2.9.3)

The commutativity of the left square of 11.3.2.9.3 is functorial and that of the right square follows from
11.3.1.16.2. Finally, that of the back square of 11.3.2.9.2 is due to the fact that θ(m)

i is compatible with
Frobenius (6.3.4.15.(ii)). The arrows of 11.3.2.9.2 being isomorphisms, since we check that five of its
faces are commutative, then so is the front side one.

11.3.3 Construction of θ(m)
Q and its compatibility with Frobenius

11.3.3.1. Let E ′ be a coherent D†X′,Q-module OX′,Q-coherent (i.e., it corresponds to a convergent isocrys-

tal on X ′) and, for any nonnegative integer m,
◦
E ′(m) be a “D(m)

X′ -module which is OX′ -coherent and such
that there exists a “D(m)

X′,Q-linear isomorphism
◦
E ′(m)

Q
∼−→ E ′.

We denote by Dalg
X or Dalg, the DX,Q-linear dual functor, and by D(m)

X,Q or D(m)
Q , the “D(m)

X,Q-linear dual.
We remark that it follows from 8.7.7.5 that for any nonnegative integer m we have the isomorphisms
Dalg(OX,Q)

∼−→ OX,Q and D(m)
Q (OX,Q)

∼−→ OX,Q, this latter is probably not compatible with Frobenius.

We construct the isomorphism θ
(m)
Q , via the commutative diagram :

D(m)
Q (OX′,Q)⊗OX′,Q E

′∨
θ
(m)

Q

∼
// D(m)

Q (E ′)

(D̂(m)(OX′)⊗OX′

◦
E ′(m)∨)⊗Z Q

θ̂(m)⊗Q

∼
//

∼

OO

(D̂(m)(
◦
E ′(m)))⊗Z Q.

∼

OO
(11.3.3.1.1)

We notice that thanks to 11.3.3.3, this one is independent of the choice of
◦
E ′(m).

11.3.3.2. For any coherent D†X,Q-module OX,Q-coherent E (similarly by replacing X by another smooth

V-formal scheme, like by example X′), we denote by ρ(m)
Q , the composite isomorphism :

ρ
(m)
Q : Dalg(E)

∼−→ “D(m)
X,Q ⊗DX,Q Dalg(E)

∼−→
4.6.4.7.1

D(m)
Q (“D(m)

X,Q ⊗DX,Q E)
∼−→ D(m)

Q (E). (11.3.3.2.1)

According to 11.2.6.3.1, we denote by θalg, the isomorphism Dalg(OX,Q)⊗OX,Q E∨
∼−→ Dalg(E) con-

structed via 6.3.4.15.
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Theorem 11.3.3.3. With the notations of 11.3.3.1, the following diagram

Dalg(OX,Q)⊗OX,Q E ′∨
θalg

∼
//

ρ
(m)

Q ⊗id∼
��

Dalg(E ′)
ρ

(m)

Q
∼
��

D(m)
Q (OX,Q)⊗OX,Q E ′∨

θ
(m)

Q

∼
// D(m)

Q (E ′)

(11.3.3.3.1)

is commutative

Proof. Let us consider the cube

(D(m)(OX)⊗OX

◦
E ′(m)∨)⊗ Q

θ(m)⊗Q //

ρ(m)⊗id⊗Q

��

4.6.4.7rr

D(m)(
◦
E ′(m))⊗ Q

ρ(m)⊗Q

��

4.6.4.7tt
D(OX,Q)⊗OX,Q E ′∨

θalg
//

ρ
(m)

Q ⊗id

��

D(E ′)

ρ
(m)

Q

��

(D̂(m)(OX)⊗OX

◦
E ′(m)∨)⊗ Q

θ̂(m)⊗Q //

4.6.4.7ss

(D̂(m)(
◦
E ′(m)))⊗ Q

4.6.4.7uu
D(m)

Q (OX,Q)⊗OX,Q E ′∨
θ
(m)

Q // D(m)
Q (E ′),

(11.3.3.3.2)
where the four horizontal isomorphisms from the back square towards the front one can be constructed
via 4.6.4.7 and the remark 4.6.4.5(ii) (in the category of “D(m)

X,Q-modules, the functor −⊗Z Q is canonically

isomorphic to “D(m)
X,Q⊗D̂(m)

X

− and similarly by replacing “D(m)
X by D(m)

X ). The bottom square is commutative
by definition (11.3.3.1.1). Moreover, the right one corresponds to the diagram below

D(m)(
◦
E ′(m))Q

//

��

“DQ ⊗D̂ “D ⊗D D(m)(
◦
E ′(m))

4.6.4.7//

��

“DQ ⊗D̂ D̂(m)(“D ⊗D ◦E ′(m)) //

4.6.4.7�� ++

D̂(m)(
◦
E ′(m))Q

��
DQ ⊗D D(m)(

◦
E ′(m)) //

��

“DQ ⊗DQ DQ ⊗D D(m)(
◦
E ′(m))

4.6.4.7��

D(m)
Q (“DQ ⊗D̂ “D ⊗D ◦E ′(m))

�� ++

“DQ ⊗D̂ D̂(m)(
◦
E ′(m))

��
D(E ′) // “DQ ⊗DQ D(E ′) 4.6.4.7 // D(m)

Q (“DQ ⊗DQ E ′) // D(m)
Q (E ′),
(11.3.3.3.3)

where the ring D is D(m)
X . By transitivity of 4.6.4.7, we check that the rectangle of the middle is

commutative. This yields that 11.3.3.3.3 is commutative. Then so is the right diagram of 11.3.3.3.2.
Moreover, the commutativity of the right square of 11.3.3.3.2 implies that of the left square. For the
back side one, this is a consequence of 11.3.1.19. Moreover, similarly to 11.3.1.15 (i.e., we check that the
four morphisms that we use in the construction of θ(m) and θalg commute with the functors − ⊗Z Q),
we prove that the top square is commutative. As the arrows of 11.3.3.3.2 are isomorphisms, we get the
commutativity of the front side.

11.3.3.4. The functor D(m)
Q commutes canonically with Frobenius. More precisely, denoting by D̃(m)

Q =

RHomD̂(m)

X′,Q
(−, “D(m)

X′,Q), which is canonically isomorphic to the composition of the functors D̂(m)
Q and

−⊗OX ωX, we have for any E ′ ∈ Db
coh(“D(m)

X′,Q) the isomorphisms

F [D̃(m)
Q (E ′) ∼−→

4.6.3.6.1
RHomD̂(m)

X′,Q
(E ′, F [“D(m)

X′,Q)
∼−→
F∗

RHomD̂(m+s)

X,Q

(F ∗E ′, F ∗F [“D(m)
X′,Q)

∼−→ D̃(m+s)
Q (F ∗E ′).

(11.3.3.4.1)
This yields:

F ∗D(m)
Q (E ′)

8.8.1.3.1
∼−→ F [D̃(m)

Q (E ′)⊗OX
ω−1
X/S

11.3.3.4.1
∼−→ D̃(m+s)

Q (F ∗E ′)⊗OX
ω−1
X/S

∼−→ D(m+s)
Q (F ∗E ′).

(11.3.3.4.2)
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Theorem 11.3.3.5. With the notations of 11.3.3.1, the following canonical diagram

D(m+s)
Q (OX,Q)⊗OX,Q (F ∗E ′)∨

θ
(m+s)

Q

∼
// D(m+s)

Q (F ∗E ′)

F ∗[D(m)
Q (OX′,Q)⊗OX′,Q (E ′)∨]

∼11.3.3.4.2

OO

F∗θ
(m)

Q

∼
// F ∗[D(m)

Q (E ′)]

∼11.3.3.4.2

OO
(11.3.3.5.1)

is commutative.

Proof. Let us consider the following cube :

(D̂(m+s)(OX)⊗OX
(F ∗

◦
E ′(m))∨)Q

θ̂(m+s)⊗Q //

��

D̂(m+s)(F ∗
◦
E ′(m))Q

��

F ∗[(D̂(m)(OX′)⊗OX′ (
◦
E ′(m))∨)Q]

22

F∗(θ̂(m)⊗Q) //

��

F ∗[D̂(m)(
◦
E ′(m))Q]

55

��

D(m+s)
Q (OX,Q)⊗OX,Q (F ∗E ′)∨

θ
(m+s)

Q // D(m+s)
Q (F ∗E ′)

F ∗[D(m)
Q (OX′,Q)⊗OX′,Q (E ′)∨]

22
F∗θ

(m)

Q // F ∗[D(m)
Q (E ′)].

55

(11.3.3.5.2)
The commutativity of the squares of the front face and of the back face follows from the construction of
θ

(m)
Q (and θ(m+s)

Q ) given at 11.3.3.1.1. We denote by D′ := “D(m)
X′ and D := “D(m+s)

X . We will put a tilde
above D or D′ to mean that we apply to them the functors ⊗OX

ω−1
X or ⊗OX′ω

−1
X′ . The commutativity

of the right square of 11.3.3.5.2 can be translated by the commutativity of the diagram below

F ∗D′Q ⊗D′Q D
′
Q ⊗D′ RHomD′(

◦
E ′(m), ‹D′) ∼

//

∼ ��

DQ ⊗D F ∗D′ ⊗D′ RHomD′(
◦
E ′(m), ‹D′)

∼ ��
F ∗D′Q ⊗D′Q RHomD′(

◦
E ′(m), ‹D′Q)

∼ ��

DQ ⊗D RHomD′(
◦
E ′(m), F ∗r

‹D′)
∼ ��

∼

tt

F ∗D′Q ⊗D′Q RHomD′Q(E ′, ‹D′Q)

∼ ��

DQ ⊗D RHomD(F ∗
◦
E ′(m), F ∗l F

∗
r
‹D′)

∼ ��
RHomD′Q(E ′, F ∗r ‹D′Q)

∼ ��

DQ ⊗D RHomD(F ∗
◦
E ′(m), ‹D)

∼ ��
∼

tt

RHomDQ(F ∗E ′, F ∗l F ∗r ‹D′Q)

∼ ��

RHomD(F ∗
◦
E ′(m), ‹DQ)

∼ ��
RHomDQ(F ∗E ′, ‹DQ) RHomDQ((F ∗

◦
E ′(m))Q, ‹DQ).

∼oo

(11.3.3.5.3)

We remark that the commutativity of the trapeze (at the top) of 11.3.3.5.3 is a consequence of that of
the diagram

F ∗D′Q ⊗D′Q RHomD′(
◦
E ′(m), ‹D′Q)

∼ ��

∼
// RHomD′(

◦
E ′(m), F ∗r ‹D′Q)

∼ ��
F ∗D′Q ⊗D′Q RHomD′Q(E ′, ‹D′Q) ∼

// RHomD′Q(E ′, F ∗r ‹D′Q)

(11.3.3.5.4)

and of the transitivity 6.3.4.1. To check that of 11.3.3.5.4, we choose a K-flat complex of left D′-modules
representing

◦
E ′(m), a K-injective complex of left D′Q ⊗V D′Q-modules representing ‹D′Q.

The losange of 11.3.3.5.3 corresponds to the outer of

RHomD′Q(E ′, F ∗r ‹D′Q)

F∗∼ ��

RHomD′(
◦
E ′(m), F ∗r ‹D′Q)∼

oo

F∗∼ ��

DQ ⊗D RHomD′(
◦
E ′(m), F ∗r ‹D′)

id⊗F∗∼ ��
∼

oo

RHomDQ(F ∗E ′, F ∗l F ∗r ‹D′Q)

∼ ��

RHomD(F ∗
◦
E ′(m), F ∗l F

∗
r
‹D′Q)∼

oo

∼ ��

DQ ⊗D RHomD(F ∗
◦
E ′(m), F ∗l F

∗
r
‹D′)

��
∼
oo

RHomDQ(F ∗E ′, ‹DQ) RHomD(F ∗
◦
E ′(m), ‹D′Q)∼

oo DQ ⊗D RHomD(F ∗
◦
E ′(m), ‹D),∼

oo

(11.3.3.5.5)
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whose commutativity is straightforward. Finally, as the (bottom) triangle of 11.3.3.5.3 is also commuta-
tive, we conclude that the right square of 11.3.3.5.2 is commutative.

We proceed similarly to prove that of the left square of 11.3.3.5.2.
Finally, the top square of 11.3.3.5.2 corresponds to the following outer:

F ∗[(D̂(m)(OX′)⊗OX′ (
◦
E ′(m))∨)Q] ∼

//

F∗(θ̂(m)⊗Q)∼ ��

[F ∗(D̂(m)(OX′)⊗OX′ (
◦
E ′(m))∨)]Q ∼

//

(F∗θ̂(m))⊗Q∼ ��

(D̂(m+s)(OX)⊗OX
(F ∗

◦
E ′(m))∨)Q

θ̂
(m+s)

Q ⊗Q∼ ��
F ∗[D̂(m)(

◦
E ′(m))Q] ∼

// [F ∗D̂(m)(
◦
E ′(m))]Q ∼

// D̂(m+s)(F ∗
◦
E ′(m))Q.

(11.3.3.5.6)
The left square of 11.3.3.5.6 is commutative by functoriality. It follows from 11.3.2.9.1 that the right
square of 11.3.3.5.6 is commutative. Hence, we have checked that five of the squares of 11.3.3.5.2 are
commutative. Then so is the bottom one.

11.3.4 Compatibility with Frobenius of θ

11.3.4.1. For any coherentD†X,Q-module E which isOX,Q-coherent, let us denote by σ
(m)
Q the isomorphism

σ
(m)
Q : D(m)

Q (E)
∼−→ D†XQ ⊗D̂(m)

X,Q

D(m)
Q (E)

∼−→
4.6.4.7.1

D(D†XQ ⊗D̂(m)

X,Q

E)
∼−→ D(E). (11.3.4.1.1)

Proposition 11.3.4.2. Let E be a coherent D†X,Q-module OX,Q-coherent. The square

D(m)
Q (OX,Q)⊗OX,Q E∨

θ
(m)

Q

∼
//

σ
(m)

Q ⊗id∼
��

D(m)
Q (E)

σ
(m)

Q∼
��

D(OX,Q)⊗OX,Q E∨
θ
∼

// D(E),

where θ was defined in 11.2.6.4.1, is commutative.

Proof. Thanks to the commutative diagrams 11.2.6.4.1 and 11.3.3.3.1, it is about proving the equality
σ

(m)
Q ◦ρ(m)

Q = ρ, where ρ was constructed at 11.2.6.3.3. It amounts to saying that the outer of the diagram

D(m)
Q (E) // D†XQ ⊗D̂(m)

X,Q

D(m)
Q (E) // D(D†XQ ⊗D̂(m)

X,Q

E) // D(E)

D(m)
Q (“D(m)

X,Q ⊗DX,Q E) //

OO

D†XQ ⊗D̂(m)

X,Q

D(m)
Q (“D(m)

X,Q ⊗DX,Q E) //

OO

D(D†XQ ⊗DX,Q E)

OO
66

“D(m)
X,Q ⊗DX,Q D(E) //

OO

D†X,Q ⊗DX,Q D(E)

OO 33

D(E)

OO 22

(11.3.4.2.1)
is commutative. Moreover, that of squares is checked by functoriality and that of the top and bottom
triangles are straightforward. Finally, that of the triangle of the middle follows from the transitivity of
4.6.4.7 (see also the remark 4.6.4.5.(ii)).

11.3.4.3. With the notations of 11.3.3.1, we have a morphism D†XQ⊗D̂(m+s)

X,Q

F ∗E ′ → F ∗(D†X′Q⊗D̂(m)

X′,Q
E ′)

making commutative the following diagram

F ∗E ′
--

// D†XQ ⊗D̂(m+s)

X,Q

F ∗E ′ // F ∗(D†X′Q ⊗D̂(m)

X′,Q
E ′). (11.3.4.3.1)

By completion, tensorizing by Q and taking the limit, it follows from 6.2.3.2.1 that this morphism is an
isomorphism.

We will need the following lemma to prove the proposition below.
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Lemma 11.3.4.4. For any E ′ ∈ Dperf(
l“D(m)

X′,Q), the following diagram

F ∗D†X′,Q ⊗D̂(m)

X′,Q
D(m)

Q (E ′)

∼
��

D†X,Q ⊗D̂(m+s)

X,Q

F ∗D(m)
Q (E ′) ∼

11.3.3.4.2//∼
11.3.4.3.1
oo D†X,Q ⊗D̂(m+s)

X,Q

D(m+s)
Q (F ∗E ′)

∼
��

F ∗D(D†X′,Q ⊗D̂(m)

X′,Q
E ′) ∼

9.5.2.4.2 // DF ∗(D†X′,Q ⊗D̂(m)

X′,Q
E ′) ∼

11.3.4.3 // D(D†X,Q ⊗D̂(m+s)

X,Q

F ∗E ′),

is commutative.

Proof. A tilde above D means that the functor is tensorized by −⊗OX
ωX (or −⊗OX′ ωX′).

We denote by τ , the composite isomorphism:

τ : F [D†X′,Q
∼←−

8.8.1.1.2
F [“D(m)

X′,Q ⊗D̂(m+s)

X,Q

F ∗F [D†X′,Q
id⊗α−→ F [“D(m)

X′,Q ⊗D̂(m+s)

X,Q

D†X,Q,

and where α is the inverse of the canonical isomorphism D†X,Q
∼−→ F ∗F [D†X′,Q (see 8.8.2.2.1). The

structure of (“D(m)
X′,Q,D

†
X,Q)-bimodule of F [“D(m)

X′,Q⊗D̂(m+s)

X,Q

D†X,Q extends then to a structure of (D†X′,Q,D
†
X,Q)-

bimodule. The morphism τ is the inverse of the morphism of (D†X′,Q,D
†
X,Q)-bimodules that we deduce

by extension from F [“D(m)
X′,Q → F [D†X′,Q. Hence, we reduce to prove the commutativity of the diagram:

D̃(m)
Q (E ′)⊗D̂(m)

X′,Q
F [D†X′,Q ∼

id⊗τ //

∼
��

D̃(m)
Q (E ′)⊗D̂(m)

X′,Q
F [“D(m)

X′,Q ⊗D̂(m+s)

X,Q

D†X,Q ∼
11.3.3.4.2// D̃(m+s)

Q (F ∗E ′)⊗D̂(m+s)

X,Q

D†X,Q

∼
��

F [D̃(D†X′,Q ⊗D̂(m)

X′,Q
E ′) ∼

9.5.2.4.1 // D̃(F ∗D†X′,Q ⊗D̂(m)

X′,Q
E ′) ∼

11.3.4.3 // D̃(D†X,Q ⊗D̂(m+s)

X,Q

F ∗E ′).

(11.3.4.4.1)
We will write D† (resp. DX′ , resp. DX) instead of D†X′,Q or D†X,Q (resp. “D(m)

X′,Q, resp. “D(m+s)
X,Q ). We

set E ′† := D† ⊗DX′ E
′ and (F ∗E ′)† = D† ⊗DX

F ∗E ′. Let us consider the diagram

D̃(m)
Q (E ′)⊗DX′ F

[D†
id⊗τ //

��

D̃(m)
Q (E ′)⊗DX′ F

[DX′ ⊗DX
D† // RHomDX′ (E

′, F [DX′)⊗DX
D†

��
RHomDX′ (E

′,D†)⊗D† F [D† //

��

RHomDX′ (E
′, F [D†) τ //

��

RHomDX′ (E
′, F [DX′ ⊗DX

D†)

��
D̃(E ′†)⊗D† F [D† // RHomD†(E ′†, F [D†)

τ //

F∗��

RHomD†(E ′†, F [DX′ ⊗DX
D†)

F∗��
RHomD†(F ∗E ′†, F ∗F [D†)

τ //

��

RHomD†(F ∗E ′†, F ∗F [DX′ ⊗DX
D†)

��
D̃(E ′†)⊗D† F [D† // RHomD†((F ∗E ′)†, F ∗F [D†)

τ // RHomD†((F ∗E ′)†, F ∗F [DX′ ⊗DX
D†),

(11.3.4.4.2)
where the left bottom arrow is defined in order to make commutative the left bottom rectangle. By
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composing 11.3.4.4.2 with the following diagram

RHomDX′ (E
′, F [DX′)⊗DX

D†

��

F∗ // RHomDX
(F ∗E ′, F ∗F [DX′)⊗DX

D†

��

α(m)
// D̃(m+s)

Q (F ∗E ′)⊗DX
D†

��
RHomDX′ (E

′, F [DX′ ⊗DX
D†) F∗ //

��

RHomDX
(F ∗E ′, F ∗F [DX′ ⊗DX

D†) α
(m)
//

��

RHomDX
(F ∗E ′,D†)

��

RHomD†(E ′†, F [DX′ ⊗DX
D†)

F∗��
RHomD†(F ∗E ′†, F ∗F [DX′ ⊗DX

D†)

��
RHomD†((F ∗E ′)†, F ∗F [DX′ ⊗DX

D†) RHomD†((F ∗E ′)†, F ∗F [DX′ ⊗DX
D†) α(m)

// D̃((F ∗E ′)†),
(11.3.4.4.3)

where α(m) is the inverse of the canonical isomorphism DX
∼−→ F ∗F [DX′ of 8.8.1.1.1, we get the square

11.3.4.4.1. Indeed, concerning the top, right and left arrows, this is straightforward. To establish that so
is the bottom one, we have to check that the composition arrow of the top of the commutative diagram
below

RHomD†(F ∗E ′†, F ∗F [D†)
τ // RHomD†(F ∗E ′†, F ∗F [DX′ ⊗DX

D†)

��

α(m)
// D̃(F ∗E ′†)

��
RHomD†((F ∗E ′)†, F ∗F [DX′ ⊗DX

D†) α(m)
// D̃((F ∗E ′)†).

(11.3.4.4.4)

is the canonical morphism induced by α. This latter fact is a consequence of the commutativity of

F ∗F [D† //

F∗τ

((

F ∗F [DX′ ⊗DX
F ∗F [D†)

id⊗α
��

α(m)⊗id // DX ⊗DX
F ∗F [D†

id⊗α
��

F ∗F [DX′ ⊗DX
D† α(m)⊗id // DX ⊗DX

D†.

(11.3.4.4.5)

By using the commutativity of the rectangle of the top of 6.2.3.3.1 (we complete, we tensorize by Q and
we apply it with E ′ = F [DX′), we get that of the top diagram of 11.3.4.4.5. The one of the square of
11.3.4.4.5 is functorial and that of the triangle is tautological.

It remains now to prove that the diagrams 11.3.4.4.2 and 11.3.4.4.3 are commutative. The one of the
top rectangle of 11.3.4.4.2 follows, via the remark 4.6.4.5.(ii), from the transitivity of 4.6.4.7. We can
check that of the left square of the second row of 11.3.4.4.2 by proceeding similarly to 11.3.3.5.4. To check
the commutativity of the rectangle at the bottom left of 11.3.4.4.3, it is sufficient to choose a K-injective
complex of D†X′,Q⊗VD

†
X,Q-modules representing F [DX′⊗DX

D† and a K-flat complex of left DX′ -modules
representing E ′. That of the top right square of 11.3.4.4.3 can be computed by choosing a K-flat complex
of left DX′-modules representing E ′ and a K-injective complex of left DX′ ⊗V DX-modules representing
F [DX′ . The commutativity of the other squares or of the rectangle is checked by functoriality.

Proposition 11.3.4.5. Let E ′ be a coherent D†X′,Q-module OX′,Q-coherent. The diagram

F ∗[D(m)
Q (E ′)] //

σ
(m)

Q

��

D(m+s)
Q (F ∗E ′)

σ
(m+s)

Q

��
F ∗[D(E ′)] // D(F ∗E ′)

is commutative.

Proof. By construction of the isomorphism D†XQ ⊗D̂(m+s)

X,Q

F ∗E ∼−→ F ∗(D†X′Q ⊗D̂(m)

X′,Q
E) (see 11.3.4.3), the

first and the latter isomorphism of 11.3.4.1.1 are compatible with Frobenius. For the middle one, this
corresponds to 11.3.4.4.
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Theorem 11.3.4.6. Let E ′ be a coherent D†X′(†T ′)Q-module, OX′(
†T ′)Q-coherent. The diagram

F ∗[DT ′(OX′(
†T ′)Q)⊗OX′ (

†T ′)Q
E ′∨]

F∗θ //

��

F ∗DT ′(E ′)

��
DT (OX(†T )Q)⊗OX(†T )Q

(F ∗E ′)∨ θ // DT (F ∗E ′).

(11.3.4.6.1)

is commutative.

Proof. As the edges of 11.3.4.6.1 are morphisms of coherent D†X(†T )Q-modules, thanks to 8.7.6.11, it is
sufficient to prove the commutativity of 11.3.4.6.1 when T is empty. Let us consider the following cube

(D(m+s)
Q (OX,Q)⊗OX,Q (F ∗E ′)∨)

θ
(m+s)

Q //

��

D(m+s)
Q (F ∗E ′)

��

F ∗[(D(m)
Q (OX′,Q)⊗OX′,Q (E ′)∨)]

33

F∗(θ
(m)

Q )
//

��

F ∗[D(m)
Q (E ′)]

99

��

D(OX,Q)⊗OX,Q (F ∗E ′)∨ θ† // D(F ∗E ′)

F ∗[D(OX′,Q)⊗OX′,Q (E ′)∨]

33

F∗θ† // F ∗[D(E ′)],

88

(11.3.4.6.2)

where the vertical arrows are induced by the morphisms of the form σ
(m)
Q . Following 11.3.3.5, the top

square is commutative. Moreover, thanks to 11.3.4.2, so are the front and back squares. Via 11.3.4.5, the
right and left squares are commutative. As the morphisms are isomorphisms, it follows the commutativity
of the bottom square.

Theorem 11.3.4.7. Let E′ be an isocrystal on X ′ \ T ′ overconvergent along X ′. The isomorphism

DT ′(OX′(
†T ′)Q)⊗OX′ (

†T ′)Q
sp∗(E

′∨)
∼−→ DT ′(sp∗(E

′))

is compatible with Frobenius.

Proof. Following 11.2.7.4, we have the isomorphism sp∗(E
′∨)

∼−→ (sp∗(E
′))∨ which is compatible with

Frobenius. By using 11.3.4.6, we are done.

11.3.5 Commutation of the duality with pullbacks via a smooth morphism,
adjunction

We collect here some results concerning the compatibility with Frobenius and its corollaries. Following
[Abe14a, 3.10], we have the following theorem.

Theorem 11.3.5.1 (Abe). Let f : X → Y be a smooth morphism of smooth V-formal schemes of rel-
ative dimension df . Let us denote by d the relative dimension of X0 over Y0. For any divisors T of
X and W of Y such that f(X \ T ) ⊂ Y \ W , for any integers 0 ≤ m ≤ nm, for any E(m) ∈ F -
Db

perf(B
(nm)
Y (W )“⊗OY

“D(m)
Y,Q), denoting by E := D†Y(†W )Q ⊗B(nm)

Y
(W )⊗̂OY

D̂(m)

Y,Q

E(m), and using notation

8.8.3.3 we have the canonical isomorphism

f !
T,W ◦ DY,W (E)

∼−→ DX,T ◦ f !
T,W (E)(df )[2df ]. (11.3.5.1.1)

In the case where Y = Spf V, this yields:

Corollary 11.3.5.2. We have the isomorphism of F -D†X(†T )Q-modules:

DX,Z(OX(†T )Q)
∼−→ OX(†T )Q(−d). (11.3.5.2.1)
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Corollary 11.3.5.3. We have the compatible to Frobenius isomorphism

sp∗(E
′∨)(−d)

∼−→ DT ′(sp∗(E
′)).

Proof. This follows from 11.3.4.7 and 11.3.5.2.1.

11.3.5.4. With notation 11.3.5.1, set f+
T,W := DX,T ◦ f !

T,W ◦ DY,W . We get the isomorphisms:

f !
T,W (E)

∼−→ f !
T,W ◦ DX,T (DX,T (E))

∼−→
11.3.5.1.1

DX,T ◦ f !
T,W (DX,T (E))(df )[2df ] = f+

T,W (E)(df )[2df ].

(11.3.5.4.1)
The twisted version of 11.3.5.1 is:

f !
T,W (ωY/S⊗OY

DY,W (E))
∼−→

9.2.1.23.1
ωX/S⊗OX

f !
T,W ◦DY,W (E)

∼−→
11.3.5.1.1

ωX/S⊗OX
DX,T ◦f !

T,W (E)(df )[2df ].

(11.3.5.4.2)

Corollary 11.3.5.5. Let f : X → Y be a smooth morphism of smooth V-formal schemes of relative di-
mension df . Let us denote by d the relative dimension of X0 over Y0. For any divisors T of X andW of Y
such that f(X \T ) ⊂ Y \W , for any integers 0 ≤ m ≤ nm, for any E(m) ∈ F -Db

perf(B
(nm)
Y (W )“⊗OY

“D(m)
Y,Q),

denoting by E := D†Y(†W )Q⊗B(nm)

Y
(W )⊗̂OY

D̂(m)

Y,Q

E(m), for any F ∈ Db
coh(D†X(†T )Q). we have the canonical

isomorphism

Rf∗RHomD†
X

(†T )Q
(f+
T,W (E),F)

∼−→ RHomD†
Y

(†W )Q
(E , fT,W,+(F)), (11.3.5.5.1)

R HomD†
X

(†T )Q
(f+
T,W (E),F)

∼−→ R HomD†
Y

(†W )Q
(E , fT,W,+(F)). (11.3.5.5.2)

Proof. From the twisted version 11.3.5.4.2, we get:

f−1(ωY/S ⊗OY
DY,W (E))⊗L

f−1D†
Y

(†W )Q
D†Y←X(†W )Q[df ]

∼−→ f !
T,W (RHomD†

Y
(†W )Q

(E ,D†Y(†W )Q))[dY ]

∼−→
11.3.5.4.2

RHomD†
X

(†T )Q
(f !
T,W (E),D†Y(†W )Q))[dX ](df )[2df ]

∼−→
11.3.5.4.1

RHomD†
X

(†T )Q
(f+
T,W (E),D†Y(†W )Q))[dX ]. (11.3.5.5.3)

Since E ∈ Db
coh(D†Y(†W )Q) (resp. f+

T,W (E) ∈ Db
coh(D†X(†T )Q)), then we get the last (resp. first)

isomorphism:

Rf∗
(

RHomD†
X

(†T )Q
(f+
T,W (E),F)

)
∼−→ Rf∗

Å
RHomD†

X
(†T )Q

(f+
T,W (E),D†Y(†W )Q)⊗L

D†
Y

(†W )Q
F
ã

∼−→
11.3.5.5.3

Rf∗

Å
f−1(ωY/S ⊗OY

DY,W (E)[−dY ])⊗L
f−1D†

Y
(†W )Q

D†Y←X(†W )Q ⊗L
D†

Y
(†W )Q

F
ã

∼−→ ωY/S ⊗OY
DY,W (E)[−dY ]⊗L

D†
Y

(†W )Q
Rf∗

Å
D†Y←X(†W )Q ⊗L

D†
Y

(†W )Q
F
ã

∼−→ RHomD†
Y

(†W )Q
(E ,D†Y(†W )Q)⊗L

D†
Y

(†W )Q
fT,W,+(F)

∼−→ RHomD†
Y

(†W )Q
(E , fT,W,+(F)).

Hence, we get 11.3.5.5.1. Applying RΓ(Y,−), this yields 11.3.5.5.2.

718



Chapter 12

Differential coherence of the constant
coefficient

Put S = Spf V.

12.1 Local cohomology with support in a smooth closed sub-
scheme

12.1.1 Arithmetic D-modules associated with overconvergent isocrystals in
the lifted case via the functor Rsp∗

Contrary to the situation of chapter 11, the locus of overconvergent singularities is not the support of a
divisor. In that case, the functor sp∗ is not exact. The purpose of this section is to compute Rsp∗ in the
category of D†-modules.

12.1.1.1. Let X be an affine smooth V-formal scheme. Let Z be a divisor of X, Y be the open of X
complementary to the support of Z and j : Y → X be the canonical morphism. For any m ∈ N, we set
λm := p−1/pm+1

, Vm := XK\]Z[Xλm and jm : Vm → XK be the canonical immersion. Following 10.1.1.7,
the family Vm forms a basis of strict neighborhoods of YK in XK .

Let E be a j†OXK -module of finite presentation. Then, for m0 large enough, there exists E0 an
OVm0

-module of finite presentation together with an isomorphism E
∼−→ j†E0 = j†OVm0

⊗OVm0
E0.

With 10.1.2.2.1, this yields the isomorphism

E
∼−→ lim−→m≥m0 jm∗(E0|Vm).

Let r ≥ 1, m ≥ m0 be two integers, U be an affinoid subset of XK . Set Em := E0|Vm. Since Vm is an
affinoid subset of XK , then j−1

m (U) = U ∩ Ym is also an affinoid subset of XK and then is an affinoid
subset of Vm. Hence, by using theorem B of Kiehl’s (see [Kie67]), we get Hr(j−1

m (U), Em) = 0. This
yields that Rrjm∗(Em) = 0 (see [Gro61, 0.12.2.1]). This means that the canonical morphism

jm∗(Em)→ Rjm∗(Em) (12.1.1.1.1)

is an isomorphism.

The following Lemma will be useful to check the resolution 12.1.1.4.1.

Lemma 12.1.1.2. Let X = Spf A be an affine smooth formal S-scheme. Let g ∈ A, Y := D(g)
j
↪→ X

be the corresponding open immersion. Let u : X ↪→ X′ be an open immersion of separated smooth formal
S-schemes. Let uK : XK ↪→ X′K be the induced morphism of rigid spaces.

(a) Let E be a j†OXK -module of finite presentation.
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(i) The module E is acyclic for the functor uK∗, i.e. the canonical morphism

uK∗(E)→ RuK∗(E) (12.1.1.2.1)

is an isomorphism.

(ii) The module uK∗(E) is acyclic for sp∗, i.e., the canonical morphism

sp∗uK∗(E)→ Rsp∗uK∗(E) (12.1.1.2.2)

is an isomorphism.

(b) Let E be a coherent j†OXK -module which is equipped with an integrable connection overconvergent
along X \ Y .

(i) The sheaf sp∗uK∗E is equipped with a canonical structure of D†X′,Q-module functorial in E.

(ii) If X1 is an affine open subscheme of X and if f1 ∈ Γ(X1,OX1
) is so that the induced open

immersion Y1 = D(f1)
j1
↪→ X1 factors through Y1 ⊂ Y, then the canonical homomorphism

sp∗(uK∗E)→ sp∗(u1K∗j
†
1(E|X1K)),

where u1 : X1 ↪→ X′ is the open immersion, is D†X′,Q-linear.

Proof. 0) This yields, since X′ is separated, that we can suppose both X and X′ are affine (and Y is still
a standard open formal subscheme of X) and we use notations of 12.1.1.1.

a)i) Let us check 12.1.1.2.1. This is local on X′K . Let r ≥ 1 be an integer, U ′ be an affinoid
subset of X′K . Since XK and Ym are affinoid spaces, then U := (uK)−1(U ′) is an affinoid subset of
XK , and j−1

m (U) is an affinoid subset of Ym. By using theorem B of Kiehl’s (see [Kie67]), this implies
Hr((uK◦jm)−1(U ′), Em) = 0. This yields that the canonical morphism uK∗◦jm∗(Em)→ R(uK∗◦jm∗)(Em)
is an isomorphism. From the isomorphism 12.1.1.1.1, we get R(uK∗ ◦ jm∗)(Em)

∼−→ RuK∗(jm∗(Em)).
Hence the canonical morphism uK∗(jm∗Em)→ RuK∗(jm∗Em) is an isomorphism, i.e. RruK∗(jm∗Em) = 0
for any r ≥ 1. Since uK is a coherent morphism of coherent topological spaces, then inductive limits
commutes with RruK∗ (see [SGA4.2, VI.5.1], or also [FK18, 0.3.1.9]). Hence, taking the inductive
limit, this yields RruK∗(j

†
YOXK ) = 0 for any r ≥ 1, i.e. that the canonical morphism 12.1.1.2.2 is an

isomorphism.
ii) Using the same arguments than in the first part (i.e. theorem B of Kiehl’s and next taking the

inductive limits), we check the canonical morphism

(sp∗ ◦ uK∗)(j
†
YOXK )→ R(sp∗ ◦ uK∗)(j

†
YOXK ) (12.1.1.2.3)

is an isomorphism. Using 12.1.1.2.1 and 12.1.1.2.3, we get 12.1.1.2.2.
b) This follows from 11.2.1.5.

Notation 12.1.1.3. Let X be a smooth V-formal scheme. Let sp: XK → X be the specialization
morphism. Let Z be a closed subscheme of X and let Y := X \Z and j : Y ⊂ X be the open immersion.
Let X := (Xi)i∈I be a finite affine open covering of X. For any i ∈ I, let Yi := (Yi ji)ji∈Ji be a finite
open covering of Yi := Y ∩Xi such that there exists fi ji ∈ Γ(Xi,OX) satisfying Yi ji = D(fi ji)∩Xi. We
get the divisor Ti ji := V (fi ji) of Xi such that Yi ji = Xi \ Ti ji . Let E be an abelian sheaf on XK .

Fix h, l ∈ N. Let i = (i0, . . . , ih) ∈ I1+h. We set Xi := Xi0 ∩ · · · ∩ Xih , Yi := Y ∩ Xi, ui : Xi → X,
uiK : XiK → XK , and Ji := Ji0×· · ·×Jih . For any j = (ji0 , . . . , jih) ∈ Ji, we set Yi j := Yi0 ji0∩· · ·∩Yih jih ,
fi j := fi0 ji0 |Xi · · · fih jih |Xi . Denoting by Ti j := V (fi j) the divisor of Xi, we have Yi j = Xi \ Ti j .

We get the covering Yi := (Yi j)j∈Ji of Yi. For any j = (j
0
, . . . , j

l
) ∈ (Ji)

1+l, we set Yi,j :=

Yi j
0
∩ · · · ∩ Yi j

l
, fi,j := fi j

0
· · · fi j

l
. We denote the corresponding open immersions by

j : Y ↪→ X, ji : Yi ↪→ Xi, jij : Yij ↪→ Xi.
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Denoting by Ti j := V (fi j) the divisor of Xi, we have Yi j = Xi \ Ti j . We set

Č†hl(X, (Yi)i∈I , E) :=
∏

i∈I1+h

uiK∗Č
†l(Xi,Yi, u

∗
iK(E)) =

∏
i∈I1+h

uiK∗

Ö ∏
j∈J1+l

i

j†i,ju
∗
iK(E)

è
,

where Č†l(Xi,Yi, u∗iK(E)) is defined in 10.1.3.5.1. We get the Cech bicomplexes Č†••(X, (Yi)i∈I , E)

associated with the coverings X,Yi of E (see 10.1.4). We denote by Č†•(X, (Yi)i∈I , E) the total complex
of Č†••(X, (Yi)i∈I , E).

Proposition 12.1.1.4. Let E be a coherent j†OXK -module which is equipped with an integrable connec-
tion overconvergent along X \ Y . We keep notation 12.1.1.3

(a) The complex Č†•(X, (Yi)i∈I , E) gives a resolution of E.

(b) For any h, l, the module Č†hl(X, (Yi)i∈I , E) is acyclic for the functor sp∗.

(c) sp∗Č
†•(X, (Yi)i∈I , E) is a complex of left D†X,Q-modules.

(d) We have in Db(D†X,Q) the canonical isomorphism

Rsp∗(E)
∼−→ sp∗Č

†•(X, (Yi)i∈I , E). (12.1.1.4.1)

(e) Let T be a closed subscheme of X and j′ : Y \ T ↪→ X be the open immersion. We have the exact
triangle in Db(D†X,Q):

Rsp∗(Γ
†
]T [(E))→ Rsp∗(E)→ Rsp∗(j

′†E)→ +1. (12.1.1.4.2)

Proof. Since, j†E = E, the first statement is a consequence of 10.1.4.2. Since Yi,j = D(fi,j), following

12.1.1.2.2, uiK∗
Å
j†i,ju

∗
iK(E)

ã
is acyclic for the functor sp∗. Hence,

Č†hl(X, (Yi)i∈I , E) =
∏

i∈I1+h

uiK∗

Ö ∏
j∈J1+l

i

Å
j†i,ju

∗
iK(E)

ãè
is acyclic for the functor sp∗. This yields the isomorphism 12.1.1.4.1. It follows from 12.1.1.2.2 that by
applying the functor Rsp∗ to the map E → j′†E we get a morphism in Db(D†X,Q). Hence, by applying
the functor Rsp∗ to the exact sequence

0 −→ Γ†]T [P
(E) −→ E → j′†E −→ 0. (12.1.1.4.3)

we get the exact triangle 12.1.1.4.2 of Db(D†X,Q).

12.1.2 Differential coherence of OX(
†Z)Q when Z is a strict normal crossing

divisor
Lemma 12.1.2.1. Let X = Spf A be a reduced affine V-formal scheme of finite type. Suppose ‖ · ‖ is a
Banach norm on A⊗K, f ∈ A and {an}n≥0 is a sequence of elements of A⊗K satisfying the following
conditions:

(i) There exist real constants c, η with η < 1 such that ‖an‖ ≤ cηn for all n.

(ii)
∑
n≥0 anf

−n = 0 in B := A{f} ⊗K where A{f} denotes the p-adic separated completion of Af .
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Then for all j ≥ 0 there exist c′ and η′ < 1 such that

‖
j∑

n=0

anf
j−n‖ ≤ c′η′j .

Proof. If the lemma holds for one norm on A⊗K then it holds also for any equivalent norm. As A⊗K
is reduced, the spectral semi-norm on Spm(A ⊗ K) is a Banach norm and is equivalent to any other
Banach norm ([BGR84] §6.2.4, th. 1). Thus we shall take ‖ · ‖ to be the spectral norm. Let η′ be a real
number a power of which is in the value group of K such that η < η′ < 1. Consider now a covering of
XK by open affinoids

V1 := {x ∈ XK : |f(x)| ≤ η′}, V2 := {x ∈ XK : |f(x)| ≥ η′}.

It suffices to bound bj :=
∑j
n=0 anf

j−n on V1 and on V2. For x ∈ V1 we have

|bj(x)| ≤ sup
n≤j
‖an‖η′

j−n ≤ cη′j .

Next we consider V2. A ⊗K is reduced implies C := Γ(V2,OXK ) is reduced ([BGR84] §7.3.2, cor. 10).
Thus the spectral norm is a Banach norm on C. In C we have |an(x)f(x)−n| ≤ c(η/η′)n. The series∑
n anf

−n converges to say b in C. As b is 0 in B by assumption, we get |f(x)| < 1 at all points in the
support of b, and then the maximal modulus principle ([BGR84] §3.8.1 p. 171, §6.2.1. prop 4) implies
that, increasing η′ if necessary, we can suppose that

∑
n anf

−n = 0 in C. Then on V2 we have

|bj(X)| = | −
∑
n〉j

an(x)f(x)j−n| ≤ sup
n〉j
‖an‖η′

j−n ≤ cη′j .

Proposition 12.1.2.2. Let X be a smooth separated V-formal scheme with reduction X on k, Z a smooth
divisor in X and j : Y = X \ Z → X the open immersion. Then:

(a) The D†XQ-module OX(†Z)Q is coherent.

(b) If U is an open formal subscheme of X such that there exist local coordinates t1, . . . , td satisfying
Z = V (t1) modulo m, and ∂1, . . . , ∂d are the corresponding derivations. Then we have the exact
sequence

(D†X,Q)d
ψ−→ D†X,Q

φ−→ OX(†Z)Q → 0, (12.1.2.2.1)

where φ(P ) = P · (1/t1), and ψ is defined by

ψ(P1, . . . , Pd) = P1∂1t1 +
d∑
i=2

Pi∂i. (12.1.2.2.2)

Proof. Part (a) follows from (b) as D†XQ is coherent. It suffices to check (b) for an affine open subscheme U.
Put A = Γ(U,OX), D† = Γ(U,D†XQ). We claim that the map φ : D† → Γ(U,OX(†Z)Q) = A[1/t1]† ⊗V K
is surjective. Indeed, an element f of A[1/t1]† can be written as f =

∑
n≥0 ant

−n−1
1 with an ∈ A and

‖an‖ < cηn for some η < 1. Take P =
∑
n≥0(−1)nan∂

[n] ∈ D†, then P · (1/t1) = f .
Next we consider Kerφ. Take P =

∑
n an∂

[n] ∈ D† such that P · (1/t1) = 0. Break P into two sums∑′ and ∑′′ - in ∑′ we include those terms with n such that ni = 0 for i > 1; and in
∑′′ we include

those terms with n such that there is an i > 1 for which ni 6= 0. According to 8.7.1.10, the operator∑′′
nan∂

[n] lies in the ideal generated by ∂2, . . . , ∂d and thus it is in the image of ψ. We can thus suppose

that P is of the form P =
∑
n≥0 an∂

[n]
1 . Since P ∈ Kerφ, we get in A[1/t1]† the relation∑

n≥0

(−1)nant
−n−1
1 = 0. (12.1.2.2.3)
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For j ≥ 0 put

bj := (−1)j+1

j−1∑
n=0

(−1)nant
j−n−1
1 .

As P ∈ D†, there exist c and η < 1 such that ‖an‖ < cηn for some η < 1. By lemma 12.1.2.1, there exist
c′ and η′ < 1 such that ‖bj‖ < c′η′

j . Now put Q :=
∑
j≥0 bj∂

[j]
1 . We claim: Qt1 = P . It suffices to check

in Γ(U ∩ Y,D†XQ) ⊃ D†. Using (12.1.2.2.3) we have bj = (−1)j
∑
n≥j(−1)nant

j−n−1
1 . From this we get

Qt1 =
∑
j≥0

(
∑
n≥j

(−1)n−jant
j−n−1
1 )∂

[j]
1 t1 =

∑
n≥0

an(
n∑
j=0

(−1)n−jtj−n−1
1 ∂

[j]
1 )t1

=
∑
n≥0

an(∂
[n]
1 t−1

1 )t1 = P.

Moreover as b0 = 0, by 8.7.1.10, we can write Q = Q1∂1 for some Q1 ∈ D†.

Proposition 12.1.2.3. Let X be a smooth separated V-formal scheme with reduction X on k, Z be a
strict normal crossing divisor in X. Then:

(a) The D†X,Q-module OX(†Z)Q is coherent.

(b) If U is an affine open formal subscheme of X such that there exist local coordinates t1, . . . , td satisfying
t1, . . . , tr ∈ Γ(U,OU) with r ≤ d, and Z ∩ U = V (t1 · · · tr) where t1, . . . , tr is image of t1, . . . , tr in
Γ(U,OU ). We have the exact sequence

(D†U/S,Q)d
ψ−→ D†U/S,Q

φ−→ OU(†Z ∩ U)Q → 0, (12.1.2.3.1)

where φ(P ) = P · (1/t1 · · · tr), and ψ is defined by

ψ(P1, . . . , Pd) =
r∑
i=1

Pi∂iti +
d∑

i=r+1

Pi∂i. (12.1.2.3.2)

Proof. See [Ber90, 4.3.2].

12.1.3 Differential coherence of the local cohomology with support in a
smooth closed subscheme of the constant coefficient

Notation 12.1.3.1. Let X be a smooth formal scheme over S. Let Z be a closed subscheme of X and
jZ : X \ Z → X be the open immersion. We set

OX(†Z)Q := Rsp∗j
†
Z(OXK ), RΓ†ZOX,Q := Rsp∗Γ

†
Z(OXK ).

By definition, RΓ†ZOX,Q is the local cohomology with support in Z of the constant coefficient OX,Q.
Remark that when Z is moreover a divisor of X, then we retrieve the definition 8.7.3.5.2. The exact
sequence 0→ Γ†Z(OXK )→ OXK → j†Z(OXK )→ 0 induces the exact triangle

RΓ†ZOX,Q → OX,Q → OX(†Z)Q → RΓ†ZOX,Q[1]. (12.1.3.1.1)

For any integer i ∈ Z, we set H†iZ (OX,Q) := HiRΓ†ZOX,Q.

Notation 12.1.3.2 (Cech complexes with divisors for the constant coefficient). Let X be a smooth
formal scheme. Let T := (Ti)i∈I be a finite set of divisors of X and Z = ∩i∈ITi.

For each h ∈ I, for any (i0, . . . , ih) ∈ I, put Ti0,...,ih := Ti0 ∪ · · · ∪ Tih . For each h ∈ I, set

Č†h(X,T,OX,Q) :=
∏

(i0,i1,...,ih)∈I1+h

OX(†Ti0...ih)Q. (12.1.3.2.1)
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Let α ∈ Č†h(X,T,OX,Q). For any h ∈ I, for any (i0, . . . , ih) ∈ I, we denote by αi0,...,ih the coefficient of
α in OX(†Ti0...ih)Q.

We define the coboundary map d : Č†h(X,T,OX,Q)→ Č†h+1(X,T,OX,Q) by setting

(dα)i0,...,ih+1
:=

h+1∑
j=0

(−1)jα
i0,...,̂ij ,...,ih+1

.

This yields the complex

· · · 0→ Č†0(X,T,OX,Q)→ Č†1(X,T,OX,Q)→ · · · → Č†h(X,T,OX,Q)→ 0 · · ·

that we will denote by Č†•(X,T,OX,Q).
Let Yi := X \ Ti the open subscheme of X and Y := ∪i∈IYi. We get the finite open covering

Y := (Yi)i=1,...,r of Y (i.e. Y = X \ Z). Since sp∗(j
†
Yi
OXK )

∼−→ OX(†Ti)Q, then

sp∗Č
†•(X,Y,OXK )

∼−→ Č†•(X,T,OX,Q), (12.1.3.2.2)

where Č†•(X,Y,OXK ) is defined in 10.1.3.5.

Notation 12.1.3.3. We keep notation 12.1.1.3 and for any i ∈ I we denote by Ti := (Ti ji)ji∈Ji the finite
set of divisors of Xi. For any h, l ∈ N, for any i = (i0, . . . , ih) ∈ I1+h, we denote by Ti := (Ti j)j∈(Ji)1+l

the finite set of divisors of Xi. For any h, l ∈ N, we get the left D†X,Q-module

Č†hl(X, (Ti)i∈I ,OX) :=
∏

i∈I1+h

ui∗Č
†l(Xi,Ti,OXi,Q)

12.1.3.2.1
=

∏
i∈I1+h

uiK∗

Ö ∏
j∈J1+l

i

OXi(
†Ti,j)Q

è
.

Similarly to 10.1.4, we get the bicomplex Č†••(X, (Ti)i∈I ,OX). We denote by Č†•(X, (Ti)i∈I ,OX) its
total complex.

Proposition 12.1.3.4. With notation 12.1.3.3, we have the isomorphism:

OX(†Z)Q = Rsp∗(j
†OXK )

∼−→ Č†•(X, (Ti)i∈I ,OX).

Proof. Since sp∗uiK∗
∼−→ ui∗sp∗, then we get

sp∗Č
†hl(X, (Yi)i∈I ,OXK )

∼−→
∏

i∈I1+h

sp∗uiK∗Č
†l(Xi,Yi,OXiK )

∼−→
∏

i∈I1+h

ui∗sp∗Č
†l(Xi,Yi,OXiK )

∼−→
12.1.3.2.2

∏
i∈I1+h

ui∗Č
†l(Xi,Ti,OXi,Q) = Č†hl(X, (Ti)i∈I ,OX). (12.1.3.4.1)

Since these isomorphisms commute with the transition maps, this yields the last isomorphism

Rsp∗(j
†OXK )

10.1.4.2
∼−→ sp∗Č

†••(X, (Yi)i∈I ,OXK )
∼−→ Č†••(X, (Ti)i∈I ,OX).

Example 12.1.3.5. Within notation 12.1.1.3 suppose I has only one element and remove i in the
notation, i.e. suppose X is an affine smooth V-formal scheme, T := (Tj)j∈J is a finite set of divisors of
X such that there exists fj ∈ Γ(X,OX) satisfying Tj = V (fj). By setting Z = ∩j∈JTj , we get

OX(†Z)Q
∼−→ Č†•(X,T,OX,Q).

Proposition 12.1.3.6. Let X be a smooth formal scheme over S. Let u : Z → X be a closed immersion
of k-smooth schemes purely of codimension r.

(a) We have H†iZ (OX,Q) = 0 for any i 6= r.
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(b) Let x ∈ X. Choose an affine open formal subscheme U of X containing x such that there exist
coordinates t1, . . . , td ∈ Γ(U,OU) such that Z ∩ U = V (t1, . . . , tr) where r ≤ d and t1, . . . , tr are the
image of t1, . . . , tr in Γ(U,OU ). We have the exact sequence

(D†U/S,Q)d
ϑ−→ D†U/S,Q

φ−→ H†rZ∩U (OU,Q)→ 0, (12.1.3.6.1)

where φ(P ) = P · (1/t1 · · · tr), and ϑ is defined by

ϑ(P1, . . . , Pd) =
r∑
i=1

Piti +
d∑

i=r+1

Pi∂i. (12.1.3.6.2)

(c) The complexes OX(†Z)Q,RΓ†ZOX,Q are in Db
coh(D†X,Q).

Proof. See [Ber90, 4.3.4].

Remark 12.1.3.7. With the notation 12.1.3.6, suppose, U = X. For i = 1, . . . , r, put Zi := V (ti), and
Zi0,...,ik := Zi0 ∪ · · · ∪ Zik (i.e. V (ti0 · · · tik) = Zi0,...,ik). Then it follows from 12.1.3.5 that OX(†Z)Q is
represented by the (ordered version) Cech complex

d∏
i=1

OX(†Zi)Q →
∏
i0<i1

OX(†Zi0i1)Q → · · · → OX(†Z1...r)Q → 0, (12.1.3.7.1)

whose first term is at degree 0. This yields that RΓ†ZOX,Q is represented by the complex

OX,Q →
d∏
i=1

OX(†Zi)Q →
∏
i0<i1

OX(†Zi0i1)Q → · · · → OX(†Z1...r)Q → 0, (12.1.3.7.2)

whose first term is at degree 0. Using 12.1.2.3, this is how Berthelot checked in [Ber90, 4.3.4] that
RΓ†ZOX,Q ∈ Db

coh(D†X,Q).

Corollary 12.1.3.8. Let u : Z ↪→ X be a closed immersion of smooth formal schemes over S.

(a) We have u!(OX(†Z)Q) = 0, i.e. by applying the functor u! to the canonical morphism RΓ†ZOX,Q →
OX,Q, we get an isomorphism.

(b) We have the isomorphisms RΓ†ZOX,Q
∼−→ u+u

!(OX,Q)
∼−→ u+(OZ,Q)[du].

Proof. 0) Since this is local in X and Z, we can suppose u ispurely of codimension r. Let Y be the open
formal subscheme of X complementary to Z. First we check that RΓ†ZOX,Q|Y = 0. Since this is local,
we can suppose with the notation of Proposition 12.1.3.6 that U = X. In that case, we compute that the
restriction to Y of the map ϑ of the exact sequence 12.1.3.6.1 is surjective. Hence, H†rZ (OX,Q)|Y = 0 (or
we can also compute the rth cohomological space of the complex 12.1.3.7.2).

a) Now, let us check that u!(OX(†Z)Q) = 0. Since this local, we can suppose with the notation of
Proposition 12.1.3.6 that U = X, and we use notation 12.1.3.7. Using the resolution 12.1.3.7.1 ofOX(†Z)Q,
we reduce to check Lu∗(OX(†Zi0...ik)Q) = 0. Let ui : Zi ↪→ X be the closed immersion of formal schemes
whose corresponding ideal is generated by ti. If we choose i ∈ {i0, . . . , ik}, then the multiplication by
ti : OX(†Zi0...ik)Q

ti−→ OX(†Zi0...ik)Q is an isomorphism. Hence, Lu∗i (OX(†Zi0...ik)Q) = 0. This yields
Lu∗(OX(†Zi0...ik)Q) = 0.

b) Hence, by applying the functor u! to the exact triangle 12.1.3.1.1, using part b) of the proof, we
get the isomorphism u!RΓ†ZOX,Q

∼−→ u!OX,Q. Hence, u+u
!RΓ†ZOX,Q

∼−→ u+u
!OX,Q. Since RΓ†ZOX,Q has

his support in Z, we get from Theorem 9.3.5.9 the isomorphism RΓ†ZOX,Q
∼−→ u+u

!RΓ†ZOX,Q. Hence,
we are done by composition.
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12.1.4 Local cohomology with support in a smooth closed subscheme for
(quasi-)coherent complexes of D-modules

Notation 12.1.4.1. Let X be a smooth formal scheme over S. Let Z be a k-smooth closed sub-
scheme of X. Let RΓ†Z(O(•)

X ) ∈ LD−→
b
Q,coh(

l“D(•)
X/S) such that RΓ†Z(O(•)

X )
∼−→ RΓ†ZOX,Q, where this latter

complex is defined at 12.1.3.1 (and is coherent thanks to 12.1.3.6). Then we can define the functor
RΓ†Z : LD−→

b
Q,qc(

l“D(•)
X/S)→ LD−→

b
Q,qc(

l“D(•)
X/S) by setting for any E(•) ∈ LD−→

b
Q,qc(

l“D(•)
X/S)

RΓ†Z(E(•)) := RΓ†Z(O(•)
X )“⊗L

O(•)
X

E(•). (12.1.4.1.1)

Let T be a divisor ofX. Following 8.4.1.15, we have the equivalence of categories:→l
∗
X,Q : LD−→

b
Q,coh(“D(•)

X/S(T ) ∼=
Db

coh(D†X/S(†T )Q). Then we get the functor

RΓ†Z : Db
coh(D†X/S(†T )Q)→ Db(D†X/S(†T )Q) (12.1.4.1.2)

so that for any E(•) ∈ LD−→
b
Q,coh(“D(•)

X/S(T )) we get by definition the isomorphism:

→l
∗
X,Q(RΓ†Z(E(•)))

∼−→ RΓ†Z(→l
∗
X,Q(E(•))).

By using the map RΓ†ZOX,Q → OX,Q ofDb
coh(D†X/S,Q) (see 12.1.3.1.1), we get the arrow RΓ†Z(O(•)

X )→ O(•)
X

of LD−→
b
Q,coh(“D(•)

X/S). This yields for any E ∈ Db
coh(D†X/S(†T )Q) the morphism of Db(D†X/S(†T )Q):

RΓ†Z(E)→ E . (12.1.4.1.3)

Remark 12.1.4.2. Beware that in our work first we do need to use the functor 12.1.4.1.2 and the arrow
12.1.4.1.3 in order to prove the D†X/S,Q-coherence of OX(†Z)Q when Z is a divisor (more precisely, see the
proof of 12.2.7.1). This coherence result is fundamental in order to be able to define local cohomology
with support in any closed subscheme in the context of quasi-coherent complexes of the next chapter.
We will see via 13.1.3.10 that both local cohomologies coincide, which justifies adopting the notation
12.1.3.1 and 12.1.4.1.

Lemma 12.1.4.3. Let u : Z → X be a closed immersion of smooth formal S-schemes. For any E(•) ∈
LD−→

b
Q,qc(

l“D(•)
X/S), we have the isomorphism

RΓ†Z(E(•))
∼−→ u

(•)
+ ◦ u(•)!(E(•)), (12.1.4.3.1)

where by abuse of notation we denote u(Z) by Z.

Proof. Using 9.4.3.2.1 and 12.1.4.1.1, we reduce to the case where E(•) = O(•)
X . Then the Lemma follows

from 12.1.3.8.

12.2 Arithmetic D-modules associated with overconvergent isocrys-
tals on completely smooth d-frames

12.2.1 The categories of isocrystals MIC††(X,P, T/V), MIC(•)(X,P, T/V) on
completely smooth d-frames and their stability

Definition 12.2.1.1. We define the category of d-frames as follows:

(a) A “d-frame over V” is the data of a separated and smooth V-formal scheme P, of a closed subscheme
X of P , of a divisor T of P such that Y = X \T . Such a d-frame over V is denoted by (Y,X,P, T )/V.
We say that (Y,X,P, T )/V is d-frame over V enclosing (Y,X). A d-frame (Y,X,P, T ) is “completely
smooth” (resp. “smooth”) if X (resp. Y ) is k-smooth and if T ∩X is a divisor of X (resp. and T ∩Y
is a divisor of Y ).
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(b) A morphism θ : (Y ′, X ′,P′, T ′)→ (Y,X,P, T ) of (resp. completely smooth, resp. smooth) d-frames
(over V) is the data of a morphism f : P′ → P of S-formal schemes such that such that X ′ ⊂ f−1X
and T ′ ⊃ f−1(T ). When T ′ = f−1(T ), we say that the morphism is strict. If a : X ′ → X, b : Y ′ → Y
are the morphisms induced by f , the morphism θ is also denoted by (b, a, f).

Notation 12.2.1.2. Let (Y,X,P, T )/V be a d-frame over V. Then, we can simply write it (X,P, T )/V
and even (X,P, T ) if V is understood.

Remark 12.2.1.3. We will introduce later the notion of frames (see 16.2.1.8) which extends that of d-
frames of 12.2.1.1.

Notation 12.2.1.4. Let (Y,X,P, T )/V be a completely smooth d-frame. We denote by MIC††(X,P, T/V)
the full subcategory of Coh(X,P, T/V) (see notation 9.3.7.4) whose objects E satisfy the following con-
dition: for any affine open formal subscheme P′ of P, for any morphism of formal schemes v : X′ ↪→ P′

whose reduction modulo π is the closed imbedding X ∩ P ′ ↪→ P ′, the sheaf v!(E|P′) is OX′(
†T ∩X ′)Q-

coherent. When T is empty, we remove it in the notation. When T is empty, we remove it in the notation.
When X = P , we get MIC††(P,P, T/V) = MIC††(P, T/V) (see notation 11.2.1.4).

Proposition 12.2.1.5. Let (Y,X,P, T )/V be a completely smooth d-frame. Let E ∈ Coh(X,P, T/V).
The following properties are equivalent:

(a) E ∈ MIC††(X,P, T/V) ;

(b) E|U ∈ MIC††(Y,U/V).

Proof. This follows from 11.2.1.14.(e).

Notation 12.2.1.6. Let (Y,X,P, T )/V be a completely smooth d-frame. We denote by MIC(•)(X,P, T/V)

the full subcategory of LM−−→Q,coh(“D(•)
P/S(T )) consisting of objects E(•) with support in X and such

that →l
∗
Q(E(•)) ∈ MIC††(X,P, T/V) where →l

∗
Q is the equivalence of categories of 8.4.5.6, and where

MIC††(X,P, T/V) is defined in 12.2.1.4. By definition, we get the equivalence of categories

→l
∗
Q : MIC(•)(X,P, T/V) ∼= MIC††(X,P, T/V). (12.2.1.6.1)

When T is empty, we remove it in the notation. WhenX = P , we get MIC(•)(P,P, T/V) = MIC(•)(P, T/V)
(see notation 11.2.2.1).

12.2.1.7 (Berthelot-Kashiwara isocrystal variation). Let (Y,X,P, T )/V be a completely smooth d-
frame such that X ↪→ P lifts to a morphism u : X ↪→ P of smooth V-formal schemes. It follows
from 9.3.5.9 (resp. 9.3.5.13) that the functors u+ and u! (resp. u

(•)
+ and u(•)!) induce quasi-inverse

equivalences of categories between MIC††(X,P, T/V) and MIC††(X, T ∩X/V) (resp. MIC(•)(X,P, T/V)

and MIC(•)(X, T ∩X/V)).
Since MIC(•)(X, T ∩X/V) ⊂ LD−→

b
Q,perf(

‹D(•)
X/S(T ∩X)) (see 11.2.2.2) then it follows from 9.4.2.6 that

MIC(•)(X,P, T/V) ⊂ LD−→
b
Q,perf(‹D(•)

P/S(T )). (12.2.1.7.1)

Proposition 12.2.1.8. For i = 1, 2, let (Yi, Xi,Pi, Ti)/V be a completely smooth d-frame, let E(•)
i be an

object of MIC(•)(Xi,Pi, Ti/V). Let P := P1 ×S P2, pi : P → Pi be the natural projection for i = 1, 2,
X := X1 ×k X2, T := p−1

1 (T1) ∪ p−1
2 (T2). Then E(•)

1
“�L
OS
E(•)

2 ∈ MIC(•)(X,P, T/V).

Proof. Following Lemma 9.2.5.9 (see also 9.2.5.3), we already know E(•)
1
“�L
OS
E(•)

2
∼−→ E(•)

1
“�OS

E(•)
2 ∈

LM−−→Q,coh(“D(•)
P/S(T )). Since the proposition is local, by using 12.2.1.7 and 9.4.4.1, we reduce to the case

where X = P and Y = Q. Hence, this follows from 11.2.4.4.

Proposition 12.2.1.9. Let θ := (b, a, f) : (Y ′, X ′,P′, T ′)→ (Y,X,P, T ) be a morphism of completely
smooth d-frames (see 12.2.1.1) such that f is smooth.
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(i) For any E(•) ∈ MIC(•)(X,P, T/V), we have θ(•)∗ := RΓ†X′f
(•)!
T ′,TE(•)[−dX′/X ] ∈ MIC(•)(X ′,P′, T ′/V).

We get the functor:
θ(•)∗ : MIC(•)(X,P, T/V)→ MIC(•)(X,P′, T ′/V) (12.2.1.9.1)

(ii) If a and b are the identities, then the functor θ(•)∗ of 12.2.1.9.1 is an equivalence of categories.

Proof. (i) The fact that RΓ†X′f
(•)!E(•)[−dX′/X ] ∈ MIC(•)(X ′,P′, T ′/V) is local on P′. Hence, we can

suppose there exists a closed immersion of smooth formal S-schemes of the form u : X ↪→ P (resp.
u′ : X′ ↪→ P′, resp. a : X′ → X) which reduces modulo π to the given morphism X ↪→ P (resp. X ′ ↪→ P ′,
resp. a). Hence, it follows from 9.2.2.1 that we have the glueing isomorphism

τ : u′(•)! ◦ f (•)!(E(•))
∼−→ a(•)! ◦ u(•)!(E(•)). (12.2.1.9.2)

This yields

RΓ†X′f
(•)!(E(•))

∼−→
12.1.4.3.1

u
′(•)
+ ◦ u′(•)! ◦ f (•)!(E(•))

∼−→
12.2.1.9.2

u
′(•)
+ ◦ a(•)! ◦ u(•)!(E(•)). (12.2.1.9.3)

Since u(•)!(E(•)) ∈ MIC(•)(X, T ∩X/V) (see 12.2.1.7), then La∗(•) ◦ u(•)!(E(•)) ∈ MIC(•)(X′, T ′ ∩X ′/V)
(see 11.2.3.5.1)). Since La∗(•) = a(•)![−dX′/X ], we get the first statement (again, use 12.2.1.7).

(ii) The fact that this is an equivalence of categories is local in P. Hence, we can suppose that P is
affine, in which case there exists u : X ↪→ P (resp. u′ : X ↪→ P′) which reduces modulo π to the given
morphism X ↪→ P (resp. X ↪→ P ′). Following 12.2.1.9.3, we get

RΓ†X′f
(•)!(E(•))

∼−→ u
′(•)
+ ◦ u(•)!(E(•)).

We conclude by using Berthelot-Kashiwara theorem of the form 12.2.1.7.

12.2.1.10 (Independance of the d-frame enclosing (Y,X)). Let (Y,X,P, T )/V be a completely smooth
d-frame over V. Then the category MIC(•)(X,P, T/V) do not depend on the completely smooth d-
frame over V enclosing (Y,X). Indeed let (Y,X,P′, T ′)/V be a second choice of completely smooth
d-frame enclosing (Y,X). Let P′′ := P ×S P′, p0 : P′′ → P and p1 : P′′ → P′ be the projections
and T ′′ := p−1

0 (T ) ∪ p−1
1 (T ′). We get the morphisms of d-frames θ0 := (id, id, p0) : (Y,X,P′′, T ′′)/V →

(Y,X,P, T )/V and θ1 := (id, id, p1) : (Y,X,P′′, T ′′)/V → (Y,X,P′, T ′)/V. Since θ(•)∗
0 and θ

(•)∗
1 are

equivalence of categories, then we are done.

Corollary 12.2.1.11. Let (Y,X,P, T )/V and (Y ′, X ′,P′, T ′)/V be two completely smooth d-frames.
Suppose we have the following commutative diagram:

Y ′
j′ //

h��

X ′
i′ //

g��

P ′

f0��

// P′

Y
j // X

i // P // P,

(12.2.1.11.1)

where j and j′ are the underlying open embeddings, i and i′ are the underlying closed embeddings. Set
θ := (h, g, f0).

(a) We get a natural functor

θ(•)∗ : MIC(•)(X,P, T/V)→ MIC(•)(X ′,P′, T ′/V) (12.2.1.11.2)

satisfying the condition (b):

(b) Suppose f0 has a lifting f : P′ → P. The functor 12.2.1.11.2 is equal (up to equivalence of categories)
to the functor (h, g, f)(•)∗ of 12.2.1.9.1. In particular, the functor (h, g, f)(•)∗ does not depend (up
to equivalence of categories) on the lifting f of f0.

Proof. Let P′′ := P′ ×S P, p0 : P′′ → P′ and p1 : P′′ → P be the projections and T ′′ := p−1
0 (T ) ∪

p−1
1 (T ). Since P is separated then the morphism i′′ := (i′, i ◦ g) : X ′ → P ′′ is a closed immersion.

We get the morphisms of d-frames θ0 := (id, id, p0) : (Y ′, X ′,P′′, T ′′)/V → (Y ′, X ′,P′, T ′)/V and θ1 :=
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(h, g, p1) : (Y ′, X ′,P′′, T ′′)→ (Y,X,P, T )/V. Since θ(•)∗
0 is an equivalence of categories, then we get the

unique (up to equivalence of categories) functor θ(•)∗ so that

θ
(•)∗
0 ◦ θ(•)∗ ∼= θ

(•)∗
1 .

Remark 12.2.1.12. With notation 12.2.1.11, Berthelot constructed in the same way (see [Ber96b, 2.3.2.(iv)])
the inverse image functor:

(h, g, f0)∗ : MIC†(Y,X,P/V)→ MIC†(Y ′, X ′,P′/V). (12.2.1.12.1)

In [Car09a, 2.3.1], we have constructed a functor of the form 12.2.1.12.1 in another way by glueing local
data (which allows us to reduce to the case where f0 has a lifting). We checked that both functors
coincide.

Proposition 12.2.1.13. Let (Y,X,P, T )/V be a completely smooth d-frame over V. Let E(•) and F (•)

be two objects of MIC(•)(X,P, T/V).

(a) We have E(•)“⊗L
O(•)

P

F (•)[dX/P ] ∈ MIC(•)(X,P, T/V), i.e. for any j 6= dX/P , Hj(E(•)“⊗L
O(•)

P

F (•)) = 0

and HdX/P (E(•)“⊗L
O(•)

P

F (•)) ∈ MIC(•)(X,P, T/V).

(b) The functor D(•)
T of 9.2.4.20 induces the involution:

D(•)
T : MIC(•)(X,P, T/V)→ MIC(•)(X,P, T/V). (12.2.1.13.1)

Proof. a) Let R := P ×S P, p0, p1 : Q → P be respectively the natural left and right projection,
Q := X ×k X, D := p−1

0 (T ) ∪ p−1
1 (T ). Following 12.2.1.8, E(•)“�OS

F (•) ∈ MIC(•)(Q,R, D/V). By using
12.2.1.9 in the case of the diagonal morphism (X,P, T/V)→ (Q,R, D/V), we get (a) from 9.2.5.15.1.

b) Let E(•) ∈ MIC(•)(X,P, T/V). Following 12.2.1.7.1, E(•) ∈ LD−→
b
Q,perf(

‹D(•)
P/S(T )) and then D(•)

T (E(•))

is well defined. We reduce to check that→l
∗
QD(•)

T (E(•)) ∈ MIC††(X,P, T/V), where→l
∗
Q is the equivalence of

categories of 8.4.5.6. Since this is local, we reduce to the case where there exists a morphism of smooth
S-formal schemes X→ P which is a lifting of X → P. This is then the consequence of 11.2.6.3.4 and of
the relative duality isomorphism 9.4.5.2.1.

12.2.1.14. Via the equivalence of categories 12.2.1.6.1, the results of 12.2.1.8, 12.2.1.11 and 12.2.1.13 are
still valid by replacing MIC(•) with MIC††. More precisely, with notation 12.2.1.11, we get the functors

θ∗ : MIC††(X,P, T/V)→ MIC††(X ′,P′, T ′/V), (12.2.1.14.1)

−
L
⊗†OP(†T )Q

− [dX/P ] : MIC††(X,P, T/V)×MIC††(X,P, T/V)→ MIC††(X,P, T/V), (12.2.1.14.2)

DP,T : MIC††(X,P, T/V)→ MIC††(X,P, T/V). (12.2.1.14.3)

Moreover, with notation 12.2.1.8, we get the functor

−
L
�†OS,T1,T2

− : MIC††(X1,P1, T1/V)×MIC††(X2,P2, T2/V)→ MIC††(X,P, T/V). (12.2.1.14.4)

12.2.1.15. With notation 12.2.1.11, we can check that the inverse image functor 12.2.1.11.2 is equal
to that of 9.2.2.4.3. In particular, when f0 is the relative Frobenius, then this is equal to the functor
9.5.1.2.2. Since our objects are coherent then 9.5.1.1.3 via the isomorphisms 9.5.1.2.5 and 9.5.1.2.4, we
get the functor (F sX0/S0

)∗ constructed at 8.8.2.4.1 is equal to the functor (F sY0/S0
, F sX0/S0

, F sP0/S0
)∗ of

12.2.1.14.1.
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12.2.2 Equivalence of categories via the functor sp+

Let P be a separated smooth formal scheme over S. Let u0 : X → P be a closed immersion of smooth
k-schemes. Let T be a divisor of P such that Z := T ∩X is a divisor of X. We set Y := X \Z. Choose
(Pα)α∈Λ an affine open covering of P and let us use the corresponding notation and lifting choices of
9.3.7 (which are compatible with that of 10.2.4.2).

Notation 12.2.2.1. We denote by MIC††((Xα)α∈Λ, Z/V) the full subcategory of Coh((Xα)α∈Λ, Z/V)
(see the notation of 9.3.7.2) whose objects ((Eα)α∈Λ, (θαβ)α,β∈Λ) for all α ∈ Λ, Eα isOXα(†Zα)Q-coherent.

Lemma 12.2.2.2. With notation 10.2.4.3 and 12.2.2.1, we have the canonical functor

sp∗ : MIC†(Y, (Xα)α∈Λ/K)→ MIC††((Xα)α∈Λ, Z/V).

Proof. Let us sketch the construction (see the proof of [Car09a, 2.5.9.i)] for the details). Let us pick the
object ((Eα)α∈Λ, (ηαβ)α,β∈Λ) ∈ MIC†(Y, (Xα)α∈Λ/K). Let θαβ be the isomorphism making commutative
the diagram

sp∗p
αβ!
1K (Eα) ∼

11.2.7.1.2// pαβ!
1 sp∗(Eα)

sp∗p
αβ!
2K (Eβ) ∼

11.2.7.1.2//

sp∗ηαβ ∼
OO

pαβ!
2 sp∗(Eβ).

θαβ
OO

(12.2.2.2.1)

Using 11.2.7.3, we can check that sp∗((Eα)α∈Λ, (ηαβ)α,β∈Λ) := ((sp∗Eα)α∈Λ, (θαβ)α,β∈Λ) is functorially
an object of MIC††((Xα)α∈Λ, Z/V).

Lemma 12.2.2.3. We have the canonical functor sp∗ : MIC††((Xα)α∈Λ, Z/V)→ MIC†(Y, (Xα)α∈Λ/K).

Proof. The construction is similar to that of 12.2.2.2 (see the proof of [Car09a, 2.5.9.i)] for the details).

Proposition 12.2.2.4. The functors sp∗ and sp∗ are quasi-inverse equivalences of categories between
the categories MIC†(Y, (Xα)α∈Λ/K) and MIC††((Xα)α∈Λ, Z/V).

Proof. Let us sketch the proof (see the proof of [Car09a, 2.5.9)] for the details). For any object
((Eα)α∈Λ, (ηαβ)α,β∈Λ) of MIC†(Y, (Xα)α∈Λ/K), we check that the adjunction isomorphisms sp∗sp∗(Eα)

∼−→
Eα commute with glueing data. Similarly, for any object ((Eα)α∈Λ, (θαβ)α,β∈Λ) of MIC††((Xα)α∈Λ, Z/V)

the adjunction isomorphisms Eα
∼−→ sp∗sp

∗(Eα) commute with glueing data.

12.2.2.5. The functors u!
0 and u0+ constructed in respectively 9.3.7.5 and 9.3.7.6 induce quasi-inverse

equivalences of categories between MIC††(X,P, T/V) and MIC††((Xα)α∈Λ, Z/V), i.e., we have the com-
mutative diagram

MIC††(X,P, T/V) �
� //

∼=u!
0

��

Coh(X,P, T/V)

∼=u!
0

��
MIC††((Xα)α∈Λ, Z/V) �

� //

∼= u0+

OO

Coh((Xα)α∈Λ, Z/V).

∼= u0+

OO
(12.2.2.5.1)

Notation 12.2.2.6. We get the canonical equivalence of categories

spX↪→P, T + : MIC†(Y,X,P/K) ∼= MIC††(X,P, T/V) (12.2.2.6.1)

by composition of the equivalences

MIC†(Y,X,P/K)
10.2.4.4.1
∼−→
u∗

0K

MIC†(Y, (Xα)α∈Λ/K)
∼−→
sp∗

MIC††((Xα)α∈Λ, Z/V)
∼−→
u0+

MIC††(X,P, T/V).

When there is no doubt on (X,P, T/V), we simply write sp+.
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12.2.3 sp+ of the constant coefficient
12.2.3.1. Let P be a separated smooth formal scheme over S. Let u0 : X ↪→ P be a closed immersion
of k-smooth schemes purely of codimension r. Let T be a divisor of P such that Z := T ∩X is a divisor
of X. We set U := P \ T , Y := X \Z, v0 : Y → U be the morphism induced by u0. Choose (Pα)α∈Λ an
affine open covering of P and let us use the corresponding notation and lifting choices of 9.3.7 (which
are compatible with that of 10.2.4.2).

(a) Denoting by f := (v0, u0, id) : (Y,X,P) → (U,P,P) the morphism of frames, we get the inverse
image f∗K = |]X[P : MIC†(U,P,P/K) → MIC†(Y,X,P/K) (see notation 10.2.2.8.1). Hence, we
get the functor u∗0K ◦ |]X[P : MIC†(U,P,P/K) → MIC†(Y, (Xα)α∈Λ/K) (where u∗0K is the functor
10.2.4.4.1).

(b) Similarly to the construction of u!
0 : Coh(X,P, T/V)→ Coh((Xα)α∈Λ, Z/V) of 9.3.7.5, we define the

functor
u∗0 : MIC††(P, T/V)→ MIC††((Xα)α∈Λ, Z/V)

as follows. Let E ∈ MIC††(P, T/V), i.e. a coherent D†P(†T )Q which is also OP(†T )Q-coherent. We set
Eα := u∗α(E|Pα) := Hru!

α(E|Pα)
∼−→ u!

α(E|Pα)[r]. Then it follows from 11.2.1.7 (and 11.2.1.14) that
Eα is a coherent D†Xα(†Zα)Q-module, which is also OXα(†Zα)Q-coherent. Via the isomorphisms of the
form τ (9.2.2.3.1), we obtain the glueingD†Xαβ (†Zαβ)Q-linear isomorphism θαβ p

αβ!
2 (Eβ)

∼−→ pαβ!
1 (Eα),

satisfying the cocycle condition: θαβγ13 = θαβγ12 ◦ θαβγ23 .
Beware we have three different functors u∗0, u!

0 and u∗0K (defined at 10.2.4.4.1) whose notation are
very similar.

Proposition 12.2.3.2. With the notation 12.2.3.1, we have the canonical isomorphism

sp∗ ◦ u∗0K ◦ |]X[P
∼−→ u∗0 ◦ sp∗

of functors MIC†(U,P,P/K)→ MIC††((Xα)α∈Λ, Z/V).

Proof. Using 11.2.7.3, we check that glueing data are compatible.

Corollary 12.2.3.3. Let P be a separated smooth formal scheme over S. Let X be a closed smooth
k-subvariety of P purely of codimension r. We have the isomorphism of Coh(X,P/K) of the form

sp+(O]X[P)
∼−→ H†,rX OP,Q.

Proof. 0) Choose (Pα)α∈Λ an affine open covering of P and let us use the corresponding notation
and lifting choices of 9.3.7 (which are compatible with that of 10.2.4.2). Choosing a finer covering if
necessarily, we can suppose furthermore that there exist local coordinates tα1, . . . , tαd ∈ Γ(Pα,OP) such
that Xα = V (tα1, . . . , tαr).

1) Following 12.1.3.6, H†,rX OP,Q ∈ Coh(X,P/K) and H†,rX OP,Q
∼−→ RΓ†XOP,Q[r]. By functoriality,

we have the commutative diagram

pαβ!
2 u!

β(RΓ†XβOPβ ,Q)[−r]

∼τ

��

// pαβ!
2 u!

β(OPβ ,Q[−r])

∼τ

��
pαβ!

1 u!
α(RΓ†XαOPα,Q[−r]) // pαβ!

1 u!
α(OPα,Q[−r]),

where the horizontal morphisms are induced by RΓ†XOP,Q → OP,Q and where the vertical isomorphisms
are the canonical glueing ones (i.e. of the form 9.2.2.3.1). By applyingH0, since the glueing isomorphisms
induced by OP,Q are the identity, we get the commutative diagram

pαβ!
2 u!

β(H†,rX OP,Q|Pβ)

∼τ

��

// OXαβ ,Q

pαβ!
1 u!

α(H†,rX OP,Q|Pα) // OXαβ ,Q,

(12.2.3.3.1)

731



where we omit indicating H0 to simplify notation. Set E := H†,rX OP,Q ∈ Coh(X,P/K), and Eα :=

H0u!
α(E|Pα). We denote by θαβ pαβ!

2 (Eβ)
∼−→ pαβ!

1 (Eα), the glueing D†Xαβ (†Zαβ)Q-linear isomorphism
(which is equal to the left arrow of 12.2.3.3.1).

2) For i = 1, . . . , r, put Xαi := V (tαi), and Xαi0,...,ik := Xαi0 ∪ · · · ∪Xαik . Consider the diagram

OPα,Q
//

��

∏d
i=1OPα(†Xi)Q

//

��

∏
i0<i1

OPα(†Xi0i1)Q
//

��

· · · //

��

OPα(†X1...r)Q
//

��

0

��
OPα,Q

// 0 // 0 // · · · // 0 // 0.

(12.2.3.3.2)
We denote by F•α the complex of the top of 12.2.3.3.2 such that F0

α = OPα,Q. Then, F•α[r] is a left
resolution of E|Pα by coherent D†Pα(†Tα)Q-modules which are OPα(†Tα)Q-flat, and the canonical mor-
phism RΓ†XαOPα,Q → OPα,Q is represented by E|Pα[−r] ∼←− F•α → OPα,Q, where the first arrow is a
quasi-isomorphism and the second one corresponds to the vertical morphism of complexes of 12.2.3.3.2.
Hence, since H0u!

α(E|Pα) = HrLu∗α(E|Pα) (see 9.2.2.5), then we get the isomorphism E ′α
∼−→ Eα, where

E ′α := H0Lu∗α(F•α). Then, we denote by θ′αβ pαβ!
2 (E ′β)

∼−→ pαβ!
1 (E ′α), the glueing D†Xαβ (†Zαβ)Q-linear

isomorphism making commutative the diagram

pαβ!
2 (E ′β)

∼ //

∼θ′αβ
��

pαβ!
2 (Eβ)

∼θαβ

��
pαβ!

1 (E ′α)
∼ // pαβ!

1 (Eα).

(12.2.3.3.3)

Since θαβ satisfy the cocycle condition, then so are θ′αβ (this is just a matter of writing some commutative
cubes). Hence, u!

0(E) is isomorphic to ((E ′α)α∈Λ, (θ′αβ)α,β∈Λ).
3) For any s 6= 0, we have u∗α(Fsα) = 0. Moreover, E ′α = u∗α(F0

α) = OXαβ ,Q. Hence, by applying
the functor Lu∗α to F•α → OPα,Q we get the identity OXα,Q → OXα,Q. This yields that composing
12.2.3.3.1 with 12.2.3.3.3, we get a square whose morphisms are the identity of OXαβ ,Q. In particu-
lar θ′αβ is the identity of OXαβ ,Q. By construction of the functor u∗0 (see 12.2.3.1) this means that
((E ′α)α∈Λ, (θ′αβ)α,β∈Λ) = u∗0(OP,Q).

4) Using 2) and 3), we get the canonical isomorphism

u∗0(OP,Q)
∼−→ u!

0(H†,rX OP,Q)

of MIC††((Xα)α∈Λ, Z/V). Using 12.2.3.2 and its notation, since sp∗(OPK ) = OP,Q, then we get sp+(O]X[P) =

u0+sp∗u
∗
0K(O]X[P)

∼−→
12.2.3.2

u0+u
∗
0sp∗(OPK ) = u0+u

∗
0(OP,Q)

∼−→ u0+u
!
0(H†,rX OP,Q)

∼−→
9.3.7.7

H†,rX OP,Q.

12.2.4 Commutation of sp+ with pullbacks, compatibility with Frobenius
Proposition 12.2.4.1. Let (Y,X,P, T )/V and (Y ′, X ′,P′, T ′)/V be two completely smooth d-frames.
Suppose we have the following commutative diagram:

Y ′
j′ //

h��

X ′
i′ //

g��

P ′

f0��

// P′

Y
j // X

i // P // P,

(12.2.4.1.1)

where j and j′ are the underlying open embeddings, i and i′ are the underlying closed embeddings.
Set θ := (h, g, f0). Let E ∈ MIC†(Y,X,P/K) (see notation 10.2.2.7). We have the isomorphism in
MIC††(X ′,P′, T ′/V) (see notation 12.2.1.4):

sp+(θ∗(E))
∼−→ θ∗sp+(E), (12.2.4.1.2)

where θ∗ are the inverse functors constructed respectively at 12.2.1.14.1 and 12.2.1.12.1.
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Proof. 0) By construction of both of the functors of the form θ∗, we reduce to the case where there exists
a smooth morphism f : P′ → P of smooth V-formal schemes whose reduction modulo π is f0.

1) First suppose the squares of the diagram 12.2.4.1.1 are cartesian. Let (Pα)α∈Λ be an affine
open covering of P. We fix some liftings of X ∩ Pα etc. and we use notation 9.3.7. Moreover,
we denote by P′α := f−1(Pα), X′α := P′α ×Pα Xα, aα : X′α → Xα the projection, and similarly for
other notations. If ((Eα)α∈Λ, (ηαβ)α,β∈Λ) is an object of MIC†(Y, (Xα)α∈Λ/K), we get canonically
an object of MIC†(Y ′, (X′α)α∈Λ/K) of the form ((a∗αKEα)α∈Λ, (η′αβ)α,β∈Λ). This yields the functor
MIC†(Y, (Xα)α∈Λ/K) → MIC†(Y ′, (X′α)α∈Λ/K) that we will denote by a∗K . Similarly, we construct the
functor a∗ : MIC††((Xα)α∈Λ, Z/V)→ MIC††((X′α)α∈Λ, Z

′/V). Consider the following diagram.

MIC†(Y,X,P/K)

10.2.4.4u∗0K
��

f∗K // MIC†(Y ′, X ′,P′/K)

10.2.4.4u′∗0K
��

MIC†(Y, (Xα)α∈Λ/K)
a∗K //

12.2.2.2sp∗

��

MIC†(Y ′, (X′α)α∈Λ/K)

12.2.2.2sp∗

��
MIC††((Xα)α∈Λ, Z/V)

a∗ //

12.2.2.3 sp∗

OO

12.2.2.5.1u0+

��

MIC††((X′α)α∈Λ, Z
′/V)

12.2.2.3 sp∗

OO

12.2.2.5.1u′0+

��
MIC††(X,P, T/V)

12.2.2.5.1 u!
0

OO

f∗ // MIC††(X ′,P′, T ′/V).

12.2.2.5.1 u′!0

OO

(12.2.4.1.3)

By transitivity of the inverse image with respect to the composition, the top square is commutative
up to canonical isomorphism. For the same reason, the middle square involving sp∗ is commutative up
to canonical isomorphism. Since sp∗ and sp∗ are canonically quasi-inverse equivalences of categories,
this yields the middle square involving sp∗ is commutative up to canonical isomorphism. Using similar
arguments, we check the commutativity up to canonical isomorphism of the bottom square.

2) Now suppose f = id and a is a closed immersion and the left square of the diagram 12.2.4.1.1
is cartesian. Let (Pα)α∈Λ be an open covering of P by affine subschemes. Then, we fix some liftings
(separately) for both u and u′ (for the later case, add some primes in notation) and we use notation
9.3.7. Then choose some lifting morphisms aα : X′α → Xα, and similarly for other notations. Consider
the following diagram.

MIC†(Y,X,P/K)

10.2.4.4u∗0K
��

|]X′[P // MIC†(Y ′, X ′,P/K)

10.2.4.4u′∗0K
��

MIC†(Y, (Xα)α∈Λ/K)
a∗K //

12.2.2.2sp∗

��

MIC†(Y ′, (X′α)α∈Λ/K)

12.2.2.2sp∗

��
MIC††((Xα)α∈Λ, Z/V)

a∗ //

12.2.2.2 sp∗

OO

12.2.2.5.1u0+

��

MIC††((X′α)α∈Λ, Z
′/V)

12.2.2.2 sp∗

OO

12.2.2.5.1u′0+

��
MIC††(X,P, T/V)

12.2.2.5.1 u!
0

OO

RΓ†
X′

[−dX′/X ]
// MIC††(X ′,P, T/V).

12.2.2.5.1 u′!0

OO

(12.2.4.1.4)

The commutativity up to canonical isomorphism of the top and middle squares of 12.2.4.1.4 is checked
as for 12.2.4.1.3. It remains to look at the bottom square. Let E ∈ MIC††(X,P, T/V). The canonical
morphism

u′!α
Ä
RΓ†X′(E)|Pα

ä
[−dX′/X ]→ u′!α (E|Pα) [−dX′/X ]

is an isomorphism. Moreover, u′!α (E|Pα) [−dX′/X ]
∼−→ a!

αu
!
α (E|Pα) [−dX′/X ]

∼−→ a∗α
(
u!
α(E|Pα)

)
.

These isomorphisms glue, hence we get the commutativity up to canonical isomorphism of the bottom
square.

3) The case where f = id and a = id is checked similarly (in the diagram 12.2.4.1.4, we replace |]X′[P
by j′† and RΓ†X′ [−dX′/X ] by (†T ′)). This yields the general case by splitting the diagram 12.2.4.1.1.
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Remark 12.2.4.2. The isomorphism sp+(O]X[P)
∼−→ H†,rX OP,Q of 12.2.3.3 can be viewed as a particular

case of 12.2.4.1 (in the case θ : (X,X,P/V)→ (P,P, /V) and for the constant coefficient). Notice that in
order to give a meaning of the isomorphism 12.2.4.1.2, first we had to construct the local cohomological
functor with support over a k-smooth closed subscheme In order to define our local cohomological functor
in its general context (see 13.1), we do need the coherent theorem 12.2.7.1. But, the check of this latter
theorem only uses the case where the closed subscheme is k-smooth, which explains why we have given
a preliminary different construction of the local cohomological functor in this k-smooth context.

Notation 12.2.4.3. Suppose the residue field k of V is a perfect field of characteristic p > 0. Suppose
there exists an automorphism σ : V ∼−→ V which is a lifting of the sth Frobenius power of k. The data s
and σ are fixed in the remaining. We keep notation 8.8.3.1. Let P be a separated smooth formal scheme
over S. Let u0 : X ↪→ P be a closed immersion of k-smooth schemes. Let T be a divisor of P such that
Z := T ∩X is a divisor of X.

(a) We denote by F -Coh(X,P, T/V) the category of coherent F -D†P/S(†Z)Q-modules (E ,Φ) such that
E has its support in X (see notation 8.8.3.2).

(b) We denote by F -MIC††(X,P, T/V) the full subcategory of F -Coh(X,P, T/V) consisting of objects
(E ,Φ) such that E is an object of MIC††(X,P, T/V).

(c) When T is the empty divisor (or whenX = P), e.g. we simply write F -Coh(X,P/V) or F -MIC††(P, T/V).

Corollary 12.2.4.4. We keep notation 12.2.4.3 and set Y := X \ T .
(a) For any E ∈ MIC†(Y,X,P/K), we have the functorial in E isomorphism:

spX↪→P, T +(F ∗E)
∼−→ F ∗spX↪→P, T +(E).

(b) The functor spX↪→P, T + induces the equivalence of categories:

spX↪→P, T + : F -MIC†(Y, X/K) ∼= F -MIC††(X,P, T/V).

Proof. This follows from 12.2.4.1 and 12.2.1.15.

12.2.5 Commutation of sp+ with duality
We keep notation 12.2.2.

12.2.5.1. With notation 10.2.4.3, let ((Eα)α∈Λ, (ηαβ)α,β∈Λ) ∈ MIC†(Y, (Xα)α∈Λ/K). The j†OXαK -
linear dual of Eα is denoted by E∨α := Homj†OXαK

(E, j†OXαK ). Since the j†O-linear dual commutes with
pullbacks, the inverse of the isomorphism (ηαβ)∨ is canonically isomorphic to an isomorphism of the form
pαβ∗2K ((Eβ)∨)

∼−→ pαβ∗1K ((Eα)∨) that we denote by η∗αβ . These isomorphisms satisfy the cocycle condition
(for more details, see [Car09a, 4.3.1]). Hence, we get the dual functor (−)∨ : MIC†(Y, (Xα)α∈Λ/K) →
MIC†(Y, (Xα)α∈Λ/K) defined by setting

((Eα)α∈Λ, (ηαβ)α,β∈Λ)∨ := (((Eα)∨)α∈Λ, (η
∗
αβ)α,β∈Λ).

Let E ∈ MIC†(Y,X,P/K), and E∨ be its dual. We check the isomorphism

u∗0K(E∨)
∼−→ (u∗0K(E))∨,

i.e. that the isomorphisms coming from the commutation of the dual with the pullbacks are compatible
with glueing data, which is easy.

12.2.5.2. Let f : X′ → X be an open immersion of smooth formal schemes overS. Let Z be a divisor ofX
and Z ′ := f−1(Z). According to notation 9.2.1.21, the functor f !

Z : Db
coh(D†X(†Z)Q)→ Db

coh(D†X′(†Z ′)Q)

is equal to D†X′(†Z ′)Q⊗f−1D†
X

(†Z)Q
f−1(−). Hence, for any E ∈ Db

coh(D†X(†Z)Q), we get the isomorphism:

ξ f !
ZDZ(E)

∼−→ RHomD†
X′

(†Z′)Q
(f !
Z(E), f !

Zr(D
†
X(†Z)Q ⊗OX

ω−1
X,Q))[dX ]

∼−→ RHomD†
X′

(†Z′)Q
(f !
Z(E), (D†X′(

†Z ′)Q ⊗OX′ ω
−1
X′/S)t)[dX ]

∼−→
β

DZ′f
!
Z(E), (12.2.5.2.1)

where β is the transposition isomorphism exchanging both structures of left D†X′(†Z ′)Q-modules of
D†X′(†Z ′)Q ⊗OX′ ω

−1
X′/S.
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12.2.5.3. With notation 9.3.7, let ((Eα)α∈Λ, (θαβ)α,β∈Λ) ∈ MIC††((Xα)α∈Λ, Z/V). Via the isomorphisms
12.2.5.2.1, the inverse of the isomorphism DZαβ (θαβ) is canonically isomorphic to an isomorphism of the
form pαβ!

2 (DZβ (Eβ))
∼−→ pαβ!

1 (DZα(Eα)) and denoted by θ∗αβ . These isomorphisms satisfy the cocycle
condition (for more details, see [Car09a, 4.3.1]). Hence, we get the dual functor

DZ : MIC††((Xα)α∈Λ, Z/V)→ MIC††((Xα)α∈Λ, Z/V)

defined by DZ((Eα)α∈Λ, (θαβ)α,β∈Λ) := ((DZα(Eα))α∈Λ, (θ
∗
αβ)α,β∈Λ).

12.2.5.4. With notation 9.3.7, let ((Eα)α∈Λ, (ηαβ)α,β∈Λ) ∈ MIC†(Y, (Xα)α∈Λ/K). Following 11.2.7.5, we
have the canonical isomorphism sp∗(E

∨
α )

∼−→ D(sp∗(Eα)) of MIC††((Xα)α∈Λ, Z/V). These isomorphisms
satisfy the cocycle condition (for more details, see [Car09a, 4.3.1]). Hence, we get the isomorphism

sp∗(((Eα)α∈Λ, (ηαβ)α,β∈Λ)∨)
∼−→ D ◦ sp∗((Eα)α∈Λ, (ηαβ)α,β∈Λ).

12.2.5.5. With notation 9.3.7, let ((Eα)α∈Λ, (θαβ)α,β∈Λ) ∈ MIC††((Xα)α∈Λ, Z/V). From the relative
duality isomorphism (see 9.4.5.2), we have the isomorphism uα+ ◦ DZα(Eα)

∼−→ DTα ◦ uα+(Eα) These
isomorphisms satisfy the cocycle condition (for more details, see [Car09a, 4.3.1]), i.e. we get the commu-
tation isomorphism:

u0+ ◦ DZ((Eα)α∈Λ, (θαβ)α,β∈Λ)
∼−→ DT ◦ u0+((Eα)α∈Λ, (θαβ)α,β∈Λ)).

Proposition 12.2.5.6. We keep notation 12.2.2. Let E ∈ MIC†(Y,X,P/K), and E∨ be its dual. We
have the functorial canonical isomorphism in E : sp+(E∨)

∼−→ DT ◦ sp+(E).

Proof. Since sp+ = u0+◦sp∗◦u∗0K , the proposition is a consequence of 12.2.5.1, 12.2.5.4, and 12.2.5.5.

Proposition 12.2.5.7. Let θ : (Y ′, X ′,P′, T ′) → (Y,X,P, T ) be a morphism of completely smooth d-
frames over V. We have the isomorphism of MIC(•)(X ′,P′, T ′/V) of the form

D(•)
T ′

Ä
RΓ†X′f

(•)!E(•)[−dX′/X ]
ä ∼−→ RΓ†X′f

(•)!(D(•)
T E

(•))[−dX′/X ]. (12.2.5.7.1)

Proof. Following 12.2.1.9 and 12.2.1.13, the objects appearing in 12.2.5.7.1 belong to MIC(•)(X ′,P′, T ′/V).
Hence, it is sufficient to check the isomorphism 12.2.5.7.1 in MIC††(X ′,P′, T ′/V) (i.e.after applying the
equivalence functor→l

∗
Q of 12.2.1.6.1). This follows from 12.2.5.6 and 12.2.4.1.2 and from the isomorphism

θ∗(E∨)
∼−→ θ∗(E)∨.

12.2.6 Commutation of the exterior or internal tensor product with sp+

We keep notation 12.2.2.

Proposition 12.2.6.1. With the notations of 12.2.2.1, we define the bifunctor tensor product

−⊗− MIC††((Xα)α∈Λ, Z/V)×MIC††((Xα)α∈Λ, Z/V)→ MIC††((Xα)α∈Λ, Z/V), (12.2.6.1.1)

by setting, for any ((Eα)α∈Λ, (θαβ)α,β∈Λ), ((E ′α)α∈Λ, (θ
′
αβ)α,β∈Λ) ∈ MIC††((Xα)α∈Λ, Z/V),

((Eα)α∈Λ, (θαβ)α,β∈Λ)⊗ ((E ′α)α∈Λ, (θ
′
αβ)α,β∈Λ) := ((Eα ⊗OXα (†Zα)Q

E ′α)α∈Λ, (θ
′′
αβ)α,β∈Λ),

where θ′′αβ is the unique morphism inducing the commutative diagram :

pαβ!
2 (Eβ ⊗OXβ

(†Zβ)Q
E ′β) ∼

//

∼ θ′′αβ��

pαβ!
2 (Eβ)⊗OXαβ

(†Zαβ)Q
pαβ!

2 (E ′β)

∼ θαβ⊗θ′αβ��
pαβ!

1 (Eα ⊗OXα (†Zα)Q
E ′α) ∼

// pαβ!
1 (Eα)⊗OXαβ

(†Zαβ)Q
pαβ!

1 (E ′α),

(12.2.6.1.2)

whose horizontal isomorphisms are constructed by using the equivalence of categories 12.2.1.6.1 from
the commutation of tensor products with extraordinary inverse images (see 9.2.1.27.1) and from the
isomorphisms 11.2.4.3.1.
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Proof. To check that this tensor product bifunctor is well defined, we have to establish that the isomor-
phisms θ′′αβ satisfy to the cocycle condition (see 9.3.7.1). Let us consider the commutative diagram:

pαβγ!
2 (Eβ ⊗ E ′β) ∼

τ //

∼ θ′′αβγ12��

pαβ!
12 pαβ!

2 (Eβ ⊗ E ′β) ∼
//

∼ pαβ!
12 (θ′′αβ)��

pαβ!
12 pαβ!

2 (Eβ)⊗ pαβ!
12 pαβ!

2 (E ′β)

∼ pαβ!
12 (θαβ)⊗pαβ!

12 (θ′αβ)��

pαβγ!
2 (Eβ)⊗ pαβγ!

2 (E ′β)

∼ θαβγ12 ⊗θ
′αβγ
12��

∼
τ⊗τ
oo

pαβγ!
1 (Eα ⊗ E ′α) ∼

τ // pαβ!
12 pαβ!

1 (Eα ⊗ E ′α) ∼
// pαβ!

12 pαβ!
1 (Eα)⊗ pαβ!

12 pαβ!
1 (E ′α) pαβγ!

1 (Eα)⊗ pαβγ1 (E ′α),
∼
τ⊗τ
oo

(12.2.6.1.3)
where, following 9.3.7.1.1 and with its notations, the right and left squares are commutative by definition.
By applying the functor pαβ!

12 to 12.2.6.1.2 and next by functoriality of the commutation of the tensor
product with extraordinary inverse images, we get the square of the middle, which is then commutative.
Moreover, It follows from 9.2.2.2.1 that the composition of the horizontal isomorphisms of 12.2.6.1.3 are
the canonical isomorphisms of commutation of extraordinary inverse images with tensor products. With
the two other diagrams similar to 12.2.6.1.3, as the family of isomorphisms θαβ and θ′αβ satisfy to the
cocycle conditions, so is θ′′αβ .

Lemma 12.2.6.2. Let E , E ′ ∈ MIC††(X,P, T/V). We have the canonical isomorphism of MIC††((Xα)α∈Λ, Z/V)
which commutes with Frobenius:

u!
0(E

L
⊗†OP(†T )Q

E ′[dY/P ])
∼−→ u!

0(E)⊗ u!
0(E ′), (12.2.6.2.1)

where u!
0 : MIC††(X,P, T/V) ∼= MIC††((Xα)α∈Λ, Z/V) is the functor defined at 12.2.2.5.

Proof. 0) Following 12.2.1.14.2, E ′′ := E
L
⊗†OP(†T )Q

E ′[dY/P ] ∈ MIC††(X,P, T/V).
1) For any α ∈ Λ, let us construct the isomorphism

u!
α(E ′′|Pα)

∼−→ u!
α(E |Pα)⊗OXα (†Zα)Q

u!
α(E ′|Pα). (12.2.6.2.2)

Choose E(•), E ′(•) ∈ MIC(•)(X,P, T/V) such that E ∼−→ →l
∗
QE

(•) and E ′ ∼−→ →l
∗
QE
′(•). Let us denote by

E ′′(•) := E(•)“⊗L
B̃(•)

P
(T )E ′(•)[dY/P ]. Hence, E ′′ ∼−→→l

∗
QE
′′(•). We have isomorphisms:

u(•)!
α (E ′′(•)|Pα)

∼−→
9.2.1.27.1

u(•)!
α (E(•)|Pα)“⊗L

B(•)
Xα

(Zα)u
(•)!
α (E ′(•)|Pα)

∼−→
11.2.4.3.1

u(•)!
α (E(•)|Pα)⊗B(•)

Xα
(Zα)

u(•)!
α (E ′(•)|Pα). (12.2.6.2.3)

By applying the functor→l
∗
Q to 12.2.6.2.3, we obtain the desired isomorphism 12.2.6.2.2.

2) It remains now to check that the isomorphisms 12.2.6.2.2 commute with glueing isomorphisms.
Let us consider the following diagram

p
αβ(•)!
2 u

(•)!
β (E ′′(•)|Pβ ) ∼

τ //

∼ 9.2.1.27.1
��

p
αβ(•)!
1 u

(•)!
α (E ′′(•)|Pα)

∼ 9.2.1.27.1
��

p
αβ(•)!
2 (u

(•)!
β (E(•)|Pβ )⊗̂L

B(•)
Xβ

(Zβ)
(E ′(•)|Pβ ))

∼ 9.2.1.27.1��

p
αβ(•)!
1 (u

(•)!
α (E(•)|Pα)⊗̂L

B(•)
Xα

(Zα)(E
′(•)|Pα))

∼ 9.2.1.27.1
��

p
αβ(•)!
2 (u

(•)!
β (E(•)|Pβ ))⊗̂L

B(•)
Xαβ

(Zαβ)
p
αβ(•)!
2 (u

(•)!
β (E ′(•)|Pβ )) ∼

τ⊗τ// pαβ(•)!1 (u
(•)!
α (E(•)|Pα))⊗̂L

B(•)
Xαβ

(Zαβ)
p
αβ(•)!
1 (u

(•)!
α (E ′(•)|Pα))

(12.2.6.2.4)
Modulo the identifications pαβ(•)!2 ◦u(•)!

β

∼−→ (uβ◦pαβ2 )(•)! and pαβ(•)!1 ◦u(•)!
α

∼−→ (uα◦pαβ1 )(•)! and by transitivity of
isomorphisms 9.2.1.27.1 (see 9.2.1.27.2), the rectangle 12.2.6.2.4 is of the form 9.2.2.2.1. Hence it is commutative.
By applying the functor→l

∗
Q
to the rectangle 12.2.6.2.4, modulo the canonical isomorphisms of the form 11.2.4.3.2,
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we get the outer of the diagram

pαβ!2 u!
β(E ′′|Pβ ) ∼

τ //

∼ 12.2.6.2.2

��

pαβ!1 u!
α(E ′′|Pα)

∼ 12.2.6.2.2

��
pαβ!2 (u!

β(E|Pβ )⊗OXβ
(†Zβ)Q

u!
β(E ′|Pβ )) ∼

//

∼

��

pαβ!1 (u!
α(E|Pα)⊗OXα (†Zα)Q

u!
α(E ′|Pα))

∼

��
pαβ!2 u!

β(E|Pβ )⊗OXαβ
(†Zαβ)Q

pαβ!2 u!
β(E|Pβ ) ∼

τ⊗τ // pαβ!1 u!
α(E|Pα)⊗OXαβ

(†Zαβ)Q
pαβ!1 u!

α(E|Pα)

(12.2.6.2.5)

whose middle horizontal isomorphism is defined such that the bottom square is commutative. By definition,
this isomorphism is the canonical glueing data structure of the family

(
u!
α(E|Pα)⊗OXα (Zα)Q u

!
α(E ′|Pα)

)
α
(see

12.2.6.1.2). Hence we have to check that the top square of the diagram 12.2.6.2.5 is commutative, which follows
from that of its outer and of the bottom square.

12.2.6.3. With the notations of 10.2.4.3, in a similar way to 12.2.6.1.1, we define the bifunctor tensor
product

−⊗− MIC†((Xα)α∈Λ, Z/K)×MIC†((Xα)α∈Λ, Z/K)→ MIC†((Xα)α∈Λ, Z/K).

Similarly to 12.2.6.2, we then construct, for any E,E′ ∈ MIC†(X,P, T/K), the canonical isomorphism
commuting to Frobenius:

u∗0K(E ⊗j†O]X[P
E′)

∼−→ u∗0K(E)⊗ u∗0K(E′). (12.2.6.3.1)

Lemma 12.2.6.4. Let ((Eα)α∈Λ, (ηαβ)α,β∈Λ), ((E′α)α∈Λ, (η′αβ)α,β∈Λ) ∈ MIC†((Xα)α∈Λ, Z/K). With
the notations of 10.2.4.3 and 12.2.6.3, we have the canonical isomorphism which commutes with Frobe-
nius:

sp∗((Eα, ηαβ)⊗ (E′α, η
′
αβ))

∼−→ sp∗(Eα, ηαβ)⊗ sp∗(E
′
α, η

′
αβ).

Proof. Following [Car09a, 2.5.9], denoting by (Eα, θαβ) := sp∗(Eα, ηαβ) and similarly with some primes,
it comes back to the same to establish the isomorphism

sp∗((Eα, θαβ)⊗ (E ′α, θ′αβ))
∼−→ sp∗(Eα, θαβ)⊗ sp∗(E ′α, θ′αβ).

For this purpose, we check that the canonical isomorphisms sp∗(Eα⊗E ′α)
∼−→ sp∗(Eα)⊗sp∗(E ′α) commute

with the respective glueing isomorphisms.

Proposition 12.2.6.5. For any E,E′ ∈ MIC†(X,P, T/K), we have the canonical isomorphism in
MIC††(X,P, T/K):

spX↪→P,T,+(E ⊗j†O]X[P
E′)

∼−→ spX↪→P,T,+(E)
L
⊗†OP(†T )Q

spX↪→P,T,+(E′)[dY/P ] (12.2.6.5.1)

which commutes with Frobenius.

Proof. By using 12.2.1.14.2, we get that the right term of 12.2.6.5.1 do is a element of MIC††(X,P, T/K).
The construction of 12.2.6.5.1 is equivalent to that of an isomorphism of the form

u!
0 ◦ spX↪→P,T,+(E ⊗j†O]X[P

E′)
∼−→ u!

0(spX↪→P,T,+(E)
L
⊗†OP(†T )Q

spX↪→P,T,+(E′)[dY/P ]). (12.2.6.5.2)

Moreover, we have the canonical isomorphism u!
0 ◦ spX↪→P,T,+

∼−→ sp∗ ◦ u∗0K (see the construction of
spX↪→P,T,+ of 12.2.2.6 and use the equivalences of 12.2.2.5), this one commuting to actions of Frobenius.
Following 12.2.6.2.2, 12.2.6.3.1 and 12.2.6.4, then we get the isomorphism 12.2.6.5.2.
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Notation 12.2.6.6. Let (Y,X,P, T )/V and (Y ′, X ′,P′, T ′)/V be two completely smooth d-frames over
V. We set P′′ := P × P′, X ′′ := X × X ′, Y ′′ := Y × Y ′, j : Y ⊂ X, j′ : Y ′ ⊂ X ′ and j′′ : Y ′′ ⊂
X ′′ the canonical inclusions. We denote by θ = (a, b, p) : (Y ′′, X ′′,P′′, T ′′) → (Y,X,P, T ) and θ′ =
(a′, b′, p′) : (Y ′′, X ′′,P′′, T ′′)→ (Y ′, X ′,P′, T ′) the morphisms of d-frames induced by the canonical pro-
jections, where T ′′ = p−1(T )∪p′−1(T ′). Let E ∈ MIC†(X,P, T/K) and E′ ∈ MIC†(X ′,P′, T ′/K). With
the notations of 12.2.1.12.1, we define the bifunctor −�− : MIC†(X,P, T/K)×MIC†(X ′,P′, T ′/K)→
MIC†(X ′′,P′′, T ′′/K) by setting

E � E′ := θ∗(E)⊗j′′†O]X′′[
P′′

θ′∗(E′).

Proposition 12.2.6.7. With the notations 12.2.6.6, we have the canonical isomorphism commuting to
Frobenius in MIC††(X ′′,P′′, T ′′/V):

spX′′↪→P′′,T ′′,+(E � E′)
∼−→ spX↪→P,T,+(E)

L
�†OS,T,T ′

spX′↪→P′,T ′,+(E′). (12.2.6.7.1)

Proof. Following 12.2.1.14.4, the right term do belong to MIC††(X ′′,P′′, T ′′/V). Let us denote by E :=
spX↪→P,T,+(E) and E ′ := spX′↪→P′,T ′,+(E′). Following 12.2.4.1.2, we have

spX′′↪→P′′,T ′′,+(θ∗(E))
∼−→ θ∗(E) := RΓ†X′′p

!
T ′′,T (E [−dY ′ ]),

spX′′↪→P′′,T ′′,+(θ′∗(E′))
∼−→ θ′∗(E ′) := RΓ†X′′p

′!
T ′′,T ′(E ′[−dY ]).

By using 12.2.6.5, this yields the isomorphism in Db
coh(D†P′′(†T ′′)Q)

spX′′↪→P′′,T ′′,+(E � E′)
∼−→ RΓ†X′′p

!
T ′′,T (E)

L
⊗†OP′′ (

†T ′′)Q
RΓ†X′′p

′!
T ′′,T ′(E ′)[−dP − dP ′ ]. (12.2.6.7.2)

Moreover, following 9.2.5.16.1, we have the canonical isomorphism

E
L
�†OS,T,T ′

E ′ ∼−→ p!
T ′′,T (E)

L
⊗†OP′′ (

†T ′′)Q
p′!T ′′,T ′(E)[−dP − dP ′ ]. (12.2.6.7.3)

As the right term of 12.2.6.7.3 has its support in X ′′, then it is isomorphic to the right term of 12.2.6.7.2.
Hence we are done.

12.2.7 Differential coherence of OX(
†Z)Q when Z is a divisor

Theorem 12.2.7.1. Let X be a smooth formal scheme over S. Let Z be a divisor of X. Then OX(†Z)Q

is a coherent D†X/S,Q-module.

Proof. We can adapt the proof of Berthelot of [Ber96a] as follows. 0) Using [Gro66, 8.8.2, 8.10.5] and
[Gro67, 17.7.8], it follows from Theorem [dJ96, 4.1] (this is also explained in [dJ96, 4.5]), that there exists
a finite extension l of k satisfying the following property: for any irreducible component ‹X of X ×k l,
setting Z̃ := ‹X ∩ (Z×k l), there exist a smooth integral l-variety X ′, a projective morphism of l-varieties
φ : X ′ → ‹X which is generically finite and étale such that X ′ is quasi-projective and Z ′ := φ−1(Z̃) is a
strict normal crossing divisor of X ′.

1) Using Lemma 9.2.7.4, we can suppose k = l and X integral.
2) i) There exists a closed immersion of the form u0 : X ′ ↪→ PnX whose composition with the projection

PnX → X is φ. Let P := P̂nX, f : P → X be the projection. Since f is proper and smooth, we have the
adjoint morphism f+ ◦ f !(OX,Q) → OX,Q in Db

coh(D†X,Q) (see 9.4.5.5). Following 12.1.3.1.1 and 12.1.3.6,
we have in Db

coh(D†P/S,Q) the morphism RΓ†X′(OP,Q)→ OP,Q. Since f !(OX,Q)
∼−→ OP,Q[n], then we get

the morphism in Db
coh(D†X,Q)

f+(RΓ†X′OP,Q[n])→ OX,Q. (12.2.7.1.1)

ii) In this step, we construct the morphism OX,Q → f+(RΓ†X′OP,Q[n]) as follows: we have

D(RΓ†X′OP,Q[n])
∼−→

12.2.3.3
D(sp+(O]X′[P))

∼−→
12.2.5.6

sp+((O]X′[P)∨)
∼−→ sp+(O]X′[P)

∼−→
12.2.3.3

RΓ†X′OP,Q[n].

(12.2.7.1.2)
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This yields

OX,Q
∼−→

11.2.6.3.4
D(OX,Q) −→

12.2.7.1.1
Df+(RΓ†X′OP,Q[n])

∼−→
9.4.5.2

f+D(RΓ†X′OP,Q[n])
∼−→

12.2.7.1.2
f+(RΓ†X′OP,Q[n]).

iii) The composite morphism OX,Q → f+(RΓ†X′OP,Q[n]) → OX,Q in Db
coh(D†X,Q) is an isomorphism.

Indeed, using the third part of Proposition 11.2.1.14.c, since this composition is a morphism of the abelian
category MIC††(X/V), we reduce to check that its restriction to a dense open subset is an isomorphism.
Hence, we can suppose that φ : X ′ → X is finite and étale, which is easy.

3) Following the step 2), OX,Q is a direct summand of f+(RΓ†X′OP,Q[n]) in the categoryDb
coh(D†X/S,Q).

This yields thatOX(†Z)Q is a direct summand of (†Z)f+(RΓ†X′OP,Q[n]) in the categoryDb
coh(D†X/S(†Z)Q).

Using 9.4.3.3, we get in Db
coh(D†X/S(†Z)Q) morphism

(†Z)f+(RΓ†X′OP,Q[n])
∼−→ fZ,+ ◦ (†f−1(Z))(RΓ†X′OP,Q[n]).

Hence, it is sufficient to check that this latter object is D†X/S,Q-coherent. Since f is proper and

since (†f−1(Z))(RΓ†X′OP,Q[n]) is already known to be D†P/S(†f−1(Z))Q-coherent, using the remark of

9.2.4.19.(b), we reduce to check that (†f−1(Z))(RΓ†X′OP,Q[n]) is D†P/S,Q-coherent. Since this is local on
P, we can suppose P affine. Hence, there exists a morphism u : X′ → P of smooth formal schemes over
S which is u0 : X ′ → P modulo π. We get

(†f−1(Z))(RΓ†X′OP,Q[n])
∼−→

12.1.3.8
(†f−1(Z))(u+(OX′,Q))

∼−→
9.4.3.3

uf−1(Z),+(OX′(
†φ−1(Z))Q).

Since φ−1(Z) is a strict normal crossing divisor of X ′, then following 12.1.2.3 OX′(
†φ−1(Z))Q) is D†X′/S,Q-

coherent. Hence, using the remark 9.2.4.19, uf−1(Z),+(OX′(
†φ−1(Z))Q)

∼−→ u+(OX′(
†φ−1(Z))Q) is

D†P/S,Q-coherent.

Corollary 12.2.7.2. We have B̃(•)
X (Z) ∈ LM−−→Q,coh(“D(•)

X/S) ∩ LM−−→Q,coh(‹D(•)
X/S(Z)).

Proof. We already know that B̃(•)
X (Z) ∈ LM−−→Q,coh(‹D(•)

X/S(Z)). Following 12.2.7.1, OX(†Z)Q =→l
∗
QB̃

(•)
X (Z)

is a coherent D†X/S,Q-module. Using 9.1.6.3, we can conclude.

We will need later the following proposition.

Proposition 12.2.7.3. With notation 9.2.7.4, let E(•) ∈ LD−→
b
Q,coh(“D(•)

X/S). Let E ′(•) := V ′ ⊗V E(•). If

(†Z ′)(E ′(•)) ∈ LD−→
b
Q,coh(“D(•)

X′/S′), then (†Z)(E(•)) ∈ LD−→
b
Q,coh(“D(•)

X/S).

Proof. Using 9.1.6.3, this is a consequence of Lemma 9.2.7.4.
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Chapter 13

Local cohomological operations and
applications

13.1 Local cohomological functors
Let P a separated, smooth and quasi-compact V-formal scheme, D a relative to P/S strict normal
crossing divisor and P] := (P,M(D)) the S-log smooth log formal scheme whose log-structure is given
by D (see 4.5.2.14). If U is an open of P, we will write U] := (U,M(D ∩ U)).

We fix λ0 : N → N an increasing map such that λ0(m) ≥ m. For any divisor T of P , we then set
B̃(m)
P (T ) := B̂(λ0(m))

P (T ) and ‹D(m)

P]
(T ) := B̃(m)

P (T )“⊗OP
“D(m)

P]
. We will also see a posteriori (see 9.1.1.16.(c),

that the hypothesis λ0 = id does not harm generality. Finally, if f : X → P (resp. f ] : X] → P]) is a
morphism of smooth formal S-schemes (resp. S-log-smooth log formal schemes), for any integer i ∈ N,
we denote by fi : Xi → Pi (resp. f ]i : X]

i → P ]i ) the induced morphism modulo πi+1. We finally set
D(m)

P ]
i

(T ) := V/πi+1 ⊗V “D(m)

P]
(T ) = B(m)

Pi
(T )⊗OPi D

(m)

P ]
i

and ‹D(m)

P ]
i

(T ) := B̃(m)
Pi

(T )⊗OPi D
(m)

P ]
i

.

13.1.1 Local cohomological functor with strict support over a divisor
Let T be a divisor of P . We have already defined in 9.1.1.5.3 the localisation functor (†T ) outside T . In
this subsection, we define and study the local cohomological functor with support in T , which we denote
by RΓ†T .

Lemme 13.1.1.1. Consider a distinguished triangle in LD−→
b
Q,qc(‹D(•)

P]/S
) of the form

F (•) → E(•) → (†T )(E(•))→ F (•)[1], (13.1.1.1.1)

where the second morphism is the canonical morphism. For any divisor T ⊂ T ′, we then have the
isomorphism in LD−→

b
Q,qc(‹D(•)

P]/S
) of the form (†T ′)(F (•))

∼−→ 0.

Proof. As according to 9.1.3.2 the canonical morphism (†T ′)(E(•)) → (†T ′)((†T )(E(•))) is an isomor-
phism, then by applying the functor (†T ′) to the distinguished triangle 13.1.1.1.1, one of the axioms on
triangulated categories allows us to conclude.

Lemme 13.1.1.2. Let E(•) ∈ LD−→
b
Q,qc(‹D(•)

P]/S
) and F (•) ∈ LD−→

b
Q,qc(‹D(•)

P]/S
(T )). We further assume that

we have in LD−→
b
Q,qc(‹D(•)

P]/S
) of the isomorphism (†T )(E(•))

∼−→ 0. Then Hom
LD−→Q(D̃(•)

P]/S
)
(E(•),F (•)) = 0.

Proof. Let φ : E(•) → F (•) be a morphism of LD−→
b
Q,qc(‹D(•)

P]/S
(T )). As the canonical morphism F (•) →

(†T )(F (•)) is an isomorphism, then the morphism φ is canonically factorized by (†T )(φ). Now, as
(†T )(E(•))

∼−→ 0, then (†T )(φ) = 0. We deduce that φ = 0. Hence the result.
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13.1.1.3. Following 8.3.4.4, we have the bifunctor (which is the standard construction bifunctor of
homomorphims of the abelian category LM−−→Q(‹D(•)

P]/S
(T ))):

Hom•
LM−−→Q(D̃(•)

P]/S
(T ))

(−,−) : K(LM−−→Q(‹D(•)
P]/S

(T )))◦ ×K(LM−−→Q(‹D(•)
P]/S

(T )))→ K(Z).

Following 8.3.4.8, the bifunctor Hom•
LM−−→Q(D̃(•)

P]/S
(T ))

(−,−) is right localizable. We get the bifunctor

RHom
D(LM−−→Q(D̃(•)

P]/S
(T )))

(−,−) : Db(LM−−→Q(‹D(•)
P]/S

(T )))◦ ×Db(LM−−→Q(‹D(•)
P]/S

(T )))→ D(Z).

Let Ab be the category of abelian groups. Following 8.3.4.8.3, we have the isomorphism of bifunctors
Db(LM−−→Q(‹D(•)

P]/S
(T )))◦ ×Db(LM−−→Q(‹D(•)

P]/S
(T )))→ Ab of the form:

H0(RHom
D(LM−−→Q(D̃(•)

P]/S
(T )))

(−,−))
∼−→ Hom

D(LM−−→Q(D̃(•)
P]/S

(T )))
(−,−). (13.1.1.3.1)

13.1.1.4. Let T ⊂ T ′ be a second divisor. Suppose we have the commutative diagram in LD−→
b
Q,qc(‹D(•)

P]/S
)

of the form
F (•) // E(•) //

φ��

(†T )(E(•))

(†T )(φ)��

// F (•)[1]

F ′(•) // E ′(•) // (†T )(E ′(•)) // F ′(•)[1]

(13.1.1.4.1)

where middle horizontal morphisms are the canonical ones and where both horizontal triangles are distin-
guished. Modulo the equivalence of categories LD−→

b
Q(‹D(•)

P]/S
(T )) ∼= Db(LM−−→Q(‹D(•)

P]/S
(T ))) (see 8.1.5.14.1)

which allows us to see 13.1.1.4.1 as a diagram of Db(LM−−→Q(‹D(•)
P]/S

(T ))), we have

H−1(RHom
D(LM−−→Q(D̃(•)

P]/S
(T )))

(F (•), (†T )(E ′(•)))) ∼−→
13.1.1.3.1

Hom
D(LM−−→Q(D̃(•)

P]/S
(T )))

(F (•), (†T )(E ′(•))[−1]) =
13.1.1.2

0.

Following [BBD82, 1.1.9], this implies there exists a unique morphism F (•) → F ′(•) making commutative
in LD−→

b
Q,qc(‹D(•)

P]/S
) the diagram:

F (•) //

∃!��

E(•) //

φ��

(†T )(E(•))

(†T )(φ)��

// F (•)[1]

∃!��
F ′(•) // E ′(•) // (†T )(E ′(•)) // F ′(•)[1].

(13.1.1.4.2)

Similarly to [BBD82, 1.1.10], this implies that the cone of E(•) → (†T )(E(•)) is unique up to canonical
isomorphism. Hence, such a complex F (•) is unique up to canonical isomorphism. We denote it by
RΓ†T (E(•)). Moreover,the complex RΓ†T (E(•)) is functorial in E(•).

Definition 13.1.1.5. With notation 13.1.1.4, the functor RΓ†T : LD−→
b
Q,qc(‹D(•)

P]/S
) → LD−→

b
Q,qc(‹D(•)

P]/S
) is

the “local cohomological functor with strict support over the divisor T ”. For E(•) ∈ LD−→
b
Q,qc(‹D(•)

P]/S
), we

denote by ∆T (E(•)) the canonical exact triangle

RΓ†T (E(•))→ E(•) → (†T )(E(•))→ RΓ†T (E(•))[1]. (13.1.1.5.1)

Lemma 13.1.1.6. Let T ⊂ T ′ be a second divisor, and E(•) ∈ LD−→
b
Q,qc(‹D(•)

P]/S
). There exists a unique

morphism RΓ†T (E(•))→ RΓ†T ′(E(•)) making commutative the following diagram

RΓ†T (E(•)) //

∃!��

E(•) // (†T )(E(•))

��

// RΓ†T (E(•))[1]

∃!��
RΓ†T ′(E(•)) // E(•) // (†T ′)(E(•)) // RΓ†T ′(E(•))[1].

(13.1.1.6.1)

In other words, RΓ†T (E(•)) is functorial in T .
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Proof. This follows from 13.1.1.4.

13.1.1.7. Let T ⊂ T ′ be a second divisor. Let’s denote by forg] the canonical forgetful functors
of the form forg] : LD−→

b
Q,qc(‹D(•)

P (T )) → LD−→
b
Q,qc(‹D(•)

P]/S
(T )) or of the form forg] : LD−→

b
Q,qc(‹D(•)

P•
(T )) →

LD−→
b
Q,qc(‹D(•)

P ]•/S
(T )) We deduce from 9.1.1.5.2 that the location functors (†T ′, T ) of 9.1.1.5.3 or of 9.1.1.12.1

do not depend on the log- structure, i.e., we have the canonical isomorphism

(†T ′, T ) ◦ forg]
∼−→ forg] ◦ (†T ′, T ) (13.1.1.7.1)

of functors of LD−→
b
Q,qc(‹D(•)

P/S(T ))→ LD−→
b
Q,qc(‹D(•)

P]/S
(T ′)) or of LD−→

b
Q,qc(‹D(•)

P•
(T ))→ LD−→

b
Q,qc(‹D(•)

P ]•
(T )).

13.1.1.8. We deduce from 13.1.1.7 that the functor RΓ†T does not depend on the log-structure, i.e., we
have the canonical isomorphism

RΓ†T ◦ forg]
∼−→ forg] ◦ RΓ†T

of functors of LD−→
b
Q,qc(‹D(•)

P )→ LD−→
b
Q,qc(‹D(•)

P]/S
).

Example 13.1.1.9. Let T ⊂ T ′ be a second divisor, U′ be the complementary to T ′ open of X and
j′ : U′ → X be the open immersion. Let E ∈ MIC†(X]K , T/S

]
K). By applying the functor Rsp∗ to an

exact sequence of the form 10.1.3.2.1, we get the exact triangle (and with 10.1.2.3.2):

Rsp∗ ◦ Γ†]T ′[X(E) −→ sp∗(E) −→ sp∗(j
′†(E)) −→ Rsp∗ ◦ Γ†]T ′[X(E)[1].

Since sp∗(E)→ sp∗(j
′†(E)) is canonically isomorphic to E → E(†T ′) (see 11.2.7.2.1), it follows from the

exact triangle of localization of sp∗(E) with respect to T ′ (see 13.1.5.6.3), then using [BBD82, 1.1.9–10]
we get the canonical isomorphism:

RΓ†T ′(sp∗(E))
∼−→ Rsp∗ ◦ Γ†]T ′[X(E). (13.1.1.9.1)

13.1.2 Commutation between localisations and local functors in the case of
a divisor

13.1.2.1 (Commutation of location and local functors to the tensor product). Let E(•), F (•) ∈ LD−→
b
Q,qc(‹D(•)

P]/S
).

By commutativity and associativity of tensor products, we have the canonical isomorphisms

(†T )(E(•))“⊗L
O(•)

P
F (•) ∼−→ (†T )(E(•)“⊗L

O(•)
P
F (•))

∼−→ E(•)“⊗L
O(•)

P
(†T )(F (•)).

Hence, there exists a unique isomorphism of the form RΓ†T (E(•)“⊗L
O(•)

P
F (•))

∼−→ RΓ†T (E(•))“⊗L
O(•)

P
F (•)

(resp. RΓ†T (E(•)“⊗L
O(•)

P
F (•))

∼−→ E(•)“⊗L
O(•)

P
RΓ†T (F (•))) and making commutative the following diagram

RΓ†T (E(•))“⊗L
O(•)

P
F (•) // E(•)“⊗L

O(•)
P
F (•) // (†T )(E(•))“⊗L

O(•)
P
F (•) // RΓ†T (E(•))“⊗L

O(•)
P
F (•)[1]

RΓ†T (E(•)“⊗L
O(•)

P
F (•)) //

∃!��

∃!
OO

E(•)“⊗L
O(•)

P
F (•) // (†T )(E(•)“⊗L

O(•)
P
F (•))

∼��

//

∼
OO

RΓ†T (E(•)“⊗L
O(•)

P
F (•))[1]

∃!��

∃!
OO

E(•)“⊗L
O(•)

P
RΓ†T (F (•)) // E(•)“⊗L

O(•)
P
F (•) // E(•)“⊗L

O(•)
P

(†T )(F (•)) // E(•)“⊗L
O(•)

P
RΓ†T (F (•))[1].

(13.1.2.1.1)

These isomorphisms are functorial in E(•), F (•), T (for the meaning of the functoriality in T , we can look
at 13.1.1.6.1). To check the functoriality in E(•), F (•), T , it is a question of writing the corresponding
diagrams in three dimensions, which is left to the reader.

13.1.2.2 (Commutation between local cohomological functors and localization functors). Let T1, T2 be
two divisors of P , E(•) ∈ LD−→

b
Q,qc(‹D(•)

P]/S
).
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(a) By commutativity of the tensor product, we have the functorial in T1, T2 and E(•) canonical isomor-
phism

(†T2) ◦ (†T1)(E(•))
∼−→ (†T1) ◦ (†T2)(E(•)). (13.1.2.2.1)

(b) There then exists a unique isomorphism (†T2) ◦ RΓ†T1
(E(•))

∼−→ RΓ†T1
◦ (†T2)(E(•)) inducing the

canonical morphism of distinguished triangles (†T2)(∆T1
(E(•)))→ ∆T1

((†T2)(E(•))), i.e. of the form:

(†T2) ◦ RΓ†T1
(E(•)) //

∃!��

(†T2)(E(•)) // (†T2) ◦ (†T1)(E(•))
∼��

// (†T2) ◦ RΓ†T1
(E(•))[1]

∃!��
RΓ†T1

◦ (†T2)(E(•)) // (†T2)(E(•)) // (†T1) ◦ (†T2)(E(•)) // RΓ†T1
◦ (†T2)(E(•))[1],

(13.1.2.2.2)

whose middle square is indeed commutative by functoriality in T1 of the isomorphism 13.1.2.2.1.
By writing the diagrams in three dimensions (i.e., we write the parallelepiped whose face in front is
13.1.2.2.2, the back face is 13.1.2.2.2 with T ′1 replacing T1, the morphisms from front to back are the
functoriality morphisms induced by T1 ⊂ T ′1 ; ditto to validate the functoriality in T2 or E(•)), we
check that the isomorphism (†T2) ◦ RΓ†T1

(E(•))
∼−→ RΓ†T1

◦ (†T2)(E(•)) is functorial in T1, T2, E(•).

(c) Likewise, there then exists a unique isomorphism RΓ†T2
◦ RΓ†T1

(E(•))
∼−→ RΓ†T1

◦ RΓ†T2
(E(•)) functo-

rial in T1, T2, E(•) inducing the canonical morphism of distinguished triangles ∆T2
(RΓ†T1

(E(•))) →
RΓ†T1

(∆T2
(E(•))), i.e. of the form:

RΓ†T2
◦ RΓ†T1

(E(•)) //

∃!��

RΓ†T1
(E(•)) // (†T2) ◦ RΓ†T1

(E(•))

∼��

// RΓ†T2
◦ RΓ†T1

(E(•))[1]

∃!��
RΓ†T1

◦ RΓ†T2
(E(•)) // RΓ†T1

(E(•)) // RΓ†T1
◦ (†T2)(E(•)) // RΓ†T1

◦ RΓ†T2
(E(•))[1],

(13.1.2.2.3)

whose middle square is indeed commutative by functoriality in T2 of the isomorphism (†T2) ◦
RΓ†T1

(E(•))
∼−→ RΓ†T1

◦ (†T2)(E(•)).

13.1.2.3 (Compatibility of commutation isomorphisms with the tensor product). The three isomor-
phisms of 13.1.2.2 are compatible with that of 13.1.2.1. More precisely, let T, T1, T2 be divisors of P ,
E(•), F (•) ∈ LD−→

b
Q,qc(‹D(•)

P]/S
). By composing the vertical isomorphisms of the diagram 13.1.2.1.1, we ob-

tain the canonical isomorphisms (†T )(E(•))“⊗L
O(•)

P
F (•) ∼−→ E(•)“⊗L

O(•)
P

(†T )(F (•)) and RΓ†T (E(•))“⊗L
O(•)

P
F (•) ∼−→

E(•)“⊗L
O(•)

P
RΓ†T (F (•)) functorials in T, E(•), F (•). We verify in this paragraph that these isomorphisms

are compatible with the three isomorphisms of commutation of local functors and localization of 13.1.2.2.

(a) Compatibility with isomorphisms 13.1.2.2.1 means that the diagram

(†T2) ◦ (†T1)(E(•))“⊗L
O(•)

P
F (•) ∼ //

∼13.1.2.2.1 ��

(†T1)(E(•))“⊗L
O(•)

P
(†T2)(F (•))

∼ // E(•)“⊗L
O(•)

P
(†T1) ◦ (†T2)(F (•))

(†T1) ◦ (†T2)(E(•))“⊗L
O(•)

P
F (•) ∼ // (†T2)(E(•))“⊗L

O(•)
P

(†T1)(F (•))
∼ // E(•)“⊗L

O(•)
P

(†T2) ◦ (†T1)(F (•)),

∼ 13.1.2.2.1
OO

(13.1.2.3.1)
is commutative, which is easy.

(b) Now let’s check that the diagram

(†T2) ◦ RΓ†T1
(E(•))“⊗L

O(•)
P
F (•) ∼ //

∼��

RΓ†T1
(E(•))“⊗L

O(•)
P

(†T2)(F (•))
∼ // E(•)“⊗L

O(•)
P

RΓ†T1
◦ (†T2)(F (•))

RΓ†T1
◦ (†T2)(E(•))“⊗L

O(•)
P
F (•) ∼ // (†T2)(E(•))“⊗L

O(•)
P

RΓ†T1
(F (•))

∼ // E(•)“⊗L
O(•)

P
(†T2) ◦ RΓ†T1

(F (•)),

∼
OO

(13.1.2.3.2)
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is commutative. To do this, consider the diagram:

(†T2) ◦ RΓ†T1
(E(•))“⊗L

O(•)
P
F (•) //

��

(†T2)(E(•))“⊗L
O(•)

P
F (•) //

��

(†T2) ◦ (†T1)(E(•))“⊗L
O(•)

P
F (•)

∼��

// +1

E(•)“⊗L
O(•)

P
RΓ†T1

◦ (†T2)(F (•)) // E(•)“⊗L
O(•)

P
(†T2)(F (•)) // E(•)“⊗L

O(•)
P

(†T1) ◦ (†T2)(F (•)) // +1,

(13.1.2.3.3)
whose right (resp. left) vertical arrow is the top composite of 13.1.2.3.1 (resp. 13.1.2.3.2). As these
morphisms are functorial in T1, the left (resp right) square of the diagram 13.1.2.3.3 is commu-
tative. This diagram 13.1.2.3.3 therefore corresponds to a morphism of distinguished triangles of
the form (†T2)(∆T1(E(•)))“⊗L

O(•)
P
F (•) → E(•)“⊗L

O(•)
P

∆T1((†T2)(E(•))). In the same way, we check the
commutativity of the middle squares of the diagram

(†T2) ◦ RΓ†T1
(E(•))“⊗L

O(•)
P
F (•) //

��

(†T2)(E(•))“⊗L
O(•)

P
F (•) // (†T2) ◦ (†T1)(E(•))“⊗L

O(•)
P
F (•)

∼��

// +1

RΓ†T1
◦ (†T2)(E(•))“⊗L

O(•)
P
F (•) //

��

(†T2)(E(•))“⊗L
O(•)

P
F (•) //

��

(†T1) ◦ (†T2)(E(•))“⊗L
O(•)

P
F (•) //

��

+1

E(•)“⊗L
O(•)

P
(†T2) ◦ RΓ†T1

(F (•)) //

��

E(•)“⊗L
O(•)

P
(†T2)(F (•)) // E(•)“⊗L

O(•)
P

(†T2) ◦ (†T1)(F (•)) //

��

+1

E(•)“⊗L
O(•)

P
RΓ†T1

◦ (†T2)(F (•)) // E(•)“⊗L
O(•)

P
(†T2)(F (•)) // E(•)“⊗L

O(•)
P

(†T1) ◦ (†T2)(F (•)) // +1,

(13.1.2.3.4)
whose top (resp. bottom) triangle morphism is the image by the functor−“⊗L

O(•)
P
F (•) (resp. E(•)“⊗L

O(•)
P
−)

of the morphism of distinguished triangles 13.1.2.2.2. The commutativity of the diagram 13.1.2.3.1
means that the right (resp. middle) vertical composite arrow of the 13.1.2.3.4 diagram is the right
(resp. middle) vertical arrow of 13.1.2.3.3. For uniqueness (thanks to [BBD82, 1.1.9]), the same
applies to the left vertical arrows. Hence the result.

(c) By tracing the proof of the commutativity of 13.1.2.3.2 from 13.1.2.3.1, we verify from the commu-
tativity of 13.1.2.3.2 that of the diagram below:

RΓ†T2
◦ RΓ†T1

(E(•))“⊗L
O(•)

P
F (•) ∼ //

∼��

RΓ†T1
(E(•))“⊗L

O(•)
P

RΓ†T2
(F (•))

∼ // E(•)“⊗L
O(•)

P
RΓ†T1

◦ RΓ†T2
(F (•))

RΓ†T1
◦ RΓ†T2

(E(•))“⊗L
O(•)

P
F (•) ∼ // RΓ†T2

(E(•))“⊗L
O(•)

P
RΓ†T1

(F (•))
∼ // E(•)“⊗L

O(•)
P

RΓ†T2
◦ RΓ†T1

(F (•)).

∼
OO

(13.1.2.3.5)

13.1.2.4. Let T1, . . . , Tr and T ′1, . . . , T
′
s be divisors of P , E(•), F (•) ∈ LD−→

b
Q,qc(‹D(•)

P]/S
). Using s-times

the morphisms of the form 13.1.2.3.5, we can check that we have the canonical functorial isomorphisms
in T1, . . . , Tr, T ′1, . . . , T ′s, E(•), F (•) of the form

RΓ†T ′1
◦ · · · ◦ RΓ†T ′s ◦ RΓ†T1

◦ · · · ◦ RΓ†Tr (E
(•)“⊗L

O(•)
P
F (•))

∼−→ RΓ†T ′1
◦ · · · ◦ RΓ†T ′s(E

(•)“⊗L
O(•)

P
RΓ†T1

◦ · · · ◦ RΓ†Tr (F
(•)))

∼−→ RΓ†T ′1
◦ · · · ◦ RΓ†T ′s(E

(•))“⊗L
O(•)

P
RΓ†T1

◦ · · · ◦ RΓ†Tr (F
(•)), (13.1.2.4.1)

these do not depend, up to canonical isomorphism, on the order of T1, . . . , Tr or T ′1, . . . , T ′s. In particular,
by taking F (•) = O(•)

P and the empty T ′1, . . . , T
′
s, we obtain the canonical functorial isomorphism in

T1, . . . , Tr, E(•) of the form:

RΓ†T1
◦ · · · ◦ RΓ†Tr (E

(•))
∼−→ E(•)“⊗L

O(•)
P

RΓ†T1
◦ · · · ◦ RΓ†Tr (O

(•)
P ) (13.1.2.4.2)

and which does not depend, up to canonical isomorphism, on the order of T1, . . . , Tr.
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13.1.3 Local cohomological functor with strict support in a closed subscheme
We will need the following Lemmas (e.g. see the construction of 13.1.3.8 or Proposition 13.1.4.8) in the
next section.

Lemma 13.1.3.1. Let Z, T be two divisors of P , E(•) ∈ LD−→
b
Q,coh(‹D(•)

P]/S
(T )), U the open of P comple-

mentary to the support of Z. The following assertions are equivalent:

(a) We have in LD−→
b
Q,coh(‹D(•)

U]
(T ∩ U)) the isomorphism E(•)|U ∼−→ 0.

(b) The canonical morphism RΓ†Z(E(•))→ E(•) is an isomorphism in LD−→
b
Q(‹D(•)

P]/S
(T )).

(c) We have in LD−→
b
Q,coh(‹D(•)

P]
(T )) the isomorphism (†Z)(E(•))

∼−→ 0.

Proof. The equivalence between (b) and (c) is tautological (i.e., we have the distinguished triangle
13.1.1.5.1). The assertion (c) → (a) is trivial. Conversely, let’s prove (a) → (c). Since (†Z)(E(•))

∼−→
(†Z) ◦ (†T )(E(•))

∼−→ (†T ∪ Z)(E(•)) ∈ LD−→
b
Q,coh(‹D(•)

P]/S
(Z ∪ T )), as the functor→l

∗
Q is fully faithful on

LD−→
b
Q,coh(‹D(•)

P]
(Z ∪ T )), it is then equivalent to prove that→l

∗
Q(†Z)(E(•))

∼−→ 0. Since the cohomological
spaces of→l

∗
Q(†Z)(E(•)) are coherent D†

P]
(†T ∪ Z)Q-modules with support in Z (see the remark 9.3.5.15)

and therefore in T ∪ Z, the latter is indeed zero thanks to 8.7.6.11.

Lemma 13.1.3.2. Let T1, . . . , Tr, T be divisors of P . Then RΓ†Tr ◦ · · · ◦RΓ†T1
(B̃(•)

P (T )) ∈ LD−→
b
Q,coh(“D(•)

P ).

Proof. As according to 9.1.3.2 we have the canonical isomorphism (†T1)(B̃(•)
P (T ))

∼−→ B̃(•)
P (T1∪T ), then

we obtain the distinguished triangle:

RΓ†T1
(B̃(•)

P (T ))→ B̃(•)
P (T )→ B̃(•)

P (T1 ∪ T )→ RΓ†T1
(B̃(•)

P (T ))[1]. (13.1.3.2.1)

According to 12.2.7.2, it follows that the distinguished triangle 13.1.3.2.1 is a triangle in LD−→
b
Q,coh(“D(•)

P ).
We deduce by induction on r (we apply the functor RΓ†Tr ◦ · · · ◦ RΓ†T2

to the distinguished triangle
13.1.3.2.1) the result.

Corollary 13.1.3.3. For r ∈ N, let T1, . . . , Tr be some divisors of P (by convention, r = 0 means there
is no divisors). Let T be a divisor of P . Then there exists a canonical isomorphism

Rsp∗
Ä
Γ†Tr ◦ · · · ◦ Γ†T1

(j†TOPK )
ä ∼−→→l

∗
Q RΓ†Tr ◦ · · · ◦ RΓ†T1

(B̃(•)
P (T ))

which is functorial in Ti and T , i.e. making commutative the diagram of Db
coh(D†

P]/S,Q)

Rsp∗
Ä
Γ†Tr ◦ · · · ◦ Γ†T1

(OPK )
ä ∼ //

��

→l
∗
Q RΓ†Tr ◦ · · · ◦ RΓ†T1

(O(•)
P )

��
Rsp∗

Ä
Γ†Tr ◦ · · · ◦ Γ†T1

(j†TOPK )
ä ∼ //

��

→l
∗
Q RΓ†Tr ◦ · · · ◦ RΓ†T1

(B̃(•)
P (T ))

��
Rsp∗

Ä
Γ†Tr−1

◦ · · · ◦ Γ†T1
(j†TOPK )

ä ∼ //
→l
∗
Q RΓ†Tr−1

◦ · · · ◦ RΓ†T1
(B̃(•)

P (T )),

where the vertical arrows are the canonical ones induced by OPK → j†TOPK , O
(•)
P → B̃(•)

P (T ), Γ†Tr → id,

RΓ†Tr → id, and where →l
∗
Q is the equivalence of categories →l

∗
Q : LD−→

b
Q,coh(‹D(•)

P]/S
) ∼= Db

coh(D†
P]/S,Q) (see

8.4.5.6).

Proof. This is checked by induction on r ∈ N. When r = 0, this corresponds to the functorial in T

isomorphism Rsp∗(j
†
TOPK )

∼−→ OP(†T )Q
∼−→ →l

∗
Q B̃

(•)
P (T ). Since j†Trj

†
TOPK = j†Tr∪TOPK , we get the

exact sequence

0→ Γ†Tr ◦· · ·◦Γ
†
T1

(j†TOPK )→ Γ†Tr−1
◦· · ·◦Γ†T1

(j†TOPK )→ Γ†Tr−1
◦· · ·◦Γ†T1

(j†Tr∪TOPK )→ 0. (13.1.3.3.1)
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Hence, by induction hypothesis, we get a unique (using again [BBD82, 1.1.9]) isomorphism making
commutative the diagram of Db

coh(D†
P]/S,Q):

Rsp∗Γ
†
Tr
◦ · · · ◦ Γ†T1

(j†TOPK )
∼ //

��

→l
∗
Q RΓ†Tr ◦ · · · ◦ RΓ†T1

(B̃(•)
P (T ))

��
Rsp∗Γ

†
Tr−1

◦ · · · ◦ Γ†T1
(j†TOPK )

∼ //

��

→l
∗
Q RΓ†Tr−1

◦ · · · ◦ RΓ†T1
(B̃(•)

P (T ))

��
Rsp∗Γ

†
Tr−1

◦ · · · ◦ Γ†T1
(j†Tr∪TOPK )

∼ //

��

→l
∗
Q RΓ†Tr−1

◦ · · · ◦ RΓ†T1
(B̃(•)

P (Tr ∪ T ))

��
Rsp∗Γ

†
Tr
◦ · · · ◦ Γ†T1

(j†TOPK )[1]
∼ //

→l
∗
Q RΓ†Tr ◦ · · · ◦ RΓ†T1

(B̃(•)
P (T ))[1]

(13.1.3.3.2)

where the triangle given by the right vertical arrows is distinguished since we have B̃(•)
P (Tr ∪ T )

∼−→
(†Tr)(B̃(•)

P (T )) (use 9.1.3.2).

Lemma 13.1.3.4. Let X be a closed subscheme of P , T1, . . . , Tr (resp. T ′1, . . . , T ′s) be some divisors of
P such that X = ∩l=1,...,rTl (resp. X = ∩l=1,...,sT

′
l ) and E(•) ∈ LD

−→

b
Q,qc(‹D(•)

P]
). There then exists an

canonical isomorphism (compatible with Frobenius when D is empty)

RΓ†T1
◦ · · · ◦ RΓ†TrE

(•) ∼−→ RΓ†T ′1
◦ · · · ◦ RΓ†T ′sE

(•).

Proof. Since RΓ†T1
◦ · · · ◦ RΓ†Tr (O

(•)
P,Q) ∈ LD−→

b
Q,coh(‹D(•)

P]/S
) thanks to 13.1.3.1, the morphism canonical

RΓ†T ′1
◦· · ·◦RΓ†T ′s ◦RΓ†T1

◦· · ·◦RΓ†Tr (O
(•)
P,Q)→ RΓ†T1

◦· · ·◦RΓ†Tr (O
(•)
P,Q) is an isomorphism (compatible with

Frobenius when D is empty). By symmetry and noting that the proposition 13.1.2.1 implies that the
functors RΓ†Ti and RΓ†T ′

j
commute canonically, we deduce an isomorphism RΓ†T1

◦ · · · ◦ RΓ†Tr (O
(•)
P,Q)

∼−→

RΓ†T ′1
◦ · · · ◦ RΓ†T ′s(O

(•)
P,Q).

Now, it follows, by induction on r, from 13.1.2.1 that we have a canonical isomorphism RΓ†T1
◦ · · · ◦

RΓ†Tr (O
(•)
P,Q)“⊗L

O(•)
P
E(•) ∼−→ RΓ†T1

◦ · · · ◦ RΓ†Tr (E
(•)). Likewise, replacing T with T ′ and r with s. Hence

the result.

13.1.3.5. Let U be an open subset of P . The maps D 7→ D and T 7→ T ∩ U are reciprocal bijections
between the set of irreducible divisors of U and that of the irreducible divisors of P meeting U . The
maps D 7→ D and T 7→ T ∩ U are reciprocal bijections between the set of divisors of U and that of the
divisors of P whose irreducible components meet U . These bijections preserve the number of irreducible
components.

Lemma 13.1.3.6. Suppose P integral. Let X be a reduced closed subscheme of P . Then, X is a finite
intersection of divisors of P .

Proof. When X = P , we can see X as the intersection of 0 divisors of P . Suppose X 6= P . By using
the formula commuting the intersection and union of the form ∪ri=1 ∩sj=1 Di,j = ∩1≤j1,...,jr≤s ∪ri=1 Di,ji

for a family of subsets Di,j (divisors or P ) of P , since the union of divisors is a divisor, then we reduce
to the case where X is irreducible. Let (Pi)i∈I be a family of affine and dense open sets in P , such that
the family (X ∩Pi)i∈I covers X and X ∩Pi is non-empty for all i ∈ I. Now, there exists a finite number
of divisors (Ti,ji)ji∈Ji of Pi such that X ∩ Pi = ∩jiTi,ji . As X ∩ Pi is dense in X, we then notice that
X = ∩i,jiTi,ji , where Ti,ji is the closure of Ti,ji in X.

Remark 13.1.3.7. Beware that if P has at least two connected components, if X is one on its connected
components then X is not a finite intersection of divisors of P .
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Definition 13.1.3.8. Let X be a reduced closed subscheme of P . We define the local cohomological
functor RΓ†X with strict support in X as follows. Since P is the sum of its irreducible components, it
suffices to define it in the case where P is integral.

1. If X = P , then the functor RΓ†X is by definition the identity.

2. Now suppose X 6= P . According to 13.1.3.6, there exists T1, . . . , Tr some divisors of P such that
X = ∩ri=1Ti, then, for all E(•) ∈ LD−→

b
Q,qc(‹D(•)

P]/S
), the complex RΓ†X(E(•)) := RΓ†Tr ◦ · · · ◦RΓ†T1

(E(•))

does not canonically depend on the choice of such divisors T1, . . . , Tr satisfying X = ∩ri=1Ti (see
13.1.3.4).

13.1.3.9. Let X be a closed subscheme of P . We deduce from 13.1.1.8 that the functor RΓ†X does not
depend on the log-structure, i.e., we have the canonical isomorphism

RΓ†X ◦ forg]
∼−→ forg] ◦ RΓ†X (13.1.3.9.1)

of functors of LD−→
b
Q,qc(‹D(•)

P/S)→ LD−→
b
Q,qc(‹D(•)

P]/S
).

Proposition 13.1.3.10. Let X be a smooth closed subscheme of P . The complex RΓ†XOP,Q := Rsp∗Γ
†
X(OPK )

defined at 12.1.3.1 is canonically isomorphic to→l
∗
Q RΓ†X(O(•)

P ), which confirms the compatibility of our
notation.

Proof. By the construction explained in 13.1.3.8, this is a consequence of 13.1.3.3.

Proposition 13.1.3.11. Let X, X ′ be two closed subschemes of P , E(•), F (•) ∈ LD−→
b
Q,qc(‹D(•)

P]/S
).

(a) We have the canonical isomorphism functorial in E(•), X, and X ′:

RΓ†X ◦ RΓ†X′(E
(•))

∼−→ RΓ†X∩X′(E
(•)). (13.1.3.11.1)

(b) We have the canonical isomorphism functorial in E(•), F (•), X, and X ′:

RΓ†X∩X′(E
(•)“⊗L

O(•)
P
F (•))

∼−→ RΓ†X(E(•))“⊗L
O(•)

P
RΓ†X′(F

(•)). (13.1.3.11.2)

Proof. The first statement is obvious by construction of the local cohomological functor with strict
support. The last one results from the canonical isomorphisms 13.1.2.4.1.

Example 13.1.3.12. Taking X ′ = P (and E(•) = O(•)
P ) in 13.1.3.11.2, we get

RΓ†X(E(•)“⊗L
O(•)

P
F (•))

∼−→ RΓ†X(E(•))“⊗L
O(•)

P
F (•), RΓ†X(F (•))

∼−→ RΓ†X(O(•)
P )“⊗L

O(•)
P
F (•). (13.1.3.12.1)

13.1.4 Localisation outside a closed subscheme functor
Lemma 13.1.4.1. Let X ⊂ X ′ be two closed subschemes of P , E(•),F (•) ∈ LD−→

b
Q,qc(‹D(•)

P]/S
). We further

assume that we have in LD−→
b
Q,qc(‹D(•)

P]/S
) the isomorphism RΓ†X′(F (•))

∼−→ 0. Then

Hom
LD−→Q(D̃(•)

P]/S
)
(RΓ†X(E(•)),F (•)) = 0.

Proof. Let φ : RΓ†X(E(•)) → F (•) be a morphism of LD−→
b
Q,qc(‹D(•)

P]/S
). Since the canonical morphism

RΓ†X(RΓ†X(E(•)))→ RΓ†X(E(•)) is an isomorphism of LD−→
b
Q,qc(‹D(•)

P]/S
)(see 13.1.3.11.1), then the morphism

φ is canonically factorized by RΓ†X(φ). Now, since RΓ†X(F (•))
∼←− RΓ†X ◦ RΓ†X′(F (•))

∼−→ 0, then
RΓ†X(φ)

∼−→ 0 in LD−→
b
Q,qc(‹D(•)

P]/S
). This implies φ = 0. Hence the result.
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Lemma 13.1.4.2. Let X be a closed subscheme of P and a distinguished triangle in LD−→
b
Q,qc(‹D(•)

P]/S
) of

the form
RΓ†X(E(•))→ E(•) → F (•) → RΓ†X(E(•))[1], (13.1.4.2.1)

where the first morphism is the canonical morphism. We then have the isomorphism RΓ†X(F (•))
∼−→ 0

in LD−→
b
Q,qc(‹D(•)

P]/S
).

Proof. Since the canonical morphism RΓ†X(RΓ†X(E(•)))→ RΓ†X(E(•)) is an isomorphism (see 13.1.3.11.1),
by applying the functor RΓ†X to the distinguished triangle 13.1.4.2.1, one of the axioms on triangulated
categories allows us to conclude.

13.1.4.3. Let X ⊂ X ′ be two closed subschemes of P . Suppose given the commutative diagram in
LD−→

b
Q,qc(‹D(•)

P]/S
) of the form

RΓ†X(E(•)) //

RΓ†
X

(φ)��

E(•) //

φ
��

F (•) // RΓ†X(E(•))[1]

RΓ†
X

(φ)��
RΓ†X′(E ′(•)) // E ′(•) // F ′(•) // RΓ†X′(E ′(•))[1]

(13.1.4.3.1)

whose left horizontal arrows are the canonical morphisms and whose two horizontal triangles are distin-
guished. According to lemmas 13.1.4.1 and 13.1.4.2, we then obtain

H−1(RHom
D(LM−−→Q(D̃(•)

P]
))

(RΓ†X(E(•)),F ′(•))) = Hom
D(LM−−→Q(D̃(•)

P]
))

(RΓ†X(E(•)),F ′(•)[−1]) = 0.

We deduce, thanks to [BBD82, 1.1.9], that there therefore exists a unique morphism F (•) → F ′(•)

inducing in LD−→
b
Q,qc(‹D(•)

P]/S
) the commutative diagram:

RΓ†X(E(•)) //

RΓ†
X

(φ)��

E(•) //

φ
��

F (•) //

∃!��

RΓ†X(E(•))[1]

RΓ†
X

(φ)��
RΓ†X′(E ′(•)) // E ′(•) // F ′(•) // RΓ†X′(E ′(•))[1].

(13.1.4.3.2)

As for [BBD82, 1.1.10], this implies that the cone of RΓ†X(E(•)) → E(•) is unique up to canonical
isomorphism. We will denote it (†X)(E(•)). We check that (†X)(E(•)) is functorial in X, and E(•), e.g.
we get the morphism of the form E(•) → (†X)(E(•)). We have by construction the distinguished triangle

RΓ†X(E(•))→ E(•) → (†X)(E(•))→ RΓ†X(E(•))[1]. (13.1.4.3.3)

We deduce from 13.1.5.2 that the functor (†X) does not depend on the log-structure, i.e., we have
the canonical isomorphism (†X) ◦ forg]

∼−→ forg] ◦ (†X) of functors LD−→
b
Q,qc(‹D(•)

P )→ LD−→
b
Q,qc(‹D(•)

P]/S
).

Definition 13.1.4.4. With notation 13.1.4.3, the functor (†X) : LD−→
b
Q,qc(‹D(•)

P]/S
) → LD−→

b
Q,qc(‹D(•)

P]/S
) is

called the localisation outside X functor.

13.1.4.5. For any closed subscheme X of P , for all E(•), F (•) ∈ LD−→
b
Q,qc(‹D(•)

P]/S
), there exists a unique

isomorphism of the form

(†X)(E(•)“⊗L
O(•)

P
F (•))

∼−→ E(•)“⊗L
O(•)

P
(†X)(F (•)) (13.1.4.5.1)

fitting into the commutative diagram

RΓ†X(E(•)“⊗L
O(•)

P
F (•))

∼13.1.3.12.1 ��

// E(•)“⊗L
O(•)

P
F (•) // (†X)(E(•)“⊗L

O(•)
P
F (•))

∃!��

// RΓ†X(E(•)“⊗L
O(•)

P
F (•))[1]

∼13.1.3.12.1 ��

E(•)“⊗L
O(•)

P
RΓ†X(F (•)) // E(•)“⊗L

O(•)
P
F (•) // E(•)“⊗L

O(•)
P

(†X)(F (•)) // E(•)“⊗L
O(•)

P
RΓ†X(F (•))[1].

As usual (by writing parallelepipeds), we check that it is functorial by X, E(•), F (•).
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Theorem 13.1.4.6. Let X,X ′ be two closed subschemes of P . We have (†X ′)◦RΓ†X(O(•)
P ) ∈ LD−→

b
Q,coh(

l“D(•)
P/S).

Proof. By devissage (use 13.1.4.3.3), this is a straightforward consequence of lemma 13.1.3.2.

13.1.4.7. Let X,X ′ be to closed subschemes of P , E(•) ∈ LD−→
b
Q,qc(‹D(•)

P]/S
). There then exists a unique

isomorphism
(†X ′) ◦ RΓ†X(E(•))

∼−→ RΓ†X ◦ (†X ′)(E(•)) (13.1.4.7.1)

functorial in X, X ′, E(•) fitting into the commutative diagram of the form

RΓ†X′ ◦ RΓ†X(E(•)) //

∼��

RΓ†X(E(•)) // (†X ′) ◦ RΓ†X(E(•))

∃!��

// RΓ†X′ ◦ RΓ†X(E(•))[1]

∼��
RΓ†X ◦ RΓ†X′(E(•)) // RΓ†X(E(•)) // RΓ†X ◦ (†X ′)(E(•)) // RΓ†X ◦ RΓ†X′(E(•))[1].

Let us now generalize 13.1.3.1.

Proposition 13.1.4.8. Let Z be a divisor of P and E(•) ∈ LD−→
b
Q,coh(‹D(•)

P]/S
(Z)). Let X be a closed

subscheme of P , U be the open subset of P complementary to X. The following assertions are equivalent:

(a) We have in LD−→
b
Q,coh(‹D(•)

U]/S
(Z ∩ U)) the isomorphism E(•)|U ∼−→ 0.

(b) The canonical morphism RΓ†X(E(•))→ E(•) is an isomorphism in LD−→
b
Q(‹D(•)

P]/S
(Z)).

(c) We have in LD−→
b
Q,coh(‹D(•)

P]/S
(Z)) the isomorphism (†X)(E(•))

∼−→ 0.

Proof. We can suppose P is integral. Let’s prove (a)→ (b). If T is a divisor containing X, by 13.1.3.1,
the canonical morphism RΓ†T (E(•))→ E(•) is an isomorphism. As X is a finite intersection of divisor of
P containing it we conclude (a)→ (b). The converse (b)→ (a) is obvious while the localization triangle
at X leads to the equivalence between the assertions (b) and (c).

Corollary 13.1.4.9. Let T be a divisor of P , X a closed subscheme of P , E(•) ∈ LD−→
b
Q,coh(‹D(•)

P]/S
(T ))

Then (†X)(E(•)) = 0 if and only if for any integer r, (†X)(Hr(E(•))) = 0.

Remark 13.1.4.10. Let X be a closed subscheme of P and E(•) be a complex of LD−→
b
Q,coh(‹D(•)

P]/S
(T )) such

that RΓ†X(E(•)) = 0. In general, it is false that its cohomology spaces satisfies RΓ†X(Hr(E(•))) = 0.
For example, ifX is a smooth closed subscheme of P of pure codimension 2, 13.1.4.11 gives RΓ†X((†X)(O(•)

P,Q)) =

0. Now, using the location triangle at X of O(•)
P,Q, we obtain H1((†X)(O(•)

P,Q))
∼−→ H†,2X (O(•)

P,Q). Finally,

since H†,2X (O(•)
P,Q) is an object of LM−−→Q,coh(‹D(•)

P]/S
) with support in X, then RΓ†X(H1((†X)(O(•)

P,Q)))
∼−→

H†,2X (O(•)
P,Q) 6= 0.

Proposition 13.1.4.11. Let X ⊂ X ′ be two closed subschemes of X and E(•) ∈ LD
−→

b
Q,qc(l‹D(•)

P]/S
). We

then have RΓ†X ◦ (†X ′)(E(•)) =0.

Proof. By applying the local cohomological functor RΓ†X to the distinguished triangle RΓ†X′(E(•))→ E →
(†X ′)(E(•))→ RΓ†X′(E(•))[1], the theorem 13.1.3.11.1 allows us to conclude.

Lemme 13.1.4.12. LetX andX ′ be two closed subschemes of P . We have: (†X)◦(†X ′)◦RΓ†X∪X′(O
(•)
P,Q) =

0.

Proof. Let us denote by E(•) = (†X) ◦ (†X ′) ◦ RΓ†X∪X′(O
(•)
P,Q), U = P \X and |U the restriction functor

to U. We have |U ◦ (†X)
∼−→ |U, |U ◦ (†X ′)

∼−→ (†X ′ ∩ U) ◦ |U and |U ◦ RΓ†X∪X′
∼−→ RΓ†X′∩U ◦ |U.

This implies that E(•)|U = 0. It follows by devissage from 13.1.4.6, 13.1.4.7.1 and 13.1.3.11.1 that
E(•) ∈ LD−→

b
Q,coh(‹D(•)

P]/S
).

It then follows from 13.1.4.8 that (†X)(E(•)) = 0. However, thanks to 13.1.4.11, (†X)→ (†X) ◦ (†X)
is an isomorphism of functors and therefore that E(•) → (†X)(E(•)) is an isomorphism.

749



Theorem 13.1.4.13. Let X,X ′ be two closed subschemes of P , E(•) ∈ LD−→
b
Q,qc(‹D(•)

P]/S
). We have the

canonical isomorphism
(†X) ◦ (†X ′)(E(•))

∼−→ (†X ∪X ′)(E(•)), (13.1.4.13.1)

functorial in X, X ′, E(•).

Proof. On one hand, it follows from 13.1.4.11 that the morphism (†X ∪X ′)(E(•))→ (†X) ◦ (†X ′)(†X ∪
X ′)(E(•)) is an isomorphism. On the other hand, we deduce from 13.1.4.12 that the morphism (†X) ◦
(†X ′)(E(•))→ (†X) ◦ (†X ′) ◦ (†X ∪X ′)(E(•)) is an isomorphism.

In order to prove the following theorem, we will need the following lemma.

Lemma 13.1.4.14. Let E ′(•) → E(•) → E ′′(•) → E ′(•)[1] be a triangle in LD
−→

b
Q,qc(l‹D(•)

P]/S
) and X a closed

subscheme of P . This is distinguished if and only if the triangles obtained after applying the functors
RΓ†X and (†X) are distinguished.

Theorem 13.1.4.15. Let X,X ′ be two closed subschemes of P . Let E(•) ∈ LD−→
b
Q,qc(‹D(•)

P]/S
). We have

the Mayer-Vietoris distinguished triangles:

RΓ†X∩X′(E
(•))→ RΓ†X(E(•))⊕ RΓ†X′(E

(•))→ RΓ†X∪X′(E
(•))→ RΓ†X∩X′(E

(•))[1], (13.1.4.15.1)

(†X ∩X ′)(E(•))→ (†X)(E(•))⊕ (†X ′)(E(•))→ (†X ∪X ′)(E(•))→ (†X ∩X ′)(E(•))[1]. (13.1.4.15.2)

Proof. Let us just demonstrate that the triangle 13.1.4.15.1 is distinguished, the second proving itself in
the same way. By using 13.1.3.12.1 and 13.1.4.5.1, it is enough to prove it for O(•)

P,Q. Now, the functors

RΓ†X and (†X) applied to the exact triangle 13.1.4.15.1 for E(•) = O(•)
P,Q give respectively

RΓ†X∩X′(O
(•)
P,Q)→ RΓ†X(O(•)

P,Q)⊕ RΓ†X∩X′(O
(•)
P,Q)→ RΓ†X(O(•)

P,Q)→ RΓ†X∩X′(O
(•)
P,Q)[1]

0→ 0⊕ (†X)RΓ†X′(O
(•)
P,Q)→ (†X)RΓ†X∪X′(O

(•)
P,Q)→ 0.

It is immediate that the first triangle is distinguished while the last is if and only if the morphism
(†X)RΓ†X′(O

(•)
P,Q)→ (†X)RΓ†X∪X′(O

(•)
P,Q) is an isomorphism. Now, it follows from 13.1.4.8 that it suffices

to verify it above P \ X, which is immediate. Thanks to 13.1.4.14, we conclude that 13.1.4.15.1 is
distinguished.

Example 13.1.4.16. Let X1, . . . , Xr be r closed subschemes of P which are two by two disjoint. Let
X := X1 ∪ · · · ∪ Xr. By induction in r, it follows from the Mayer-Vietoris exact sequence that the
canonical morphism

⊕rj=1RΓ†Xj (E
(•))→ RΓ†X(E(•)). (13.1.4.16.1)

is an isomorphism.

13.1.4.17 (Support). Let T be a divisor of P , E(•) ∈ LD−→
b
Q,coh(‹D(•)

P]/S
(T )). The support of E(•) is

by definition the biggest closed subscheme X of P such that (†X)(E(•))
∼−→ 0 (one of the equivalent

conditions of 13.1.4.8). We denote it by Supp E(•).
Remark if E(•) ∈ LM−−→Q,coh(‹D(•)

P]/S
(T )), then this is equal to the support (for the usual definition)

of the coherent D†
P]/S

(†T )Q-module→l
∗
Q E

(•), which justifies the terminology. We will extend later the
proposition 13.1.4.8 (see 15.3.8.2) and the notion of support (15.3.8.1) in the case where T is not a divisor
but we will need the notion of partially overcoherent complexes.

13.1.4.18 (t-structure for coherent complexes). For a definition of t-structure, see [HTT08, 8.1.1]. Let T
be a divisor of P . Following 8.7.5.4.1, for any ∗ ∈ {r, l}, the functor→l

∗
Q induces the equivalence of categories

LD−→
b
Q,coh(∗“D(•)

P]/S
(T )) ∼= Db

coh(∗D†
P]/S

(†T )Q). Since the functor→l
∗
Q preserves distinguished triangles, then

we get the canonical t-structure on Db
coh(D†

P]/S
(†T )Q) induces a t-structure on LD−→

b
Q,coh(∗“D(•)

P]/S
(T )).

For any n ∈ N, the functor Hn : LD−→
b
Q,coh(“D(•)

P]/S
(T )) → LM−−→Q,coh(“D(•)

P]/S
(T )) of 8.4.5.4 and the usual
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functor Hn : Db
coh(D†

P]/S
(†T )Q) → Coh(D†

P]/S
(†T )Q) commutes with the functor→l

∗
Q. In other words,

the functor Hn constructed at 8.4.5.4 is the one induced by the t-structure of Db
coh(D†

P]/S
(†T )Q) via the

equivalence of categories→l
∗
Q.

Let n ∈ Z. Let us denote by LD−→
≤n
Q,coh(“D(•)

P]/S
(T )) (resp. LD−→

≥n
Q,coh(“D(•)

P]/S
(T ))) the strictly full sub-

category of LD−→
b
Q,coh(“D(•)

P]/S
(T )) consisting of complexes E(•) such that, for any j ≥ n+ 1 (resp. for any

j ≤ n − 1), we have Hj(E(•)) = 0. We denote by τ? : LD−→
b
Q,coh(“D(•)

P]/S
(T )) → LD−→

?
Q,coh(“D(•)

P]/S
(T )) the

canonical truncation functors, where ? means either ≤ n or ≥ n.

Remark 13.1.4.19. Since LM−−→Q(‹D(•)
P]/S

) is an abelian category, then we have a canonical t-structure on

Db(LM−−→Q(‹D(•)
P]/S

)) given by the standard truncation functors. By using the equivalence of categories

LD−→
b
Q(‹D(•)

P]/S
) ∼= Db(LM−−→Q(‹D(•)

P]/S
)), of 8.1.5.14.1, this yields a canonical t-structure on LD−→

b
Q(‹D(•)

P]/S
).

Since the truncation functors do not a priori preserve quasi-coherence, beware that there is no clear
that LD−→

b
Q,qc(‹D(•)

P]/S
) can be endowed with a t-structure induced by that of LD−→

b
Q(‹D(•)

P]/S
).

13.1.4.20. Let E(•) ∈ LD−→
b
Q,coh(“D(•)

P (T )). With notation 13.1.4.18 and 13.1.4.17, we have the equality

Supp E(•) = ∪j∈Z Supp Hj(E(•)). (13.1.4.20.1)

13.1.5 Local cohomological functor with strict support over a subvariety
13.1.5.1. Let X, X ′, T , T ′ be closed subschemes of P such that X \ T = X ′ \ T ′. For any E(•) ∈
LD−→

b
Q,qc(“D(•)

P]/S
), we have the canonical isomorphism:

RΓ†X(†T )(E(•))
∼−→ RΓ†X′(

†T ′)(E(•)). (13.1.5.1.1)

Indeed, RΓ†X(†T )(E(•))
∼−→ RΓ†X(†T )(O(•)

P )“⊗L
O(•)

P
E(•), and similarly with some primes. Hence, we reduce

to the case E(•) = O(•)
P . Using 13.1.4.6, 13.1.3.11.1, 13.1.4.13.1, 13.1.4.8, we get the isomorphism

RΓ†X(†T )(O(•)
P )

∼−→ RΓ†X∩X′(
†T ∪ T ′)(O(•)

P ). We conclude by symmetry.
Setting Y := X \ T , we denote by RΓ†Y (E(•)) one of both complexes of 13.1.5.1.1.

13.1.5.2. Let Y be a subscheme of P . We deduce from 13.1.5.2 that the functor RΓ†Y does not depend
on the log-structure, i.e., we have the canonical isomorphism

RΓ†Y ◦ forg]
∼−→ forg] ◦ RΓ†Y (13.1.5.2.1)

of functors of LD−→
b
Q,qc(‹D(•)

P/S)→ LD−→
b
Q,qc(‹D(•)

P]/S
).

Notation 13.1.5.3. Let Y be a subvariety of P and T be a divisor of P . Using notation 9.1.6.6, we get
the functor

RΓ†Y := CohT (RΓ†Y ) : Db
coh(D†

P]
(†T )Q)→ Db(D†

P]
(†T )Q).

If we want to distinguish both functors RΓ†Y , then we will denote in this case by RΓ
(•)
Y : LD−→

b
Q,qc(‹D(•)

P]
)→

LD−→
b
Q,qc(‹D(•)

P]
). Finally, for any n ∈ N, we denote byH†nY := Hn◦RΓ†Y : Db

coh(D†
P]

(†T )Q)→M(D†
P]

(†T )Q),
where M(D†

P]
(†T )Q) is the category of left D†

P]
(†T )Q-modules.

Lemma 13.1.5.4. Let X be a closed subscheme of P , T be a divisor of P , E be a coherent D†
P]

(†T )Q-
module.

(a) For any j ≤ −1, we have Hj(E(†X)) = 0.

(b) The canonical morphism H†0X (E)→ E is injective.
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Proof. a) We can suppose P is integral. When X is a divisor of P , this is a consequence of the exactness
of the functor (†Z) on the category of coherent D†

P]
(†T )Q-modules. This yields the general case via

the distinguished triangle of Mayer-Vietoris (see 13.1.4.15), by proceeding by induction on the minimal
number of divisors whose intersection is Y (recall 13.1.3.6).

b) Considering the long exact sequence induced by the triangle of localisation of E with respect to
X, the fact that H−1(E(†Y )) = 0 implies the desired injectivity.

Proposition 13.1.5.5. We have RΓ†Y (O(•)
P ) ∈ LD−→

b
Q,coh(‹D(•)

P]/S
).

Proof. This is a translation of 13.1.4.6.

13.1.5.6. Let Y and Y ′ be two subschemes of P . Let E(•),F (•) ∈ LD−→
b
Q,qc(“D(•)

P]/S
).

(a) Using 13.1.3.11.1, 13.1.4.13.1, we get the canonical isomorphism functorial in E(•), Y , and Y ′:

RΓ†Y ◦ RΓ†Y ′(E
(•))

∼−→ RΓ†Y ∩Y ′(E
(•)). (13.1.5.6.1)

(b) Using 13.1.3.11.2 and 13.1.4.5.1 we get the canonical isomorphism functorial in E(•), F (•), Y , and
Y ′:

RΓ†Y ∩Y ′(E
(•)“⊗L

O(•)
P
F (•))

∼−→ RΓ†Y (E(•))“⊗L
O(•)

P
RΓ†Y ′(F

(•)). (13.1.5.6.2)

(c) If Y ′ is an open (resp. a closed) subscheme of Y , we have the canonical homomorphism RΓ†Y (E(•))→
RΓ†Y ′(E(•)) (resp. RΓ†Y ′(E(•))→ RΓ†Y (E(•))). If Y ′ is a closed subscheme of Y , we have the localization
distinguished triangle

RΓ†Y ′(E
(•))→ RΓ†Y (E(•))→ RΓ†Y \Y ′(E

(•))→ +1. (13.1.5.6.3)

Proposition 13.1.5.7 (Commutation with base change). Let V → V ′ be a morphism of rings of com-
plete discrete valuation of unequal characteristics (0, p), S′ := Spf V ′. Let P′ := P ×Spf(V) Spf(V ′)
be the separated, smooth and quasi-compact V-formal scheme induced by base change, $ : X′ → X the
canonical projection, D′ := $−1(D) the relative strict normal crossing divisor on P′/S′ induced by base
change, P′] := (P′,D′) the S′-smooth logarithmic formal scheme whose log-structure is given by D′

and $] : P′] → P] the canonical projection. Let Y be a subvariety of P . Let Y ′ := $−1(Y ). For any
E(•) ∈ LD−→

−
Q,qc(

l‹D(•)
P]/S]

(Z1)), we have the isomorphism

RΓ†Y ′ ◦$
](•)!(E(•))

∼−→ $](•)! ◦ RΓ†Y (E(•)) (13.1.5.7.1)

Proof. This follows by devissage and by Mayer-Vietoris exact triangles from 9.2.6.8.

13.2 Fundamental properties

13.2.1 Commutation with local cohomological functors
Let f : P′ → P be a morphism of smooth V-formal schemes, T and T ′ of the respective divisors of
P and P ′ such that f(P ′ \ T ′) ⊂ P \ T , D and D′ be relative to respectively P/S and P′/S strict
normal crossing divisors such that f−1(D) ⊂ D′. We set P] := (P,M(D)), P′] := (P′,M(D′)) and
f ] : P′] → P] the morphism of S-log smooth formal logarithmic schemes induced by f . If U is an open
of P, we will write U] := (U,M(D ∩ U)).

13.2.1.1. With the notations of 13.1.1.7, for all E(•) ∈ LD−→
b
Q,qc(‹D(•)

P (T )) and for all E(•)
• ∈ LD−→

b
Q,qc(‹D(•)

P•
(T ))

we verify that the canonical morphisms

f
](•)!
T ′,T ◦ forg](E(•))→ forg] ◦ f

(•)!
T ′,T (E(•)), (13.2.1.1.1)

f
](•)!
•T ′,T ◦ forg](E

(•)
• )→ forg] ◦ f

(•)!
•T ′,T (E(•)

• ) (13.2.1.1.2)

are isomorphisms. Indeed, the fact that 13.2.1.1.2 is an isomorphism follows from 9.2.1.9.1. The yields
so is 13.2.1.1.1.
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13.2.1.2. In this paragraph, assume that f−1(D) = D′ and f ] is exact. For all E ′(•) ∈ LD−→
b
Q,qc(‹D(•)

P′ (T
′)),

the canonical morphism
f

(•)
T,T ′,+ ◦ forg](E ′(•))→ forg] ◦ f

](•)
T,T ′,+(E ′(•)) (13.2.1.2.1)

is then an isomorphism. Indeed, since f ] is the composition of its graph with the canonical projection
P′] × P] → P], we reduce to the case where f ] is an exact closed immersion or a smooth (i.e. exact
and log smooth) morphism. In the case where f ] is an exact closed immersion, this follows from an
easy calculation in local coordinates (e.g. 9.3.3.6.1) and that where f ] is a smooth morphism, this is a
consequence of 9.4.1.6 (and the fact that Ω•P′/P = Ω•P′]/P]).

Without the hypothesis that f ] is exact, we will take care of the fact that the morphism 13.2.1.2.1 is
no longer an isomorphism (just consider the case f = id).

Lemma 13.2.1.3. Let u : X ↪→ P be a closed immersion of smooth formal S-scheme. Let T be a divisor
of P such that u(X) ⊂ T . We have the canonical isomorphism: u(•)!(B̃(•)

P (T ))
∼−→ 0 in LD−→

b
Q(‹D(•)

X ).

Proof. 0) Following the proposition 8.3.3.5, the Lemma is local en P. So, we can suppose P affine and
endowed with coordinates t1, . . . , td such that X = V (t1, . . . , tr) and there exists an element f of OP

satisfying T = V (f), where f is the reduction of f modulo πOP. Let us check by induction on r ≥ 1 the
lemma.

1) Let us first deal with the case r = 1. Thanks to 9.2.1.17, we reduce to prove the isomorphism
u

(•)!
alg (B̃(•)

P (T ))
∼−→ 0 in LD−→

b
Q(‹D(•)

X ). As B̃(•)
P (T ) is a sheaf of integral rings, using the exact sequence

0 → u−1OP
t1−→ u−1OP → OX → 0 which solves OX by flat u−1OP-modules, we verify that the

canonical morphism of the formOX⊗L
u−1OP

u−1B̃(•)
P (T )→ OX⊗u−1OP

u−1B̃(•)
P (T ) is then an isomorphism

in D(‹D(•)
X ). Thus, we have the canonical isomorphism u

(•)!
alg (B̃(•)

P (T ))
∼−→ OX ⊗u−1OP

u−1B̃(•)
P (T )[dX/P ]

in D(‹D(•)
X ) and therefore in LD−→

b
Q(‹D(•)

X ). Let χ : N → N be the element of M (see the definition in
paragraph 8.1.5.1) defined by χ(m) = 1. It is then sufficient to verify that the canonical morphism of‹D(•)

X -modules
OX ⊗u−1OP

u−1B̃(•)
P (T )→ χ∗(OX ⊗u−1OP

u−1B̃(•)
P (T ))

is the null morphism (in other words, OX ⊗u−1OP
u−1B̃(•)

P (T ) is canceled by multiplication by p). As

B̃(m)
P (T ) does not depend, up to canonical isomorphism, from the choice of the lifting f of a local equation

of T (see 8.7.3.4), we can suppose that t divides f , i.e. the image of f on OX is zero. In this case, we
calculate that OX⊗u−1OP

u−1B̃(m)
P (T ) = OX⊗u−1OP

u−1OP{X}/(fp
m+1

X−p) = OX{X}/(p) = OX [X],
which is canceled by p. Hence the result.

2) Now assume the property is true for r − 1 and prove it for r. Let us denote X1 := V (t1), and by
u1 : X1 ↪→ P and v1 : X ↪→ X1 the closed immersions. We can suppose X1 is integral.

i) If T ∩X1 is a divisor of X, following lemma 9.2.1.26, u(•)!
1 (B̃(•)

P (T ))
∼−→ B̃(•)

X1
(T ∩X1))[−1]. By using

the induction hypothesis, we get the last isomorphism u(•)!(B̃(•)
P (T ))

∼−→ v
(•)!
1 (B̃(•)

X1
(T ∩X1))[−1])

∼−→ 0,
hence we are done.

ii) If T ⊃ X1, then from the case r = 1, we get u(•)!
1 (B̃(•)

P (T ))
∼−→ 0, and then u(•)!(B̃(•)

P (T ))
∼−→ 0.

Theorem 13.2.1.4. Let Y be a subscheme of P , Y ′ := f−1(Y ), E(•) ∈ LD−→
b
Q,qc(

l“D(•)
P]/S

) and E ′(•) ∈
LD−→

b
Q,qc(

l“D(•)
P′]/S

). We have the functorial in Y isomorphisms:

f ](•)! ◦ RΓ†Y (E(•))
∼−→ RΓ†Y ′ ◦ f

](•)!(E(•)), (13.2.1.4.1)

RΓ†Y ◦ f
](•)
+ (E ′(•)) ∼−→ f

](•)
+ ◦ RΓ†Y ′(E

′(•)). (13.2.1.4.2)

Proof. 1) Let us check 13.2.1.4.1. With 13.1.5.2.1 and 13.2.1.1, we can suppose logarithmic structures
are trivial, i.e. D and D′ are empty. Using 9.2.1.27.1 and 13.1.5.6.2, we reduce to the case where Y
is the complement of a divisor T and E(•) = O(•)

P . The morphism f is the composition of its graph
γf : P′ ↪→ P′ ×P with the projection P′ ×P → P. Since the case where f is a flat morphism follows
from 9.2.1.26, we reduce to the case where f is a closed immersion. We can suppose P ′ is integral. Either
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T ∩ P ′ is a divisor and we can conclude by using 9.2.1.26, or T ∩ P ′ = P ′ and then the isomorphism
13.2.1.4.1 is 0

∼−→ 0 following proposition 13.2.1.3.
2) Let us check that 13.2.1.4.2 is a consequence of 13.2.1.4.1.

RΓ†Y ◦ f
](•)
+ (E ′(•)) ∼−→

13.1.5.6.2
RΓ†Y (O(•)

P )“⊗L
O(•)

P
f
](•)
+ (E ′(•)) ∼−→

9.4.3.1
f
](•)
+ (f ](•)!(RΓ†Y (O(•)

P ))“⊗L
O(•)

P′
E ′(•)))[−dP ′/P ]

(13.2.1.4.3)
Using 13.2.1.4.1, we get f ](•)!(RΓ†Y (O(•)

P ))[−dP ′/P ]
∼−→ RΓ†Y ′O

(•)
P′ . Hence we are done.

The following corollary means that the definitions 12.1.4.1.1 and 13.1.3.8 coincide.

Corollary 13.2.1.5. Suppose f ] is an exact closed immersion. Let denote f ] (resp. P′) by u] (resp.
by X). For any E(•) ∈ LD−→

b
Q,qc(

l“D(•)
P]/S

), with notation 13.1.3.8, we have the isomorphism

RΓ†X(E(•))
∼−→ u

](•)
+ ◦ u](•)!(E(•)). (13.2.1.5.1)

Proof. As the immersion u] is exact, by 13.1.5.2.1, 13.2.1.1 and 13.2.1.2.1, we can suppose the logarithmic
structures are trivial. Using 9.4.3.2.1 and 13.1.3.11.2, we reduce to the case where E(•) = O(•)

P . From

Berthelot-Kashiwara’s theorem 9.3.5.13, since RΓ†X(O(•)
P ) is coherent with support in X (see 13.1.4.6),

we get
u

(•)
+ u(•)!RΓ†X(O(•)

P )
∼−→ RΓ†X(O(•)

P ).

On the other hand,
u(•)!RΓ†X(O(•)

P )
∼−→

13.2.1.4.1
RΓ†Xu

(•)!(O(•)
P )

∼−→ u(•)!(O(•)
P ).

Hence u(•)
+ u(•)!RΓ†X(O(•)

P )
∼−→ u

(•)
+ u(•)!(O(•)

P ), and we are done.

Corollary 13.2.1.6. Suppose f ] is an exact closed immersion. Let denote f ] (resp. P′) by u] (resp.
by X). Let E ∈ Db

coh(D†
P]/S

(†T )Q) with support in X. With notation 13.1.5.3, the natural morphism

H†0Z (E)→ E (13.2.1.6.1)

is an isomorphism.

Proof. Let E(•) ∈ LD−→
b
Q,coh(

l“D(•)
P]/S

) such that →l
∗
Q(E(•))

∼−→ E . Then this follows from Berthelot-
Kashiwara theorem 9.3.5.13 and from 13.2.1.5.

Proposition 13.2.1.7 (Compatibility with Frobenius). Suppose k is perfect. Let u : X→ P be a closed
immersion of smooth V-formal schemes. Let T be a divisor of X such that Z := T ∩X is a divisor of
X. Let E(•) ∈ LD−→

b
Q,coh(

l“D(•)
P/S(T )) such u(•)!(E(•)) ∈ LD−→

b
Q,coh(

l“D(•)
X/S(Z)) (e.g. if E(•) has its support in

X). Then we have a compatible with Frobenius isomorphism of the form

RΓ†X(E(•))
∼−→ u

(•)
+ ◦ u(•)!(E(•)). (13.2.1.7.1)

Proof. Consider the following commutative diagram

u
(•)
+ ◦ u(•)! ◦ RΓ†X(E(•))

adj
RΓ
†
X

(E(•))

//

��

RΓ†X(E(•))

��
u

(•)
+ ◦ u(•)!(E(•))

adjE(•) // E(•),

(13.2.1.7.2)

where the horizontal arrows are the adjunction morphism of 9.5.4.5 and vertical arrows follows by func-
toriality in X of the functor RΓ†X .

1) Following 9.5.4.5, the adjunction morphism adjE(•) and adjRΓ†
X

(E(•)) are compatible with Frobenius.

2) It follows from 13.2.1.5.1 that RΓ†X(E(•)) ∈ LD−→
b
Q,coh(

l“D(•)
P/S(T )) and has its support in X. Hence,

by using Berthelot-Kashiwara theorem of the form 9.3.5.13, we can check that the adjunction morphism
adjRΓ†

X
(E(•)) is an isomorphism.
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3) Since RΓ†X = id on LD−→
b
Q,qc(

l“D(•)
X/S), it follows from 13.2.1.4.1 that the canonical morphism u(•)! ◦

RΓ†X(E(•)) → u(•)!(E(•)) is an isomorphism. Hence, the left morphism of the square 13.2.1.7.2 is a
isomorphism. We get the compatible with Frobenius isomorphism 13.2.1.7.1 fitting into the commutative
diagram

u
(•)
+ ◦ u(•)!(E(•))

adjE(•) //

∼
��

E(•)

RΓ†X(E(•)) // E(•).

(13.2.1.7.3)

13.2.2 Coherence of the localisation of convergent isocrystals
Theorem 13.2.2.1. Let P be a smooth formal scheme over S. Let X be a smooth closed subscheme
of P , and T be a divisor of X. Let E(•) be an object of MIC(•)(X,P/V) (as defined in 12.2.1.6). Then
(†T )(E(•)) ∈ LM−−→Q,coh(‹D(•)

P/S).

Proof. 1) Using the inductive system version of Berthelot-Kashiwara’s theorem (see 9.3.5.13), we reduce
to the case where X = P . In this case, we write X (resp. Z) instead of P (resp. T ) and we will use the
notation of the proof of 12.2.7.1. Now, following the part 0),1) and 2) of the proof of 12.2.7.1, modulo the
equivalence of categories 8.4.5.6 and the compatibility of 13.1.3.10, the object O(•)

X is a direct summand
of f (•)

+ (RΓ†X′O
(•)
P [n]) in LD−→

b
Q,coh(‹D(•)

X/S). This yields that (†Z)(E(•)) is a direct summand of

(†Z)
(
E(•)“⊗L

O(•)
X

f
(•)
+ (RΓ†X′O

(•)
P [n])

)
∼−→

9.4.3.1.1
(†Z)f

(•)
+

Å
f (•)!(E(•))“⊗L

O(•)
P

RΓ†X′O
(•)
P

ã
∼−→

13.1.5.6.2
(†Z)f

(•)
+ ◦ RΓ†X′ ◦ f

(•)!(E(•))“⊗L
O(•)

P

∼−→
13.2.1.4.2

f
(•)
+ RΓ†X′\Z′f

(•)!(E(•)). (13.2.2.1.1)

Hence, we reduce to check that RΓ†X′\Z′f
(•)!(E(•)) is an object of LD−→

b
Q,coh(‹D(•)

P/S). Since this is local
on P, we can suppose there exists a closed immersion of smooth V-formal schemes u : X′ ↪→ P which
reduces modulo π to X ′ ↪→ P . Following 13.2.1.5.1, RΓ†X′f

(•)!(E(•))
∼−→ u

(•)
+ ◦ u(•)! ◦ f (•)!(E(•)). Hence,

RΓ†X′\Z′f
(•)!(E(•))

∼−→ u
(•)
+ ◦(†Z ′)◦u(•)!◦f (•)!(E(•)). Following 11.1.3.6, we get E ′(•) := u(•)!◦f (•)!(E(•)) ∈

MIC(•)(X′/V). Since u is proper, then u
(•)
+ preserves the coherence. Hence, we reduce to check that

(†Z ′)(E ′(•)) ∈ LM−−→Q,coh(‹D(•)
X′/S).

2) Since this is local, we can suppose X′ is integral and affine. We proceed by induction on the number
of irreducible component of Z ′. Let Z ′1 be one irreducible component of Z ′ and Z ′′ be the union of the
other irreducible components. Let u1 : Z′1 ↪→ X′ be a lifting of Z ′1 ↪→ X ′, and Z ′2 := Z ′1 ∩ Z ′′.

RΓ†Z′1
((†Z ′′)E ′(•))→ (†Z ′′)(E ′(•))→ (†Z ′)(E ′(•))→ +1 (13.2.2.1.2)

Following 11.1.3.6, we get Lu∗(•)1 (E ′(•)) ∈ MIC(•)(Z′1/V). Since RΓ†Z′1
((†Z ′′)E ′(•)) ∼−→ u

(•)
1+◦u

(•)!
1 ((†Z ′′)E ′(•)) ∼−→

u
(•)
1+ ◦ (†Z ′2)(u

(•)!
1 E ′(•)), by induction hypothesis and preservation of the coherence under u(•)

1+, this yields
RΓ†Z′1

((†Z ′′)E ′(•)) ∈ LD−→
b
Q,coh(‹D(•)

X′/S). By induction hypothesis (†Z ′′)(E ′(•)) ∈ LD−→
b
Q,coh(‹D(•)

X′/S). We
conclude using the exact triangle 13.2.2.1.2.

13.2.3 Base change isomorphism for coherent complexes and realizable mor-
phisms

Let f : P′ → P be a morphism of separated V-smooth formal schemes. Let D (resp. D′) be a relative
strict normal crossing divisors of P/S (resp. P′/S) such that f−1(D) ⊂ D′. We set P] = (P,D),
P′] := (P′,D′) the induced S-log smooth log formal schemes and f ] : P′] → P] the induced morphisms
of S-log smooth log formal schemes. Let T be a divisor of P such that T ′ := f−1(T ) is a divisor of P ′.
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Definition 13.2.3.1. We say that f ] is realizable with respect to T if there exist a proper morphism
π : P′′ → P of smooth V-formal schemes π−1(T ) is a divisor of P ′′, a relative strict normal crossing
divisors D′′ of P′′/S such that π−1(D) ⊂ D′′, an exact immersion u] : P′] ↪→ P′′] of log formal schemes
such that f ] = π] ◦ u], where P′′] := (P′′,D′′) and π] : P′′] → P] is the morphism induced by π.

When T is empty, we simply say that f ] is a realizable morphism. When P] = Spf V and T is empty,
we say that P′] is a realizable S-log smooth log formal scheme.

Example 13.2.3.2. If f is proper, then f ] is a realizable morphism with respect to T . If f ] is an exact
immersion, then f ] is a realizable morphism with respect to T .

When log structures are trivial, if P′ is realizable, then any f is a realizable morphism with respect
to T .

Remark 13.2.3.3. We have the following properties.

(a) The morphism f is realizable with respect to T (in the sense of 13.2.3.1 when D and D′ are empty)
if and only if there exist a proper morphism π : P′′ → P of smooth V-formal schemes, π−1(T ) is a
divisor of P ′′, an immersion u : P′ ↪→ P′′ of formal schemes such that f = π ◦ u.

(b) If f ] is realizable with respect to T then so is f . The converse is not clear.

Proposition 13.2.3.4. Suppose f ] is realizable with respect to T in the sense of 13.2.3.1. For any E ′(•) ∈
LD−→

b
Q,coh(“D(•)

P′]/S
(T ′)) with proper support over P (i.e., if X ′ is the support of E ′(•) in the sense 13.1.4.17

then the composite X ′ ↪→ P ′
f→ P is proper), the object f ](•)+ (E ′(•)) belongs to LD−→

b
Q,coh(“D(•)

P]/S
(T )).

Proof. Let X ′ be the support of E ′(•) ∈ LD−→
b
Q,coh(“D(•)

P′]/S
(T ′)). By assumption, X ′ is proper over P via

f . Let π : P′′ → P be a proper morphism of smooth V-formal schemes, D′′ be a relative strict normal
crossing divisors ofP′′/S such that π−1(D) ⊂ D′′ and T ′′ := π−1(T ) is a divisor of P ′′, let u] : P′] ↪→ P′′]

be an exact immersion of log formal schemes such that f ] = π] ◦ u], where P′′] := (P′′,MD′′) and
π] : P′′] → P] is the morphism induced by π.

Let v] : P′] ↪→ U′′] be an exact closed immersion, and j] : U′′] ↪→ P′′] be an open immersion such that
u] = j] ◦v]. Since X ′ is proper over P via f and since π is proper, then X ′ is proper over P ′′ via u. Since
v is proper, then it follows from 9.4.2.6 that we get E ′′(•) := v

](•)
+ (E ′(•)) ∈ LD−→

b
Q,coh(“D(•)

U′′]/S
(T ′′ ∩ U ′′))

with proper support over P ′′ via j.
a) We check in this step that Rj∗E ′′(•) ∈ LD−→

b
Q,coh(“D(•)

P′′]/S
(T ′′)) (with support in X ′). Following

8.4.5.6.2, we have the equivalence of triangulated categories

LD−→
b
Q,coh(“D(•)

U′′]/S
(T ′′ ∩ U ′′)) ∼= Db

coh(LM−−→Q(“D(•)
U′′]/S

(T ′′ ∩ U ′′))).

Hence, we reduce by devissage to the case where E ′′(•) ∈ LM−−→Q,coh(“D(•)
U′′]/S

(T ′′∩U ′′)). Following 8.4.5.10,

there exists m0 ∈ N large enough such that E ′′(•) is isomorphic in LM−−→Q(“D(•)
U′′]/S

(T ′′ ∩ U ′′)) to a locally

finitely presented ‹D(•+m0)

U′′]/S
(T ′′ ∩U ′′)-module G(•). Since E ′′(•) is null on the open complementary to X ′,

then, taking larger m0 is necessary, we can suppose G(0) is a coherent ‹D(m0)

U′′]/S
(T ′′ ∩ U ′′)-module with

support in X ′ (i.e. G(0) is zero on the open complementary to X ′). This yields that G(m) is a coherent‹D(m+m0)

U′′]/S
(T ′′ ∩U ′′)-module with support in X ′. Since X ′ is closed in P ′′, a coherent ‹D(m+m0)

U′′]/S
(T ′′ ∩U ′′)-

module with support in X ′ is acyclic for the functor j∗. Moreover, the functors j∗ and j∗ induce
quasi-inverse equivalences of categories between the category of coherent ‹D(m+m0)

U′′]/S
(T ′′ ∩ U ′′)-modules

with support in X ′ and that of coherent ‹D(m+m0)

P′′]/S
(T ′′)-modules with support in X ′. This yields that the

canonical morphism ‹D(•+m0)

P′′]/S
(T ′′) ⊗D̃(m0)

P′′]/S
(T ′′)

j∗G(0) → j∗G(•) is an isomorphim and that j∗G(•) is a

locally finitely presented ‹D(•+m0)

P′′]/S
(T ′′)-module with support in X ′. Moreover, since the functor j∗ is exact

over the category of sheaves with support inX ′ (becauseX ′ is closed in P ′′ and in U ′′), then the canonical
morphism j∗G(•) → Rj∗G(•) is an isomorphism. Hence, j](•)+ E ′′(•) = Rj∗E ′′(•) ∈ LM−−→Q,coh(“D(•)

P′′]/S
(T ′′)).

b) Since π is proper, by using 9.4.2.4 and the part a) we get π](•)+ j
](•)
+ (E ′′(•)) ∈ LD−→

b
Q,coh(“D(•)

P]/S
(T )).

By transitivity of the push forwards, we get the isomorphism f
](•)
+ (E ′(•)) ∼−→ π

](•)
+ j

](•)
+ (E ′′(•)). Hence,

we are done.
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Remark 13.2.3.5. In the overcoherent case, we can remove the hypothesis that f realizable (see 13.2.3.4).

Corollary 13.2.3.6. Suppose f : P′ → P is an open immersion of smooth V-formal schemes and f ]

is exact. Let X ′ be a closed subscheme of P ′ such that the composite X ′ ↪→ P ′
f→ P is proper. Then

the functors f ](•)+ and f ](•)! induce quasi-inverse equivalences of categories between the subcategory of
LD−→

b
Q,coh(“D(•)

P′]/S
(T ′)) consisting of objects with support in X ′ and the subcategory of LD−→

b
Q,coh(“D(•)

P]/S
(T ))

consisting of objects with support in X ′.

Proof. Denote by C (resp. C′) the subcategory of LD−→
b
Q,coh(“D(•)

P]/S
(T )) (resp. LD−→

b
Q,coh(“D(•)

P′]/S
(T ′)))

consisting of objects with support in X ′. From 13.2.3.4, the functor f ](•)+ = Rf∗ is well defined. This
is also obvious for f ](•)! = f∗. We easily check that the canonical morphism f∗Rf∗ → id of functors
C′ → C′ is an isomorphism and that the functor f∗ : C→ C′ is faithful. Hence, the morphism id→ Rf∗f∗

of functors C→ C is an isomorphism.

Theorem 13.2.3.7. Suppose f ] is realizable with respect to T in the sense of 13.2.3.1. Let g : Q → P
be a smooth morphism of S-smooth formal schemes. We denote by Q′ := P′ ×P Q, by f ′ : Q′ → Q
and g′ : Q′ → P′ the two canonical projections. We set Z := g−1(D), Z′ := g′−1(D′), U := g−1(T ),
U ′ := g′−1(T ′), Q] := (Q,M(Z)), Q′] := (Q′,M(Z′))) the induced S-log smooth log formal schemes and
g] : Q] → P], f ′] : Q′] → Q] and g′] : Q′] → P′] the induced morphisms of S-log smooth log formal
schemes. Let E ′(•) ∈ LD−→

b
Q,coh(“D(•)

P′]/S
(T ′)) with proper support over P . There then exists a canonical

isomorphism in LD−→
b
Q,coh(“D(•)

Q]/S
(U)):

g](•)! ◦ f ](•)+ (E ′(•)) ∼−→ f
′](•)
+ ◦ g′](•)!(E ′(•)). (13.2.3.7.1)

Proof. With the hypotheses on f and g, it follows from 13.2.3.4 and 9.4.1.7 that the complexes of
13.2.3.7.1 are indeed coherent. The morphism g decomposes into its graph γ followed by the canonical
projection π : P × Q → P. By base change via f , this yields that the morphism g′ decomposes into
a closed immersion γ′ : Q′ ↪→ P′ × Q followed by the canonical projection π′ : P′ × Q → P′. Set
U := P×Q, U′ := P′ ×Q. We denote by π] : U] → P] and γ] : Q] → U] the strict morphisms of formal
log-schemes whose underlying formal scheme morphisms are π and γ; the same with primes. We denote
by f ′′] = f ] × idQ : U′] → U] the morphism canonically induced. Thanks to the theorem 9.3.5.13, we
come down to checking that we have of a canonical isomorphism of the form

γ
](•)
+ ◦ g](•)! ◦ f ](•)+ (E ′(•)) ∼−→ γ

](•)
+ ◦ f ′](•)+ ◦ g′](•)!(E ′(•)).

Concerning the left term, by transitivity of extraordinary inverse images, we obtain the canonical iso-
morphism γ

](•)
+ ◦ g](•)! ◦ f ](•)+ (E ′(•)) ∼−→ γ

](•)
+ ◦ γ](•)! ◦ π](•)! ◦ f ](•)+ (E ′(•)). For the one on the right,

by transitivity of direct images or extraordinary inverse images and using 13.2.1.4.2 and 13.2.1.5.1 we
obtain the canonical isomorphisms γ](•)+ ◦ f ′](•)+ ◦ g′](•)!(E ′(•)) ∼−→ f

′′](•)
+ ◦ γ′](•)+ ◦ γ′](•)! ◦π′](•)!(E ′(•)) ∼−→

γ
](•)
+ ◦ γ](•)! ◦ f ′′](•)+ ◦ π′](•)!(E ′(•)). It is thus sufficient to check the isomorphism π](•)! ◦ f ](•)+ (E ′(•)) ∼−→
f
′′](•)
+ ◦ π′](•)!(E ′(•)), which is already known following Theorem 9.4.4.3.

Remark 13.2.3.8. In the theorem 13.2.3.7, we can remove the hypothesis of realizability of the morphism
g when we work with overcoherent complexes and when the residue field k is perfect (see later 16.3.3.2).
Remark 13.2.3.9. When logarithmic structures are trivial, f is proper and the residue field k is perfect,
T. Abe has checked that the isomorphism of base change 13.2.3.7.1 is compatible with Frobenius (see
[Abe14a, 5.7]).

13.2.4 Relative duality isomorphism and adjunction for realisable morphisms
Let f : P′ → P be a realizable with respect to T (see 13.2.3.3) morphism of separated V-smooth formal
schemes. Let T be a divisor of P such that T ′ := f−1(T ) is a divisor of P ′.

Theorem 13.2.4.1 (Relative duality isomorphism). For any E ′(•) ∈ LD−→
b
Q,coh(“D(•)

P′/S(T ′)) with proper

support over P , we have the isomorphism of LD−→
b
Q,coh(“D(•)

P/S(T )) of the form

f
(•)
+ ◦ D(E ′(•)) ∼−→ D ◦ f (•)

+ (E ′(•)).
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Proof. Let X ′ be the support of E ′(•) ∈ LD−→
b
Q,coh(“D(•)

P′/S(T ′)). By assumption, X ′ is proper over P via f .
Let π : P′′ → P be a proper morphism of smooth V-formal schemes, let u : P′ ↪→ P′′ be an immersion
of formal schemes such that f = π ◦ u. Let v : P′ ↪→ U′′ be a closed immersion, and j : U′′ ↪→ P′′ be an
open immersion such that u = j ◦ v. Since X ′ is proper over P via f and since π is proper, then X ′ is
proper over P ′′ via u. Since v is proper, then it follows from 9.4.2.6 that we get E ′′(•) := v

(•)
+ (E ′(•)) ∈

LD−→
b
Q,coh(“D(•)

U′′/S(T ′′ ∩ U ′′)) with proper support over P ′′ via j.
From the relative duality isomorphism in the case of a closed immersion (see 9.3.2.8), we have

Dv(•)
+ (E ′(•)) ∼−→ v

(•)
+ D(E ′(•)). Set E ′′(•) := v

(•)
+ (E ′(•)). Using 13.2.3.4, we get j(•)

+ E ′′(•) ∈ LD−→
b
Q,coh(“D(•)

P′′/S(T ′′))

and it has his support inX ′. Hence, Dj(•)
+ E ′′(•) ∈ LD−→

b
Q,coh(“D(•)

P′′/S(T ′′)) and has its support inX ′. Hence,

Dj(•)
+ E ′′(•)

∼−→ j
(•)
+ j(•)!Dj(•)

+ E ′′(•) (use 13.2.3.6). Moreover, this is obvious that j(•)!Dj(•)
+ E ′′(•)

∼−→
Dj(•)!j

(•)
+ E ′′(•)

∼−→ DE ′′(•). Hence, Dj(•)
+ E ′′(•)

∼−→ j
(•)
+ DE ′′(•). By composition we get Du(•)

+ (E ′(•)) ∼−→
u

(•)
+ D(E ′(•)). Since π is proper, from the relative duality isomorphism in the proper case (see 9.4.5.2), we

obtain the first isomorphism Dπ(•)
+ u

(•)
+ (E ′(•)) ∼−→ π

(•)
+ Du(•)

+ (E ′(•)) ∼−→ π
(•)
+ u

(•)
+ D(E ′(•)). Hence, we are

done.

Corollary 13.2.4.2. Let E ′ ∈ Db
coh(D†P′/S(†T ′)Q) with proper support over P , and E ∈ Db

coh(D†P/S(†T )Q).
We have the isomorphisms

RHomD†
P/S

(†T )Q
(fT,+(E ′), E)

∼−→ Rf∗R HomD†
P′/S

(†T ′)Q
(E ′, f !

T (E)). (13.2.4.2.1)

R HomD†
P/S

(†T )Q
(fT,+(E ′), E)

∼−→ RHomD†
P′/S

(†T ′)Q
(E ′, f !

T (E)). (13.2.4.2.2)

Proof. Using 13.2.4.1, we can copy word by word the proof of 9.4.5.4.

Corollary 13.2.4.3. We have the following properties.

(a) Let E ′ ∈ Db
coh(D†P′/S(†T ′)Q) with proper support over P . We have the adjunction morphism E ′ →

f !
T fT+(E ′).

(b) Let E ∈ Db
coh(D†P(†T )Q) such that f !

T (E) ∈ Db
coh(D†P′(†T ′)Q). We have the adjunction morphism

fT+f
!
T (E)→ E.

(c) Suppose f is proper and smooth. Then fT+ : Db
coh(D†P′(†T ′)Q) → Db

coh(D†P(†T )Q) is a right adjoint
functor of f !

T : Db
coh(D†P(†T )Q)→ Db

coh(D†P′(†T ′)Q).
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Chapter 14

On the preservation of the coherence
by extraordinary inverse image of a
closed immersion

In the first section of this chapter, we give some preliminaries topological concerning locally convex K-
vector spaces. We recall notably the definition of spaces of type LB and we consider some points on the
completed tensor products of locally convex module in the context which we will be useful in the sequence
of this work. In the second section, we naturally endow the overconvergent isocrystals and the sheaf of
differential operators of finite level with overconvergent singularities with a canonical structure of space
of type LB. After some topological properties on pushforwards and extraordinary pullbacks by a closed
immersion, we establish in the next section the main result described in the beginning of introduction
of this paper. We end with some applications of the main theorem with overconvergent log-isocrystals
satisfying some non-Liouville type properties.

14.1 Topological preliminaries
Let us denote by C the category of locally convex topological K-vector spaces. Let us denote by D the
full subcategory of C consisting of separated and complete K-vector spaces.

14.1.1 LB-spaces
We aggregate everything we will need on K-vector spaces of LB-type, above all of the lemma 14.1.1.7
but also of its proof (see the step 2 of the proof of 14.3.3.8). Recall that since C has filtrant inductive
limits and projective limits, then a strict morphism of C is a morphism such that Coim(f) → Im(f) is
an isomorphism (see Definition [KS06, 5.1.4]).

14.1.1.1. Let (Vi)i∈I be a filtrant inductive system of C. Let us denote by V := lim−→i Vi the inductive
limit computed in C. As K-vector space, V is the inductive limit of (Vi)i∈I computed in the category of
K-vector spaces. The locally convex topology on V is the finest one making continuous every canonical
morphisms Vi → V .

Lemma 14.1.1.2. Let (Vi)i∈I and (Wi)i∈I be two filtrant inductive systems of C, fi : Vi → Wi be a
compatible family of morphisms of C and f : lim−→i Vi → lim−→iWi the morphism of C induced by passage to
the inductive limit. If for any i the image of fi is dense in Wi then the image of f is dense.

Proof. Let F be a closed subset of lim−→iWi containing the image of f . Then the inverse image of F
on Wi is a closed subset containing the image of fi which is dense in Wi. Hence, the canonical arrow
Wi → lim−→iWi factorizes always via Wi → F . Hence F = lim−→iWi.

Lemma 14.1.1.3. Let (Vi)i∈I and (Wi)i∈I be two filtrant inductive systems of C, fi : Vi → Wi be a
compatible family of surjective, strict morphisms of C and f : lim−→i Vi → lim−→iWi be the morphism of C
induced by passage to the inductive limit. Then f is a surjective strict morphism.
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Proof. The surjectivity and the continuity of f is already known. Let us denote byW := lim−→iWi. LetW ′

be an object of C and g : W →W ′ be a K-linear morphism such that g ◦ f is continuous. Let us denote
by gi : Wi → W ′ the composition of the canonical morphism Wi → W with g. As fi is surjective and
strict, as gi ◦ fi : Vi →W ′ is continuous, then the morphisms gi are continuous. Following the universal
property of the inductive limit, this yields g is also continuous.

Lemma 14.1.1.4. Let (Vi)i∈I be a filtrant inductive system of C and J be a cofinal subpart of I. We
have the canonical homeomorphism lim−→j∈JVj

∼−→ lim−→i∈IVi whose underlying bijection is the canonical
bijection.

Proof. Straightforward.

Definition 14.1.1.5. A “K-vector space of type LB” is a separated locally convex K-vector space V
such that there exist, for any integer m ∈ N, some continuous morphisms of Banach K-vector spaces
Vm → Vm+1 and a homeomorphism of the form lim−→m Vm

∼−→ V . When the field K is clearly determined
we simply say LB-space.

Remark 14.1.1.6. In the definition of K-vector space of type LB of 14.1.1.5 and with its notations, it is
not restrictive to suppose that the morphisms Vm → Vm+1 are injective. Indeed, denote by jm : Vm → V ,
Wm := Vm/ ker jm endowed with the quotient topology, then Wm. Since V is separated then so is Wm.
SinceWm is also a quotient of a Banach K-vector space, thenWm is a Banach K-vector space. Moreover,
we check by using the universal property that the canonical K-linear morphisms (which are mutually
inverse to each other) lim−→mVm → lim−→mWm and lim−→mWm → lim−→mVm are continuous.

Lemma 14.1.1.7. A separated quotient of a LB-space is an LB-space.

Proof. For any integer m ∈ N, let Vm → Vm+1 be a continuous monomorphism of Banach K-vector
spaces. We denote by V := lim−→m Vm and im : Vm ↪→ V the canonical continuous monomorphisms. Let
W be a sub-K-space of V . Let G := V/W be the quotient of V by W which is separated for the quotient
topology. Let us denote by G(m) := Vm/i

−1
m (W ) endowed with the quotient topology, i.e. such that

the canonical surjection πm : Vm � G(m) is strict. Let jm : G(m) → G be the canonical injection. As
jm ◦ πm is continuous, as πm is strict, then jm is continuous. Since G is separated and jm is an injective
continuous morphism, then G(m) is separated. Hence G(m) is a Banach K-vector space. It follows from
14.1.1.3 that the left morphism of the canonical diagram

lim−→mG
(m) ∼ // G

lim−→m Vm
∼ //

OOOO

V,

OOOO
(14.1.1.7.1)

is a strict epimorphism. Since the right morphism is a strict epimorphism, since the bottom morphism
is a homeomorphism, then the top isomorphism is a homeomorphism.

14.1.2 Projective topology of a tensor product on a K-algebra
Let D be a K-algebra (non-necessarily commutative and without topology) such that K is in the center
of D. Let us denote by CD,l (resp. CD,r) the full subcategory of C of objects of C such that the underlying
structure of K-vector space extends to a structure of left (resp. right) D-module.

14.1.2.1. (Continuous D-balanced map and completion). Let V be an object of CD,r, W be an object
of CD,l and U be an object of C. We endow V ×W with the product topology, i.e. V ×W is the product
computated in C. Let β : V ×W → U be a D-balanced map, i.e. a K-bilinear map such that for any
v ∈ V , w ∈ W and d ∈ D we have β(vd, w) = β(v, dw). Moreover, following [Sch02, 17.1], as β is
K-bilinear, the map β is continuous if and only if it is continuous at zero, i.e., for any open V-submodule
of L of U , there exist some open V-submodules M of V and N of W such that β(M ×N) ⊂ L.

Let us suppose β continuous. Hence we have the K-bilinear morphism

lim←−
M,N

V ×W/M ×N → lim←−
L

U/L,
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where L (resp. M , resp. N) goes through the open lattices of U (resp. V , resp. W ). We denote this
application by β̂ : “V × Ŵ → “U . As the open lattices of “U are of the form lim←−

L

L0/L where L0 is an open

lattice of U and L goes through the open lattices of U included in L0 (and similarly for “V × Ŵ ), then
we check that β̂ is continuous. As the image of V ×W in “V × Ŵ is dense, we check that β̂ is the unique
continuous K-bilinear map inducing the commutative square :“V × Ŵ β̂ // “U

V ×W
β //

OO

U.

OO (14.1.2.1.1)

But, to get the property that β̂ is D-balanced, we need further topological hypotheses on D (see 14.1.3.4).

Definition 14.1.2.2. Let V be an object of CD,r and W be an object of CD,l.

(a) By endowing V × W with the product topology, the projective topology on the tensor product
V ⊗D W is by definition a locally convex K-vector space topology which is the finest one such
that the canonical K-bilinear morphism ρV,W : V × W → V ⊗D W is continuous. So, a lattice
L ⊂ V ⊗D W is open if and only if ρ−1

V,W (L) is open. As we will only consider projective topologies
on tensor products, it might happen that we omit indicating “ projective”.

(b) The object V ⊗D W satisfies the following universal property: for any D-balanced and continuous
map of the form φ : V ×W → U , there exists a unique morphism in C of the form θ : V ⊗DW → U
such that θ ◦ ρV,W = φ. This yields that we get in fact the canonical bifunctor

−⊗D − : CD,r × CD,l → C.

Lemma 14.1.2.3. Let V be an object of CD,r and W be an object of CD,l. We suppose that there exist
a V-submodule V0 of V (resp. W0 of W ) such that a basis of open neighborhoods at zero of V (resp.
W ) is given by the family (pnV0)n∈N (resp. (pnW0)n∈N). Let us denote by U0 :=< ρV,W (V0 ×W0) >,
where <? > means the “V-submodule of V ⊗D W generated by ?”. Then a basis of open neighborhoods
on V ⊗D W endowed with its projective topology (see 14.1.2.2) is given by (pnU0)n∈N.

Proof. Since V0 and W0 are respectively lattices of V and W , then U0 is a lattice of U . For any integer
n ∈ N, since ρ−1

V,W (pnU0) ⊃ pn(V0 ×W0), then the pnU0 are open subsets of V ⊗D W . Conversely, let L
be an open V-submodule of V ⊗DW . Since ρ−1

V,W (L) is open, then there exists a large enough integer n
such that ρ−1

V,W (L) ⊃ pn(V0 ×W0). Then we have L ⊃ ρV,W (pn(V0 ×W0)) = p2nρV,W (V0 ×W0). Since
L is a V-submodule of V ⊗D W , this yields L ⊃ p2nU0.

14.1.2.4. Let D′ → D be a homomorphism of K-algebras such that K is also in the center of D′.
Let V be an object of CD,r and W be an object of CD,l. Since the composition morphism V ×W →
V ⊗D′W → V ⊗DW is the canonical morphism, using the definition of the topologies defined on V ⊗D′W
and V ⊗DW (see 14.1.2.2.a), then we can check the strictness of the epimorphism V ⊗D′W → V ⊗DW .

Lemma 14.1.2.5. Let V → V ′′ (resp. W →W ′′) be a strict epimorphism of CD,r (resp. of CD,l). Then
the epimorphisms V ⊗D W → V ⊗D W ′′ and V ⊗D W → V ′′ ⊗D W are strict.

Proof. By symmetry, let us check it only for the first epimorphism. Let L be a lattice of V ⊗DW ′′. Since
V ×W → V ×W ′′ is a strict morphism of C, by using the definition of the topology on V ⊗D W ′′, we
can check that L is open if and only if its inverse image on V ×W is open. By using the definition of
the topology on V ⊗DW , this latter property is equivalent to the fact that its inverse image on V ⊗DW
is an open lattice. Hence we are done.
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14.1.3 Tensor products on locally convex K-algebras, completions
14.1.3.1. With the notations of 14.1.2, let V be an object of CD,r andW be an object of CD,l. We denote
by V“⊗DW the separated completion of V ⊗DW and iV,W : V ⊗DW → V“⊗DW the canonical morphism.
Using the universal property of the tensor product and that of the separated completion we get the
following universal property : for any continuous and D-balanced map of the form φ : V ×W → U with
U ∈ D, there exists a unique morphism in D of the form θ : V“⊗DW → U such that θ ◦ iV,W ◦ ρV,W = φ.

Hence, we get the canonical bifunctor

−“⊗D− : CD,r × CD,l → D.

Definition 14.1.3.2. Let D be a K-algebra such that K is in the center of D.

(i) We say that D is a “locally convex K-algebra”, if D is endowed with a locally convex K-vector space
topology such that the multiplication is a continuousK-bilinear map. A “morphism of locally convex
K-algebras” is a morphism of K-algebras which is continuous for the respective topologies. We say
that D is a Banach K-algebra if D is a locally convex K-algebra whose underlying topology makes
D a Banach K-vector space.

When D is moreover of type LB, we say that D is a “locally convex K-algebra of type LB”.

(ii) Let D be a locally convex K-algebra.

(a) A “locally convex left D-module” is a left D-moduleM endowed with a locally convex K-vector
space topology such that the structural exterior law D ×M → M is a continuous K-bilinear
map. We have a similar notion of “locally convex right D-module”.

(b) A “Banach left D-module” is a locally convex left D-module which is also a Banach K-vector
space (with respect to its underlying topology).

(c) A “ LB left D-module” is a locally convex left D-module which is also a K-vector LB-space
(with respect to its underlying topology). Even if we do not clarify K is this terminology,
beware it might depend we it.

(d) A “morphism of locally convex left D-modules” (resp. “morphism of Banach left D-modules”,
resp “morphism of LB left D-modules”) is a morphism of left D-modules which is also a mor-
phism of locally convex K-vector spaces (resp. Banach K-vector spaces, resp. LB-spaces).

(e) We get similar definitions by replacing left by right.

(iii) Let (D,D′) be two locally convex K-algebra. A “locally convex (D,D′)-bimodule” is a (D,D′)-
bimoduleM endowed with a locally convexK-vector space topology such thatM is a locally convex
left D-module and a locally convex right D′-module.

Lemma 14.1.3.3. Let D be a locally convex K-algebra, φ : M → N be a morphism of locally convex left
(resp. right) D-modules.

(a) The structure of separated complete locally convex K-vector space on “D extends to a canonical struc-
ture of locally convex K-algebra. Moreover, the canonical morphism D → “D is a morphism of locally
convex K-algebras.

(b) The induced morphism by separated completion φ̂ : M̂ → “N is a morphism of locally convex “D-
modules. Moreover, the canonical morphism M → M̂ is a morphism of locally convex D-modules.

Proof. Let’s just prove the non-respective case. Following 14.1.2.1.1, the structural continuousK-bilinear
map µD : D×D → D induces the continuous K-bilinear map µ

D̂
:= ”µD : “D× “D → “D (uniquely) fitting

into the commutative diagram: “D × “D µ
D̂ // “D

D ×D
µD //

OO

D.

OO (14.1.3.3.1)

As the two maps µ
D̂
◦ (µ

D̂
× id), µ

D̂
◦ (id× µ

D̂
) : “D × “D × “D → “D coincide after composition with the

canonical morphism D×D×D → “D×“D×“D whose image is dense, we get µ
D̂
◦(µ

D̂
×id) = µ

D̂
◦(id×µ

D̂
),
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i.e. the multiplication is associative. We check similarly the other properties making “D a locally convex
K-algebra. It is clear that the continuous canonical morphism D → “D is then a morphism of locally
convex K-algebras.

Following 14.1.2.1, the structural continuous K-bilinear maps µM : D×M →M and µN : D×N → N
induce the continuous K-bilinear maps µ“M := µ̂M : “D × M̂ → M̂ and µ

N̂
:= ”µN : “D × “N → “N . In the

same way, we check that µ“M and µ
N̂

induce respectively a canonical structure of “D-module locally convex
on M̂ and “N . As the diagram “D × M̂ µ

M̂ //

id×φ̂��
M̂
φ̂��“D × “N µ

N̂ // “N
is commutative after composition with D×M → “D× M̂ whose image is dense, this one is commutative.
Hence we are done.

Lemma 14.1.3.4. Let D be a locally convex K-algebra, M be a locally convex right D-module, N be
a locally convex left D-module and U be a locally convex K-vector space. Let β : M × N → U be a
D-balanced and continuous map. The application β̂ : M̂ × “N → “U (see 14.1.2.1) is then a “D-balanced
and continuous map.

Proof. We already know that the map β̂ is continuous. Let us consider the square :

M̂ × “D × “N µ
M̂
×id
//

id×µ
N̂��

M̂ × “N
β̂��

M̂ × “N β̂ // “U, (14.1.3.4.1)

where µ“M : M̂ × “D → M̂ and µ
N̂

: “D× “N → “N are the canonical structural continuous K-bilinear maps.
As the image of M ×D×N in M̂ × “D× “N is dense, the square 14.1.3.4.1 is then commutative because
so is without the hats.

Proposition 14.1.3.5. Let D be a locally convex K-algebra, M be a locally convex right D-module and
N be a locally convex left D-module. Hence we have the canonical isomorphism in D of the form:

M“⊗DN ∼−→ M̂“⊗
D̂
“N.

Proof. By functoriality of the separated completion functor, we have the morphism in D of the form:
M“⊗DN → M̂“⊗

D̂
“N. To construct the inverse morphism, by using the universal property of the tensor

product, it is about defining canonically a continuous map of the form M̂ × “N → M“⊗DN which is“D-balanced. This can be done by using lemma 14.1.3.4 applied in the case where β is equal to the
canonical map M ×N →M ⊗D N .

14.2 LB-spaces in the theory of D-modules arithmetic
We set S := Spf V. Unless otherwise stated, we will use the following notations and hypotheses : let
X be an affine, smooth V-formal scheme endowed with local coordinates t1, . . . , td and let ∂1, . . . , ∂d be
the corresponding derivations. Let 0 ≤ r ≤ s ≤ d be some integers. We denote by Z := ∩di=s+1V (ti)
and u : Z ↪→ X the induced closed immersion. We denote by D = V (t1 · · · tr) the relative to X/S strict
normal crossing divisor (the case r = 0 means D is empty). This yields the relative to Z/S strict
normal crossing divisor u−1(D). We set X] := (X,M(D)), Z] := (Z,M(u−1D)) and u] : Z] ↪→ X] the
exact closed immersion of S-log-smooth log formal schemes. Let f ∈ OX, f0 ∈ OX be its reduction
modulo π, T := V (f0) the corresponding divisor of X. We suppose that T ∩ Z is a divisor of Z. Let
λ0 ∈ L(N). To lighten the notations, we put then B̃(m)

X (T ) := B(λ0(m))
X (T ), B̃(m)

Z (T∩Z) := B(λ0(m))
Z (T∩Z),‹D(m)

X]
:= B̃(m)

X (T )“⊗OX
“D(m)

X]
, ‹D(m)

Z]
:= B̃(m)

Z (T ∩Z)“⊗OZ
“D(m)

Z]
. We set ‹D(m)

X]←Z]
:= “D(m)

X]←Z]
“⊗OZ
B̃(m)
Z (T ∩Z),‹D(m)

Z]→X]
:= B̃(m)

Z (T ∩ Z)“⊗OZ
“D(m)

Z]→X]
, ‹D†

Z]→X]
:= lim−→

m

‹D(m)

Z]→X]
and finally ‹D†

X]←Z]
:= lim−→

m

‹D(m)

X]←Z]
. We
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denote by the corresponding straight letter, the global section of a sheaf on X or Z, e.g. D†
X]/S

(†T )Q :=

Γ(X,D†
X]/S

(†T )Q). We use in this section the notation 4.5.1.1.1 : for any m ∈ N ∪ {∞}, for any

(l1, . . . , lr+s) = l ∈ Nr+s and (k1, . . . , kd) = k ∈ Nd, we get an element of respectively D(m)

Z]
and D(m)

X]
by

setting

∂
〈l〉(m)

(r) := ∂
〈(l1,...,lr,0,...,0)〉(m)

] ∂〈(0,...,0,lr+1,...,lr+s)〉(m) ,

∂
〈k〉(m)

(r) := ∂
〈(k1,...,kr,0,...,0)〉(m)

] ∂〈(0,...,0,kr+1,...,kd)〉(m) . (14.2.0.0.1)

When m =∞, we better write ∂[k]

(r).

14.2.1 Canonical topology of the global section of a log-overconvergent isocrys-
tal

14.2.1.1. We have the canonical isomorphismsOX(†T )Q
∼−→ OX[ 1

f ]†K and ‹B(m)
X (T )

∼−→ A{T}/(fpm+1

T−
p) = OX{ p

fpm+1 } (see 8.7.3.11). This yields the morphism of V-algebras ‹B(m)
X (T ) ↪→ OX[ 1

f ]† (for the

injectivity, see 8.7.4.1.(b)). We have also the canonical inclusion ‹D(m)

X],Q ↪→ D†
X]

(†T )Q.

Definition 14.2.1.2. (Canonical locally convex K-vector space topology of OX(†T )Q). We define the
following topologies.

(a) For any integer m, the canonical Banach K-algebra topology on ‹B(m)
X (T )Q is the one such that a

basis of open neighborhoods at zero is given by (pn‹B(m)
X (T ))n∈N.

(b) We endow OX(†T )Q with a canonical locally convex K-vector space topology which makes the canon-
ical isomorphism OX(†T )Q

∼−→ lim−→
m

‹B(m)
X (T )Q a homeomorphism. We remark that following 14.1.1.4,

this does not depend on the map λ0 ∈ L(N).

Notation 14.2.1.3. Let V be a K-vector and (Vm)m∈N be a sequence of K-vector subspaces of V . We
set
∑∞
m=0 Vm := ∪m∈N

∑n
m=0 Vm.

Proposition 14.2.1.4. The canonical locally convex K-vector space OX(†T )Q defined at 14.2.1.2 is a
locally convex K-algebra (see definition 14.1.3.2). More precisely the following properties hold.

(a) A basis of open neighborhoods of zero of the canonical locally convex K-vector space topology of
OX(†T )Q is given by the family

Ln :=
∞∑
m=0

pnm‹B(m)

X]
(T ).

where n := (nm)m∈N goes through sequences of nonnegative integer.

(b) Moreover Ln is a sub K-algebra of OX(†T )Q for any sequence n.

Proof. Let us check the part (a). Since tensor product commutes with filtrant inductive limits then
Ln ⊗Z Q

∼−→ OX(†T )Q and then Ln is a lattice. The openness of Ln is straightforward, so is the fact
that any open lattice of OX(†T )Q contains Ln for some large enough sequence n.

Let us check the part (b). Let P =
∑
m≥0 p

nmbm and Q =
∑
m≥0 p

nmcm be two elements of Ln, with
bm, cm ∈ ‹B(m)

X]
(T ) null except for a finite number of terms. Then PQ =

∑
m1,m2≥0 p

nm1
+nm2 bm1cm2 .

Set
[PQ]m :=

∑
0≤m1,m2

max{m1,m2}=m

pnm1+nm2 bm1
cm2
∈ pnm‹B(m)

X]
(T ).

Hence PQ =
∑
m≥0Qm ∈ Ln.
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Remark 14.2.1.5. (Canonical normed OX,Q-algebra topology of OX(†T )Q). Since ∩n∈Np
nOX[ 1

f ]
†

= {0},
since we have the canonical isomorphism OX(†T )Q

∼−→ OX[ 1
f ]†K (see 8.7.3.11). then OX(†T )Q can be

endowed with a canonical normed K-algebra topology structure whose a basis of open neighborhoods at
zero is given by (pnOX[ 1

f ]†)n∈N. Endowed with this topology, OX(†T )Q is normed but not of Banach: its
separated completion is OX{ 1

f }K . Let us recall finally that since OX(†T )Q
∼−→ OX[ 1

f ]†K , then OX(†T )Q

is noetherian (see 17.1.1.9).

14.2.1.6. Beware that the topology on OX(†T )Q of 14.2.1.5 is different from that of 14.2.1.2. We will
see that OX(†T )Q is an LB-space for the canonical locally convex topology K-algebra of 14.2.1.2 (see
lemma 14.2.2.1). Since it is more convenient to work with LB-spaces, then we can forget the topology
defined in 14.2.1.5 and when we refer to the canonical locally convex K-algebra topology on OX(†T )Q,
we mean the topology defined in 14.2.1.2.

14.2.1.7. (Canonical topology of a finite type OX(†T )Q-module). Let E be an OX(†T )Q-module of finite
type. Following 8.4.1.11, there exist, for m0 large enough, a ‹B(m0)

X (T )Q-module of finite type E(m0)

and an OX(†T )Q-linear isomorphism of the form ε : OX(†T )Q ⊗B̃(m0)

X
(T )Q

E(m0) ∼−→ E. For any integer

m ≥ m0, we set E(m) := ‹B(m)
X (T )Q ⊗B̃(m0)

X
(T )Q

E(m0). We endow E(m) with its canonical topology

of Banach ‹B(m)
X (T )Q-module of finite type (equal to the quotient topology via an epimorphism of the

form (‹B(m)
X (T )Q)r → E(m)). Since, for any m, the canonical morphisms of the form (‹B(m)

X (T )Q)r →
(‹B(m+1)

X (T )Q)r are continuous, this yields that the canonical morphism E(m) → E(m+1) is continuous.
By decreeing that ε : lim−→

m

E(m) ∼−→ E is a homeomorphism, we define a structure of locally convex

OX(†T )Q-module on E. Similarly to 14.2.1.9, we can check that this does not depend on the choice of
(m0, E

(m0), ε).

14.2.1.8. (Sheaves of differential operators).

(a) For any integer m ≥ 0, ‹D(m)

X],Q is canonically endowed with a Banach ‹B(m)
X (T )Q-module topology as

follows: the family (pn‹D(m)

X]
)n∈N forms a basis of open neighborhoods at zero. We have similarly a

canonical Banach ‹B(m)
Z (T ∩ Z)Q-module structures on respectively ‹D(m)

Z],Q, ‹D(m)

Z]→X],Q and ‹D(m)

X]←Z],Q

whose basis of open neighborhoods of zero is given by respectively (pn‹D(m)

Z]
)n∈N, (pn‹D(m)

Z]→X]
)n∈N

and (pn‹D(m)

X]←Z]
)n∈N.

(b) The canonical locally convex K-algebra topology on D†
X]

(†T )Q is defined as follows. First, we make
D†

X]
(†T )Q a locally convexK-vector space by decreeing that the canonical isomorphism ofK-algebras

D†
X]

(†T )Q
∼−→ lim−→

m

‹D(m)

X],Q is an homeomorphism, where the right side is endowed with the inductive

limit topology in C and where ‹D(m)

X],Q is endowed with the topology defined above in (a). Similarly to
14.2.1.4, we can check that a basis of open neighborhoods of zero of D†

X]
(†T )Q is given by the family

Ln :=
∑∞
m=0 p

nm‹D(m)

X]
, where n := (nm)m∈N goes through the sequences of nonnegative integers

and that Ln is a ring for any sequence n, which implies that D†
X]

(†T )Q is in fact a locally convex
K-algebra.

Since ‹B(m)
X (T )Q → ‹D(m)

X],Q is continuous, then by taking the inductive limits on the level the morphism
OX(†T )Q → D†

X]
(†T )Q is continuous. Hence, D†

X]
(†T )Q has two structures (the left and the right

one) of locally convex OX(†T )Q-modules.

(c) In the same way, we define on D†
Z]

(†T ∩ Z)Q = lim−→
m

‹D(m)

Z],Q, on ‹D†
Z]→X],Q = lim−→

m

‹D(m)

Z]→X],Q and‹D†
X]←Z],Q = lim−→

m

‹D(m)

X]←Z],Q a canonical locally convex K-vector space topology. We remark that

following the lemma 14.1.1.4 we can replace the index N by a cofinal subset without changing the
topology. Moreover, ‹D†

Z]→X],Q is a locally convex (D†
Z]

(†T ∩Z)Q, D
†
X]

(†T )Q)-bimodule and ‹D†
X]←Z],Q

is a locally convex (D†
X]

(†T )Q, D
†
Z]

(†T ∩ Z)Q)-bimodule.
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14.2.1.9. (Canonical topology of a coherent left D†
X]

(†T )Q-module). Let E be a coherent left D†
X]

(†T )Q-
module.

We endow E with a canonical locally convex D†
X]

(†T )Q-module topology as follows. Following
8.4.1.11, there exist for any large enough m0 a ‹D(m0)

X],Q -module of finite type E(m0) and a D†
X]

(†T )Q-
linear isomorphism of the form ε : D†

X]
(†T )Q ⊗D̃(m0)

X],Q

E(m0) ∼−→ E. For any integer m ≥ m0, we set

E(m) := ‹D(m)

X],Q ⊗D̃(m0)

X],Q

E(m0). Following 7.5.1.8, we endow E(m) with its Banach ‹D(m)

X],Q-module of finite

type topology (equal to the quotient topology via an epimorphism of the form (‹D(m)

X],Q)r → E(m)). As for

any m the canonical morphisms of the form (‹D(m)

X],Q)r → (‹D(m+1)

X],Q )r are continuous, this yields that the
canonical morphism E(m) → E(m+1) is continuous. By decreeing that the isomorphism ε : lim−→

m

E(m) ∼−→ E

is a homeomorphism, we get a structure of locally convex left D†
X]

(†T )Q-module on E.
This does not depend on the choice of (m0, E

(m0), ε). Indeed, for m′0 large enough let E′(m
′
0) be

a ‹D(m′0)

X],Q -module of finite type and a D†
X]

(†T )Q-linear isomorphism of the form ε′ : D†
X]

(†T )Q ⊗D̃(m0)

X],Q

E′(m
′
0) ∼−→ E. For m ≥ m′0, we set E′(m) := ‹D(m)

X],Q ⊗D̃(m′
0
)

X],Q

E′(m
′
0). Following 8.4.1.11, for m′′0 large

enough, there exist for any m ≥ m′′0 some ‹D(m)

X],Q-linear isomorphisms εm : E′(m) ∼−→ E(m) such that ε ◦
ε† = ε′, with ε† := lim−→

m

εm. Moreover, following [BGR84, 3.7.3] (indeed, we remark that the commutativity

of rings is useless), the maps εm are homeomorphisms. Taking the inductive limit, this yields that ε† is
a homeomorphism. Using 14.1.1.4, this implies the canonicity of the topology on E.

Proposition 14.2.1.10. (Canonical topology of the global section of a log-overconvergent isocrystal).
Let E be a coherent D†

X]
(†T )Q-module which is also a finitely generated projective OX(†T )Q-module for

the induced structure. The topology on E as coherent D†
X]

(†T )Q-module is the same as that as finite
type OX(†T )Q-module. Hence, we will call it the canonical topology on the (locally free) overconvergent
isocrystal E.

Proof. Let E := D†
X]

(†T )Q ⊗D†
X]

(†T )Q
E ∈ MIC††(X], T/S) (see notation 11.2.1.4) be the log isocrystal

on X] with overconvergent singularities along T associated with E. Following 11.2.1.9, increasing λ0 ∈
L(N) if necessary, there exists E(0) a topologically nilpotent ‹D(0)

X],Q-module, coherent as B̃(0)
X (T )Q-module

satisfying both conditions of 11.2.1.7.(b). By taking global section functor and using theorem A, it
follows from 11.2.1.9.1 that the canonical morphism‹B(m)

X (T )Q ⊗B̃(0)

X
(T )Q

E(0) → ‹D(m)

X],Q ⊗D̃(0)

X],Q

E(0)

is an isomorphism. Following 7.5.2.6, the canonical topology of ‹B(m)
X (T )Q ⊗B̃(0)

X
(T )Q

E(0) as finite type‹B(m)
X (T )Q-module is the same as that as finite type ‹D(m)

X],Q-module. Hence we are done.

14.2.2 Examples of LB-spaces
Lemma 14.2.2.1. (a) The canonical locally convex K-algebra topology on OX(†T )Q (see 14.2.1.2.b) is

finer than its normed K-algebra topology (see 14.2.1.5).

(b) The canonical locally convex K-algebra OX(†T )Q is of type LB.

Proof. a) Since we have the monomorphism of V-algebras ‹B(m)
X (T ) ↪→ OX[ 1

f ]†, then the canonical mor-

phism of K-algebras ‹B(m)
X (T )Q ↪→ OX(†T )Q is continuous, when OX(†T )Q is endowed with its topology

of normed K-algebra. By taking the inductive limit, this yields the result.
b) The first part implies that the canonical locally convex K-algebra topology on OX(†T )Q is sepa-

rated. Hence, this is an LB-space.

Lemma 14.2.2.2. Let N ⊂ (OX(†T )Q)r be a monomorphism of OX(†T )Q-modules. Then N is closed in
(OX(†T )Q)r for the topology induced by the canonical topology of (OX(†T )Q)r.
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Proof. Let us denote by M := (OX(†T )Q)r/N and by M0 the image of the composite morphism
(OX[ 1

f ]†)r ⊂ (OX(†T )Q)r � M . We endow M with the quotient topology (for the canonical topol-
ogy of (OX(†T )Q)r). Hence we have to check that M is separated for this topology. As for any integer
n the V-module pn(OX[ 1

f ]†)r is open in (OX(†T )Q)r (see 14.2.2.1), the V-module pnM0 is then open in
M . Moreover, as OX[ 1

f ]† is noetherian and as OX[ 1
f ]† → OX{ 1

f } is faithfully flat, as M0 is a finite type
OX[ 1

f ]†-module, then M0 is separated for the p-adic topology (see [Mat89, Theorems 8.10 and 8.12]), i.e.
∩n∈Np

nM0 = {0}. This yields that M is separated.

Proposition 14.2.2.3. Finitely generated OX(†T )Q-modules are OX(†T )Q-modules of type LB (for the
canonical topology). Moreover, any OX(†T )Q-submodule of a finitely generated OX(†T )Q-module M is
closed in M for the canonical topology of M .

Proof. Let M be a finite type OX(†T )Q-module endowed with its canonical topology. There exists an
epimorphism of OX(†T )Q-modules of the form (OX(†T )Q)r � M . Following 14.2.3.2, this morphism is
strict with respect to their canonical topologies. Using 14.2.2.2 this yields that M is separated and then
M is an OX(†T )Q-module of type LB. If M ′ is an OX(†T )Q-submodule of M , then the module M/M ′ is
separated for the induced quotient topology by M . Thanks to 14.2.3.2 this yields that M ′ is closed in
M .

Remark 14.2.2.4. Let I ⊂ (D†
X]

(†T )Q)r be a coherent left D†
X]

(†T )Q-submodule. This is not clear that
these inclusions are strict for the respective canonical topologies nor that I is closed in (D†

X]
(†T )Q)r.

However, following a communication of Tomoyuki Abe, the coherent D†
X]

(†T )Q-modules are also spaces
of type LB.

Proposition 14.2.2.5. Let (nm)m∈N be a strictly increasing sequence of nonnegative integers. The
locally convex K-vector space lim−→

m

‹D(nm)

X],Q (endowed with the inductive limit topology in the category of

locally convex K-vector spaces) is an LB-space.

Proof. Following 14.1.1.4, it is sufficient to treat the case where nm = m. As the K-vector spaces ‹D(m)

X],Q

are Banach spaces, it only remains to check the separateness of lim−→
m

‹D(m)

X],Q. With notation 14.2.0.0.1, let us

denote by L the V-submodule of D†
X]

(†T )Q of elements which can be written of the form
∑
k∈Nd ak∂

[k]

(r)

with ak ∈ OX[ 1
f ]† (and the sum has to converge in D†

X]
(†T )Q). Moreover, as pnL ⊃ pnD†

X]
(†T ) ⊃∑∞

m=0 p
n‹D(m)

X]
(see notation 14.2.1.3), then pnL is an open subset of D†

X]
(†T )Q for any integer n. By

uniqueness of the writing of the form
∑
k∈Nd ak∂

[k]

(r) of elements of L, we check that ∩n∈Np
nL = {0}.

Hence, we get the required separateness.

Proposition 14.2.2.6. The canonical topologies are that defined in 14.2.1.8.

(a) For any integer m ∈ N, let V (m) be a locally convex left ‹D(m)

Z],Q-module and V (m) → V (m+1) be a
continuous morphism. Let (Nm)m∈N, (N ′m)m∈N and (N ′′m)m∈N be three strictly increasing sequences
of nonnegative integers such that N ′′m ≤ max{Nm, N ′m} for any m ∈ N. With the notations of
14.1.3.1, the canonical isomorphism

lim−→
m

‹D(N ′m)

X]←Z],Q
“⊗
D̃

(N′′m)

Z],Q

V (Nm) ∼−→ lim−→
m

‹D(m)

X]←Z],Q
“⊗
D̃

(m)

Z],Q

V (m). (14.2.2.6.1)

is then a homeomorphism.

(b) The locally convex K-vector spaces

lim−→
m

‹D(Nm)

Z]→X],Q, lim−→
m

‹D(Nm)

X]←Z],Q and lim−→
m

‹D(m)

X]←Z],Q
“⊗
D̃

(m)

Z],Q

‹D(m)

Z]→X],Q

are LB-spaces.

Proof. We can check the first assertion similarly to 14.1.1.4. For the second assertion, we proceed
similarly to 14.2.2.5.
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14.2.3 Continuity, strictness
Lemma 14.2.3.1. Let φ : E → E′ be a morphism of coherent D†

X]
(†T )Q-modules (resp. of finite type

OX(†T )Q-modules). Endowing E and E′ with their canonical topologies (see respectively 14.2.1.9 and
14.2.1.7), the morphism φ is continuous.

Proof. Following 8.4.1.11, there exist for a large enough nonnegative integer m0 a morphism of ‹D(m0)

X],Q -
modules of finite type φ(m0) : E(m0) → E′(m0) such that D†

X]
(†T )Q ⊗D̃(m0)

X],Q

φ(m0) is isomorphic to φ. As

φ(m0) is continuous for the canonical topologies (see [BGR84, 3.7.3]), this yields that φ is continuous.
The respective case is treated in a similar way.

Lemma 14.2.3.2. Let φ : E � E′ be an epimorphism of coherent D†
X]

(†T )Q-modules (resp. of finite
type OX(†T )Q-modules). Then the morphism φ is strict.

Proof. Following 8.4.1.11 there exists for a large enough nonnegative integer m0 a morphism of finite
type ‹D(m0)

X],Q -modules φ(m0) : E(m0) → E′(m0) such that D†
X]

(†T )Q ⊗D̃(m0)

X],Q

φ(m0) is isomorphic to φ. As

we have D†
X]

(†T )Q ⊗D̃(m0)

X],Q

Coker(φ(m0)) = {0}, increasing m0 if necessary, we can suppose that φ(m0) is

surjective. Then so is ‹D(m)

X],Q⊗D̃(m0)

X],Q

φ(m0), for any integer m ≥ m0. Moreover, these latter epimorphisms

are also strict and continuous for the respective Banach topologies (see [BGR84, 3.7.3, corollary 5]).
Taking the inductive limit, this yields that φ is strict (use 14.1.1.3). The respective case is treated in a
similar way.

Proposition 14.2.3.3. For some integers r, s ≥ 0, let φ be a left D†
X]

(†T )Q-linear morphism of the form
φ : (D†

X]
(†T )Q)r → (D†

X]
(†T )Q)s. Let ψ be a right D†

X]
(†T )Q-linear morphism of the form ψ : (D†

X]
(†T )Q)r →

(D†
X]

(†T )Q)s. With notation 9.3.4.6, the morphisms φ, u∗l (φ), u∗r (ψ) are continuous for the respective
canonical topologies (see the definitions of 14.2.1.8).

Proof. 1) The continuity of φ is a consequence of the lemma 14.2.3.1.
2) Let us check now that u∗l (φ) is continuous. For any nonnegative integer n, let us denote by

$n the surjective right D†
X]

(†T )Q-linear morphims of the form $n : (D†
X]

(†T )Q)n � (‹D†
Z]→X],Q)n. As

u∗l (φ)◦$r = $s◦φ is continuous, it is sufficient to establish that $r is a continuous and strict morphism.
As the canonical surjection ‹D(m)

X],Q → ‹D(m)

Z]→X],Q sends ‹D(m)

X]
into ‹D(m)

Z]→X]
, this one is then continuous.

Following Banach open mapping theorem, this surjective and continuous morphism of Banach K-vector
spaces is then strict. Using the lemma 14.1.1.3, this yields that so is $r by taking the inductive limit on
the level.

3) To validate the continuity of u∗r (ψ), we proceed in the same way as the step 2).

14.3 Preservation of the coherence by local cohomological func-
tor

Let u : Z ↪→ X be a closed immersion of separated, quasi-compact and smooth V-formal schemes, T be
a divisor of X such that T ∩ Z is a divisor of Z. Let D be a relative to X/S strict normal crossing
divisor such that u−1(D) is a relative to Z/S strict normal crossing divisor. We set X] := (X,M(D)),
Z] := (Z,M(u−1D)) and we denote by u] : Z] ↪→ X] the exact closed immersion of smooth logarithmic
formal schemes on V. Let λ0 : N → N be an increasing map such that λ0(m) ≥ m, for any m ∈ N. To
lighten the notations, we put then B̃(m)

X (T ) := B(λ0(m))
X (T ), B̃(m)

Z (T ∩ Z) := B(λ0(m))
Z (T ∩ Z), ‹D(m)

X]
:=

B̃(m)
X (T )“⊗OX

“D(m)

X]
, ‹D(m)

Z]
:= B̃(m)

Z (T ∩Z)“⊗OZ
“D(m)

Z]
. In the same way, ‹D(m)

X]←Z]
:= “D(m)

X]←Z]
“⊗OZ
B̃(m)
Z (T ∩Z),‹D(m)

Z]→X]
:= B̃(m)

Z (T ∩ Z)“⊗OZ
“D(m)

Z]→X]
, ‹D†

Z]→X],Q = lim−→
m

‹D(m)

Z]→X],Q and ‹D†
X]←Z],Q = lim−→

m

‹D(m)

X]←Z],Q.
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14.3.1 Pushforward of level m by u in local coordinates context: exactness
We suppose that X is affine, X/S is endowed with coordinates t1, . . . , td such that for some integers
0 ≤ r ≤ s ≤ d we have D = V (t1 · · · tr), Z := ∩i=ds+1V (ti) and u : Z ↪→ X is equal to the induced exact
closed immersion. Remark, that locally such hypotheses are valid.

Notation 14.3.1.1. For any integer m ≥ 0, we put D(m)

Z]
(T ∩Z) := ‹B(m)

Z (T ∩Z)⊗OZ
D

(m)

Z]
, D(m)

X]←Z]
(T ∩

Z) := D
(m)

X]←Z]
⊗OZ

‹B(m)
Z (T ∩ Z). We endow D

(m)

Z]
(T ∩ Z)Q (resp. D(m)

X]←Z]
(T ∩ Z)Q) with a structure

of normed ‹B(m)
Z (T ∩ Z)Q-algebra whose basis of open neighborhoods at zero is given by the family

(pnD
(m)

Z]
(T ∩ Z))n∈N (resp. (pnD

(m)

X]←Z]
(T ∩ Z))n∈N). In other words, they are the topologies coming

from the induced norms via the inclusions D(m)

Z]
(T ∩ Z)Q ↪→ ‹D(m)

Z],Q and D(m)

X]←Z]
(T ∩ Z)Q ↪→ ‹D(m)

X]←Z],Q.

Moreover, we remark that the separated completion of D(m)

Z]
(T ∩ Z)Q (resp. D(m)

X]←Z]
(T ∩ Z)Q) is ‹D(m)

Z],Q

(resp. ‹D(m)

X]←Z],Q).

Lemma 14.3.1.2. Let V ′ −→
φ

V −→
ψ

V ′′ be an exact sequence of Banach ‹D(m)

Z],Q-modules (see the

definition 14.1.3.2 and the canonical topology of 14.2.1.8). We suppose moreover that φ and ψ are strict
morphisms. Then the sequences‹D(m)

X]←Z],Q ⊗D̃(m)

Z],Q

V ′ −→
id⊗φ

‹D(m)

X]←Z],Q ⊗D̃(m)

Z],Q

V −→
id⊗ψ

‹D(m)

X]←Z],Q ⊗D̃(m)

Z],Q

V ′′, (14.3.1.2.1)‹D(m)

X]←Z],Q
“⊗
D̃

(m)

Z],Q

V ′ −→
id ⊗̂φ

‹D(m)

X]←Z],Q
“⊗
D̃

(m)

Z],Q

V −→
id ⊗̂ψ

‹D(m)

X]←Z],Q
“⊗
D̃

(m)

Z],Q

V ′′ (14.3.1.2.2)

are exact and their morphisms are strict.

Proof. 0) By breaking down the exact sequence into short exact sequences, we can suppose we have in
fact the exact sequence 0→ V ′ −→

φ
V −→

ψ
V ′′ → 0.

1) First, let us check the exactness and strictness of 14.3.1.2.2. For any k ∈ Nd−s, let us denote
by ξk,(m) the image of ∂〈(0,k)〉(m)

(r) via the canonical surjection D
(m)

X]
(T )Q � D

(m)

X]←Z]
(T ∩ Z)Q. The

elements of the K-vector space D(m)

X]←Z]
(T ∩ Z)Q ⊗D(m)

Z]
(T∩Z)Q

V can be written uniquely of the form∑
k∈Nd−s ξk,(m) ⊗ xk, the sum being finite and xk ∈ V . Following 14.1.2.3, if we denote by V0 the

V-submodule of V consisting of elements of norm less or equal to 1 and by U0 the V-submodule of
D

(m)

X]←Z]
(T ∩ Z)Q ⊗D(m)

Z]
(T∩Z)Q

V generated by the canonical image of the arrow D
(m)

X]←Z]
(T ∩ Z)× V0 →

D
(m)

X]←Z]
(T ∩Z)Q⊗D(m)

Z]
(T∩Z)Q

V , then a basis of open neighborhoods of D(m)

X]←Z]
(T ∩Z)Q⊗D(m)

Z]
(T∩Z)Q

V

at zero is given by the family (pnU0)n∈N. This yields that the canonical topology on D
(m)

X]←Z]
(T ∩

Z)Q ⊗D(m)

Z]
(T∩Z)Q

V is induced by the norm ‖
∑
k∈Nd−s ξk,(m) ⊗ xk ‖= maxk ‖ xk ‖. We have the same

description for V ′ or V ′′ instead of V . We get then the short exact sequence of normed K-vector spaces

0→ D
(m)

X]←Z]
(T∩Z)Q⊗D(m)

Z]
(T∩Z)Q

V ′ → D
(m)

X]←Z]
(T∩Z)Q⊗D(m)

Z]
(T∩Z)Q

V → D
(m)

X]←Z]
(T∩Z)Q⊗D(m)

Z]
(T∩Z)Q

V ′′ → 0,

(14.3.1.2.3)
whose morphisms are strict (the strictness of the injection is straightforward from the description of
their norm ; the strictness of the surjection can be checked by using for instance 14.1.2.5 or by an easy
computation). Moreover, following the proposition 14.1.3.5, as V is a Banach ‹D(m)

Z],Q-module, the canonical

morphism D
(m)

X]←Z]
(T ∩ Z)Q“⊗D(m)

Z]
(T∩Z)Q

V → ‹D(m)

X]←Z],Q
“⊗
D̃

(m)

Z],Q

V is an isomorphism. As the separated

completion functor transforms short exact sequences in which the applications are strict morphisms of
normed K-vector spaces in short exact sequences in which the applications are strict morphisms, we
obtain the exact sequence

0→ ‹D(m)

X]←Z],Q
“⊗
D̃

(m)

Z],Q

V ′ → ‹D(m)

X]←Z],Q
“⊗
D̃

(m)

Z],Q

V → ‹D(m)

X]←Z],Q
“⊗
D̃

(m)

Z],Q

V ′′ → 0 (14.3.1.2.4)

whose morphisms are strict.
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2)Let us now check the exactness and strictness of 14.3.1.2.1. As ‹D(m)

X]←Z],Q is a flat left ‹D(m)

Z],Q-module,
we have the same exact sequence than 14.3.1.2.4 where we replace “⊗ by ⊗. The surjective morphism
of this last exact sequence is strict thanks to 14.1.2.5. Finally, the strictness of the injective morphism
is a consequence of the fact that by composing it with the strict monomorphism ‹D(m)

X]←Z],Q ⊗D̃(m)

Z],Q

V →‹D(m)

X]←Z],Q
“⊗
D̃

(m)

Z],Q

V , we still get a strict monomorphism.

Lemma 14.3.1.3. Let m′ ≥ m be two integers, V be a Banach ‹D(m)

Z],Q-module and V ′ be a Banach ‹D(m′)

Z],Q-

module (see the definition 14.1.3.2). Let φ : V ↪→ V ′ be a ‹D(m)

Z],Q-linear continuous injective morphism.

The continuous morphism ‹D(m)

X]←Z],Q
“⊗
D̃

(m)

Z],Q

V → ‹D(m′)

X]←Z],Q
“⊗
D̃

(m′)
Z],Q

V ′ canonically induced by φ is then

injective.

Proof. For any k ∈ Nd−s, let ξk,(m′) be the image of ∂
〈(0,k)〉(m′)
(r) via the canonical surjection D(m′)

X]
(T ∩

Z)Q � D
(m′)

X]←Z]
(T∩Z)Q. Since the BanachK-vector space ‹D(m′)

X]←Z],Q
“⊗
D̃

(m′)
Z],Q

V ′ is isomorphic toD(m′)

X]←Z]
(T∩

Z)Q“⊗D(m′)
Z]

(T∩Z)Q
V ′ (see the proof of 14.3.1.2), then ‹D(m′)

X]←Z],Q
“⊗
D̃

(m′)
Z],Q

V ′ is the K-space consisting of el-

ements which can be written uniquely of the form
∑
k∈Nd−s ξk,(m′) ⊗ x′k, the sum being infinite but

the sequence of elements x′k ∈ V ′ converging to zero when |k| converges to the infinity. As ξk,(m) =

λk,(m,m′)ξk,(m′), for some λk,(m,m′) ∈ V \ {0}, then the canonical morphism ‹D(m)

X]←Z]
(T ∩Z)Q“⊗D̃(m)

Z],Q

V →‹D(m′)

X]←Z]
(T ∩Z)Q“⊗D̃(m′)

Z],Q

V ′ sends the sum
∑
k∈Nd−s ξk,(m)⊗xk on

∑
k∈Nd−s ξk,(m′)⊗λk,(m,m′)φ(xk). Hence

we are done.

Proposition 14.3.1.4. Let 0 → V ′ −→
φ

V −→
ψ

V ′′ be an exact sequence of Banach ‹D(m)

Z],Q-modules (see

the definition 14.1.3.2). We suppose moreover that φ is a strict morphism. The sequence

0→ ‹D(m)

X]←Z],Q
“⊗
D̃

(m)

Z],Q

V ′ −→
id ⊗̂φ

‹D(m)

X]←Z],Q
“⊗
D̃

(m)

Z],Q

V −→
id ⊗̂ψ

‹D(m)

X]←Z],Q
“⊗
D̃

(m)

Z],Q

V ′′ (14.3.1.4.1)

is then exact and id“⊗φ is strict.

Proof. By endowing W := V/V ′ with the quotient topology, we obtain the ‹D(m)

Z],Q-linear, injective and

continuous morphism W ↪→ V ′′. This yields that W is a Banach ‹D(m)

Z],Q-module, because it is a separated
quotient of V . We conclude by applying respectively the lemmas 14.3.1.2 and 14.3.1.3 to the exact
sequence 0→ V ′ → V →W → 0 and to the monomorphism W → V ′′.

Lemma 14.3.1.5. The module ‹D(m)

X]←Z]
⊗
D̃

(m)

Z]

‹D(m)

Z]→X]
is separated for the p-adic topology.

Proof. If E is a finite type left ‹D(m)

Z]
-submodule of ‹D(m)

Z]→X]
, since ‹D(m)

X]←Z]
is the separated p-adic com-

pletion of a free right ‹D(m)

Z]
-module, then ‹D(m)

X]←Z]
⊗
D̃

(m)

Z]

E is separated and complete for the p-adic

topology (see 7.2.1.4). By using 14.3.1.3, this yields that the canonical morphism ‹D(m)

X]←Z]
⊗
D̃

(m)

Z]

E →‹D(m)

X]←Z]
“⊗
D̃

(m)

Z]

‹D(m)

Z]→X]
is also a monomorphism. By taking the inductive limit on E, this yields that the

canonical morphism ‹D(m)

X]←Z]
⊗
D̃

(m)

Z]

‹D(m)

Z]→X]
→ ‹D(m)

X]←Z]
“⊗
D̃

(m)

Z]

‹D(m)

Z]→X]
is injective.

14.3.1.6. We define some normed K-vector spaces as follows.

(a) We endow ‹D(m)

X]←Z],Q ⊗D̃(m)

Z],Q

‹D(m)

Z]→X],Q with the tensor product topology defined in 14.1.2.2, i.e.

following the lemma 14.1.2.3, this is the topology whose basis of open neighborhoods at zero is given
by the family pn‹D(m)

X]←Z]
⊗
D̃

(m)

Z]

‹D(m)

Z]→X]
where n is going through N.
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(b) We endow naturally (‹D(m)

X]←Z]
“⊗
D̃

(m)

Z]

‹D(m)

Z]→X]
)Q with the topology whose basis of open neighborhoods

at zero is given by the family pn‹D(m)

X]←Z]
“⊗
D̃

(m)

Z]

‹D(m)

Z]→X]
with n going through N, which is in fact a

Banach K-vector space.

(c) Since we have the equalityÅ
pn‹D(m)

X]←Z]
“⊗
D̃

(m)

Z]

‹D(m)

Z]→X]

ã
∩
Å‹D(m)

X]←Z],Q ⊗D̃(m)

Z],Q

‹D(m)

Z]→X],Q

ã
= pn‹D(m)

X]←Z]
⊗
D̃

(m)

Z]

‹D(m)

Z]→X]

(this is a consequence of the uniqueness of the writing as described in the proof of 14.3.1.3), then we
get the strict monomorphism of normed K-vector spaces‹D(m)

X]←Z],Q ⊗D̃(m)

Z],Q

‹D(m)

Z]→X],Q ↪→ (‹D(m)

X]←Z]
“⊗
D̃

(m)

Z]

‹D(m)

Z]→X]
)Q. (14.3.1.6.1)

Lemma 14.3.1.7. The morphism 14.3.1.6.1 factors through the canonical (independent of local coordi-
nates) isomorphism of Banach K-vector spaces:‹D(m)

X]←Z],Q
“⊗
D̃

(m)

Z],Q

‹D(m)

Z]→X],Q
∼−→ (‹D(m)

X]←Z]
“⊗
D̃

(m)

Z]

‹D(m)

Z]→X]
)Q. (14.3.1.7.1)

Proof. By using the universal property of separated completions of locally convex K-vector spaces (see
[Sch02, 7.5]), the morphism 14.3.1.6.1 canonically factors through a morphism of the form 14.3.1.7.1.
Since 14.3.1.6.1 is a strict monomorphism of normed K-vector spaces, since (‹D(m)

X]←Z]
“⊗
D̃

(m)

Z]

‹D(m)

Z]→X]
)Q is a

Banach spaces, then this amount to saying that the image of the map 14.3.1.6.1 is dense. By construction
of separated completions of locally convex K-vector spaces (e.g. see the proof of [Sch02, 7.5]), since‹D(m)

X]←Z]
⊗
D̃

(m)

Z]

‹D(m)

Z]→X]
is a dense open lattice of ‹D(m)

X]←Z],Q⊗D̃(m)

Z],Q

‹D(m)

Z]→X],Q, then ‹D(m)

X]←Z]
“⊗
D̃

(m)

Z]

‹D(m)

Z]→X]

is a dense open lattice of ‹D(m)

X]←Z],Q
“⊗
D̃

(m)

Z],Q

‹D(m)

Z]→X],Q. Since ‹D(m)

X]←Z]
“⊗
D̃

(m)

Z]

‹D(m)

Z]→X]
is a dense open lattice

of (‹D(m)

X]←Z]
“⊗
D̃

(m)

Z]

‹D(m)

Z]→X]
)Q, we are done.

14.3.2 Stability of the coherence by local cohomological functor in degree
zero

Proposition 14.3.2.1. Let E be a coherent D†
X]

(†T )Q-module. The sheaf H†0Z (E) is a coherent D†
X]

(†T )Q-
module if and only if H0u]!(E) is a coherent D†

Z]
(†T ∩Z)Q-module. When these two equivalent conditions

are satisfied, we have the isomorphism u]+H
0u]!(E)

∼−→ H†0Z (E) (see notation 13.1.5.3).

Proof. 1) a) Let us suppose that H0u]!(E) is a coherent D†
Z]

(†T ∩ Z)Q-module. Following 9.3.2.3, we
have the canonical adjoint morphism of (coherent) D†

X]
(†T )Q-modules of the form φ : u]+H

0u]!(E) → E .
Let us check that φ is injective.

It follows from Berthelot-Kashiwara theorem (see 9.3.5.9), that the canonical adjoint morphism
H0u]!(E) → u]! ◦ u]+(H0u]!(E)) is an isomorphism and u]+(H0u]!(E))

∼−→ H0u]+(H0u]!(E)). Since the
composition H0u]!(E) → H0u]! ◦ u]+ ◦ H0u]!(E)) → H0u]!(E) is the identity (see 9.3.2.3), this yields
that H0u]!(φ) is an isomorphism. Let K := Kerφ. Since H0u]! is left exact (on the category of coherent
D†

X]
(†T )Q-modules), since KerH0u]!(φ) = 0, then H0u]!(K) = 0. Since K is a coherent D†

X]
(†T )Q-module

with support in Z, then it comes from Berthelot-Kashiwara theorem (see 9.3.5.9) that K = 0, i.e. that
φ is injective.

b) Since u]+H0u]!(E) is a coherent D†
X]

(†T )Q-module with support in Z, then the canonical mor-
phism H†0Z (u]+H

0u]!(E)) → u]+H
0u]!(E) is an isomorphism (see 13.2.1.6.1). This yields the injection

φ : u]+H
0u]!(E) ↪→ E factors through the inclusions u]+H0u]!(E) ↪→ H†0Z (E) ↪→ E (the second arrow do is

injective thanks to 13.1.5.4).
c) Let us now check that the inclusion u]+H

0u]!(E) ↪→ H†0Z (E) is an isomorphism. By the absurd,
suppose that this latter inclusion is not an isomorphism. In that case, there exists an affine open
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U of X, such that Γ(U, u]+H
0u]!(E)) 6= Γ(U,H†0Z (E)). Let s ∈ Γ(U,H†0Z (E)) \ Γ(U, u]+H

0u]!(E)). Let
G be the D†

U]
(†T ∩ U)Q-submodule of Γ(U,H†0Z (E)) generated by Γ(U, u]+H

0u]!(E)) and by the sec-
tion s. Since U is affine, then Γ(U, E) is a coherent D†

U]
(†T ∩ U)Q-module. Since the composition

G → Γ(U,H†0Z (E)) → Γ(U, E) is injective, then G is a coherent D†
U]

(†T ∩ U)Q-module because it is a
finite type submodule of a coherent D†

U]
(†T ∩ U)Q-module. We get the coherent D†

U]
(†T ∩ U)Q-module

by setting G := D†
U]

(†T ∩ U)Q ⊗D†
U]

(†T∩U)Q
G. From the inclusion G ⊂ Γ(U,H†0Z (E)) we get the mor-

phism G → H†0Z (E)|U. Since G and E|U are coherent D†
U]

(†T ∩ U)Q-modules, then using theorem of
type A the composition G → H†0Z (E)|U → E|U is injective. Hence, so is G → H†0Z (E)|U. Moreover,
since u]+H0u]!(E)|U and G are coherent D†

U]
(†T ∩ U)Q-modules, similarly we get the canonical inclusion

u]+H
0u]!(E)|U ↪→ G. Let v]! : Z] ∩ U] ↪→ U] be the morphism induced by u] by restriction. By applying

the left exact functor H0v]! to the inclusions u]+H0u]!(E)|U ↪→ G ↪→ E|U, we get the monomorphisms
H0u]!u]+H

0u]!(E)|U ↪→ H0v]!G ↪→ H0u]!E|U whose composition is an isomorphism (equal toH0u]!(φ)|U).
Hence, we get the isomorphism H0u]!u]+H

0u]!(E)|U ∼−→ H0v]!G. Since G and u]+H0u]!(E)|U are coherent
D†

U]
(†T ∩ U)Q-modules with support in U ∩ Z, then by using Berthelot-Kashiwara theorem this implies

that the morphism u]+H
0u]!(E)|U→ G is an isomorphism, which is a contradiction.

2) Let us suppose that H†0Z (E) is D†
X]

(†T )Q-coherent.
a) Let us check that for any closed subscheme Z ′ of X containing Z we have

HomOX(†T )Q
(OZ(†T ∩ Z)Q, ωX]/S ⊗OX

H0(E(†Z ′)))⊗OZ
ω−1
Z]/S

= 0.

Since this is local, then we can suppose X is integral and we are in the situation of 14.2. Let us denote
by nZ′ the minimal number of divisor T1, . . . , Tr such that Z ′ = T1 ∩ · · · ∩ Tr. We check the assertion
by induction on nZ′ . The case where nZ′ = 0 (i.e. is the case where Z ′ = X) is obvious and the case
nZ′ = 1 (i.e. the case where Z ′ is a divisor containing Z) is an easy computation. Suppose now r ≥ 2
and the proposition holds for any Z ′ such that nZ′ < r. Let T1, . . . , Tr be some divisors such that
Z ′ = T1 ∩ · · · ∩ Tr. Set Z ′′ = T2 ∩ · · · ∩ Tr. It follows from 13.1.5.4.(a) that the long exact sequence
induced by the Mayer-Vietoris exact triangles (see 13.1.4.15.2) yields the exact sequence:

0→ H0E(†Z ′)→ H0(†T1)(E)⊕H0(†Z ′′)(E)→ H0(†T1 ∪ Z ′′)(E(†Z ′)) (14.3.2.1.1)

Since the functor HomOX(†T )Q
(OZ(†T ∩Z)Q, ωX]/S⊗OX

−)⊗OZ
ω−1
Z]/S

is left exact, then we can conclude
the induction.

b) With notation 9.3.4.5, we get from 9.3.1.17.1 the isomorphisms

u]!(H0E(†Z))
∼−→ RHomOX(†T )Q

(OZ(†T ∩ Z)Q, ωX]/S ⊗OX
H0E(†Z))⊗OZ

ω−1
Z]/S

.

By using the vanishing of the part (a) in the case where Z ′ = Z, this yields H0u]!H0(E(†Z)) = 0.
By applying the functor H0u]! to the exact sequence 0 → H†0Z (E) → E → H0(E(†Z)), this implies
that the canonical morphism H0u]!H†0Z (E) → H0u]!(E) is an isomorphism. It follows from 9.3.5.9 that
H0u]!H†0Z (E) is a coherent D†

Z]
(†T ∩ Z)Q-module. Hence, we are done.

3) If one of these two conditions is satisfied then the isomorphism u]+H
0u]!(E)

∼−→ H†0Z (E) has been
checked at the step 1.c).

14.3.3 Stability of the coherence by local cohomological functor in maximal
degree

The purpose of this subsection is to check the corollary 14.3.3.9. This corollary completes the theorem
14.3.3.1 just below which is straightforward from 9.1.6.3 and 13.2.1.5.1.

Theorem 14.3.3.1. We suppose that u : Z ↪→ X is of pure codimension 1. Let E(•) be an object of
LD−→

b
Q,coh(‹D(•)

X]
) and E := lim−→ (E(•)) the corresponding object of Db

coh(D†
X]

(†T )Q). The following assertions
are equivalent:

(a) u](•)!(E(•)) ∈ LD−→
b
Q,coh(‹D(•)

Z]
).
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(b) RΓ†Z(E(•)) ∈ LD−→
b
Q,coh(‹D(•)

X]
).

(c) (†Z)(E(•)) ∈ LD−→
b
Q,coh(‹D(•)

X]
).

(d) (†Z)(E) ∈ Db
coh(D†

X]
(†T )Q).

(e) RΓ†Z(E) ∈ Db
coh(D†

X]
(†T )Q).

When these assertions are fulfilled, we have therefore u]!(E) ∈ Db
coh(D†

Z]
(†T ∩Z)Q) and the isomorphism

u]+(u]!(E))
∼−→ RΓ†Z(E).

Proof. The equivalences (b)⇔ (c) and (d)⇔ (e) are a consequence of the distinguished triangle of local-
isation RΓ†Z(E(•))→ E(•) → (†Z)(E(•))→ +1. The equivalence (c)⇔ (d) is exactly the corollary 9.1.6.3.
The equivalence (a) ⇔ (b) follows from the canonical isomorphism u

](•)
+ ◦ u](•)!(E(•))

∼−→ RΓ†Z(E(•))

(see 13.2.1.5.1), from the canonical isomorphism u](•)! ◦ RΓ†Z(E(•))
∼−→ u](•)!(E(•)), as well as from the

theorem of Berthelot-Kashiwara still valid in the context of the categories of the form LD−→
b
Q,coh(‹D(•)

X]
) (see

9.3.5.13). When these assertions are fulfilled, by applying the functor→l
∗
Q which preserves the coherence

and the isomorphisms, we get the desired consequences.

14.3.3.2. Let B be the basis of open neighborhoods of X consisting of affine opens which are endowed
with local coordinates satisfying the conditions of 14.2. For any U ∈ B, we denote by U] := (U,U ∩D).
Let us describe the section on U ∈ B of the sheaf (‹D(m)

X]←Z]
“⊗D̃(m)

Z]

‹D(m)

Z]→X]
)Q.

Let U ∈ B. For any nonnegative integer i, we denote by Xi, X
]
i , Zi, Z

]
i , Ui, U

]
i the reductions modulo

πi+1 of respectively X, X], Z, Z], U, U]. We have the quasi-coherent B(m)
Zi∩Ui(T∩Ui)-modules ‹D(m)

U]
i
←Z]

i
∩U]

i

=‹D(m)

U]←Z]∩U] ⊗V V/π
i+1, ‹D(m)

Z]
i
∩U]

i

= ‹D(m)

Z]∩U] ⊗V V/π
i+1, and finally ‹D(m)

Z]
i
∩U]

i
→U]

i

:= ‹D(m)

Z]∩U]→U]
⊗V V/πi+1.

It follows from 7.2.3.13.1 (and 7.2.3.13.(i)) that ‹D(m)

U]←Z]∩U] is separated and complete for the p-adic com-

pletion and that we have the canonical isomorphism: ‹D(m)

U]
i
←Z]

i
∩U]

i

∼−→ ‹D(m)

U]←Z]∩U] ⊗V V/π
i+1; similarly

for ‹D(m)

Z]∩U]→U]
. Since the global sections functor commutes with projective limits and by quasi-coherence

of our sheaves on Xi, we obtain the canonical isomorphisms

Γ(U, ‹D(m)

X]←Z]
“⊗D̃(m)

Z]

‹D(m)

Z]→X]
) = Γ(U, ‹D(m)

U]←Z]∩U]
“⊗D̃(m)

Z]∩U]

‹D(m)

Z]∩U]→U]
)

∼−→ lim←−
i

Γ(Ui, ‹D(m)

U]
i
←Z]

i
∩U]

i

⊗D̃(m)

Z
]
i
∩U]

i

‹D(m)

Z]
i
∩U]

i
→U]

i

)
∼−→ lim←−

i

‹D(m)

U]
i
←Z]

i
∩U]

i

⊗
D̃

(m)

Z
]
i
∩U]

i

‹D(m)

Z]
i
∩U]

i
→U]

i

∼−→ ‹D(m)

U]←Z]∩U]
“⊗
D̃

(m)

Z]∩U]

‹D(m)

Z]∩U]→U]
. (14.3.3.2.1)

Moreover, for any U ∈ B, the functor Γ(U,−) commutes with the tensor product by Q. This yields

Γ(U, (‹D(m)

X]←Z]
“⊗D̃(m)

Z]

‹D(m)

Z]→X]
)Q)

∼−→ (‹D(m)

U]←Z]∩U]
“⊗
D̃

(m)

Z]∩U]

‹D(m)

Z]∩U]→U]
)Q.

By tensorizing by Q the canonical morphism ‹D(m)

X]←Z]
⊗D̃(m)

Z]

‹D(m)

Z]→X]
→ ‹D(m)

X]←Z]
“⊗D̃(m)

Z]

‹D(m)

Z]→X]
, we get

the morphism ‹D(m)

X]←Z],Q ⊗D̃(m)

Z],Q

‹D(m)

Z]→X],Q → (‹D(m)

X]←Z]
“⊗D̃(m)

Z]

‹D(m)

Z]→X]
)Q. (14.3.3.2.2)

Notation 14.3.3.3. We keep notation 14.3.3.2.

(a) We denote by ‹D(m)

X]←Z],Q
“⊗D̃(m)

Z],Q

‹D(m)

Z]→X],Q the sheaf (of K-algebras) on X associated to the presheaf (in

fact this is a sheaf following 14.3.3.4) onB defined as follows: U ∈ B 7→ ‹D(m)

U]←Z]∩U],Q
“⊗
D̃

(m)

Z]∩U],Q

‹D(m)

Z]∩U]→U],Q,

the restriction morphisms being the canonical morphisms (the separated completion is a functor).
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(b) Since the canonical morphisms‹D(m)

U]←Z]∩U],Q ⊗D̃(m)

Z]∩U],Q

‹D(m)

Z]∩U]→U],Q → ‹D(m)

U]←Z]∩U],Q
“⊗
D̃

(m)

Z]∩U],Q

‹D(m)

Z]∩U]→U],Q

are functorial in U ∈ B, we get then the canonical morphism of sheaves:‹D(m)

X]←Z],Q ⊗D̃(m)

Z],Q

‹D(m)

Z]→X],Q → ‹D(m)

X]←Z],Q
“⊗D̃(m)

Z],Q

‹D(m)

Z]→X],Q. (14.3.3.3.1)

(c) Let α(m) : (‹D(m)

X],Q)r → (‹D(m)

X],Q)s be a left ‹D(m)

X],Q-linear morphism. With the notation 9.3.4.1, by using
the functoriality in U ∈ B of the morphisms

id“⊗Γ(U∩Z, u∗(α(m))) : ‹D(m)

U]←Z]∩U],Q
“⊗
D̃

(m)

Z]∩U],Q
(‹D(m)

Z]∩U]→U],Q)r → ‹D(m)

U]←Z]∩U],Q
“⊗
D̃

(m)

Z]∩U],Q
(‹D(m)

Z]∩U]→U],Q)s,

we get the morphism of sheaves:

id“⊗u∗(α(m)) : ‹D(m)

X]←Z],Q
“⊗D̃(m)

Z],Q

(‹D(m)

Z]→X],Q)r → ‹D(m)

X]←Z],Q
“⊗D̃(m)

Z],Q

(‹D(m)

Z]→X],Q)s. (14.3.3.3.2)

Lemma 14.3.3.4. We keep the notations of 14.3.3.3.

(a) We have the canonical commutative diagram in the category of ‹D(m)

X],Q-bimodules:‹D(m)

X]←Z],Q
“⊗D̃(m)

Z],Q

‹D(m)

Z]→X],Q
∼ // (‹D(m)

X]←Z]
“⊗D̃(m)

Z]

‹D(m)

Z]→X]
)Q‹D(m)

X]←Z],Q ⊗D̃(m)

Z],Q

‹D(m)

Z]→X],Q

14.3.3.3.1

jj 14.3.3.2.2 44
(14.3.3.4.1)

whose top arrow is an isomorphism. For any U ∈ B, we have moreover

Γ(U, ‹D(m)

X]←Z],Q
“⊗D̃(m)

Z],Q

‹D(m)

Z]→X],Q)
∼−→ ‹D(m)

U]←Z]∩U],Q
“⊗
D̃

(m)

Z]∩U],Q

‹D(m)

Z]∩U]→U],Q.

(b) Let ε(m) : (‹D(m)

X]
)r → (‹D(m)

X]
)s be a left ‹D(m)

X]
-linear morphism and α(m) : (‹D(m)

X],Q)r → (‹D(m)

X],Q)s be the
morphism induced by tensorizing by Q. We have the commutative square

(‹D(m)

X]←Z]
“⊗D̃(m)

Z]

(‹D(m)

Z]→X]
)r)Q

(id⊗̂u∗ε(m))Q // (‹D(m)

X]←Z]
“⊗D̃(m)

Z]

(‹D(m)

Z]→X]
)s)Q‹D(m)

X]←Z],Q
“⊗D̃(m)

Z],Q

(u∗‹D(m)

X],Q)r
id⊗̂u∗α(m)

//

∼
OO ‹D(m)

X]←Z],Q
“⊗D̃(m)

Z],Q

(u∗‹D(m)

X],Q)s,

∼
OO

(14.3.3.4.2)

whose vertical isomorphisms are induced by the factorisation of 14.3.3.4.1.

Proof. The first statement is a consequence of the canonical isomorphisms of 14.3.1.7.1. The second
assertion can easily be checked.

Remark 14.3.3.5. With the notations of 14.3.3.3, the sheaf ‹D(m)

X]←Z],Q
“⊗D̃(m)

Z],Q

‹D(m)

Z]→X],Q of K-vector spaces

on B is also a sheaf of topological K-vector spaces on B (indeed we can check that the restriction
morphisms are injective and strict).

Lemma 14.3.3.6. We suppose that u : Z ↪→ X is of pure codimension e. Let α be a morphism of left
D†

X]
(†T )Q-modules which is of the form α : (D†

X]
(†T )Q)r → (D†

X]
(†T )Q)s. Let m0 be a large enough integer

such that there exists a left ‹D(m0)

X],Q -linear morphism of the form α(m0) : (‹D(m0)

X],Q)r → (‹D(m0)

X],Q)s inducing

α by extension via ‹D(m0)

X],Q → D
†
X]

(†T )Q. For m ≥ m0, we denote by α(m) : (‹D(m)

X],Q)r → (‹D(m)

X],Q)s, the
morphism induced by extension of α(m0).
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Hence we have the commutative diagram

H†eZ ((D†
X]

(†T )Q)r)
H†e
Z

(α)
// H†eZ ((D†

X]
(†T )Q)s)

u∗lim−→
m

‹D(m)

X]←Z],Q
“⊗D̃(m)

Z],Q

(u∗‹D(m)

X],Q)r

lim−→
m

(id ⊗̂u∗α(m))

//

∼
OO

u∗lim−→
m

‹D(m)

X]←Z],Q
“⊗D̃(m)

Z],Q

(u∗‹D(m)

X],Q)s

∼
OO

(14.3.3.6.1)

whose vertical arrows are isomorphisms.

Proof. 1) Multiplying α(m0) by a large enough power of p, we can suppose that α(m0) comes by extension
from a left ‹D(m0)

X]
-linear morphism of the form ε(m0) : (‹D(m0)

X]
)r → (‹D(m0)

X]
)s. Form ≥ m0, let us denote by

ε(m) : (‹D(m)

X]
)r → (‹D(m)

X]
)s the morphisms induced by extension. So we get the morphism in LD−→

b
Q,coh(‹D(•)

X]
)

of the form
ε(•+m0) : (‹D(•+m0)

X]
)r → (‹D(•+m0)

X]
)s.

2) Let N ∈ N. Since (‹D(m)

Z]→X]
)N is a p-torsion free quasi-coherent ‹D(m)

Z]/S
-module (see the definition

7.2.3.5 and 7.3.1.7) for any m ∈ N, then it follows from 9.3.3.1.2

u
](•)
+ ((‹D(•)

Z]→X]
)N )

∼−→ u∗

Å‹D(•)
X]←↩Z]/S]

“⊗D̃(•)
Z]/S]

(‹D(•)
Z]→X]

)N
ã
. (14.3.3.6.2)

Since u](•)!((‹D(•+m0)

X]
)N )[e]

∼−→ (‹D(•+m0)

Z]→X]
)N , this yields the third (from the top) vertical isomorphisms

RΓ†Z(D†
X]

(†T )Q)[e]
RΓ†

Z
(α)[e]

//

∼
��

RΓ†Z(D†
X]

(†T )Q)N )[e]

∼
��

→l
∗
QRΓ†Z((‹D(•+m0)

X]
)N )[e]

→l
∗
Q

RΓ†
Z
ε(•+m0)

//

13.2.1.5.1∼
��

→l
∗
QRΓ†Z((‹D(•+m0)

X]
)N )[e]

13.2.1.5.1∼
��

→l
∗
Qu

](•)
+ ◦ u](•)!((‹D(•+m0)

X]
)N )[e]

→l
∗
Q
u
](•)
+

u](•)!ε(•+m0)

//

14.3.3.6.2∼
��

→l
∗
Qu

](•)
+ ◦ u](•)!((‹D(•+m0)

X]
)N )[e]

14.3.3.6.2∼
��

→l
∗
Qu∗

Å‹D(•)
X]←↩Z]/S]

“⊗D̃(•)
Z]/S]

(‹D(•+m0)

Z]→X]
)N
ã

∼
��

→l
∗
Q
u∗(id ⊗̂u∗ε(•+m0))

//
→l
∗
Qu∗

Å‹D(•)
X]←↩Z]/S]

“⊗D̃(•)
Z]/S]

(‹D(•+m0)

Z]→X]
)N
ã

∼
��

u∗lim−→
m

‹D(m)

X]←Z],Q
“⊗D̃(m)

Z],Q

(u∗‹D(m)

X],Q)N

lim−→
m

(id ⊗̂u∗α(m))

// u∗lim−→
m

‹D(m)

X]←Z],Q
“⊗D̃(m)

Z],Q

(u∗‹D(m)

X],Q)N .

(14.3.3.6.3)

This yields RΓ†Z(α)[e]
∼−→ H†eZ (α) and the commutative diagram 14.3.3.6.1 is equal to 14.3.3.6.3.

Remark 14.3.3.7. With the notations of 14.3.3.6, let us suppose X affine. Let E(m0) be a coherent‹D(m0)

X]
-module without p-torsion, E(•) := ‹D(•+m0)

X]
⊗
D̃

(m0)

X]

E(m0) the induced ‹D(•+m0)

X]
-module of finite

presentation, E := lim−→(E•) the associated coherent D†
X]

(†T )Q-module. By taking a resolution of E(m0) by

free finite type ‹D(m0)

X]
-module which induces, after applying the functor ‹D(•+m0)

X]
⊗
D̃

(m0)

X]

−, a resolution

of E(•) by finite type free ‹D(•+m0)

X]
-modules, we can check that the complex RΓ†Z(E) is isomorphic to a

complex whose terms are of the form H†eZ ((D†
X]

(†T )Q)N ) for some integers N .

We are now ready to prove the following theorem.
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Theorem 14.3.3.8. We suppose that u : Z ↪→ X is of pure codimension e. Let E be a coherent D†
X]

(†T )Q-
module satisfying the two following properties :

(a) for any i = 0, . . . , e− 1, locally in Z, the D†
Z]

(†T ∩ Z)Q-modules Hiu]!(E) are Γ(Z,−)-acyclic ;

(b) the module u∗(E) is a coherent D†
Z]

(†T∩Z)Q-module which is also a finitely generated locally projective
OZ(†T ∩ Z)Q-module for the induced structure.

The D†
X]

(†T )Q-module H†eZ (E) is then coherent and is isomorphic to u]+u∗(E).

Proof. 0) a) Taking global sections.
We use hypotheses 14.3.3.8.(a) as follows: Since the D†

X]
(†T )Q-coherence of H†eZ (E) is local, we can

suppose we are in the local situation of the subsection 14.2, and we keep its notations. In that case,
we set E := Γ(X, E) as usual. With the notations of 9.3.4.1, the hypotheses of 14.3.3.8.(a) yields the
isomorphism Γ(Z, u∗E)

∼−→ H0(RΓ(Z,Lu∗E)) (we use the unbounded version of spectral sequence of
hypercohomology of 4.6.1.6.1 for the functor of Γ(Z,−)). Then by using lemma 9.3.4.8 we get the
isomorphism Γ(Z, u∗E)

∼−→ H0(Lu∗(E)) = u∗(E).
b) The morphisms α, β, φ, ψ.
Since X is affine, then via the theorem of type A of Berthelot of 8.7.5.5 which is valid for co-

herent D†
X]

(†T )Q-modules, we have the exact sequence of left D†
X]

(†T )Q-modules (D†
X]

(†T )Q)r −→
α

(D†
X]

(†T )Q)s −→
β
E → 0. Using theorems of type A and B, we get the exact sequence (D†

X]
(†T )Q)r −→

a

(D†
X]

(†T )Q)s −→
b
E → 0, where a = Γ(X, α) and b = Γ(X, β). By setting φ := u∗(a) and ψ := u∗(b), we

get the commutative diagram.

Γ(Z, (u∗D†
X]

(†T )Q)r)
Γ(Z,u∗(α)) // Γ(Z, (u∗D†

X]
(†T )Q)s)

Γ(Z,u∗(β)) // Γ(Z, u∗(E)) // 0

(u∗D†
X]

(†T )Q)r
φ //

9.3.4.3.1 ∼

OO

(u∗D†
X]

(†T )Q)s
ψ //

9.3.4.3.1 ∼

OO

u∗(E)
∼ //

OO

0

(14.3.3.8.1)
By right exactness of the functor of the form u∗ (see the definition of 9.3.4.1), we obtain the exactness
of the bottom sequence. Since the canonical morphism u∗(E) → Γ(Z, u∗E) is an isomorphism, using
9.3.4.3.1, then every vertical arrows of 14.3.3.8.1 are isomorphisms. Hence, its top sequence is exact.

c) Increasing λ0 ∈ L(N) if necessary, we define in this step M and M(m) as follows. We set
M := u∗(E), M := Γ(Z,M). Since M ∈ MIC††(Z], T ∩ Z/S) and is finitely generated projective
OZ(†T ∩ Z)Q-module, then it follows from 11.2.1.9 (and from the remark 8.7.6.9 for the projectivity of
M(0)) that, increasing λ0 ∈ L(N) if necessary, there existsM(0) a topologically nilpotent ‹D(0)

Z],Q-module,

projective of finite type as B̃(0)
X (T )Q-module satisfying both conditions of 11.2.1.7.(b). For any m ≥ 0,

we set thenM(m) := ‹D(m)

Z],Q ⊗D̃(0)

Z],Q

M(0). Following 11.2.1.9.1, the canonical morphism

B̃(m)
Z (T ∩ Z)Q ⊗B̃(0)

Z
(T∩Z)Q

M(0) → ‹D(m)

Z],Q ⊗D̃(0)

Z],Q

M(0) =M(m)

is an isomorphism. Hence, M(m) is a projective of finite type B̃(m)
Z (T ∩ Z)Q-module and the canonical

morphismsM(0) →M(m) are injective. Moreover, we get the equality M = ∪m∈NM
(m), where as usual

we set M (m) := Γ(Z,M(m)).
d) Levels m ≥ m0, the morphisms α(m), β(m), φ(m), ψ(m).
Let m0 ≥ 0 be a large enough integer such that there exists a left ‹D(m0)

X],Q -linear morphism of the form

α(m0) : (‹D(m0)

X],Q)r → (‹D(m0)

X],Q)s and inducing α by extension via ‹D(m0)

X],Q → D
†
X]

(†T )Q. For any m ≥ m0,

let us denote by α(m) : (‹D(m)

X],Q)r → (‹D(m)

X],Q)s the map induced by α(m0) by extension. For any m ≥ 0,

let us denote by β(m) : (‹D(m)

X],Q)s → E the composition of the morphism β with the canonical inclusion

(‹D(m)

X],Q)s ↪→ (D†
X]

(†T )Q)s. Let us denote by φ(m) := u∗Γ(Z, α(m)) and ψ(m) := u∗Γ(Z, β(m)). With the
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definitions and notations of 9.3.4.1, so we obtain the commutative diagram

Γ(Z, (u∗‹D(m)

X],Q)r)
Γ(Z,u∗(α(m))) // Γ(Z, (u∗‹D(m)

X],Q)s)
Γ(Z,u∗(β(m))) // M // 0

(u∗‹D(m)

X],Q)r
φ(m)

//

9.3.4.3.1 ∼

OO

(u∗‹D(m)

X],Q)s
ψ(m)

//

9.3.4.3.1 ∼

OO

u∗(E) //

∼

OO

0

(14.3.3.8.2)

We remark that both horizontal sequences become exact only after taking the inductive limit on m. We
can identify M and u∗E.

1) Topology of type LB on M , levels m ≥ m1, continuous sections θ, θ(m).
Since Z is affine, then it follows from the hypotheses 14.3.3.8.(b) that the OZ(†T ∩ Z)Q-module M

is projective and of finite type. We endow M with its canonical topology as overconvergent isocrystal
(see 14.2.1.10). With this topology, M is in fact an OZ(†T ∩ Z)Q-module of type LB (see 14.2.2.3).
Since M is a projective OZ(†T ∩ Z)Q-module, there exist therefore an OZ(†T ∩ Z)Q-linear morphism
θ : M → (u∗D†

X]
(†T )Q)s such that ψ◦θ = id. SinceM (0) is a finite type ‹B(0)

Z (T ∩Z)Q-module, then there
exist m1 ≥ m0 such that for any m ≥ m1, we have θ(M (0)) ⊂ (u∗‹D(m)

X],Q)s. So, this section θ induces

(uniquely) a ‹B(0)
Z (T ∩Z)Q-linear morphism of the form M (0) → (u∗‹D(m)

X],Q)s. For any m ≥ m1, we denote

by θ(m) : M (m) → (u∗‹D(m)

X],Q)s the induced B̃(m)
Z (T ∩ Z)Q-linear morphism. Let

◦
M (m) be a finite type‹B(m)

Z (T ∩ Z)-module equipped with a ‹B(m)
Z (T ∩ Z)Q-linear isomorphism

◦
M

(m)
Q

∼−→ M (m). A basis of

open neighborhoods at zero on (u∗‹D(m)

X],Q)s (resp. M (m)) is given by the family of ‹B(m)
Z (T ∩ Z)-modules

{pn(u∗‹D(m)

X]
)s}n∈N (resp. {pn(

◦
M (m)}n∈N). For n large enough, we have the inclusion θ(m)(pn

◦
M (m)) ⊂

(u∗‹D(m)

X]
)s. This yields that the morphism θ(m) is continous. By composition of continuous morphisms,

then so is M (m) → (u∗D†
X]

(†T )Q)s. Taking the inductive limit on the level m ≥ m1, the section
θ : M → (u∗D†

X]
(†T )Q)s is then continuous. From now in the proof, m ≥ m1 will be an integer.

2) The K-vector space G of type LB, the Banach K-vector spaces G(m), the continuous morphism ι.
With the respective canonical topologies (see the definitions of 14.2.1.8), following the proposition

14.2.3.3, the application φ is a continuous morphism of K-vector spaces of LB-type (see 14.2.2.6). Let us
denote by G := (u∗D†

X]
(†T )Q)r/ ker(φ) the locally convex K-vector space whose topology is that which

makes the canonical projection
π : (u∗D†

X]
(†T )Q)r � G

is a strict morphism. Let us denote by ι : G ↪→ (u∗D†
X]

(†T )Q)s the monomorphism such that ι ◦ π = φ.
Hence, since φ is continuous, then ι is continuous. Since (u∗D†

X]
(†T )Q)s is separated (see 14.2.2.6), then

so is G. So G is a separated quotient of a LB-space. Following 14.1.1.7, this yields that G is also an
LB-space. More precisely, following its proof, denoting by G(m) := (u∗‹D(m)

X],Q)r/(ker(φ) ∩ (u∗‹D(m)

X],Q)r)

endowed with the quotient topology, G(m) is a Banach K-vector space and the canonical isomorphism
lim−→
m

G(m) ∼−→ G is a homeomorphism. Since by definition the morphism (u∗‹D(m)

X],Q)r → G(m) is strict, it

follows from 14.3.1.2, that we have the strict epimorphism‹D(m)

X]←Z],Q
“⊗
D̃

(m)

Z],Q

(u∗‹D(m)

X],Q)r � ‹D(m)

X]←Z],Q
“⊗
D̃

(m)

Z],Q

G(m). (14.3.3.8.3)

Using 14.1.1.3, this yields that we have the strict epimorphism:

lim−→
m

‹D(m)

X]←Z],Q
“⊗
D̃

(m)

Z],Q

(u∗‹D(m)

X],Q)r � lim−→
m

‹D(m)

X]←Z],Q
“⊗
D̃

(m)

Z],Q

G(m). (14.3.3.8.4)

3) The maps ι, φ and ψ are strict morphisms.
We have the OZ,Q-linear map (ι, θ) : G⊕M → (u∗D†

X]
(†T )Q)s which is also a continuous bijective map

between twoK-vector spaces of LB-type. Since Banach open mapping theorem holds forK-vector spaces
of LB-type (see [Sch02, 8.8] and use the remark 14.1.1.6), then the morphism (ι, θ) is a homeomorphism.
Since ι is the composition morphism

ι : G ⊂ G⊕M ∼−→
(ι,θ)

(u∗D†
X]

(†T )Q)s, (14.3.3.8.5)
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the morphism ι is then strict. Hence, φ is a strict morphism. We remark that as M is a separated
K-space, then G is a closed subset of G ⊕M (because homeomorphic to the closed subset G ⊕ {0}).
Finally, we obtain the canonical commutative square

G⊕M
(0,id)��

(ι,θ)

∼
// (u∗D†

X]
(†T )Q)s

ψ��
M M,

(14.3.3.8.6)

in which we already know that all the arrows except ψ are continuous and that the top arrow is a
homeomorphism. This yields the continuity of ψ. Since ψ is a continuous and surjective morphism
between two LB-spaces, this yields that ψ is a strict morphism (see [Sch02, 8.8] and use the remark
14.1.1.6).

4) Constructions and properties of H(m) and N (m).
Let us denote by H(m) := ι−1((u∗‹D(m)

X],Q)s) and ι(m) : H(m) ↪→ (u∗‹D(m)

X],Q)s the ‹D(m)

Z],Q-linear morphism
induced by ι. We endow H(m) with the unique topology such that ι(m) is a strict morphism (with
(u∗‹D(m)

X],Q)s endowed with its canonical topology of Banach K-vector space). We have seen at the step

3) that ι(G) is closed. Since (u∗‹D(m)

X],Q)s ↪→ (u∗D†
X]

(†T )Q)s is continuous, this yields that ι(m)(H(m)) is a

closed subset of (u∗‹D(m)

X],Q)s. Since (u∗‹D(m)

X],Q)s is a Banach ‹B(m)
Z (T∩Z)Q-module, this implies thatH(m) is

also a Banach ‹B(m)
Z (T ∩Z)Q-module. Let us then denote by N (m) := Im(ψ(m)) and ψ′(m) : (u∗‹D(m)

X],Q)s �

N (m) the canonical epimorphism which factors ψ(m). We get on N (m) a structure of locally convex‹B(m)
Z (T ∩ Z)Q-module by decreeing the ‹B(m)

Z (T ∩ Z)Q-linear epimorphism ψ′(m) : (u∗‹D(m)

X],Q)s � N (m)

strict map. So we get the commutative diagram

0 // G

�

ι // (u∗D†
X]

(†T )Q)s
ψ // M // 0

0 // H(m) ι(m)
//

?�

OO

(u∗‹D(m)

X],Q
)s

ψ′(m)

//

ψ(m) 44

?�
OO

N (m) //
?�

OO

0

(14.3.3.8.7)

whose horizontal morphisms are strict and form two short exact sequences (moreover the top one splits
via θ). Since the composition of H(m) ⊂ G with ι is continuous, as ι is a strict monomorphism, we
remark that the inclusion H(m) ⊂ G is then continuous. Finally, as ψ(m) is continuous, then so is the
inclusion N (m) ⊂M . Since M is separated, this yields that N (m) is a Banach ‹B(m)

Z (T ∩ Z)Q-module
By using 14.3.1.2, the bottom short exact sequence of 14.3.3.8.7 induces the exact sequence with

strict morphisms:

0→ ‹D(m)

X]←Z],Q
⊗̂
D̃

(m)

Z],Q

H(m) →
id ⊗̂ι(m)

‹D(m)

X]←Z],Q
⊗̂
D̃

(m)

Z],Q

(u∗‹D(m)

X],Q
)s →

id ⊗̂ψ′(m)

‹D(m)

X]←Z],Q
⊗̂
D̃

(m)

Z],Q

N (m) → 0.

(14.3.3.8.8)
By taking the inductive limit on m, this yields the exact sequence with continuous morphisms:

0→ lim−→
m

‹D(m)

X]←Z],Q
⊗̂
D̃

(m)

Z],Q

H(m) → lim−→
m

‹D(m)

X]←Z],Q
⊗̂
D̃

(m)

Z],Q

(u∗‹D(m)

X],Q
)s → lim−→

m

‹D(m)

X]←Z],Q
⊗̂
D̃

(m)

Z],Q

N (m) → 0.

(14.3.3.8.9)
5) Taking the inductive limit on m for G(m) and H(m): comparaison.
Let jm : G(m) → G be the canonical continuous monomorphism. For anym ≥ m1, since the morphism

φ induces the continuous morphism φ(m) : (u∗‹D(m)

X],Q)r → (u∗‹D(m)

X],Q)s, then we get the inclusion ι ◦
jm(G(m)) ⊂ (u∗‹D(m)

X],Q)s and then jm(G(m)) ⊂ H(m). Hence, the continuous monomorphism jm can be
factored factorizes through a continuous monomorphism of the form G(m) → H(m).

Conversely, since H(m) is a Banach K-vector space, since we have the equality G = ∪m∈Njm(G(m))
with jm continuous, K-linear and G(m) are Banach K-vector spaces, then it follows from [Sch02, 8.9] that
then there exist a large enough integer nm ≥ m such that the continuous homomorphism H(m) ⊂ G is
the composition of a (unique) continuous morphism of the form H(m) → G(nm) with jnm . It is harmless
to suppose that the sequence (nm)m≥m1

is strictly increasing. With 14.3.1.3, this yields the following
continuous monomorphisms:‹D(m)

X]←Z],Q
“⊗
D̃

(m)

Z],Q

H(m) ↪→ ‹D(nm)

X]←Z],Q
“⊗
D̃

(nm)

Z],Q

G(nm) ↪→ ‹D(nm)

X]←Z],Q
“⊗
D̃

(nm)

Z],Q

H(nm). (14.3.3.8.10)
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By taking the inductive limit on m of the sequence 14.3.3.8.10, we get the diagram of K-vector spaces
of LB-type of the form:

lim−→
m

‹D(nm)

X]←Z],Q
“⊗
D̃

(nm)

Z],Q

G(nm) // lim−→
m

‹D(nm)

X]←Z],Q
“⊗
D̃

(nm)

Z],Q

H(nm)

lim−→
m

‹D(m)

X]←Z],Q
“⊗
D̃

(m)

Z],Q

G(m)

∼
OO

// lim−→
m

‹D(m)

X]←Z],Q
“⊗
D̃

(m)

Z],Q

H(m).

∼
OOkk

(14.3.3.8.11)

Since vertical morphisms are homeomorphisms (see 14.2.2.6.1), then so are the three other ones.
6) Taking the limit on m for M (m) and N (m), strict homeomorphism β†Z .
Since ψ(m) : (u∗‹D(m)

X],Q)s → M is continuous, since (u∗‹D(m)

X],Q)s is a Banach K-vector space, since we
have the equality M = ∪m∈NM

(m) where M (m) are Banach K-vector spaces, then following [Sch02,
8.9], there exists nm ≥ m large enough such that ψ(m) is the composition of a (unique) contin-
uous morphism of the form (u∗‹D(m)

X],Q)s → M (nm) with the monomorphism M (nm) ↪→ M . Since
N (m) = Im(ψ(m)) = Im(ψ′(m)), since N (m) is endowed with the quotient topology, then this con-
tinuous morphism (u∗‹D(m)

X],Q)s → M (nm) uniquely decompose into continuous morphisms as follows

(u∗‹D(m)

X],Q)s �
ψ′(m)

N (m) ↪→ M (nm). On the other hand, we have the continuous injective morphism

ψ′(m) ◦ θ(m) : M (m) → N (m) whose composition with N (m) ⊂ M gives M (m) ↪→ M . This yields the
diagram of K-vector spaces of LB-type of the form:

lim−→
m

‹D(nm)

X]←Z],Q
“⊗
D̃

(nm)

Z],Q

M (nm) // lim−→
m

‹D(nm)

X]←Z],Q
“⊗
D̃

(nm)

Z],Q

N (nm)

lim−→
m

‹D(m)

X]←Z],Q
“⊗
D̃

(m)

Z],Q

M (m)

∼
OO

// lim−→
m

‹D(m)

X]←Z],Q
“⊗
D̃

(m)

Z],Q

N (m).

∼
OOkk

(14.3.3.8.12)

Since vertical morphisms are homeomorphisms (see 14.2.2.6.1), then so are the three other ones.
Let us denote by β†X the following composite morphism:

β†X : lim−→
m

‹D(m)

X]←Z],Q
“⊗
D̃

(m)

Z],Q

(u∗‹D(m)

X],Q)s �
lim−→
m

id⊗̂ψ′(m)

lim−→
m

‹D(m)

X]←Z],Q
“⊗
D̃

(m)

Z],Q

N (m)

∼−→ lim−→
m

‹D(m)

X]←Z],Q
“⊗
D̃

(nm)

Z],Q

M (nm) ∼←− lim−→
m

‹D(m)

X]←Z],Q
“⊗
D̃

(nm)

Z],Q

M (m). (14.3.3.8.13)

Since the first morphism is a strict epimorphism and the other ones are homeomorphisms, then β†X is a
strict epimorphism.

7) First conclusion.
By composing the strict epimorphism 14.3.3.8.4 with the bottom isomorphism of 14.3.3.8.11, we

obtain the strict epimorphism of the sequence by composition :

lim−→
m

‹D(m)

X]←Z],Q
“⊗
D̃

(m)

Z],Q

(u∗‹D(m)

X],Q)r � lim−→
m

‹D(m)

X]←Z],Q
“⊗
D̃

(m)

Z],Q

H(m) ↪→ lim−→
m

‹D(m)

X]←Z],Q
“⊗
D̃

(m)

Z],Q

(u∗‹D(m)

X],Q)s,

(14.3.3.8.14)

the second arrow being the monomorphism of 14.3.3.8.9. The composition of morphisms of 14.3.3.8.14
will be denoted by α†X. We have the equality α†X = lim−→

m

id“⊗
D̃

(m)

Z],Q

φ(m).

By using the exact sequence 14.3.3.8.9 and the fact that the right arrow of 14.3.3.8.13 is a homeo-
morphism, this yields the exact sequence:

lim−→
m

‹D(m)

X]←Z],Q
“⊗
D̃

(m)

Z],Q

(u∗‹D(m)

X],Q)r −→
α†

X

lim−→
m

‹D(m)

X]←Z],Q
“⊗
D̃

(m)

Z],Q

(u∗‹D(m)

X],Q)s −→
β†
X

lim−→
m

‹D(m)

X]←Z],Q
“⊗
D̃

(m)

Z],Q

M (m) → 0.

(14.3.3.8.15)
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8) Sheafification.
i) Let B be the basis of open neighborhoods of X given by the affine opens endowed with local

coordinates satisfying the hypotheses of the chapter 14.2 (same notation as 14.3.3.2). The presheaf on
B defined by

U ∈ B 7→ lim−→
m

‹D(m)

U]←Z]∩U],Q
“⊗
D̃

(m)

Z]∩U],Q
Γ(U ∩ Z,M(m))

is in fact, by definition of M(m), a sheaf whose associated sheaf on X is u]+(M) (e.g. notice that‹D(m)

U]←Z]∩U],Q
“⊗
D̃

(m)

Z]∩U],Q
Γ(U ∩ Z,M(m)) = ‹D(m)

U]←Z]∩U],Q ⊗D̃(m)

Z]∩U],Q
Γ(U ∩ Z,M(m))).

ii) With the notations of 14.3.3.3, as the functor “sheaf (of sets) associated to a presheaf (of sets)”
commutes with filtrant inductive limits, then the sheaf associated to the presheaf

U ∈ B 7→ lim−→
m

‹D(m)

U]←Z]∩U],Q
“⊗
D̃

(m)

Z]∩U],Q
Γ(U ∩ Z, u∗((‹D(m)

X],Q)r))

is lim−→
m

‹D(m)

X]←Z],Q
“⊗D̃(m)

Z],Q

(u∗‹D(m)

X],Q)r, similarly for another integer than r.

iii) For any U ∈ B, let us denote by u]U : Z] ∩ U] ↪→ U] the exact closed immersion induced by u].
For any m ≥ m1, we have the (a priori non-exact) sequence: (‹D(m)

U],Q)r −→
α(m)|U

(‹D(m)

U],Q)s −→
β(m)|U

E|U → 0.

Similarly to 14.3.3.8.15, (it is sufficient to replace u] by u]|U), we get the exact sequence

lim−→
m

‹D(m)
U←Z∩U,Q⊗̂u

∗
U(‹D(m)

U],Q
)r −→

α
†
U

lim−→
m

‹D(m)
U←Z∩U,Q⊗̂u

∗
U(‹D(m)

U],Q
)s −→

β
†
U

lim−→
m

‹D(m)
U←Z∩U,Q⊗̂Γ(U ∩ Z,M(m))→ 0.

where “⊗ := “⊗
D̃

(m)

Z]∩U],Q
, α†U and β†U are defined similarly to 14.3.3.8.13. Since these exact sequences are

functorial in U, since the sheaf associated to a presheaf functor is exact, we get then the exact sequence:

lim−→
m

D̃(m)

X]←Z],Q
⊗̂
D̃(m)

Z],Q

(u∗D̃(m)

X],Q
)r −→

lim−→
m

id⊗̂u∗α(m)

lim−→
m

D̃(m)

X]←Z],Q
⊗̂
D̃(m)

Z],Q

(u∗D̃(m)

X],Q
)s → u]+(M)→ 0. (14.3.3.8.16)

9) End of the proof. Since the functor H†eZ is right exact (in the category of coherent D†
X]

(†T )Q-
modules), then the cokernel of H†eZ (α) is isomorphic to H†eZ (E). Moreover, it follows from the lemma
14.3.3.6 and the exact sequence 14.3.3.8.16, that the cokernel of H†eZ (α) is isomorphic to u]+M. Since
u∗(E) = M, so we have checked H†eZ (E)

∼−→ u]+u
∗(E). Finally, as u is proper and u∗(E) is a coherent

D†
Z]

(†T ∩ Z)Q-module, then u]+u∗(E) is a coherent D†
X]

(†T )Q-module.

Corollary 14.3.3.9. We suppose that u : Z ↪→ X is of pure codimension 1. Let E be a coherent D†
X]

(†T )Q-
module such that H0u]!(E) is a coherent D†

Z]
(†T ∩Z)Q-module and that H1u]!(E) is a coherent D†

Z]
(†T ∩

Z)Q-module which is also a locally projective of finite type OZ(†T ∩Z)Q-module for the induced structure.
Then the complex RΓ†Z(E) is D†

X]
(†T )Q-coherent.

Proof. Via the distinguished triangle RΓ†Z(E) → E → (†Z)(E) → +1, since (†Z)(E) is a module, this
yields that H†iZ (E) = 0 for any i 6∈ {0, 1}. The D†

X]
(†T )Q-coherence of the complex RΓ†Z(E) is then a

consequence of 14.3.2.1 and of 14.3.3.8.

Corollary 14.3.3.10. We suppose that u : Z ↪→ X is of pure codimension 1. Let E be a coherent
D†

X]
(†T )Q-module such that H0u]!(E) is a coherent D†

Z]
(†T ∩Z)Q-module and that H1u]!(E) is a coherent

D†
Z]

(†T ∩Z)Q-module which is also an OZ(†T ∩Z)Q-module locally projective of finite type for the induced

structure. Let E(•) be an object of LM−−→Q,coh(‹D(•)
X]

) such that E ∼−→ lim−→ (E(•)). Then u](•)!(E(•)) ∈
LD−→

b
Q,coh(‹D(•)

Z]
).

Proof. This is a consequence of 14.3.3.9 and 14.3.3.1.

Remark 14.3.3.11. We keep the notations and hypotheses of theorem 14.3.3.1.
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(a) If one of the equivalent conditions of the theorem 14.3.3.1 is satisfied then we have the isomorphism
u]+ ◦ u]!(E)

∼−→ RΓ†Z(E) (in the left term, the functors u]+ and u]! are computed in the respective
categories of coherent D†-modules).

(b) On the other hands, if we only suppose that u]!(E) ∈ Db
coh(D†

Z]
(†T ∩ Z)Q), then it is not clear

that u]+ ◦ u]!(E) (the functors u]+ and u]! are computed in the categories of coherent D†-modules)
is isomorphic to lim−→ ◦ u

](•)
+ ◦ u](•)!(E(•)) = RΓ†Z(E). Indeed, then it is not clear that the coherence

of u]!(E) implies u](•)!(E(•)) ∈ LD−→
b
Q,coh(‹D(•)

Z]
). A priori, to ensure with such implication, we need

additional conditions (e.g. 14.3.3.10).
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Chapter 15

Holonomicity, overcoherence

Suppose the residue field k of V is perfect.

15.1 Characteristic varieties

15.1.1 Cotangent space
LetX be a smooth k-variety. For any quasi-coherent OX -module E , we denote by Sym(E) the symetric al-
gebra of E and by V(E) := Spec(Sym(E)) endowed with its canonical projection V(E)→ Spec Sym(OX) =
X. We denote by Ω1

X the sheaf of differential form of X/ Spec(k) (we skip k in the notation), and TX
the tangent space of X/ Spec(k), i.e. the OX -dual of Ω1

X . We denote by T ∗X := V(TX) the cotangent
space of X and πX : T ∗X → X the canonical projection. Recall that from [Gro61, 1.7.9], there is a
canonical bijection between sections of πX and Γ(X,Ω1

X). We denote by T ∗XX the section correspond-
ing to the zero section of Γ(X,Ω1

X). If t1, . . . , td are local coordinates of X, we get local coordinates
t1, . . . , td, ξ1, . . . , ξd of T ∗X, where ξi is the element associated with ∂i, the derivation with respect to ti.
Is this case, T ∗XX = V (ξ1, . . . , ξd) is the closed subvariety of T ∗X defined by ξ1 = 0, . . . , ξd = 0.

Let f : X → Y be a morphism of smooth k-varieties. Using the equality [Gro61, 1.7.11.(iv)] we get
the last one X ×Y T ∗Y = X ×Y V(TY ) = V(f∗TY ). The morphism f∗Ω1

Y → Ω1
X induced by f yields by

duality TX → f∗TY and then by functoriality V(f∗TY ) → V(TX) = T ∗X. By composition, we get the
morphism denoted by ρf : X×Y T ∗Y → T ∗X. We will write by $f : X×Y T ∗Y → T ∗Y the base change
of f under πY .

We denote by Tf the function from the set of subvarieties of T ∗X to the set of subvarieties of T ∗Y
defined by setting, for any subvariety V of T ∗X, Tf (V ) := $f (ρ−1

f (V )). If f is an open immersion, then
ρf is an isomorphism. In that case, Tf := $f ◦ ρ−1

f : T ∗X → T ∗Y is an open immersion and this is
compatible with the above definition of Tf . The application T : f 7→ Tf is transitive (with respect to
the composition), i.e. we have the equality Tg ◦Tf = Tg◦f for any g : Y → Z (e.g. look at the bottom
of the diagram ?? where f and u are replaced respectively by g and f).

We define the k-variety T ∗XY (recall a k-variety is a separated reduced scheme of finite type over
k from our convention) by setting T ∗XY := ρ−1

f (T ∗XX). When f is an immersion, T ∗XY is viewed as a

subvariety of T ∗Y via T ∗XY ⊂ X ×Y T ∗Y
$f
↪→ T ∗Y , i.e. we will simply denote $f (T ∗XY ) by T ∗XY .

15.1.2 Cotangent space of level m
Set S := Spec k, m ∈ N.

Notation 15.1.2.1. We denote by FX : X → X be the absolute Frobenius morphism. We denote by
X(m) the base change of X by FmS the mth power of Frobenius of S, and by FmX/S : X → X(m) the
relative Frobenius morphism. We get the equality FmX = id×FmS ◦ FmX/S

15.1.2.2 (Universal homeomorphism). Let f : X → Y be a morphism of schemes.
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1. Following Definitions [Gro60, 3.5.4] (and Remark [Gro60, 3.5.11]) or [Gro65, 2.4.2], f is by definition
a universal homeomorphism (resp. is universally injective) if for any morphism of schemes g : Y ′ →
Y , the morphism fY ′ : X ×Y Y ′ → Y ′ is a homeomorphism (resp. is injective).

2. Some authors use the name of “purely inseparable” (e.g. [Liu02, 5.3.13]) or “radicial” (e.g. [Gro60,
3.5.4]) instead of “universally injective”. From Definition [Gro60, 3.5.4], Proposition [Gro60, 3.5.8]
and Remark [Gro60, 3.5.11], the following conditions are equivalent:

(a) f is universally injective ;

(b) for any field K, the map X(K)→ Y (K) is injective ;

(c) f is injective and for any point x of X the monomorphism of the residue fields k(f(x))→ k(x)
induced by f is purely inseparable (some authors say “radicial” instead of “purely inseparable”).

3. Suppose now that f : X → Y is a morphism of k-varieties. Using Proposition [Gro65, 2.4.5], we
check that f is a universal homeomorphism if and only if f is finite, surjectif and radicial.

Lemma 15.1.2.3. Let X be a S-variety. Then the relative Frobenius FmX/S : X → X(m), the morphism
FmS : X(m) → X (induced from FmS by base change) and the absolute Frobenius morphism FmX/S : X → X

(equal to FmX = FmS ◦ FmX/S) are universal homeomorphisms.

Proof. From the characterization 15.1.2.2.3, FmS : S → S is a universal homeomorphism. Hence, by
stability of this property by base change we get that FmS : X(m) → X is a universal homeomorphism.
From Lemma [Liu02, 3.2.25], we check that FmX/S is finite. Hence, so is by composition FmX . Since FmX
induces the identity on the underlying topological space, FmX is bijective. Moreover, the monomorphism of
the residue fields k(x)→ k(x) induced by FmX is the sth power of the Frobenius, hence it is radicial. From
15.1.2.2.2.(c), this yields that FmX is radicial. From 15.1.2.2.2.(b), this implies that FmX/S is also radicial.
With the characterization 15.1.2.2.3, we get that FmX/S and FmX are universal homeomorphisms.

Notation 15.1.2.4. LetX be a smooth S-scheme The sheaf D(m)
X/S is equipped with the order filtration of

differential operators. Its associated graded ring grD(m)
X/S is a quasi-coherent, commutative OX -algebra.

We will denote by T (m)∗X, and we will call the cotangent space of level m of X, the reduced scheme

T (m)∗X := (Spec(grD(m)
X/S))red.

Example 15.1.2.5. With notation 15.1.2.4, when m = 0, following 2.3.3.2, we have the canonical
isomorphism S(TX/S)

∼−→ grD(0)
X/S , so that T (0)∗X is the usual cotangent fiber T ∗X.

15.1.2.6 (Local description and notation). Let X be affine S-scheme such that X/S is endowed with
coordinates t1, . . . , td. Let i ∈ {1, . . . , d}. Let j < m be an integer. It follows from the formula 1.4.2.7.(c)

that we have the equality (∂
<pj>(m)

i )p =
(∏p

l=2

¨
lpj

(l−1)pj

∂
(m)

)
∂
<pj+1>(m)

i . Using the formula 1.2.1.4.1,

we compute vp
(¨

lpj

(l−1)pj

∂
(m)

)
= 1. Hence, (∂

<pj>(m)

i )p = 0 in D(m)
X/S . From 1.2.1.5.(b) and 1.4.2.7.(c),

for any l ∈ N, we compute that there exists u ∈ Z∗p such that (∂
<pm>(m)

i )l = u∂
<pml>(m)

i . Let ξ(m)
i be the

class of ∂<p
m>(m)

i = ∂
[pm]
i in (grD(m)

X/S)red. Hence, with the formula 1.4.2.8.3 (the factors of this latter
formula commute two by two), we get the canonical isomorphism of OX -algebras

OX [x1, . . . , xd]
∼−→ (grD(m)

X/S)red (15.1.2.6.1)

given by xi 7→ ξ
(m)
i .

Lemma 15.1.2.7. Let X be a smooth S-scheme. There exists a canonical isomorphism

X ×X(m) T ∗X(m) ∼−→ T (m)∗X. (15.1.2.7.1)
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Proof. We reduce to check that the canonical morphism morphism (grD(m)
X/S)red → Fm∗X/S grD(0)

X(m)/S

induced by the morphism D(m)
X/S → Fm∗X/SD

(0)

X(m)/S
of left D(m)

X/S-modules is an isomorphism. Since this is

local, we can suppose we are in the local situation of 15.1.2.6. Following 6.1.1.8.3, the image of ∂<k>(m)

i

via D(m)
X/S → Fm∗X/SD

(0)

X(m)/S
is 1⊗ ∂k/p

m

i if pm divides k and otherwise is 0. Hence, ξ(m)
i is sent to 1⊗ ξi,

where ξi is the class of ∂i in grD(0)

X(m)/S
, i.e. we get the commutative diagram

OX [x1, . . . , xd]
∼

15.1.2.6.1
//

∼

��

(grD(m)
X/S)red

��
OX ⊗O

X(m)
OX(m) [x1, . . . , xd]

∼
15.1.2.6.1

// OX ⊗O
X(m)

(grD(0)

X(m)/S
).

15.1.2.8. Since (FmS )∗Ω1
X/S

∼−→ Ω1
X(m)/S

then (FmS )∗TX/S
∼−→ TX(m)/S and therefore

: X(m) ×X T ∗X
∼−→ S ×Fm

S
,S T

∗X
∼−→ T ∗X(m). (15.1.2.8.1)

Hence, it follows from 15.1.2.7.1 and 15.1.2.3 that we have the canonical universal homeomorphism
ι
(m)
X/S : T (m)∗X → T ∗X(m) and ι(m)

S : T ∗X(m) → T ∗X. Setting ι(m)
X := ι

(m)
S ◦ ι(m)

X/S : T ∗X → T (m)∗X we
get the following cartesian diagram

T (m)∗X

�

��

ι
(m)

X

))

ι
(m)

X/S

// T ∗X(m)

�
��

ι
(m)

S

// T ∗X,

��
X

FmX
66

FmX/S // X(m)
FmS // X

(15.1.2.8.2)

where the vertical arrows are the canonical ones. In particular, we get the homeomorphism

ι
(m)
X : |T (m)∗X| ∼−→ |T ∗X|, (15.1.2.8.3)

which may allow us to identify the closed parts of |T (m)∗X| and |T ∗X|.

15.1.3 The characteristic variety of a coherent D(m)
X/S-module

Let i,m ∈ N. Let Xi be a smooth variety over Si = SpecV/πi+1V. Let X be the reduction of Xi modulo
π.

15.1.3.1. Let K be the kernel of the epimorphism grD(m)
Xi/Si

� grD(m)
X/S . Since K

i+1 = 0, then

T (m)∗X = (Spec(grD(m)
Xi/Si

))red. (15.1.3.1.1)

Hence, |Spec(grD(m)
Xi/Si

)| = |T (m)∗X| ∼−→ |T ∗X|.

Definition 15.1.3.2. Let E be a coherent left or right D(m)
Xi/Si

-module.

(a) Choose a good filtration (En)n∈N (see the definition 4.1.3.8 or 4.1.3.27 for the right version), i.e. a
filtration such that gr E is a coherent grD(m)

Xi/Si
-module (see Theorem 4.1.3.25 which is still valid for

the right version). The characteristic variety of levelm of E , denoted by Car(m)(E) is by definition the
image by the homeomorphism ι(m) (see 15.1.2.8.3) of the support of gr E in T (m)∗X (see 15.1.3.1.1).
By using the inclusions 4.1.3.10.1, we can copy the standard proof (e.g. see [HTT08, D.3.1]) of the
fact that Car(m)(E) does not depend on the choice of a good filtration.
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(b) Suppose E is a left D(m)
Xi/Si

-module. If (En)n∈N is a good filtration of E then (ωXi/Si ⊗OXi Er)r∈N is
a good filtration of ωXi/Si ⊗OXi E . Hence, we get

Car(m)(E) = Car(m)(ωXi/Si ⊗OXi E).

To simplify the statements, we will focus later on left modules case but the right versions will
obviously be valid.

(c) The “dimension of level m of E” is defined by setting dim(m)(E) := dim Car(m)(E). The “codimension
of level m of E” is defined by setting codim(m)(E) := 2 dimX − dim(m)(E).

(d) Let F ∈ Db
coh(D(m)

Xi/Si
) By definition, we define the characteristic variety of this complex by setting

Car(m)(F) := ∪rCar(m)(Hr(F)).

Example 15.1.3.3. Let E be a coherent D(m)
Xi/Si

-module. We have E = 0 if and only if Car(m)(E) is
empty.

15.1.3.4 (Conicity). Let E be a coherent left D(0)
X0/S0

-module. The characteristic variety Car(0)(E) is

conic, i.e. the following properties hold. Let s ∈ Car(0)(E) and x := πX(s). Then π−1
X (x)∩Car(0)(E) is a

closed subscheme of π−1
X (x) defined by an homogeneous ideal. More precisely, if X0/S0 is endowed with

coordinates t1, . . . , td, then the ideal defining π−1
X (x)∩Car(0)(E) is an homegenous ideal of k(x)[ξ1, . . . , ξd].

In particular, we get the inequality (that we will need to check 15.1.5.5):

For any s ∈ Car(0)(E) \ T ∗XX, we have dim
Ä
π−1
X (πX(s)) ∩ Car(0)(E)

ä
≥ 1 (15.1.3.4.1)

Lemma 15.1.3.5. Let 0 → E ′ → E → E ′′ → 0 be an exact sequence of coherent left D(m)
Xi/Si

-modules.
We have the equality

Car(m)(E) = Car(m)(E ′) ∪ Car(m)(E ′′). (15.1.3.5.1)

In particular, we have the formula codim(m)(E) = min{codim(m)(E ′), codim(m)(E ′′)}.

Proof. Choose a good filtration (En)n∈N of E . Denote by ε : E → E ′′ the surjection. Following 4.1.3.26,
the filtrations of E ′, E ′′ defined by: E ′n := En ∩ E ′, E ′′n = ε(En) are good. With theses filtrations, we get
the exact sequence 0→ gr E ′ → gr E → gr E ′′ → 0. Hence, we are done.

Lemma 15.1.3.6. Let E be coherent left D(m)
Xi/Si

-module. For any integer 0 ≤ i′ ≤ i, we have the equality

Car(m)(E) = Car(m)(E/πi
′+1E). (15.1.3.6.1)

Proof. Let i ∈ N. We proceed by induction on i. When i = 0, this is obvious. Suppose i ≥ 1 and the
Lemma holds for i− 1. Let 0 ≤ i′ ≤ i.

a) The multiplication by πi induces the surjective D(m)
Xi/Si

-linear map E/πiE → πiE . From 15.1.3.5.1,

this yields Car(m)(πiE) ⊂ Car(m)(E/πiE). By using the exact sequence 0→ πiE → E → E/πiE → 0, we
get Car(m)(E) = Car(m)(πiE)∪Car(m)(E/πiE). Hence, Car(m)(E) = Car(m)(E/πiE), i.e. 15.1.3.6.1 holds
when i′ = i.

b) When i′ < i, since E/πi′+1E ∼−→ (E/πiE)/πi
′+1(E/πiE), then from the induction hypothesis, we

have Car(m)(E/πiE) = Car(m)(E/πi′+1E). Hence, we are done.

Lemma 15.1.3.7. Let F : Xi → X ′i be a lifting of F sX/S : X → X(s), the sth relative Frobenius of X/S.

Let E ′ be a coherent left D(m)
X′
i
/Si

-module. Then we have in |T ∗X| the equality:

ι
(s)
S (Car(m)(E ′)) = Car(m+s)(F ∗E ′), (15.1.3.7.1)

where ι(s)S : T ∗X(s) → T ∗X is the canonical universal homeomorphism induced by base change via F sS
(see 15.1.2.8.2).
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Proof. With 15.1.3.6, we can suppose i = 0.
1) We reduce to the case where m = 0 as follows. Let F sS := (F sS × id, F sS) : X(s)/S → X/S be the

canonical isomorphism induced by the sth power of Frobenius of S. Let E be a coherent left D(m)
X/S-module

such that E ′ ∼−→ (F sS)∗E . Since ι(s)S (Car(m)(E ′)) = Car(m)(E), then the formula 15.1.3.7.1 holds if and
only if Car(m)(E) = Car(m+s)((F sX)∗E). Since the functor E 7→ (F sX)∗E is an equivalence of categories
between the coherent left D(m)

X/S-modules and the coherent left D(m+s)
X/S -module (this follows from the

Frobenius descent 6.1.1.9 and F sS ◦F sX/S = F sX), then by transitivity , we can suppose m = 0 (and s may
vary).

2) We check the equality 15.1.3.7.1 in the case where i = 0 and m = 0. We set X ′ := X(s) and
F = F sX/S . Since E ′ is a quasi-coherent OX′-module, then it is the inductive limit of its coherent
OX′ -submodules (see [Gro60, 9.4.9]). Hence, there exists a coherent OX′ -submodule G′ of E ′ such that
the canonical D(m)

X′/S-linear map $ : D(0)
X′/S ⊗OX′ G

′ � E ′ is surjective. This yields the good filtration

(E ′l )l∈N by setting E ′l = $(D(0)
X′/S,l ⊗OX′ G

′). Since D(s)
X/S → F ∗D(0)

X′/S is (D(s)
X/S , F

−1OX′)-bilinear (see

4.4.2.8), we get the surjective D(s)
X/S-linear maps $(s) : D(s)

X/S ⊗OX F ∗G′ ∼−→ D(s)
X/S ⊗F−1OX′ F

−1G′ �

F ∗D(0)
X/S ⊗F−1OX′ F

−1G′
F∗($)
� F ∗E ′. Via the formula 6.1.1.8.3, we compute the induced good filtration

of F ∗E ′ is
Filn F

∗E ′ := $(s)(D(s)
X/S,n ⊗OX F

∗G′) = F ∗E ′
q
(s)
n
,

where q(s)
n is the quotient of the Euclidian division of n by ps. We compute grpsn F

∗E ′ ∼−→ F ∗ grn E ′,
and grN F

∗E ′ = 0 if ps does not divides N . Recall the canonical map D(s)
X/S → F ∗D(0)

X′/S induces

the isomorphism (grD(s)
X/S)red

∼−→ F ∗ grD(0)

X(s)/S
(see the proof of 15.1.2.7), which is translated by

the isomorphism X ×X(s) T ∗X(s) ∼−→ T (s)∗X of 15.1.2.7.1. Via the above computation, the cor-
responding coherent F ∗ grD(0)

X′/S-module associated with the coherent (grD(s)
X/S)red-module grF ∗E ′ is

therefore F ∗ grD(0)
X′/S ⊗grD(0)

X′/S
gr E ′. Hence grF ∗E ′ ∼−→ ι

(s)
S∗ ι

(s)∗
S gr E ′. On one hand Car(s)(F ∗E ′) =

ι
(s)
∗ Supp grF ∗E ′. On the other hand, since ι(s)S is a flat universal homeomorphism, then Supp ι

(s)
S∗ ι

(s)∗
S gr E ′ =

Supp gr E ′.

15.1.4 The characteristic variety of a coherent “D(m)
P,Q-module

Let P be a smooth V-formal scheme, Pi be the reduction of P modulo πi+1, P be the reduction of P
modulo π. Let m ∈ N be an integer.

Definition 15.1.4.1. Let E be a coherent “D(m)
P -module.

(a) The “characteristic variety Car(m)(E) of level m” of E is by definition the characteristic variety of
level m of E/πE as coherent D(m)

P -module, i.e. Car(m)(E) := Car(m)(E/πE).

(b) The “dimension of level m of E” is defined by setting dim(m)(E) := dim Car(m)(E). The “codimension
of level m of E” is defined by setting codim(m)(E) := 2 dimP − dim(m)(E).

We have the inequalities 0 ≤ dim(E) ≤ 2 dimP and 0 ≤ codim(E) ≤ 2 dimP .

(c) We obtain the analogous constructions and definitions for right modules. Moreover, we get

Car(m)(E) = Car(m)(ωP/S ⊗OP
E).

Proposition 15.1.4.2. Let E, F be two p-torsion free coherent “D(m)
P -modules, such that there exists an

isogeny φ : E → F . Then Car(m)(E) = Car(m)(F).

Proof. Since E is p-torsion free, then φ is a monomorphism and there exists n ∈ N such that pn+1(F/φ(E)) =

0. Hence Tor
OP

1 (OP/p
n+1OP,F/φ(E))

∼−→ F/φ(E). Since F is p-torsion free, then Tor
OP

1 (OP/p
n+1OP,F) =
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0. Hence, by applying the functor OPn ⊗L
OP
− to the exact sequence 0 → E φ−→ F → F/φ(E) → 0 we

get an exact triangle which induces the long exact sequence of coherent left D(m)
Pn/Sn

-modules:

0→ F/φ(E)→ E/pn+1E → F/pn+1F → F/φ(E)→ 0.

Hence, it follows from 15.1.3.5.1 that Car(m)(E/pn+1E) = Car(m)(F/pn+1F). We conclude thanks to
15.1.3.6.1.

Definition 15.1.4.3. Let E be a coherent “D(m)
P,Q-module.

(a) Choose a p-torsion free coherent “D(m)
P -module

◦
E such that there exists an isomorphism of “D(m)

P,Q-

modules of the form
◦
EQ

∼−→ E (see 7.5.2.8). The characteristic variety of level m of E denoted by

Car(m)(E) is by definition that of
◦
E as coherent “D(m)

P -module, i.e., Car(m)(E) := Car(m)(
◦
E/π

◦
E). It

follows from 15.1.4.2 that this is well defined.

(b) The “dimension of level m of E” is defined by setting dim(m)(E) := dim Car(m)(E). The “codimension
of level m of E” is defined by setting codim(m)(E) := 2 dimP − dim(m)(E).

We have the inequalities 0 ≤ dim(E) ≤ 2 dimP and 0 ≤ codim(E) ≤ 2 dimP .

(c) We obtain the analogous constructions and definitions for right modules. Moreover, we get

Car(m)(E) = Car(m)(ωP/S ⊗OP
E).

Example 15.1.4.4. Let E be a coherent “D(m)
P,Q-module. The variety Car(m)(E) is empty if and only if

dim(m) E = 0 if and only if E = 0 (because, since
◦
E has no p-torsion,

◦
E/π

◦
E = 0 is equivalent to

◦
EQ = 0).

Lemma 15.1.4.5. Let 0→ E ′ → E → E ′′ → 0 be an exact sequence of coherent left “D(m)
P,Q-modules. We

have the equality
Car(m)(E) = Car(m)(E ′) ∪ Car(m)(E ′′). (15.1.4.5.1)

In particular, we have the formula codim(m)(E) = min{codim(m)(E ′), codim(m)(E ′′)}.

Proof. Choose a morphism of p-torsion free coherent “D(m)
P -modules g : F → F ′′ such that the induced

morphism FQ → F ′′Q is isomorphic to E → E ′′. Replacing F ′′ by the image of g if necessary we can suppose
g is surjective. Let F ′ := ker g. Then F ′ is a p-torsion free coherent “D(m)

P -module and is endowed with

an isomorphism of “D(m)
P,Q-modules of the form F ′Q

∼−→ E ′. Setting F ′ := D(0)
P ⊗D̂(0)

P

F ′, F := D(0)
P ⊗D̂(0)

P

F

and F ′′ := D(0)
P ⊗D̂(0)

P

F ′′ we get the exact sequence of D(0)
P -modules 0 → F ′ → F → F ′′ → 0. Hence,

this is a consequence of 15.1.3.5.

Lemma 15.1.4.6. Let F : P → P′ be a morphism of smooth S-formal schemes which is a lifting of
F sP/S. Let E ′ be a coherent “D(m)

P′/S,Q-module.Then we have in |T ∗P | the equality:

ι
(s)
S (Car(m)(E ′)) = Car(m+s)(F ∗E ′),

where ι(s)S : T ∗X(s) → T ∗X is the canonical universal homeomorphism induced by base change via F sS
(see 15.1.2.8.2).

Proof. Choose a p-torsion free coherent “D(m)
P′/S-module

◦
E ′ such that there exists an isomorphism of“D(m)

P′/S,Q-modules of the form
◦
E ′Q

∼−→ E ′. By definition, Car(m)(E ′) = Car(m)(
◦
E ′) = Car(m)(

◦
E ′/π

◦
E ′).

On the other hand, since F ∗
◦
E ′ is a p-torsion free coherent “D(m+s)

P/S -module, since we have an isomor-

phism of “D(m+s)
P/S,Q-modules of the form (F ∗

◦
E ′)Q

∼−→ F ∗E ′, then Car(m+s)(F ∗E ′) = Car(m+s)(F ∗
◦
E ′) =

Car(m+s)(F ∗(
◦
E ′/π

◦
E ′)). We conclude by using Lemma 15.1.3.7.
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15.1.5 The characteristic variety of a coherent F -D†P,Q-module

Definition 15.1.5.1. Suppose there exists an isomorphism σ : V ∼−→ V lifting the s-power of the
Frobenius of k. Let (N , φ) be a coherent F -D†P,Q-module, i.e. a coherent D†P,Q-module N and an
isomorphism of D†P,Q-modules φ of the form φ : F ∗N ∼−→ N , where F : P → P′ is (locally) a lifσ-

linear lifting of FP . Then there exists a (unique up to isomorphism) coherent “D(0)
P,Q-module N (0) and an

isomorphism φ(0) : “D(1)
P,Q ⊗D̂(0)

P,Q

N (0) ∼−→ F ∗N (0) which induces canonically φ. Then, the characteristic

variety ofN denoted by Car(N ) is by definition the characteristic variety of level 0 ofN (0), i.e., Car(N ) :=

Car(0)(N (0)).

Example 15.1.5.2. The variety Car(N ) is empty if and only if N = 0.

Proposition 15.1.5.3. We have the following properties.

1. Let G be a coherent D(0)
P -module. Choose a good filtration (Gn)n∈N of G. Then the following

assertions are equivalent

(a) Car(0)(G) ⊂ T ∗PP .

(b) grG is OP -coherent (for the OP -module structure induced by OP ↪→ grD(0)
P ).

(c) G is OP -coherent (for the OP -module structure induced by OP ↪→ D(0)
P ).

2. Let G be a coherent D(m)
P -module (resp. a coherent “D(m)

P -module, resp. a topologically nilpotent

coherent “D(m)
P,Q-module). Then the following assertions are equivalent

(a) Car(m)(G) ⊂ T ∗PP .
(b) G is OP -coherent (resp. OP-coherent, resp. OP,Q-coherent).

Proof. 1) Let us treat the first part. Let us prove that (a) implies (b). Since this is local, we can
suppose that P affine and P/S has coordinates t1, . . . , td. Let ξi be the global section of grD(0)

P which
is the element associated with ∂i, the derivation with respect to ti. Since the ideal defining the closed
immersion Car(0)(G) ↪→ T ∗P is the radical of the annihilator of grG, the inclusion Car(0)(G) ⊂ T ∗PP
implies that ξN1 , . . . , ξNd annihilate grG for some integer N large enough. Hence, grG is a coherent
grD(0)

P /(ξ1, . . . , ξd)
Nd-module. Since grD(0)

P /(ξ1, . . . , ξd)
Nd is a finite OP -algebra we conclude that grG

is OP -coherent.
Now, suppose (b) is satisfied and let us check (c) holds. By definition of a good filtration, we get

Gn = G for n large enough. Hence, G is coherent OP -module. Finally, suppose (c). Then, the constant
filtration (Gn = G)n∈N is a good filtration (it might be more convenient to complete the filtration by
Gn = 0 if n < 0). Then the action of ξi on grG = G0/G−1 = G is zero (because the action of ξi is induced
by maps of the form Gn/Gn−1 → Gn+1/Gn, which are zero). Hence, Car(0)(G) ⊂ T ∗PP (recall that the
construction of Car(0)(G) does not depend on the choice of the good filtration).

2) i) Suppose G is a coherent D(m)
P/S-module. Let G′(0) be a coherent D(0)

P (s)/S
-module such that

Fm∗P/SG
′(0) ∼−→ G, where FmP/S is the mth relative Frobenius of P/S. Since FmP/S is faithfully flat, then

G′(0) is coherent over OP (s) if and only if G is coherent over OP . By using 15.1.3.7, we reduce therefore
to the case where m = 0 which has been checked above.

ii) Suppose G is a coherent “D(m)
P -module. Since G is coherent over OP if and only if G/πG is coherent

over OP (use 7.2.1.2 and theorem of type A for coherent “D(m)
P -modules), since Car(0)(G) = Car(0)(G/πG)

(see definition 15.1.4.1), then we conclude from the case i).
iii) Suppose G is a topologically nilpotent coherent “D(m)

P,Q-module. Choose a p-torsion free coherent“D(m)
P -module

◦
G together with the isomorphism of the form

◦
GQ

∼−→ G. By definition, Car(m)(G) =

Car(m)(
◦
G). Since G is topologically nilpotent, then if follows from 7.5.2.9 that G is OP,Q-coherent if and

only if
◦
G is OP-coherent.
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Corollary 15.1.5.4. Suppose there exists an isomorphism σ : V ∼−→ V lifting the s-power of the Frobe-
nius of k. Let (E , φ) be a coherent F -D†P,Q-module. The following assertions are equivalent.

(a) Car(E) ⊂ T ∗PP .

(b) E is OP,Q-coherent.

Proof. i) Suppose Car(E) ⊂ T ∗PP . Let m0 ≥ 0 be an integer such that there exist a coherent “D(m0)
P,Q -

module E(m0) together with a D†P,Q-linear isomorphism of the form D†P,Q ⊗D̂(m0)

P,Q

E(m0) ∼−→ E (8.4.1.11).

Let
◦
E(m0) be a p-torsion free coherent “D(m0)

P -module together with a “D(m0)
P,Q -linear isomorphism

◦
E(m0)

Q
∼−→

E(m0) (see 7.4.5.2). Since Car(E) = Car(m0)(
◦
E(m0)), then it follows from the part 2) that

◦
E(m0) is OP-

coherent. Hence E(m0) is OP,Q-coherent and E is therefore OP,Q-coherent (see 15.3.1.22).
ii) Conversely if E is OP,Q-coherent then following 11.1.1.6 there exists a p-torsion free “D(0)

P/S-module
◦
E , coherent over OP together with a “D(0)

P/S,Q-linear isomorphism
◦
EQ

∼−→ E . Since D†P,Q ⊗D̂(0)

P,Q

E ∼−→ E

(use 11.1.1.6.(b and c)), this yields Car(E) = Car(0)(
◦
E). Following the part 2) of 15.1.5.3, Car(0)(

◦
E) ⊂

T ∗PP and we are done.

Proposition 15.1.5.5. Let E be a coherent D(m)
P/S-module (resp. a coherent “D(m)

P -module, resp. a

coherent “D(m)
P,Q-module).

If dim Car(m)(E) ≤ dimP , then there exists a dense open subset U ⊂ P such that E|U is coherent
over OU (resp. OU, resp. OU,Q).

Proof. 1) i) Suppose E be a coherent D(0)
P/S-module. Set S := Car(0)(E) \ T ∗PP . If S = ∅, then E is

coherent over OP by Proposition 15.1.5.3. Assume that S 6= ∅. Since S is conic (see 15.1.3.4.1), then
dim

Ä
π−1
P (πP (s)) ∩ Car(0)(E)

ä
≥ 1 for any s ∈ S. Hence dimπP (S) < dimS ≤ dimP . Therefore, there

exists a non-empty open subset U ⊂ P such that P \ πP (S) ⊃ U . In this case we have Car(0)(E|U) =

Car(0)(E) ∩ T ∗U ⊂ T ∗UU and hence E|U is coherent over OU by 15.1.5.3.
ii) Suppose E be a coherentD(m)

P/S-module. Let E ′(0) be a coherentD(0)

P (s) -module such that Fm∗P/SE
′(0) ∼−→

E . For any open U of P , since FmP/S is faithfully flat, then E ′(0)|U (s) is coherent over OU(s) if and only if
so is E|U . By using 15.1.3.7, we reduce therefore to the case where m = 0 already treated.

2) Suppose E a coherent “D(m)
P -module. Since E is coherent over OP if and only if E/πE is coherent

over OP , since Car(m)(E) = Car(m)(E/πE) (see definition 15.1.4.1), then we conclude by using the part
1).

3) Suppose E is a coherent “D(m)
P,Q-module. Let

◦
E be a p-torsion free coherent “D(m)

P -module together

with a “D(m)
P,Q-linear isomorphism

◦
EQ

∼−→ E (see 7.4.5.2). From the part 2), there exists a dense open
subset U ⊂ P such that

◦
E|U is coherent over OU. Hence E|U is coherent over OU,Q.

Corollary 15.1.5.6. We suppose there exists an isomorphism σ : V ∼−→ V lifting the s-power of the
Frobenius of k. Let E be a coherent F -D†P,Q-module If dim Car(E) ≤ dimP , then there exists a dense
open subset U ⊂ P such that E|U is coherent over OU,Q.

Proof. This follows from 15.1.5.5 and 15.3.1.22 (which is checked independently of 15.1.5.6).

15.1.6 Purity for the level 0: preliminaries on filtered modules
We use here the terminology of Laumon in [Lau85, A.1]:

(i) A filtered ring (D,Di) is a ring D, unitary, non-necessary commutative, with an increasing filtration
by additive subgroups (Di)i∈Z indexed by Z such that 1 ∈ D0 and Di ·Dj ⊂ Di+j for any i, j ∈ Z.

(ii) Let (D,Di) be a filtered ring. We get a category of filtered (D,Di)-modules as follows. A filtered
(D,Di)-module (M,Mi) is a D-module M endowed with a filtration (Mi)i∈Z such that Ai ·Mj ⊂
Mi+j for any i, j ∈ Z. A morphism of (M,Mi) → (M ′,M ′i) of filtered (D,Di)-modules is a
morphism of D-modules f : M →M ′ such that f(Mi) ⊂M ′i for any i ∈ Z. If (M,Mi) is a filtered
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(D,Di)-module and n ∈ Z, we denote by (M(n),M(n)i) the filtered (D,Di)-module defined as
follows: M(n) = M and M(n)i := Mi+n. Following [Gro61, 2.1.2], a filtered free (D,Di)-module
(resp. filtered free (D,Di)-module of finite type) is a direct sum (resp. a finite direct sum) in the
category of filtered (D,Di)-modules of the form (D(n), D(n)i), for some integer n. Let (M,Mi) be
a filtered (D,Di)-module. We say that the filtration Mi is good or that (M,Mi) is a good filtered
(D,Di)-module if there exists an epimorphism in the category of filtered (D,Di)-modules of the
form φ : (L,Li) � (M,Mi) such that φ(Li) = Mi (compare with 4.1.3.8). We remark that any
D-module of finite type can be endowed with a good filtration. Conversely, for any good filtered
(D,Di)-module (M,Mi), M is a D-module of finite type.

(iii) Let (D,Di) be a filtered ring and (M,Mi) be a filtered (D,Di)-module. The ind-pro-complete
separation of (M,Mi), denoted by (M̂, M̂i) is a filtered (D,Di)-module defined as follows: M̂i :=
lim←−nMi/Mi−n is the complete separation of Mi with respect to the filtration (Mi−n)n∈N and
M̂ := ∪i∈ZM̂i, where the inclusion M̂i ⊂ M̂i+1 are that induced by complete separation from
the inclusion Mi ⊂ Mi+1. Using the universal property of projective limits we check that (“D, “Di)

is also a filtered ring and that (M̂, M̂i) is a filtered (“D, “Di)-module.

We say that (M,Mi) is ind-pro-complete separated if the canonical morphism (M,Mi)→ (M̂, M̂i)
is an isomorphism. For instance, we remark that the filtration of an ind-pro-complete separated
filtered ring is exhaustive. Like Laumon, to simplify the terminology (we hope there will not be
confusion with the usual notion of completion), we will simply say “complete” for “ind-pro-complete
separated” and “completion” for “ind-pro-complete separation”.

(iv) In this section, with our abuse of terminology, (D,Di) will be a complete filtered ring such that
gr(D,Di) is a left and right noetherian ring. Hence, from Proposition [Lau85, A.1.1], a good filtered
(D,Di)-module is complete.

The following Lemmas 15.1.6.1, 15.1.6.3, 15.1.6.5, 15.1.6.7, 15.1.6.8 correspond to Laumon’s Lemmas
[Lau83, 3.3.2, 3.3.3, 3.3.5,3.3.8] formulated in our context.

Lemma 15.1.6.1. Let 0 → (M ′,M ′i)
f−→ (M,Mi)

g−→ (M ′′,M ′′i ) → 0 be a sequence of morphisms of
good filtered (D,Di)-modules.

1) The following conditions are equivalent:

(a) we have M ′i = M ′ ∩Mi and M ′′i = g(M ′i) for any i ∈ Z;

(b) the sequences of abelian groups 0→M ′i
f−→Mi

g−→M ′′i → 0 are exact for any i ∈ Z;
(c) g ◦ f = 0 and the sequence of grD-modules 0→ grM ′ → grM → grM ′′ → 0 is exact.

2) When these equivalent conditions of 1) are satisfied, the sequence of D-modules 0 → M ′ → M →
M ′′ → 0 is exact.

Proof. The equivalence between (a) and (b) is obvious. Suppose the condition (b) is satisfied. The fact
good filtrations are exhaustive implies that g ◦ f = 0. We get the last condition (c) by using the nine
Lemma (see the exercice [Wei94, 1.3.2]). Suppose now the condition (c) is satisfied. Using the nine
Lemma (more precisely, the part 3 of the exercice [Wei94, 1.3.2]), for any i ∈ Z, we check by induction
on n ≥ 1 that the sequence of abelian groups 0 → M ′i/M

′
i−n → Mi/Mi−n → M ′′i /M

′′
i−n → 0 are exact.

Taking the projective limits, since M ′i , Mi and M ′′i are complete separated by hypothesis, since Mittag
Leffler condition is satisfied, this yields that the sequence 0 → M ′i

f−→ Mi
g−→ M ′′i → 0 is exact. The

part 2) of the Lemma follows from the remark that filtrations are exhaustive.

Definition 15.1.6.2. Let 0 → (M ′,M ′i)
f−→ (M,Mi)

g−→ (M ′′,M ′′i ) → 0 be a sequence of morphisms
of good filtered (D,Di)-modules satisfying the equivalent conditions of 15.1.6.1.1). We say that this
sequence is an “exact” sequence of morphisms of good filtered (D,Di)-modules.

Lemma 15.1.6.3. Let u : (M,Mi)→ (N,Ni) be a morphism of good filtered (D,Di)-modules. We have
the exact sequences of good filtered (D,Di)-modules:

0→ keru→ (M,Mi)→ Coimu→ 0,

0→ Imu→ (N,Ni)→ Cokeru→ 0. (15.1.6.3.1)
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Proof. Let keru be the kernel of u in the category of filtered (D,Di)-modules, i.e. keru = (keru, keru∩
Mi). Let Cokeru be the cokernel of u in the category of filtered (D,Di)-modules, i.e. Cokeru =
(Cokeru,Ni/Ni ∩ u(M)). From [Lau85, A.1.1.2], the filtered (D,Di)-modules keru and Cokeru are
good. Hence, keru,Cokeru, Imu,Coimu exist in the category of good filtered (D,Di)-modules (and are
equal to that computed in the category of filtered (D,Di)-modules). Hence, both sequences 15.1.6.3.1
are well defined in the category of good filtered (D,Di)-modules. Since Coimu = (u(M), u(Mi)) and
Imu = (u(M), u(M) ∩ Ni), then these sequence satisfy the condition (a) of Lemma 15.1.6.1 and hence
they are exact.

Definition 15.1.6.4 (Strictness). A morphism u : (M,Mi)→ (N,Ni) of good filtered (D,Di)-modules
is strict if the canonical morphism Coimu→ Imu is an isomorphism of (good) filtered (D,Di)-modules.
If u : M → N is a monomorphism (resp. epimorphism) and if u : (M,Mi) → (N,Ni) is strict, we say
that u is a strict monomorphism (resp. strict epimorphism).

Lemma 15.1.6.5. Let u : (M,Mi)→ (N,Ni) be a morphism of good filtered (D,Di)-modules.

1. Then u is strict if and only if u(Mi) = u(M) ∩Ni for any i ∈ Z.

2. The following conditions are equivalent

(a) u is a strict monomorphism ;

(b) the morphism (M,Mi)→ Imu is an isomorphism ;

(c) the sequence of good filtered (D,Di)-modules 0→ (M,Mi)→ (N,Ni)→ Cokeru→ 0 is exact
;

(d) gru is a monomorphism.

3. The following conditions are equivalent

(a) u is a strict epimorphism ;

(b) the morphism Coimu→ (N,Ni) is an isomorphism ;

(c) the sequence of good filtered (D,Di)-modules 0→ keru→ (M,Mi)→ (N,Ni)→ 0 is exact ;

(d) gru is an epimorphism.

4. u is an isomorphism if and only if gru is an isomorphism.

Proof. The first statement is straighforward from the description of Imu and Coimu. The implication
(a) ⇒ (b) is clear from the description of Imu and from 1. The implication (b) ⇒ (c) (resp. (c) ⇒ (d))
is a consequence of 15.1.6.3.1. (resp. 15.1.6.1). Finally, suppose (d) is satisfied. Let x ∈ keru. Suppose
x 6= 0. There exists i ∈ Z such that x 6∈ Mi (recall the filtration is separated). This is a contradiction
with the fact thatMi+1/Mi → Ni+1/Ni is injective (because gru is injective by hypothesis). Hence u is a
monomorphism. The fact that gru is injective implies that Mi+1∩Ni = Mi, for any i ∈ Z. By induction
on n ∈ N we get that for any i ∈ Z, Mi+n ∩Ni = Mi. Since the filtration is exhaustive, this yields that
M ∩Ni = Mi. From part 1) of the Lemma, this means that u is strict. Let us check part 3). We check
similarly (a) → (b) → (c) → (d). Now suppose that gru is an epimorphism. Let i ∈ Z. From part 1),
it is sufficient to check u(Mi) = Ni (indeed filtrations are exhausted and then u will be surjective). Let
y ∈ Ni. Put y−1 := y. By induction on n ≥ 0, we construct yn ∈ Ni−1−n and xn ∈ Mi−n such that
u(xn) = yn−1 − yn. This is consequence of the equality u(Mi−n) + Ni−n−1 = Ni−n (because gru is an
epimorphism). Since Ni and Mi are separated complete for the filtrations (Ni−n)n∈N and (Mi−n)n∈N,
the sum

∑
n≥−1(yn − yn+1) converges to y and

∑
n∈N xn converges in Mi to an element, denoted by x.

Hence, u(x) = y and then Ni ⊂ u(Mi). Finally, 4 is a consequence of the equivalence (a)⇔ (d) of 2 and
3.

Remark 15.1.6.6. Let (M,Mi) be a filtered (D,Di)-module. From 15.1.6.5.1, we remark that (M,Mi)
is a good filtered (D,Di)-module if and only if there exists a strict epimorphism of the form u : (L,Li) �
(M,Mi), where (L,Li) is a free filtered (D,Di)-module of finite type.

Lemma 15.1.6.7. Let u : (M,Mi)→ (N,Ni) be a morphism of good filtered (D,Di)-modules.
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1. The following assertions are equivalent:

(a) The morphism u is strict ;

(b) The sequence 0→ gr keru→ gr(M,Mi)→ gr(N,Ni)→ gr Cokeru→ 0 is exact.

(c) ker gr(u) = gr ker(u) and Coker gr(u) = gr Coker(u).

2. If u is strict then we have also im gr(u) = gr im(u).

Proof. By applying the functor gr to the exact sequences 15.1.6.3.1, we get that (a)→ (b). Conversely,
suppose (b) satisfied. First, remark the following fact available in an abelian category A: let α : M1 �M2

(resp. β : M2 →M3, resp. γ : M3 ↪→M4) be a epimorphism (resp. a morphism, resp. a monomorphism)
of A. Then if kerα = ker γ ◦β ◦α then β is a monomorphism. Moreover, if Im γ = Im γ ◦β ◦α, then β is
surjective. By applying the functor gr to the exact sequences 15.1.6.3.1, with this remark, the condition
(b) implies that the morphism gr Coim(u) → gr Im(u) is an isomorphism of the abelian category of
grD-modules. With Lemma 15.1.6.5.4, this implies that Coim(u)→ Im(u) is an isomorphism.

The equivalence (b)⇔ (c) is straightforward. We check the statement 2) by applying gr to the exact
sequences 15.1.6.3.1.

Lemma 15.1.6.8. Let u : (M,Mi) → (N,Ni) and v : (N,Ni) → (O,Oi) be two morphisms of good
filtered (D,Di)-modules.

1. If v is a strict monomorphism and u is strict then v ◦ u is strict.

2. If u is a strict epimorphism and v is strict then v ◦ u is strict.

3. If v ◦ u is strict epimorphism then v is a strict epimorphism.

4. If v ◦ u is strict monomorphism then u is a strict monomorphism.

Proof. This can be checked elementarily from the characterization 15.1.6.5.1 For instance, let us check
1. Suppose v is a strict monomorphism and u is strict. We have v(u(M)) ∩ Oi ⊂ v(N) ∩ Oi = v(Ni)
(because v is strict). Hence, we get v(u(M)) ∩ Oi ⊂ v(u(M)) ∩ v(Ni) = v(u(M) ∩ Ni) = v(u(Mi))
(to check the equalities, use respectively that v is a monomorphism and u is strict). This implies
v(u(Mi)) = v(u(M))∩Oi. Let us check 4. If v◦u is strict monomorphism then u is a monomorphism and
we haveMi ⊂M∩u−1(Ni) ⊂M∩(v◦u)−1(Oi) = Mi. Hence,Mi = M∩u−1(Ni), i.e. u(Mi) = u(M)∩Ni.
We leave the other statements to the reader.

Remark 15.1.6.9. With the notation 15.1.6.8, this is not true in general that if u and v are strict then
v ◦ u is also strict. However, using 15.1.6.8 and 15.1.6.3, we remark that a morphism of good filtered
(D,Di)-modules is strict if and only if it is the composition (in the category of good filtered (D,Di)-
modules) of a strict epimorphism with a strict monomorphism. This last characterization of strictness
was Laumon’s definition of strictness given in [Lau83, 1.0.1].

Proposition 15.1.6.10. With the definition 15.1.6.4 of strictness, the category of good filtered (D,Di)-
modules is exact (see the definition in [Lau83, 1.0.2]).

Proof. This is straighforward from previous Lemmas. For instance, the condition [Lau83, 1.0.2.(vi)] are
the last two statements of 15.1.6.8.

Notation 15.1.6.11 (Localisation). Let f be a homogeneous element of grD. We denote by (D[f ], D[f ],i)
the complete filtered ring of (D,Di) relatively to S1(f) := {fn , n ∈ N} ⊂ grD (see the definition after
[Lau85, Corollaire A.2.3.4]).

Let (M,Mi) be a good filtered (D,Di)-module. We put

(M[f ],M[f ],i) := (D[f ], D[f ],i)⊗(D,Di) (M,Mi), (15.1.6.11.1)

the localized filtered module of (M,Mi) with respect to S1(f). We remind that (M[f ],M[f ],i) is also a
good filtered (D[f ], D[f ],i)-module (see [Lau85, A.2.3.6]) and grM[f ]

∼−→ grD[f ] ⊗grD grM (see [Lau85,
A.1.1.3]).
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The results and proofs of Malgrange in [Mal76, IV.4.2.3] (we can also find the proof in the book
[HTT08, D.2.2]) can be extended without further problem in the context of complete filtered rings:

Lemma 15.1.6.12. Let (M,Mi) be a good filtered (D,Di)-module. Then there exists some free filtered
(D,Di)-modules of finite type (Ln, Ln,i) with n ∈ N and strict morphisms of good filtered (D,Di)-modules
(Ln+1, Ln+1,i) → (Ln, Ln,i) and (L0, L0,i) → (M,Mi) such that L• → M is a resolution of M (in the
category of D-modules).

We call such a resolution (L•, L•,i) a “good resolution” of (M,Mi).

Proof. This is almost the same as [Mal76, IV.4.2.3.2]. For the reader, we remind the construction:
with the remark 15.1.6.6, there exists a strict epimorphism of good filtered (D,Di)-modules of the form
φ0 : (L0, L0,i)→ (M,Mi), with (L0, L0,i) a free filtered (D,Di)-module of finite type. Let (M1,M1,i) be
the kernel of φ0 (in the category of good filtered (D,Di)-modules: see 15.1.6.10). Since (M1,M1,i) is
good, there exists a strict epimorphism of the form φ1 : (L1, L1,i) → (M1,M1,i), with (L1, L1,i) a free
filtered (D,Di)-module of finite type. Hence, the morphism (L1, L1,i) → (L0, L0,i) is strict. We go on
similarly.

Remark 15.1.6.13. Let (L•, L•,i) be a good resolution of (M,Mi). Then gr(L•, L•,i) is a resolution
of gr(M,Mi) by free gr(D,Di)-modules of finite type (use the equivalence between 15.1.6.7.1.(a) and
15.1.6.7.1.(c)).

Lemma 15.1.6.14. Let K• be a complex of abelian groups. Let (FiK
•)i∈Z be an increasing filtration of

K•. We put
FiH

r(K•) := Im(Hr(FiK
•)→ Hr(K•)). (15.1.6.14.1)

Then grFi (Hr(K•)) is a subquotient of Hr(grFi K
•).

Proof. For instance, we can follow the last seven lines of the proof of [HTT08, D.2.4] (or also at Mal-
grange’s description of the corresponding spectral sequence in [Mal76, IV.4.2.3.2]): denote by dr : Kr →
Kr+1 the morphism in K•, dri : FiK

r → FiK
r+1 the morphism in FiK•, dri : grFi K

r = FiK
r/Fi−1K

r →
FiK

r+1/Fi−1K
r+1 = grFi K

r+1. Since ker dri = ker dr ∩ FiKr, we get FiHr(K•) = ker dr ∩ FiKr +
Im dr−1/ Im dr−1. By definition we obtain:

grFi (Hr(K•)) := FiH
r(K•)/Fi−1H

r(K•) = ker dr ∩ FiKr + Im dr−1/ ker dr ∩ Fi−1K
r + Im dr−1.

(15.1.6.14.2)
We have ker dri = ker(FiK

r → grFi K
r+1)/Fi−1K

r and Im dri−1 = dr−1
i (FiK

r−1) + Fi−1K
r/Fi−1K

r.
Hence

Hr(grFi K
•) := ker dri / Im dri−1 = ker(FiK

r → grFi K
r+1)/dr−1

i (FiK
r−1) + Fi−1K

r. (15.1.6.14.3)

Set L = ker dr ∩ FiKr/dr−1
i (FiK

r−1) + ker dr ∩ Fi−1K
r. The inclusion ker dr ∩ FiKr ⊂ ker(FiK

r →
grFi K

r+1) induces the map φ : ker dr ∩ FiKr → ker(FiK
r → grFi K

r+1)/dr−1
i (FiK

r−1) + Fi−1K
r. Let

x ∈ ker dr ∩ FiKr be an element in the kernel of φ. Then there exist y ∈ FiKr−1 and z ∈ Fi−1K
r such

that x = dr−1
i (y) + z. Since dr−1

i (y) ∈ ker dr, we get z ∈ ker dr and then z ∈ ker dr ∩ Fi−1K
r. Hence

kerφ ⊂ dr−1
i (FiK

r−1) + ker dr ∩ Fi−1K
r. Since the converse is obvious, we get kerφ = dr−1

i (FiK
r−1) +

ker dr ∩ Fi−1K
r. From 15.1.6.14.3, this yields that L is a subobject of Hr(grFi K

•). Moreover, we
have the epimorphism ker dr ∩ FiKr → ker dr ∩ FiKr + Im dr−1/ ker dr ∩ Fi−1K

r + Im dr−1. Since
dr−1
i (FiK

r−1) + ker dr ∩ Fi−1K
r is in the kernel of this map, we get the factorisation L → ker dr ∩

FiK
r + Im dr−1/ ker dr ∩Fi−1K

r + Im dr−1, which is still an epimorphism. From 15.1.6.14.2, this implies
that L is a quotient of grFi (Hr(K•)). Hence, grFi (Hr(K•)) is a quotient of a submodule of Hr(grFi K

•).

15.1.6.15. Let (M,Mi) and (N,Ni) be two filtered (D,Di)-modules. For any integer i ∈ Z, let
FiHomD(M,N) be the subgroup of HomD(M,N) of the elements φ such that, for any integer j ∈ Z,
φ(Mj) ⊂ Ni+j . For any integer j ∈ Z, for any φ ∈ FiHomD(M,N), we get a morphism griM → gri+j N
defined by sending the class of a element x ∈ Mi to the class of φ(x). Hence φ induces a map
grM → grN , which is in fact grD-linear. Hence we get the canonical morphism FiHomD(M,N) →
HomgrD(grM, grN) and then

grF HomD(M,N)→ HomgrD(grM, grN). (15.1.6.15.1)
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Lemma 15.1.6.16. Let (L,Li) be a free filtered (D,Di)-module of finite type. Let (N,Ni) be filtered
(D,Di)-module. The canonical morphism

gr HomD(L,N)→ HomgrD(grL, grN)

of 15.1.6.15.1 is an isomorphism of abelian groups.

Proof. Let (M,Mi), (M ′,M ′i) be two filtered (D,Di)-modules and (M ′′,M ′′i ) := (M,Mi) ⊕ (M ′,M ′i).
Then the morphism of 15.1.6.15.1 grF HomD(M ′′, N)→ HomgrD(grM ′′, grN) is an isomorphism if and
only if so are grF HomD(M,N)→ HomgrD(grM, grN) and grF HomD(M ′, N)→ HomgrD(grM ′, grN).
Hence, we can suppose that (L,Li) = (D(n), D(n)i), for some integer n. Twisting the filtrations,
we can suppose n = 0. Finally, we compute that the morphism of 15.1.6.15.1 gr HomD(D,N) →
HomgrD(grD, grN) is, modulo the identifications N = HomD(D,N) and HomgrD(grD, grN) = grN ,
the identity, which is an isomorphism.

Proposition 15.1.6.17. Let (M,Mi) be a good filtered (D,Di)-module. Let (N,Ni) be a filtered
(D,Di)-module. For any integer r, there exists a filtration F of ExtrD(M,N) satisfying the following
properties

1. ExtrD(M,N) = ∪i∈ZFi ExtrD(M,N),

2. grF ExtrD(M,N) is a subquotient of ExtrgrD(grM, grN).

3. Suppose (N,Ni) = (D,Di). The filtration (Fi ExtrD(M,D))i∈Z of the right D-module ExtrD(M,D)
is a good filtration. In particular, 0 = ∩i∈ZFi ExtrD(M,D). Moreover, we have the implication

ExtrgrD(grM, grD) = 0⇒ ExtrD(M,D) = 0.

Proof. From 15.1.6.12 and with its definition, there exists a good resolution (L•, L•,i) of (M,Mi). We
put K• := HomD(L•, N). Since L• is a resolution of M by projective D-modules, we get Hr(K•) =
ExtrD(M,N).

Let FiKn be the subset of the elements φ of HomD(Ln, N) such that, for any integer j ∈ Z, φ(Ln,j) ⊂
Ni+j . Since Ln is a D-module of finite type, we get ∪i∈ZFiK

n = Kn. With the induced filtration on
Hr(K•) = ExtrD(M,N) (see 15.1.6.14), this yields the first property. Since Ln is a free filtered (D,Di)-
modules of finite type, from Lemma 15.1.6.16, the canonical morphism grKn → HomgrD(grLn, grN)
is an isomorphism. Since grL• is a resolution of grM by projective grD-modules, we get Hr(grK•) =
ExtrgrD(grM, grN). This implies the second point by using Lemma 15.1.6.14.

When (N,Ni) = (D,Di), the filtration FiK
n of the right D-module Kn is a good filtration. We

denote by dn : Kn → Kn+1 the canonical morphisms. From [Lau85, A.1.1.2], the induced filtrations on
ker dn and next on ker dn/Imdn−1 (induced from the surjection ker dn → ker dn/Imdn−1) are good. We
notice that this filtration on ker dn/Imdn−1 = Hn(K•) is the same as that defined at 15.1.6.14.1, which
is the first assertion of the third point. With the second point, this yields the rest of the third point.

15.1.7 A criterium on the purity of the characteristic variety of a coherent“D(0)
P,Q-module

In the subsection, we prove that when E is holonomic, its characteristic variety Car(E) is of pure dimension
dimX. One main ingredient of the proof is to use the homological characterization of the holonomicity
(see 15.2.4.8) and another one is to use the sheaf of microdifferential operators (for instance, see [Abe14b]).
Both ideas comes from the original proof of Kashiwara of the analogous property in the theory of analytic
D-modules (see [Kas77]).

Let V be a complete discrete valued ring of mixed characteristic (0, p), π be a uniformizer, K its field
of fractions, k its residue field which is supposed to be perfect. A k-variety is a separated reduced scheme
of finite type over k.

Lemme 15.1.7.1. Let X be an affine smooth variety over k, D := Γ(X,D(0)
X/k), (Di)i∈N be its order

filtration of the operators, f be an homogeneous element of grD. Let (M,M i) and (N,N i) be two good
filtered (D[f ], D[f ],i)-modules and r be an integer.
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1. We have codim Extr
grD

[f]

(grM, grN) ≥ r.

2. If r < codim grM then Extr
grD

[f]

(grN, grD[f ]) = 0.

Proof. By construction (see [Lau85, A.2]), we get grD[f ]

∼−→ (grD)f . Then, this is well known (e.g. see
[HTT08, D.4.4]).

15.1.7.2 (Localisation and π-adic completion). Let P be an affine smooth V-formal scheme, Xn be the
reduction of P modulo πn+1. We put D := Γ(X,D(0)

P/S) and Dn := Γ(X,D(0)
Xn/Sn

). These rings are
canonically filtered by the order of the differential operators ; we denote by (D,Di) and (Dn, Dn,i) the
(ind-pro) complete filtered rings. Let f be an homogeneous element of grD and fn be its image in grDn.
With the notation of 15.1.6.11, by using the same arguments as in the proof of [Abe14b, 2.3], we get the
canonical isomorphism of (ind-pro) complete filtered ring

(D[f ], D[f ],i)⊗V V/πn+1 ∼−→ (Dn[fn], Dn[fn],i). (15.1.7.2.1)

We put “D[f ] (be careful that this notation is slightly different from that of 15.1.6.11) as the π-adic
completion of D[f ], i.e. “D[f ] := lim←−nD[f ]/π

n+1D[f ]
∼−→ lim←−nDn,[fn]. Using Corollary [Lau85, A.1.1.1]

and 7.2.1.2.(c), we get from the isomorphism 15.1.7.2.1 the noetherianity of “D[f ].
Finally, when there is no confusion with the notation 15.1.6.11, for any coherent “D-module (resp.

coherent “DQ-module) M (resp. N), we set (by default in this new context) M[f ] := “D[f ] ⊗D̂ M (resp.
N[f ] := “D[f ] ⊗D̂ N).

Lemme 15.1.7.3. With the notation of 15.1.7.2, the homomorphism “D → “D[f ] is flat.

Proof. This is a consequence of 7.2.1.3.(g), [Lau85, A.2.3.4.(ii)] and 15.1.7.2.1.

Remark 15.1.7.4. With the notation of 15.1.7.2, let M be a coherent “D-module. We put Mn :=
M/πn+1M . From 4.1.3.17, there exists a good filtration (Mn,i)i∈N ofMn indexed by N. We recall (see no-
tation 15.1.6.11.1) that we get a good filtered (Dn,[fn], Dn,[fn],i)-module by putting (Mn,[fn],Mn,[fn],i) :=

(Dn,[fn], Dn,[fn],i)⊗(Dn,Dn,i)(Mn,Mn,i). Moreover, since “D[f ]/π
n+1“D[f ]

∼−→ Dn,[fn] (use 15.1.7.2.1), then

M[f ]/π
n+1M[f ]

∼−→ Mn,[fn]. (15.1.7.4.1)

From 7.2.1.4, sinceM[f ] is a “D[f ]-module of finite type, thenM[f ] is complete for the π-adic topology.
Hence, using 15.1.7.4.1 we get the canonical isomorphism of “D[f ]-modulesM[f ]

∼−→ lim←−nMn,[fn].

Lemme 15.1.7.5. We keep notation 15.1.7.2. Let N be a coherent “D(0)
P,Q-module, Car(0)(N ) its charac-

teristic variety of level 0 (see the definition in 15.1.4.3). We put N := Γ(X,N ). The following assertions
are equivalent

1. D(f0) ∩ Car(0)(N ) = ∅.

2. N[f ] = 0.

Proof. From 7.4.5.1 and 7.4.5.2, there exits a p-torsion free coherent “D-module M such that MQ
∼−→ N .

Since the extension “D → “D[f ] is flat (see 15.1.7.3), we get that M[f ] is also p-torsion free (p is in the
center of “D and “D[f ]). This yields that N[f ] = 0 if and only if M[f ] = 0. Let M := M/πM . From
15.1.7.4.1, we have M[f ]/πM[f ]

∼−→ M [f0]. Hence, M[f ] = 0 if and only if M [f0] = 0 (7.2.1.2.(c)).
Following 4.1.3.17, there exists a good filtration (M i)i∈N of M indexed by N. From the remark 15.1.7.4,
this induces canonically the (ind-pro) complete (D[f0], D[f0],i)-module (M [f0],M [f0],i). Since M [f0] is
(ind-pro) complete, then the equalities M [f0] = 0 and gr(M [f0],M [f0],i)) = 0 are equivalent. Also,
(grM)f0

= 0 if and only if D(f0)∩ Supp(grM) = ∅. Since (grM)f0

∼−→ gr(M [f0]) (see [Lau85, A.1.1.3])
and since by definition Car(0)(N ) = Supp(gr(M,M i)), we conclude the proof.
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Remark 15.1.7.6. Let A = ⊕i∈NAi be a graded ring. Let I be a graded ideal. Let a1, . . . , ar be some
homogeneous generators of I. We notice that |SpecA| \ V (I) = ∪ri=1D(ai).

The following proposition is the analogue of [Kas77, 2.11]:

Proposition 15.1.7.7. Let P be a smooth V-formal scheme. Let N be a coherent “D(0)
P,Q-module and

V be an irreducible component of codimension r of Car(0)(N ), the characteristic variety of level 0 of N
(see 15.1.4.3). Then, Car(0)(Extr

D̂(0)

P,Q

(N , “D(0)
P,Q)) contains V .

Proof. We follow the proof of [Kas77, 2.11]: first, we can suppose P affine with local coordinates. We
set D := Γ(P,D(0)

P/S), N := Γ(X,N ), D := Γ(X,D(0)
X/S). Let M be a p-torsion free coherent “D-module

such that MQ
∼−→ N . Let M := M/πM . Following 4.1.3.17, there exists a good filtration (M i)i∈N of M

indexed by N. By definition, we have Car(0)(N ) = Supp(gr(M,M i)) (we recall that this is independent
on the choice of the good filtration). Let η be the generic point of V . From [Mat80, 7.D and 10.B.i)],
the irreducible components of Supp(grM) are of the form V (J) with J a homogeneous ideal. Let Z be
the union of the irreducible components of Supp(grM) which do not contain η. Then, we get from the
remark 15.1.7.6 that there exists a homegeneous element f ∈ grD such that η ∈ D(f0) and D(f0)∩Z = ∅
(in other words, D(f0) ∩ Car(0)(N ) = D(f0) ∩ V 6= ∅).

Now, suppose absurdly that η 6∈ Car(0)(Extr
D̂(0)

P,Q

(N , “D(0)
P,Q)). Using the same arguments as above,

there exists a homogeneous element g ∈ grD such that η ∈ D(g0) andD(g0)∩Car(0)(Extr
D̂(0)

P,Q

(N , “D(0)
P,Q)) =

∅. We put h = fg. Hence, we have η ∈ D(h0) and D(h0) ∩ Car(0)(N ) = D(h0) ∩ V and D(h0) ∩
Car(0)(Extr

D̂(0)

P,Q

(N , “D(0)
P,Q)) = ∅.

1) Since Extr
D̂(0)

P,Q

(N , “D(0)
P,Q) is a coherent (right) “D(0)

P,Q-module, from Theorem A and B of 7.2.3.16, we

get the equality Γ(P, Extr
D̂(0)

P,Q

(N , “D(0)
P,Q)) = Extr

D̂Q
(N, “DQ). From 15.1.7.5, this implies Extr

D̂Q
(N, “DQ)⊗

D̂Q“D[h],Q = 0. Since the extension “DQ → “D[h],Q is flat (see 15.1.7.3), we get Extr
D̂[h],Q

(N[h], “D[h],Q)
∼−→

Extr
D̂Q

(N, “DQ)⊗
D̂Q

“D[h],Q = 0.

2) a) Since Car(0)(N ) = Supp(grM), then D(h0) ∩ Car(0)(N ) = Supp(grM)h0
). Since we have also

D(h0) ∩ Car(0)(N ) = D(h0) ∩ V , then in particular we get Codim(grM)h0
= r. Since (grM)h0

=
gr(M [h0]), then from 15.1.7.1 for any i < r we obtain Exti

grD[h0]
(gr(M [h0]), grD[h0]) = 0. From

15.1.6.17.3, this yields that for i < r, Exti
D[h0]

(M [h0], D[h0]) = 0. On the other hand, from 15.1.7.1 we

get for any i > r the inequality Codim(Exti
grD[h0]

(gr(M [h0]), grD[h0])) > r. Hence, by reducing D(h0) if

necessary (use again the remark 15.1.7.6), for any i > r we get Exti
grD[h0]

(gr(M [h0]), grD[h0]) = 0 and

then Exti
D[h0]

(M [h0], D[h0]) = 0. To sum up, we have found an homogeneous element h ∈ grD such that

η ∈ D(h0) and for i 6= r, Exti
D[h0]

(M [h0], D[h0]) = 0.

2) b) Now, sinceM[h] is p-torsion free, RHom
D̂[h]

(M[h], “D[h])⊗L
D̂[h]

D[h0]
∼−→ RHomD[h0]

(M [h0], D[h0]).

From the exact sequence of universal coefficients (e.g. see the proof of 15.2.1.1), we get the inclu-
sion Exti

D̂[h]

(M[h], “D[h]) ⊗D̂[h]
D[h0] ↪→ Exti

D[h0]
(M [h0], D[h0]). Hence, for any i 6= r, from the step

2) a) of the proof, we obtain the vanishing Exti
D̂[h]

(M[h], “D[h]) ⊗D̂[h]
D[h0] = 0. By using 7.2.1.2.(b),

since Exti
D̂[h]

(M[h], “D[h]) is a coherent “D[h]-module, for i 6= r we get Exti
D̂[h]

(M[h], “D[h]) = 0 and then

Exti
D̂[h],Q

(N[h], “D[h],Q) = 0 (because “D[h] → “D[h],Q is flat).

3) From steps 1) and 2), we have checked that RHom
D̂[h],Q

(N[h], “D[h],Q) = 0. By using the biduality
isomorphism (see 4.6.4.6 and notice that N[h] is a perfect complex because so is N and because the
extension “DQ → “D[h],Q is flat), we get N[h] = 0, which is absurd following Lemma 15.1.7.5 because
η ∈ D(h0).
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Theorem 15.1.7.8. Let P be a smooth V-formal scheme. Let r be an integer, N be a coherent “D(0)
P,Q-

module such that Exts
D̂(0)

P,Q

(N , “D(0)
P,Q) = 0 for any s 6= r. Then, the characteristic variety Car(0)(N ) of N

is purely of codimension r.

Proof. If V is an irreducible component of Car(0)(N ) of codimension s, then from 15.1.7.7 we get
Exts
D̂(0)

P,Q

(N , “D(0)
P,Q) 6= 0 since it contains V . Hence s = r.

15.1.7.9. When E is a log extendable overconvergent F -isocrystal, we establish the inclusion of Car(E)
into a explicit lagrangian subvariety of the cotangent space of X. With the above purity theorem, this
inclusion implies the Lagrangianity of Car(E). Moreover, one another application of this inclusion in
a further work will be to get some “relative generic O-coherence” (see precisely the proof of Theorem
[Car19a, 1.4.3]). This implies some Betti number estimates (see [Car19a]). In the theory of arithmetic
D-modules, we recall that to check some property we are often able to reduce to the case of log extendable
overconvergent F -isocrystals (e.g. in the proof of Theorem [Car19a, 1.4.3]). Indeed, overholonomic F -
complexes of arithmetic D-modules are devissable in overconvergent F -isocrystals (see later 18.3.2.3)
and thanks to Kedlaya’s semistable reduction theorem any overconvergent F -isocrystal becomes log-
extendable after the pullback by some generically etale alteration (see [Ked11]).

15.2 Holonomic D†P(†T )Q-module

Let P be a smooth S-formal scheme.

15.2.1 Dimension of level m and vanishing of Exti
D̂(m)

P,Q

(−,−)

Lemma 15.2.1.1 (Universal coefficient exact sequence). Let E ∈ Db
coh(“D(m)

P ) and E0 := D(m)
P ⊗L

D̂(m)

P

E.

For any n ∈ N, we have the exact sequence:

0→ Extn
D̂(m)

P

(E , “D(m)
P )⊗D̂(m)

P

D(m)
P → Extn

D(m)

P

(E0,D(m)
P )→ T or1

D̂(m)

P

(Extn+1

D̂(m)

P

(E , “D(m)
P ),D(m)

P )→ 0.

(15.2.1.1.1)

Proof. The second spectral sequence of the functor−⊗L
D̂(m)

P

D(m)
P applied to the complex F := RHomD̂(m)

P

(E , “D(m)
P )

is:
Er,s2 = T or−r

D̂(m)

P

(HsF ,D(m)
P )⇒ Hr+s(F ⊗L

D̂(m)

P

D(m)
P ).

Since dual functors commute with extensions (see 4.6.4.7.1), then we get the isomorphism F ⊗L
D̂(m)

P

D(m)
P

∼−→ RHomD(m)

P

(E0,D(m)
P ). This yields the spectral sequence:

Er,s2 = T or−r
D̂(m)

P

(Exts
D̂(m)

P

(E , “D(m)
P ),D(m)

P )⇒ Extn
D(m)

P

(E0,D(m)
P ).

Since Er,s2 = 0 except for r = 0 and r = −1, then we are done.

Lemma 15.2.1.2. Suppose P affine. Let E be a coherent left D(0)
P/S-module. We endow the left D(0)

P/S-

module D(0)
P/S with its canonical order filtration which is a good filtration. Let (En)n∈N be a good filtration

of E. Let i ∈ N. There is a good filtration of Exti
D(0)

P/S

(E ,D(0)
P/S), such that gr Exti

D(0)

P/S

(E ,D(0)
P/S) is a

grD(0)
P/S-subquotient of Ext

i

grD(0)

P/S

(gr E , grD(0)
P/S).

Proof. By using the theorem of type A for quasi-coherent D(0)
P/S-modules, this is a consequence of

15.1.6.17.
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Lemma 15.2.1.3. Let E ,F be two coherent left D(0)
P/S-modules. Let (En)n∈N (resp. (Fn)n∈N be a good

filtration of E (resp. F). Hence:

(a) codim(Exti
grD(0)

P/S

(gr E , grD(0)
P/S)) ≥ i, for any i ≥ 0.

(b) Exti
grD(0)

P/S

(gr E , grD(0)
P/S) = 0, for any i < codim(0)(E).

Proof. Since this is local in P, we can suppose P is affine. Via the theorem of type A for quasi-coherent
D(0)
P/S-modules, this is a consequence of 15.1.7.1.

Corollary 15.2.1.4. Let E be a p-torsion free coherent “D(0)
P -module. Hence:

(a) codim(0)(Exti
D̂(0)

P

(E , “D(0)
P )) ≥ i, for any i ≥ 0.

(b) Exti
D̂(0)

P

(E , “D(0)
P ) = 0, for any i < codim(0)(E).

Proof. Let i ∈ N. Since E is p-torsion free, we have

E0 := “D(0)
P ⊗

L
D̂(0)

P

E ∼−→ D(0)
P ⊗D̂(0)

P

E .

By definition (see 15.1.4.1),

codim(0)(Exti
D̂(0)

P

(E , “D(0)
P )) = codim(0)(Exti

D̂(0)

P

(E , “D(0)
P )⊗D̂(0)

P

D(0)
P ).

By using the injective morphism of the exact sequence 15.2.1.1.1 and the formula 15.1.3.5, this yields

codim(0)(Exti
D̂(0)

P

(E , “D(0)
P )) ≥ codim(0)(Exti

D(0)

P

(E0,D(0)
P )).

It follows from 15.2.1.2 (resp. 15.2.1.3.(a)) the first (resp. second) inequality:

codim(0)(Exti
D(0)

P

(E0,D(0)
P )) ≥ codim(Exti

grD(0)

P/S

(gr E0, grD(0)
P/S)) ≥ i,

which yields (a).
Suppose i < codim(0)(E). Following 15.2.1.2 and 15.2.1.3.(b), we have: Exti

D(0)

P

(E0,D(0)
P ) = 0. By

using the injective morphism of 15.2.1.1.1, this yields Exti
D̂(0)

P

(E , “D(0)
P )) = 0.

Corollary 15.2.1.5. Let E(m) be a coherent “D(m)
P,Q-module. Hence:

(a) codim(m)(Exti
D̂(m)

P,Q

(E(m), “D(m)
P,Q)) ≥ i, for any i ≥ 0.

(b) Exti
D̂(m)

P,Q

(E(m), “D(m)
P,Q) = 0, for any i < codim(m)(E(m)).

Proof. 1) Suppose m = 0. Choose a p-torsion free coherent “D(0)
P -module F such that there exists

an isomorphism of “D(0)
P,Q-modules of the form FQ

∼−→ E(0) (see 7.5.2.8). Let N be the quotient of

Exti
D̂(0)

P

(F , “D(0)
P ) by its p-torsion part. Since NQ

∼−→ Exti
D̂(0)

P,Q

(E(0), “D(0)
P,Q) then we get the first equality

by definition (see 15.1.4.3):

codim(0)(Exti
D̂(0)

P,Q

(E(0), “D(0)
P,Q)) = codim(0)(N ).

Since N is a quotient of Exti
D̂(0)

P

(F , “D(0)
P ), since the functor F 7→ F/πF is right exact then we get from

15.1.3.5:
codim(0)(N ) ≥ codim(0)(Exti

D̂(0)

P

(E(0), “D(0)
P )),
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Hence, codim(0)(Exti
D̂(0)

P,Q

(E(0), “D(0)
P,Q)) ≥ codim(0)(Exti

D̂(0)

P

(E(0), “D(0)
P )). By using the example 15.1.4.4

and 15.2.1.4, we are done.
2) Let us go back to the general case. Since this is local in P, we can suppose there exists F : P→ P′

a morphism of smooth S-schemes lifting FmP0/S0
. Let E ′(0) := F [“D(0)

P′,Q ⊗D̂(m)

P,Q

E(m) be the corresponding

left “D(0)
P′/S,Q-module. Following 8.8.1.3, we have the isomorphism: F ∗E ′(0) ∼−→ E(m). Hence, it follows

from 11.3.2.1.1 that we have the canonical isomorphism

F [Exti
D̂(0)

P′/S,Q

(E ′(0), “D(0)
P′/S,Q)

∼−→ Exti
D̂(m)

P/S,Q

(E(m), “D(m)
P/S,Q). (15.2.1.5.1)

Following (the right version of) 15.1.4.6, we get the first (second) equality:

ι
(m)
S (Car(0)(E ′(0)) = Car(m)(E(m)),

Car(0)(Exti
D̂(0)

P′/S,Q

(E ′(0), “D(0)
P′/S,Q)) = Car(m)(Exti

D̂(m)

P/S,Q

(E ′(m), “D(m)
P′/S,Q)).

Hence, we can reduce to the case m = 0 of the first part and we are done.

15.2.2 The filtration by the codimension of a coherent “D(m)
P,Q-module

Let E be a coherent “D(m)
P,Q-module.

Notation 15.2.2.1. Since we have the biduality isomorphism RHomD̂(m)

P,Q

(RHomD̂(m)

P,Q

(E , “D(m)
P,Q), “D(m)

P,Q)
∼−→

E (see 4.6.4.6), then we get the converging biregular spectral sequence (see [Sta22, 0BDU])

Er,s2 = Extr
D̂(m)

P,Q

(Ext−s
D̂(m)

P,Q

(E , “D(m)
P,Q), “D(m)

P,Q)⇒ Hn(E) = En. (15.2.2.1.1)

Denote by (F i(m)(E))i≥0 the decreasing filtration of E induced by the spectral sequence 15.2.2.1.1 for
n = 0. One gets the explicit construction at [Sta22, 012P] in the case where the filtered complex is given
by the total complex associated to the bicomplex HomD̂(m)

P,Q

(HomD̂(m)

P,Q

(E , I•), I•) where I• is an injective

resolution of the bimodule “D(m)
P,Q, this total complex being filtrated by the first filtration FI according to

notation [Sta22, 012Z].
One important property, is the functoriality of this filtration: for any morphism α : E ′ → E of coherent“D(m)

P,Q-modules, α is in fact a morphism of filtered coherent “D(m)
P,Q-modules, i.e. α(F i(m)(E

′)) ⊂ F i(m)(E).

15.2.2.2. Set k := codim(m)(E). We have Ei,j2 = 0 (and therefore Ei,j∞ = 0) in the following case:

(a) for any i < 0 or −j < 0 (obvious),

(b) for any i > 2d or −j > 2d (use 8.7.7.6),

(c) for any −j < k (use 15.2.1.5(b)),

(d) for any i < −j (use both properties of 15.2.1.5 ).

Proposition 15.2.2.3. With the notations of 15.2.2.1, for any 0 ≤ i ≤ 2d, F i(m)(E) is the greatest

coherent sub-“D(m)
P,Q-module of codimension greater or equal to i of E.

Proof. Let 0 ≤ i ≤ 2d. Since the spectral sequence 15.2.2.1.1 is converging, then we have by definition
of the convergence F j(m)(E)/F j+1

(m) (E) = Ej,−j∞ for any j ∈ N.
1) Suppose 0 ≤ i ≤ k. Since for any 0 ≤ j < i, we have Ej,−j∞ = 0 (see 15.2.2.2.(c)), then we get the

equality F i(m)(E) = E .
2) Following 15.2.1.5, for any i ≤ j ≤ 2d, codim(m)(Ej,−j2 ) ≥ j ≥ i. With the lemma 15.1.4.5, this

yields we get codim(m)(Ej,−j∞ ) ≥ i, for any i ≤ j ≤ 2d. Since F j(m)(E)/F j+1
(m) (E) = Ej,−j∞ , this yields that

F i(m)(E) has codimension greater or equal to i.
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3) Let E ′ be a coherent “D(m)
P,Q-submodule of E of codimension greater or equal to i. By functoriality

of the filtration (see 15.2.2.1.1), we get the commutative diagram:

F i(m)(E
′)[r]−

� � //
� _

��

E ′� _

��
F i(m)(E) �

� // E .

Since E ′ has codimension greater or equal to i, then the top arrow is an equality following the step 1)
(applied to E ′). This implies the inclusion E ′ ↪→ F i(m)(E) factoring this commutative diagram. Hence we
are done.

Proposition 15.2.2.4. Let E(m) be a nonzero coherent “D(m)
P,Q-module. We have the equality:

codim(m)(E(m)) = min

ß
i|Exti

D̂(m)

P,Q

(E(m), “D(m)
P,Q) 6= 0

™
. (15.2.2.4.1)

Proof. Set k := codim(m)(E(m)) and l := min

ß
i|Exti

D̂(m)

P,Q

(E(m), “D(m)
P,Q) 6= 0

™
. It follows from 15.2.1.5.(b)

that l ≥ k. Hence, it remains to check that Extk
D̂(m)

P,Q

(E(m), “D(m)
P,Q) 6= 0. With notation 15.2.2.1.1, it

is therefore sufficient to prove that Ek,−k2 6= 0. By the absurd, let us suppose Ek,−k2 = 0. Following
15.2.1.5.(b), Ei,−i2 = 0 for i < k. Moreover, via 15.2.1.5.(a), codim(Ei,−i2 ) ≥ k + 1 for any i ≥ k + 1.
By using 15.1.4.5, this yields codim(Ei,−i∞ ) ≥ k + 1 for any i ≥ 0 (in fact Ei,−i∞ = 0 for any i ≤ k). As
the filtration of E(m) induced by the spectral sequence is finite (use 8.7.7.6), then it follows from 15.1.4.5
that we obtain: codim(E(m)) ≥ k + 1, which is absurd.

Let us finish by results concerning the variation of the level.

Proposition 15.2.2.5. Let m′ ≥ m ≥ be two integers, E(m) be a coherent “D(m)
P,Q-module. We denote by

E(m′) := “D(m′)
P,Q ⊗D̂(m)

P,Q

E(m), (F i(m)(E
(m)))i≥0 and (F i(m′)(E

(m′)))i≥0 the decreasing filtrations of 15.2.2.1.

We have the canonical isomorphism“D(m′)
P,Q ⊗D̂(m)

P,Q

F i(m)(E
(m))

∼−→ F i(m′)(E
(m′)).

Proof. It comes from the fact that the extension “D(m)
P,Q → “D(m′)

P,Q is flat (see 7.5.3.1) and that the dual
functor commutes with extensions (see 4.6.4.4.1).

Corollary 15.2.2.6. Let E(m) be a coherent “D(m)
P,Q-module. For m′ ≥ m, we set E(m′) := “D(m′)

P,Q ⊗D̂(m)

P,Q

E(m). We have the inequality codim(m′)(E(m′)) ≥ codim(m)(E(m)).

Proof. If E(m′) = 0 then the assertion is straightforward. Let us suppose then E(m′) 6= 0. As the extension“D(m)
P,Q → “D(m′)

P,Q is flat, for any i < codim(m)(E(m)), we obtain:

0 = Exti
D̂(m)

P,Q

(E(m), “D(m)
P,Q)⊗D̂(m)

P,Q

“D(m′)
P,Q

∼−→ Exti
D̂(m′)

P,Q

(E(m′), “D(m′)
P,Q )

Hence we are done via 15.2.2.4.

Remark 15.2.2.7. With the notations of 15.2.2.6, following a counterexample of Berthelot and of Abe,
there is no inclusion between the varieties characteristics of respectively E(m) and E(m′).
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15.2.3 The (co)dimension of a coherent D†P(†T )Q-module

Let T be a divisor of P and U := P \ T . In this subsection, we define the notion of the (co)dimension of
a coherent D†P(†T )Q-module. We also check here that the (co)dimension of the level m properties of the
subsections 15.2.1 and 15.2.2 still hold for coherent D†P,Q-modules.

Definition 15.2.3.1. Let E be a coherent D†P(†T )Q-module. Let m0 be the smaller integer m ≥ 0 such

that there exists a coherent “D(m)
U,Q -module E(m) together with a D†U,Q-linear isomorphism of the form

D†U,Q ⊗D̂(m)

U,Q

E(m) ∼−→ E|U. Following 8.4.1.11, this integer is well defined. Let us choose E(m0) such

a coherent “D(m0)
U,Q -module. For any integer m ≥ m0, we denote by then E(m) := “D(m)

UQ ⊗D̂(m0)

UQ

E(m0).

Following 15.2.2.6, for any m′ ≥ m ≥ m0, we have dim(m)(E(m)) ≥ dim(m′)(E(m′)).
The dimension of E , denoted by dim(E), is by definition the minimum of {dim(m)(E(m)),m ≥ m0},

i.e., the limit of the stationary sequence sequence (dim(m)(E(m)))m≥m0
. The codimension of E , denoted

by codim(E), is the integer codim(E) := 2 dimP − dim(E). Remark that following 8.4.1.11 the integers
dim(E) and codim(E) do not depend on the choice of E(m0).

Lemma 15.2.3.2. Let 0 → E ′ → E → E ′′ → 0 be an exact sequence of coherent left D†P(†T )Q-modules.
We have the formula codim(E) = min{codim(E ′), codim(E ′′)}.

Proof. By definition of the codimension, we can suppose the divisor T is empty. This is therefore a
consequence of 15.1.4.5 and 8.4.1.11.

Let us extend via the following two propositions the results of the preceding section:

Proposition 15.2.3.3. Let E be a coherent D†P(†T )Q-module.

(a) codim(Exti
D†

P
(†T )Q

(E ,D†P(†T )Q)) ≥ i, for any i ≥ 0.

(b) Exti
D†

P
(†T )Q

(E ,D†P(†T )Q) = 0, for any i < codim(E).

Proof. By definition of the codimension or by using 8.7.6.11, we reduce to case where the divisor T is
empty. With the notations of 15.2.3.1, for anym ≥ m0, as the extension “D(m)

P,Q → D
†
P,Q is flat (see 7.5.3.1),

as dual functors commute with extensions (see 4.6.4.4.1), then we obtain the second isomorphism:

ExtiD†
P,Q

(E ,D†P,Q)
∼−→ ExtiD†

P,Q

(D†P,Q ⊗D̂(m)

P,Q

E(m),D†P,Q)
∼−→ Exti

D̂(m)

P,Q

(E(m), “D(m)
P,Q)⊗D̂(m)

P,Q

D†P,Q.

(15.2.3.3.1)
Form large enough, codim(m)(E(m)) = codim(E). Following 15.2.1.5, this yields that Exti

D†
P,Q

(E ,D†P,Q) =

0 for any i < codim(E), i.e. we have checked the part (b) of the proposition. By definition of the
codimension of Exti

D†
P,Q

(E ,D†P,Q), the isomorphism 15.2.3.3.1 can be translated for m large enough by

codim(ExtiD†
P,Q

(E ,D†P,Q)) = codim(m)(Exti
D̂(m)

P,Q

(E(m), “D(m)
P,Q)).

From 15.2.1.5.(a), this yields therefore (a).

Notation 15.2.3.4. Since we have the biduality isomorphism

RHomD†
P

(†T )Q
(RHomD†

P
(†T )Q

(E ,D†P(†T )Q),D†P(†T )Q)
∼−→ E

(see 4.6.4.6), then similarly to 15.2.2.1 we get the converging biregular spectral sequence

Er,s2 = ExtrD†
P

(†T )Q
(Ext−s

D†
P

(†T )Q
(E ,D†P(†T )Q),D†P(†T )Q)⇒ Hn(E) = En. (15.2.3.4.1)

Denote by (F i(E))i≥0 the decreasing filtration of E induced by the spectral sequence 15.2.3.4.1 for n = 0.
This filtration is functorial: for any morphism α : E ′ → E of coherent D†P(†T )Q-modules, α is in fact a
morphism of filtered coherent D†P(†T )Q-modules, i.e. α(F i(E ′)) ⊂ F i(E).
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15.2.3.5. Let E be a coherent D†P(†T )Q-module. Set k := codim(E) ≤ d. With the notation 15.2.3.4.1,
we have Ei,j2 = 0 (and therefore Ei,j∞ = 0) in the following case:

(i) for any i < 0 or −j < 0 (obvious),

(ii) for any i > 2d+ 2 or −j > 2d+ 2 (use 8.7.7.9),

(iii) for any −j < k (use 15.2.3.3(b)),

(iv) for any i < −j (use both properties of 15.2.3.3).

Proposition 15.2.3.6. With the notations of 15.2.3.4, for any 0 ≤ i ≤ 2d, F i(E) is the greatest coherent
sub-D†P(†T )Q-module of codimension greater or equal to i of E.

Proof. Copy the check of 15.2.2.3.

Proposition 15.2.3.7. Let E(m) be a coherent “D(m)
P,Q-module. We denote by E := D†P,Q ⊗D̂(m)

P,Q

E(m),

(F i(m)(E
(m)))i≥0 and (F i(E)i≥0 the decreasing filtrations of 15.2.2.1 and 15.2.3.4. We have the canonical

isomorphism
D†P,Q ⊗D̂(m)

P,Q

F i(m)(E
(m))

∼−→ F i(E). (15.2.3.7.1)

Proof. The isomorphism 15.2.3.7.1 comes from the fact that the extension “D(m)
P,Q → D

†
P,Q is flat (this

follows from 7.5.3.1) and that the dual functor commutes with extensions (see 4.6.4.4.1).

Proposition 15.2.3.8. Let E be a nonzero coherent D†P(†T )Q-module. Hence:

codim(E) = min

ß
i|ExtiD†

P
(†T )Q

(E ,D†P(†T )Q) 6= 0

™
. (15.2.3.8.1)

Proof. By definition of the codimension and by using 8.7.6.11, we reduce to case where the divisor T is

empty. Set k := codim(E) and l := min

ß
i|Exti

D†
P,Q

(E ,D†P,Q) 6= 0

™
. It follows from 15.2.3.3 that k ≤ l.

It remains to check Extk
D†

P,Q

(E ,D†P,Q) 6= 0. With notation 15.2.3.1, for m large enough, E(m) 6= 0 and

k = codim(E(m)). We get from 15.2.2.4 that Extk
D̂(m)

P,Q

(E(m), “D(m)
P,Q) 6= 0 for any m large enough. For any

m′ ≥ m large enough, as the extension “D(m)
P,Q → “D(m′)

P,Q is flat (see 7.5.3.1), as dual functors commute with
extensions (see 4.6.4.4.1), we obtain the second isomorphism:

Exti
D̂(m′)

P,Q

(E(m′), “D(m′)
P,Q )

∼−→ Exti
D̂(m′)

P,Q

(“D(m′)
P,Q ⊗D̂(m)

P,Q

E(m), “D(m′)
P,Q )

∼−→ Exti
D̂(m)

P,Q

(E(m), “D(m)
P,Q)⊗D̂(m)

P,Q

“D(m′)
P,Q .

Via the isomorphisms 15.2.3.3.1, this yields Extk
D†

P,Q

(E ,D†P,Q) 6= 0.

15.2.4 Inequality of Bernstein, holonomicity, homological criterion, Berthelot-
Kashiwara theorem

Let T be a divisor of P . Unless otherwise stated, we suppose P integral.

Theorem 15.2.4.1 (Inequality of Bernstein). For any nonzero coherent D†P(†T )Q-module E, we have

dim(E) ≥ dimP. (15.2.4.1.1)

Proof. By definition of the dimension, we reduce to case where the divisor T is empty. We proceed by
induction on the dimension of P .

1) Let us suppose that the support of E is P . With notation 15.2.3.1, let m ≥ m0 and
◦
E(m) be a

p-torsion free coherent “D(m)
P -module such that “D(m)

P,Q ⊗D̂(m)

P

◦
E(m) ∼−→ E(m). Since the support of E(m) is

P , then the support of gr(
◦
E(m)/π

◦
E(m)) in T ∗P contains T ∗PP and the inequality holds.
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2) Suppose the support Z of E is a closed subset of dimension smaller than that of P . Replacing
if necessary P by an affine open U such that Z ∩ U is smooth and dense in an irreducible component
of Z of maximal dimension, we can suppose Z smooth and that Z ⊂ P lifts to a closed immersion
u : Z ↪→ P of smooth S-formal schemes. As E(m) has its support in Z, following 9.3.5.8, increasing m
if necessary, there exists a coherent “D(m)

Z,Q -module F (m) such that u(m)
+ (F (m))

∼−→ E(m) and dim(E) =

dim(m)(E(m)). Since this is local, we can suppose P is affine and there exists a morphism of smooth S-
formal schemes F : P→ P′ (resp. F : Z→ Z′) which is a lifting of the relative Frobenius FmP/S : P → P (m)

(resp. FmZ/S : Z → Z(m)). Let u′ : Z′ ↪→ X′ be a lifting of the closed immersion u′0 := u
(m)
0 . We set

E ′(0) := F [“D(0)
P′,Q ⊗D̂(m)

P,Q

E(m) and F ′(0) := F [“D(0)
Z′,Q ⊗D̂(m)

Z,Q

F (m). Following 8.8.1.3, F ∗E ′(0) ∼−→ E(m) and

F ∗F ′(0) ∼−→ F (m). Hence, by using 15.1.4.6, we reduce to check Car(0)(E ′(0)) ≥ dimP .
Let

◦
F ′0) be a p-torsion free coherent “D(0)

Z′ -module such that “D(0)
Z′,Q ⊗D̂(0)

Z′

◦
F ′0) ∼−→ F ′(0). We set

F ′(0) := D(0)

Z(m) ⊗D̂(0)

Z′

◦
F ′0). By definition, Car(0)(F ′(0)) = Car(0)(

◦
F ′0)) = Car(0)(F ′(0)). Since F ′(0) is not

null, then by induction hypothesis (and by 15.2.2.6) we get dim Car(0)(F ′(0)) ≥ dimZ.
Via an easy computation in local coordinates, we can check the formula

Car(0)(u
′(0)
0+ (F ′(0))) = $u′0

(ρ−1
u′0

Car(0)(F ′(0))),

where T ∗Z
ρu′

0←− Z×P T ∗P
$u′

0−→ T ∗P are the canonical maps (see 15.1.1). With notation 15.1.1, since ρu′0 is
flat of relative dimension dimP−dimZ and$u′0

is a closed immersion, then dim$u′0
(ρ−1
u′0

Car(0)(F ′(0))) =

dim Car(0)(F ′(0))+dimP−dimZ ≥ dimP . Hence, dim Car(0)(u
′(0)
0+ (F ′(0))) ≥ dimP . As u′(0)

0+ (
◦
F ′0)) gives

a p-torsion free model of E ′(0), then Car(0)(E ′(0)) = Car(0)(u
(0)
0+(F ′(0))) ≥ dimP and we are done.

Remark 15.2.4.2. Let E(m) be a nonzero coherent “D(m)
P,Q-module. We have dim(m)(E(m)) ≥ dim(D†P,Q⊗D̂(m)

P,Q

E(m)). However, we cannot deduce dim(m)(E(m)) ≥ dimP from 15.2.4.1.1 because it might happen that
D†P,Q ⊗D̂(m)

P,Q

E(m) = 0.

The Bernstein inequality 15.2.4.1.1 is false when P is not connected. For instance is the connected
composantes of P are Â1

S and S, take E be a nonzero coherent module with support in S.

Theorem 15.2.4.3. Let E be a coherent D†P(†T )Q-module. For any i > dimP , we have

ExtiD†
P

(†T )Q
(E ,D†P(†T )Q) = 0.

Proof. By the absurd, let us suppose that there exist i > dimP such that Exti
D†

P
(†T )Q

(E ,D†P(†T )Q) 6= 0.

The inequality of Bernstein can be translated by codim(Exti
D†

P
(†T )Q

(E ,D†P(†T )Q)) ≤ dimP , which is in

contradiction with 15.2.3.3.a.

The following corollary improves 8.7.7.6 in our specific context.

Corollary 15.2.4.4. We have the following properties.

(a) For any i > dimP , for any coherent D†P(†T )Q-module E and any D†P(†T )Q-moduleF ,

ExtiD†
P

(†T )Q
(E ,F) = 0.

(b) For any affine open subset U of P, we have the equality tor .dim Γ(U,D†P(†T )Q) = dimU and the
inequalities dimU ≤ gl .dim Γ(U,D†P(†T )Q) ≤ dimU + 1.
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Proof. a) Since E is a perfect complex, then it follows from 4.6.3.6.1 the isomorphism

RHomD†
P

(†T )Q
(E ,D†P(†T )Q)⊗L

D†
P

(†T )Q
F ∼−→ RHomD†

P
(†T )Q

(E ,F),

and we conclude by using 15.2.4.3.
b) We can suppose P affine. Since the functor Γ(P,−) is exact on the category of coherent D†P(†T )Q-

modules, then we get for any r ∈ N:

Γ(P,−) ◦ ExtrD†
P

(†T )Q
(E ,D†P(†T )Q)

∼−→ ExtrD†
P

(†T )Q
(E ,D†P(†T )Q).

With 15.2.4.3 and 1.4.3.30.(g), this yields tor .dim Γ(U,D†P(†T )Q) ≤ dimU . Since the converse inequality
is already knows (see 8.7.7.4), then we get tor .dim Γ(U,D†P(†T )Q) = dimU . The last inequalities follows
from 2.3.4.3.

Definition 15.2.4.5 (Holonomicity). We do not suppose P is integral. As P is smooth, P is the sum
of its connected components denoted by (Pr)r.

(a) Let E be a coherent D†P(†T )Q-module. We say that E is “D†P(†T )Q-holonomic” or “holonomic as
D†P(†T )Q-module” if, for any r, we have dim(E|Pr) ≤ dimPr.

(b) Moreover, a complex E ∈ Db
coh(D†P(†T )Q) is by definition holonomic if so are its cohomogical sheaves.

It will be denoted by Db
hol(D

†
P(†T )Q) the full subcategory of Db

coh(D†P(†T )Q) consisting in holonomic
D†P(†T )Q-complexes.

(c) An F -complex (E ,Φ) ∈ F -Db
coh(D†P(†T )Q) is by definition holonomic is E ∈ Db

hol(D
†
P(†T )Q). We

denote by F -Db
coh(D†P(†T )Q) the full subcategory of F -Db

coh(D†P(†T )Q) consisting in holonomic F -
D†P,Q-complexes.

15.2.4.6. Let E ∈ Db
coh(D†P(†T )Q). Let U := P \ T . It is straightforward from the definition of the

holonomicity and of the dimension that E ∈ Db
coh(D†P(†T )Q) if and only if E|U ∈ Db

coh(D†U,Q).

Lemma 15.2.4.7. Let E be a coherent D†P(†T )Q-module. Hence E∗ := H0(DT (E)) is D†P(†T )Q-holonomic.

Proof. This follows from the proposition 15.2.3.3.

Proposition 15.2.4.8 (Homological criterion of holonomicity). Let E be a coherent D†P(†T )Q-module.
Hence E is holonomic if and only if, for any i 6= dimP , Exti

D†
P

(†T )Q
(E ,D†P(†T )Q) = 0.

Proof. Since the case E = 0 is obvious, then we can suppose E 6= 0.
1) If E is holonomic that by definition dim(E) = codim(E) = dimP . By using 15.2.3.3, we get

Exti
D†

P
(†T )Q

(E ,D†P(†T )Q) = 0 for any i < dimP and via 15.2.4.3 we obtain Exti
D†

P
(†T )Q

(E ,D†P(†T )Q) = 0

for any i > dimP .
2) Conversely, suppose Exti

D†
P

(†T )Q
(E ,D†P(†T )Q) = 0 for any i 6= dimP . Set k = codim(E). By using

the proposition 15.2.3.8, we get Extk
D†

P
(†T )Q

(E ,D†P(†T )Q) 6= 0. Hence, k = codim(E).

Example 15.2.4.9. We have the following properties.

(a) The coherent D†P(†T )Q-modules which are OP(†T )Q-coherent are D†P(†T )Q-holonomic. Indeed, this
is a consequence of the isomorphism DT (E)

∼−→ E∨ = HomOP(†T )Q
(E ,OP(†T )Q) (see 11.2.6.3.4).

(b) We will give more example at 18.2.3.13.

Corollary 15.2.4.10. Let U := P \ T . Let E be a coherent D†P(†T )Q-module. Hence E is D†P(†T )Q-
holonomic if and only if E|U is D†U,Q-holonomic.
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Proof. This is a consequence of 15.2.4.8 and 8.7.6.11.

Remark 15.2.4.11. The D†P(†T )Q-holonomicity does not imply the D†P,Q-holonomicity. Indeed, there
exist some coherent D†P(†T )Q-modules OP(†T )Q-coherent which are not D†P,Q-coherent (nor a fortiori
D†P,Q-holonomic): when P is proper, the de Rham cohomology of a coherent D†P,Q-module is of finite
type on K. Now, if E = sp∗E, the de Rham cohomology of E is identified with the rigid cohomology of
E. If we take V = Z(p), P = P̂1

V , Y = Gm,k, and if E is the overconvergent isocrystal on Y defined by
j†OPK , equipped with the connection ∇ such that ∇(1) = (α/t)dt, where α ∈ Z(p) is a Liouville number,
the rigid cohomology of E is given by the action of ∇ on the space of analytical functions on annulus of
the form 1− ε < |t| < 1 + ε, with ε > 0 variable, and it is classic that its H1 is of infinite dimension. But,
when the module are endowed with Frobenius structures, Berthelot conjecture in [Ber02, 5.3.6] that this
is the case:

15.2.4.12. The properties of coherence and of holonomicity are stable by base change. More precisely,
let V → V ′ be a morphism of complete discrete valuation rings of unequal characteristic (0, p) and perfect
residue fields denoting by S := Spf(V), S′ := Spf(V ′), let f : P′ := P ×S S′ → P be the canonical
morphism, T ′ := f−1(T ). If E ∈ Db

coh(D†P/S(†T )Q), then f∗(E) ∈ Db
coh(D†P′/S′(

†T ′)Q). Moreover, if E is

a holonomic D†P/S(†T )Q-module (see 15.2.4.5) then f∗(E) is a holonomic D†P′/S′(
†T ′)Q-module. Indeed,

this is a consequence of the fact that the extension f−1D†P(†T )Q → D†P′(†T ′)Q is flat (see 9.2.7.1), of the
fact that the dual functor commutes with extensions (see 4.6.4.4.1) and of the homological criterion of
holonomicity] (see 15.2.4.8).

Conjecture 15.2.4.13 (Berthelot). We suppose there exists an isomorphism σ : V ∼−→ V lifting the
s-power of the Frobenius of k. Let E be a coherent F -D†P(†T )Q-module. If E is D†P(†T )Q-holonomic then
E is D†P,Q-holonomic.

Proposition 15.2.4.14. We do not suppose P is integral. Let 0 → E ′ → E → E ′′ → 0 be an exact
sequence of coherent D†P(†T )Q-modules. Hence E is D†P(†T )Q-holonomic if and only if E ′ and E ′′ are
D†P(†T )Q-holonomic.

Proof. We can suppose P is integral. Suppose E ′ and E ′′ are D†P(†T )Q-holonomic. By considering
the long exact sequence induced by the exact triangle DT (E ′′) → DT (E) → DT (E ′) → +1, we get the
D†P(†T )Q-holonomicity of E . Conversely, suppose E is D†P(†T )Q-holonomic. By using 15.2.4.10, we reduce
to the case where the divisor T is empty. The inequality of Bernstein (see 15.2.4.1.1) can be translated
by codim(E ′) ≤ dimP and codim(E ′′) ≤ dimP . Since we have codim(E) = min{codim(E ′), codim(E ′′)}
(see 15.2.3.2), since codim(E) = dimP then codim(E ′) = dimP and codim(E ′′) = dimP and we are
done.

Proposition 15.2.4.15. The functor DT induces an exact auto-equivalence of the categories of holo-
nomic D†P(†T )Q-modules (resp. Db

hol(D
†
P(†T )Q)).

Proof. This is a consequence of the isomorphism of biduality (see 5.1.4.4) and of Proposition 15.2.4.8.

Notation 15.2.4.16. Let E be a coherent D†P(†T )Q-module.

(a) Thanks to 15.2.4.3, we can improve the vanishing properties of the biduality spectral sequence of
15.2.3.5.(ii) by replacing 2d by d. In particular, with its notation we get we have Ei,j2 = 0 in the
following case:

(i) for any i 6∈ [0, d] or j 6∈ [−d, 0] (use 15.2.4.3),
(ii) for any i < −j (use both properties of 15.2.3.3).

This implies the equalities
F d(E) = Ed,−d∞ = Ed,−d2 = (E∗)∗. (15.2.4.16.1)

(b) We set Ehol := (E∗)∗. Following 15.2.3.6 and 15.2.4.16.1, Ehol is the greatest holonomic submodule
of E . We get the functor (−)hol : Coh(D†P(†T )Q)→ Hol(D†P(†T )Q) defined by E 7→ Ehol.

We remark moreover that the forgetful functor Hol(D†P(†T )Q)→ Coh(D†P(†T )Q) is left adjoint of the
functor (−)hol. In particular, the functor (−)hol is left exact and commutes with projective limits.

805



Lemma 15.2.4.17. Let E ′ ⊂ E be a monomorphism of coherent D†P(†T )Q-modules. The morphism
E ′hol → Ehol induced by the functor (−)hol (see 15.2.4.16) is then a monomorphism. Moreover, E ′hol =
E ′ ∩ Ehol.

Proof. The first assertion results from the left exactness of the functor (−)hol (see 15.2.4.16). Since
E ′ ∩ Ehol is a coherent D†P(†T )Q-module which is included into the holonomic D†P(†T )Q-module E ′, then
it follows from 15.2.4.14 that it is holonomic. Since E ′hol is the greatest holonomic D†P(†T )Q-submodule
of E ′, this yields the equality E ′hol = E ′ ∩ Ehol.

Lemma 15.2.4.18. Let E be a coherent D†P(†T )Q-module. The canonical morphism E∗ → (Ehol)∗ is an
isomorphism, i.e., (E/Ehol)∗ = 0. In particular, (E/Ehol)hol = 0.

Proof. Set En-hol := E/Ehol. Since Ehol is holonomic, then by using 15.2.4.8 we get H−1DT (Ehol) = 0.
By applying the functor H0DT to the exact sequence 0 → Ehol −→

adj
E −→ En-hol → 0, this yields the

exact sequence 0→ E∗n-hol → E∗ → (Ehol)∗ → 0. Since this a morphism of holonomic D†P(†T )Q-modules,
by using the biduality isomorphism it follows that it is sufficient to check that by applying the functor
H0DT to the morphism E∗ → (Ehol)∗, we get an isomorphism. However, this latter is the morphism
(−)hol(adj) : (Ehol)hol → Ehol. Since the adjunction morphism of the form adj : Fhol ⊂ F is functorial in
F , we have the commutative diagram

Ehol �
� adj // E

(Ehol)hol �
� (−)hol(adj) //

?�

adj

OO

Ehol.
?�

adj

OO

Since Ehol is holonomic, the left arrow is bijective. Moreover, since the right and top arrows are identical
then this implies that the bottom arrow is an isomorphism.

Theorem 15.2.4.19 (Holonomic version of Berthelot-Kashiwara Theorem). Let u : X ↪→ P be a closed
immersion of smooth S-formal schemes. Let T be a divisor of X such that D := X ∩ T is a divisor of
X.

(a) For any holonomic D†P(†T )Q-module E supported in X, for any holonomic D†X(†D)Q-module F , we
have Hru+(F) = 0 and Hru!(E) = 0 for any r 6= 0.

(b) The functors u+ and u! are exact quasi-inverse equivalences between the category of holonomic
D†P(†T )Q-modules supported in X and that of holonomic D†X(†D)Q-modules.

Proof. This follows from Berthelot-Kashiwara theorem 9.3.5.9, from the criterion of holonomicity (see
15.2.4.8) and from the relative duality isomorphism (see 13.2.4.1).

Corollary 15.2.4.20. Let (Y,X,P, T )/V be a completely smooth d-frame. Let E ∈ MIC††(X,P, T/V)

(see definition 12.2.1.4). Then E is a holonomic D†P(†T )Q-module.

Proof. Since this is local, we can suppose there exists a closed immersion u : X ↪→ P of smooth S-
formal schemes which lifts X ↪→ P. This yields u!(E) ∈ MIC††(X,X, T ∩X/V) (see 12.2.1.9). Following
15.2.4.9.(a), u!E is a holonomic D†X(†T ∩ X)Q-module. Following the coherent version of Berthelot-
Kashiwara theorem (see 9.3.5.9), we have u+u

!(E)
∼−→ E . We conclude thanks to 15.2.4.19.

15.2.5 Purity of the characteristic variety of a holonomic F -D†P,Q-module

Corollaire 15.2.5.1. We suppose there exists an isomorphism σ : V ∼−→ V lifting the s-power of the
Frobenius of k. Let P be a smooth integral V-formal scheme of dimension d. Let N 6= 0 be a holonomic
F -D†P,Q-module. Then, the characteristic variety Car(N ) of N is purely of codimension d.

Proof. The is a consequence of holonomicity characterization (see 15.2.4.8) and of Theorem 15.1.7.8.
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15.3 Overcoherence
Let P be a smooth S-formal scheme and T a divisor of its special fiber P .

15.3.1 Generical O-coherence of a coherent D-module with finite fibers or
an holonomic D-module

We check in this subsection that a coherent module whose extraordinary fibers are finite becomes O-
coherent on a dense open subset of its support (more precisely, see the theorem 15.3.1.19). This corre-
sponds to a well known property of the holonomicity in characteristic zero. This will be a fundamental
ingredient of the proof of the overconvergent holonomicity criterion (see 15.3.2.8).

Notation 15.3.1.1. For any closed point x of P , we will denote by ix : Spf Vx ↪→ P a morphism of
smooth S-formal schemes which is a lifting of the canonical closed immersion induced by x. Since k is
perfect then Sx → S is finite and etale. Hence, D†Sx/S = OSx = Vx and D†Sx/S,Q = OSx,Q = Kx. We
remark that Vx is a complete discrete valuation ring of unequal characteristics (0, p). Its field of fractions
will be designated by Kx. We set Sx := Spf Vx. According to notation 9.2.1.21, we have the functor
Li∗x := i!x[dix ] : D−(D†P/S(†T )Q → D−(OSx,Q). We set i∗x := H0Li∗x.

Lemma 15.3.1.2. Let f : P′ ↪→ P be a closed immersion of V-smooth formal schemes, I ⊂ OP the ideal
defining f . Let E be a coherent “D(m)

P -module (resp. a coherent D†P,Q-module) which is flat as OP-module
(resp. OP,Q-module). With notation 7.5.5.6 (resp. 9.2.1.21), we have therefore the natural isomorphism:
Lf (m)∗(E)

∼−→ E/IE (resp. Lf∗(E)
∼−→ E/IE).

Proof. Since the respective case is treated similarly, then let us treat the non-respective one. Since “D(m)
P

is OP-flat, this therefore implies the isomorphism of OP-modules:

E/IE ∼−→ OP/IOP ⊗L
OP
E

9.3.1.8.2
∼−→ “D(m)

P′↪→P/S ⊗
L
D̂(m)

P

E = f (m)∗(E)

Lemma 15.3.1.3. Let A be a p-adically separated complete V-algebra, M be a π-torsion free separate
complete A-module. We assume that M/πM is a free A/πA-module. There then exists a free A-module
M ′ and an A-linear isomorphism ”M ′ ∼−→ M .

Proof. By hypothesis, there exists an isomorphism of the form φ : (A/πA)(J) ∼−→ M/πM . Choose a
lifting φ : A(J) →M of φ. Since this is an isomorphism modulo π, lemma 3.3.2.5 allows us to conclude.

Remark 15.3.1.4. It follows from 7.2.1.4 that if E is an OP-module of the form (O(J)
P )∧, i.e., is isomorphic

to the p-adic completion of a free OP-module, then E is OP-flat.

Proposition 15.3.1.5. Assume that P is affine and fix a closed point x of P. Let I ⊂ OP be the ideal
defining ix. Set A := Γ(P,OP) and I := Γ(P, I). Let E be any coherent “D(m)

P -module (resp. coherent“D(m)
P,Q-module, resp. coherent D†P,Q-module). Put E := Γ(P, E).

(a) The canonical morphism E/IE → E/IE is an isomorphism.

(b) In the non-respective case, if E is OP-flat, then E/IE is p-torsion free, p-adically separated and
complete. Moreover, the subset IE is closed in E, when E is endowed with its p-adic topology.
Furthermore, if E is of the form (O(J)

P )∧ for some set J , then E/IE is isomorphic to (V(J)
x )∧.

Proof. a) Let’s start by proving the first assertion. The other cases being similar, we reduce to deal with
the non-respected case. Let E be a coherent “D(m)

P -module. Setting “D(m)
P := Γ(P, “D(m)

P ), the morphism“D(m)
P ⊗

D̂
(m)

P

E → E is an isomorphism (see 7.2.3.16.(ib)) and therefore we get the last isomorphism:

E/IE ∼−→ OP/IOP ⊗OP
E ∼−→ “D(m)

P /I“D(m)
P ⊗D̂(m)

P

E ∼−→ “D(m)
P /I“D(m)

P ⊗
D̂

(m)

P

E
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As “D(m)
P /I“D(m)

P has its support in {x}, then we get the first isomorphism:“D(m)
P /I“D(m)

P ⊗
D̂

(m)

P

E
∼−→ Γ(P, “D(m)

P /I“D(m)
P )⊗

D̂
(m)

P

E

9.3.1.3.5
∼−→ “D(m)

P /I“D(m)
P ⊗

D̂
(m)

P

E
∼−→ E/IE

By composition the above isomorphisms, we get the assertion (a) of the Lemma.
By applying the lemmas 15.3.1.2, 7.5.5.12.(b) in the case of the closed immersion ix : Spf Vx ↪→ P,

it follows from the part a) that E/IE is separated and complete for the p-adic topology. Hence, subset
IE is closed in E (e.g. see [Mat89, 23.B]).

Remark 15.3.1.6. With notation 15.3.1.5, if M is a flat separated complete Vx-module, then M is the
p-adic separated completion of a free Vx-module. (Indeed, this follows from 15.3.1.3 and the fact that
“p-torsion free” is equivalent to “V-flat”.) Hence, in the part (b), if E is OP-flat then E/IE is always
isomorphic to (V(J)

x )∧ for some set J .
In order to prove Proposition 15.3.1.8, we need the following lemma.

Lemma 15.3.1.7. We assume that P is affine and P/S is endowed with coordinates. Let m ≥ m0 ≥ 0

be two integers, E(m0) be a coherent “D(m0)
P,Q -module. We set E(m) := “D(m)

P,Q ⊗D̂(m0)

P,Q
E(m0) and E(m) :=

Γ(P, E(m)).
The image of E(m0) in E(m) is dense in E(m), where E(m) is equipped with the topology induced by

its structure of Γ(P, “D(m)
P,Q)-module of finite type (see 7.5.1.8).

Proof. Let P ∈ Γ(P, “D(m)
P,Q). We can (uniquely) write P =

∑
k ak∂

<k>(m) , where the ak form a
sequence of Γ(P,OP) converging to 0 when |k| tends to infinity. For any integer N ≥ 0, we set
PN :=

∑
|k|≤N ak∂

<k>(m) . The sequence (PN )N∈N converges to P , for the topology of Γ(P, “D(m)
P,Q)

defined in 7.5.1.8. Let x ∈ E(m0) and 1 ⊗ x be the image of x in E(m). The action of P (resp. PN ) on
1⊗ x is equal to P ⊗ x (resp. PN ⊗ x). Since the action of Γ(P, “D(m)

P,Q) on E(m) is continuous, then we
get the second equality:

P ⊗ x = ( lim
N→∞

PN )⊗ x = lim
N→∞

(PN ⊗ x) = lim
N→∞

(1⊗ PN · x),

the last equality resulting from the remark that PN ∈ Γ(P, “D(m0)
P,Q ). Hence the result.

Proposition 15.3.1.8. We keep the notations and hypotheses of 15.3.1.7. If the image of the canonical
morphism E(m0) → E(m)/IE(m) is a Kx-vector space of finite dimension then this map is surjective. In
particular, E(m)/IE(m) has finite dimension on K.

Proof. We endow E(m)/IE(m) with the quotient topology induced by the topology of E(m) given by
its structure of Γ(P, “D(m)

P,Q)-module of finite type (see 7.5.1.8). Let us denote by G(m), the image of
E(m0) → E(m)/IE(m). As G(m) is of finite dimension on K, then it is a K-Banach space. Hence, G(m)

is closed in E(m)/IE(m). Following 15.3.1.7, G(m) is dense in E(m)/IE(m). Hence G(m) = E(m)/IE(m)

and we are done.

Lemma 15.3.1.9. Let (M (m))m∈N be a inductive system of Banach spaces such that M := lim−→mM
(m)

is a K-vector space of finite dimension. Then, for any integer m0, there exists m1 ≥ m0 such that, for
any m ≥ m1, the canonical arrow Im(M (m0) →M (m))→M is injective.

Proof. Let m0 ∈ N. First, suppose M = 0. Let Km be the kernel of the arrow M (m0) → M (m). Since
M (m) is separated, then Km is closed. 1) Since M = 0, then we have ∪m≥m0Km = M (m0). Since M (m0)

is a Banach K-space, it satisfies the Baire property. This implies that form1 large enough Km1 = M (m0),
which allows us to conclude.

2) Let us now consider the general case. Increasing if necessary m0, we can suppose thatM (m0) →M
is surjective. Let V (m0) be a K-vector subspace of M (m0) of finite dimension such that V (m0) → M is
bijective. Denoting by V (m) the image of V (m0) in M (m), it is sufficient to prove that Im(M (m0) →
M (m)) ⊂ V (m) for m large enough. This results from the first case used for (M (m)/V (m))m≥m0 .
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Proposition 15.3.1.10. Suppose P affine and P/S is endowed with coordinates. Fix a closed point x
of P. Furthermore, let I ⊂ OP be the ideal defining ix (see notation 15.3.1.1) and I := Γ(P, I).

Let E be a coherent D†P,Q-module. Let m0 ≥ 0 be an integer such that there exist a coherent “D(m0)
P,Q -

module E(m0) and a D†P,Q-linear isomorphism of the form D†P,Q ⊗D̂(m0)

P,Q

E(m0) ∼−→ E (see 8.4.1.11). For

any integer m ≥ m0, we set E(m) := “D(m)
P,Q ⊗D̂(m0)

P,Q

E(m0), E(m) := Γ(P, E(m)) and E := Γ(P, E).

Suppose the following assertions are satisfied:

(i) For any m ≥ m0, we can choose a p-torsion free coherent “D(m)
P -module

◦
E(m) together with a “D(m)

P,Q-

linear isomorphism
◦
E(m)

Q
∼−→ E(m0) such that the Vx-module

◦
E(m)/I

◦
E(m) is p-torsion free.

(ii) E/IE is a Kx-vector space of finite dimension.

Then there exists an integer m ≥ m0 such that E(m)/IE(m) is a Kx-vector space of finite dimension.

Proof. Following 15.3.1.5,
◦
E(m)/I

◦
E(m) is p-torsion free, p-adically separated and complete. and the

subset I
◦
E(m) is closed in

◦
E(m). Hence the subset IE(m) is closed in E(m), for the linear topology given by

the p-adic topology of
◦
E(m). This topology is equal to topology induced by its structure of Γ(P, “D(m)

P,Q)-
module of finite type (see 7.5.1.8). Hence, E(m)/IE(m) is a Banach K-vector space for the quotient
topology. Since the inductive system (E(m))m∈N can be considered as an inductive system in the category
of A-modules whose inductive limit is isomorphic to E, then by applying the functor A/I ⊗A −, which
commutes to inductive limits, to this isomorphism we get the following one E/IE ∼−→ lim−→mE

(m)/IE(m).
By using Lemma 15.3.1.9 for the sequence (E(m)/IE(m))m≥m0 , since E/IE has finite dimension, then
so is the image of E(m0)/IE(m0) → E(m)/IE(m) for m large enough. Hence, using 15.3.1.8, we get that
E(m)/IE(m) has finite dimension for m large enough.

Lemma 15.3.1.11. Let E be a coherent D†P,Q-module, OP,Q-coherent. Then there exists a dense open
U of P such that E|U is a free OU,Q-module of finite type.

Proof. We can suppose P affine and endowed with local coordinates. Let m ∈ N. Following 11.1.1.6.(a),

there exists a p-torsion free “D(m)
P -module

◦
E , coherent over OP together with a “D(m)

P,Q-linear isomorphism
◦
EQ

∼−→ E . We get the coherent D(m
P -module F := OP ⊗OP

◦
E , which is also OP -coherent. It follows from

4.1.3.28, that there exist U ⊂ P an affine dense open such that F|U is a free OU -module of finite type.
With 15.3.1.3, since

◦
E is p-torsion free, this yields that

◦
E|U is a free OU-module of finite type and we are

done.

Let E be a coherent D†P,Q-module such that for any closed point x of P , the K-vector space i∗x(E) is
of finite dimension. A technical additional problem is that when the level m increases, the open subset
above which the coherent “D(m)

P,Q-module associated to E becomes OP,Q-coherent a priori narrows. The
phenomenon of contagiosity of the lemma 15.3.1.12 below allow us to solve this obstacle.

Lemma 15.3.1.12. We suppose P affine and endowed with local coordinates. Let m′ ≥ m be two
integers, U be an affine dense open subset of P, E be a coherent “D(m)

P,Q-module such that E is a projective
OP,Q-module of finite type.

We suppose that Γ(U, E) is endowed with a structure of Γ(U, “D(m′)
P,Q )-module extending its structure of

Γ(U, “D(m)
P,Q)-module. Then Γ(P, E) is endowed with a unique of Γ(P, “D(m′)

P,Q )-module extending its structure

of Γ(P, “D(m)
P,Q)-module.

Proof. The uniqueness comes from the fact that Γ(P, “D(m)
P,Q) is dense in Γ(P, “D(m′)

P,Q ) (e.g. see 15.3.1.7).
Let us check the existence. Let e ∈ Γ(P, E) and 1 ⊗ e the induced element of Γ(U, E). As the elements
∂〈k〉(m′) are of norm 1 in Γ(P, “D(m′)

P,Q ) (for the Gauss norm), the family ∂〈k〉(m′) · (1 ⊗ e) with k going

through Nd is bounded for the topology of Γ(U, E) given by its structure of Γ(U, “D(m′)
P,Q )-module of finite

type.
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Let us check now that the family {∂〈k〉(m′) · e|k ∈ Nd} is a bounded subset of Γ(P, E). Following
7.5.2.6, the topology of Γ(P, E) (resp. Γ(U, E)) given by its structure of Γ(P,OP,Q)-module of finite type
or Γ(P, “D(m)

P,Q)-module of finite type (resp. Γ(U,OP,Q)-module of finite type or Γ(U, “D(m′)
P,Q )-module of

finite type) coincide. Let N be an integer and F be a coherent OP,Q-module such that E ⊕F ∼−→ ONP,Q.
We get the commutative diagram:

Γ(P,OP,Q)N
∼ //

� _
��

Γ(P, E)⊕ Γ(P,F) // // Γ(P, E)� _
��

Γ(U,OP,Q)N
∼ // Γ(U, E)⊕ Γ(U,F) // // Γ(U, E)

whose right injective arrow sends ∂〈k〉(m′) .e on ∂〈k〉(m′) .(1⊗ e) (that does make sense because ∂〈k〉(m′) ∈
Γ(P, “D(m)

P,Q)). Via the top (resp. bottom) morphisms, the topology of Γ(P, E) (resp. Γ(U, E)) is the
quotient topology induced by that of Γ(P,OP,Q)N (resp. Γ(U,OP,Q)N ). As P/S is smooth and U is
dense in P , then the morphism Γ(P,OP ) → Γ(U,OP ) is injective. Since P is p-torsion free, this yields
Γ(U,OP)∩Γ(P,OP,Q) = Γ(P,OP). Hence the family {∂〈k〉(m′) ·e|k ∈ Nd} is a bounded subset of Γ(P, E).

Let P =
∑
k∈Nd ak∂

〈k〉(m′) be an element of Γ(P, “D(m′)
P,Q ). This yields the convergence in Γ(P, E) of

the sum
∑
k∈Nd ak(∂〈k〉(m′) .e). We set then P.e :=

∑
k∈Nd ak(∂〈k〉(m′) .e). It remains to check that this

endows Γ(P, E) with a structure of Γ(P, “D(m′)
P,Q )-module. By multiplying by ak the equalities ∂〈k〉(m′) .e =

∂〈k〉(m′) .(1 ⊗ e), and next by summing it, we obtain P.e = P.(1 ⊗ e). So, Γ(P, E) is a Γ(P, “D(m′)
P,Q )-

submodule of Γ(U, E).

Lemma 15.3.1.13. Let m0 ≥ 0 be an integer, E(m0) be a coherent “D(m0)
P,Q -module. Let m ≥ m0 be an

integer, E(m) := “D(m)
P,Q ⊗D̂(m0)

P,Q

E(m0).

(a) If E(m0) and E(m) are OP,Q-coherent, then the canonical morphism E(m0) → E(m) is surjective.

(b) Let r ∈ N and U be a dense open of P. We suppose that E(m0) is a free OP,Q-module of rank r
and E(m)|U is a free OU,Q-module of rank r. Then the canonical morphism E(m0) → E(m) is an
isomorphism.

Proof. Since the lemma is local, we can assume that P and U are affine and P/S is endowed with
coordinates.

a) Let us prove the first statement. Following [BGR84, 3.7.3.1], by endowing Γ(P, E(m0)) and
Γ(P, E(m)) with the topology given by their structure of Γ(P,OP,Q)-module of finite type, the image of
Γ(P, E(m0)) in Γ(P, E(m)) is closed. Moreover, following 15.3.1.7, the image of Γ(P, E(m0)) in Γ(P, E(m))

is dense, when Γ(P, E(m)) is endowed with the topology given by its structure of Γ(P, “D(m)
P,Q)-module of

finite type. But, thanks to 7.5.2.6, both topologies on Γ(P, E(m)) coincide. This yields that the canoni-
cal morphism Γ(P, E(m0)) → Γ(P, E(m)) is surjective. Hence, using the theorem of type A for coherent
OP,Q-modules, we get the canonical morphism E(m0) → E(m) is an isomorphism.

b) i) Let us check the canonical morphism E(m0)|U→ E(m)|U is an isomorphism. Following the part
a), this morphism is surjective. Let K(U) be the field of fraction of the integral ring B(U) := Γ(U,OP,Q).
By applying the functor K(U)⊗B(U)− to the surjective morphism Γ(U, E(m0))→ Γ(U, E(m)) of free B(U)-
module of rank r, we get a surjective morphism of K(U)-vector spaces of dimension r which is therefore
injective. Hence, the morphism Γ(U, E(m0))→ Γ(U, E(m)) is injective and therefore bijective. Via theorem
of type A for of coherent OU,Q-modules, this yields the canonical morphism E(m0)|U → E(m)|U is an
isomorphism.

b)ii) We end the proof. It follows from i) that Γ(U, E(m0)) is endowed with a structure of Γ(U, “D(m)
P,Q)-

module extending its structure of Γ(U, “D(m0)
P,Q )-module. With 15.3.1.12, this yields that Γ(P, E(m0)) is

endowed with a (unique) structure of Γ(P, “D(m)
P,Q)-module extending its structure of Γ(P, “D(m0)

P,Q ). This
implies that the canonical morphism ρm : Γ(P, E(m0))→ Γ(P, E(m)) admits a canonical retraction. The
morphism ρm is therefore injective. Let us check now the surjectivity ρm. The canonical morphism
Γ(P, E(m0)) → Γ(P, E(m)), where for m′ = m or m′ = m0 Γ(P, E(m′)) is endowed with the topology
given by its structure of Γ(P, “D(m′)

P,Q )-module of finite type, is continuous. Moreover, it follows from 7.5.2.6
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that the topology of Γ(P, E(m0)) induced by its structure of Γ(P, “D(m0)
P,Q )-module of finite type and the

one induced by its structure of Γ(P, “D(m)
P,Q)-module of finite type are identical. As Γ(P, “D(m0)

P,Q ) is dense

in Γ(P, “D(m)
P,Q), since ρm is continuous and Γ(P, “D(m0)

P,Q )-linear, this yields that ρm is Γ(P, “D(m)
P,Q)-linear.

Hence, its image is therefore closed (see the last paragraph of 7.5.1.8). As it is also dense (see 15.3.1.7),
the morphism ρm is therefore surjective. Hence, ρm is a bijection. Similarly, for any affine open P′ of
P the canonical homomorphism ρm : Γ(P′, E(m0)) → Γ(P′, E(m)) is an isomorphism. Hence, we get the
canonical morphism E(m0) → E(m) is an isomorphism.

Lemma 15.3.1.14. Let E be a coherent D†P,Q-module. Let m0 ≥ 0 be an integer such that there

exists a coherent “D(m0)
P,Q -module E(m0) inducing E by extension (8.4.1.11). For any integer m ≥ m0, set

E(m) := “D(m)
P,Q ⊗D̂(m0)

P,Q

E(m0). Suppose there exist a strictly increasing sequence (mn)n∈N and a sequence

of dense opens (Un)n∈N of P such that E(mn)|Un is a free OUn,Q-module of finite rank. Then, there exists
n0 ∈ N such that E|Un0

is OUn0 ,Q
-coherent.

Proof. We can suppose the sequence (Un)n∈N is decreasing. It follows from Lemma 15.3.1.13.(a) that
the sequence (rank E(mn)|Un)n∈N is decreasing. Let r be the minimal rank. Hence, there exists n0 such
that for any n ≥ n0 the OUn,Q-module E(mn)|Un is free of rank r. Using Lemma 15.3.1.13.(b), this yields
that for any n ≥ n0, the canonical morphism E(mn0 )|Un0

→ E(mn)|Un0
is an isomorphism. By taking the

inductive limit on n, this yields that E(mn0 )|Un0
→ E|Un0

is an isomorphism (of free OUn0 ,Q
-module of

rank r).

Proposition 15.3.1.15. Let E be a coherent D†P,Q-module. Let m0 ≥ 0 be an integer such that there

exists a coherent “D(m0)
P,Q -module E(m0) inducing E by extension (8.4.1.11). For any integer m ≥ m0, let

us denote by E(m) := “D(m)
P,Q ⊗D̂(m0)

P,Q

E(m0). The following conditions are equivalent.

(a) The sheaf E is OP,Q-coherent.

(b) There exists m1 ≥ m0 such that for any m ≥ m1 the sheaf E(m) is OP,Q-coherent and the canonical
homomorphism E(m) → E is an isomorphism.

(c) There exists a strictly increasing sequence (mn)n∈N such that E(mn) is OP,Q-coherent.

Proof. The assertion is local and we can suppose that P is affine. If E is OP,Q-coherent then E is
associated to a convergent isocrystal on P/S (11.1.1.3). Hence, it follows from 11.1.1.10 that we get
the implication (a) ⇒ (b). Since (b) → (c) is obvious, let us check (c) → (a). Let us suppose that
there exists a strictly increasing sequence (mn)n∈N such that E(mn) is OX,Q-coherent. Then, it follows
from Lemma 15.3.1.13.(a) that the canonical morphism Γ(X, E(mn)) → Γ(X, E(mn+1)) is surjective. By
taking the limit on n, this yields the surjectivity of Γ(X, E(mn))→ Γ(X, E). Following 11.1.1.8, E is then
OX,Q-coherent.

Lemma 15.3.1.16. Let F be a p-torsion free coherent “D(m)
P -module. Then there exists an affine dense

open U of P such that F|U is isomorphic to the p-adic completion of a free OU-module.

Proof. Since the sheaf OP ⊗OP
F is a coherent D(m)

P -module, then it follows from 4.1.3.28 that there
exists an affine dense open U of P such that OP ⊗OP

F|U is a free OU -module. Using 15.3.1.3, this
yields that Γ(U,F) is isomorphic to the p-adic completion of a free Γ(U,OU)-module. Moreover, taking
the projective limit of 4.3.4.6.1, we obtain the canonical isomorphism

OU“⊗Γ(U,OP)Γ(U,F)
∼−→ “D(m)

U
“⊗

Γ(U,D̂(m)

P
)
Γ(U,F).

As F|U is a coherent (and therefore pseudo quasi-coherent) “D(m)
U -module, via the theorem of type A of

7.2.3.16.(i) and 7.2.3.13.(i), we get therefore the isomorphisms:“D(m)
U
“⊗

Γ(U,D̂(m)

P
)
Γ(U,F)

∼←− “D(m)
U ⊗

Γ(U,D̂(m)

P
)

Γ(U,F)
∼−→ F|U.

This yields the isomorphism OU“⊗Γ(U,OP)Γ(U,F)
∼−→ F|U and we are done.
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Before considering the general case (see 15.3.1.19), let us first check the case where the residue field
k is uncountable.

Lemma 15.3.1.17. Let E be a coherent D†P,Q-module such that for any closed point x of P , the K-vector
space i∗x(E) is of finite dimension (see notation 15.3.1.1). Suppose k is uncountable. Then there exists
an affine dense open U of P such that E|U is a free OU,Q-module of finite rank.

Proof. 1) Since the theorem is local, let us suppose P affine, integral and P/S is endowed with coordi-
nates. Let m0 ≥ 0 be an integer such that there exist a coherent “D(m0)

P,Q -module E(m0) and a D†P,Q-linear
isomorphism of the form D†P,Q ⊗D̂(m0)

P,Q

E(m0) ∼−→ E (see 8.4.1.11). For any integer m ≥ m0, we set

E(m) := “D(m)
P,Q ⊗D̂(m0)

P,Q

E(m0), E(m) := Γ(P, E(m)) and E := Γ(P, E). Let
◦
E(m0) be a p-torsion free coher-

ent “D(m0)
P -module together with a “D(m0)

P,Q -linear isomorphism
◦
E(m0)

Q
∼−→ E(m0) (see 7.4.5.2). We denote

by
◦
E(m) the quotient of “D(m)

P ⊗D̂(m0)

P

◦
E(m0) by its π-torsion part. Following 7.4.5.1,

◦
E(m) is a coherent“D(m)

P -module. We set
◦
E(m) := Γ(P,

◦
E(m)). It follows from 15.3.1.16 that for any integer m ≥ m0, there

exists an affine dense open Um of P such that
◦
E(m)|Um is isomorphic to the p-adic completion of a free

OUm -module. As k is uncountable, then ∩m≥m0Um is not empty. Let x be a closed point of ∩m≥m0Um.
Shrinking the sequence (Um)m≥m0 if necessary, we can suppose Um ⊃ Um+1. Let us denote by I ⊂ OP

the ideal induced by ix, I := Γ(P, I) and A := Γ(P,OP).
2) Let’s prove that there exists m1 ≥ m0 such that for any m ≥ m1, the sheaf

◦
E(m)|Um is a free

OUm -module of finite type.
From the propositions 15.3.1.2 and 15.3.1.5.(a), we get E/IE ∼−→ i∗x(E), E(m)/IE(m) ∼−→ i∗x(E(m))

and
◦
E(m)/I

◦
E(m) ∼−→ i∗x(

◦
E(m)). Hence E/IE is Kx-vector spaces of finite dimension. Let us denote by

i
(m)
x the closed immersion Spf Vx ↪→ Um induced by ix. As i∗x(

◦
E(m))

∼−→ i
(m)∗
x (

◦
E(m)|Um), since following

the step 1) the OUm -module
◦
E(m)|Um is flat, then

◦
E(m)/I

◦
E(m) is p-torsion free. Hence, using 15.3.1.10,

there exists an integer m1 ≥ m0 such that for any m ≥ m1 the Kx-vector space E(m)/IE(m) is of finite
dimension. Let m ≥ m1 and Jm be a set such that

◦
E(m)|Um is of the form (O(Jm)

P )∧. Then
◦
E(m)/I

◦
E(m)

is isomorphic to (V(Jm)
x )∧ (see 15.3.1.5.(b)). Since (

◦
E(m)/I

◦
E(m))Q

∼−→ E(m)/IE(m), since E(m)/IE(m)

is a Kx-vector space of finite dimension, then Jm much be finite and we are done.
3) It follows from the step 2) that E(m)|Um is a free OUm,Q-module of finite rank for any m ≥ m1.

Hence, using 15.3.1.14 we are done.

In order to extend to Lemma 15.3.1.17 to the general case, we proceed by descent via the Lemma:

Lemma 15.3.1.18. Let V → V ′ be a morphism of DVR(V) (see notation 9.2.6.12), S′ := Spf(V ′),
P′ := P ×S S′, f : P′ → P the canonical projection. Let E be a coherent D†P/S,Q-module and E ′ :=

f !(E) := D†P′/S′,Q ⊗f−1D†
P/S,Q

f−1E, i.e. E ′ is the base change of E via V → V ′ (see 9.2.7.1). The
following assertions are then equivalent:

(a) There exists a dense open U of P such that E|U is a free OU,Q-module of finite type.

(b) There exists a dense open U of P such that E|U is OU,Q-coherent.

(c) There exists a dense open U′ of P′ such that E ′|U′ is a free OU′,Q-module of finite type.

(d) There exists a dense open U′ of P′ such that E ′|U′ is OU′,Q-coherent.

Proof. The equivalence between (a) and (b) (resp. between (c) and (d)) follows from 15.3.1.11. The
implication (a) ⇒ (c) is straightforward. Conversely, let us suppose that there exist a dense open U′ of
P′ such that E ′|U′ is a free OU′,Q-module of finite rank r. Since the property (a) is local on P, then
we can suppose P affine, integral and P/S is endowed with coordinates. For any integer m ≥ m0, we
set E(m) := “D(m)

P,Q ⊗D̂(m0)

P,Q

E(m0), E(m) := Γ(P, E(m)) and E := Γ(P, E). Let
◦
E(m0) be a p-torsion free

coherent “D(m0)
P -module together with a “D(m0)

P,Q -linear isomorphism
◦
E(m0)

Q
∼−→ E(m0) (see 7.4.5.2). We

denote by
◦
E(m) the quotient of “D(m)

P ⊗D̂(m0)

P

◦
E(m0) by its π-torsion part. Following 7.4.5.1,

◦
E(m) is a

coherent “D(m)
P -module. Hence, following 15.3.1.16, for any m ≥ m0, there exist an affine dense open Um
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of P, a set Am and an OUm -linear isomorphism of the form
◦
E(m)|Um

∼−→ (O(Am)
Um

)∧. Shrinking Um if
necessary, we can suppose Um ⊃ Um+1. The rank (an integer if it is finite, if not we define it equal to
+∞) of

◦
E(m)|Um as OUm-module is then the same one than that of E(m)|Um as OUm,Q-module.

Let g : U′ → P be the morphism induce by f . Set g(m)!(E(m)) := “D(m)
U′/S′,Q ⊗g−1D̂(m)

U/S,Q

g−1E(m),

which is a coherent “D(m)
U′/S′,Q-module. We deduce from 9.2.6.5.2 the isomorphism of coherent D†U′,Q-

modules: D†U′,Q⊗D̂(m)

U′,Q
(g(m)!(E(m)))

∼−→ E ′|U′ (use also 9.2.7.1 and the fact that g(m)! is the composition

of the base change f (m)! by V → V ′ with the restriction |U′). By 15.3.1.15, as E ′|U′ is moreover OU′,Q-
coherent, this yields there exists m0 such that for any m ≥ m0 we have the canonical isomorphism
g(m)!(E(m))

∼−→ E ′|U′.
Let m ≥ m0, U′m := g−1(Um) and gm : U′m → Um be the morphism induced by g. We get the

isomorphism: “D(m)
U′m/S

′ ⊗g−1
m D̂

(m)

Um/S

g−1
m (

◦
E(m)|Um)

∼−→ “D(m)
U′m/S

′“⊗L
g−1
m D̂

(m)

Um/S

g−1
m (

◦
E(m)|Um)

∼−→ “D(m)
U′m/S

′“⊗L
g−1
m D̂

(m)

Um/S

g−1
m ((O(Am)

Um
)∧)

7.5.5.12.(c)
∼−→ (O(Am)

U′m
)∧ (15.3.1.18.1)

the last one follows from the coherence of
◦
E(m) and the flatness of g−1“D(m)

U/S,Q → “D(m)
U′/S′ . By tensoring

with Q the composition of 15.3.1.18.1, we get the last OU′m,Q-linear isomorphism:

E ′|U′m
∼−→ g(m)!(E(m))|U′m

∼−→ ((O(Am)
U′m

)∧)Q.

This yields that for any m ≥ m0, the set Am has r elements and then
◦
E(m)|Um is OUm -free of rank r.

Hence E(m)|Um is a free OUm,Q-module of rank r. We conclude thanks to 15.3.1.14.

Theorem 15.3.1.19. Let E be a coherent D†P(†T )Q-module such that for any closed point x of P , i∗x(E)

is a K-vector space of finite dimension. Then there exists a divisor T ′ ⊃ T of P such that (†T ′)(E) is
an isocrystal on P/S overconvergent along T ′.

Proof. Let V → V ′ be a morphism of DVR(V) (see notation 9.2.6.12), S′ := Spf(V ′), such that the
residue field of V ′ is uncountable. Let P′ := P ×S S′, f : P′ → P be the canonical projection and
E ′ := f∗(E) be the coherent D†P′/S′,Q-module induced by base change. Then for any closed point x′ of
P ′, i∗x′(E) is a K ′-space vector of finite dimension. Hence, following 15.3.1.17, there exists a dense open
U′ of P′ such that E ′|U′ is a free OU′,Q-module of finite type. We deduce from 15.3.1.18 that there exists
a dense open U of P such that E|U is a free OU,Q-module of finite type. Shrinking Uif necessary, we can
suppose U is the open complementary to the support of a divisor. We end the proof thanks to theorem
11.2.1.14.(e).

Theorem 15.3.1.20. Let E be a holonomic D†P(†T )Q-module. There exits a divisor T ′ containing T
such that (†T ′)(E) is OP(†T ′)Q-coherent.

Proof. We can suppose P integral. Moreover, it follows from 11.2.1.14.(e) that we reduce to check there
exists a dense open subset U of P \T such that E|U is coherent over OU,Q. In particular, we can suppose
T = ∅. By definition of the holonomicity, we have dim(E) ≤ dimP . Let m0 ≥ 0 be an integer such
that there exist a coherent “D(m0)

P,Q -module E(m0) together with a D†P,Q-linear isomorphism of the form

D†P,Q⊗D̂(m)

P,Q

E(m) ∼−→ E (8.4.1.11). For any integer m ≥ m0, let us denote by E(m) := “D(m)
P,Q⊗D̂(m0)

P,Q

E(m0).

Increasing m0if necessary, we have dim(E) = dim(m)(E(m)) for any m ≥ m0. Following 15.1.5.5, there
exists a dense open subset Um of P such that E(m)|Um is coherent over OUm,Q for any m ≥ m0. We
conclude thanks to 15.3.1.14.

15.3.1.21. With the notations of the theorem 15.3.1.15, the fact that E(m0) is OP,Q-coherent does not
a priori imply that E is OP,Q-coherent. However, with a Frobenius structure this is the case:

Proposition 15.3.1.22. Let E be a coherent F -D†P,Q-module, m0 ≥ 0 an integer and E(m0), the coherent“D(m0)
P,Q -module associated with E (8.4.1.13). Then E is OP,Q-coherent if and only if E(m0) is OP,Q-

coherent.
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Proof. Since F ∗E(m0) is OP,Q-coherent is and only if E(m0) is OP,Q-coherent, then this follows from
15.3.1.15.

15.3.2 Finite extraordinary fibers and a holonomicity criterion
Definition 15.3.2.1. A coherent D†P/S(†T )Q-module E (resp. a complex E of Db

coh(D†P/S(†T )Q)) is
said to have “finite extraordinary fibers” if, for any closed point x of P , with notation 15.3.1.1 we have
i!x(E) ∈ Db

coh(OSx/S,Q). The property “having finite extraordinary fibers” is closed under devissage, i.e.
the complexes having finite extraordinary fibers is a triangulated subcategories of Db

coh(D†P/S(†T )Q).

Example 15.3.2.2. Let E ∈ Db
coh(D†P(†T )Q). If E ∈ Db

coh(OP(†T )Q) then E has finite extraordinary
fibers.

Definition 15.3.2.3. A complex E(•) ∈ LD−→
b
Q,coh(‹D(•)

P (T )) is said to have “finite extraordinary fibers”

if, for any closed point x of P , we have i(•)!x (E(•)) ∈ LD−→
b
Q,coh(O(•)

Sx
) (see notation 15.3.1.1). The property

“having finite extraordinary fibers” is closed under devissage.

15.3.2.4. Let E(•) ∈ LD−→
b
Q,coh(‹D(•)

P (T )) and E :=→l
∗
Q(E(•)) ∈ Db

coh(D†P(†T )Q). If E(•) has finite extraordi-
nary fibers then so is E . Beware that the converse is not clear (but at least with the extra hypotheses of
14.3.3.10 for modules such converse property can be checked). In the case of curves, such an equivalence
will be established below (thanks to 14.3.3.10).

We get by devissage the complex analogue of Theorem 15.3.1.19:

Theorem 15.3.2.5. Let E ∈ Db
coh(D†P(†T )Q). If E has finite extraordinary fibers then there exists a

divisor T ′ ⊃ T of P such that (†T ′)(E) ∈ Db
coh(OP(†T )Q).

Proof. We can suppose P integral of dimension d. Thanks to theorem 11.2.1.14.(e), we reduce to check
there exists a dense open U′ of P \ T such that E|U′ ∈ Db

coh(OU′,Q). Consider the set A := {n ∈
Z such that Hn(E) 6= 0}. LetN be the maximum ofA. Let x be a closed point of P . By using the spectral
sequence Hri!xH

s(E) → Hni!x(E), since E has finite extraordinary fibers then we get i∗x(HN (E))
∼−→

HN+di!x(E) is a K-vector space of finite dimension. Hence, following 15.3.1.19 there exists a dense open
U′′ of P \ T such that HN (E)|U′ is OU′,Q-coherent. In particular, HN (E)|U′ has finite extraordinary
fibers (see 15.3.2.2). Proceeding by induction on the cardinal of A, we conclude therefore the proof by
devissage.

We will need the following result Lemmas ot check Theorem 15.3.2.8:

Lemma 15.3.2.6. Let E be a coherent D†P(†T )Q-module having finite extraordinary fibers. Let Z be the
support of E. There exists an open set U of P such that Y := Z ∩ U is affine, smooth and dense in Z
and such that E|U ∈ MIC††(Y,U/V) (see notation 12.2.1.4) In particular, E|U is holonomic and nonzero.

Proof. Let U′ be an open set of P such that Y ′ := Z ∩ U ′ is affine, smooth and dense in Z. We can
lift Y ′ to an affine and smooth S-formal scheme Y′. Since U′ is smooth and Y′ is affine, then there
exists a morphism of smooth S-formal schemes of the form v : Y′ ↪→ U′ lifting Y ′ ↪→ U′. Since E|U′ is
a coherent D†U′,Q-module with support in Y ′ and having finite extraordinary fibers, it comes from the
theorem of Berthelot-Kashiwara (see 9.3.5.9)) that v!(E|U′) is a coherent D†Y′,Q-module and having finite
extraordinary fibers. Following 15.3.1.19, then there exists an open set U of U′ such that Y := Y′ ∩ U is
affine and dense in Y′ and such that v!(E|U′)|Y is moreover OY,Q-coherent. Denote by u : Y ↪→ U the
closed immersion induced by v. Then u!(E|U) is a coherent D†Y,Q-module which is OY,Q-coherent. Since
E|U is a coherent D†U,Q-module supported in Y , then this yields E|U ∈ MIC††(Y,U/V). The fact that E|U
is holonomic follows from 15.2.4.20.

Lemma 15.3.2.7. Let E1, . . . , En be some coherent D†P(†T )Q-modules having finite extraordinary fibers.
If E1, . . . , En are not all zero, then there exists an open set U of P such that E1|U, . . . , En|U are holonomic
and not all zero.
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Proof. We proceed by induction on the number N of element i ∈ {1, . . . , n} such that Ei 6= 0. When
N = 1, this comes from 15.3.2.6. Suppose now N ≥ 2. Reindexing if necessary, we can suppose E1 6= 0.
Following 15.3.2.6, there exists an open set U′ of P such that E1|U′ is holonomic and nonzero. The case
where, for any i ≥ 2, Ei|U′ = 0 is straightforward. Otherwise, suppose that the E2|U′, . . . , En|U′ are not
all zero. By induction hypothesis, there exists an open set U of U′ such that E2|U, . . . , En|U are holonomic
and not all zero. The fact that E1|U is also holonomic allows us to conclude.

Theorem 15.3.2.8 (Holonomicity criterion). Let E be a coherent D†P(†T )Q-module. If the cohomological
spaces of DT (E) have finite extraordinary fibers, then E is D†P(†T )Q-holonomic.

Proof. By definition of the D†P(†T )Q-holonomic, we can suppose T is empty. Let d the dimension of P .
We can suppose P integral. For any integer d ≥ i ≥ 0, set Fi := H−iD(E). For d ≥ i ≥ 1, let Zi be the
support of Fi and Z := ∪i=1,...,dZi their union. Following the homological criterion of holonomicity of
15.2.4.8, E is holonomic if and only if F1, . . . ,Fd are all zero. By the absurd, suppose that F1, . . . ,Fd
are not all zero. It comes from 15.3.2.7 that there exists an open set U of P such that F1|U, . . . ,Fr|U are
holonomic and not all zero. By 15.2.4.7, F0 is holonomic too. So, the cohomological spaces of D(E|U) are
all holonomic, i.e., the complex D(E|U) is holonomic. Hence, thanks to theorem of biduality (see 8.7.7.3)
and to the preservation of the holonomicity by the functor D (see 15.2.4.15), E|U is holonomic. However,
following the homological criterion of holonomicity this implies that F1|U, . . . ,Fd|U are all zero. Hence
we get a contradiction.

15.3.3 The case of curves
We suppose in this subsection that P has dimension 1.

Proposition 15.3.3.1. Let E be a coherent D†P(†T )Q-module. The following assertions are equivalent:

(a) The sheaf E is a holonomic D†P(†T )Q-module.

(b) There exits a dense open U of P \ T such that E|U is OU,Q-coherent.

(c) There exits a divisor T ′ containing T such that (†T ′)(E) is OP(†T ′)Q-coherent.

Proof. Following 11.2.1.14.(e), we get the equivalence between (b) and (c). The implication (a)⇒ (c) is
always true (see 15.3.1.20). Let’s prove now the implication (b)⇒ (a). By definition of the holonomicity,
we can suppose P integral and T empty. Letm0 ≥ 0 be an integer such that there exist a coherent “D(m0)

P,Q -
module E(m0) together with a D†P,Q-linear isomorphism of the form D†P,Q ⊗D̂(m)

P,Q

E(m) ∼−→ E (8.4.1.11).

For any integer m ≥ m0, let us denote by E(m) := “D(m)
P,Q ⊗D̂(m0)

P,Q

E(m0). Let
◦
E(m) be a p-torsion free

coherent “D(m)
P -module together with a “D(m)

P,Q-linear isomorphism
◦
E(m)

Q
∼−→ E(m) (see 7.4.5.2). Since by

hypothesis E|U is OU,Q-coherent, then following 15.3.1.15 there exists m1 ≥ m0 such that for anym ≥ m1

the sheaf E(m)|U is OU,Q-coherent and the canonical homomorphism E(m)|U → E|U is an isomorphism.
Hence, it follows from 11.1.1.11 that for any m ≥ m1 the sheaf

◦
E(m)|U is OU-coherent. It follows from

15.1.5.3 that Car(m)(
◦
E(m)|U) ⊂ T ∗UU . Since U is dense, this implies that dim Car(m)(

◦
E(m)) ≤ 1. Hence,

for any m ≥ m1, we have dim Car(m)(E(m)) ≤ 1. We conclude by passing to the limit.

Remark 15.3.3.2. When X is not a formal curve, the implication (b)⇒ (a) of 15.3.3.1 is false in general.
For example, let Z (resp. P) be the p-adic completion of A1

V (resp. A2
V) and u : Z ↪→ P be the closed

immersion given by t2 = 0 if t1, t2 are coordinates of X/S. Then E := u+(D†Z,Q) satisfies (b) but it is not
holonomic since it has dimension 3.

Lemma 15.3.3.3. Let k be a perfect field and Z be a reduced k-scheme of finite type and dimension 0.
So Z is a finite and etale k-scheme.

Proof. As Z is a Noetherian scheme of dimension 0, according to [Gro65, 0.14.1.9] and [Gro60, 2.8.2], Z
is an Artinian scheme. If A is the ring corresponding to Z, A is therefore equal to the (finite) product
of local (Artinian) rings of Z. As we further assume that Z is reduced, and as a reduced local Artinian
ring is a field, then the local rings of A are all fields. Now, as k is perfect, the fields of Z are separable
extensions of k. Thus, A is isomorphic to a finite product of finite extensions separable from k. Hence
the result.
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Proposition 15.3.3.4. Let E(•) ∈ LD−→
b
Q,coh(‹D(•)

P (T )) and E :=→l
∗
Q(E(•)) ∈ Db

coh(D†P(†T )Q). The following
assertions are equivalent.

(a) The complex E has finite extraordinary fibers (in the sense of definition 15.3.2.1).

(b) For any n ∈ Z, the module HnE has finite extraordinary fibers (in the sense of definition 15.3.2.1).

(c) The complex E(•) has finite extraordinary fibers (in the sense of definition 15.3.2.3).

(d) For any n ∈ Z, the module HnE(•) has finite extraordinary fibers (in the sense of definition 15.3.2.3).

(e) For any divisor D de P , (†D)(E) ∈ Db
coh(D†P,Q(†T )).

(f) There exists a divisor T ′ containing T such that (†T ′)(E) ∈ Db
coh(OP(†T ′)Q) ∩Db

coh(D†P(†T )Q).

Proof. The implications (b) ⇒ (a) is obvious. Conversely, suppose for any n ∈ Z, the module HnE
has finite extraordinary fibers. Using the spectral sequence Er,s2 = Hri!x(Hs(E)) ⇒ Hr+si!x(E), since
Er,s2 = 0 is r 6∈ {0, 1}, then we get the exact sequence for any n ∈ Z:

0→ H1i!x(Hn(E))→ Hn+1i!x(E)→ H0i!x(Hn+1(E))→ 0.

Since Hni!x(E) is a K-vector space of finite dimension for any n ∈ Z, then so are H0i!x(Hn(E)) an
H1i!x(Hn(E)) which means that Hn(E) has finite extraordinary fibers. The equivalence between (b) and
(d) is a consequence of 14.3.3.10. The implications (d)⇒ (c)→ (a) are straightforward.

It follows from 14.3.3.1 that E has finite extraordinary fibers if and only if for any divisor Dx of
P whose support is a closed point x, RΓ†Dx(E) ∈ Db

coh(D†P(†T )Q). Since a reduced divisor of P has
dimension 0 then it is finite and etale over k and then D is sum of its connected components which are
closed points. Hence, using 13.1.4.16.1, we get the equivalence between (c) and (e).

It remains to check (a) ⇔ (f). Suppose E has finite extraordinary fibers. Then following 15.3.2.5
there exists a divisor T ′ ⊃ T of P such that (†T ′)(E) ∈ Db

coh(OP(†T )Q). Since E has finite extraordinary
fibers then we have also RΓ†T ′(E) ∈ Db

coh(D†P(†T )Q) (see above). Hence, we are done. Conversely, suppose
E satisfies (f). Suppose there exists a divisor T ′ such that (†T ′)(E) ∈ Db

coh(OP(†T ′)Q)∩Db
coh(D†P(†T )Q).

Then (†T ′)(E) has finite extraordinary fibers (indeed, when x is a closed point of P , then i!x((†T ′)(E)) = 0
if x ∈ T ′ otherwise i!x((†T ′)(E)) = i!x(E)). By using the triangle of localisation of E with respect to T ′,
we get RΓ†T ′(E) ∈ Db

coh(D†P(†T )Q). Using Berthelot-Kashiwara theorem this implies that RΓ†T ′(E) has
finite extraordinary fibers. Hence, so is E by devissage.

Remark 15.3.3.5. Let E ∈ Db
coh(D†P(†T )Q). If T ′ is a divisor containing T such that (†T ′)(E) ∈

Db
coh(OP(†T ′)Q) ∩Db

coh(D†P(†T )Q), then we get the exact triangle of Db
coh(D†P(†T )Q)

RΓ†T ′(E)→ E → (†T ′)(E)→ +1 (15.3.3.5.1)

such that for any n ∈ Z we have Hn(RΓ†T ′(E)) ∈ MIC††(T ′,P/V) and Hn((†T ′)(E)) ∈ MIC††(P, T ′/V)
(see notation 11.2.1.4). Hence, if E has finite extraordinary fibers then it admits a devissage in overcon-
vergent isocrystals. We will study later such devissages in a wider context.

Corollary 15.3.3.6. Let E ∈ Db
coh(D†P,Q). If E has finite extraordinary fibers, then it is holonomic.

Proof. This is a consequence of 15.3.3.1 and 15.3.3.4.

Proposition 15.3.3.7. Let E ∈ MIC††(P, T/V). Then E is D†P,Q-coherent.

Proof. This be proved later 18.3.2.2 in a wider context. For the case of curves, this can be checked using
the finite monodromy theorem.

Remark 15.3.3.8. Thanks to the proposition 15.3.3.7, we show below that for curves having finite ex-
traordinary fibers is equivalent to be holonomic. In higher dimension this is still an open question. To
get a more suitable notion, we will introduce that of overcoherence in the next subsection.

Proposition 15.3.3.9. Let E ∈ F -Db
coh(D†P,Q). The following assertions are equivalent:

816



(a) The complex E has finite extraordinary fibers.

(b) E ∈ F -Db
hol(D

†
P,Q).

(c) For any divisor T of P , (†T )E ∈ F -Db
hol(D

†
P,Q).

Proof. We already know (a)→ (b) (see 15.3.3.6). Conversely, suppose E ∈ F -Db
hol(D

†
P,Q). By devissage,

we can suppose E is an holonomic F -D†P,Q-module. Thanks to 15.3.1.20, there exists a divisor T of P
such that (†T )E ∈ MIC††(P, T/V). Hence, (†T )E has finite extraordinary fibers. Moreover, following
15.3.3.7, (†T )E is therefore D†P,Q-coherent. This yields by devissage that RΓ†T (E) ∈ Db

coh(D†P,Q). Since
RΓ†T (E) has its support in T (which is finite and etale over S), then using Berthelot-Kashiwara theorem
we get that RΓ†T (E) has extraordinary finite fibers.

Since the property “having finite extraordinary fibers” is stable under the localisation functor by
a divisor (†T ) (see 15.3.3.4), then we get from the equivalence between (a) and (b), but we get the
equivalence between (b) and (c).

15.3.4 Overcoherence (after any base change) in a smooth S-formal scheme

Definition 15.3.4.1. Let E(•) ∈ (F -)LD−→
b
Q,coh(‹D(•)

P (T )).

(a) We say that E(•) is “‹D(•)
P (T )-overcoherent in P” if, for any divisor D of P , we have (†D)(E(•)) ∈

LD−→
b
Q,coh(‹D(•)

P (T )). We denote by (F -)LD−→
b
Q,ovcoh,P(‹D(•)

P (T )) the full subcategory of (F -)LD−→
b
Q,coh(‹D(•)

P (T ))

consisting of overcoherent in P complexes. We denote by (F -)LM−−→Q,ovcoh,P(‹D(•)
P (T )) the full subcate-

gory of (F -)LM−−→Q,coh(‹D(•)
P (T )) consisting of objects ‹D(•)

P (T )-module belonging to LD−→
b
Q,ovcoh,P(‹D(•)

P (T )).

(b) We say that E(•) is “‹D(•)
P (T )-overcoherent in P after any base change” if for any morphism V → V ′ of

DVR(V) (see notation 9.2.6.12), denoting by S′ := Spf V ′, P′ := P×SS′, f : P′ → P the projection,
T ′ := f−1(T ), we have V ′“⊗L

VE(•) ∈ LD−→
b
Q,ovcoh,P′(

‹D(•)
P′ (T

′)) (see notation 9.2.6.13). We denote

by (F -)LD−→
b
Q,oc,P(‹D(•)

P (T )) the full subcategory of (F -)LD−→
b
Q,coh(‹D(•)

P (T )) consisting of overcoherent

after any base in P complexes. We denote by (F -)LM−−→Q,oc,P(‹D(•)
P (T )) the full subcategory of (F -

)LM−−→Q,coh(‹D(•)
P (T )) consisting of objects ‹D(•)

P (T )-module belonging to LD−→
b
Q,oc,P(‹D(•)

P (T )).

Definition 15.3.4.2. Let E be an object of (F -)D(D†P(†T )Q).

(a) The complex E is “D†P(†T )Q-overcoherent in P” if E ∈ (F -)Db
coh(D†P(†T )Q) and if, for any divisor D

of P , we have (†D)(E) ∈ (F -)Db
coh(D†P(†T )Q) (see 9.1.6.10 for a definition of the functor (†D) on (F -

)Db
coh(D†P(†T )Q)). We denote by (F -)Db

ovcoh,P(D†P(†T )Q) the full subcategory of (F -)Db
coh(D†P(†T )Q)

consisting of D†P(†T )Q-overcoherent in P complexes. A (F -)D†P(†T )Q-module is overcoherent in P

if so is as an object of (F -)Db(D†P(†T )Q).

(b) We say that E is “ D†P(†T )Q-overcoherent in P after any base change” if, for any morphism V → V ′

of DVR(V), denoting by S′ := Spf V ′, P′ := P×S S′, f : P′ → P the projection, T ′ := f−1(T ), we
have D†P′/S′(

†T ′)Q ⊗f−1D†
P/S

(†T )Q
f−1E ∈ Db

ovcoh,P(D†P′(†T ′)Q), i.e. the base change f !
T (E) of E via

V → V ′ is overcoherent in P′ (see 9.2.7.1). A (F -)D†P(†T )Q-module is overcoherent in P after any
base change if so is as an object of (F -)Db(D†P(†T )Q). We denote by (F -)Db

oc,P(D†P(†T )Q) the full
subcategory of (F -)Db

coh(D†P(†T )Q) consisting of D†P(†T )Q-overcoherent in P after any base change
complexes.

Notation 15.3.4.3. In this subsection, let \ ∈ {ovcoh, oc}.

Example 15.3.4.4. The D†P,Q-module OP(†T )Q is overcoherent in P. Indeed, this is a consequence of
12.2.7.1.
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Proposition 15.3.4.5. Let E(•) ∈ LD−→
b
Q,coh(‹D(•)

P (T )). The property E(•) ∈ LD−→
b
Q,\,P(‹D(•)

P (T )) is equiva-
lent to the property→l

∗
Q E

(•) ∈ Db
\,P(D†P(†T )Q), where→l

∗
Q is the equivalence of categories of 12.2.1.6.1). The

equivalence of categories→l
∗
Q of 8.7.5.4.1 preserves overcoherence and induces the equivalence of categories

of the form→l
∗
Q : LD−→

b
Q,\,P(‹D(•)

P (T )) ∼= Db
\,P(D†P(†T )Q).

Proof. Let T ′ a divisor of P . Since→l
∗
Q ◦ (†T ′)(E(•))

∼−→
9.1.3.2→

l∗Q ◦ (†T ′ ∪ T )(E(•))
∼−→ (†T ′ ∪ T, T ) ◦→l

∗
Q(E(•)),

it is sufficient to apply the corollary 9.1.6.3 to the complex E ′(•) := (†T ′)(E(•)).

15.3.4.6. It follows from 15.3.4.5 that the properties concerning the overcoherence are still valid replacing
the categories of the form LD−→

b
Q,\,P by Db

\,P and vice versa. We will therefore in the following simply
write and check one of the two contexts.

Like coherence, we verify that the notion of overcoherent (after any base change) in a smooth S-
formal scheme is local in P. Likewise, we extend the standard properties from coherent modules as
follows:

Proposition 15.3.4.7. Let E1 → E2 → E3 → E4 → E5 an exact sequence of coherent D†P(†T )Q-modules

(resp. of LM−−→Q,coh(‹D(•)
P (T ))). If E1, E2, E4, E5 are overcoherent (after any base change) in P then so is

E3.

Proof. Since the respective case is checked similarly, let us treat the non-respective one. Let D be a
divisor of P . Since the extension D†P(†T )Q → D†P(†T ∪ D)Q is flat, then the functor (†D) from the
category of coherent D†P(†T )Q-modules in that of coherent D†P(†T ∪ D)Q-modules is exact. We get
therefore the exact sequence (†D)(E1) → (†D)(E2) → (†D)(E3) → (†D)(E4) → (†D)(E5). Since by
hypothesis all terms except the middle one are coherent D†P(†T )Q-modules, then so is the middle one.
So, E3 is an overcoherent D†P(†T )Q-module. Similarly, since the base change given by a morphism V → V ′
of DVR(V) is exact (see 9.2.7.1), then we are done.

Proposition 15.3.4.8. Let \ ∈ {ovcoh, oc}. Let Φ : E → F be a morphism of overcoherent (after
any base change) D†P(†T )Q-modules (resp. of LM−−→Q,\,P(‹D(•)

P (T ))). Then Ker Φ, Coker Φ and ImΦ are

overcoherent (after any base change) D†P(†T )Q-modules (resp. belong to LM−−→Q,\,P(‹D(•)
P (T ))).

Proof. Let D be a divisor of P . Since the functor (†D) : Coh(D†P(†T )Q) → Coh(D†P(†T ∪ D)Q) is
exact, then this functor (†D) commutes with kernels, cokernels and images. Since the kernels, cokernels,
images of a morphism of coherent D†P(†T )Q-modules are coherent D†P(†T )Q-modules, then we get the
overcoherent case. Similarly, since the base change given by a morphism V → V ′ of DVR(V) is exact
(see 9.2.7.1), then we are done.

Lemma 15.3.4.9. Let E(•) ∈ LD−→
b
Q,qc,P(‹D(•)

P (T )).

(a) Let (Pi)i be an open covering of P. We have E(•) ∈ LD−→
b
Q,\,P(‹D(•)

P (T )) if and only if E(•)|Pi ∈
LD−→

b
Q,\,Pi

(‹D(•)
Pi

(T ∩ Pi)) for any i.

(b) If two terms of a distinguished triangle of LD−→
b
Q,qc(‹D(•)

P (T )) belong to LD−→
b
Q,\,P(‹D(•)

P (T )), then so is
the third.

(c) We have E(•) ∈ LD−→
b
Q,\(

‹D(•)
P (T )) if and only if Hj(E(•)) ∈ LM−−→Q,oc,P(‹D(•)

P (T )) for any integer j ∈ Z.

Proof. The two first assertions are obvious. The third results from the fact that the functor (†D) with D
a divisor of X and base change via a morphism of DVR are exact on the category of coherent D†P(†T )Q-
modules.

Lemma 15.3.4.10. Let E(•) ∈ LD−→
b
Q,qc(‹D(•)

P (T )). The following conditions are equivalent:

(a) E(•) ∈ LD−→
b
Q,ovcoh,P(‹D(•)

P (T )) ;
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(b) For any subscheme (resp. open subscheme, resp. closed subscheme) Y of P , RΓ†Y (E(•)) ∈ LD−→
b
Q,coh(‹D(•)

P (T )).

Proof. By using the case where Y is equal to P or to the complementary of a divisor (or a divisor and
use 15.3.4.9.(b)), we get (b)→ (a). Conversely, let us check the implication (a)⇒ (b). By construction
of the functor RΓ†Y (see 13.1.5.1), using 15.3.4.9.(b) we reduce by devissage to the case where Y is an
open subscheme of P and we denote by Z the complementary closed subscheme. Let us denote by nZ the
minimal number of divisor T1, . . . , Tr such that Z = T1∩· · ·∩Tr. We check the assertion by induction on
nZ . Suppose nZ ≤ 1, i.e. Z is a divisor. For any divisor D of X, we have (†D)◦ (†Z)(E)

∼−→ (†Z∪D)(E)
(see 9.1.3.2) and we are done. Suppose now r ≥ 2 and the proposition holds for any Z such that nZ < r.
Set Z ′ = T2 ∩ · · · ∩ Tr. We conclude by using the induction hypothesis via the following Mayer-Vietoris
exact triangles (see 13.1.4.15.2):

E(•) → (†T1)(E(•))⊕ (†Z ′)(E(•))→ (†T1 ∪ Z ′)(E(•))→ E(•)[1]. (15.3.4.10.1)

Remark 15.3.4.11. Let E(•) ∈ LD−→
b
Q,coh(

l“D(•)
P (T )), E :=→l

∗
Q(E(•)) The complex E(•)) ∈ LD−→

b
Q,ovcoh,P(‹D(•)

P (T ))

if and only if E ∈ Db
ovcoh,P(D†P(†T )Q) (see 15.3.4.5) and thanks to 15.3.4.10 and 14.3.3.1 these properties

are equivalent to one of theses properties:

(a) For any subscheme (resp. open subscheme, resp. closed subscheme) Y of P , RΓ†Y (E(•)) ∈ LD−→
b
Q,coh(‹D(•)

P (T )).

(b) For any subscheme (resp. open subscheme, resp. closed subscheme) Y of P , RΓ†Y (E) ∈ Db
coh(D†P(†T )Q).

However, when Y do not vary this is not clear. More precisely, if X be a closed subscheme of P , if
RΓ†X(E(•)) ∈ LD−→

b
Q,coh(‹D(•)

P (T )) then RΓ†X(E) ∈ Db
coh(D†P(†T )Q). When X is a divisor of P the converse

is true (see 14.3.3.1) but otherwise this is an open question. Because of this remark, if X and X ′ are
closed subschemes P such that RΓ†X(E) ∈ Db

coh(D†P(†T )Q) and next RΓ†X′(RΓ†X(E)) ∈ Db
coh(D†P(†T )Q),

then this is not clear that we have the isomorphism

RΓ†X∩X′(E)
∼−→ RΓ†X′(RΓ†X(E)).

Lemma 15.3.4.12. For any E(•) ∈ LD−→
b
Q,\,P(‹D(•)

P (T )), for any subscheme Y of P , RΓ†Y (E(•)) ∈ LD−→
b
Q,\,P(‹D(•)

P (T )).

Proof. Since base changes commute with localisation functors (see 13.1.5.7), then we reduce to the case
where \ = ovcoh. Hence, this follows from 15.3.4.10 and 13.1.5.6.1.

Proposition 15.3.4.13. Let f : P → Q be a proper morphism of smooth S-formal schemes, U be a
divisor of Q such that T = f−1(U). X be a closed subscheme Q. Let E(•) ∈ LD−→

b
Q,\,P(‹D(•)

P (T )) with

support in f−1(X). Then f+(E(•)) ∈ LD−→
b
Q,\,Q(‹D(•)

Q (U)) with support in X.

Proof. Since base changes commute to localisation functors (see 13.1.5.7) and to pushforwards (see
9.2.6.9), then we reduce to the case where \ = ovcoh. This follows from the commutation of the
localisation functor to direct images (see 9.4.3.3) and the stability of the coherence by pushforward by a
proper morphism (see 9.4.2.4) and 15.3.4.10.

Remark 15.3.4.14. Let f : P → Q be a smooth morphism of smooth S-formal schemes, U be a divisor
of Q. It is not clear if F (•) ∈ LD−→

b
Q,\,Q(‹D(•)

Q (U)) then f (•)!(E(•))LD−→
b
Q,\,P(‹D(•)

P (T )). We will introduce the
notion of overcoherence in order to get this stability by definition (see 15.3.6.1 and 15.3.6.2).

Proposition 15.3.4.15. Let u : X ↪→ P be a closed immersion of smooth S-formal schemes. Let U the
open of P complementary to u(X), T a divisor of P such that T ∩X is a divisor of X.

(a) For any complex E(•) ∈ LD−→
b
Q,\,P(‹D(•)

P (T )), we have therefore u(•)!(E(•)) ∈ LD−→
b
Q,\,X(l‹D(•)

X (T ∩X)).

(b) The functors u(•)
+ and u(•)! induce quasi-inverse equivalences between the category LD−→

b
Q,\,X(l‹D(•)

X (T ∩
X)) and the full subcategory of LD−→

b
Q,\,P(l‹D(•)

P (T )) consisting of complexes E(•) such that E(•)|U ∼−→ 0.
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Proof. Let us check the first assertion. Since base changes commute to localisation functors (see 13.1.5.7)
and pullbacks 9.2.6.6, then we reduce to the case where \ = ovcoh. Let E(•) ∈ LD−→

b
Q,ovcoh,P(‹D(•)

P (T ))

and Y be a subvariety of X. It follows from 15.3.4.10 that RΓ†Y (E(•)) ∈ LD−→
b
Q,ovcoh,P(l‹D(•)

P (T )). Since
this latter is in particular coherent with support in X, then it follows from Theorem 9.3.5.13 that
u(•)!(RΓ†Y (E(•))) ∈ LD−→

b
Q,coh(l‹D(•)

X (T ∩X)). Moreover, using 13.2.1.4.1, we get the canonical isomorphism

u(•)! ◦ RΓ†Y (E(•))
∼−→ RΓ†Y ◦ u(•)!(E(•)). Using 15.3.4.10, this implies u(•)!(E(•)) ∈ LD−→

b
Q,ovcoh,X(l‹D(•)

X (T ∩
X)). Now let’s deal with the assertion (b). Since u is proper, then the functor u(•)

+ preserves the
overcoherence in a smooth S-formal by 15.3.4.13. Since the overcoherence is a stronger condition than
the coherence and is preserved by u(•)

+ and u(•)+, then we conclude thanks to the coherent version of
Berthelot-Kashiwara Theorem (see 9.3.5.13.(c)).

Remark 15.3.4.16. It follows from 15.3.4.15 that overcoherence in P is a stronger condition than hav-
ing finite extraordinary fibers. Hence, an overcoherent in P module is generically OP,Q-coherent (see
15.3.1.20).

Proposition 15.3.4.17. Let a : Z ↪→ P be a closed immersion of smooth affine S-formal schemes. We
suppose P endowed with local coordinates t1, . . . , tn such that Z = V (t1, . . . , tr). Let E be a D†P,Q-module
which overcoherent in P. With notation 9.3.4.1, we have the canonical isomorphism:

a∗(E)
∼−→ Γ(Z, a∗(E)). (15.3.4.17.1)

Proof. We proceed by induction on r. When r = 1, this comes from the lemma 9.3.4.9. Denote by
P′ := V (t1). Using 15.3.4.9.(c) and 15.3.4.15.(a), denoting by b : P′ ↪→ P the canonical closed immersion,
we can check that E ′ := b∗(E) is a D†P′,Q-module which is overcoherent in P′. By noting c : Z ↪→ P′ the
canonical closed immersion, by induction hypothesis, we get the isomorphisms b∗(E)

∼−→ Γ(P′, b∗(E)) =
E′ and c∗(E′) ∼−→ Γ(Z, c∗(E ′)). Since a∗(E)

∼−→ c∗ ◦ b∗(E) and a∗(E)
∼−→ c∗ ◦ b∗(E), we can deduce the

result.

Remark 15.3.4.18. The isomorphism 15.3.4.17.1 is used in the proof of the lemma 15.3.5.3 (see the step
II.4)). It is an open question to know if the isomorphism 15.3.4.17.1 is still valid when E is only a coherent
D†P,Q-module.

15.3.5 The overcoherence in P after any base change implies the holonomic-
ity

Lemma 15.3.5.1. Let f : P → Q be a finite etale morphism of smooth S-formal schemes, E be a
coherent D†P,Q-module.

(a) With notation 15.2.4.16, we have the isomorphisms f+(Ehol)
∼−→ f+(E)hol and f+(E/Ehol)

∼−→
f+(E)/f+(E)hol.

(b) The module E is holonomic if and only if f+(E) is holonomic.

Proof. Since f is finite, then f is projective. Hence, it follows from the relative duality theorem in the
case of a projective morphism (see 9.4.4.5) and of the exactness of the functor f+ when f is finite and
etale (see 9.2.4.15) that f+(E∗) ∼−→ (f+(E))∗. Hence, f+(Ehol)

∼−→ (f+(E))hol. By exactness of f+,
this yields f+(E/Ehol)

∼−→ f+(E)/f+(E)hol. The statement (b) comes from the first isomorphism of (a)
via the fact that a monomorphism E ′ ↪→ E of coherent D†P,Q-modules is an isomorphism if and only if
f+(E ′) ↪→ f+(E) is an isomorphism.

Lemma 15.3.5.2. Let M be a p-torsion free p-adically separated complete V-module. Let x1, . . . , xr be
some elements of MK := M ⊗V K. Then there exists an integer N0 ≥ 0 such that, for every integer n,
we have the inclusion:

(Kx1 + · · ·+Kxr) ∩ pN0+nM ⊂ pn(Vx1 + · · ·+ VPr). (15.3.5.2.1)
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Proof. According to the terminology of 7.5.1.7, we have the p-adic norm onMK given byM . This induces
a norm on Kx1 + · · · + Kxr. On the other hand, we have the p-adic norm on Kx1 + · · · + Kxr given
by Vx1 + · · ·+ Vxr. Since the K-vector space Kx1 + · · ·+Kxr is of finite dimension, following [Sch02,
4.13], both norms are equivalent. Hence, the induced topology are the same. A basis of neighborhood
of zero of the induced norm is given by ((Kx1 + · · ·+Kxr) ∩ pnM)n∈N and the second one is given by
(pn(VP1 + · · ·+VPr))n∈N. Hence, there exists N0 such that (Kx1 + · · ·+Kxr)∩pN0M ⊂ Vx1 + · · ·+VPr
and we are done.

Lemma 15.3.5.3. Let E be a D†P,Q-overcoherent after any base change in P module. Denote by Z the
support of E/Ehol. By the absurd, we suppose that Z is non-empty. For any irreducible component Z ′ of
Z, then there exists an affine open set U of P such that

(a) the open set U ∩ Z ′ is smooth and dense in Z ′ ;

(b) the module (E/Ehol)|U is holonomic.

Proof. We remark that the finiteness hypothesis on E is only used at the step II.4).
Step I): Preliminary, reduction of the problem and notations.
Step 1). The lemma is Zariski local on P. Replacing if necessary P by an affine open set U of P

such that U ∩ Z ′ = U ∩ Z and such that U ∩ Z ′ is a smooth dense open of Z ′, we can then suppose
P affine, Z = Z ′ and Z smooth. Following [SGA1, Exp. III], then there exist a closed immersion of
smooth affine V-schemes of the form u : Z ↪→ P which lifts Z ↪→ P . Following the theorem 15.3.1.19
and the proposition 15.3.4.15.(a), there exists an open set U of P such that V := U ∩ Z is dense in
Z and u!(E)|V is OV,Q-coherent and therefore holonomic. Hence, following the holonomic version of
Berthelot-Kashiwara (see 15.2.4.19), we get that E|U is holonomic. This implies that the dimension of
the support of En-hol := E/Ehol is smaller than that of P . Denote by r ≥ 1 the codimension of Z in P .

Shrinking if necessary P, there exists a finite and etale morphism of the form h : P→ ÂdV such that
Z = h−1(Ad−rk ) where Ad−rk is the closed subvariety of Adk = Spec k[t1, . . . , td] equal to V (t1, . . . , tr). (see
the main theorem of Kedlaya of [Ked05]). Thanks to Proposition 15.3.4.13 and Lemma 15.3.5.1, we
reduce then to the case where Z ↪→ P is the closed immersion Âd−rV ↪→ ÂdV . In particular, we are in the
local situation of the subsection 9.3.3 and 9.3.4 and we will use their notations. Since En-hol is supported
in Z, following the theorem of Berthelot-Kashiwara (see 9.3.5.9), there exists a coherent D†Z,Q-module F
such that En-hol

∼−→ u+(F).
Step 2). It is sufficient to check that there exists a dense open set V of Z such that F|V is a free

OV,Q-module of finite type, which will be established in the step II).
Indeed, suppose F|V is a free OV,Q-module of finite type. Let U be an open set of P such that

U ∩Z = V . Then En-hol|U ∈ MIC††(V,U/V). Hence, En-hol|U is a holonomic D†V,Q-module (see 15.2.4.20)
and we are done.

Step 3). Following 15.3.1.18, thanks to the step 2), we reduce by descent to the case where k is
algebraically closed and uncountable.

Step 4). There exist m0 ∈ N, a coherent “D(m0)
Z,Q -module F (m0) together with a D†Z,Q-linear isomor-

phism of the form D†Z,Q ⊗D̂(m0)

Z,Q

F (m0) ∼−→ F . From now, m will always be an integer greater or

equal than m0. Denote by F (m) := “D(m)
Z,Q ⊗D̂(m0)

Z,Q

F (m0). We have the canonical “D(m)
Z,Q -linear morphisms

ρm : F (m) → F (m+1) (recall according to notation 9.3.3 that sheaves are denoted with curly letters and
the corresponding straight letters mean their global sections). Let

◦
F (m0) be a coherent p-torsion free“D(m0)

Z -module together with a “D(m0)
Z,Q -linear isomorphism

◦
F (m0)

Q
∼−→ F (m0). For any m ≥ m0 + 1, let

◦
F (m) be the quotient of the coherent “D(m)

Z -module “D(m)
Z ⊗D̂(m0)

Z

◦
F (m0) by its p-torsion part. Then

◦
F (m)

is a p-torsion free coherent “D(m)
Z -module

◦
F (m) and we have the “D(m)

Z,Q -linear isomorphism
◦
F (m)

Q
∼−→ F (m)

and such that ρm−1(
◦
F (m−1)) ⊂

◦
F (m). Since

◦
F (m) is p-torsion free, then we get the isomorphism:

◦
F (m)
i := V/πi+1V ⊗L

V
◦
F (m) ∼−→ V/πi+1V ⊗V

◦
F (m).

Next, we set
◦
E(m)

n-hol := u
(m)
+ (

◦
F (m)) and E(m)

n-hol :=
◦
E(m)

n-hol,Q. Thanks to 15.3.1.16, there exists a dense
open set Zm of Z such that

◦
F (m)|Zm is isomorphic to the p-adic completion of a free OZm-module. Hence,

we have an OZm -linear isomorphism of the form
◦
F (m)|Zm

∼−→ (O(Am)
Zm

)∧ where Am is a set.
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Let t1, . . . , td be such that P = Spf V{t1, . . . , td } and Z = V (t1, . . . , tr). We obtain some closed
S-formal subschemes of P by setting P′ := V (tr+1, . . . , td) and Z′ := V (t1, . . . , td). We obtain then the
canonical diagram cartesien:

Z
� � u // P

Z′
� � u′ //
?�

b

OO

P′.
?�

a

OO (15.3.5.3.1)

Since k is algebraically closed and uncountable (see the step 3)), by changing the choice of the
coordinates tr+1, . . . , td if necessary, we can suppose that |Z ′| ∈ ∩m∈NZm.

Step 5). Since |Z ′| ∈ Zm, via moreover 7.5.5.12.(c), we get the isomorphism b∗(
◦
F (m))

∼−→ (V(Em))∧.
So, b∗(

◦
F (m)) is p-torsion free, separated and complete for the p-adic topology. With notation 9.3.4.1,

following 9.3.4.10.2 and 9.3.4.10.3 we have therefore the last isomorphism

b∗(
◦
F (m))

15.3.1.5
∼−→ b∗(

◦
F (m))

∼−→ lim←−
i

b∗i (
◦
Fi

(m)).

Step II): We prove in this step that there exists an integer m1 ≥ m0 such that F|Zm1
is a free

OZm1 ,Q
-module of finite type.

Step 1). Acyclicity. Following 5.2.4.5.1, we have the isomorphisms La∗i ◦ u
(m)
i+ (

◦
Fi(m))

∼−→ u
′(m)
i+ ◦

Lb∗i (
◦
Fi(m)). As

◦
F (m)|Zm is flat, we get Lb∗i (

◦
Fi(m))

∼←− b∗i (
◦
Fi(m)). Since the functors u(m)

i+ and u′(m)
i+ are

exact (see 5.2.3.1), this yields the isomorphisms

La∗i ◦ u
(m)
i+ (

◦
Fi(m))

∼−→ a∗i ◦ u
(m)
i+ (

◦
Fi(m))

∼−→ u
′(m)
i+ ◦ b∗i (

◦
Fi(m)). (15.3.5.3.2)

Step 2). The module a∗(
◦
E(m)

n-hol) is pseudo-quasi-coherent (see the definition 7.2.3.5). More precisely,
we have the canonical isomorphisms

D(m)
P ′
i
⊗D̂(m)

P′

Ä
a∗ ◦ u(m)

+ (
◦
F (m))

ä ∼−→ a∗i ◦ u
(m)
i+ (

◦
Fi(m)),

a∗ ◦ u(m)
+ (

◦
F (m))

∼−→ lim←−
i

a∗i ◦ u
(m)
i+ (

◦
Fi(m)). (15.3.5.3.3)

Proof: Since u(m)
+ (

◦
F (m)) is coherent, then it follows from 7.5.5.13.(c) that La∗ ◦ u(m)

+ (
◦
F (m)) is quasi-

coherent. This yields

La∗ ◦ u(m)
+ (

◦
F (m))

∼−→ R lim←−
i

D(m)
P ′
i
⊗L
D̂(m)

P′

Ä
La∗ ◦ u(m)

+ (
◦
F (m))

ä
. (15.3.5.3.4)

u
(m)
i+ (

◦
Fi(m))

7.5.8.8.2
∼−→ D(m)

Pi
⊗L
D̂(m)

P

u
(m)
+ (

◦
F (m))

∼−→ D(m)
Pi
⊗D̂(m)

P

u
(m)
+ (

◦
F (m)). (15.3.5.3.5)

We have the isomorphism:

D(m)
P ′
i
⊗L
D̂(m)

P′

Ä
La∗ ◦ u(m)

+ (
◦
F (m))

ä 9.2.1.11.2
∼−→ La∗i

Å
D(m)
Pi
⊗L
D̂(m)

P

u
(m)
+ (

◦
F (m))

ã
7.5.8.8.2
∼−→ La∗i ◦ u

(m)
i+ (

◦
Fi(m))

15.3.5.3.2
∼−→ a∗i ◦ u

(m)
i+ (

◦
Fi(m)) (15.3.5.3.6)

This yields the isomorphisms:

D(m)
P ′
i
⊗L
D̂(m)

P′

Ä
La∗ ◦ u(m)

+ (
◦
F (m))

ä ∼−→ D(m)
P ′
i
⊗D̂(m)

P′

Ä
a∗ ◦ u(m)

+ (
◦
F (m))

ä ∼−→ a∗i ◦ u
(m)
i+ (

◦
Fi(m)). (15.3.5.3.7)

Then it comes from 15.3.5.3.7 and 15.3.5.3.4 the top isomorphisms of the diagram below:

La∗ ◦ u(m)
+ (

◦
F (m))

∼ //

∼

��

R lim←−iD
(m)
P ′
i
⊗D̂(m)

P′

Ä
a∗ ◦ u(m)

+ (
◦
F (m))

ä ∼ // R lim←−i a
∗
i ◦ u

(m)
i+ (

◦
Fi(m))

a∗ ◦ u(m)
+ (

◦
F (m))

∼ // lim←−iD
(m)
P ′
i
⊗D̂(m)

P′

Ä
a∗ ◦ u(m)

+ (
◦
F (m))

ä ∼ //

∼

OO

lim←−i a
∗
i ◦ u

(m)
i+ (

◦
Fi(m)).

∼

OO

(15.3.5.3.8)
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Since the top left horizontal arrow is an isomorphism from a complex of D≤0 to a complex of D≥0, then
every morphisms of the left square are isomorphisms. Hence so are that of the right square. Hence we
are done.

Step 3) We have the canonical isomorphism θ(m) : a∗(
◦
E

(m)
n-hol)

∼−→ u
′(m)
+ ◦b∗(

◦
F (m)) which is compatible

with the level increasing.
II) The isomorphism θ(m) is the composition of the canonical isomorphisms

a∗(
◦
E

(m)
n-hol)

∼−→ lim←−
i

a∗i ◦ u
(m)
i+ (

◦
Fi

(m))
∼−→ lim←−

i

u
′(m)
i+ ◦ b∗i (

◦
Fi

(m))
∼−→ u

′(m)
+ ◦ b∗(

◦
F (m)), (15.3.5.3.9)

where the functor u′(m)
+ is defined at 9.3.3.6.1 (this has a meaning since b∗(

◦
F (m) is a p-torsion free

separated complete modules).
i) The first isomorphism of 15.3.5.3.2 is the composition of the following isomorphisms:

a∗(
◦
E

(m)
n-hol) = a∗(Γ(P, u

(m)
+ (

◦
F (m))))

9.3.4.10.3
∼−→ Γ(P′, a∗ ◦ u(m)

+ (
◦
F (m)))

∼−→ Γ(P′, lim←−
i

a∗i ◦ u
(m)
i+ (

◦
Fi(m)))

∼−→ lim←−
i

Γ(P′, a∗i ◦ u
(m)
i+ (

◦
Fi(m)))

∼−→ lim←−
i

a∗i ◦ u
(m)
i+ (

◦
Fi

(m))).

These isomorphisms are built as follows: since u(m)
+ (

◦
F (m)) is pseudo quasi-coherent, then we get the first

isomorphism. By applying the functor Γ(P′,−) to the composite isomorphism of the bottom horizontal
maps of the diagram 15.3.5.3.8 we get the second isomorphism. We obtain therefore the first isomorphism:
Since the functor Γ(P′,−) commutes with projective limits, then we get the third isomorphism. By using
the theorem of type A for quasi-coherent modules on schemes, we obtain the forth.

Likewise, we obtain the second isomorphism of 15.3.5.3.9 by taking the projective limit of the global
section of 15.3.5.3.2. Finally, since b∗i (

◦
Fi

(m))
∼−→ V/πi+1V⊗V b∗(

◦
F (m)), then we get the last isomorphism

of 15.3.5.3.9 (recall also the notation 9.3.3.6.1). Hence we are done.
ii) Taking projective limits and global section of the right square of 5.2.4.3.2, we get that the middle

isomorphism of 15.3.5.3.9 commutes with the level increasing. Since this is clear for the other isomor-
phism, hence so is θ(m, i.e. we get the commutative square:

a∗(
◦
E

(m)
n-hol)

∼

θ(m0)

//

��

u′
(m0)

+ ◦ b∗(
◦
F (m0))

��
a∗(

◦
E

(m0+s)
n-hol )

∼

θ(m0+s)

// u′
(m0+s)

+ ◦ b∗(
◦
F (m0+s)).

(15.3.5.3.10)

Step 4): Construction of G(m).
Via the theorems of type A and B for coherent D†P,Q-modules, we have the D†P,Q-linear surjection

E � En-hol. By right exactness of the functor a∗, we get the D†P′,Q-linear surjection a
∗(E) � a∗(En-hol).

Since by hypothesis E is overcoherent in P, thanks to 15.3.4.17.1, then we have the isomorphism
Γ(P′, a∗(E))

∼−→ a∗(E). Since a∗(E) is a coherent D†P′,Q-module, via the theorem of type A for co-
herent D†P′,Q-modules (see 8.7.5.5), we can deduce that a∗(En-hol) is a D†P′,Q-module of finite type. Let
x1, . . . , xN ∈ a∗(En-hol) be some elements such that a∗(En-hol) =

∑N
l=1D

†
P′,Q · xl.

Since a∗(En-hol)
∼−→ lim−→m

a∗(E
(m)
n-hol), by increasing if necessary m0, there exists x(0)

1 , . . . , x
(0)
N ∈

a∗(E
(m0)
n-hol) such that, for any l = 1, . . . , N , x(0)

l is sent on xl via the morphism a∗(E
(m0)
n-hol) → a∗(En-hol).

For any m ≥ m0, put G(m) :=
∑N
l=1
“D(m)

P′,Q · x
(m−m0)
l ⊂ a∗(E

(m)
n-hol), where x

(m−m0)
l is the image of x(0)

l

via the canonical morphism a∗(E
(m0)
n-hol)→ a∗(E

(m)
n-hol).

Step 5): Construction of
◦
G(m).

Since G(m) is “D(m)
P′,Q-coherent, then there exists a p-torsion free coherent “D(m)

P′ -module
◦
G(m) such that

◦
G

(m)
Q

∼−→ G(m). Since we have the “D(m)
P′,Q-linear inclusion G(m) ⊂ a∗(E

(m)
n-hol), since

Ä
a∗(

◦
E

(m)
n-hol)

ä
Q

∼−→

a∗(E
(m)
n-hol), by multiplying if necessary

◦
G(m) by a convenient power of p, we can moreover suppose

◦
G(m) ⊂ a∗(

◦
E

(m)
n-hol).
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Step 6): Construction of
◦
H(m) and H(m).

We set
◦
H(m) := θ(m)(

◦
G(m)), and H(m) := θ

(m)
Q (G(m)), where θ(m) is the isomorphism 15.3.5.3.9 and

θ
(m)
Q : a∗(E

(m)
n-hol)

∼−→ (a∗(
◦
E

(m)
n-hol))Q

15.3.5.3.9
∼−→ (u

′(m)
+ ◦ b∗(

◦
F (m)))Q. (15.3.5.3.11)

We get (
◦
H(m))Q

∼−→ H(m).
Step 7): With notation 9.3.3.10.1, the V-module H0u′(m)!(

◦
H(m)) is free of finite rank.

Since H0u′(m)!(
◦
H(m)) is p-torsion free, separated and complete for the p-adic topology (see notation

and explanation of 9.3.3.10), this one is the p-adic completion of a free V-module (e.g. use 15.3.1.3). It
remains to check that it is of finite type over V. Following the step I.5), the module b∗(

◦
F (m)) is p-torsion

free, separated and complete for the p-adic topology. Then we have the canonical square

◦
H(m) �

� // u′(m)
+ ◦ b∗(

◦
F (m))

u
′(m)
+ H0u′(m)!(

◦
H(m))

?�

OO

� � // u′(m)
+ H0u′(m)!(u

′(m)
+ ◦ b∗(

◦
F (m)))

∼

OO

whose bottom horizontal morphisms is induced by functoriality of the tautological inclusion
◦
H(m) ⊂

u
′(m)
+ ◦ b∗(

◦
F (m)), whose vertical arrows are induced by the adjunction morphisms of 9.3.3.14.1. The

square is commutative by functoriality. Following 9.3.3.15.3, the right vertical arrow is an isomorphism.
Since the functor H0u′(m)! is left exact, we get the canonical inclusion H0u′(m)!(

◦
H(m)) ⊂ H0u′(m)!(u

′(m)
+ ◦

b∗(
◦
F (m))). Hence, by applying to it the functor u′(m)

+ , it follows from 9.3.3.7 that the bottom horizontal
arrow is injective. This implies that the canonical arrow u′+H

0u′(m)!(
◦
H(m)) →

◦
H(m) is injective. Since

◦
H(m) is “D(m)

P′ -coherent, this yields by noetherianity of “D(m)
P′ that u′+H0u′(m)!(

◦
H(m)) is “D(m)

P′ -coherent.
It comes from the lemma 9.3.3.8 that H0u′(m)!(

◦
H(m)) is a free V-module of finite rank.

Step 8): By the absurd, we suppose that, for any m ≥ m0, b∗(
◦
F (m)) is not of finite type over V. We

get then a contradiction.
i) We construct by induction on s ∈ N some elements y(0)

0 , . . . , y
(0)
s ∈ b∗(

◦
F (m0)) and some integers

n0, . . . , ns as follows.
It comes from 9.3.3.13.1 that the canonical morphism b∗(

◦
F (m)) → H0u′(m)!(u

′(m)
+ (b∗(

◦
F (m)))) is an

isomorphism. Via this isomorphism, we will identify H0u′(m)!(
◦
H(m)) as a subset of b∗(

◦
F (m)). Setting

H0u′(m)!(H(m)) := (H0u′(m)!(
◦
H(m)))⊗VK, we will also identifyH0u′(m)!(H(m)) as a subset of b∗(F (m)) =(

b∗(
◦
F (m0))

)
Q
. Since b∗(

◦
F (m0)) is p-torsion free, separated and complete for the p-adic topology (see the

step I.5)), since we suppose that b∗(
◦
F (m0)) is not a V-module of finite type, then the K-vector space

b∗(F (m0)) is not of finite dimension. Since H0u′(m)!(
◦
H(m)) is a free V-module of finite type (see the

step II.7), then H0u′(m)!(H(m)) then is a K-vector space is of finite dimension. Hence, there exists
an element y(0)

0 ∈ b∗(
◦
F (m0)) such that y(0)

0 6∈ H0u′(m)!(H(m0)). Moreover, since the K-vector space
Ky

(0)
0 +H0u′(m)!(H(m)) is of finite dimension, then following 15.3.5.2 there exists an integer n0 ≥ 0 such

that, for any integer n, we have the inclusion:Ä
Ky

(0)
0 ⊕H0u′(m)!(H(m0))

ä
∩ pn0+nb∗(

◦
F (m0)) ⊂ pn

Ä
Vy(0)

0 ⊕H0u′(m)!(
◦
H(m0))

ä
. (15.3.5.3.12)

Suppose now constructed y(0)
0 , . . . , y

(0)
s ∈ b∗(

◦
F (m0)) as well as the integers n0, . . . , ns. For any element

y(0) of b∗(F (m0)), we denote by y(j) its image via the morphism b∗(F (m0))→ b∗(F (m0+j)) for any j ∈ N.
(Remark that if y(0) ∈ b∗(

◦
F (m0)) then y(j) ∈ b∗(

◦
F (m0+j)).) Since for any m ≥ m0 the K-vector space

b∗(F (m)) is not of finite dimension, it comes from 15.3.1.8 that the image of b∗(F (m0)) → b∗(F (m)) is a
K-vector space of infinite dimension. Set M (s+1) := H0u′(m)!(H(m0+s+1)) +

∑s
j=0Ky

(s+1)
j . Let

◦
M (s+1)

be a free V-module such that
◦
M (s+1) ⊗ Q

∼−→ M (s+1). Since M (s+1) is of finite dimension on K, then
there exists y(0)

s+1 ∈ ps+1b∗(
◦
F (m0)) such that y(s+1)

s+1 6∈ M (s+1). Multiplying if necessary by a power of p,
we can moreover suppose that for any j = 0, . . . , s, we have y(j)

s+1 ∈ p1+nj b∗(
◦
F (m0+j)). Following 15.3.5.2,

then there exists an integer ns+1 ≥ ns + 1 such that for any integer n we haveÄ
M (s+1) ⊕Ky(s+1)

s+1

ä
∩ pns+1+nb∗(

◦
F (m0+s+1)) ⊂ pn

Ä ◦
M (s+1) ⊕ Vy(s+1)

s+1

ä
. (15.3.5.3.13)
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ii) Set y(0) :=
∑∞
j=0 y

(0)
j ∈ b∗(F (m0)). Let x(0) ∈ a∗(E(m0)

n-hol) be the element such that θ(m0)
Q (x(0)) =

1 ⊗ y(0) (see the description 9.3.3.6.1 of the pushforward to understand the notation 1 ⊗ y(0)). By
definition of G(m) (see the step II.4), since a∗(En-hol)

∼−→ lim−→m
a∗(E

(m)
n-hol), then there exists s ≥ 1 large

enough such that the image x(s) of x(0) via the canonical morphism a∗(E
(m0)
n-hol) → a∗(E

(m0+s)
n-hol ) belongs

to G(m0+s). By tensoring with Q 15.3.5.3.10 and by functoriality of the first isomorphism of 15.3.5.3.11,
we get the commutative diagram

a∗(E
(m0)
n-hol)

��

∼

θ
(m0)

Q

// (u′
(m0)

+ ◦ b∗(
◦
F (m0)))Q

��
a∗(E

(m0+s)
n-hol )

∼

θ
(m0+s)

Q

// (u′
(m0+s)

+ ◦ b∗(
◦
F (m0+s)))Q.

(15.3.5.3.14)

The image of 1 ⊗ y(0) =
∑∞
j=0 1 ⊗ y

(0)
j via the right arrow of 15.3.5.3.14 is 1 ⊗ y(s), where y(s) :=∑∞

j=0 y
(s)
j ∈ b∗(

◦
F (m0+s)). This implies the equality θ(m0+s)

Q (x(s)) = 1⊗ y(s) and then1⊗ y(s) ∈ H(m0+s).
Since 1⊗y(s) is killed by t1, . . . , tr, we have in fact 1⊗y(s) ∈ H0u′(m)!(H(m0+s)). Modulo the identification
of H0u′(m)!H(m0+s)) as a subset of b∗(F (m0+s)), we get then y(s) ∈ H0u′(m)!(H(m0+s)). So, y(s) −∑s
j=0 y

(s)
j ∈ (H0u′(m)!(H(m0+s)) +

∑s−1
j=0 Ky

(s)
j ) + Ky

(s)
s = M (s) ⊕Ky(s)

s . However, for any j ≥ s + 1,
we have y(s)

j ∈ p1+nsb∗(
◦
F (m0+s)). Since y(s) −

∑s
j=0 y

(s)
j =

∑∞
j=s+1 y

(s)
j , we get y(s) −

∑s
j=0 y

(s)
j ∈Ä

M (s) ⊕Ky(s)
s

ä
∩ p1+nsb∗(

◦
F (m0+s)) ⊂ p

Ä ◦
M (s) ⊕ Vy(s)

s

ä
. Since y(s) −

∑s
j=0 y

(s)
j splits in M (s) ⊕Ky(s)

s

of the form (y(s) −
∑s−1
j=0 y

(s)
j )− y(s)

s , we get a contradiction.
Step 9): Conclusion
Following the step 8), there exists an integer m1 such that b∗(F (m1)) is a K-vector space of finite

dimension. By 15.3.1.8, this yields that for anym ≥ m1, b∗(F (m)) is a K-vector space of finite dimension.
Let m ≥ m1. Since b∗(

◦
F (m))

∼−→ (V(Am))∧ (see step I.4), as (b∗(
◦
F (m))Q

∼−→ b∗(F (m)), this yields that
Am is a finite set and therefore

◦
F (m)|Zm is a free OZm-module of finite rank. Hence, F (m)|Zm is a free

OZm,Q-module of rank r. Using Lemma 15.3.1.14, for m large enough F|Zm is a free OZm,Q-module of
finite rank. Hence, we are done.

Theorem 15.3.5.4. Let E be an overcoherent D†P(†T )Q-module in P after any base change. Then E is
D†P(†T )Q-holonomic.

Proof. Following 15.2.4.6, we reduce to the case where the divisor T is empty. Set En-hol := E/Ehol.
Denote by Z the support of En-hol. By the absurd, suppose Z is non-empty and let Z ′ be an ir-
reducible component. Following 15.3.5.3, then there exists an open set U of P such that the open
subset U ∩ Z ′ is smooth and dense in Z ′ and such that the module En-hol|U is holonomic. However,
(En-hol|U)hol = (En-hol)

hol|U = 0, the last equality coming from 15.2.4.18. Moreover, since the module
En-hol|U is holonomic, we get the equality (En-hol|U)hol = (En-hol|U) (see 15.2.4.16). Hence we get a
contradiction.

15.3.6 D†P(†T )Q-overcoherence (after any base change)

Definition 15.3.6.1. Let E(•) ∈ (F -)LD−→
b
Q,coh(‹D(•)

P (T )).

(a) We say that E(•) is “‹D(•)
P (T )-overcoherent” if, for any smooth morphism of the form f : P′ → P,

we have f (•)!(E(•)) ∈ LD−→
b
Q,ovcoh,P′(

‹D(•)
P′ (f

−1(T ))). We denote by (F -)LD−→
b
Q,ovcoh(‹D(•)

P (T )) (resp. (F -

)LM−−→Q,ovcoh(‹D(•)
P (T ))) the full subcategory of (F -)LD−→

b
Q,coh(‹D(•)

P (T )) (resp. of (F -)LM−−→Q,coh(‹D(•)
P (T )))

consisting of overcoherent complexes.

(b) We say that E(•) is “‹D(•)
P (T )-overcoherent after any base change” if for any morphism V → V ′ of

DVR(V) (see notation 9.2.6.12), denoting by S′ := Spf V ′, P′ := P×SS′, f : P′ → P the projection,
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T ′ := f−1(T ), we have V ′“⊗L
VE(•) ∈ LD−→

b
Q,ovcoh(‹D(•)

P′ (T
′)) (see notation 9.2.6.13). We denote by (F -

)LD−→
b
Q,oc(‹D(•)

P (T )) (resp. (F -)LM−−→Q,oc(‹D(•)
P (T ))) the full subcategory of (F -)LD−→

b
Q,coh(‹D(•)

P (T )) (resp.

LM−−→Q,coh(‹D(•)
P (T ))) consisting of ‹D(•)

P (T )-overcoherent after any base change complexes.

Definition 15.3.6.2. Let E be an object of (F -)D(D†P(†T )Q).

(a) The complex E is “D†P(†T )Q-overcoherent” if for any smooth morphism of the form f : P′ → P, we
have f !(E) ∈ Db

ovcoh,P′(D
†
P′(
†f−1(T ))Q). We denote by (F -)Db

ovcoh(D†P(†T )Q) the full subcategory
of (F -)Db

coh(D†P(†T )Q) consisting of D†P(†T )Q-overcoherent complexes.

(b) We say that E is “ D†P(†T )Q-overcoherent after any base change” if, for any morphism V → V ′ of
DVR(V), denoting byS′ := Spf V ′,P′ := P×SS′, f : P′ → P the projection, D†P′/S′(

†T ′)Q⊗f−1D†
P/S

(†T )Q

f−1E ∈ Db
ovcoh(D†P′(†T ′)Q), i.e. the base change f !

T (E) of E via V → V ′ is overcoherent (see 9.2.7.1).
We denote by (F -)Db

oc(D†P(†T )Q) the full subcategory of (F -)Db
coh(D†P(†T )Q) consisting of D†P(†T )Q-

overcoherent after any base change complexes.

Example 15.3.6.3. Since the constant sheaf is stable under base change and inverse images, then it
follows from 15.3.4.4 that the D†P,Q-module OP(†T )Q is overcoherent after any base change.

Like coherence, we verify that the notion of overcoherent is local in P. Likewise, we extend the
standard properties from coherent modules to overcoherent modules:

Proposition 15.3.6.4. We have the following properties.

(a) Let Φ : E → F be a morphism of overcoherent (after any base change) D†P(†T )Q-modules (resp. of

LM−−→Q,ovcoh(‹D(•)
P (T ))). Then ker Φ and ImΦ are overcoherent (after any base change).

(b) Let E1 → E2 → E3 → E4 → E5 an exact sequence of coherent D†P(†T )Q-modules (resp. of

LM−−→Q,coh(‹D(•)
P (T ))). If E1, E2, E4, E5 are overcoherent (after any base change) then so is E3.

Proof. Let f : P′ → P be a smooth morphism of S-formal schemes. Denote by f∗ := H0f ![−dX′/X ] and
T ′ := f−1(T ). Since f is smooth, then the functor f∗ is exact and the image by f∗ of a coherent D†P(†T )Q-
module is a coherent D†P′(†T ′)Q-module. Hence, this functor f∗ commutes with kernels, cokernels and
images, which implies (a) thanks to 15.3.4.8. Moreover, we get the exact sequence f∗(E1) → f∗(E2) →
f∗(E3)→ f∗(E4)→ f∗(E5). Since by hypothesis all terms except the middle one are overcoherent (after
any base change) in P then thanks to 15.3.4.7 so is E3.

The next proposition is obvious.

Proposition 15.3.6.5. Let \ ∈ {ovcoh, oc}.

(a) A direct summand of a complex of LD−→
b
Q,\(

‹D(•)
P (T )) (resp. Db

\ (D†P(†T )Q)) is a complex of LD−→
b
Q,\(

‹D(•)
P (T ))

(resp. Db
\ (D†P(†T )Q)).

(b) Let E ′ → E → E ′′ → E ′[1] be a distinguished triangle of LD−→
b
Q,qc(

‹D(•)
P (T )) (resp. D(D†P,Q)). If two

of the three complexes belong to LD−→
b
Q,\(

‹D(•)
P (T )) (resp. Db

\ (D†P(†T )Q)) then so does the third. In

particular, LD−→
b
Q,\(

‹D(•)
P (T )) (resp. Db

\ (D†P(†T )Q)) LD−→
b
Q,qc(‹D(•)

P (T )) (resp. Db(D†P(†T )Q))

Proposition 15.3.6.6. Let E(•) ∈ LD−→
b
Q,coh(‹D(•)

P (T )). Let \ ∈ {ovcoh, oc}. The property E(•) ∈
LD−→

b
Q,\(

‹D(•)
P (T )) is equivalent to the property →l

∗
Q E

(•) ∈ Db
\ (D†P(†T )Q). Both properties are local in

P. We have the equivalence of categories→l
∗
Q : LD−→

b
Q,\(

‹D(•)
P (T )) ∼= Db

\ (D†P(†T )Q).

Proof. It follows from the proposition 15.3.4.5 and from the fact that, for any smooth morphism f of
smooth S-formal schemes, the functor f (•)! preserves the coherence.
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15.3.6.7. It follows from 15.3.6.6 that the properties concerning the overcoherence are still valid replacing
the categories of the form LD−→

b
Q,\,P by Db

\,P and vice versa. We will therefore in the following simply
write and check one of the two contexts.

Let us now move on to the stability properties of overcoherent by cohomological operations.

Lemma 15.3.6.8. Let E(•) ∈ LD−→
b
Q,qc(‹D(•)

P (T )). The following conditions are equivalent:

(a) E(•) ∈ LD−→
b
Q,ovcoh(‹D(•)

P (T )) ;

(b) For any smooth morphism of the form f : P′ → P, for any subscheme (resp. open subscheme, resp.
closed subscheme) Y ′ of P ′, we have RΓ†Y ′ ◦ f (•)!(E) ∈ LD−→

b
Q,coh(‹D(•)

P (f−1(T ))).

(c) For any smooth morphism of the form f : P′ → P, for any subscheme Y ′ of P ′, we have RΓ†Y ′ ◦
f (•)!(E) ∈ LD−→

b
Q,ovcoh(‹D(•)

P (f−1(T ))).

Proof. We proceed therefore similarly to 15.3.4.10.

Lemma 15.3.6.9. For any E(•) ∈ LD−→
b
Q,\(

‹D(•)
P (T )), for any subscheme Y of P , RΓ†Y (E(•)) ∈ LD−→

b
Q,\(

‹D(•)
P (T )).

Proof. Since base changes commute to localisation functors (see 13.1.5.7) and pullbacks 9.2.6.6, then we
reduce to the case where \ = ovcoh. Hence, this follows from 15.3.6.8 and 13.1.5.6.1.

15.3.6.10. If D is any divisor of P , then we have defined the functor (†D) of 9.1.1.12.1 factors through
(†D) : Db

ovcoh(D†P(†T )Q) → Db
ovcoh(D†P(†T )Q). Then copying the proof of 13.1.1.4 where we replace

LD−→
b
Q,qc(‹D(•)

P/S) byDb
ovcoh(D†P(†T )Q), we get the canonical functor RΓ†D : Db

ovcoh(D†P(†T )Q)→ Db
ovcoh(D†P(†T )Q).

Then, thanks to the stability of the overcoherence, we can copy the proof of 13.1.3.4 which remains valid
for Db

ovcoh(D†P(†T )Q) instead of LD−→
b
Q,qc(‹D(•)

P/S). Let X be a reduced closed subscheme of P . We can

therefore copy the construction of respectively 13.1.3.8 and 13.1.4.4 in order to define the functors RΓ†X
and (†X). Let Y be a subscheme of P . Similarly to 13.1.5.1, we construct the functor:

RΓ†Y : Db
ovcoh(D†P(†T )Q)→ Db

ovcoh(D†P(†T )Q)→ Db
ovcoh(D†P(†T )Q)→ Db

ovcoh(D†P(†T )Q).

Notation 15.3.6.11. Let \ ∈ {ovcoh, oc}. Let f : P′ → P be a morphism of smooth V-formal schemes,
T and T ′ some divisors of respectively P and P ′ such that T ′ = f−1(T ).

Proposition 15.3.6.12. With the notations 15.3.6.11, for any E(•) ∈ LD−→
b
Q,\(

‹D(•)
P (T )), we have f (•)!(E(•)) ∈

LD−→
b
Q,\(

‹D(•)
P′ (T

′)).

Proof. Since base changes commute to localisation functors (see 13.1.5.7) and pullbacks 9.2.6.6, then we
reduce to the case where \ = ovcoh. Since f decomposes into a closed immersion followed by a smooth
morphism and since the case where f is a smooth morphism is immediate, we reduce to the case where
f is a closed immersion. Let g : Q′ → P′ be a smooth morphism and Z ′ a closed subscheme of Q′.
It is enough to prove that RΓ†Z′g

(•)!(f (•)!(E(•))) ∈ LD−→
b
Q,coh(‹D(•)

Q′ (
†g−1(T ′))Q), which is local in Q′. We

can therefore assume that g decomposes into a closed immersion Q′ ↪→ ÂnP′ followed by the projection
ÂnP′ → P′. By denoting p the projection ÂnP → P and i the closed immersion Q′ ↪→ ÂnP, we obtain
f ◦ g = p ◦ i. Hence the isomorphism:

RΓ†Z′g
(•)!(f (•)!(E(•)))

∼−→ RΓ†Z′i
(•)!p(•)!(E(•))

13.2.1.4.1
∼−→ i(•)!RΓ†Z′p

(•)!(E(•)).

As E(•) is overcoherent, since p is smooth, then RΓ†Z′p
(•)!(E(•))) ∈ LD−→

b
Q,coh(‹D(•)

Ân
P

(†p−1(T ))Q) (see 15.3.6.8)

with support in Z ′ ⊂ P ′. The theorem 9.3.5.13.(c) allows us to conclude.

Remark 15.3.6.13. The proposition 15.3.6.12 implies that an overcoherent complex has finite extraordi-
nary fibers. Hence, we can apply for instance 15.3.1.19 and 15.3.2.8 for overcoherent complexes.
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Proposition 15.3.6.14. With the notations 15.3.6.11, suppose f is realizable with respect to T in
the sense of 13.2.3.1. For any E ′(•) ∈ LD−→

b
Q,\(

‹D(•)
P′ (T

′)) with proper support over P , we have therefore

f
′(•)
+ (E ′(•)) ∈ LD−→

b
Q,\(

‹D(•)
P (T )).

Proof. Since base changes commute to localisation functors (see 13.1.5.7), pullbacks 9.2.6.6 and to push-
forwards (see 9.2.6.9), then we reduce to the case where \ = ovcoh. Let g : Q → P be a smooth
morphism and Z a closed subscheme of Q. Following 15.3.6.8, it is therefore sufficient to check that
RΓ†Zg

(•)!f
(•)
+ (E ′(•)) ∈ LD−→

b
Q,coh(‹D(•)

Q (†g−1(T ))Q). We denote by Q′ := P′ ×P Q, by f ′ : Q′ → Q and
g′ : Q′ → P′ the two canonical projections. We get the isomorphism:

RΓ†Zg
(•)!f

(•)
+ (E ′(•))

13.2.3.7
∼−→ RΓ†Zf

′(•)
+ ◦ g′(•)!(E ′(•))

13.2.1.4.2
∼−→ f

′(•)
+ RΓ†f ′−1(Z)g

′(•)!(E ′(•))

However, it results from the characterisation of the overcoherence of 15.3.6.8.(b) that RΓ†f ′−1(Z)g
′(•)!(E ′(•)) ∈

LD−→
b
Q,coh(‹D(•)

Q′ (
†p−1(T ′))Q). Since f ′ is realizable with respect to g−1(T ), then it follows from 13.2.3.4

that f ′(•)+ RΓ†f ′−1(Z)g
′(•)!(E ′(•)) ∈ LD−→

b
Q,coh(‹D(•)

Q (†g−1(T ))Q).

15.3.6.15. By using some devissage in overconvergent isocrystals, we will improve later the stability
property of Proposition 15.3.6.14 by removing the assumption of realisability of the morphism (see
16.3.3.1).

In the next section we will need the following lemma.

Lemme 15.3.6.16. Let u : X ↪→ P be a closed immersion of V-smooth formal schemes and E ∈
FLD−→

b
Q,\(

‹D(•)
P (T )). We have a canonical compatible to Frobenius isomorphism of LD−→

b
Q,\(

‹D(•)
P (T )) of

the form RΓ†X(E(•))
∼−→ u

(•)
+ ◦ u(•)!(E(•)) fitting into the canonical diagram

u
(•)
+ ◦ u(•)!(E(•))

adj //

∼
��

E(•)

RΓ†X(E(•)) // E(•).

(15.3.6.16.1)

where the top (resp. bottom) horizontal arrow is the adjunction morphism of 9.5.4.5 (resp. is induced
by functoriality in X of the functor RΓ†X).

Proof. This follows from 13.2.1.7.

15.3.7 D†P(†Z)Q-overcoherence (after any base change)

Let P be a smooth formal scheme over S. Let Z be a closed subscheme of P . Set U := P \ Z.

Definition 15.3.7.1. We introduce the following categories.

(a) We denote by (F -)LD−→
b
Q,ovcoh(

l“D(•)
P/S(Z)) the strictly full subcategory of (F -)LD−→

b
Q,qc(

l“D(•)
P/S) consist-

ing of objects E(•) satisfying the following properties:

(i) The canonical morphism of LD−→
b
Q,qc(

l“D(•)
P/S)

E(•) → (†Z)(E(•))

is an isomorphism ;

(ii) For any smooth morphism f : P′ → P, for any divisor T ′ of P ′ containing f−1(Z) with notation
9.2.1.15 and 15.3.4.1 we have

(†T ′)f∗(•)(E(•)) ∈ LD−→
b
Q,ovcoh,P′(

l“D(•)
P′/S(T ′)).
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(b) We denote by (F -)LD−→
b
Q,oc(

l“D(•)
P/S(Z)) the strictly full subcategory of (F -)LD−→

b
Q,ovcoh(

l“D(•)
P/S(Z)) con-

sisting of complexes E(•) such that for any morphism V → V ′ of DVR(V), denoting by S′ := Spf V ′,
P′ := P×S S′, f : P′ → P the projection, we have V ′“⊗L

VE(•) ∈ LD−→
b
Q,ovcoh(

l“D(•)
P′/S′(Z

′)).

(c) The objects of (F -)LD−→
b
Q,ovcoh(

l“D(•)
P/S(Z)) (resp. (F -)LD−→

b
Q,oc(

l“D(•)
P/S(Z))) are said to be “D(•)

P/S(Z)-
overcoherent (F -)complexes (resp. after any base change).

Example 15.3.7.2. When Z is the support of a divisor of P , then both definition 15.3.6.1 and 15.3.7.1
are the same.

From now, let \ ∈ {ovcoh, oc}. Let us give the following straightforward properties.

Lemma 15.3.7.3. Let E(•) ∈ LD−→
b
Q,qc(

l“D(•)
P/S).

(a) Let (Pi)i∈I be an open covering of P. Set Zi := Z ∩ Pi. Then E(•) ∈ LD−→
b
Q,\(

l“D(•)
P/S(Z)) if and only

if for any i ∈ I, E(•)|Pi ∈ LD−→
b
Q,\(

l“D(•)
P′/S(Zi)).

(b) Let f : P′ → P be a smooth morphism. Then the functor f∗(•) (see notation 9.2.1.15) induces

f∗(•) : LD−→
b
Q,\(

l“D(•)
P/S(Z))→ LD−→

b
Q,\(

l“D(•)
P/S(f−1(Z))). (15.3.7.3.1)

Proof. Straightforward.

Lemma 15.3.7.4. For any closed subscheme Z ′ of P , the functor (†Z ′) induces

(†Z ′) : LD−→
b
Q,\(

l“D(•)
P/S(Z))→ LD−→

b
Q,\(

l“D(•)
P/S(Z ∪ Z ′)) ∩ LD−→

b
Q,\(

l“D(•)
P/S(Z)). (15.3.7.4.1)

Proof. Since base changes commute with localisation functors (see 13.1.5.7), then we reduce to the case
where \ = ovcoh. Let E(•) ∈ LD−→

b
Q,ovcoh(

l“D(•)
P/S(Z)). Let f : P′ → P be a smooth morphism, T ′ be a divi-

sor of P ′ containing f−1(Z). ince the canonical morphism (†Z ′)(E(•))→ (†Z ′′)((†Z ′)(E(•))) is an isomor-
phism for Z ′′ = Z ′ or Z ′′ = Z ′∪Z, then we reduce to prove (†T ′)f∗(•)(E(•)) ∈ LD−→

b
Q,ovcoh,P′(

l“D(•)
P′/S(T ′)).

This is check by using 15.3.4.10 via the isomorphisms:

(†T ′)f∗(•)
Ä
(†Z ′)(E(•))

ä ∼−→
13.2.1.4.1

(†T ′)(†f−1(Z ′))f∗(•)(E(•))

∼−→ (†f−1(Z ′))
Ä
(†T ′)f∗(•)(E(•))

ä
∈ LD−→

b
Q,ovcoh,P′(

l“D(•)
P′/S(T ′)).

Lemma 15.3.7.5. For any subscheme Y ′ of P , the functor RΓ†Y ′ induces

RΓ†Y ′ : LD−→
b
Q,\(

l“D(•)
P/S(Z))→ LD−→

b
Q,\(

l“D(•)
P/S(Z)). (15.3.7.5.1)

Proof. By construction of the local cohomological functor, since LD−→
b
Q,\(

l“D(•)
P/S(Z)) is a full triangulated

subcategory of LD−→
b
Q,qc(

l“D(•)
P/S), then we reduce to the case where Y ′ is an open, which is a consequence

of 15.3.7.4.1.

The following proposition is an extension of 8.7.6.11.

Proposition 15.3.7.6. Let E(•) ∈ LD−→
b
Q,\(

l“D(•)
P/S(Z)). The following properties are equivalent.

(a) E(•) ∼−→ 0.

(b) E(•)|U ∼−→ 0.
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Proof. The implication (a) ⇒ (b) is obvious. Let us treat the converse. We can suppose P is integral.
Let us denote by nZ the minimal number of divisor T1, . . . , Tr such that Z = T1 ∩ · · · ∩Tr. We check the
proposition by induction on nZ . The case where nZ = 0 (i.e. is the case where Z = P ) is obvious and
the case nZ = 1 (i.e. the case where Z is a divisor) is a consequence of 8.7.6.11. Suppose now r ≥ 2 and
the proposition holds for any closed subschemes Z̃ such that n

Z̃
< r. Set Z ′ = T2 ∩ · · · ∩ Tr. By using

Mayer-Vietoris exact triangles (see 13.1.4.15.2), we get the exact triangle

E(•) → (†T1)(E(•))⊕ (†Z ′)(E(•))→ (†T1 ∪ Z ′)(E(•))→ E(•)[1]. (15.3.7.6.1)

For D ∈ {T1, Z
′, T1 ∪ Z ′}, set U′ := P \D ⊂ U. Since (†D)(E(•))|U′ = 0, then by using the induction

hypothesis, (†Z ′)(E(•)) = 0. Hence, we get from 15.3.7.6.1 that E(•) = 0.

Corollary 15.3.7.7. Let φ : E(•) → F (•) be a homomorphism of LD−→
b
Q,\(

l“D(•)
P/S(Z)). The morphism φ is

an isomorphism if and only if so is φ|U.

Proof. Suppose φ|U is an isomorphism. Let G(•) be a mapping cone of φ, which is an object of
LD−→

b
Q,\(

l“D(•)
P/S(Z)). Since φ|U is an isomorphism, then G(•)|U ∼−→ 0. It follows from 15.3.7.6 that

G(•) ∼−→ 0, i.e. φ is an isomorphism.

Proposition 15.3.7.8. Let \ ∈ {ovcoh, oc}. Let f : P′ → P a proper morphism of smooth V-formal
schemes, Z be a closed subscheme of P and Z ′ := f−1(Z). For any E ′(•) ∈ LD−→

b
Q,\(

‹D(•)
P′ (Z

′)) with proper

support over P , we have therefore f ′(•)+ (E ′(•)) ∈ LD−→
b
Q,\(

‹D(•)
P (Z)).

Proof. Since base changes commute to localisation functors (see 13.1.5.7), pullbacks 9.2.6.6 and to push-
forwards (see 9.2.6.9), then we reduce to the case where \ = ovcoh. Let g : Q → P be a smooth mor-
phism and T be a divisor of Q containing f−1(Z). It is sufficient to check that (†T ) ◦ g(•)!f

(•)
+ (E ′(•)) ∈

LD−→
b
Q,ovcoh(‹D(•)

Q (†g−1(T ))Q). We denote by Q′ := P′ ×P Q, by f ′ : Q′ → Q and g′ : Q′ → P′ the two
canonical projections. We get the isomorphism:

(†T ) ◦ g(•)! ◦ f (•)
+ (E ′(•))

13.2.3.7
∼−→ (†T ) ◦ f ′(•)+ ◦ g′(•)!(E ′(•))

13.2.1.4.2
∼−→ f

′(•)
+ ◦ (†f ′−1(T )) ◦ g′(•)!(E ′(•))

However, it results from 15.3.8.6.1 and 15.3.7.4.1 (†f ′−1(T )) ◦ g′(•)!(E ′(•)) ∈ LD−→
b
Q,ovcoh(‹D(•)

Q′ (
†p−1(T ′))Q).

Hence, it remains to prove f ′(•)+ ◦ (†f ′−1(T )) ◦ g′(•)!(E ′(•)) ∈ LD−→
b
Q,ovcoh(‹D(•)

Q (†g−1(T ))Q). Since Q′ is
suppose, then we can suppose Q′ is integral. So either f ′−1(T ) is a divisor of Q′ or f ′−1(T ) = Q′. The
second case is obvious since we get therefore (†f ′−1(T )) ◦ g′(•)!(E ′(•)) = 0. Since f ′ is proper, then the
first case is a consequence of 15.3.6.14 and we are done.

15.3.7.9. The stability under extraordinary pullbacks will be checked in the next subsection (see
15.3.8.27) because its proof uses an overcoherent version of Berthelot-Kashiwara theorem.

15.3.8 Partial overcoherence and t-structure over a c-frame (Y,X,P, Z/S)

Let Z and X be two closed subschemes of P . Set U := P \ Z, Y := X \ Z and V := P \X.

Definition 15.3.8.1. Let E(•) ∈ LD−→
b
Q,ovcoh(

l“D(•)
P/S(Z)). Since E(•)|U ∈ LD−→

b
Q,coh(

l“D(•)
U/S), then its support

Supp(E(•)|U) is well defined (see definition 13.1.4.17). We define the support of E(•) as the closure in P
of Supp(E(•)|U). We denote by Supp(E(•)) the support of E(•).

We extend the proposition 13.1.4.8 as follows.

Proposition 15.3.8.2. Let E(•) ∈ LD−→
b
Q,ovcoh(

l“D(•)
P/S(Z)). The following assertions are equivalent:

(a) Supp(E(•)) ⊂ X.

(b) We have in LD−→
b
Q,qc(‹D(•)

V/S) the isomorphism E(•)|V ∼−→ 0.
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(c) The canonical morphism RΓ†X(E(•))→ E(•) is an isomorphism in LD−→
b
Q,qc(‹D(•)

P/S).

(d) We have in LD−→
b
Q,qc(‹D(•)

P/S) the isomorphism (†X)(E(•))
∼−→ 0.

Proof. i) First, let us check the equivalence between (a) and (b). By definition, we have the equivalences
Supp(E(•)) ⊂ X ⇔ Supp(E(•)|U) ⊂ X ∩U ⇔ E(•)|U∩V ∼−→ 0. Since E(•)|V ∈ LD−→

b
Q,ovcoh(

l“D(•)
V/S(Z∩V ))

(see 15.3.7.3), then it follows from 15.3.7.6 the equivalence E(•)|V∩U ∼−→ 0⇔ E(•)|V ∼−→ 0. Hence, we
are done.

ii) The equivalence between (c) and (d) is a consequence of the exact triangle

RΓ†X(E(•))→ E(•) → (†X)(E(•))→ +1.

iii) The implication (d)⇒ (b) is obvious. Let us now check the converse implication. We can suppose
P is integral. Let us denote by nZ the minimal number of divisor T1, . . . , Tr such that Z = T1 ∩ · · · ∩Tr.
We check the proposition by induction on nZ . The case where nZ = 0 (i.e. is the case where Z = X) is
obvious and the case nZ = 1 (i.e. the case where Z is a divisor) follows from the proposition 13.1.4.8.
Suppose now r ≥ 2 and the proposition holds for any closed subscheme Z̃ such that n

Z̃
< r. Set

Z ′ = T2 ∩ · · · ∩ Tr. By using Mayer-Vietoris exact triangles (see 13.1.4.15.2), we get the exact triangle

E(•) → (†T1)(E(•))⊕ (†Z ′)(E(•))→ (†T1 ∪ Z ′)(E(•))→ E(•)[1].

For D ∈ {T1, Z
′, T1 ∪ Z ′}, we have (†D)(E(•)) ∈ LD−→

b
Q,ovcoh(

l“D(•)
P/S(D)) and (†D)(E(•))|V ∼−→ 0. Hence,

by using the induction hypothesis we get (†X)(E(•)(†D))
∼−→ 0 and we are done.

Definition 15.3.8.3. We denote by (F -)LD−→
b
Q,povcoh(Y,X,P, Z/S) (resp. (F -)LD−→

b
Q,poc(Y,X,P, Z/S))

the subcategory of (F -)LD−→
b
Q,ovcoh(

l“D(•)
P/S(Z)) (resp. (F -)LD−→

b
Q,oc(

l“D(•)
P/S(Z))) consisting of (F -)complexes

E(•) with support inX (see definition 15.3.8.1). The objects of (F -)LD−→
b
Q,\(X,P, Z/S) are called “partially

overcoherent over (X,P, Z/S) (F -)complexes (resp. after any base change)” when \ = povcoh (resp.
\ = poc).

From now, in this subsection, let \ ∈ {povcoh,poc}. We can simply write (F -)LD−→
b
Q,\(X,P, Z/S)

instead of (F -)LD−→
b
Q,\(Y,X,P, Z/S) and when Z is empty we can remove it in the notation.

Example 15.3.8.4. WhenX = P , we have LD−→
b
Q,povcoh(P,P, Z/S) = LD−→

b
Q,ovcoh(

l“D(•)
P/S(Z)) and LD−→

b
Q,poc(P,P, Z/S) =

LD−→
b
Q,oc(

l“D(•)
P/S(Z)).

Remark 15.3.8.5. We have added the word “partially” to avoid confusion between LD−→
b
Q,povcoh(P,P, Z/S)

and LD−→
b
ovcoh(

l“D(•)
P/S)∩LD−→

b
Q,coh(

l“D(•)
P/S(Z)) that we will denote by LD−→

b
Q,ovcoh(Y,P/S) where Y = P \Z

(see 19.1.2.2 and 19.2.1.5).

Lemma 15.3.8.6. Let E(•) ∈ LD−→
b
Q,qc(

l“D(•)
P/S).

(a) Let (Pi)i∈I be an open covering of P. Set Zi := Z ∩ Pi and Xi := X ∩ Pi. Then E(•) ∈
LD−→

b
Q,\(X,P, Z/S) if and only if for any i ∈ I, E(•)|Pi ∈ LD−→

b
Q,\(Xi,Pi, Zi/S).

(b) Let f : P′ → P be a smooth morphism. Then the functor f∗(•) induces

f∗(•) : LD−→
b
Q,\(X,P, Z/S)→ LD−→

b
Q,\(f

−1(X),P′, f−1(Z)/S). (15.3.8.6.1)

Proof. Straightforward.

Lemma 15.3.8.7. Let X ′ be a closed subscheme of X. We have the inclusion LD−→
b
Q,\(X

′,P, Z/S) ⊂
LD−→

b
Q,\(X,P, Z/S). This inclusion has the left adjoint RΓ†X′ : LD−→

b
Q,\(X,P, Z/S)→ LD−→

b
Q,\(X

′,P, Z/S).

Proof. This is a consequence of 15.3.7.5.1.
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Remark 15.3.8.8. Beware that if Z ′ is a closed subscheme of P containing Z, then we can not compare a
priori LD−→

b
Q,\(X,P, Z

′/S) and LD−→
b
Q,\(X,P, Z/S). Moreover, it follows from 15.3.7.4.1 that the functor

(†Z ′) of is a right adjoint to the inclusion of LD−→
b
Q,\(X,P, Z

′/S)∩LD−→
b
Q,\(X,P, Z/S) in LD−→

b
Q,\(X,P, Z/S).

Notation 15.3.8.9. Let n ∈ Z. Following 13.1.4.18, we have a canonical t-structure on LD−→
b
Q,coh(‹D(•)

U/S)

and the truncated categories are denoted by LD−→
≤n
Q,coh(‹D(•)

U/S) and E(•)|U ∈ LD−→
≥n
Q,coh(‹D(•)

U/S).
We denote by LD−→

≤n
Q,\(X,P, Z/S) (resp. LD−→

≥n
Q,\(X,P, Z/S)) the strictly full subcategory of LD−→

b
Q,\(X,P, Z/S)

of complexes E(•) such that E(•)|U ∈ LD−→
≤n
Q,coh(‹D(•)

U/S) (resp. E(•)|U ∈ LD−→
≥n
Q,coh(‹D(•)

U/S)). We have the obvi-
ous equalities LD−→

≤n
Q,\(X,P, Z/S) = LD−→

≤0
Q,\(X,P, Z/S)[−n], LD−→

≥n
Q,\(X,P, Z/S) = LD−→

≥0
Q,\(X,P, Z/S)[−n]

and the inclusions LD−→
≥1
Q,\(X,P, Z/S) ⊂ LD−→

≥0
Q,\(X,P, Z/S), LD−→

≤0
Q,\(X,P, Z/S) ⊂ LD−→

≤1
Q,\(X,P, Z/S).

Example 15.3.8.10. When Z is the support of a divisor T of P , the definitions of 15.3.8.9 is related to
that of 13.1.4.18 via the equalities

LD−→
?
Q,\(X,P, T/S) = LD−→

?
Q,coh(

l“D(•)
P/S(T )) ∩ LD−→

b
Q,\(X,P, T/S), (15.3.8.10.1)

where ? is either “≤ n” or “≥ n”. Hence, the natural t-structure on LD−→
?
Q,coh(

l“D(•)
P/S(T )) induces a natural

t-structure on LD−→
?
Q,\(X,P, T/S).

Lemma 15.3.8.11. Let Z ′ be a closed subscheme of P .

(a) For any E(•) ∈ LD−→
?
Q,\(X,P, Z/S), we have (†Z ′)(E(•)) ∈ LD−→

?
Q,\(X,P, Z ∪ Z ′/S), where ? is either

“b” or “≤ n” or “≥ n”.

(b) Let f : E(•) → F (•) be an homomorphism of LD−→
b
Q,qc(

l“D(•)
P/S) such that E(•) ∈ LD−→

≤0
Q,\(X,P, Z/S),

F (•) ∈ LD−→
≥1
Q,\(X,P, Z ∪ Z ′/S). Then we have f = 0.

Proof. The assertion (a) is obvious. Let us prove the part (b). The morphism f factors through a
morphism of LD−→

b
Q,\(X,P, Z∪Z ′/S) of the form (†Z ′)(E(•))→ F (•). Since (†Z ′)(E(•)) ∈ LD−→

≤0
Q,\(X,P, Z∪

Z ′/S), then we reduce to the case where Z ′ is empty. We can suppose that P is integral. We proceed
by induction on nZ , the minimal number r of divisors T1, . . . , Tr of P such that Z = T1 ∩ · · · ∩ Tr. The
case nZ = 0 and nZ = 1 follows from 15.3.8.10.1. Suppose now nZ ≥ 2 and the proposition holds for
nZ ≤ r − 1. Set Z2 = T2 ∩ · · · ∩ Tr. We have the commutative diagram:

E(•) //

f

��

(†T1)(E(•))⊕ (†Z2)(E(•)) //

(†T1)(f)⊕(†Z2)(f)

��

(†T1 ∪ Z2)(E(•))

(†T1∪Z2)(f)

��

// E(•)[1]

f [1]

��
F (•) // (†T1)(F (•))⊕ (†Z2)(F (•)) // (†T1 ∪ Z2)(F (•)) // F (•)[1],

. (15.3.8.11.1)

where lines are Mayer-Vietoris exact triangles (see 13.1.4.15.2). By induction hypotheses and using
the part (a) of the Lemma, we get (†T1)(f) ⊕ (†Z2)(f) = 0 and (†T1 ∪ Z2)(f) = 0. Let g : E(•) →
(†T1∪Z2)(F (•))[−1] be a morphism. The morphism g factors through a morphism h : (†T1∪Z2)(E(•))→
(†T1 ∪ Z2)(F (•))[−1]. Since (†T1 ∪ Z2)(E(•)) ∈ LD−→

≤0
Q,\(X,P, T1 ∪ Z2/S) and (†T1 ∪ Z2)(F (•))[−1] ∈

LD−→
≥2
Q,\(X,P, T1 ∪ Z2/S) ⊂ LD−→

≥1
Q,\(X,P, T1 ∪ Z2/S), then by induction hypotheses, we get h = 0 and

then g = 0. This yields f is the unique morphism making commutative the (left square of the) diagram
15.3.8.11.1 whose vertical morphisms of the middle square are zero. Hence, f = 0.

Proposition 15.3.8.12 (existence of t-structure). We keep notation 15.3.8.9. Let n ∈ N and ? means
either ≤ n or ≥ n.

(a) The paire (LD−→
≤0
Q,\(X,P, Z/S), LD−→

≥0
Q,\(X,P, Z/S)) defines a t-structure, called the canonical t-structure,

on LD−→
b
Q,\(X,P, Z/S). We denote by

τ?Z : LD−→
b
Q,\(X,P, Z/S)→ LD−→

?
Q,\(X,P, Z/S)

the truncation functors given by the canonical t-structure.
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(b) For any morphism V → V ′ of DVR(V), denoting by S′ := Spf V ′, P′ := P ×S S′, f : P′ → P the
projection, X ′ := f−1(X), the functor

V ′“⊗L
V− : LD−→

b
Q,poc(X,P, Z/S)→ LD−→

b
Q,poc(X ′,P′, Z ′/S) (15.3.8.12.1)

is t-exact, i.e. preserves the bounded categories of the form LD−→
?
Q,poc (see definition [HTT08, 8.1.13]).

(c) For any smooth morphism f : P′ → P, the functor

f∗(•) : LD−→
b
Q,\(X,P, Z/S)→ LD−→

b
Q,\(f

−1(X),P′, f−1(Z)/S).

of 15.3.8.6.1 is t-exact.

(d) For any closed subscheme Z ′ of P , the functor

(†Z ′) : LD−→
b
Q,\(X,P, Z/S)→ LD−→

b
Q,\(X,P, Z ∪ Z ′/S) (15.3.8.12.2)

is t-exact.

(e) For any divisor T of P , the functor

(†T ) : LD−→
b
Q,\(X,P, Z/S)→ LD−→

b
Q,\(X,P, Z/S) (15.3.8.12.3)

is t-exact

Proof. 1) We prove now the t-exactness of 15.3.8.12.1. We have to check the isomorphism:

τ?Z′(V ′“⊗L
VE(•))

∼−→ V ′“⊗L
Vτ

?
Z(E(•)).

i) We check that the objects τ?Z′(V ′“⊗L
VE(•)) and V ′“⊗L

V(τ?Z(E(•))) belong to LD−→
?
Q,poc(

l“D(•)
P′/S′(Z

′)) as
follows. We reduce by definition to check it outside Z and Z ′, i.e. we can suppose Z is empty. The
base change functor V ′“⊗L

V− : LD−→
b
Q,poc(

l“D(•)
P/S) → LD−→

b
Q,poc(

l“D(•)
P′/S′) corresponds via the equivalence of

categories→l
∗
Q of 15.3.6.6 to the functor D†P′/S′,Q ⊗f−1D†

P/S,Q
f−1− : Db

poc(D†P′/S′,Q) → Db
poc(D†P/S,Q)

which is exact. Hence, we are done.
ii) We conclude by using the distinguished triangles:

τ≤0
Z′ (V ′“⊗L

VE(•))→ V ′“⊗L
VE(•) → τ≥1

Z′ (V ′“⊗L
VE(•))→ +1,

V ′“⊗L
V(τ≤0

Z (E(•)))→ V ′“⊗L
VE(•) → V ′“⊗L

V(τ≥1
Z (E(•)))→ +1.

2) Since the case \ = ovcoh implies the other one (because of 15.3.8.12.1), let us prove the proposition
for \ = ovcoh. We can suppose P is integral. Let us denote by nZ the minimal number of divisor
T1, . . . , Tr such that Z = T1 ∩ · · · ∩ Tr. We check the proposition by induction on nZ . The case
where nZ = 0 (i.e. is the case where Z = X) or nZ = 1 (i.e. the case where Z is a divisor) follows
from 15.3.8.10.1. Suppose now r ≥ 2 and the proposition holds for any closed subscheme Z ′ such that
nZ′ < nZ = r. Let ? equal to “≤ 0” or “≥ 1”. Let E(•) ∈ LD−→

b
Q,ovcoh(X,P, Z/S).

1) We prove in this step the part (a).
i) Thanks to Lemma 15.3.8.11 (used in the case where Z ′ is empty), it remains to check that there

exists a distinguished triangle of the form

(E(•))≤0 → E(•) → (E(•))≥1 +1−−→,

where (E(•))≤0 ∈ LD−→
≤0
Q,ovcoh(X,P, Z/S) and (E(•))≥1 ∈ LD−→

≥1
Q,ovcoh(X,P, Z/S).

We set Z2 := T2 ∩ · · · ∩ Tr, E(•)
1 := E(•)(†T1), E(•)

2 := E(•)(†Z2), E(•)
12 := E(•)(†T1 ∪ Z2). We have

the canonical morphism α1 : E(•) → E(•)
1 , α2 : E(•) → E(•)

2 , β1 : E(•)
1 → E(•)

12 , β2 : E(•)
2 → E(•)

12 . We get the
Mayer-Vietoris exact triangle

E(•) α1+α2−→ E(•)
1 ⊕ E(•)

2

(β1,−β2)−→ E(•)
12 → E(•)[1].
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By using the induction hypothesis, since E(•)
1 ∈ LD−→

b
Q,ovcoh(X,P, T1/S), then we can set E(•)?

1 := τ?T1
E(•)

1 ,

where ? is either “≤ 0” or “≥ 1”. Similarly, as E(•)
2 ∈ LD−→

b
Q,ovcoh(X,P, Z2/S), then we can put E(•)?

2 :=

τ?Z2
E(•)

2 ; since E(•)
12 ∈ LD−→

b
Q,ovcoh(X,P, T1 ∪ Z2/S), then we can set E(•)?

12 := τ?T1∪Z2
E(•)

12 .

ii) Let us check that E(•)?
2 ∈ LD−→

b
Q,ovcoh(X,P, Z/S). Let f : P′ → P be a smooth morphism, T ′i :=

f−1(Ti) for any i, Z ′2 := T ′2 ∩ · · · ∩ T ′r, Z ′ := f−1(Z), X ′ := f−1(X). We have to prove (†T ′) ◦ f∗(•) ◦
τ?Z2
◦ (†Z2)(E(•)) ∈ LD−→

b
Q,ovcoh,P′(

l“D(•)
P′/S(T ′)). By using the induction hypothesis for the part (c) of the

proof (and use [HTT08, 8.1.15]), we get the first isomorphism:

f∗(•) ◦ τ?Z2
◦ (†Z2)(E(•))

∼−→ τ?Z′2
◦ f∗(•) ◦ (†Z2)(E(•))

∼−→
13.2.1.4.1

τ?Z′2
◦ (†Z ′2) ◦ f∗(•)(E(•)).

Since f∗(•)(E(•)) ∈ LD−→
b
Q,ovcoh(X ′,P′, Z ′/S) (see 15.3.8.6.1), then we reduce to the case f = id, i.e.

we only need to prove that for any divisor T of P containing Z, we have (†T ) ◦ τ?Z2
◦ (†Z2)(E(•)) ∈

LD−→
b
Q,ovcoh,P(

l“D(•)
P/S(T )).

We have the distinguished triangles:

(†T ) ◦ τ≤0
Z2

(E(•)
2 )→ (†T )(E(•)

2 )→ (†T ) ◦ τ≥1
Z2

(E(•))→ +1,

(†Z2) ◦ τ≤0
T ◦ (†T )(E(•))→ (†Z2) ◦ (†T )(E(•))→ (†Z2) ◦ τ≥1

T ◦ (†T )(E(•))→ +1.

It follows from 15.3.8.11.(a) that (†Z2) ◦ (†T )(E(•))
∼−→ (†T )(E(•)

2 ) are in LD−→
b
Q,ovcoh(X,P, T ∪ Z2/S),

(†T ) ◦ τ?Z2
(E(•)

2 ) ∈ LD−→
?
Q,ovcoh(X,P, T ∪ Z2/S) and (†Z2) ◦ τ?T ◦ (†T )(E(•)) ∈ LD−→

?
Q,ovcoh(X,P, T ∪ Z2/S).

Hence, it follows from the standard property of a t-structure that we get the isomorphism of LD−→
?
Q,ovcoh(X,P, T∪

Z2/S):

(†T ) ◦ τ?Z2
(E(•)

2 )
∼−→ (†Z2) ◦ τ?T ◦ (†T )(E(•)).

Since τ?T ◦ (†T )(E(•)) ∈ LD−→
b
Q,ovcoh,P(

l“D(•)
P/S(T )), then so is (†Z2) ◦ τ?T ◦ (†T )(E(•)) (see 15.3.4.10) and we

are done.
ii’) Similarly, we check that E(•)?

1 , E(•)?
12 ∈ LD−→

b
Q,ovcoh(X,P, Z/S).

iii) By using the induction hypothesis of 15.3.8.12.2 we get the t-exactness of the functor (†T1 ∪ Z2)

and then we have the isomorphisms E(•)?
12

∼−→ (†T1 ∪Z2)(E(•)?
1 ) and E(•)?

12
∼−→ (†T1 ∪Z2)(E(•)?

2 ). Hence,
we get a unique morphism (β≤0

1 ,−β≤0
2 ) : E(•)≤0

1 ⊕E(•)≤0
2 → E(•)≤0

12 , making commutative the diagram of
LD−→

b
Q,ovcoh(X,P, Z/S):

E(•)≤0
1 ⊕ E(•)≤0

2

(β
≤0
1 ,−β≤0

2 ) //

��

E(•)≤0
12

��
E(•)

1 ⊕ E(•)
2

(β1,−β2) // E(•)
12 .

Choose a distinguished triangle of LD−→
b
Q,ovcoh(X,P, Z/S) of the form

F (•) // E(•)≤0
1 ⊕ E(•)≤0

2

(β
≤0
1 ,−β≤0

2 ) // E(•)≤0
12

// F (•)[1]. (15.3.8.12.4)

Set U1 := P \ T1, U2 := P \ Z2. We have E(•)≤0
1 |U1 = E(•)≤0|U1, E(•)≤0

2 |U1 = E(•)≤0
12 |U1, and

β≤0
2 |U1 = id. Hence, F (•)|U1

∼−→ E(•)≤0|U1. Similarly, we get F (•)|U2
∼−→ E(•)≤0|U2. This yields that

F (•)|U ∈ LD−→
≤n
Q,coh(‹D(•)

U/S). Hence, we have checked F (•) ∈ LD−→
≤0
Q,ovcoh(X,P, Z/S).

Following [Sta22, 05R0] (more precisely this is checked in the proof, up to a shift), there exist
G(•) ∈ LD−→

b
Q,ovcoh(X,P, Z/S) and morphisms in LD−→

b
Q,ovcoh(X,P, Z/S) denoted by dotted arrows making
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commutative, except for the lower right square which is anticommutative, the diagram:

F (•) //

��

E(•)≤0
1 ⊕ E(•)≤0

2
//

��

E(•)≤0
12

//

��

F (•)[1]

��
E(•) α1+α2 //

��

E(•)
1 ⊕ E(•)

2

(β1,−β2) //

��

E(•)
12

//

��

E(•)[1]

��
G(•) //

��

E(•)≥1
1 ⊕ E(•)≥1

2
//

��

E(•)≥1
12

//

��

G(•)[1]

��
F (•)[1] // E(•)≤0

1 ⊕ E(•)≤0
2 [1] // E(•)≤0

12 [1] // F (•)[2]

where lines and columns are distinguished triangles. From the third line, we get G(•) ∈ LD−→
≥1
Q,ovcoh(X,P, Z/S).

Hence, the distinguished triangle of the left column is the desired one.
3) To check the t-exactness of the assertions c),d),e), we reduce by definition to check it outside Z or

Z ∪ Z ′, which is already well known.

Definition 15.3.8.13. We denote by LM−−→Q,\(X,P, Z/S) the heart of the canonical t-structure on
LD−→

b
Q,\(X,P, Z/S). When X = P , we can simply write LM−−→Q,\(

l“D(•)
P/S(Z)). We define for any integer

n, the n-th cohomology functor Hn
Z : LD−→

b
Q,\(X,P, Z/S) → LM−−→Q,\(X,P, Z/S) by putting Hn

Z(E(•)) :=

τ≤0
Z τ≥0

Z (E(•)[n]) for any E(•) ∈ LD−→
b
Q,\(X,P, Z/S). Beware that when Z is not a divisor of P , we do have

to distinguish Hn
Z with the standard cohomological functor Hn of Db(LM−−→Q(‹D(•)

P/S)) (see the counter-

example 15.3.8.22 or 15.3.8.20.1 for a comparison), Moreover, beware that H†,nZ has another meaning
(see notation 13.1.5.3).

Example 15.3.8.14. When Z is the support of a divisor of P , the category LM−−→Q,\(X,P, Z/S) is simply
the category of overcoherent “D(•)

P/S(Z)-modules (after any base change) with support in X. In particular,

when X = P , we retrieve the (usual) heart of the category LD−→
b
Q,\(

l“D(•)
P/S(Z)).

15.3.8.15. Let E(•) ∈ LD−→
b
Q,\(X,P, Z/S), Z̃ be a closed subscheme of P containing Z, T be a divisor

of P . Let ? be either “≤ n” or “≥ n”. Let f : P′ → P be smooth morphism, Z ′ := f−1(Z) (e.g. f
is the open immersion U ⊂ P and therefore Z ′ is empty). It follows from the t-exactness properties of
15.3.8.12.c-e and of [HTT08, 8.1.15] that we have the isomorphisms

f∗(•) ◦ τ?Z(E(•))
∼−→ τ?Z′ ◦ f∗(•)(E(•)), f∗(•) ◦Hn

Z(E(•))
∼−→ Hn

Z′ ◦ f∗(•)(E(•)), (15.3.8.15.1)

(†Z̃) ◦ τ?Z(E(•))
∼−→ τ?

Z̃
◦ (†Z̃)(E(•)), (†Z̃) ◦Hn

Z(E(•))
∼−→ Hn

Z̃
◦ (†Z̃)(E(•)), (15.3.8.15.2)

(†T ) ◦ τ?Z(E(•))
∼−→ τ?Z ◦ (†T )(E(•)), (†T ) ◦Hn

Z(E(•))
∼−→ Hn

Z ◦ (†T )(E(•)). (15.3.8.15.3)

15.3.8.16. The following properties are straightforward:

(a) For any closed subscheme Z ′ of P , the t-exact functor 15.3.8.12.2 induces the exact functor

(†Z ′) : LM−−→Q,\(X,P, Z/S)→ LM−−→Q,\(X,P, Z ∪ Z ′/S). (15.3.8.16.1)

(b) For any divisor T of P , the t-exact functor 15.3.8.12.3 induces the exact functor

(†T ) : LM−−→Q,\(X,P, Z/S)→ LM−−→Q,\(X,P, Z/S). (15.3.8.16.2)

Lemma 15.3.8.17. Let φ : E(•) → F (•) be a homomorphism of LM−−→Q,\(
l“D(•)

P/S(Z)). The morphism φ is
an isomorphism (resp. a monomorphism, an epimorphism) if and only if so is φ|U.

Proof. Let K(•) be the kernel or the cokernel of φ. Then following 15.3.7.6 the object K(•) is null if and
only if so is K(•)|U.
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Lemma 15.3.8.18. The restriction functor

|U : LM−−→Q,\(
l“D(•)

P/S(Z))→ LM−−→Q,\(
l“D(•)

U/S)

is faithful.

Proof. Let φ : E(•) → F (•) be a homomorphism of LM−−→Q,\(
l“D(•)

P/S(Z)). The property φ = 0 is equivalent
to saying that the morphism kerφ → E(•) is an isomorphism. Hence, the lemma 15.3.8.17 implies that
φ = 0⇔ φ|U = 0.

15.3.8.19. Let T1, . . . , Tr be divisors of P such that Z = T1∩· · ·∩Tr. Let E(•) ∈ LM−−→Q,\(X,P, Z/K). Set

E(•)
ij := (†Ti ∪ Tj)(E(•)) and E(•)

i := (†Ti)E(•) for any i, j ∈ {1, . . . , r}. We get the morphism θ1
ij : E(•)

i →
(†Ti ∪ Tj)E(•)

i = E(•)
ij . Following 15.3.8.16.2, this is a map of the abelian category LM−−→Q,\(X,P, Z/S).

This yields the maps θ1 : ⊕ri=1 E
(•)
i → ⊕ri,j=1E

(•)
ij . Similarly, for any i, j we have the maps θ2

ij : E(•)
j →

(†Ti ∪ Tj)(E(•)
j )

∼−→ E(•)
ij , which yields the map θ2 : ⊕ri=1 E

(•)
i → ⊕ri,j=1E

(•)
ij of LM−−→Q,\(X,P, Z/S). We

get the exact sequence of LM−−→Q,\(X,P, Z/S):

0→ E(•) → ⊕ri=1(†Ti)(E(•))
θ2−θ1

−→ ⊕ri,j=1(†Ti ∪ Tj)(E(•)). (15.3.8.19.1)

Indeed, to check the exactness, by using 15.3.8.17 we reduce to the case where Z is empty. Set Ui = P\Ti
for any i = 1, . . . , r. Let i ∈ {1, . . . , r}. We reduce to check that the sequence 15.3.8.19.1 is exact over
Ui, i.e. to the case where the divisor Ti is empty, which is a straighforward computation.

Remark 15.3.8.20. (a) Let E ∈ LD−→
b
Q,\(X,P, Z/S)∩LD−→

b
Q,coh(

l“D(•)
P/S). Let ? be either “≤ n” or “≥ n”.

Then for any divisor T containing Z, we have (†T )◦ τ?(E(•))
∼−→ τ? ◦ (†T )(E(•))

∼−→ τ?T ◦ (†T )(E(•)),
where τ? is the usual truncation for coherent complexes (see 13.1.4.18). This yields that (†Z) ◦
τ?(E(•)) ∈ LD−→

?
Q,\(X,P, Z/S). Hence, we get the morphisms

(†Z) ◦ τ≤n(E(•))→ τ≤nZ (E(•)), τ≥nZ (E(•))→ (†Z) ◦ τ≥n(E(•)) (15.3.8.20.1)

which are isomorphisms since this is the case outside Z. This yields the isomorphism

(†Z) ◦Hn(E)
∼−→ Hn

Z(E).

(b) For any n ∈ Z, E ∈ LD−→
b
Q,\(X,P, Z/S), it follows from 15.3.8.15.1 that we have Hn

Z(E)|U ∼−→
Hn(E|U). Hence, from Lemma 15.3.7.6, we get Hn

Z(E) = 0 if and only if Hn(E|U) = 0.

(c) We have the inclusion LM−−→Q,\(X,P, Z/S) ⊂ LD−→
≥0
Q (

l“D(•)
P/S) (see 13.1.4.19 for the t-structure on the

right side). Indeed, by using Mayer-Vietoris exact triangles and by induction on the minimal number
of divisors whose intersection is Z, we reduce to the case where Z is a divisor.

Proposition 15.3.8.21. Let D be a divisor of P and Let Z̃ := Z ∪D. Let E(•) ∈ LD−→
b
Q,\(X,P, Z̃/S) ∩

LD−→
b
Q,\(X,P, Z/S). Then we have the canonical isomorphisms

τ?Z(E(•))
∼−→ τ?

Z̃
(E(•)), Hn

Z̃
(E(•))

∼−→ Hn
Z(E(•)),

where ? means either ≤ n or ≥ n with n ∈ Z.

Proof. Since the morphism E(•) → (†Z ′)(E(•)) is an isomorphism for any closed subscheme Z ′ included
in Z̃, then we get the first and the last isomorphisms:

τ?Z(E(•))
∼−→ τ?Z ◦ (†D)(E(•))

∼−→
15.3.8.15.3

(†D) ◦ τ?Z(E(•))
∼−→ (†Z̃) ◦ τ?Z(E(•))

∼−→
15.3.8.15.2

τ?
Z̃
◦ (†Z̃)(E(•))

∼−→ τ?
Z̃

(E(•)).
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Remark 15.3.8.22. Let us give a counter-example of the proposition 15.3.8.21 when D is not a divisor of
P and Z is empty. Suppose D is a rational closed point of P2

k, P = P̂2
V , X = P2

k, and Y := X \D. Since
(†D)(O(•)

P )|U ∼−→ O(•)
U , we get (†D)(O(•)

P ) ∈ LM−−→Q,\(X,P, D/S). However, by using the localization

triangle with respect to D of OP,Q, we have τ≤0((†D)(O(•)
P ))

∼−→ O(•)
P 6∈ LD−→

b
Q,\(X,P, D/S), where τ≤0

is the standard truncation functor of LD−→
b
Q,coh(

l“D(•)
P/S). Now, let u : D → P be a lifting of the closed

immersion D ↪→ P . We have RΓ†D(O(•)
P ) ∼= u

(•)
+ u(•)!(O(•)

P ) ∼= u
(•)
+ (O(•)

D )[−2]. Using again the localization

triangle, we have τ≥1((†D)(O(•)
P ))

∼−→ u
(•)
+ (O(•)

D )[−1]. Hence, the object (†D)(O(•)
P ) is not an element

of LM−−→Q(
l“D(•)

P/S), i.e. a module in the usual sense.

Proposition 15.3.8.23. Let T be a divisor of P and let Z̃ := Z ∪ T . Let E(•) ∈ LD−→
b
Q,\(X,P, Z̃/S).

Then both assertions are equivalent.

(a) E(•) ∈ LD−→
b
Q,\(X,P, Z/S) ;

(b) for any n ∈ Z, we have Hn

Z̃
(E(•)) ∈ LD−→

b
Q,\(X,P, Z/S).

Proof. We easily check by devissage the implication (b)⇒ (a). The implication (a)⇒ (b) is a consequence
of 15.3.8.21.

Proposition 15.3.8.24. Let E(•) ∈ LD−→
b
Q,\(

l“D(•)
P/S(Z)). We have the equality

Supp E(•) = ∪j∈Z Supp Hj
Z(E(•)). (15.3.8.24.1)

Proof. For any closed subscheme X ′ of P , it follows from 13.1.4.20.1 the last equivalence: Supp E(•) ⊂
X ′ ⇔ Supp (E(•)|U) ⊂ X ′ ∩U ⇔ ∀j ∈ Z, Supp Hj(E(•)|U) ⊂ X ′ ∩U . It follows from 15.3.8.15.1 that we
have Hj

Z(E)|U ∼−→ Hj(E|U). Hence, ∀j ∈ Z, Supp Hj(E(•)|U) ⊂ X ′∩U ⇔ ∀j ∈ Z, Supp Hj
Z(E(•)) ⊂ X ′.

Lemma 15.3.8.25. Let P be a smooth separated S-formal scheme, X,X ′ be two smooth closed sub-
schemes of P , Z,Z ′ be two closed subschemes of P such that Z ∩X = Z ′ ∩X ′. We get then the equality:
LD−→

b
Q,\(X,P, Z/S) = LD−→

b
Q,\(X

′,P, Z ′/S).

Proof. 1) Suppose Z = Z ′. Let E(•) ∈ LD−→
b
Q,\(X,P, Z/S). We have to prove that E(•) has support in

X ′. We have to check that the canonical morphism RΓ†X′(E(•)) → E(•) is an isomorphism (see 15.3.8.2.
Since E(•) → (†Z)E(•) is an isomorphism, then we get the isomorphisms

RΓ†X(E(•))
∼−→ RΓ†X(†Z)(E(•))

∼−→
13.1.5.1.1

RΓ†X′(
†Z)(E(•))

∼−→ RΓ†X′(E
(•)). (15.3.8.25.1)

2) Suppose X = X ′ and Z ⊂ Z ′. Let E(•) ∈ LD−→
b
Q,\(X,P, Z/K). Since X\Z = X\Z ′, then the canon-

ical morphism E(•) → (†Z ′)(E(•)) is an isomorphism. Since (†Z ′)(E(•)) ∈ LD−→
b
Q,\(X,P, Z/K), this yields

the inclusion LD−→
b
Q,\(X,P, Z/K) ⊂ LD−→

b
Q,\(X,P, Z

′/K). Conversely, let E ′(•) ∈ LD−→
b
Q,\(X,P, Z

′/K). We

have to check that E ′(•) ∈ LD−→
b
Q,\(

l“D(•)
P/S(Z)).

a) Suppose Z and Z ′ are the support of some divisors T and T ′. Since this is of local nature in
P, we can suppose P affine and X is integral. Let us choose then u : X ↪→ P is a closed immersion of
smooth formal S-schemes which is a lifting of X ↪→ P . Either T ∩ X is a divisor of X or T contains
X. When T contains X, the considered categories are reduced to the zero object. Suppose now that
Z := T ∩ X is a divisor of X. Following the Berthelot-Kashiwara theorem (see 9.3.5.13) and from
the stability of the overcoherence in the divisor case (see 15.3.6.11 and 15.3.6.14) that the functor u(•)

T+

(resp. u(•)
T ′+) induces an equivalence of categories between LD−→

b
Q,\(X,X, T ∩X) and LD−→

b
Q,\(X,P, T ) (resp.

LD−→
b
Q,\(X,P, T

′)). Following 9.2.4.19, the functors u(•)
T+ and forgT,T ′ ◦ u

(•)
T ′+ are isomorphic. Hence,

LD−→
b
Q,\(X,P, T ) = LD−→

b
Q,\(X,P, T

′).
b) Suppose now Z ′ (and not Z) is the support of some divisors T ′. Let T divisor of P containing

Z. It remains to prove (†T )E ′(•) ∈ LD−→
b
Q,\(

l“D(•)
P/S(T )). We have (†T )(E ′(•)) ∼−→ (†T ∪ T ′)(E(•)) ∈
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LD−→
b
Q,\(X,P, T ∪ T ′/K). Since X \ T = X \ (T ∪ T ′), then it follows from the case a) that (†T )(E ′(•)) ∈

LD−→
b
Q,\(X,P, T/K) and we are done.

c) We have to check that for any divisor T of P containing Z we have (†T )E ′(•) ∈ LD−→
b
Q,\(

l“D(•)
P/S(T )).

Since (†T )(E ′(•)) ∼−→ (†T ∪ Z ′)(E(•)) ∈ LD−→
b
Q,\(X,P, T ∪ Z ′/K), then it follows from the case b) that

(†T )(E ′(•)) ∼−→ (†T ∪ Z ′)(E(•)) ∈ LD−→
b
Q,\(X,P, T/K), and we are done.

3) Since X \ Z = X \ (Z ∪ Z ′) = X ′ \ (Z ∪ Z ′) = X ′ \ Z ′, then we get the general case from the two
preceding cases.

Theorem 15.3.8.26 (Overcoherent version of Berthelot-Kashiwara Theorem). Let \ ∈ {ovcoh, oc}. Let
u : P′ ↪→ P be a closed immersion of log smooth formal log V-schemes. Let U be the open set of P

complementary to u(P ′), Z be a closed subscheme of P and Z ′ := Z ∩ P ′. Let F (•) ∈ LD−→
b
Q,\(

l‹D(•)
P′ (Z

′)),

E(•) ∈ LD−→
b
Q,\(

l‹D(•)
P (Z)) with support in Z ′.

(a) We have the canonical isomorphism in LD−→
b
Q,\(

l‹D(•)
P′ (Z

′)):

F (•) ∼−→ u(•)! ◦ u(•)
+ (F (•)). (15.3.8.26.1)

(b) We have u(•)!(E(•)) ∈ LD−→
b
Q,\(

l‹D(•)
P′ (Z

′)) and we benefit from the canonical isomorphism

u
(•)
+ ◦ u(•)!(E(•))

∼−→ E(•). (15.3.8.26.2)

(c) The functors u(•)
+ and u(•)! induce t-exact quasi-inverse equivalences between the category LD−→

b
Q,\(

l‹D(•)
P′ (Z

′))

(resp. LD−→
0
Q,\(

l‹D(•)
P′ (Z

′))) and the full subcategory of LD−→
b
Q,\(

l‹D(•)
P (Z)) (resp. LD−→

0
Q,\(

l‹D(•)
P (Z))) con-

sisting of complexes E(•) such that E(•)|U ∼−→ 0.

Proof. 1) Let us prove u(•)!(E(•)) ∈ LD−→
b
Q,\(

l‹D(•)
P′ (Z

′)). Following 15.3.8.25, we have E(•) ∈ LD−→
b
Q,\(

l‹D(•)
P (Z ′)).

Let T ′ be a divisor of P ′ containing P . Let us check (†T ′)u(•)!(E(•)) ∈ LD−→
b
Q,\(

l“D(•)
P′/S(T ′)). Since this is

of local nature in P, we can suppose P affine and there exists a global section f ∈ Γ(P,OP) whose image
f
′
via Γ(P,OP) � Γ(P ′,OP ′) gives a equation of the divisor T ′. Let T be the divisor of P given by f ,

the image of f via Γ(P,OP) → Γ(P,OP ). Since T contains Z ′ then (†T )(E(•)) ∈ LD−→
b
Q,\(

l‹D(•)
P (T )).

since T ′ = T ∩ X, then it follows from 15.3.6.12 that u(•)!((†T )(E(•))) ∈ LD−→
b
Q,\(

l‹D(•)
P′ (T

′)). Since
u(•)!((†T )(E(•)))

∼−→ (†T ′)u(•)!(E(•)), then we are done.
2) The stability by u(•)

+ comes from the stability of overcoherence by a proper morphism (see 15.3.7.8
3) It follows from 5.2.6.3 that we have the canonical adjunction morphism F (•) → u(•)! ◦ u(•)

+ (F (•))

of D(l‹D(•)
P′]

). Using the part 1) and 2) of the proof, this induces a morphism of LD−→
b
Q,\(

l‹D(•)
P′ (Z

′)). To
check that this morphism is an isomorphism, using 15.3.8.17, we reduce to the case where Z is empty,
which is already known (see 9.3.5.13).

4) We get the isomorphism 15.3.8.26.2 from 15.3.8.2 and 13.2.1.5.1
5) To check the t-exactness of the functors induced by u(•)

+ and u(•)!, by definition (see 15.3.8.12) we
reduce to the case where Z is empty, which is already known (see 9.3.5.13).

Corollary 15.3.8.27. Let \ ∈ {ovcoh, oc}. Let f : P′ → P be a morphism of smooth V-formal schemes,
Z a closed subscheme of P , and Z ′ := f−1(Z). For any E(•) ∈ LD−→

b
Q,\(

‹D(•)
P (Z)), we have f (•)!(E(•)) ∈

LD−→
b
Q,\(

‹D(•)
P′ (Z

′)).

Proof. Since base changes commute to localisation functors (see 13.1.5.7) and pullbacks 9.2.6.6, then we
reduce to the case where \ = ovcoh. Since f decomposes into a closed immersion followed by a smooth
morphism and since the case where f is a smooth morphism is immediate, we reduce to the case where
f is a closed immersion. Then this follows from RΓ†P ′(E(•)) ∈ LD−→

b
Q,\(

‹D(•)
P (Z)) (see 15.3.7.5.1), from

15.3.8.26 and the isomorphism
f (•)!(E(•))

∼−→ f (•)! ◦ RΓ†P ′(E
(•)).
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Chapter 16

Arithmetic D-modules associated with
overconvergent isocrystals

Suppose the residue field k of V is a perfect field of characteristic p > 0. When we work with F -complex,
we suppose there exists an automorphism σ : V ∼−→ V which is a lifting of the sth Frobenius power of k.
The data s and σ are fixed in the remaining.

16.1 Partially overcoherent isocrystals: divisorial case

16.1.1 1-holonomicity of overconvergent isocrystals on completely smooth
d-frames

Let P be a smooth S-formal scheme, T a divisor of P .

16.1.1.1 (1-overholonomicity). Let E ∈ Db
coh(D†P(†T )Q). We say that E is 1-D†P(†T )Q-overholonomic if

E ∈ Db
ovcoh(D†P(†T )Q) (see notation 15.3.6.2) and if for all smooth morphism α : Q → P, for all divisor

D of Q, putting U := α−1(T ), we get DQ,U ◦ (†D) ◦ α!
T (E) ∈ Db

ovcoh(D†Q(†U)Q).
We denote by Db

1-ovhol(D
†
P(†T )Q) the strictly full subcategory of Db

coh(D†P(†T )Q) consisting of 1-
D†P(†T )Q-overholonomic complexes.

Remark 16.1.1.2. It is unclear whether the 1-D†P(†T )Q-overholonomicity is preserved by dual functor.
We will define later the notion of n-D†P,Q-overholonomicity for any integer n (see 18.1.2.1), this might
be extend to the notion of n-D†P(†T )Q-overholonomicity but we will not need it.

Lemma 16.1.1.3. As the fact that an object of Db
coh(D†P(†T )Q) belongs to Db

ovcoh(D†P(†T )Q) is local on
P, then the 1-D†P(†T )Q-holonomicity is local on P, i.e., if (Pα)α∈Λ is an open covering of P, then E is
1-D†P(†T )Q-holonomic if and only if E|Pα is 1-D†Pα(†T ∩ Pα)Q-holonomic for all α ∈ Λ.

Lemma 16.1.1.4. Let E ∈ Db
1-ovhol(D

†
P(†T )Q). Then for all morphism α : Q → P such that U :=

α−1(T ) is a divisor of Q, for any subscheme Y ⊂ Q, we have DQ,URΓ†Y (α!
T (E)) ∈ Db

ovcoh(D†Q(†U)Q)

Proof. We have a splitting of the form α = p◦γ, where p : P′ → P is a smooth morphism and γ : Q ↪→ P′

is a closed immersion (P′ is an open of Q × P and γ is induced by the graph of α). Since E ∈
Db

ovcoh(D†P(†T )Q), then RΓ†Y (α!
T (E) ∈ Db

ovcoh(D†Q(†U)Q). Hence, DQ,URΓ†Y (α!
T (E)) ∈ Db

coh(D†Q(†U)Q).
By Kashiwara’s theorem, we get therefore the first isomorphism: theorem of relative duality and the
commutation of local cohomology with direct image, putting T ′ = p−1(T ), we have

DQ,URΓ†Y (α!
T (E))

∼−→
9.3.5.9

γ!
T ′γT ′+DQ,URΓ†Y (α!

T (E))
∼−→

9.4.5.2.1
γ!
T ′DP′,T ′γT ′+RΓ†Y (α!

T (E))

∼−→
13.2.1.4.2

γ!
T ′DP′,T ′RΓ†Y γT ′+(α!

T (E))
∼−→ γ!

T ′DP′,T ′RΓ†Y γT ′+γ
!
T ′p

!
T (E)

∼−→ γ!
T ′DP′,T ′RΓ†Y RΓ†Qp

!
T (E)

∼−→ γ!
T ′DP′,T ′RΓ†Y p

!
T (E).
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Using localization exact triangles, since p is smooth then we get by devissage that DP′,T ′RΓ†Y p
!
T (E) is

overcoherent. We conclude by stability of the overcoherence by extraordinary inverse image of Proposition
15.3.6.12.

Proposition 16.1.1.5. Let f : P′ → P be a morphism of smooth S-formal schemes such that T ′ :=
f−1(T ) is a divisor of Q.

(a) For any subscheme Y ′ of P ′, for any E ∈ Db
1-ovhol(D

†
P(†T )Q), we have RΓ†Y ′f

!
T (E) ∈ Db

1-ovhol(D
†
P′(
†T ′)Q).

(b) If f is proper then, for any E ′ ∈ Db
1-ovhol(D

†
P′(
†T ′)Q), fT,+(E ′) ∈ Db

1-ovhol(D
†
P(†T )Q).

Proof. The first assertion results from 16.1.1.2.(iii) and from the commutation of extraordinary inverse
image with local cohomology (see 13.2.1.4.1) and with composition. Next we prove the second assertion.
Let α : Q→ P be a smooth morphism and Z a closed subscheme of Q. Write Q′ := P′ ×P Q, α′ : Q′ →
P′ and f ′ : Q′ → Q the projections, U := α−1(T ), U ′ := α′−1(T ′) and Z ′ := f ′−1(Z). We get:
DQ,URΓ†Zα

!
T (fT,+(E ′)) ∼−→ f ′T,+DQ′,U ′RΓ†Z′α

′!
T (E ′) because of 9.4.5.1, 13.2.1.4 and 13.2.3.7.

Since DQ′,U ′RΓ†Z′α
′!
T (E ′) is by definition D†Q′(†U ′)Q-overcoherent, then it follows from 15.3.6.14 From

this we derive the D†Q(†U)Q-overcoherence of f ′T,+DQ′,U ′RΓ†Z′α
′!
T (E ′).

16.1.1.6. Let θ = (b, a, f) : (Y ′, X ′,P′, T ′)→ (Y,X,P, T ) be a morphism of smooth d-frames.

(a) We have therefore the factorisations

θ! := RΓ†X′ ◦ f
!
T ′,T : Db

ovcoh(D†P(†T )Q)→ Db
ovcoh(D†P′(

†T ′)Q) (16.1.1.6.1)

θ+ := DT ′ ◦ RΓ†X′ ◦ f
!
T ′,T ◦ DT : Db

1-ovhol(D
†
P(†T )Q)→ Db

coh(D†P′(
†T ′)Q). (16.1.1.6.2)

(b) Suppose f is proper and T ′ = f−1(T ) and set θ+ := fT+. Let E ∈ Db
coh(D†P(†T )Q) and E ′ ∈

Db
coh(D†P′(†T ′)Q). Since f is proper, then we get by adjunction (see 9.4.5.5) the morphisms: fT+ ◦

f !
T (E)→ E and E ′ → f !

T ◦fT+(E ′). This yields (θ+, θ
!) is an adjoint paire (on overcoherent categories)

and we get the morphisms
θ+ ◦ θ!(E)→ E and E ′ → θ! ◦ θ+(E ′). (16.1.1.6.3)

Let F ∈ Db
coh(D†P(†T )Q) and F ′ ∈ Db

coh(D†P′(†T ′)Q). Suppose DT (F) ∈ Db
ovcoh(D†P(†T )Q) and

DT ′(F ′) ∈ Db
ovcoh(D†P′(†T ′)Q), e.g. F ∈ Db

1-ovhol(D
†
P(†T )Q) and F ′ ∈ Db

1-ovhol(D
†
P′(
†T ′)Q). Since

f is proper, using the relative duality theorem (see 9.4.5.2), we get by duality from 16.1.1.6.3 the
morphisms:

F → θ+ ◦ θ+(F) and θ+ ◦ θ+(F ′)→ F ′. (16.1.1.6.4)

Theorem 16.1.1.7. Let X be a smooth closed subscheme of P such that TX := T ∩X is a divisor of X.
Let U (resp. Y ) denote the open complement of T (resp. TX) in P (resp. X). Let E ∈ MIC††(X,P, T/V)

(see notation 12.2.1.4). Then E is 1-D†P(†T )Q-overholonomic (see definition 16.1.1.1).

Proof. 0) As the theorem is local on P, we can suppose that P and X are affine and irreducible. The
closed immersion X ↪→ P lifts to a closed immersion of smooth S-formal schemes. By 16.1.1.5, we are
therefore reduced to treat the case where X = P . We write T for TX and X for P.

Let E(•) ∈ MIC(•)(X,X, T/V) (see 12.2.1.6) be an object →l
∗
Q(E(•))

∼−→ E . Let Z be any closed
subscheme of X. Firstly, since the categories of the form MIC††(X,P, T/V) are preserved by pullbacks
(more precisely, see 12.2.1.14.1 ), then it suffices to prove that RΓ†Z(E(•)) ∈ LD−→

b
Q,coh(

l“D(•)
X/S(T )) and next

that DX,TRΓ†Z(E) ∈ Db
ovcoh(D†X(†T )Q). Remark that the property a) is equivalent to saying E is D†X(†T )Q-

overcoherent but according to the remark 15.3.4.11, then this is wiser to work with LD−→
b
Q,coh(

l“D(•)
X/S(T ))

before knowing the overcoherence.
According to the desingularisation theorem of de Jong ([dJ96]), there exists a projective, surjective,

generically finite and étale morphism a : X ′ → X such that X ′ is irreducible and k-smooth, and such
that a−1(Z) is a strict normal crossing divisor of X ′. As a is projective, there exists thus a smooth
S-formal scheme P′, a closed immersion u′ : X ′ ↪→ P′, a smooth proper morphism f : P′ → X such that
f ◦ u′ = u ◦ a. Write T ′ = f−1(T ) and Y ′ := a−1(Y ).
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1) i) Since f is proper then we get by adjunction (see 9.4.5.5) the last morphism:

fT+RΓ†X′f
!
T (E)→ fT+f

!
T (E)→ E .

ii) By applying the functor DX,T to the similar morphism fT+RΓ†X′f
!
T (DX,T (E)) → DX,T (E), via the

theorem of relative duality and of biduality (see 9.4.5.2 and 8.7.7.3) we obtain:

E → fT+DP′,T ′RΓ†X′f
!
TDX,T (E).

iii) Now, as X ′ is irreducible and T ′ is a divisor of P ′, X ′ ∩ T ′ is then either a divisor of X ′ or
is equal to X ′. Since a is generically finite and étale, we cannot have X ′ ∩ T ′ = X ′. From this
we conclude that X ′ ∩ T ′ is a divisor of X ′. Thus it follows from 12.2.4.1.2 that we have the nat-
ural isomorphisms of MIC††(X ′,P′, T ′/V) of the form: E ′ := RΓ†X′f

!
T (E)

∼−→ spX′↪→P′,T ′,+(a∗(E)),

DP′,T ′RΓ†X′f
!
TDX,T (E)

∼−→ spX′↪→P′,T ′+(a∗(E∨)∨)
∼−→ spX′↪→P′,T ′+(a∗(E)) (12.2.5.6).

iv) From i) (resp. ii), resp. iii)), we get the left (resp. right, resp. middle isomorphism):

E → fT+DP′,T ′RΓ†X′f
!
TDX,T (E)

∼−→ fT+RΓ†X′f
!
T (E)→ E

is an isomorphism. Indeed, using the third part of Proposition 11.2.1.14.c, since this composition is a
morphism of the abelian category MIC††(X, T/V), we reduce to check that its restriction to a dense open
subset is an isomorphism. Hence, we can suppose that T is empty and a : X ′ → X is finite and étale,
which is easy.

v) Hence, E is a direct factor of fT+(E ′). Hence, E is a direct factor of fT+RΓ†X′f
!
T (E). Since E ′(•) :=

RΓ†X′f
!
T (E(•)) ∈ MIC(•)(X ′,P′, T ′/V) (see 12.2.1.11.2), then it is in particular coherent and since f is

proper we get therefore f (•)
T,+(E ′(•)) ∈ LD−→

b
Q,coh(‹D(•)

X (T )) together with the isomorphism→l
∗
Q(f

(•)
T,+(E ′(•))) ∼−→

(E ′). Since→l
∗
Q is fully faithful on LD−→

b
Q,coh(‹D(•)

X (T )), then E(•) is a direct factor of f (•)
T,+(E ′(•)). By 16.1.1.5

and by 13.2.1.4, it is therefore sufficient to prove RΓ†Z′(E ′(•)) ∈ LD−→
b
Q,coh(

l“D(•)
P′/S(T ′)) and next that

DP′,T ′RΓ†Z′(E ′) ∈ Db
ovcoh(D†P′(†T ′)Q). In other word, we reduce to the case where Z is strict normal

crossing divisor of X.
2) By means of Mayer-Vietoris exact triangles (see 13.1.4.15.2), proceeding by induction on the

number of irreducible components of Z, it remains to treat the case where Z is a smooth integral closed
subscheme of X. Thus we have two cases: either Z ⊂ T , or Z ∩ T is a divisor of Z. The first case gives
the equalities RΓ†Z(E) = 0 and DX,TRΓ†Z(E) = 0. Now consider the second case. The two properties
being local on X, we can suppose that the closed immersion Z ↪→ X lifts to a closed immersion u : Z ↪→ X
of smooth S-formal schemes.

i) Since we have the isomorphism RΓ†Z(E(•))
∼−→ u

(•)
+ u(•)!(E(•)) and u(•)!(E)[−dZ/X ] ∈ MIC(•)(Z,Z, T∩

Z/V) (see 12.2.1.9), then RΓ†Z(E(•)) ∈ LD−→
b
Q,coh(‹D(•)

X (T )). Hence, we have proved that E ∈ Db
ovcoh(D†X(†T )Q).

ii) Since DZ,T∩Zu
!(E)[−dZ/X ] ∈ MIC††(Z,Z, T ∩Z/V), then from the part 2.i), we get DZ,T∩Zu

!(E) ∈
Db

ovcoh(D†Z(†T∩Z)Q). Hence, following 15.3.6.14, we obtain DX,TRΓ†Z(E)
∼−→ u+DZ,T∩Zu

!(E) ∈ Db
ovcoh(D†X(†T )Q).

16.1.2 Overcoherent isocrystals on completely smooth d-frames, (extraordi-
nary) pullbacks

Let P be a smooth separated S-formal scheme, T be a divisor of P , X be a closed subscheme of P , U
the open set of P complementary to T . We suppose that Y := X \ T is a smooth k-scheme.

Definition 16.1.2.1. We define the category (F -)MIC††(X,P, T/V) to be the full subcategory of that
of coherent (F -)D†P(†T )Q-modules with support in X consisting of objects E such that

(i) E|U is in the essential image of the functor spY ↪→U,+.

(ii) E and DP,T (E) are D†P(†T )Q-surcoherent.

When the divisor T is empty, we omit T from the notation. The objects of MIC††(X,P, T/V) are “the
partially overcoherent isocrystals over (X,P, T/V)”.
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Example 16.1.2.2. It follows from Theorem 16.1.1.7 that when X/S is smooth this notation coincides
with that of 12.2.1.4. Remark that the condition (i) of 16.1.2.1 is equivalent to the property E|U ∈
MIC††(Y,U/V).

Notation 16.1.2.3. We will denote by MIC(•)(X,P, T/V) the strictly full subcategory of LM−−→Q,coh(“D(•)
P (T ))

such that the equivalence of categories of 8.4.5.6 induces the equivalence of categories

→l
∗
Q : MIC(•)(X,P, T/V) ∼= MIC††(X,P, T/V). (16.1.2.3.1)

16.1.2.4. We keep notation 16.1.2.3.

(a) Following 11.2.2.5.2 we have the equality

MIC(•)(P, T, P/V) = MIC(•)(P, T/V) := LM−−→Q,coh(l“D(•)
P (T )) ∩ LM−−→Q,coh(B(•)

P (T )). (16.1.2.4.1)

(b) It follows from 15.3.6.6 that we have MIC(•)(X,P, T/V) ⊂ LD−→
b
Q,ovcoh(“D(•)

P (T )).

The stability by inverse image of the categories of the form MIC††(X,P, T/V) is not straightforward.
To go around this technical difficulty, let us introduce the temporary notation of the categories of 16.1.2.5
(this is temporary because they will turn out to be equal to MIC††(X,P, T/V) following 16.1.6.11). Their
stability by (extraordinary) inverse images is almost tautological (see the proposition 16.1.2.8), which
will allows us by descent to the completely smooth case. But, on the other hand until the end of this
section (more precisely until 16.1.6.11) beware that we will have to do without the stability by dual
functor when we work with the categories of 16.1.2.5.

Notation 16.1.2.5. (a) We denote by MIC∗(X,P, T/V) the strictly full subcategory of Coh(X,P, T/V)

(see notation 9.3.7.4) consisting of coherent D†P(†T )Q-modules E such that DT (E) is D†P(†T )Q-
overcoherent and E|U is in the essential image of the functor spY ↪→U,+.

(b) We denote by MIC∗∗(X,P, T/V) the strictly full subcategory of Coh(X,P, T/V) of overcoherent
D†P(†T )Q-modules E such that E|U is in the essential image of the functor spY ↪→U,+.
When the divisor T is empty, we do not indicate it in the notations 16.1.2.5 above.

16.1.2.6 (Completely smooth case). When X is smooth, it follows from 16.1.1.7 that we have the
equalities MIC∗(X,P, T/V) = MIC∗∗(X,P, T/V) = MIC††(X,P, T/V).

Remark 16.1.2.7. With the notations 16.1.2.5, we have the two properties straightforward below.

(a) Let E ∈ MIC∗(X,P, T/V). Since the functor spY ↪→U,+ commutes with duality (see 11.2.7.5.1), then
using 12.2.5.6 for any integer j 6= 0 we have the vanishing Hj(D(E|U)) = 0. By 8.7.6.11, this
yields, for any integer j 6= 0, Hj(DT (E)) = 0. Finally, following 16.1.2.6, we have the equalities
MIC∗(Y,U/V) = MIC∗∗(Y,U/V) = MIC††(Y,U/V).

(b) Since the functor spY ↪→U,+ commutes with duality (see 11.2.7.5.1) and via the biduality theo-
rem (see 8.7.7.3), then we check the functor DT induced an equivalence between the categories
MIC∗(X,P, T/V) and MIC∗∗(X,P, T/V). In fact, we will establish that these two categories are
equal (see 16.1.6.11) but before we have to distinguish them.

Proposition 16.1.2.8. Let θ = (b, a, f) : (Y ′, X ′,P′, T ′) → (Y,X,P, T ) be a morphism of smooth d-
frames. Let E be an object of (F -)MIC∗(X,P, T/V) and F an object of (F -)MIC∗∗(X,P, T/V).

(a) For any integer j ∈ Z \ {0}, the following equalities are satisfied: Hj((†T ′)RΓ†X′f
!(F)[−dX′/X ]) =

0, Hj(DT ′(†T ′)RΓ†X′f
!DT (E)[−dX′/X ]) = 0.

(b) We have therefore the factorisations 1

θ! := RΓ†X′ ◦ f
!
T ′,T [−dX′/X ] : (F -)MIC∗∗(X,P, T/V)→ (F -)MIC∗∗(X ′,P′, T ′/V) (16.1.2.8.1)

θ+ := DT ′ ◦ RΓ†X′ ◦ f
!
T ′,T [−dX′/X ] ◦ DT : (F -)MIC∗(X,P, T/V)→ (F -)MIC∗(X ′,P′, T ′/V)). (16.1.2.8.2)

1To stay in the abelian categories of the form MIC and to simplify notation we added some shift [−dX′/X ] which should
not appear for complexes
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These functors are transitive with respect to the composition: if θ′ = (b′, a′, f ′) : (Y ′′, X ′′,P′′, T ′′)→
(Y ′, X ′,P′, T ′) is a morphism of smooth d-frames, we have the canonical isomorphisms θ′! ◦ θ! ∼−→
(θ ◦ θ′)! and θ′+ ◦ θ+ ∼−→ (θ ◦ θ′)+.

Proof. To establish the two vanishing formulas, by using 8.7.6.11, we can reduce to the case where
the divisor T is empty, which is already checked (see 12.2.1.14). By stability of the overcoherence by
extraordinary inverse images and local cohomological functor with proper support (see 15.3.6.12 and
15.3.6.9), to check the factorisations 16.1.2.8.1 and 16.1.2.8.2 we reduce therefore to check θ!(F)|U′ ∈
MIC††(Y ′,U′/V)) and θ+(F)|U′ ∈ MIC††(Y ′,U′/V)), where U′ := P′ \ T ′. Hence, we come back to the
completely smooth case, which was already proved (see 12.2.1.14). The transitivity with respect to the
composition of morphisms is a consequence of that of the extraordinary inverse image functors and of
the commutation isomorphisms of the extraordinary inverse images to local cohomological functors.

Lemma 16.1.2.9. With the notations of 16.1.2.5 denote by “?” one of the symbol “∗”, “∗∗” or “††”. Let
Y the closure of Y in X. Let Y1, . . . , YN the irreducible components of Y and Y 1, . . . , Y N their closure
in X.

(a) We have the equality (F -)MIC?(Y ,P, T/V) = (F -)MIC?(X,P, T/V).

(b) We have a canonical equivalence of categories:

(F -)MIC?(X,P, T/V) ∼=
∏N
r=1(F -)MIC?(Y r,P, T/V).

Proof. a) Let us start with the case ? = ∗∗. The inclusion of the first equality is obvious. Conversely,
is E ∈ (F -)MIC∗∗(X,P, T/V). By stability of the overcoherence by local cohomological functor (see
15.3.6.12), then we have therefore the canonical morphism RΓ†

Y
(E)→ E of Db

ovcoh(D†P(†T )Q). Since this
is the case outside T (because Y \ T = Y ), with 8.7.6.11, this morphism is then an isomorphism. The
sheaf E is then with support in Y . Hence the converse inclusion. With the second remark of 16.1.2.7,
this yields by duality the first equality when ? = ∗. By using the first two first cases, this yields the case
where ? = ††.

b) Let E ∈ (F -)MIC∗∗(X,P, T/V). The canonical morphism ⊕Nr=1RΓ†
Y r
E → E of Db

ovcoh(D†P(†T )Q) is

an isomorphism (because so is outside T and use theorem 8.7.6.11). We know RΓ†
Y r
E ∈ (F -)MIC∗∗(Y r,P, T/V)

(see 16.1.2.8.1). If moreover E ∈ (F -)MIC††(X,P, T/V), this yields DT (E)
∼−→ ⊕Nr=1DT (RΓ†

Y r
E). Hence,

DT (RΓ†
Y r
E) ∈ Db

ovcoh(D†P(†T )Q). This yields DT (RΓ†
Y r
E) ∈ (F -)MIC††(Y r,P, T/V). Hence the functor

⊕Nr=1RΓ†
Y r

induces the equivalence of categories: (F -)MIC?(X,P, T/V) ∼=
∏N
r=1(F -)MIC?(Y r,P, T/V)

for ? = ∗∗ or for ? = ††. From the case ? = ∗∗, we get the case ? = ∗ by duality (more precisely, the
equivalence of categories is given by DT ◦ (⊕Nr=1RΓ†

Y r
) ◦ DT ).

Remark 16.1.2.10. The rigid version of the lemma 16.1.2.9 is well known (see [LS07] or [Ber96b]). More
precisely, with the notations of 16.1.2.9, we have the equality (F -)MIC†(Y, Y /V) = (F -)MIC†(Y,X/V)
and the canonical equivalence of categories: (F -)MIC†(Y,X/V) ∼=

∏N
r=1(F -)MIC†(Yr, Y r/V)

Lemma 16.1.2.11. Let f : P′ → P be a realizable with respect to T (in the sense of 13.2.3.1) morphism
of separated and smooth S-formal schemes, X be a closed subscheme of P ′ such that the induced mor-
phism X → P is a closed immersion, Y an open set of X, T be a divisor of P such that T ′ := f−1(T )
is a divisor of P ′ and such that Y = X \ T (and then Y = X \ T ′). We suppose Y smooth.

(a) Let E ∈ (F -)MIC∗(X,P, T/V), F ∈ (F -)MIC∗∗(X,P, T/V). For ? = ∗ or ? = ∗∗, let E ′ ∈
(F -)MIC?(X,P′, T ′/V)). For any integer j ∈ Z \ {0}, the following equalities are then satisfied:

Hj(DT ′RΓ†Xf
!
TDT (E)) = 0, Hj(RΓ†Xf

!
T (F)) = 0, Hj(fT+(E ′)) = 0.

(b) The functors RΓ†Xf
!
T (resp. DT ′RΓ†Xf

!
TDT ) and fT+ induce quasi-inverse equivalences between the

categories (F -)MIC∗∗(X,P, T/V) and (F -)MIC∗∗(X,P′, T ′/V) (resp. between (F -)MIC∗(X,P, T/V)
and (F -)MIC∗(X,P′, T ′/V)).
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Proof. The other vanishing formulas of (a) being already well known (see 16.1.2.8), then let us treat the
last. It follows from the stability of the overcoherence of 15.3.6.14), since E ′ has proper support over
P , then fT+(E ′) is an overcoherent D†P′(†T ′)Q-module. By 8.7.6.11, it is therefore sufficient to check it
outside T , which reduce to the case where X is smooth and T is empty. Since this is local on P, suppose
P affine. Since X is an affine and smooth k-scheme then there exists an affine and smooth S-formal
scheme X which is a lifting of X. Since P′ is smooth and since P is affine, then we have a lifting of
X → P ′ of the form u′ : X → P′. By setting u := f ◦ u′, we get then a lifting u : X → P of X → P .
By hypothesis, there exists G a coherent D†X,Q-module, OX,Q-coherent such that E ′ ∼−→ u′+(G). Hence
f+(E ′) ∼−→ u+(G). Since u is a closed immersion, then the functor u+ is exact. This yields then that for
any j ∈ Z \ {0}, Hj(f+(E ′)) = 0.

Let us consider now (b). Suppose ? = ∗∗. Let F ′ ∈ (F -)MIC∗∗(X,P′, T ′/V). Since f is realisable with
respect to T , then we have the adjunction morphisms fT+ ◦RΓ†Xf

!
T (F)→ F and F ′ → RΓ†Xf

!
T ◦fT+(F ′)

(see 13.2.4.3). In order the check that these morphisms are isomorphisms, by 8.7.6.11 it is sufficient to
prove it outside respectively the divisor T and T ′, i.e. we reduce to the case where T and T ′ are empty.
Since this is local, then we can suppose as above that there exists a lifting u′ : X → P′ of X → P ′. Set
u = f ◦u′. Then f+◦RΓ†Xf

!(F)→ F is canonically isomorphic to the natural map u+◦u!(F)→ F which
is an isomorphism thanks to Kashiwara-Berthelot theorem. Moreover, the map F ′ → RΓ†Xf

! ◦ f+(F ′)
is canonical isomorphic to the image under u′+ of G′ → u! ◦ u+(G′), where G′ = u′!(F ′). Using again
Kashiwara-Berthelot theorem, the map is therefore an isomorphism. Hence we are done.

Remark 16.1.2.12. The lemma 16.1.2.11 will be extended (the morphism f is not necessarily realizable
and the divisor T ′ is independent from T ) in Lemma 16.2.7.6. However, before establishing this more
general case, Lemma 16.1.2.11 will be used to build the adjunction morphisms in the proof of Lemma
16.1.10.4 (more precisely in fact, in the proof of the lemma 16.1.10.3 that allow to establish 16.1.10.4).
This will imply that the category (F -)MIC∗(X,P, T/V) does only depend on the pair (Y,X).

Lemma 16.1.2.13. The category MIC∗(X,P, T/V) is stable under kernels, images, cokernels.

Proof. Let φ be a morphism of MIC∗(X,P, T/V). Since the category MIC†(Y, Y/K) is stable under
kernels, images and cokernels, since we have the equivalence of categories spY ↪→U,+ : MIC†(Y, Y/K) ∼=
MIC††(Y,U/V) of 12.2.2.6.1, then so is MIC††(Y,U/V). Let E be the kernel or the image or the cokernel
of φ. This yields, for any integer j 6= 0, the equality Hj(D(E|U)) = 0 (use 12.2.5.6). Using 8.7.6.11,
this implies, for any integer j 6= 0, the vanishing HjDT (E) = 0. This yields that the dual of the kernel
(resp. the image, resp. the cokernel) of φ is the cokernel (resp. the image, resp. the kernel) of DT (φ).
Moreover, since DT (φ) is a morphism of overcoherent D†P(†T )Q-modules, its kernel, its image, its cokernel
are D†P(†T )Q-overcoherent.

Notation 16.1.2.14 (Finite and etale outside singularities case). Let the commutative diagram

Y (0)

�

� � j
(0)

//

b

��

X(0) �
� u(0)

//

a

��

P(0)

f

��
Y �
� j // X �

� u // P,

(16.1.2.14.1)

where the left square is cartesian, f is a proper smooth morphism of separated and smooth S-formal
schemes, a is a proper surjective morphism of k-varieties, b is a finite and etale morphism of smooth
k-varieties, j and j(0) are open immersions, u and u(0) are closed immersions. We suppose moreover there
exists a divisor T of P such that Y = X \T . We denote by U := P\T , T (0) := f−1(T ), U(0) := P(0)\T (0)

and g : U(0) → U the morphism induced by f . We suppose Y (0) = X(0) \ T (0). We get the morphism
θ = (b, a, f) of smooth d-frames over S (see definition 12.2.1.1). By abuse of notation, it might happen
that we denote by a := (b, a, f) and b := (b, b, g) : (Y (0), Y (0),U(0)/S) → (Y, Y,U/S) the morphism of
smooth d-frames over S.

16.1.2.15 (b+ is a left and right adjoint functor of b+). We keep the notations of 16.1.2.14.

(a) Following 12.2.2.6.1, we have the equivalence of categories of the form spY ↪→U,+ : MIC†(Y, Y/K) ∼=
MIC††(Y,U/V). The functors of the form spY ↪→U,+ commute with duality and with (extraordinary)
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inverse images (see 12.2.5.6 and 12.2.4.1). Both functors b! := RΓ†
Y (0) ◦g! and b+ := D◦RΓ†

Y (0) ◦g! ◦D

of MIC††(Y,U/V) → MIC††(Y (0),U(0)/V) are then isomorphic. Hence, we get the commutative
diagram (up to canonical isomorphism):

MIC†(Y (0), Y (0)/K)
sp
Y (0)↪→U(0),+

∼=
// MIC††(Y (0),U(0)/V)

MIC†(Y, Y/K)
spY ↪→U,+

∼=
//

b∗

OO

MIC††(Y,U/V).

b+

OO
(16.1.2.15.1)

(b) Moreover, since b is finite and etale, the functor g+ factors as follows g+ : MIC††(Y (0),U(0)/V) →
MIC††(Y,U/V). Indeed, since this is local on U, we can suppose U affine. Since in this case Y is affine
and smooth, then there exists a smooth S-formal scheme Y which is a lifting of Y . By smoothness
of U and affinity of Y, this yields a lifting Y ↪→ U of Y ↪→ U . Similarly, since Y (0) is affine and
smooth, since Y ×U U(0) is smooth, we get a lifting Y(0) ↪→ Y ×U U(0) of Y (0) ↪→ Y ×U U (0). This
yields of liftings Y(0) → Y and Y(0) → U(0) inducing the same morphism over U. Via the theorem
of Berthelot-Kashiwara (see 9.3.5.9), we reduce therefore to the case where Y = U and Y (0) = U (0).
In this case, since g is finite and etale, then the functor g+ preserves both the D†-coherence and the
O-coherence, and we are done. We denote by b+ this factorisation.

(c) Since g is proper then g! is right adjoint to g+. This yields that the functor b! is right adjoint to b+.
Since g is proper, using the relative duality theorem (see 9.4.5.2), this yields that the functor b+ is
left adjoint to b+.

(d) Since b! ∼−→ b+, this yields therefore that b! is left adjoint to b+ and that b+ is a right adjoint to b+.

(e) Let E ∈ MIC††(Y,U/V). We get by adjunction the maps:

E → b+b
+(E)→ E , (16.1.2.15.2)

whose composition is an isomorphism. Indeed, using Berthelot-Kashiwara theorem we reduce to the
case where Y = U . In that case b+ = b∗ and b+ = b∗ and we are done.

Remark 16.1.2.16. With the notations of 16.1.2.15, since b is finite and etale, we have the direct image
functor b∗ : MIC†(Y (0), Y (0)/K) → MIC†(Y, Y/K) (see [Tsu02, 5]). The functor b∗ is left adjoint to the
functor b∗. By uniqueness of the adjoint functors, we get the commutative diagram (up to canonical
isomorphism):

MIC†(Y (0), Y (0)/K)

b∗

��

sp
Y (0)↪→U(0),+

∼=
// MIC††(Y,U(0)/V)

b+

��
MIC†(Y, Y/K)

spY ↪→U,+

∼=
// MIC††(Y,U/V),

(16.1.2.16.1)

so that the adjunction morphisms are compatible.
In order to define 16.1.3.1, we will need the notion of the direct image by a morphism which is finite

and etale outside overconvergent singularities as defined in the proposition 16.1.2.17 below.

Lemma 16.1.2.17. We keep the notations of 16.1.2.14.

(a) We have the factorisation θ+ := fT,T (0)+ : MIC∗(X(0),P(0), T (0)/V)→ MIC∗(X,P, T/V).

(b) The functor θ+ is right adjoint to θ+ (defined at 16.1.2.8.2). We denote by adja the adjunction
morphisms id→ θ+ ◦ θ+ and θ+ ◦ θ+ → id. These adjunction morphisms are transitive with respect
to the composition of diagram of the form 16.1.2.14.1 and satisfying the required conditions.

Proof. First let us prove (a). Let E(0) an object of MIC∗(X(0),P(0), T (0)/V). Since f is proper, then
f+ commutes with duality (see 9.4.5.2) and the (over)coherence is closed by f+ (see 15.3.6.14). This
yields that f+(E(0)) ∈ Db

coh(D†P(†T )Q) is coherent and DT ◦ f+(E(0)) ∈ Db
ovcoh(D†P(†T )Q). More-

over, f+(E(0))|U ∼−→ g+(E(0)|U(0)). Following the second point of 16.1.2.15, this yields f+(E(0))|U ∈
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MIC††(Y,U/V), i.e., f+(E(0))|U is in the essential image of spY ↪→U,+. By 8.7.6.11, this yields that
f+(E(0)) ∈ Coh(X,P, T/V). We get then the required factorisation of f+.

We construct canonically the adjunction morphisms between θ+ and θ+ as follows: let E(0) ∈
MIC∗(X(0),P(0), T (0)/V) and E ∈ MIC∗(X,P, T/V). Since the functor f+ is left adjoint to f ! (for
the overcoherent complexes) we get the morphism f+ ◦f ! ◦DT (E)→ DT (E). Via the canonical morphism
RΓ†

X(0) → id, we get by functoriality f+ ◦RΓ†
X(0) ◦ f ! ◦DT (E)→ DT (E). By applying the functor DT this

yields the morphism

E
8.7.7.3
∼−→ DT ◦ DT (E)→ DT ◦ f+ ◦ RΓ†

X(0) ◦ f ! ◦ DT (E)
9.4.5.2
∼−→ f+ ◦ DT (0) ◦ RΓ†

X(0) ◦ f ! ◦ DT (E),

i.e. we get then the morphism E → θ+ ◦ θ+(E). We build similarly the adjunction morphism θ+ ◦
θ+(E(0))→ E(0).

16.1.2.18. We keep notation of 16.1.2.17. Let T̃ be a divisor of P containing T . Set T̃ (0) := f−1(T̃ ),
b̃ : (X(0)\T̃ (0))→ (X\T̃ ) the morphism induced by a and θ̃ = (f, a, b̃) the associated morphism of smooth
d-frames. Since the dual functors commute with localisation outside a divisor (see 9.2.4.22.3), then we
get the functors (†T̃ ) : MIC∗(X,P, T/V) → MIC∗(X,P, T̃ /V) and (†T̃ (0)) : MIC∗(X(0),P(0), T (0)/V) →
MIC∗(X(0),P(0), T̃ (0)/V). Moreover, the extraordinary inverse image and direct image functors commute
with localisation functors (see 13.2.1.4). This yields that the functors θ+ and θ+ of 16.1.2.8 and 16.1.2.17
commute with localisation, i.e., we have some canonical isomorphisms θ̃+ ◦ (†T̃ )

∼−→ (†T̃ (0)) ◦ θ+ and
θ̃+ ◦ (†T̃ (0))

∼−→ (†T̃ ) ◦ θ+.

16.1.3 Finite and etale (outside overconvergent singularities) descent
We keep the notations and hypotheses of 16.1.2.14. Moreover, denote by P(1) := P(0) ×P P(0), P(2) :=
P(0)×PP(0)×PP(0), f1, f2 : P(1) → P(0) the left and right projections, fij : P(2) → P(1) the projections
on the factors of the indices i, j for i < j. Similarly, we denote by X(1) := X(0)×XX(0), X(2) := X(0)×X
X(0) ×X X(0), ai : X(1) → X(0), aij : X(2) → X(1) the canonical projections ; similarly by replacing
respectively a by b (resp. by g) and X by Y (resp. U). We denote by T (1) := f−1

1 (T (0)) = f−1
2 (T (0)),

T (2) := f−1
12 (T (1)) = f−1

23 (T (1)) = f−1
13 (T (1)). By abuse of notation, a := (b, a, f), ai := (bi, ai, fi) and

aij := (bij , aij , fij) can be viewed as morphisms of smooth d-frames over S which satisfy the same
properties as in 16.1.2.14, i.e. they are finite and etale outside overconvergent singularities. Hence, we
can use 16.1.2.17 and its notation, e.g. a+

ij := DT (2) ◦RΓ†
X(2) ◦f !

ij,T (2),T (1) ◦DT (1) and aij+ := fij,T (2),T (1)+.
By abuse of notation, bi := (bi, bi, gi) and bij := (bij , bij , gij) can be viewed as morphisms of completely
smooth d-frames over S (with empty divisors). We can use 16.1.2.17 and its notation, e.g. b+ij :=

D ◦ RΓ†
Y (2) ◦ g!

ij ◦ D and bij+ := gij+.

Definition 16.1.3.1. We define the category MIC∗(X(•),P(•), T (•)/V) as follows:

(i) The objects are the sheaves E(0) ∈ MIC∗(X(0),P(0), T (0)/V) together with a glueing datum, i.e.,
an isomorphism in MIC∗(X(1),P(1), T (1)/V) of the form ε : a+

2 (E(0))
∼−→ a+

1 (E(0)) satisfying the
cocycle condition: a+

13(ε) = a+
12(ε) ◦ a+

23(ε).

(ii) The morphisms (E(0), ε)→ (F (0), τ) are the D†P(†T )Q-linear morphisms φ : E(0) → F (0) commuting
to glueing data, i.e. such that τ ◦ a+

2 (φ) = a+
1 (φ) ◦ ε.

When the divisors are empty, as usual we remove them in the notation.

16.1.3.2. We have the functor Loc : MIC∗(X,P, T/V) → MIC∗(X(•),P(•), T (•)/V) defined by E 7→
(a+(E), ε), where ε is the isomorphism induced by the transitivity with respect to the composition of the
functors of the form a+ (see 16.1.2.17).

16.1.3.3. We build the functor Glue : MIC∗(X(•),P(•), T (•)/V) → MIC∗(X,P, T/V) as follows: let
(E(0), ε) ∈ MIC∗(X(•),P(•), T (•)/V). Set ã := a ◦ a1 = a ◦ a2, b̃ = b ◦ b1 = b ◦ b2 and f̃ = f ◦ f1 = f ◦ f2.
By abuse of notation, we write ã := (̃b, ã, f̃). Remark the equality ã = a ◦ a1 = a ◦ a2 still holds as
morphism of smooth d-frames over S. We have the composition morphism

φ1 : a+(E(0))
adja1−→

16.1.2.17.b
a+ ◦ a1+ ◦ a+

1 (E(0))
∼−→ ã+ ◦ a+

1 (E(0)).
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On the other hand, we get a second composition morphism:

φ2 : a+(E(0))
adja2−→

16.1.2.17.b
a+ ◦ a2+ ◦ a+

2 (E(0))
∼−→ ã+ ◦ a+

2 (E(0))
∼−→
ε

ã+ ◦ a+
1 (E(0)).

We set Glue(E(0), ε) = ker

(
a+(E(0))

φ1 //

φ2

// ã+ ◦ a+
1 (E(0))

)
. With 16.1.2.13 and 16.1.2.17, we check

Glue(E(0), ε) ∈ MIC∗(X,P, T/V).

16.1.3.4. Let T̃ be a divisor of P containing T and T̃ (0) := f−1(T̃ ). Via the remark of 16.1.2.18, we easily
check that the functors Loc of 16.1.3.2 and Glue of 16.1.3.3 commute with localisation outside a divisor,
i.e., we have some canonical isomorphisms Glue◦(†T̃ (0))

∼−→ (†T̃ )◦Glue and Loc◦(†T̃ )
∼−→ (†T̃ (0))◦Loc

(the functors Loc and Glue indicate the functors of 16.1.3.2 and 16.1.3.3, are similarly replacing T by
T̃ ).

Before considering the general case of this subsection, first let us consider the finite and etale descent
of convergent isocrystals over smooth k-schemes, which corresponds to the case where the overconvergent
singularities are empty:

Lemma 16.1.3.5 (Outside overconvergent singularities). The canonical functors Loc : MIC∗(Y,U/V)→
MIC∗(Y (•),U(•)/V) and Glue : MIC∗(Y (•),U(•)/V)→ MIC∗(Y,U/V) defined respectively in 16.1.3.2 and
16.1.3.3 are quasi-inverse.

Proof. Let E ∈ MIC∗(Y,U/V) and (E(0), ε) ∈ MIC∗(Y (•),U(•)/V). Following the steps I.1) and II.1) of
the proof of 16.1.3.6 (these two steps do not use 16.1.3.5), we have the morphisms E → Glue◦Loc(E) and
b+ ◦ Glue(E(0), ε) → E(0). The check that the first (resp. second ) morphism is an isomorphism (resp.
commutes with glueing data and is an isomorphism) is local. Via the theorem of Berthelot-Kashiwara
(see 9.3.5.9), we reduce therefore to suppose Y = U and Y (0) = U (0). In this case g = b is a finite and
etale morphism and b+ (resp. b+) is canonically isomorphic to b∗ (resp. b∗), and similarly by adding
indices i or ij at the bottom.

In the case where g = b, via the classic theory of the faithfully flat descent, we check the following
assertions:

(a) The category MIC††(Y, Y/V) is equivalent to that of objects E(0) ∈ MIC††(Y (0),U(0)/V) endowed
with a glueing datum, i.e., an isomorphism ε : b∗2(E(0))

∼−→ b∗1(E(0)) satisfying the usual cocycle
condition.

(b) The quasi-inverse functor of this equivalence of categories is given by the glueing functor defined

by setting Glue(E(0), ε) = ker

(
b∗(E(0))

φ1 //

φ2

// b̃∗ ◦ b∗1(E(0))

)
, where φ1 : b∗(E(0))

adjb1−→ b∗ ◦ b1∗ ◦

b∗1(E(0))
∼−→ b̃∗ ◦ b∗1(E(0)) and where φ2 : b∗(E(0))

adjb2−→ b∗ ◦ b2∗ ◦ b∗2(E(0))
∼−→ b̃∗ ◦ b∗2(E(0))

∼−→
ε

b̃∗ ◦ b∗1(E(0)).

(c) The morphism induced by adjunction b∗Glue(E(0), ε)→ (E(0), ε) is an isomorphism which commutes
with glueing data (see for example, [Mil80, beginning of the page 19]).

Proposition 16.1.3.6. The functors Loc and Glue induce quasi-inverse equivalences between the cate-
gories MIC∗(X,P, T/V) and MIC∗(X(•),P(•), T (•)/V).

Proof. I) Let E ∈ MIC∗(X,P, T/V). Let us establish the canonical isomorphism E ∼−→ Glue ◦ Loc(E).
1) Construction of this morphism: we put (E(0), ε) := Loc(E). Consider the diagram below:

E
adja // a+(E(0))

adja2 //
adja1��

a+ ◦ a2+ ◦ a+
2 (E(0))

∼ // ã+ ◦ a+
2 (E(0))

∼
ε

ss
∼

��

a+ ◦ a1+ ◦ a+
1 (E(0))

∼ //

∼��

ã+ ◦ a+
1 (E(0))

∼ss
E

adjea // ã+ ◦ ã+(E) ã+ ◦ ã+(E).

(16.1.3.6.1)
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The middle triangle is commutative by definition of the isomorphism a+ ◦a1+ ◦a+
1 (E(0))

∼−→ ã+ ◦ ã+(E).
The right triangle is commutative by definition of the isomorphism ε. By transitivity of the adjunction
morphism, the left rectangle of the diagram is commutative. For the same reason, the outer of 16.1.3.6.1
is commutative. In the trapeze of the top, we notice that the composition a+(E(0))→ ã+◦a+

1 (E(0)) going
through the bottom (resp. the top) is φ1 (resp. φ2). This yields the factorisation: E → Glue ◦ Loc(E).

2) Let us now check that this is an isomorphism. Following 8.7.6.11, it is sufficient to establish it
outside T . We reduce then to the situation where T is empty, i.e. to the case where U = P, i.e., to the
situation of 16.1.3.5. Hence we are done.

II) Conversely, is (E(0), ε) ∈ MIC∗(X(•),P(•), T (•)/V) and let us check the isomorphism Loc ◦
Glue(E(0), ε)

∼−→ (E(0), ε).
1) Let us construct canonically this morphism. By definition, we have the inclusion Glue(E(0), ε) ⊂

a+(E(0)). By adjunction (see 16.1.2.17), this yields the morphism φ : a+ ◦ Glue(E(0), ε)→ E(0).
2) Denote by τ the glueing datum of a+ ◦Glue(E(0), ε) satisfying the equality (a+ ◦Glue(E(0), ε), τ) =

Loc ◦ Glue(E(0), ε). We have to check that φ is an isomorphism commuting to respective glueing data,
i.e., such that τ ◦ a+

2 (φ) = a+
1 (φ) ◦ ε. By 8.7.6.11, it is sufficient to establish it outside T , which reduces

to the situation of 16.1.3.5.

Corollary 16.1.3.7. We suppose moreover X(0) smooth over k. We have the equalities: MIC∗(X,P, T/V) =
MIC∗∗(X,P, T/V) = MIC††(X,P, T/V).

Proof. With the remark 16.1.2.7.(b), it is sufficient to prove the equality MIC∗(X,P, T/V) = MIC††(X,P, T/V).
We have the inclusion MIC∗(X,P, T/V) ⊃ MIC††(X,P, T/V). Conversely, let E ∈ MIC∗(X,P, T/V).
Set

a! := RΓ†
X(0) ◦ f !

T (0),T : Db
coh(D†P(†T )Q)

f !

T (0),T−→ Db
coh(D†

P(0)(
†T (0))Q)

RΓ†
X(0)−→ Db(D†

P(0)(
†T (0))Q).

Since DT (E) is an overcoherent D†P(†T )Q-module, by stability of the overcoherence by extraordinary in-
verse images and local cohomological functor (see 15.3.6.12 and 15.3.6.9), we get a!(DT (E)) ∈ Db

ovcoh(D†
P(0)(

†T (0))Q).
Moreover, since E|U ∈ MIC††(Y,U/V), then following the smooth case treated in 12.2.1.11.2, we have

a!(DT (E))|U(0) ∼−→ b!(EU) ∈ MIC††(Y (0),U(0)/V).

With 8.7.6.11, this yields that a!(DT (E)) is (isomorphic to) an (over)coherent D†
P(0)(

†T (0))Q-module.
SinceX(0) is smooth, via the characterization of 12.2.1.5, this yields a!(DT (E)) ∈ MIC††(X(0),P(0), T (0)/V).
Hence, a!(DT (E)) is 1-D†

P(0)(
†T (0))Q-overholonomic (see 16.1.1.7). This implies in particular that a+(E)

is an overcoherent D†
P(0)(

†T (0))Q-module and (moreover by using the isomorphism of biduality of 8.7.7.3)

that a+
1 (a+(E)) is an overcoherent D†

P(1)(
†(T (1)))Q-module. By preservation of the overcoherence by

kernel and by direct image by a proper smooth morphism, this yields Glue ◦ Loc(E) is an overcoherent
D†P(†T )Q-module. Moreover, following 16.1.3.6, E ∼−→ Glue ◦ Loc(E). Hence we are done.

16.1.4 Full faithfulness of the localisation outside a divisor functor
With the notations 16.1.2.5, the theorem below is the analogue of the theorem of Tsuzuki [Tsu02, 4.1.1]
or of the extended version of Kedlaya of [Ked07, 5.2.1]:

Theorem 16.1.4.1. Let P be a smooth separated S-formal scheme, T ⊂ T ′ two divisors of P , X be a
closed subscheme of P . By setting Y := X \ T , Y ′ := X \ T ′, we suppose moreover Y smooth and Y ′
dense in Y . The functor (†T ′) induced the fully faithful functors:

(†T ′) : (F -)MIC∗(X,P, T/V)→ (F -)MIC∗(X,P, T ′/V), (16.1.4.1.1)

(†T ′) : (F -)MIC∗∗(X,P, T/V)→ (F -)MIC∗∗(X,P, T ′/V), (16.1.4.1.2)

(†T ′) : (F -)MIC††(X,P, T/V)→ (F -)MIC††(X,P, T ′/V). (16.1.4.1.3)

Proof. To lighten the notation, we omit indicating “(F -)”. Since the functor DT (resp. DT ′) induced
an equivalence between MIC∗(X,P, T/V) and MIC∗∗(X,P, T/V) (resp. between MIC∗(X,P, T ′/V) and
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MIC∗∗(X,P, T ′/V)), since we have the canonical isomorphism DT ′ ◦ (†T ′)
∼−→ (†T ′) ◦ DT , then it is

sufficient to check 16.1.4.1.2.
Let E1, E2 be two objects of MIC∗∗(X,P, T/V). Set U := P\T , U′ := P\T ′. Via the lemma 16.1.2.9

and the remark 16.1.2.10, we reduce to the case where Y is integral and dense in X.
1) For any i = 1, 2, the canonical morphism Ei → Ei(†T ′) is injective.
Proof: let E ′i be the kernel of Ei → Ei(†T ′). By 8.7.6.11, since E ′i is an (over)coherent D†P(†T )Q-

module, it is sufficient to establish that E ′i |U = 0. We reduce then to the case where T is empty. In this
case since X = Y is smooth, as the assertion is local in P, then we can suppose there exists a morphism
X ↪→ P of affine and smooth S-formal schemes which is a lifting of X ↪→ P . Since Y ′ is dense in Y = X,
then T ′ does not contains X. Hence, T ′ ∩ X is a divisor of X (because X is integral and smooth).
By using the theorem of Berthelot-Kashiwara (see 9.3.5.9), it follows that the functors uT ′,+ and u!

T ′

(resp. u+ and u!) induce quasi-inverse equivalences of categories between MIC∗∗(X,X, T ′ ∩ X/V) and
MIC∗∗(X,P, T ′/V) (resp. between MIC∗∗(X,X/V) and MIC∗∗(X,P/V)). We reduce then to treat the
case where X = P (P is still affine and T empty). Following 11.2.1.14, the category MIC∗∗(P,P/V) is
equal to the category of coherent D†P,Q-modules which are locally projective OP,Q-module of finite type.
In particular, E1 and E2 are projective OP,Q-modules. Since the canonical morphism OP,Q → OP(†T ′)Q

is injective, then so is of Ei → Ei(†T ′).
2) This is a consequence of the step 1) that the functor 16.1.4.1.2 is faithful.
3) Let φ : E1(†T ′)→ E2(†T ′) be a morphism of MIC∗∗(X,P, T ′/V). It remains to prove that φ comes

by extension from a morphism of the form E1 → E2. Following the step 2), this is local. We can therefore
suppose P affine and P/S is endowed with coordinates.

4) Denote by G the image of the composition: E1 ↪→ E1(†T ′)
φ−→ E2(†T ′). Since G, E2 are (over)

coherent D†P(†T )Q-submodules of the (over)coherent D†P(†T )Q-module E2(†T ′), the sheaf G ∩ E2 (equal
by definition to the kernel of G → E2(†T ′)/E2) is also an (over)coherent D†P(†T )Q-submodule of E2(†T ′).

5) The inclusion G ∩ E2 ⊂ G is an isomorphism.
Proof: via 8.7.6.11, we reduce to the case where T is empty. Moreover, via the theorem of Berthelot-

Kashiwara (see 9.3.5.9), we can suppose X = P . By using the theorem of type A for the coherent
D†P,Q-modules, since G is the image of a morphism of coherent D†P,Q-modules of the form E1 → E2(†T ′),
we get a Γ(P,D†P,Q)-linear surjective map Γ(P, E1) → Γ(P,G). Moreover, via the theorem of type A
for coherent OP,Q-modules, Γ(P, E1) is Γ(P,OP,Q)-coherent. By notherianite of Γ(P,OP,Q), this yields
Γ(P,G) and Γ(P,G∩E2) are Γ(P,OP,Q)-coherent. Since G and G∩E2 are moreover D†P,Q-coherent, using
11.1.1.8 this implies that G and G ∩E2 are OP,Q-coherent. The morphism G ∩E2 ⊂ G is then a morphism
of MIC††(P/V). Hence, G/G ∩ E2 ∈ MIC††(P/V). Let E ∈ MIC†(P, P/K) be a convergent isocrystal
over P such that sp∗E

∼−→ G/G ∩E2 (see 11.1.1.2). Since G/G ∩E2|U′ = 0, the isocrystal convergent over
U ′ induced by E is null. Since U′ is dense in P, this yields E = 0, i.e. G/G ∩ E2 = 0.

6) From 5), we get the morphisms θ : E1 � G ∼←− G ∩E2 ↪→ E2 whose composition with E2 → E2(†T ′)

is equal to the composition morphism E1 ↪→ E1(†T ′)
φ−→ E2(†T ′). Since (†T ′)(ε)|U′ = φ|U′, this yields by

faithfulness of |U′ the equality (†T ′)(θ) = φ.

Remark 16.1.4.2. The theorem 16.1.4.1 is wrong if Y ′ is not dense in Y . For example, if we take P a
curve, Y a point and Y ′ the empty set.

16.1.5 Full faithfulness of the “restriction-inverse image” functor
We keep in the rest of this subsection 16.1.5 the following notations: let the commutative diagram‹Y (0) �

� l(0)
//

c�� �

Y (0) �
� j(0)

//

b�� �

X(0) �
� u(0)

//

a��

P(0)

f��‹Y � � l // Y �
� j // X �

� u // P,

(16.1.5.0.1)

where the left and middle squares are cartesian, f is a proper smooth morphism of separated and smooth
S-formal schemes, a is a proper surjective morphism of k-varieties, b is a morphism of smooth k-varieties,
c is a finite and etale morphism, l, l(0), j and j(0) are open immersions, u and u(0) are closed immersions,‹Y is dense in Y and ‹Y (0) is dense in Y (0). We denote by j̃ : ‹Y ↪→ X and j̃(0) : ‹Y (0) ↪→ X(0) the induced
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open immersions. We suppose moreover there exists a divisor T (resp. T̃ ) of P such that Y = X \ T
(resp. ‹Y = X \ T̃ ). We denote by U := P \ T , T (0) := f−1(T ), U(0) := P(0) \ T (0) and g : U(0) → U the
morphism induced by f ; the same by adding tildes (e.g. we set Ũ := P \ T̃ etc.).

Denote by P(1) := P(0)×PP(0), P(2) := P(0)×PP(0)×PP(0), f1, f2 : P(1) → P(0) the left and right
projections, fij : P(2) → P(1) the projections on the factors of the indices i, j for i < j. Similarly, we
denote by X(1) := X(0)×X X(0), X(2) := X(0)×X X(0)×X X(0), ai : X(1) → X(0), aij : X(2) → X(1) the
canonical projections ; similarly by replacing respectively a by b, c or g and X by Y , ‹Y or U. We denote
by T (1) := f−1

1 (T (0)) ∪ f−1
2 (T (0)), T (2) := f−1

12 (T (1)) ∪ f−1
23 (T (1)) ∪ f−1

13 (T (1)) ; similarly with tildes.
By abuse of notation, a := (c, a, f), ai := (ci, ai, fi) and aij := (cij , aij , fij) can be viewed as

morphisms of smooth d-frames over S which satisfy the same properties as in 16.1.2.14, i.e. they are
finite and etale outside overconvergent singularities. Hence, we can use 16.1.2.17 and its notation, e.g.
a+
ij := DT (2) ◦ RΓ†

X(2) ◦ f !
ij,T (2),T (1) ◦ DT (1) and aij+ := fij,T (2),T (1)+. If we denote by j := (id, j, |U)

and j̃ := (id, j̃, |Ũ), then with notation 16.1.2.8.2 we get the functors j+ : (F -)MIC∗(X,P, T/V) →
(F -)MIC∗(Y,U/V) and j̃+ : (F -)MIC∗(X,P, T̃ /V) → (F -)MIC∗(‹Y , Ũ/V) which are respectively canoni-
cally isomorphic to the restriction functors |U and |Ũ.

By abuse of notation, we denote by a = (b, a, f) the morphism of smooth d-frames. Following
16.1.2.8.2, we get the functor a+ : MIC∗(X,P, T/V) → MIC∗(X(0),P(0), T (0)/V). Beware that we have
two distinguished functors a+ but it will be obvious which one is used following the context.

Lemma 16.1.5.1. The functor

(a+, |Ũ) : MIC∗(X,P, T̃ /V)→ MIC∗(X(0),P(0), T̃ (0)/V)×
MIC∗(Ũ(0),Ỹ (0)/V)

MIC∗(‹Y , Ũ/V) (16.1.5.1.1)

is fully faithful.

Proof. Since the functor |Ũ is faithful (see 8.7.6.8), the functor (a+, |Ũ) is faithful. It remains to prove
that this faithfulness is full. Let E1, E2 ∈ MIC∗(X,P, T̃ /V). By setting E(0)

1 := a+(E1), E(0)
2 := a+(E2)

let φ(0) : E(0)
1 → E(0)

2 and ψ : E1|Ũ→ E2|Ũ be two morphisms inducing canonically the same morphism in
MIC∗(Ũ(0),‹Y (0)/V). Consider the square:

a+
2 (E(0)

1 )
∼
ε1
//

a+
1 (φ(0))��

a+
1 (E(0)

1 )
a+

2 (φ(0))��
a+

2 (E(0)
2 )

∼
ε2
// a+

1 (E(0)
2 )

(16.1.5.1.2)

of MIC∗(X(1),P(1), T̃ (1)/V), where ε1 and ε2 are the canonical isomorphisms induced by transitivity (see
16.1.2.8). Since the morphisms φ(0) and ψ are compatible, the diagram 16.1.5.1.2 becomes commutative
after applying the functor |Ũ(1). Thanks to the proposition 8.7.6.11, this yields the commutativity of
16.1.5.1.2. Hence, we have the morphism φ(0) : (E(0)

1 , ε1)→ (E(0)
2 , ε2) of MIC∗(X(•),P(•), T̃ (•)/V). Hence

the morphism φ(0)|Ũ commutes with glueing data and we still denote by φ(0)|Ũ : (E(0)
1 |Ũ, ε1|Ũ(1)) →

(E(0)
2 |Ũ, ε2|Ũ(1)) the induced morphism of MIC∗(‹Y (•), Ũ(•)/V). Moreover, for i = 1, 2, Loc(Ei) = (E(0)

i , εi).
Since the functor Loc is fully faithful (see 16.1.3.6), then there exists a morphism φ : E1 → E2 such that
Loc(φ) = φ(0), and in particular we get a+(φ) = φ(0). Since Loc(φ|Ũ) = φ(0)|Ũ(0) = Loc(ψ), by
faithfulness of Loc, this yields φ|Ũ = ψ. Hence, we have checked (a+, |Ũ)(φ) = (φ(0), ψ).

Proposition 16.1.5.2. The functor

(a+, |U) : MIC∗(X,P, T/V)→ MIC∗(X(0),P(0), T (0)/V)×MIC∗(Y (0),U(0)/V) MIC∗(Y,U/V) (16.1.5.2.1)

is fully faithful.

Proof. Consider the following diagram

MIC∗(X,P, T/V)
(a+, |U)//

(†T̃ )��

MIC∗(X(0),P(0), T (0)/V)×MIC∗(Y (0),U(0)/V) MIC∗(Y,U/V)

((†T̃ (0)),|Ũ)��
MIC∗(X,P, T̃ /V)

(a+, |Ũ)// MIC∗(X(0),P(0), T̃ (0)/V)×
MIC∗(Ỹ (0),Ũ(0)/V)

MIC∗(‹Y , Ũ/V).

(16.1.5.2.2)
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Following 13.2.1.4, the local functors commute with extraordinary inverse images. It follows from
4.6.4.7.1, the localisation outside a divisor commutes with duality. This yields the commutativity up to
canonical isomorphism of the diagram 16.1.5.2.2. Since following 16.1.4.1 (resp. 16.1.5.1) the left functor
(resp. bottom) is fully faithful, as the right one is faithful, the upper functor is then fully faithful.

16.1.6 An equivalence of categories induced by the “localisation-inverse im-
age” functor

In this section, we keep the notations and hypotheses of the section 16.1.5.

Lemma 16.1.6.1. The canonical functor below induced by (a+, (†T̃ )):

MIC∗(X,P, T/V)→ MIC∗(X(0),P(0), T (0)/V)×
MIC∗(X(0),P(0),T̃ (0)/V)

MIC∗(X,P, T̃ /V) (16.1.6.1.1)

is fully faithful.

Proof. Since the functor (†T̃ ) is faithful, then (a+, (†T̃ )) is faithful. Since (†T̃ ) is fully faithful (see the
theorem 16.1.4.1) and since (†T̃ (0)) is faithful, we check the faithfulness of (a+, (†T̃ )) is full.

Lemma 16.1.6.2. Let Ẽ ∈ Db
coh(D†P(†T̃ )Q).

(a) If Ẽ ∈ Db
coh(D†P(†T )Q), then the canonical morphism of Db

coh(D†P(†T̃ )Q)

Ẽ → (†T̃ , T )(Ẽ) (16.1.6.2.1)

is a isomorphism. We have the isomorphism of Db
coh(D†P(†T̃ )Q):

(†T̃ , T ) ◦ DT (Ẽ)
∼−→ D

T̃
(Ẽ). (16.1.6.2.2)

(b) If D
T̃

(Ẽ) ∈ Db
coh(D†P(†T )Q), then there exists a canonical morphism of Db

coh(D†P(†T )Q) of the form:

ι : DT ◦ D
T̃

(Ẽ)→ Ẽ . (16.1.6.2.3)

Proof. a) Since the map 16.1.6.2.1 is a morphism of Db
coh(D†P(†T̃ )Q) which an isomorphism outside T̃ ,

then it follows from 8.7.6.11 that 16.1.6.2.1 is an isomorphism. Hence, we get:

(†T̃ , T ) ◦ DT (Ẽ)
∼−→

4.6.4.4.1
D
T̃
◦ (†T̃ , T )(Ẽ)

16.1.6.2.1
∼←− D

T̃
(Ẽ).

b) It follows from a) that the canonical morphism D
T̃

(Ẽ)→ (†T̃ , T )(D
T̃

(Ẽ)) is an isomorphism. Hence,
we build the morphism 16.1.6.2.3 by composition as follows:

DT ◦ D
T̃

(Ẽ)→ (†T̃ , T ) ◦ DT ◦ D
T̃

(Ẽ)
4.6.4.4.1
∼−→ D

T̃
◦ (†T̃ , T ) ◦ D

T̃
(Ẽ)

∼←−
16.1.6.2.1

D
T̃
◦ D

T̃
(Ẽ)

8.7.7.3
∼−→ Ẽ .

Lemma 16.1.6.3. We suppose X smooth. Let E ∈ MIC∗(X,P, T/V). Then we have the following
properties hold:

(a) (†T̃ )(E) and D
T̃
◦ (†T̃ )(E) are both overcoherent and holonomic as D†P(†T )Q-module.

(b) We have a canonical isomorphism E ∼−→ Im
(

DT ◦ D
T̃
◦ (†T̃ )(E)

16.1.6.2.3−→ (†T̃ )(E)
)
.
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Proof. Since X is smooth, following 16.1.1.7 E is therefore 1-D†P(†T )Q-overholonomic. With 15.3.2.8, this
yields E(†T̃ ) is both overcoherent and holonomic asD†P(†T )Q-module. Since the category MIC∗(X,P, T/V)

is stable under the functor DT (see 16.1.2.6), this yields similarly that D
T̃

(E(†T̃ ))
4.6.4.4.1
∼−→ (†T̃ )DT (E) is

both overcoherent and holonomic as D†P(†T )Q-module.
We denote by α the morphisms induced by functoriality by id → (†T̃ ). Let F be the image of the

morphism ι : DT ◦D
T̃
◦ (†T̃ )(E)→ (†T̃ )(E) constructed at 16.1.6.2.3. Since ι is an isomorphism outside T̃ ,

then so is the canonical morphism ρ : (†T̃ )(F)→ E(†T̃ ) of coherent D†P(†T̃ )Q-modules (which factors by
definition through the canonical inclusion F ⊂ E(†T̃ )). By 8.7.6.11, this morphism ρ is an isomorphism.

Following the step 1) of the proof of 16.1.4.1, since E ,DT (E) ∈ MIC∗∗(X,P, T/V), the canonical
morphisms α : E → (†T̃ )(E) and α : DT (E) → (†T̃ )(DT (E)) are injective. Thanks to ??, by applying
to it DT , we get the surjection α∗ : DT (†T̃ )(DT (E)) � DTDT (E). Since the morphism (†T̃ )(α∗) is an
isomorphism outside T̃ , this is an isomorphism. We get by functoriality the commutativity of squares of
the bottom of the following diagram:

D
T̃
◦ (†T̃ ) ◦ D

T̃
((†T̃ )(E))

∼ // D
T̃
◦ D

T̃
((†T̃ )(E)) D

T̃
◦ D

T̃
((†T̃ )(E))

∼
8.7.7.3

//
∼

oo (†T̃ )(E)

(†T̃ ) ◦ DT ◦ D
T̃
◦ (†T̃ )(E)

∼
4.6.4.4.1

//

∼ 4.6.4.4.1

OO

(†T̃ ) ◦ DT ◦ (†T̃ )(DT (E))
∼

(†T̃ )(α∗)

// (†T̃ ) ◦ DT (DT (E))
∼

8.7.7.3
// (†T̃ )(E)

DT ◦ D
T̃
◦ (†T̃ )(E)

α

OO

∼
4.6.4.4.1

// DT ◦ (†T̃ )(DT (E))
α∗

// //

α

OO

DT (DT (E))

α

OO

∼
8.7.7.3

// E .
� ?

α

OO

(16.1.6.3.1)
To validate the commutativity of the (top) rectangle of the diagram 16.1.6.3.1, since all terms are coherent
D†P(†T̃ )Q-modules, then it is sufficient via 8.7.6.11 to establish it outside T̃ , which is straightforward.

We see that the morphism ι is equal to the composition of the morphisms from the left and next from
the top of the diagram 16.1.6.3.1. We get therefore the commutative diagram below:

DT ◦ D
T̃

(E(†T̃ ))

ι
,,// // F �

� // E(†T̃ )

DT ◦ D
T̃

((†T̃ )(E)) // // E �
� α // (†T̃ )(E),

(16.1.6.3.2)

whose bottom surjective arrow is the composition of the bottom morphisms of the diagram 16.1.6.3.1.
This yields the canonical isomorphism E ∼−→ F .

Lemma 16.1.6.4. Let E1, E2 two overcoherent D†P(†T )Q-modules such that DT (E1),DT (E2) are D†P(†T )Q-
overcoherent. Let φ : E1 → E2 be a D†P(†T )Q-linear morphism. Let K be either the kernel of φ, or its
image or its cokernel. Then K, H0DT (K) are overcoherent and holonomic as a D†P(†T )Q-modules.

Proof. Using Theorem 15.3.2.8 implies that E1 and E2 are D†P(†T )Q-holonomic. With 15.2.4.14 and
15.2.4.15, this yields K, H0DT (K), are holonomic as aD†P(†T )Q-modules. Moreover, since the overcoher-
ence is stable under kernel, image and cokernel, then K is D†P(†T )Q-overcoherent. Since the functorH0DT
is an exact functor over the category of holonomic D†P(†T )Q-modules, this yields H0DT (K) is either the
cokernel, or the image, or the kernel of DT (φ). Using the D†P(†T )Q-overcoherence of DT (E1),DT (E2), we
are done.

Lemma 16.1.6.5. We suppose X(0) smooth. Let Ẽ(0) ∈ MIC∗(X(0),P(0), T̃ (0)/V). Then we have the
canonical isomorphism a1+ ◦ a+

1 (Ẽ(0))
∼−→ a1+ ◦ a!

1(Ẽ(0)).

Proof. We remark first that sinceX(0) is smooth, Ẽ(0) ∈ MIC∗(X(0),P(0), T̃ (0)/V) = MIC∗∗(X(0),P(0), T̃ (0)/V).
Following the de Jong ’s desingularisation theorem (of the form 10.4.1.2), we have a surjective, projective,
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generically finite and etale morphism α : X ′′ → X(1) such that X ′′ is smooth and α−1(T (1) ∩X(1)) is a
divisor of X ′′. Then there exists a projective and smooth morphism of separated and smooth S-formal
schemes of the form f ′′ : P′′ → P(1), a closed immersion X ′′ ↪→ P′′ such that their composition gives the
composite morphism X ′′ → X(1) ↪→ P(1). Set T ′′ := (f ′′)−1(T̃ (0)), Y ′′ := X ′′ \ T ′′, β : Y ′′ → Y (1) the
morphism induced by α and α := (β, α, f ′′) : (Y ′′, X ′′,P′′, T̃ ′′/V) → (Y (1), X(1),P(1), T̃ (1)/V). More-
over, since a1 ◦ α : (X ′′,P′′, T̃ ′′/V) → (X(0),P(0), T̃ (0)/V) is a morphism of completely smooth frames,
then we can use the commutation isomorphisms 12.2.1.14.2 and 12.2.1.14.3. Hence, we get the middle
isomorphism:

α+ ◦ a+
1 (Ẽ(0))

∼−→ (a1 ◦ α)+(Ẽ(0))
∼−→ (a1 ◦ α)!(Ẽ(0))

∼−→ α! ◦ a!
1(Ẽ(0)).

This yields the middle morphism:

a1+ ◦ a+
1 (Ẽ(0))

16.1.1.6.4−→ a1+ ◦ α+ ◦ α+ ◦ a+
1 (Ẽ(0))

∼−→ a1+ ◦ α+ ◦ α! ◦ a!
1(Ẽ(0))

16.1.1.6.3−→ a1+ ◦ a!
1(Ẽ(0)).

To establish that this morphism is an isomorphism, it is sufficient to check it outside T̃ (0), which re-
duces the case where the divisor T̃ (0) is empty and in particular the case where X(1) is also smooth.
In this case, we have the canonical isomorphism a+

1 (Ẽ(0))
∼−→ a!

1(Ẽ(0)) and the composition of the
canonical morphisms id → α+ ◦ α+ ∼−→ α+α

! → id of functors defined over MIC††(X(1),P(1)/V) ∩
Db

1-ovhol(D
†
P(1)(

†T (1))Q) is an isomorphism (indeed, since this is a morphism of overconvergent isocrys-
tals, it is sufficient to check it over a dense open subset of X(1) where the induced by α morphism is
finite and etale).

Lemma 16.1.6.6. We suppose that the k-variety X(0) is smooth. Let (E(0), Ẽ , ρ) be an object of the
category MIC∗(X(0),P(0), T (0)/V)×

MIC∗(X(0),P(0),T̃ (0)/V)
MIC∗(X,P, T̃ /V). Then Ẽ, D

T̃
(Ẽ), DT (Ẽ), DT ◦

D
T̃

(Ẽ) are overcoherent and holonomic as D†P(†T )Q-module.

Proof. By definition of the Loc : MIC∗(X,P, T̃ /V) → MIC∗(X(•),P(•), T̃ (•)/V), we have Loc(Ẽ) =

(a+(Ẽ), θ) where θ is the isomorphism induced by the transitivity with respect to the composition of
pullbacks functors (see 16.1.3.2).

Since c is a finite and etale morphism (recall notation 16.1.5.0.1), then following Proposition 16.1.3.6,
the functors Loc and Glue are quasi-inverse equivalence of categories. Hence, Ẽ ∼−→ Glue(a+(Ẽ), θ). By
definition of 16.1.3.3 of the functor Glue, Ẽ is then isomorphic to the kernel of a morphism of the form
a+(Ẽ) → a+ ◦ a1+ ◦ a+

1 (Ẽ). By hypothesis, we have the isomorphism ρ : a+(Ẽ)
∼−→ E(0)(†T̃ (0)). Hence,

it follows from the Proposition 16.1.6.5 that Ẽ is isomorphic to the kernel of a morphism of the form:

φ : a+(E(0)(†T̃ (0)))→ ã+ ◦ a!
1(E(0)(†T̃ (0))).

Moreover, sinceX(0) is smooth, then following Theorem 16.1.1.7 E(0) is 1-D†
P(0)(

†T (0))Q-overholonomic.
By stability of this property by extraordinary inverse images, functor of localisation and direct image
by a proper morphism (see 16.1.1.5), this yields the two terms of the morphism φ are 1-D†P(†T )Q-
overholonomic. Since Ẽ is isomorphic to the kernel of φ, then it follows from Lemma 16.1.6.4 that Ẽ and
DT (Ẽ) are overcoherent and holonomic as D†P(†T )Q-modules.

Since H0DT is an exact functor on the category of holonomic as D†P(†T )Q-modules, then DT (Ẽ) is
the cokernel of DT (φ). By using 16.1.6.2.2, we get (†T̃ , T ) ◦DT (φ)

∼−→ D
T̃

(φ). Since the functor (†T̃ , T )

is exact over the category of coherent D†P(†T )Q-modules, this yields that D
T̃

(Ẽ) is the cokernel D
T̃

(φ).
Using again 16.1.6.4, to conclude the proof, it is therefore sufficient to prove that both terms of the
morphism D

T̃
(φ) are 1-D†P(†T )Q-overholonomic. On one hand, we have

D
T̃
◦ a+(E(0)(†T̃ (0)))

9.4.5.2.1
∼−→ a+ ◦ D

T̃ (0)(E(0)(†T̃ (0)))
4.6.4.4.1
∼−→ a+ ◦ (†T̃ (0))(DT (0)(E(0))). (16.1.6.6.1)

On the other hand, we get

D
T̃
◦ ã+ ◦ a!

1(E(0)(†T̃ (0)))
9.4.5.2.1
∼−→ ã+ ◦ D

T̃ (1) ◦ a!
1(E(0)(†T̃ (0)))

8.7.7.3
∼−→ ã+ ◦ a+

1 ◦ D
T̃ (0)(E(0)(†T̃ (0)))

4.6.4.4.1
∼−→ ã+ ◦ a+

1 ◦ (†T̃ (0))(DT (0)(E(0)))
16.1.6.5
∼−→ ã+ ◦ a!

1 ◦ (†T̃ (0))(DT (0)(E(0))) (16.1.6.6.2)
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Since DT (0)(E(0)) ∈ MIC∗(X(0),P(0), T̃ (0)/V), then the last term of respectively 16.1.6.6.1 and 16.1.6.6.2
is 1-D†P(†T )Q-overholonomic. This yields that both terms of D

T̃
(φ) are 1-D†P(†T )Q-overholonomic, and

we are done.

Notation 16.1.6.7. We denote by MIC∗(X,P, T̃ ⊃ T/V) the full subcategory of MIC∗(X,P, T̃ /V)

consisting of objects Ẽ such that there exists G ∈ MIC††(Y,U/V) together with an isomorphism of the
form Ẽ |U ∼−→ (†T̃ ∩ U)(G).

We have the factorisation (†T̃ ) : MIC∗(X,P, T/V)→ MIC∗(X,P, T̃ ⊃ T/V).

Theorem 16.1.6.8. Suppose X(0) smooth. With the notations of 16.1.6.7, the canonical functor

(a+, (†T̃ )) : MIC∗(X,P, T/V)→ MIC∗(X(0),P(0), T (0)/V)×
MIC∗(X(0),P(0),T̃ (0)/V)

MIC∗(X,P, T̃ ⊃ T/V)

(16.1.6.8.1)
is an equivalence of categories. We have moreover a canonical quasi-inverse functor denoted by Glue.

Proof. I) Following Lemma 16.1.6.1, we already know that the functor (a+, (†T̃ )) is fully faithful.
II) 1) Let us construct the quasi-inverse to (a+, (†T̃ )) functor Glue.
Let (E(0), Ẽ , ρ) ∈ MIC∗(X(0),P(0), T (0)/V) ×

MIC∗(X(0),P(0),T̃ (0)/V)
MIC∗(X,P, T̃ ⊃ T/V). By using

16.1.6.6), the canonical morphism of overcoherent D†P(†T )Q-modules φ : DT ◦ D
T̃

(Ẽ)→ Ẽ of 16.1.6.2.3 is
such that DT (φ) is a morphism of overcoherent D†P(†T )Q-modules. We can therefore define a D†P(†T )Q-
module E by setting

E := Glue(E(0), Ẽ , ρ) := Im(DT ◦ D
T̃

(Ẽ)
φ−→ Ẽ). (16.1.6.8.2)

Following the Lemma 16.1.6.4, E and DT (E) are overcoherent and holonomic as D†P(†T )Q-module. By
definition of 16.1.6.7, there exists G ∈ MIC††(Y,U/V) together with and isomorphism of the form Ẽ |U ∼−→
(†T̃ ∩ U)(G). Hence,

E|U ∼−→ Im(D ◦ D
T̃∩U ((†T̃ ∩ U)(G))

φ|U−→ (†T̃ ∩ U)(G)).

Since Y/S is smooth, then it follows from 16.1.6.3 that E|U ∼−→ G ∈ MIC∗(Y,U/V). Hence, E|U is in
the essential image of the functor spY ↪→U,+. Hence, we have checked that E ∈ MIC††(X,P, T/V) and
therefore E ∈ MIC∗(X,P, T/V).

2) Since (†T̃ )(φ) is an isomorphism, then so is the canonical arrow E(†T̃ ) → Ẽ . By full faithfulness
of (†T̃ (0)) (see 16.1.4.1), this yields the isomorphism: (a+, (†T̃ )) ◦ Glue(E(0), Ẽ , ρ) = (a+(E), E(†T̃ ))

∼−→
(E(0), Ẽ , ρ). Since the functor (a+, (†T̃ )) is fully faithful, this yields the functors (a+, (†T̃ )) and Glue are
quasi-inverse.

Remark 16.1.6.9. Following the proof of 16.1.6.8, the functor Glue of 16.1.6.8.2 factorizes as follows:

Glue : MIC∗(X(0),P(0), T (0)/V)×
MIC∗(X(0),P(0),T̃ (0)/V)

MIC∗(X,P, T̃ ⊃ T/V)→ MIC††(X,P, T/V).

Lemma 16.1.6.10. Let P be a smooth k-variety, T be a divisor of P , Y be an integral closed subscheme
of P \ T , Y ′ be a non-empty open subset of Y . Then there exists a divisor T ′ ⊃ T such that Y \ T ′ is
included in Y ′ and is non-empty.

Proof. We can suppose that P is integral. Set U := P \ T and let (Ui)i∈I be a finite covering of U with
affine open subschemes. Put Yi := Y ∩ Ui, Y ′i := Y ′ ∩ Ui. Since Y ′ is dense in Y , then Y ′i is empty if
and only if Yi is empty. Let I ′ be the set of the elements i ∈ I such that Yi is non-empty. Let i ∈ I ′.
Then there exists a divisor T ′i of Ui such that Yi \ T ′i is included in Y ′i and is non-empty. By setting
Z ′ := ∪i∈I′T ′i , this yields that Z ′ does not contain the generic point of Y . Moreover, for any i ∈ I ′,
Yi \ Z ′ ⊂ Yi \ T ′i ⊂ Y ′i . For any i ∈ I \ I ′, we have Yi \ Z ′ ⊂ Y ′i because they are both empty. Hence, we
have checked Y \Z ′ is not empty and Y \Z ′ ⊂ Y ′. So, it is sufficient to choose T ′ equal to the union of
T and of the closure of Z ′ in P .

Corollary 16.1.6.11. Let (Y,X,P, T ) be a smooth d-frame over S (see the definition 12.2.1.1). We
have the equalities MIC∗(X,P, T/V) = MIC∗∗(X,P, T/V) = MIC††(X,P, T/V). Moreover, the functor
DT preserves these categories.
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Proof. With the lemma 16.1.2.9 (and the remark 16.1.2.10), we can suppose Y integral and dense in X.
By using de Jong ’s desingularisation theorem, there exists a diagram of the form 16.1.5.0.1 with X(0)

smooth and satisfying the conditions which are required. Indeed, the existence of the diagram 16.1.5.0.1
is straightforward (thanks to de Jong). Moreover, since Y is integral, then it follows from 16.1.6.10 that
shrinking ‹Y if necessary, we can suppose there exists a divisor T̃ of P such that ‹Y = X \ T̃ . We can
therefore use any result of this section. Hence, the equalities follow from the theorem 16.1.6.8 and of the
remark 16.1.6.9. Thanks to the second remark of 16.1.2.7, this yields the last assertion.

16.1.6.12. Following 16.1.2.8 and 16.1.6.11, and since these functors commutes with Frobenius, then we
get the functor exact:

θ∗ := RΓ†X′ ◦ f
!
T ′,T [−dY ′/Y ] : (F -)MIC(•)(X,P, T/V)→ (F -)MIC(•)(X ′,P′, T ′/V). (16.1.6.12.1)

16.1.7 The equivalence sp+: finite and etale (outside overconvergent singu-
larities) case

By using the notations and hypotheses of 16.1.3, suppose moreover X(0) smooth over k.

Definition 16.1.7.1. We define the category MIC†(Y (•), X(•),P(•)/V) as follows:

(i) The objects are the sheaves E(0) ∈ MIC†(Y (0), X(0),P(0)/K) together with a glueing datum, i.e.,
an isomorphism in MIC∗(Y (1), X(1),P(1)/K) of the form ε : a∗2K(E(0))

∼−→ a∗1K(E(0)) satisfying
the cocycle condition: a∗13K(ε) = a∗12K(ε) ◦ a∗23K(ε) (see notation 10.2.2.8).

(ii) The morphisms (E(0), ε) → (F (0), τ) are morphisms φ : E(0) → F (0) of MIC†(Y (0), X(0),P(0)/K)
commuting to glueing data, i.e. such that τ ◦ a∗2K(φ) = a∗1K(φ) ◦ ε.

Proposition 16.1.7.2. With the notations of 16.1.7.1 and 16.1.3.1, we have the canonical equivalence
of categories of the form spX(•)↪→P(•),T (•),+ : MIC†(Y (•), X(•),P(•)/K) ∼= MIC∗(X(•),P(•), T (•)/V).

Proof. Via the lemma 16.1.2.9 and the remark 16.1.2.10, by noticing that the closure of a irreducible
component of Y (0) is still smooth, we reduce to the case where Y (resp. Y (0)) is integral and dense in
X (resp. X(0)). Following the theorem of desingularization of de Jong (of the form 10.4.1.2), we have a
surjective, projective, generically finite and etale morphism, α : X ′′ → X(1) such that X ′′ is smooth and
α−1(T (1) ∩X(1)) is a divisor of X ′′. Then there exists a projective and smooth morphism of separated
and smooth S-formal schemes of the form f ′′ : P′′ → P(1), a closed immersion X ′′ ↪→ P′′ such that their
composition gives the composite morphism X ′′ → X(1) ↪→ P(1). Set T ′′ := (f ′′)−1(T̃ (0)), Y ′′ := X ′′ \T ′′,
U′′ := P′′ \ T ′′, β : Y ′′ → Y (1) the morphism induced by α and α := (β, α, f ′′) : (Y ′′, X ′′,P′′, T̃ ′′/V) →
(Y (1), X(1),P(1), T̃ (1)/V).

I) Construction of spX(•)↪→P(•),T (•),+ : MIC†(Y (•), X(•),P(•)/K) → MIC∗(X(•),P(•), T (•)/V). Let
(E(0), ε) ∈ MIC†(Y (•), X(•),P(•)/K). Since X(0) is smooth, we can use the functor of 12.2.2.6.1 and we
set E(0) := spX(0)↪→P(0),T (0),+(E(0)). Set F1 := a+

1 (E(0)) and F2 := a+
2 (E(0)).

i) Construction of the isomorphism ε′′ : α+(F2)
∼−→ α+(F1).

a) For i = 1, 2, sinceX ′′ andX(0) are smooth, by commutativity of functors of the form spX(0)↪→P(0),T (0),+

with inverse images (see 12.2.4.1) and dual functors (see 12.2.5.6), we get the canonical isomorphism
(α ◦ ai)+ ◦ E(0) ∼−→ spX′′↪→P′′,T ′′,+ ◦ ∨ ◦ (α ◦ ai)∗K ◦ ∨(E(0)), where ∨ is the dual functor in the
categories of overconvergent isocrystals. Moreover, since dual functors and inverse images commute
over the category of overconvergent isocrystals, then we get the isomorphism: (α ◦ ai)∗K(E(0))

∼−→
∨ ◦ (α◦ai)∗K ◦∨(E(0)). Moreover, by transitivity of the inverse image, α+(Fi)

∼−→ (α◦ai)+ ◦E(0). Hence,
α+(Fi)

∼−→ spX′′↪→P′′,T ′′,+ ◦ (α ◦ ai)∗K(E(0)).
b) By applying α∗K to the glueing structural isomorphism ε : a∗2K(E(0))

∼−→ a∗1K(E(0)), we get
the isomorphism ε′′ : (α ◦ a2)∗K(E(0))

∼−→ (α ◦ a1)∗K(E(0)). This yields the canonical isomorphism
ε′′ : α+(F2)

∼−→ α+(F1) making commutative the following diagram:

α+(F2)
∼ε′′ ��

α+ ◦ a+
2 (E(0))

∼ //

∼ε′′ ��

spX′′↪→P′′,T ′′,+ ◦ (α ◦ a2)∗(E(0))
∼ spX′′↪→P′′,T ′′,+(ε′′)��

α+(F1) α+ ◦ a+
1 (E(0))

∼ // spX′′↪→P′′,T ′′,+ ◦ (α ◦ a1)∗(E(0))

(16.1.7.2.1)

855



whose horizontal isomorphisms are built just above at I.i)a).
ii) Denote by “E(0) := E(0)|]Y (0)[U(0) and by ε̂ : b∗2(“E(0))

∼−→ b∗1(“E(0)) the canonically induced by ε
isomorphism of MIC†(Y (1), Y (1),U(1)/K). We get the canonical isomorphism ε̂ : F2|U(1) ∼−→ F1|U(1)

making commutative the diagram below:

F2|U(1) ∼ //

∼ε̂ ��

b+2 (E(0)|U(0))
∼ // spY (1)↪→U(1),+ ◦ b∗2(“E(0))

∼ sp
Y (1)↪→U(1),+

(̂ε)��
F1|U(1) ∼ // b+1 (E(0)|U(0))

∼ // spY (1)↪→U(1),+ ◦ b∗1(“E(0))

(16.1.7.2.2)

whose horizontal isomorphisms are built similarly to that of 16.1.7.2.1 (because b1 and b2 are morphisms
of completely smooth frames and so we can use 12.2.4.1 and 12.2.5.6).

iii) The morphisms ε′′, ε̂ induce canonically the same morphism of the form α+(F2)|U′′ ∼−→ α+(F1)|U′′.
This means that the pair (ε′′, ε̂) is a morphism of MIC∗(X ′′,P′′, T ′′/V)×MIC∗(Y ′′,U′′/V)MIC∗(Y (1),U(1)/V).
Moreover, following 16.1.5.2 the canonical functor

(α+, |U(1)) : MIC∗(X(1),P(1), T (1)/V)→ MIC∗(X ′′,P′′, T ′′/V)×MIC∗(Y ′′,U′′/V) MIC∗(Y (1),U(1)/V)

is fully faithful. Let ε : F2
∼−→ F1 be the morphism such that (α+, |U(1))(ε) = (ε′′, ε̂). By faithfulness of

the restriction functor |U(2), this isomorphism ε : a+
2 (E(0))

∼−→ a+
1 (E(0)) satisfies the cocycle condition.

Hence, we have built the functor sp+ : MIC†(Y (•), X(•),P(•)/K)→ MIC∗(X(•),P(•), T (•)/V) by setting
spX(•)↪→P(•),T (•),+(E(0), ε) := (spX(0)↪→P(0),T (0),+(E(0)), ε).

II) Let check that the functor spX(•)↪→P(•),T (•),+ induces an equivalence of categories.
i) Since spX(0)↪→P(0),T (0),+ is faithful, then so is of spX(•)↪→P(•),T (•),+. We prove the fullness as

follow: Let (E(0), ε), (‹E(0), ε) ∈ MIC†(Y (•), X(•),P(•)/K). Set (E(0), ε) := spX(•)↪→P(•),T (•),+(E(0), ε),
(Ẽ(0), ε̃) := spX(•)↪→P(•),T (•),+(‹E(0), ε̃). Let

ψ : (E(0), ε)→ (Ẽ(0), ε̃)

be a morphism of MIC∗(X(•),P(•), T (•)/V). We keep notation of the step I) of the proof concerning
the morphisms ε′′, ε̂, ε, ε′′, ε̂ induced by ε ; similarly by adding tildes. Since X(0) is smooth, then
the functor spX(0)↪→P(0),T (0),+ of 12.2.2.6.1 is fully faithful. Let φ : E(0) → ‹E(0) be morphism such
that spX(0)↪→P(0),T (0),+(φ) = ψ. It remains to prove that φ commutes with the respective glueing data.
Consider the diagram below:

α+ ◦ a+2 (Ẽ(0))

ε̃′′��

// spX′′↪→P′′,T ′′,+ ◦ (α ◦ a2)∗(Ẽ(0))

spX′′↪→P′′,T ′′,+ (̃ε′′)

��

α+ ◦ a+2 (E(0)) //

ψ 55

ε′′

��

spX′′↪→P′′,T ′′,+ ◦ (α ◦ a2)∗(E(0))

φ 22

spX′′↪→P′′,T ′′,+(ε′′)

��

α+ ◦ a+1 (Ẽ(0)) // spX′′↪→P′′,T ′′,+ ◦ (α ◦ a1)∗(Ẽ(0))

α+ ◦ a+1 (E(0))
ψ

55

// spX′′↪→P′′,T ′′,+ ◦ (α ◦ a1)∗(E(0)),
φ

22

(16.1.7.2.3)
where the horizontal arrows toward the back are the ones canonically induced by φ or ψ. Since ψ
commutes with glueing data, the left square is commutative. The horizontal squares are commutative
by functoriality, while the commutativity of the front and back squares are by definition (see 16.1.7.2.1).
Since the five other squares of the cube 16.1.7.2.3 are commutative, then so is the right square. Since
the functor spX′′↪→P′′,T ′′,+ is faithful, this square remains commutative without spX′′↪→P′′,T ′′,+.

Similarly, using the cube deduced from 16.1.7.2.2 by functoriality, we can check the morphism
φ|]Y (0)[U(0) : E(0)|]Y (0)[U(0)→ ‹E(0)|]Y (0)[U(0) of MIC†(Y (0), Y (0),U(0)/K) commutes with glueing data.
By faithfulness of the functor (α∗, j(0)∗) (see the theorem 10.4.1.1), this yields φ commutes to glueing
data and we are done.

ii) Let (E(0), ε) ∈ MIC∗(X(•),P(•), T (•)/V). Since the functor spX(0)↪→P(0),T (0),+ is essentially surjec-
tive, then there exists E(0) ∈ MIC†(X(0),P(0), T (0)/V) together with an isomorphism

ι : spX(0)↪→P(0),T (0),+(E(0))
∼−→ E(0).
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Since the functor spX′′↪→P′′,T ′′,+ is fully faithful, then there exists an unique isomorphism ε′′ : α∗K ◦
a∗2K(E(0))

∼−→ α∗K ◦ a∗1K(E(0)) making commutative the following diagram:

α+ ◦ a+
2 (E(0))

∼ //

∼α+(ε) ��

∼
ι
// α+ ◦ a+

2 (spX(0)↪→P(0),T (0),+(E(0)))
∼ // spX′′↪→P′′,T ′′,+ ◦ α∗K ◦ a∗2K(E(0))

∼ spX′′↪→P′′,T ′′,+(ε′′)��
α+ ◦ a+

1 (E(0))
∼
ι
// α+ ◦ a+

1 (spX(0)↪→P(0),T (0),+(E(0)))
∼ // spX′′↪→P′′,T ′′,+ ◦ α∗K ◦ a∗1K(E(0))

(16.1.7.2.4)
whose horizontal right isomorphisms are built as above at I.i)a).

Set “E(0) := E(0)|]Y (0)[U(0) . Since the functor spY (1)↪→U(1),+ is fully faithful, then there exists a unique
isomorphism ε̂ : b∗2(“E(0))

∼−→ b∗1(“E(0)) making commutative the diagram below:

b+2 (E(0)|U(0))
∼
ι
//

∼ε|U(0) ��

b+2 (spX(0)↪→P(0),T (0),+(E(0))|U(0))
∼ // spY (1)↪→U(1),+ ◦ b∗2(“E(0))

∼ sp
Y (1)↪→U(1),+

(̂ε)��
b+1 (E(0)|U(0))

∼
ι
// b+1 (spX(0)↪→P(0),T (0),+(E(0))|U(0))

∼ // spY (1)↪→U(1),+ ◦ b∗1(“E(0))

(16.1.7.2.5)

Following 10.4.1.1, the canonical functor

(α∗K , |]Y (1)[U(1)) : MIC†(X(1),P(1), T (1)/V)→ MIC†(Y ′′, X ′′,P′′/V)×MIC†(Y ′′,U′′/V) MIC†(Y (1),U(1)/V)

is fully faithful. Let ε : a∗2K(E(0))
∼−→ a∗1K(E(0)) be the morphism such that (α∗K , |]Y (1)[U(1))(ε) = (ε′′, ε̂).

By faithfulness of the restriction functor |]Y (2)[U(2) , this isomorphism ε satisfies the cocycle condition.
By construction of the functor spX(•)↪→P(•),T (•),+ (see the part I), we can check that ι induces the
isomorphism: ι : spX(•)↪→P(•),T (•),+(E(0), ε)

∼−→ (E(0), ε). Hence, we are done.

Corollary 16.1.7.3. With the notations and hypotheses of the section, we have the canonical equivalence
of categories spX↪→P,T,+ : MIC†(Y,X,P/K) ∼= MIC∗(X,P, T/V).

Proof. By using the lemma 16.1.2.9 and the remark 16.1.2.10, we reduce to the case where Y (resp. Y (0))
is integral and dense in X (resp. X(0)).

I) Construction of spX↪→P,T,+.
Denote by Loc : MIC†(Y,X,P/K)→ MIC†(Y (•), X(•),P(•)/K) the canonical functor (built similarly

to 16.1.3.2). Following the descent theorem of Shiho (see [Shi07, 7.3]), this functor Loc is an equivalence
of categories. We get the functor spX↪→P,T,+ by setting

spX↪→P,T,+ := Glue ◦ spX(•)↪→P(•),T (•),+ ◦ Loc.

Moreover, following 16.1.7.2 (resp. 16.1.3.6) the functor spX(•)↪→P(•),T (•),+ (resp. Glue) is also an equiv-
alence of categories. Then so is the functor spX↪→P,T,+.

II) Let’s check now that this equivalence is canonical i.e. does not depend up to canonical isomorphism
on the morphism (Y (0), X(0),P(0), T (0))→ (Y,X,P, T ) of smooth d-frames (see the definition 12.2.1.1)
such that X(0) is integral, smooth and whose corresponding conditions of the paragraph 16.1.2.14 are
satisfied.

Let (b′, a′, f ′) : (Y ′(0), X ′(0),P′(0), T ′(0)) → (Y,X,P, T ) be a second morphism of smooth d-frames
such that X ′(0) is integral and smooth, Y ′(0) is dense in X ′(0) and whose conditions of the para-
graph 16.1.2.14 are fulfilled. Concerning this second choice, we keep the similar to 16.1.3 notations
by adding primes. We denote by spX′(•)↪→P′(•),T ′(•),+ the functor defined at 16.1.7.2 by replacing
the glueing data over X(0) by that over X ′(0). Moreover, in order to distinguish between the two
choices, denote by Loc′ : MIC∗(X,P, T/V)→ MIC∗(X ′(•),P′(•), T ′(•)/V) and Loc′ : MIC†(Y,X,P/K)→
MIC†(Y ′(•), X ′(•),P′(•)/K) the usually denoted by Loc functors. Similarly, the glueing functor of the
second choice is denoted by Glue′ : MIC∗(X ′(•),P′(•), T ′(•)/V)→ MIC∗(X,P, T/V).

By setting sp′X↪→P,T,+ := Glue′ ◦ spX′(•)↪→P′(•),T ′(•),+ ◦ Loc′, it is a question of establishing that the
two functors spX↪→P,T,+ and sp′X↪→P,T,+ are canonically isomorphic.

i) We reduce to the case where (b′, a′, f ′) : (Y ′(0), X ′(0),P′(0), T ′(0)) → (Y,X,P, T ) factors through
(Y ′(0), X ′(0),P′(0), T ′(0))→ (Y (0), X(0),P(0), T (0)).

Following de Jong ’s desingularisation theorem (of the form 10.4.1.2), there exists a projective, surjec-
tive, generically finite and etale morphism α : X ′′(0) → X ′(0) ×X X(0) with X ′′(0) smooth. As this latter
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morphism is projective, then there exists a projective and smooth morphism of the form q : P′′(0) →
P′(0) ×P P(0), a closed immersion X ′′(0) ↪→ P′′(0) such that their composition gives the composite mor-
phism X ′′(0) → X ′(0) ×X X(0) ↪→ P′(0) ×P P(0). Then we get a morphism (Y ′′(0), X ′′(0),P′′(0), T ′′(0))→
(Y,X,P, T ) which factors through (Y (0), X(0),P(0), T (0))→ (Y,X,P, T ) and (Y ′(0), X ′(0),P′(0), T ′(0))→
(Y,X,P, T ).

Since α is generically finite and etale, there exists then a divisor T̃ containing T such that ‹Y := X \ T̃
is dense in X and such that the morphism X ′′(0) → X is finite and etale outside T̃ . Following 16.1.3.4,
the functor Glue of 16.1.3.3 commute with the functors of the form (†T̃ ). Moreover, so is the functors of
the form Loc : MIC†(Y,X,P/K) → MIC†(Y (•), X(•),P(•)/K) or of the form spX(•)↪→P(•),T (•),+. Since
X \ T̃ is dense in Y , then according to 16.1.4.1, the functor extension (†T̃ ) is fully faithful. Hence, we
can suppose the morphism Y ′′(0) → Y finite and etale. Hence, we are done.

ii) a) Denote the factorization by α(0) : (Y ′(0), X ′(0),P′(0), T ′(0)) → (Y (0), X(0),P(0), T (0)). We re-
mark that the morphism α(0) induced the factorisation α(1) : (Y ′(1), X ′(1),P′(1), T ′(1))→ (Y (1), X(1),P(1), T (1))
such that, for i := 1, 2, α(0) ◦ a′i = ai ◦ α(1). Let (E(0), ε) ∈ MIC†(Y (•), X(•),P(•)/K). The glueing iso-
morphism ε induces then canonically a glueing isomorphism over α(0)∗

K (E(0)) that we denote by ε′. We
get the functor Loc(0) : MIC†(Y (•), X(•),P(•)/K) → MIC†(Y ′(•), X ′(•)/K) by setting Loc(0)(E(0), ε) :=

(α
(0)∗
K (E(0)), ε′). We have moreover the canonical isomorphism Loc(0) ◦ Loc ∼−→ Loc′. Similarly, we

build the functor Loc(0) : MIC∗(X(•),P(•), T (•)/V)→ MIC∗(X ′(•),P′(•), T ′(•)/V) and we get the canon-
ical isomorphism Loc(0) ◦ Loc ∼−→ Loc′.

b) Let E ∈ MIC†(Y,X,P/K) and (E(0), ε) := Loc(E) ∈ MIC†(Y (•), X(•),P(•)/K). Since α(0) is a
morphism of completely smooth frames, then we have the canonical isomorphism

α(0)+ ◦ spX(0)↪→P(0),T (0),+(E(0))
∼−→ spX′(0)↪→P′(0),T ′(0),+ ◦ α

(0)∗
K (E(0)).

In order to check that this latter isomorphism commutes with glueing data induced by ε, by faithfulness
of the functor |U′(1), we reduce to the case where the divisor T is empty (i.e. Y = X), which is
straightforward. Hence, we get the isomorphism

Loc(0) ◦ spX(•)↪→P(•),T (•),+(Loc(E))
∼−→ spX′(•)↪→P′(•),T ′(•),+ ◦ Loc(0)(Loc(E)). (16.1.7.3.1)

To check that spX↪→P,T,+(E) and sp′X↪→P,T,+(E) are canonically isomorphic, it is sufficient to construct a
canonical functorial isomorphism of the form Loc′ ◦ spX↪→P,T,+(E)

∼−→ Loc′ ◦ sp′X↪→P,T,+(E). Moreover,
since Loc(0)◦Loc ∼−→ Loc′ and Loc◦Glue ∼−→ id (see the proof of 16.1.3.6), the term Loc′◦spX↪→P,T,+(E)
is canonically isomorphic to the left term of 16.1.7.3.1. Similarly, Loc′ ◦ sp′X↪→P,T,+(E) is canonically
isomorphic to the right one.

Remark 16.1.7.4. With the notations of 16.1.7.3, when X is smooth, the functor spX↪→P,T,+ is by
construction (e.g. see the step II) of the proof of 16.1.7.3) canonically isomorphic to that built in the
smooth case (see 12.2.2.6.1).

16.1.7.5. With the notations of 16.1.7.3, for any E ∈ MIC†(Y,X,P/K), by construction of the functor
spX↪→P,T,+ (see the step I) of the proof of 16.1.7.3) we have the canonical isomorphism:

a+ ◦ spX↪→P,T,+(E)
∼−→ spX(0)↪→P(0),T (0),+ ◦ a∗(E). (16.1.7.5.1)

Remark 16.1.7.6. With the notations of 16.1.7.3, we will see later that a+ = a! (see Theorem 16.1.10.5.
But beware that we do not have by construction and isomorphism of the form 16.1.7.5.1 where a+

replaced by a!.

16.1.7.7. Let T ′ be a divisor containing T . Denote by Y ′ := X \ T ′, Y ′(0) := X(0) \ T ′(0), j′ : Y ′ ↪→ X,
j′(0) : Y ′(0) ↪→ X(0) the induced open immersions etc (i.e. we add primes). Consider the diagram

MIC†(Y,X,P/K)
Loc //

j′†��

MIC†(Y (•), X(•),P(•)/K)
sp
X(•)↪→P(•),T (•),+//

j′(0)†��

MIC∗(X(•),P(•), T (•)/V)
Glue //

(†T ′(0))��

MIC∗(X,P, T/V)

(†T ′)��
MIC†(Y ′, X,P/K)

Loc // (†T ′(0))MIC†(Y ′(•), X(•)/K)
sp
X(•)↪→P(•),T ′(•),+// MIC∗(X(•),P(•), T ′(•)/V)

Glue// MIC∗(X,P, T ′/V)

(16.1.7.7.1)
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where (†T ′(0)) (resp. (†T ′(0))) is the canonical functor induced by (†T ′(0)) (resp. (†T ′(0))). Since the
functors of the form spX′(0)↪→P′(0),T ′(0),+ (i.e., the functors sp+ built at 12.2.2.6.1 in the case of a com-
pletely smooth d-frame) canonically commute to the functors of the form j′† or (†T ′) (this is a special
case of 12.2.4.1), then we get the commutativity up to canonical isomorphism of the central square of
the diagram 16.1.7.7.1. Since so is two other squares (straightforward for the left square and see 16.1.3.4
for the right one), then we have the canonical isomorphism:

(†T ′) ◦ spX↪→P,T,+
∼−→ spX↪→P,T ′,+ ◦ j′†. (16.1.7.7.2)

16.1.8 The equivalence sp+

16.1.8.1 (Kedlaya contagiosity phenomena). Let X be a k-variety. Let j : Y ⊂ X and j′ : Y ′ ⊂ X be
two open immersions such that Y is k-smooth and Y ′ is included and dense in Y . The contagiosity
theorem of Kedlaya [Ked07, 5.3.7] means that the functor

(j′†, j∗) : MIC†(Y,X/K)→ MIC†(Y ′, X/K)×MIC†(Y ′,Y/K) MIC†(Y, Y/K) (16.1.8.1.1)

is an equivalence of categories.

Lemma 16.1.8.2. With the notations of the section 16.1.5, the functor sp
X↪→P,T̃ ,+

built in 16.1.7.3

induces the equivalence of categories: sp
X↪→P,T̃ ,+

: MIC†(‹Y ⊂ Y,X/K) ∼= MIC∗(X,P, T̃ ⊃ T/V), where

MIC†(‹Y ⊂ Y,X/K) the essential image of the fully faithful functor j̃† : MIC†(Y,X/K)→ MIC†(‹Y ,X/K)
(see 10.4.3.1) and the second category is defined at 16.1.6.7.

Proof. Let E ∈ MIC†(Y,X/K), ‹E := j̃†E ∈ MIC†(‹Y ⊂ Y,X/K), and Ẽ := sp
X↪→P,T̃ ,+

‹E. Let G :=

E|(Y, Y ) ∈ MIC†(Y, Y/K) be the convergent isocrystal on Y induced by restriction from E, and ‹G :=‹E|(‹Y , Y ) ∈ MIC†(‹Y , Y/K) be the induced restriction by an open immersion. We have the canonical

isomorphism Ẽ |U ∼−→ sp
Y ↪→U,T̃∩U,+(‹G)

16.1.7.7.2
∼−→ (†T̃ ∩ U) ◦ spY ↪→U,+(G). Hence, Ẽ ∈ MIC∗(X,P, T̃ ⊃

T/V). In other words, we get the commutative (up to canonical isomorphism) diagram below

MIC†(‹Y ⊂ Y,X/K)
sp
X↪→P,T̃ ,+��

� � // MIC†(‹Y ,X/K)
sp
X↪→P,T̃ ,+16.1.7.3 ��

MIC∗(X,P, T̃ ⊃ T/V)
� � // MIC∗(X,P, T̃ /V).

(16.1.8.2.1)

Since the bottom, top and right functor of the diagram 16.1.8.2.1 are fully faithful then so is the left one.
It remains to prove its essential surjectivity. Let Ẽ ∈ MIC∗(X,P, T̃ ⊃ T/V). Since the right functor
sp
X↪→P,T̃ ,+

of the diagram 16.1.8.2.1 is essentially surjective (see 16.1.7.3), then there exists an isocrystal‹E of MIC†(‹Y ,X/K) such that Ẽ ∼−→ sp
X↪→P,T̃ ,+

(‹E). Denote by ‹G := ‹E|(‹Y , Y ) ∈ MIC†(‹Y , Y/K).

We get Ẽ |U ∼−→ sp
Y ↪→U,T̃∩U,+(‹G). By hypothesis, there exists G ∈ MIC††(Y,U/V) together with an

isomorphism of the form Ẽ |U ∼−→ (†T̃ ∩ U)(G). Following 12.2.2.6.1, there exists G ∈ MIC†(Y, Y,U/K)
together with an isomorphism G ∼−→ spY ↪→U,+(G). Hence,

sp
Y ↪→U,T̃∩U,+(‹G)

∼−→ (†T̃ ∩ U)(spY ↪→U,+(G))
16.1.7.7.2
∼−→ sp

Y ↪→U,T̃∩U,+(G|(‹Y , Y )).

Since the functor sp
Y ↪→U,T̃∩U,+ is fully faithful, we get the isomorphism ‹E|(‹Y , Y )

∼−→ G|(‹Y , Y ), i.e.

(‹E,G) is an object of MIC†(‹Y ,X/K) ×
MIC†(Ỹ ,Y/K)

MIC†(Y, Y/K). Hence, by using the theorem of

contagiosity of Kedlaya (see 16.1.8.1), ‹E comes from an isocrystal of MIC†(Y,X/K), i.e. ‹E ∈ MIC†(‹Y ⊂
Y,X/K).

Remark 16.1.8.3. The fully faithful functor (†T̃ ) of 16.1.4.1 factors through:

(†T̃ ) : MIC∗(X,P, T/V)→ MIC∗(X,P, T̃ ⊃ T/V). (16.1.8.3.1)

However, this is not obvious that it is essentially surjective (but this is a consequence of the theorem
16.1.8.4 below). The category MIC∗(X,P, T̃ ⊃ T/V) (and not the essential image of 16.1.8.3.1) was
defined so that we get almost for free the equivalence of categories of 16.1.8.2.
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Theorem 16.1.8.4. Let (Y,X,P, T ) be a smooth d-frame (see the definition 12.2.1.1). We have a
canonical equivalence of categories denoted by spX↪→P,T,+ : MIC†(Y,X/K) ∼= MIC∗(X,P, T/K).

Proof. With the lemma 16.1.2.9 (and the remark 16.1.2.10), we can suppose Y integral and dense in X.
By using de Jong ’s desingularisation theorem, there exists a divisor T̃ containing T and a diagram of
the form 16.1.5.0.1 satisfying the required conditions of 16.1.5 and such that moreover X(0) is smooth.

With the notations of the subsection 16.1.5, we define the functor spX↪→P,T,+ as the one making
commutative the diagram below:

MIC†(Y,X/K)
(a∗ ,̃j†) //

spX↪→P,T,+��

MIC†(Y (0), X(0)/K)×
MIC†(Ỹ (0),X(0)/K)

MIC†(‹Y ⊂ Y,X/K)

sp
X(0)↪→P(0),T (0),+

×sp
X↪→P,T̃ ,+��

MIC∗(X,P, T/V) MIC∗(X(0),P(0), T (0)/V)×
MIC∗(X(0),P(0),T̃ (0)/V)

MIC∗(X,P, T̃ ⊃ T/V),
Glue
oo

(16.1.8.4.1)
whose bottom functor is the equivalence of categories built at 16.1.6.8.2 in the proof of Theorem 16.1.6.8.
Following 10.4.3.2 (resp. 16.1.8.2, resp. 12.2.2.6.1), so is the top functor (a∗, j̃†) (resp. the right functor
sp
X↪→P,T̃ ,+

, resp. the right functor spX(0)↪→P(0),T (0),+). This yields the left functor of 16.1.8.4.1 is an
equivalence of categories.

It remains to prove that this functor does not depend on the choice of the a diagram of the form
16.1.5.0.1 and satisfying the required conditions. First, lLet us consider the independance in T̃ . Let T̃ ′ be
a second divisor such that a−1(X \ T̃ ′)→ (X \ T̃ ′) is finite and etale. By considering T̃ ∪ T̃ ′ if necessary,
we can suppose T̃ ′ ⊃ T̃ . Denote by j̃′ : X \ T̃ ′ ⊂ X the canonical inclusion. Following 16.1.7.7.2, we
have the canonical isomorphisms sp

X↪→P,T̃ ′,+
◦ j̃′† ∼−→ (†T̃ ′) ◦ sp

X↪→P,T̃ ,+
. Moreover, following 16.1.6.8

(and its proof), we have the canonical isomorphisms Loc ◦ Glue ∼−→ id, with is Loc = (a+, (†T̃ )) or
Loc = (a+, (†T̃ ′)) and the quasi-inverse functor Glue (see 16.1.6.8.2). We get the canonical isomorphism
Glue ◦ (id×(†T̃ ′))

∼−→ Glue. Using the canonical isomorphisms of 16.1.7.7.2 and 12.2.4.1.2, this yields
the independance from T̃ .

Denote by η = (b, a, f) : (Y (0), X(0),P(0)) → (Y,X,P, T ) the morphism of d-frames that we have
chosen and make a second choice: Let η′ = (b′, a′, f ′) : (Y ′(0), X ′(0),P′(0))→ (Y,X,P, T ) be a morphism
of d-frames such that denoting by ‹Y ′(0) := Y ′(0) \ f ′−1(T̃ ), we get a diagram of the form 16.1.5.0.1
diagram where we replace “(0)” by “ ′(0)” and which satisfies the required conditions of 16.1.5. Sup-
pose moreover X ′(0) is smooth. Similarly to in the step II.i) of the proof of 16.1.7.3, desingularising
X ′(0) ×X X(0) (by using de Jong theorem) and increasing T̃ if necessary, we reduce to suppose that we
have the strict morphisms of smooth d-frames τ : (Y ′(0), X ′(0),P′(0), T ′(0))→ (Y (0), X(0),P(0), T (0)) and
τ̃ : (‹Y ′(0), X ′(0),P′(0), T̃ ′(0))→ (‹Y (0), X(0),P(0), T̃ (0)) (which factors the diagram 16.1.5.0.1 where we re-
place “(0)” by “ ′(0)”). We have the canonical isomorphism η+◦spX(0)↪→P(0),T (0),+

∼−→ spX′(0)↪→P′(0),T ′(0),+◦
τ∗ (use the commutation with extraordinary inverse image and dual functors of 12.2.4.1 12.2.5.6). Since
Loc ◦ Glue ∼−→ id with Loc = (η+, (†T̃ )) or Loc = (η′+, (†T̃ )), we check the canonical isomorphism
Glue ◦ (η+ × id)

∼−→ Glue. By using 12.2.4.1.2, we are done.

16.1.8.5. It follows from the commutative up to canonical isomorphism diagram 16.1.8.4.1 that we get
the commutative up to canonical isomorphism diagram:

MIC†(Y,X/K)
j̃†

∼=
//

spX↪→P,T,+∼=
��

MIC†(‹Y ⊂ Y,X/K)

sp
X↪→P,T̃ ,+

∼=
��

MIC∗(X,P, T/V)
(†T̃ ) // MIC∗(X,P, T̃ ⊃ T/V).

(16.1.8.5.1)

This implies that the bottom functor (†T̃ ) is an equivalence of categories.

Before establishing via the proposition 16.1.11.6 that this equivalence of categories commutes with
the duality, Let us check first its commutation to inverse images via the proposition 16.1.8.6:

Proposition 16.1.8.6. Let θ : (Y ′, X ′,P′, T ′) → (Y,X,P, T ) be a morphism of smooth d-frames. We
have the canonical isomorphism:

spX′↪→P′,T ′,+ ◦ θ∗
∼−→ θ+ ◦ spX↪→P,T,+. (16.1.8.6.1)
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Proof. Set θ = (β, α, φ). With the lemma 16.1.2.9 (and the remark 16.1.2.10), we reduce to the case
where Y (resp. Y ′) is integral and dense in X (resp. X ′). When X and X ′ are smooth, this the-
orem of commutation is already well known (see 12.2.4.1.2). To obtain the general case, the idea is
to come down to the smooth case thanks to theorem of full faithfulness 16.1.5.2 as follows: by us-
ing de Jong ’s desingularisation theorem, there exists a morphism of smooth d-frames of the form
η = (b, a, f) : (Y (0), X(0),P(0), T (0))→ (Y,X,P, T ) such that X(0) is smooth, f is projective and smooth,
a is projective, surjective, generically finite and etale, f−1(T ) = T (0) and T (0) ∩ X(0) is a (strict nor-
mal crossing) divisor of X(0). Similarly by using the de Jong ’s desingularisation theorem of the form
10.4.1.2 (applied to X ′ ×X X(0) element of (Y ′, X ′,P′, T ′) ×(Y,X,P,T ) (Y (0), X(0),P(0), T (0)) and to its
divisor complementary to Y ′ ×Y Y (0)), we build a frame (Y ′(0), X ′(0),P′(0), T ′(0)) smooth with X ′(0)

smooth and two morphisms of the form η′ = (b′, a′, f ′) : (Y ′(0), X ′(0),P′(0), T ′(0))→ (Y ′, X ′,P′, T ′) and
θ(0) = (β(0), α(0), φ(0)) : (Y ′(0), X ′(0),P′(0), T ′(0)) → (Y (0), X(0),P(0), T (0)) such that θ ◦ η′ = η ◦ θ(0)

and such that f ′ is projective and smooth, a′ is projective, surjective, generically finite and etale,
(f ′)−1(T ′) = T ′(0) and T ′(0) ∩ X ′(0) is a (strict normal crossing) divisor of X ′(0). The diagram illus-
trates our notation:

Y (0)

b��

// X(0)

a��

// P(0)

f

��

Y ′(0) //

β(0) 77

b′

��

X ′(0) //

α(0) 77

a′

��

P′(0)

φ(0) 77

f ′

��
Y // X // P.

Y ′
β

77

// X ′
α

66

// P′
φ

77

(16.1.8.6.2)

By full faithfulness of the localisation outside a divisor functor (see the theorem 16.1.4.1), increasing
T and T ′ if necessary, it follows from 16.1.8.5 that we reduce to the case where b and b′ are finite and
etale. Set U := P \ T and U′ := P′ \ T ′ and let θ̂ : (Y ′, Y ′,U′) → (Y, Y,U) be the morphism of smooth
d-frames induced by θ. Following the case of the smooth partial compactification (use 12.2.4.1 and
12.2.5.6), we have the canonical isomorphism spY ′↪→U′,+ ◦ θ̂∗

∼−→ θ̂+ ◦ spY ↪→U,+. Hence:

|U′◦spX′↪→P′,T ′,+◦θ∗
∼−→ spY ′↪→U′,+◦θ̂∗◦|U

∼−→ θ̂+◦spY ↪→U,+◦|U
∼−→ |U′◦θ+◦spX↪→P,T,+. (16.1.8.6.3)

Moreover, following 16.1.5.2, the functor (η′+, |U′) is fully faithful. Hence, it remains then to build a
compatible with 16.1.8.6.3 isomorphism of the form η′+ ◦ spX′↪→P′,T ′,+ ◦ θ∗

∼−→ η′+ ◦ θ+ ◦ spX↪→P,T,+.
Since X(0) and X ′(0) are smooth, then spX′(0)↪→P′(0),T ′(0),+ ◦ (θ(0))∗

∼−→ (θ(0))+ ◦ spX(0)↪→P(0),T (0),+ (use
12.2.4.1 and 12.2.5.6). Moreover, following 16.1.7.5, since b and b′ are finite and etale, then we have the
isomorphisms η+◦spX↪→P,T,+

∼−→ spX(0)↪→P(0),T (0),+◦η∗ and η′+◦spX′↪→P′,T ′,+
∼−→ spX′(0)↪→P′(0),T ′(0),+◦

η′∗. This yields the canonical isomorphisms

η′+ ◦ spX′↪→P′,T ′,+ ◦ θ∗
∼−→ spX′(0)↪→P′(0),T ′(0),+ ◦ η′∗ ◦ θ∗

∼−→ spX(0)↪→P(0),T (0),+ ◦ θ(0)∗ ◦ η∗ ∼−→ θ(0)+ ◦ spX(0)↪→P(0),T (0),+ ◦ η∗
∼−→ θ(0)+ ◦ η(0)+ ◦ spX↪→P,T,+

∼−→ η(0)+ ◦ θ+ ◦ spX↪→P,T,+. (16.1.8.6.4)

Hence we are done.

16.1.9 Canonical independance in completely smooth d-frame
In this section, whenX is smooth we study the independance inP and T of the category (F -)MIC††(X,P, T/K).

Lemma 16.1.9.1. Let P be a smooth S-formal scheme, T ⊂ T ′ two divisors of P and E a coherent
(F -)D†P(†T )Q-module.

(a) There exists a structure of coherent (F -)D†P(†T ′)Q-module on E extending its structure of (F -
)D†P(†T )Q-module.

(b) The canonical morphism E → D†P(†T ′)Q ⊗D†
P

(†T )Q
E is an isomorphism.
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In particular, the existence of such a structure is local on P and such coherent (F -)D†P(†T ′)Q-module is
unique if it exists.

Proof. This follows from 8.7.6.11.

Lemma 16.1.9.2. Let P be a smooth separated S-formal scheme, X,X ′ be two smooth closed sub-
schemes of P , T, T ′ be two divisors of P such that T ∩ X = T ′ ∩ X ′. Let \ ∈ {coh, ovcoh, oc}. We
get then the equalities: (F -)LM−−→Q,\(X,P, T ) = (F -)LM−−→Q,\(X

′,P, T ′) and (F -)MIC(•)(X,P, T/K) =

(F -)MIC(•)(X ′,P, T ′/K)

Proof. Since the other equality is checked similarly, let us only prove the equality (F -)LM−−→Q,\(X,P, T ) =

(F -)LM−−→Q,\(X
′, P, T ′). 1) Suppose T = T ′. Let E(•) ∈ (F -)LM−−→Q,\(X,P, T ). We have to prove that E(•)

has support in X ′. We have to check that the canonical morphism RΓ†X′(E(•))→ E(•) is an isomorphism
(see 13.1.4.8). Since E(•) → (†T )E(•) is an isomorphism, then we get the isomorphisms

RΓ†X(E(•))
∼−→ RΓ†X(†T )(E(•))

∼−→
13.1.5.1.1

RΓ†X′(
†T )(E(•))

∼−→ RΓ†X′(E
(•)). (16.1.9.2.1)

2) Suppose X = X ′ and T ⊂ T ′. Since this is of local nature in P, we can suppose P affine and
X is integral. Let us choose then u : X ↪→ P is a closed immersion of smooth formal S-schemes which
is a lifting of X ↪→ P . Either T ∩ X is a divisor of X or T contains X. When T contains X, the
considered categories are reduced to the zero object (this is a consequence of 8.7.6.11). Suppose now
that Z := T ∩X is a divisor of X.

Let E(•) be an object of (F -)LM−−→Q,\(X,P, T ). Following the Berthelot-Kashiwara theorem (see

9.3.5.13 or respectively 15.3.8.26), the functor u(•)
T+ (resp. u

(•)
T ′+) induces an equivalence of categories

between (F -)LM−−→Q,\(X,X, Z) and (F -)LM−−→Q,\(X,P, T ) (resp. (F -)LM−−→Q,\(X,P, T
′)). Following 9.2.4.19,

the functors u(•)
T+ and forgT,T ′◦u

(•)
T ′+ are isomorphic. Hence, (F -)LM−−→Q,\(X,P, T ) = (F -)LM−−→Q,\(X,P, T

′).
3) Since X \ T = X \ (T ∪ T ′) = X ′ \ (T ∪ T ′) = X ′ \ T ′, then to check the general case we deduce

to the two preceding cases.

Lemma 16.1.9.3. Let f : P′ → P be a morphism of separated and smooth S-formal schemes, X be a
smooth closed subscheme of P ′ such that the morphism induced X → P is a closed immersion, Y an
open set of X, T be a divisor of P (resp. T ′ be a divisor of P ′) such that Y = X \T (resp. Y = X \T ′).
Let \ ∈ {coh, ovcoh, oc}.

(a) For any E(•) ∈ (F -)LM−−→Q,\(X,P, T ), for any E ′(•) ∈ (F -)LM−−→Q,\(X, P
′, T ′), for any j ∈ Z \ {0},

Hj(RΓ†Xf
(•)!(E(•))) = 0, Hj(f

(•)
+ (E ′(•))) = 0.

(b) The functors RΓ†Xf
(•)! and f (•)

+ induce then quasi-inverse equivalences between the categories (F -)LM−−→Q,\(X,P, T )

and (F -)LM−−→Q,\(X, P
′, T ′) (resp. between (F -)MIC(•)(X,P, T/K) and (F -)MIC(•)(X,P′, T ′/K)).

Proof. In order to lighten notations, the case with Frobenius structure being similar, we avoid indicating
“(F -)” in all categories. It is harmless to suppose P and P ′ integral. Similarly, since X is smooth and
since modules have support in X, then we reduce to the case where X integral. We distinguish then two
case: either Y is empty or T ∩X = T ′ ∩X is a divisor of X. The first case is straightforward since the
categories are in this case null. Let us consider now the second case. In this case f−1(T ) is a divisor of
P ′. By 16.1.9.2, since f−1(T ) ∩X = T ′ ∩X, then we can suppose T ′ = f−1(T ).

Let us fix (Pα)α∈Λ an affine open covering of P. We denote by Xα := X ∩ Pα, P′α := f−1(Pα), For
any α ∈ Λ, let us choose Xα some smooth formal S-schemes which is a lifting of Xα Let u′α : Xα → P′α
some liftings of Xα → P ′α We denote by fα : P′α → Pα the morphism induced by f . We set uα :=
fα ◦ u′α : Xα → Pα. Remark when we will have to check the commutations to glueing data, we have to
fix other liftings (e.g. of Xα∩Xβ , Xα∩Xβ ∩Xγ) similarly to 9.3.7, but we leave the details to the reader
as an exercise. Since the overcoherence (after any base change) is stable under proper pushforward and
extraordinary pullbacks, then Theorem 9.3.7.12 still holds replacing the coherence by the overcoherence
(after any base change).
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1) i) We have the canonical isomorphisms:

RΓ†Xf
(•)!(E(•))|P′α

∼−→ RΓ†Xαf
(•)!
α (E(•)|Pα)

13.2.1.5.1
∼−→ u

′(•)
α+ ◦u′(•)!α ◦f (•)!

α (E(•)|Pα)
∼−→ u

′(•)
α+ ◦u(•)!

α (E(•)|Pα).
(16.1.9.3.1)

Since this is local on P′, since E(•) has in support in X, then by using Berthelot-Kashiwara theorem (see
9.3.5.13 or respectively 15.3.8.26) this yields, for any integer j 6= 0, we have Hj(RΓ†Xf

(•)!(E(•))) = 0 and
RΓ†Xf

(•)!(E(•)) ∈ LM−−→Q,\(X, P
′, T ′).

ii) The equivalence of categories u(•)!
0 : LM−−→Q,\(X,P, T ) ∼= LM−−→Q,\((Xα)α∈Λ, T ∩ X) of 9.3.7.12.(a)

is defined by setting u
(•)!
0 (E(•)) = (u

(•)!
α (E(•)|Pα))α, this latter is endowed with its canonical glue-

ing data. Similarly with of primes. Moreover, by applying u
′(•)!
α ◦→l

∗
Q to 16.1.9.3.1, via the theo-

rem Berthelot-Kashiwara (see 9.3.5.13 or respectively 15.3.8.26), we get the canonical isomorphism
u
′(•)!
α (RΓ†Xf

(•)!(E(•))|P′α)
∼−→ u

(•)!
α (E(•)|Pα), this isomorphism commuting to the respective glueing

data. Then we have the commutative diagram (up to canonical isomorphism):

LM−−→Q,\(X,P, T )
u

(•)!
0

∼=
//

RΓ†
X
f(•)!

��

LM−−→Q,\((Xα)α∈Λ, T ∩X)

LM−−→Q,\(X, P
′, T ′)

u
′(•)!
0

∼=
// LM−−→Q,\((Xα)α∈Λ, T

′ ∩X).

(16.1.9.3.2)

2) i) Let E ′(•) ∈ LM−−→Q,\(X, P
′, T ′). Following the theorem of Berthelot-Kashiwara (see 9.3.5.13 or

respectively 15.3.8.26), since E ′(•)|P′α has its support in Xα, then u′!α(E ′(•)|P′α) ∈ LM−−→Q,coh(∗‹D(•)
Xα

(T ′ ∩
Xα)) and we have the isomorphism: E ′(•)|P′α

∼−→ u
′(•)
α+ ◦ u

′(•)!
α (E ′(•)|P′α). Hence we get the isomorphism

f
(•)
+ (E ′(•))|Pα

∼−→ f
(•)
α+(E ′(•)|P′α)

∼−→ u
(•)
α+ ◦u′!α(E ′(•)|P′α). Since this is local on P, this yields, for j 6= 0,

Hj(f
(•)
+ (E ′(•))) = 0 and f (•)

+ (E ′(•)) ∈ LM−−→Q,coh(X,P, T ).

ii) The equivalence of categories u′(•)0+ : LM−−→Q,coh((Pα)α∈Λ, T
′ ∩ X) ∼= LM−−→Q,coh(X, P′, T ′) of b is

defined by (E(•)
α )α 7→ (u

′(•)
α+ (E(•)

α ))α, where (u
′(•)
α+ (E(•)

α ))α is endowed with a canonical glueing data.
Similarly without primes. This yields the commutative canonical diagram (up to canonical isomorphism):

LM−−→Q,coh((Xα)α∈Λ, T ∩X)
u

(•)
0+

∼=
// LM−−→Q,coh(X,P, T )

LM−−→Q,coh((Xα)α∈Λ, T
′ ∩X)

u
′(•)
0+

∼=
// LM−−→Q,coh(X, P′, T ′).

f
(•)
+

OO
(16.1.9.3.3)

3) Since the functors u(•)!
0 and u(•)

0+ are quasi-inverse (see 9.3.7.12), via the commutative diagrams (up
to canonical isomorphism) 16.1.9.3.2 and 16.1.9.3.3, this yields the functors RΓ†Xf

(•)! and f
(•)
+ induce

quasi-inverse equivalences between the categories LM−−→Q,coh(X,P, T ) and LM−−→Q,coh(X, P′, T ′).
4) Concerning the equivalence of categories between MIC(•)(X,P, T/K) and MIC(•)(X,P′, T ′/K),

we proceed in the same way: We replace respectively in the proof the category LM−−→Q,coh((Xα)α∈Λ, T ∩X)

by MIC(•)((Xα)α∈Λ, T ∩X/V) and the category LM−−→Q,coh(X,P, T ) by MIC(•)(X,P, T/V) and similarly
with primes (and replace the use of 9.3.7.12 by that of 12.2.2.5).

Notation 16.1.9.4. Let f : P′ → P be a morphism of separated and smooth S-formal schemes, X be
a smooth closed subscheme of P ′ such that the morphism induced X → P is a closed immersion, Y an
open set of X, T be a divisor of P (resp. T ′ be a divisor of P ′) such that Y = X \T (resp. Y = X \T ′).

Let E ∈ Db
coh(D†P(†T )Q. Let E(•) ∈ LD−→

b
Q,coh(∗‹D(•)

P/S(T )) such that→l
∗
QE

(•) ∼−→ E (see notation 9.1.6.1).
Then we write

RΓ†Xf
(•)!(E) :=→l

∗
Q ◦ RΓ†X ◦ f

(•)!(E(•)).

Beware that since f !(E) is not in general coherent (if f is not smooth and E is not overcoherent), then
RΓ†X(f !(E)) has a priori no meaning.
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Corollary 16.1.9.5. We keep notation 16.1.9.4.

(a) For any E ∈ (F -)Coh(X,P, T ), for any E ′ ∈ (F -)Coh(X, P′, T ′), for any j ∈ Z \ {0},

Hj(RΓ†Xf
!(E)) = 0, Hj(f+(E ′) = 0.

(b) The functors RΓ†Xf
! and f+ induce then quasi-inverse equivalences between the categories (F -)Coh(X,P, T )

and (F -)Coh(X, P′, T ′) (resp. between (F -)MIC††(X,P, T/K) and (F -)MIC††(X,P′, T ′/K)).

Remark 16.1.9.6. The lemma 16.1.9.3 will have a variation at 16.2.7.6 in the case of isocrystals.

16.1.10 Isomorphism between inverse images and extraordinary inverse im-
ages of partially overcoherent isocrystals

Lemma 16.1.10.1. Consider the commutative diagram below

P′(0)

f ′��

φ(0)

// P(0)

f��
P′

φ // P,

(16.1.10.1.1)

where φ and φ(0) are proper morphisms of smooth formal S-schemes, f and f ′ are smooth morphisms
of smooth formal S-schemes. Let T be a divisor of P such that T ′ := φ−1(T ) is a divisor of P ′. We
set T (0) := f−1(T ) and T ′(0) := f ′−1(T ′). Let E ′(•) ∈ Db

coh(D†P′(†T ′)Q). Hence, we get the canonical

adjunction morphisms: φ(0)
+ ◦f ′!(E ′(•))→ f ! ◦φ+(E ′(•)) and f+ ◦φ(0)

+ (E ′(•))→ φ+ ◦f ′+(E ′(•)). Moreover,
when the diagram 16.1.10.1.1 is cartesian, these two morphisms are isomorphisms.

Proof. By using the isomorphism of relative duality of 9.4.5.2.1, we construct the second adjunction
morphism from the first one by duality. Hence, we reduce to treat the first adjunction morphism. Let
P′′ := P′×P P(0), ι : P′(0) → P′′, f ′′ : P′′ → P′ and φ′′ : P′′ → P(0) the canonical morphisms. Since φ′′
and φ(0) are proper, ι then so is. Hence, we have the adjunction morphism ι+ ◦ ι! → id (see 9.4.5.5).

Since f ′′ is smooth, then the functor f ′′(•)! preserves the coherence (see 9.4.1.7). Hence, via the
equivalence of categories→l

∗
Q of 8.7.5.4 (i.e. of the form LD−→

b
Q,coh(‹D(•)

P/S(T )) ∼= Db
coh(D†

P/S]
(T )Q)) we get

the transitivity isomorphism: f ′!(E ′(•)) ∼−→ ι! ◦ f ′′!(E ′(•)) (see 9.2.1.14 and 9.2.1.24). Since f ′ is smooth,
this yields that ι! ◦ f ′′!(E ′(•)) is coherent. Since ι is proper, following the proposition 13.2.3.7 this yields
we have the canonical isomorphism ι+ ◦ ι! ◦ f ′′!(E ′(•))→ f ′′!(E ′(•)). Hence, we get:

φ
(0)
+ ◦ f ′!(E ′(•))

∼−→ φ′′+ ◦ ι+ ◦ ι! ◦ f ′′!(E ′(•))→ φ′′+ ◦ f ′′!(E ′(•))
∼−→ f ! ◦ φ+(E ′(•)).

When the diagram 16.1.10.1.1 is cartesian, ι is an isomorphism and the adjunction morphism ι+ ◦ ι! → id
is an isomorphism. Hence, we get the last assertion.

Notation 16.1.10.2 (Finite and etale outside singularities case). Let θ = (β, α, φ) : (Y ′, X ′,P′, T ′) →
(Y,X,P, T ), η = (b, a, f) : (Y (0), X(0),P(0), T (0))→ (Y,X,P, T ), θ(0) = (β(0), α(0), φ(0)) : (Y ′(0), X ′(0),P′(0), T ′(0))→
(Y (0), X(0),P(0), T (0)) and η′ = (b′, a′, f ′) : (Y ′(0), X ′(0),P′(0), T ′(0)) → (Y ′, X ′,P′, T ′) four morphisms
of smooth d-frames such that θ ◦ η′ = η ◦ θ(0). We get then the rectangular parallelepiped of 16.1.8.6.2.

In order to give a meaning to the notion of the direct image (on the formal side), we suppose that the
four rectangle of 16.1.8.6.2 (i.e., the faces of the front side, of the back side, of the top, bottom) satisfy
the hypotheses of 16.1.2.14.1, i.e. they are “finite and etale outside singularities morphisms of d-frames”

Lemma 16.1.10.3. With the notations and hypotheses of 16.1.10.2, for any E ′ ∈ MIC††(X ′,P′, T ′/K),
we have the functorial in E ′ canonical morphisms:

θ
(0)
+ ◦ η′!(E ′)→ η! ◦ θ+(E ′(•)), η+ ◦ θ+(E ′(•))→ θ

(0)
+ ◦ η′+(E ′). (16.1.10.3.1)

When the left face of 16.1.8.6.2 is cartesian, both morphisms are isomorphisms.
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Proof. Via the isomorphism of relative duality (see 9.4.5.2.1) and of biduality (see 8.7.7.3), the second
morphism is build by applying the dual functor to the first. We define the first morphism as equal to
the composition:

θ
(0)
+ ◦ η′!(E ′) = φ

(0)
+ ◦ RΓ†

X′(0) ◦ f ′!(E ′)→ φ
(0)
+ ◦ RΓ†

(φ(0))−1(X(0))
◦ f ′!(E ′) ∼−→

13.2.1.4.2

RΓ†
X(0) ◦ φ

(0)
+ ◦ f ′!(E ′) −→

16.1.10.1
RΓ†

X(0) ◦ f ! ◦ φ+(E ′) = η! ◦ θ+(E ′(•)). (16.1.10.3.2)

Suppose now that the left face of 16.1.8.6.2 is cartesian and let us check that the composite morphism
16.1.10.3.2 becomes an isomorphism. Thanks to 8.7.6.11, we reduce to the case where T is empty, i.e.,
the face of the middle of 16.1.8.6.2 is equal to the left one and is in particular cartesian. We get a similar
to 16.1.8.6.2 commutative diagram where P′(0) is replaced by P′×P P(0) (indeed, we have a canonically
induced closed immersion: X ′ ×X X(0) ↪→ P′ ×P P(0)). Then denote by ι : P′(0) → P′ ×P P(0) the
canonical morphism.

Since ι is proper (because the morphisms f , f ′, φ, φ(0) are proper), following the lemma 16.1.2.11, ι+
and ι! induce quasi-inverse equivalences between MIC††(X ′(0),P′(0)/K) and MIC††(X ′(0),P′×PP(0)/K).
We reduce therefore to the case where P′(0) = P′ ×P P(0). In this case, following 16.1.10.1, the last
morphism of 16.1.10.3.2 is an isomorphism. Moreover, (φ(0))−1(X(0)) = P ′ ×P X(0). Moreover, since
E ′ has its support in X ′, f ′!(E ′) has its support in (f ′)−1(X ′) = X ′ ×P P (0). Since (P ′ ×P X(0)) ∩
(X ′ ×P P (0)) = X ′ ×X X(0) = X ′(0), this yields RΓ†

(φ(0))−1(X(0))
◦ f ′!(E ′) has its support in X ′(0). The

first morphism of 16.1.10.3.2 is then an isomorphism. Hence we are done.

Lemma 16.1.10.4. Let θ = (β, α, φ) : (Y ′, X ′,P′, T ′) → (Y,X,P, T ) be a strict morphism of smooth
d-frames such that φ is proper and smooth, α is proper, surjective and β is finite and etale. The functor
θ+ : MIC††(X ′,P′, T ′/K)→ MIC††(X,P, T/K) is a left adjoint functor of θ+.

Proof. 0) With the lemma 16.1.2.9 (and the remark 16.1.2.10), we reduce to the case where Y (resp.
Y ′) is integral and dense in X (resp. X ′). By using de Jong ’s desingularisation theorem, then
there exists a completely smooth d-frame (Y (0), X(0),P(0), T (0)) together with a strict morphism η =
(b, a, f) : (Y (0), X(0),P(0), T (0)) → (Y,X,P, T ) such that f is projective and smooth, a is projective,
surjective, generically finite and etale, and T (0) ∩X(0) is a (strict normal crossing) divisor of X(0).

Moreover, following 16.1.4.1, for any divisor T̃ ′ containing T ′ and such that X ′ \ T̃ ′ is dense in
Y ′, the functor (†T̃ ′) is fully faithful. Hence, increasing T if necessary (and using 13.2.1.4), we can
suppose that b is finite and etale. Set Y ′(0) := Y ′ ×Y Y (0), X ′′(0) := X ′ ×X X(0) P′′(0) := P′ ×P

P(0). Denote by $ : X ′(0) → X ′′(0) the normalisation map (which is the identity over Y ′(0)). Since
X ′′(0) is an integral k-variety, then $ is finite. Hence, there exists a strict morphism of d-frame of
the form (Y ′(0), X ′(0),P′(0), T ′(0)) → (Y ′(0), X ′′(0),P′′(0), T ′′(0)) such that P′(0) → P′′(0) is projective
and smooth. Let θ(0) = (β(0), α(0), φ(0)) : (Y ′(0), X ′(0),P′(0), T ′(0)) → (Y (0), X(0),P(0), T (0)) and η′ =
(b′, a′, f ′) : (Y ′(0), X ′(0),P′(0), T ′(0))→ (Y ′, X ′,P′, T ′) be the strict morphisms of frames induced by the
projections. Then we are in the context of 16.1.10.2 with moreover X(0) smooth, X ′(0) normal and the
left face of the diagram of 16.1.8.6.2 cartesian.

1) Construction of the morphism θ
(0)
+ ◦ θ(0)+ → id.

Since α(0) is proper and surjective with X(0) smooth and X ′(0) normal, since β(0) is finite and
etale, Tsuzuki has built in this context (see the section [Tsu02, 5]), the pushforward functor of the form
θ

(0)
∗ : MIC†(Y ′(0), X ′(0)/K)→ MIC†(Y (0), X(0)/K) which is right and left adjoint to the pullback functor

(θ(0))∗. To lighten the notations, we set sp+ := spX(0)↪→P(0),T (0),+ and sp′+ := spX′(0)↪→P′(0),T ′(0),+. Let
E(0) ∈ MIC†(Y (0), X(0)/K), E′(0) ∈ MIC†(Y ′(0), X ′(0)/K).

i) Since sp+ is fully faithful and since θ(0)
∗ is right adjoint of (θ(0))∗, we get the canonical functorial

isomorphism in E(0) and E′(0):

HomMIC†(Y ′(0),X′(0)/K)((θ
(0))∗(E(0)), E′(0))

∼−→ HomMIC††(X(0),P(0),T (0)/K)(sp+(E(0)), sp+ ◦ θ
(0)
∗ (E′(0)))

ii) Following 16.1.8.6, we have the isomorphism sp′+ ◦ (θ(0))∗
∼−→ (θ(0))+ ◦ sp+. Moreover, following

16.1.2.17.b, the functor θ(0)
+ is right adjoint to (θ(0))+. Since the functor sp′+ is fully faithful, using these

two facts the functorial in E(0) and E′(0) canonical isomorphism:

HomMIC†(Y ′(0),X′(0)/K)((θ
(0))∗(E(0)), E′(0))

∼−→ HomMIC††(X(0),P(0),T (0)/K)(sp+(E(0)), θ
(0)
+ ◦ sp′+(E′(0)))
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iii) Using both bijections of i) and ii), we get the functorial in E′(0) canonical isomorphism:

sp+ ◦ θ
(0)
∗ (E′(0))

∼−→ θ
(0)
+ ◦ sp′+(E′(0)). (16.1.10.4.1)

iv) Let E(0) ∈ MIC††(X(0),P(0), T (0)/K), E ′(0) ∈ MIC††(X ′(0),P′(0), T ′(0)/K). Since the functor sp+

is essentially surjective, there exists E(0)
1 , E(0)

2 (we make two choices in order to check the canonicity)
such that E(0) ∼←− sp+(E

(0)
1 ) and E(0) ∼−→ sp+(E

(0)
2 ). Since θ(0)

∗ is left adjoint to (θ(0))∗ (resp. using
16.1.10.4.1 and 16.1.8.6), we get the bottom (resp. top) vertical isomorphisms of the diagram:

θ
(0)
+ ◦ θ(0)+ ◦ sp+(E

(0)
1 )

∼ //

∼��

θ
(0)
+ ◦ θ(0)+(E(0))

∼ // θ(0)
+ ◦ θ(0)+ ◦ sp+(E

(0)
2 )

∼��
sp+ ◦ θ

(0)
∗ ◦ θ(0)∗(E

(0)
1 )

adj��

sp+ ◦ θ
(0)
∗ ◦ θ(0)∗(E

(0)
2 )

adj��
sp+(E

(0)
1 )

∼ // E(0) ∼ // sp+(E
(0)
2 )

(16.1.10.4.2)

Since sp+ is fully faithful, the bottom composite isomorphism sp+(E
(0)
1 )

∼−→ sp+(E
(0)
2 ) comes from an

isomorphism E
(0)
1

∼−→ E
(0)
2 . By functoriality of the vertical isomorphisms, this yields that the diagram

16.1.10.4.2 is commutative. Hence, we get a canonical morphism θ
(0)
+ ◦ θ(0)+(E(0))→ E(0).

1 bis) Similarly to the step 1)iv), since θ(0)
∗ is left adjoint to (θ(0))∗, then using 16.1.10.4.1 and 16.1.8.6,

we build the canonical morphism E ′(0) → θ(0)+ ◦ θ(0)
+ (E ′(0)).

2) Construction of the canonical morphism θ+ ◦ θ+ → id.
Let E ∈ MIC††(X,P, T/K), E ′ ∈ MIC††(X ′,P′, T ′/K). Following 16.1.10.3, we have the change base

isomorphism η+ ◦ θ+(E ′(•)) → θ
(0)
+ ◦ η′+(E ′). With the morphism θ

(0)
+ ◦ θ(0)+ → id constructed at the

step 1), we get the canonical morphism:

η+ ◦ θ+ ◦ θ+(E)
∼−→ θ

(0)
+ ◦ η′+ ◦ θ+(E)

∼−→ θ
(0)
+ ◦ θ(0)+ ◦ η+(E)

adj−→ η+(E). (16.1.10.4.3)

On the other hand, denoting by U := P \ T , U′ := P′ \ T ′, ϕ : U′ → U the induced map by φ and
ϑ = (β, β, φ) : (Y ′, Y ′,U′, T ′)→ (Y, Y,U), following 16.1.2.15, we have the adjunction morphism

|U ◦ θ+ ◦ θ+(E)
∼−→ ϑ+ ◦ ϑ+(E|U)

adj−→ E|U. (16.1.10.4.4)

Since the functor (η+, |U) is fully faithful (see proposition 16.1.5.2), then via the canonical morphisms of
16.1.10.4.3 and 16.1.10.4.4, we get the canonical morphism θ+ ◦ θ+(E)→ E .

2 bis) Similarly, we build the morphism E ′(•) → θ+ ◦ θ+(E ′).
3) To deduce that θ+ is left adjoint to θ+, then it is sufficient (thanks to the proposition 8.7.6.11) to

check it outside the divisor. We reduce then to the situation of 16.1.2.15.

Theorem 16.1.10.5. Let θ = (β, α, φ) : (Y ′, X ′,P′, T ′) → (Y,X,P, T ) be a morphism of smooth d-
frames. The functors θ+, θ! : MIC††(X,P, T/K)→ MIC††(X ′,P′, T ′/K) are canonically isomorphic.

Proof. 0) With the lemma 16.1.2.9, we reduce to the case where Y (resp. Y ′) is integral and dense in X
(resp. X ′).

1) Let us first check the theorem when φ is proper and smooth, T ′ = φ−1(T ), α is proper, surjective,
generically finite and etale.

Thanks to 16.1.4.1, for any divisor T̃ ′ containing T ′ and such thatX ′\T̃ ′ is dense in Y ′, the localisation
functor (†T̃ ′) is fully faithful. Increasing T if necessary, we reduce therefore to the case where β is finite
and etale. In this case, following 16.1.10.4, the functor θ+ is then right adjoint to θ+ Moreover, then so
is θ! (see 16.1.1.6.3). Hence we are done.

2) General case. Via the de Jong ’s desingularisation theorem, we check (as in the proof of 16.1.8.6)
there exists η = (b, a, f) : (Y (0), X(0),P(0), T (0))→ (Y,X,P, T ), θ(0) = (β(0), α(0), φ(0)) : (Y ′(0), X ′(0),P′(0), T ′(0))→
(Y (0), X(0),P(0), T (0)) and η′ = (b′, a′, f ′) : (Y ′(0), X ′(0),P′(0), T ′(0)) → (Y ′, X ′,P′, T ′) three strict mor-
phisms of smooth d-frames such that θ ◦ η′ = η ◦ θ(0), f and f ′ are projective and smooth, a and a′

are projective, generically finite and etale, X ′(0) and X(0) are smooth, T (0) ∩ X(0) is a (strict normal
crossing) divisor of X(0), T ′(0) ∩X ′(0) is a (strict normal crossing) divisor of X ′(0). It follows from the
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step 1) that the functors η+ and η! (resp. η′+ and η′!) are canonically isomorphic. Moreover, following
the proposition 16.1.5.2, the functor (η′+, |P′(0) \T ′(0)) is fully faithful. Hence, we reduce the case where
X and X ′ are smooth, which is already well known (this follows from 12.2.4.1 and 12.2.5.6).

Remark 16.1.10.6. The main goal of this section was to establish 16.1.10.5. Beware, following [Abe14a,
5.6], to get a compatible with Frobenius isomorphism between θ+ and θ!, we have to add a twist. However,
when we have a Frobenius structure, this isomorphism can be checked more easily since we then have the
theorem of full faithfulness of Kedlaya of [Ked04a]. Indeed, thanks to this theorem of full faithfulness,
we reduce to the situation of the smooth partially compactification (i.e., that of 12.2).

This isomorphism of 16.1.10.5 is a fundamental ingredient in the proof of 16.1.11.2.

16.1.11 1-overholonomicity of partially overcoherent isocrystals, duality
Lemma 16.1.11.1. Let P be a separated and smooth S-formal scheme, X ↪→ P be a closed immersion
with X integral, Z be a closed subscheme of P not containing X and such that Y := X \ Z is smooth.
Then there exists a commutative diagram of the form

X ′
u′ //

a

��

PNP //

��
�

P̂NP

q

��
X

u // P // P,

(16.1.11.1.1)

where X ′ is smooth over k, q is the canonical projection, u′ is a closed immersion, a−1(Z ∩X) is a strict
normal crossing divisor of X ′, a is proper, surjective, generically finite and etale.

Proof. By using de Jong ’s desingularisation theorem, there exists a quasi-projective smooth variety X ′,
a projective generically finite and etale morphism a : X ′ → X such that a−1(Z ∩X) is a strict normal
crossing divisor of X ′. Then there exists an immersion of the form X ′ ↪→ PNk . Since a is proper, the
induced immersion X ′ ↪→ PNX is closed. Hence we get a closed immersion: X ′ ↪→ P̂NP which gives the
existence of the commutative diagram 16.1.11.1.1 satisfying the required properties.

Lemma 16.1.11.2. Let P be a separated and smooth S-formal scheme, X ↪→ P be a closed immersion
with X integral, T be a divisor of P not containing X and such that Y := X \ T is dense and smooth.
Suppose given a commutative diagram of the form

X ′
u′ //

a

��

P ′ //

��
�

P′

q

��
X

u // P // P,

(16.1.11.2.1)

where X ′ is smooth over k, q is a proper morphism of smooth S-formal schemes such T ′ := q−1(T )
is a divisor of P ′, u′ is a closed immersion, a−1(T ∩ X) is a divisor of X ′, a is proper, surjective,
generically finite and etale. Let and η := (b, a, q) : (Y ′, X ′,P′, T ′) → (Y,X,P, T ) be the morphism
of smooth d-frames given by the diagram 16.1.11.2.1. Let E ∈ (F -)MIC††(X,P, T/K) (resp. E(•) ∈
(F -)MIC(•)(X,P, T/K)). Then E (resp. E(•)) is a direct summand of η+ ◦η!(E) (resp. η(•)

+ ◦η(•)!(E(•))),
where η+ := q+ (resp. η(•)

+ := q
(•)
+ ).

Proof. Since the respective case is treated similarly, then let’s only prove the non-respective one. Since
q is proper, since E ∈ Db

ovcoh(D†P(†T )Q) and DT (E) ∈ Db
ovcoh(D†P(†T )Q) then it follows from 16.1.1.6.(b)

that we have the morphisms E → η+ ◦ η+(E) and η+ ◦ η!(E) → E . Moreover, following 16.1.10.5,
η!(E)

∼−→ η+(E). Hence, we get the sequence E → η+ ◦ η!(E) → E . Let T ⊂ T ′ be a divisor such that
Y ′ := X \ T ′ is dense in Y . Since the functor |U′, where U′ := P \ T ′, is faithful (use 8.7.6.11 and
16.1.4.1), then to check that the composition of E → η+ ◦ η!(E)→ E is an isomorphism we reduce to the
case where a is finite and etale and T is empty, which is already known (see 16.1.2.15.2).

Proposition 16.1.11.3. Let (Y,X,P, T ) be a smooth d-frame over S.
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(a) For any object E ∈ (F -)MIC††(X,P, T/K), E is 1-D†P(†T )Q-overholonomic (see the definition 16.1.1.1).

(b) We have the inclusion:
MIC(•)(X,P, T/V) ⊂ LD−→

b
Q,perf(‹D(•)

P/S(T )). (16.1.11.3.1)

(c) The functor D(•)
T of 9.2.4.20 induces the equivalence of categories:

D(•)
T : MIC(•)(X,P, T/V)→ MIC(•)(X,P, T/V). (16.1.11.3.2)

Proof. a) By using the lemma 16.1.11.1, we get a diagram of the form 16.1.11.1.1 and satisfying the
required conditions. It follows from 16.1.11.2 that E is therefore a direct summand of η+ ◦ η!(E).
Since η!(E) ∈ MIC††(X ′, P̂NP , q

−1(T )/K), as X ′ is smooth, it follows from 16.1.1.7 that η′!(E) is 1-
D†

P̂N
P

(†q−1(T ))Q-overholonomic By stability 1-overholonomicity by direct image by the a proper morphism

(see 16.1.1.5), η+ ◦ η!(E) is 1-D†P(†T )Q-overholonomic. Hence we are done.
b) and c) When X is smooth, this is already known (see respectively 12.2.1.7.1 and 12.2.1.13.1).

Hence, we proceed similarly to the part a) by using the stability of perfectness by pushforward of a
proper morphism (see 9.4.2.6) and the relative duality isomorphism 9.4.5.2.1.

Let us give some applications of 16.1.11.3.(a):

Proposition 16.1.11.4. Let P be a smooth separated S-formal scheme, T ⊂ T ′ two divisors of P , X be
a closed subscheme of P . We set U := P\T , U′ := P\T ′, Y := X\T , Y ′ := X\T ′. We suppose moreover
Y smooth and Y ′ dense in Y . Let E ′ ∈ MIC††(X,P, T ′/K). If there exists E ∈ MIC††(X,P, T/K) such
that E ′ ∼−→ (†T ′)(E), then E ∼−→ Im (DT ◦ DT ′(E ′)→ E ′).
Proof. By applying the functor DT to the isomorphism E ′ ∼−→ (†T ′)(E) we get the first isomorphism:

DT ◦ DT ′(E ′)
∼←− DT ◦ DT ′ ◦ (†T ′)(E)

9.2.4.22.3
∼−→ DT ◦ (†T ′) ◦ DT (E). (16.1.11.4.1)

Since DT (E) ∈ MIC††(X,P, T/K), then following 16.1.11.3 DT (E) is 1-D†P(†T )Q-overholonomic. Hence,
it follows from the isomorphisms 16.1.11.4.1 that DT ◦ DT ′(E ′) is D†P(†T )Q-overcoherent. Since E ′ ∼−→
(†T ′)(E), as E ∈ MIC††(X,P, T/K), then E ′ is D†P(†T )Q-overcoherent. Hence we get the morphism
of overcoherent D†P(†T )Q-modules DT ◦ DT ′(E ′) → E ′ and we denote by F its image, which is also an
overcoherent D†P(†T )Q-module. Moreover, following the smooth case 16.1.6.3, F|U ∈ MIC††(Y,U/K). In
of the other terms, F|U is in the essential image of the functor spY ↪→U,+. Hence F ∈ MIC††(X,P, T/K).

The canonical inclusion F ⊂ E ′ induced the canonical isomorphism (†T ′)(F)
∼−→ E ′ (Indeed, via

8.7.6.11, it is sufficient to check it outside T ′). By full faithfulness of the functor (†T ′) (see the theorem
16.1.4.1), this yields F ∼−→ E .

Lemma 16.1.11.5. Let P be a smooth formal scheme over S. Let Z and X be two closed subschemes
of P . Set U := P \ Z, Y := X \ Z and V := P \ X. We suppose Y smooth. For any divisor T of P
containing Z, we have the factorisation:

D(•)
T ◦ (†T ) : MIC(•)(X,P, Z/S)→ LM−−→Q,poc(X,P, Z/S) ∩MIC(•)(X,P, T/S), (16.1.11.5.1)

where MIC(•)(X,P, Z/V) is defined at 16.2.1.1.

Proof. Let E(•) ∈ MIC(•)(X,P, Z/S). It follows from 16.2.1.5.2 and 16.1.11.3.2, that D(•)
T ◦ (†T )(E(•)) ∈

MIC(•)(X,P, T/S). Let us now check that D(•)
T ◦ (†T )(E(•)) ∈ LM−−→Q,poc(X,P, Z/S). Let T ′ be a divisor

of P containing Z. We get the isomorphisms:

(†T ′) ◦ D(•)
T ◦ (†T )(E(•))

∼−→ (†T ∪ T ′) ◦ D(•)
T ◦ (†T )(E(•))

∼−→
9.2.4.20.4

D(•)
T∪T ′ ◦ (†T ∪ T ′)(E(•)).

By symmetry in T and T ′, this yields the canonical isomorphism

(†T ′) ◦ D(•)
T ◦ (†T )(E(•))

∼−→ (†T ) ◦ D(•)
T ′ ◦ (†T ′)(E(•)).

It follows from 16.1.11.3.2 that D(•)
T ′ ◦(†T ′)(E(•)) ∈ LM−−→Q,poc(X,P, T ′/S). Hence, (†T )◦D(•)

T ′ ◦(†T ′)(E(•)) ∈
LM−−→Q,poc(X,P, T ′/S) and we are done.
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Here is a corollary of the theorem 16.1.10.5:

Proposition 16.1.11.6. Let (Y,X,P, T ) be a smooth d-frame over S (see the definition 12.2.1.1). Let
E ∈ MIC†(Y,X,P/K). We have the canonical isomorphism:

spX↪→P,T,+(E∨)
∼−→ DT ◦ spX↪→P,T,+(E),

where ∨ is the dual in MIC†(Y,X/K) and spX↪→P,T,+ was defined in theorem 16.1.8.4.

Proof. With the lemma 16.1.2.9 (and the remark 16.1.2.10), we reduce to the case where X is integral
and Y is dense in X. When X is smooth, this proposition was established at 12.2.5.6. To reduce to
the case where X is smooth, we use the theorem of full faithfulness 16.1.5.2 as follows: Following the
de Jong ’s desingularisation theorem, there exists a divisor T̃ containing T and a diagram of the form
16.1.5.0.1 satisfying the required conditions of 16.1.5 and such that moreover X(0) is smooth. We keep
the corresponding notations. We have the following isomorphisms:

a+ ◦ DT ◦ spX↪→P,T,+(E)
8.7.7.3
∼−→ DT (0) ◦ a! ◦ spX↪→P,T,+(E)

16.1.10.5
∼−→ DT (0) ◦ a+ ◦ spX↪→P,T,+(E)

16.1.7.5.1
∼−→ DT (0) ◦ spX(0)↪→P(0),T (0),+ ◦ a∗(E). (16.1.11.6.1)

On the other hand, we have:

a+ ◦ spX↪→P,T,+(E∨)
16.1.7.5.1
∼−→ spX(0)↪→P(0),T (0),+ ◦ a∗(E∨)

∼−→

∼−→ spX(0)↪→P(0),T (0),+((a∗(E))∨)
12.2.5.6
∼−→ DT (0) ◦ spX(0)↪→P(0),T (0),+ ◦ a∗(E). (16.1.11.6.2)

By 16.2.6.3.2 and 16.1.11.6.2, we get the canonical isomorphism a+ ◦ DT ◦ spX↪→P,T,+(E)
∼−→ a+ ◦

spX↪→P,T,+(E∨). Set U := P\T , U(0) := P(0)\T (0) and “E ∈ MIC†(Y, Y,U/K) be the induced convergent
isocrystal on (Y, Y,U/K). By applying the functor U(0) to this latter isomorphism, we get an arrow
isomorphic to the image by b+ of the canonical isomorphism D ◦ spY ↪→U,+(“E)

∼−→ spY ↪→U,+(“E∨). Hence
we are done by full faithfulness of (a+, |P \ T ) (see 16.1.5.2).

16.2 Partially overcoherent isocrystals

16.2.1 Definition and the equivalence sp+

Let P be a smooth separated formal scheme over S. Let Z and X be two closed subschemes of P . Set
U := P \ Z, Y := X \ Z and V := P \X. We suppose Y/S smooth.

Notation 16.2.1.1. We denote by (F -)MIC(•)(Y,X,P, Z/S) or by (F -)MIC(•)(X,P, Z/S) the strictly
full abelian subcategory of (F -)LM−−→Q,poc(X,P, Z/S) (see definition 15.3.8.13) consisting of (F -)complexes
E(•) such that E(•)|U ∈ MIC(•)(Y,U , ∅/V), where the latter category is defined in 16.1.2.3.

Example 16.2.1.2. When Z is a divisor, the category MIC(•)(X,P, Z/S) defined at 16.2.1.1 is the
same as that defined at 16.1.2.3.

Remark 16.2.1.3. It is not clear if the following functor

→l
∗
Q : MIC(•)(X,P, Z/V)→ Db(D†P,Q) (16.2.1.3.1)

is fully faithful. So the analogue of MIC(•)(X,P, Z/V) in term of D†P,Q-module is not clear. With the
equivalence of categories 16.2.1.10.1, this is another argument to prefer to work with categories of the
form LD−→

b
Q,qc(“D(•)

P (T )).

Lemma 16.2.1.4. Let Y the closure of Y in X. Let Y1, . . . , YN the irreducible components of Y and
Y 1, . . . , Y N their closure in X.
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(a) We have the equality (F -)MIC(•)(Y ,P, Z/V) = (F -)MIC(•)(X,P, Z/V).

(b) We have a canonical equivalence of categories:

⊕Nr=1 RΓ†
Y r

: (F -)MIC(•)(X,P, Z/V) ∼=
N∏
r=1

(F -)MIC(•)(Y r,P, Z/V). (16.2.1.4.1)

Proof. The inclusion of the equality of (a) is obvious. Conversely, is E ∈ (F -)MIC(•)(X,P, Z/V). Accord-
ing to 15.3.7.5.1, we have the canonical morphism RΓ†

Y
(E)→ E of LD−→

b
Q,poc(

l“D(•)
P/S(Z)). Since this is the

case outside Z (because Y \Z = Y ), then it follows from 15.3.7.6 that this morphism is an isomorphism.
Hence, the sheaf E has its support in Y and we get the inclusion inverse.

Similarly, it follows from 15.3.7.6 that the functor ⊕Nr=1RΓ†
Y r

induces the equivalence of categories
16.2.1.4.1.

16.2.1.5. The following properties are straightforward:

(a) For any closed subscheme Z̃ ⊃ Z of P , the t-exact functor 15.3.8.12.2 induces the functor

(†Z̃) : MIC(•)(X,P, Z/S)→ MIC(•)(X,P, Z̃/S). (16.2.1.5.1)

(b) For any divisor T of P , the t-exact functor 15.3.8.12.3 induces the functor

(†T ) : MIC(•)(X,P, Z/S)→ LM−−→Q,poc(X,P, Z/S) ∩MIC(•)(X,P, T/S). (16.2.1.5.2)

Notation 16.2.1.6. Let Z1 and Z2 be two closed subschemes of P such that Z1 ∩ Z2 = Z. We write
Yi := X \ Zi, for i = 1, 2.

(a) We define the category MIC†((Y1, Y2), X,P/S) as follows. An object (E1, E2, ε) of the category
MIC†((Y1, Y2), X,P/S) consists of the data of an object Ei ∈ MIC†(Yi, X,P/S) for i = 1, 2 and of
an isomorphism ε : j†Y1∩Y2

E2
∼−→ j†Y1∩Y2

E1.

(b) We denote by MIC(•)(X,P, (Z1, Z2)/S) the following category. An object (E(•)
1 , E(•)

2 , θ) of the cat-
egory MIC(•)(X,P, (Z1, Z2)/S) consists of the data of an object E(•)

1 ∈ LM−−→Q,poc(X,P, Z/S) ∩
MIC(•)(X,P, Z1/S), an object E(•)

2 ∈ LM−−→Q,poc(X,P, Z/S)∩MIC(•)(X,P, Z2/S) and of an isomor-

phism θ : (†Z1 ∪ Z2)(E(•)
2 )

∼−→ (†Z1 ∪ Z2)(E(•)
1 ).

Proposition 16.2.1.7. We keep the notation 16.2.1.6.

(a) The canonical morphism Loc: MIC†(Y,X,P/S)→ MIC†((Y1, Y2), X,P/S) given by E 7→ (j†Y1
E, j†Y2

E, εE),
where εE is the canonical isomorphism, is an equivalence of categories and has a canonical quasi-
inverse functor.

(b) The canonical morphism Loc: MIC(•)(X,P, Z/S) → MIC(•)(X,P, (Z1, Z2)/S) given by E(•) 7→
((†Z1)(E(•)), (†Z2)(E(•)), θE(•)), where θE(•) is the canonical isomorphism, is an equivalence of cate-
gories and has a canonical quasi-inverse functor.

Proof. I) The first statement is well known.
II) 1) We construct a canonical quasi-inverse functor as follows. Let (E(•)

1 , E(•)
2 , θ) ∈ MIC(•)(X,P, (Z1, Z2)/S).

We set E(•)
12 := (†Z1 ∪ Z2)(E(•)

1 ). We get the canonical morphism α : E(•)
1 → E(•)

12 and β : E(•)
2 →

(†Z1∪Z2)(E(•)
2 )

θ
∼−→ E(•)

12 . Let Glue(E(•)
1 , E(•)

2 , θ) be the kernel of the morphism (α,−β) : E(•)
1 ⊕E

(•)
2 → E(•)

12

of the abelian category LM−−→Q,poc(X,P, Z/S).

2) We check in this step that F (•) := Glue(E(•)
1 , E(•)

2 , θ) ∈ MIC(•)(X,P, Z/S). Since F (•) ∈
LM−−→Q,poc(X,P, Z/S), it remains to prove that F (•)|U ∈ MIC(•)(Y,U, ∅/S).

Set Ui := P \ Zi, for i = 1, 2. Since α|U2 = id, then F (•)|U2
∼−→ E(•)

2 |U2 ∈ MIC(•)(X ∩ U2,U2, ∅/S).
Similarly, since β|U1 = θ|U1 is an isomorphism then we get the isomorphism F (•)|U1

∼−→ E(•)
1 |U1 ∈

MIC(•)(X ∩ U1,U1, ∅/S). Since U = U1 ∪ U2, then we are done.
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3) By setting := (α,−β) : E(•)
1 ⊕ E(•)

2 → E(•)
12 , we get the funcor Glue: MIC(•)(X,P, (Z1, Z2)/S) →

MIC(•)(X,P, Z/S).
4) The fact that Loc and Glue are quasi-inverse is easy.

Definition 16.2.1.8. We define the category of c-frames (over S) which extends that of d-frames (see
12.2.1.1) as follows:

(a) A “c-frame (Y,X,P, Z)/S” over S is the data of a separated and smooth S-formal scheme P, of
two closed subschemes Z and X of P such that Y = X \ Z. A c-frame (Y,X,P, Z)/S is “smooth”
if Y is smooth. A c-frame (Y,X,P, Z)/S can simply be written (X,P, Z)/S or even (X,P, Z).

(b) A morphism θ : (Y ′, X ′,P′, Z ′)→ (Y,X,P, Z) of c-frames is the data of a morphism f : P′ → P of
formal schemes such that X ′ ⊂ f−1X and Z ′ ⊃ f−1(Z).

Remark we have a forgetful functor from the category of c-frames to that of frames (see definition
10.1.1.4) given by (Y,X,P, Z)/S 7→ (Y,X,P)/S. The letter c stands for “closed subscheme” instead of
“d” for “divisor”.

16.2.1.9. When Z is a divisor that we prefer to denote by T , it follows from 16.1.8.4 and 16.1.2.3.1 that
we have the canonical equivalence of categories

sp
(•)
X↪→P,T,+ : MIC†(X,P, T/K) ∼= MIC(•)(X,P, T/V), (16.2.1.9.1)

so that→l
∗
Q ◦ sp

(•)
X↪→P,T,+ = spX↪→P,T,+.

Theorem 16.2.1.10. We have the canonical equivalence of categories

sp
(•)
X↪→P,Z,+ : MIC†(X,P, Z/K) ∼= MIC(•)(X,P, Z/V), (16.2.1.10.1)

which is 16.2.1.9.1 when Z is a divisor.

Proof. Following 16.2.1.9.1, the equivalence of categories of 16.2.1.10.1 are already known when Z is a
divisor. To check the general case, we can suppose P is integral. We proceed therefore by induction on
the number of divisors T1, . . . , Tr such that Z = T1∩· · ·∩Tr. To do so, we use 16.2.1.7. It remains to check
the independence of the construction of 16.2.1.10.1 from the choice of the writing of Z as an intersection
of divisors of P . Make a second choice Z = Tr+1 ∩ · · · ∩ Tr+s. Then we show that both constructions of
the isomorphism 16.2.1.10.1 are canonically isomorphic to the one in the case of Z = T1 ∩ · · · ∩Tr+s.

16.2.1.11. Let T be a divisor containing Z and jT : (X \ T,X,P) → (X \ T,X,P) the induced frame
morphism. By construction of equivalence 16.2.1.10.1

(†T ) ◦ sp
(•)
X↪→P,Z,+

∼−→ sp
(•)
X↪→P,T,+ ◦ j

†
T . (16.2.1.11.1)

16.2.1.12. Let T1, . . . , Tr be divisors of P such that Z = T1 ∩ · · · ∩ Tr. Let E(•) ∈ MIC(•)(X,P, Z/V).
Since MIC(•)(X,P, Z/V) is an abelian subcategory of LM−−→Q,poc(X,P, Z/V), then it follows from 15.3.8.19.1
that we have the exact sequence

0→ E(•) → ⊕ri=1(†Ti)(E(•))
θ2−θ1

−→ ⊕ri,j=1(†Ti ∪ Tj)(E(•)). (16.2.1.12.1)

where θn : ⊕ri=1 (†Ti)(E(•)) → ⊕ri,j=1(†Ti ∪ Tj)(E(•)) for n = 0, 1 are the canonical maps defined at
15.3.8.19.

16.2.2 Full faithfulness of the localisation functor
Theorem 16.2.2.1. Let P be a smooth separated S-formal scheme, Z ⊂ Z ′ two closed subschemes of
P , X be a closed subscheme of P . By setting Y := X \Z, Y ′ := X \Z ′, we suppose moreover Y smooth
and Y ′ dense in Y . The functor (†Z ′) induced the fully faithful functors:

(†Z ′) : (F -)MIC(•)(X,P, Z/V)→ (F -)MIC(•)(X,P, Z ′/V). (16.2.2.1.1)
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Proof. 0) Let us check the faithfulness of the functor (†Z ′). Let U := P \ Z, U′ := P \ Z ′. It fol-
lows from 15.3.8.18 that we reduce to check the faithfulness of the functor U′ : (F -)MIC(•)(Y,U/V) →
(F -)MIC(•)(Y ′,U′/V). We conclude using 16.1.4.1.1. Let us now check that faithfulness is full. Since this
is local in P and we can therefore suppose Y is integral. Let E(•),F (•) ∈ MIC(•)(X,P, Z/V) together
with a morphism ψ : E(•)(†Z ′)→ F (•)(†Z ′).

1) First suppose Z = T is a divisor of P . Let T1, . . . , Tr be divisors of P such that Z ′ = T1 ∩ · · · ∩Tr.
Since Y ′ is dense in Y , then there exists at least on divisor Ti which does not contain Y . Let Z ′′ be the
intersection of such divisors. Since Z ′ ⊂ Z ′′, we reduce to the case where all divisors Ti do not contain
Y . Following 16.1.4.1.1, since Y \ Ti is dense in Y , then the functor (†Ti) : (F -)MIC(•)(X,P, T/V) →
(F -)MIC(•)(X,P, Ti/V) is fully faithful. Hence, there exists φi : E(•)(†Ti) → F (•)(†Ti) making commu-
tative the left diagram

E(•)

φi

��

// (†Ti)(E(•))

(†Ti)(φi)

��

∼ // (†Ti)(E(•)(†Z ′))

(†Ti)ψ

��
F (•) // (†Ti)(F (•))

∼ // (†Ti)(F (•)(†Z ′)),

E(•)

φi

��

// (†Ti ∪ Tj)(E(•))

(†Ti∪Tj)(φi)
��

∼ // (†Ti ∪ Tj)(E(•)(†Z ′))

(†Ti∪Tj)ψ
��

F (•) // (†Ti ∪ Tj)(F (•))
∼ // (†Ti ∪ Tj)(F (•)(†Z ′))

(16.2.2.1.2)
This yields the commutative right diagram of 16.2.2.1.2. Since (†Ti ∪ Tj)(φi) = (†Ti ∪ Tj)(φj), then by
faithfulness of the functor (†Ti∪Tj) we get φi = φj that we denote by φ. (†Z ′)(E(•)) ∈ MIC(•)(X,P, Z/V)
then following 16.2.2.1.1 we get the exact sequence:

E(•) //

φ

��

⊕ri=1(†Ti)(E(•))
θ2
E−θ

1
E //

⊕i(†Ti)φ
��

⊕ri,j=1(†Ti ∪ Tj)(E(•))

⊕ij(†Ti∪Tj)φ
��

F (•) // ⊕ri=1(†Ti)(F (•))
θ2
F−θ

1
F // ⊕ri,j=1(†Ti ∪ Tj)(F (•))

(16.2.2.1.3)

where θnE : ⊕ri=1 E
(•)
i → ⊕ri,j=1E

(•)
ij for n = 0, 1 are the canonical maps defined at 15.3.8.19. Since

(†Z ′)(E(•)) = ker(θ2
E − θ1

E) and (†Z ′)(F (•)) = ker(θ2
F − θ1

F ) (see 16.2.7.4.1), then we are done.
2) Let T1, . . . , Tr be divisors of P such that Z = T1 ∩ · · · ∩ Tr. By using the step 1), there exists

φi : E(•)(†Ti)→ F (•)(†Ti) making commutative the diagram

(†Ti)(E(•))

φi

��

// (†Z ′)((†Ti)E(•))

(†Z′)φi
��

∼ // (†Ti)(E(•)(†Z ′))

(†Ti)ψ

��
(†Ti)(F (•)) // (†Z ′)((†Ti)F (•))

∼ // (†Ti)(F (•)(†Z ′)),

(16.2.2.1.4)

where the horizontal isomorphisms are the canonical ones. Since we have the commutative diagram

(†Ti)(E(•))

φi

��

// (†Ti ∪ Tj)(E(•))

(†Ti∪Tj)(φi)
��

∼ // (†Ti ∪ Tj)(E(•)(†Z ′))

(†Ti∪Tj)ψ
��

(†Ti)(F (•)) // (†Ti ∪ Tj)(F (•))
∼ // (†Ti ∪ Tj)(F (•)(†Z ′)),

(16.2.2.1.5)

then (†Ti ∪Tj)(φi) = (†Ti ∪Tj)(φj). Hence, we get the unique map φ making commutative the diagram:

0 // E(•) //

φ

��

⊕ri=1(†Ti)(E(•))
θ2
E−θ

1
E //

⊕i(†Ti)φi
��

⊕ri,j=1(†Ti ∪ Tj)(E(•))

⊕ij(†Ti∪Tj)φi
��

0 // F (•) // ⊕ri=1(†Ti)(F (•))
θ2
F−θ

1
F // ⊕ri,j=1(†Ti ∪ Tj)(F (•))

(16.2.2.1.6)
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16.2.3 Duality, commutation with sp+

Proposition 16.2.3.1. Let P be a smooth formal scheme over S. Let Z and X be two closed subschemes
of P . Set U := P \ Z, Y := X \ Z and V := P \X. We have the equivalence of categories

D(•)
Z : MIC(•)(X,P, Z/V)→ MIC(•)(X,P, Z/V) (16.2.3.1.1)

which is characterized by the following property: for any E(•) ∈ MIC(•)(X,P, Z/V), for any divisor T
containing Z, we have the canonical isomorphism of MIC(•)(X,P, T/V):

(†T ) ◦ D(•)
Z (E(•))

∼−→ D(•)
T ◦ (†T )(E(•)). (16.2.3.1.2)

Proof. Let T1, . . . , Tr be divisors of P such that Z = T1 ∩ · · · ∩ Tr. Let E(•) ∈ MIC(•)(X,P, Z/K). Set
E(•)
ij := (†Ti ∪ Tj)E(•) and E(•)

i := (†Ti)E(•) for any i, j ∈ {1, . . . , r}. We get the morphism

θ1
ij : D(•)

Ti
E(•)
i → (†Ti ∪ Tj) ◦ D(•)

Ti
E(•)
i

∼−→
9.2.4.20.4

D(•)
Ti∪TjE

(•)
ij .

Following 16.1.11.5.1, this is a map of the abelian category LM−−→Q,poc(X,P, Z/S). This yields the maps

θ1 : ⊕ri=1 D(•)
Ti
E(•)
i → ⊕ri,j=1D(•)

Ti∪TjE
(•)
ij .

Similarly, for any i, j we have the maps

θ2
ij : D(•)

Tj
E(•)
j → (†Ti ∪ Tj) ◦ D(•)

Tj
E(•)
j

∼−→
9.2.4.20.4

D(•)
Ti∪TjE

(•)
ij ,

which yields the map θ2 : ⊕ri=1 D(•)
Ti
E(•)
i → ⊕ri,j=1D(•)

Ti∪TjE
(•)
ij of LM−−→Q,poc(X,P, Z/S).

We remark that if Tr+1 is a divisor containing Z, then denoting by for k = 1, 2 the map θ′k : ⊕r+1
i=1

D(•)
Ti
E(•)
i → ⊕r+1

i,j=1D(•)
Ti∪TjE

(•)
ij constructed as above, we compute ker(θ2 − θ1) = ker(θ′2 − θ′1). Hence, we

define canonically an object of LM−−→Q,poc(X,P, Z/S) by setting D(•)
Z (E(•)) := ker(θ2 − θ1). It remains to

prove that D(•)
Z (E(•))|U ∈ MIC(•)(Y,U/V), i.e. we reduce to the case where Z is a (empty) divisor. In

that case D(•)
Z (E(•)) = D(•)(E(•)) ∈ MIC(•)(X,P/V) (choose r = 1 and T1 = Z).

Proposition 16.2.3.2 (Biduality). Let E(•) ∈ MIC(•)(X,P, Z/V). We have the canonical isomorphism
of MIC(•)(X,P, Z/V):

D(•)
Z ◦ D(•)

Z (E(•))
∼−→ E(•). (16.2.3.2.1)

Proof. With the lemma 16.2.1.4, we reduce to the case where Y is integral and dense in X. Since Z is
the intersection of some divisors of P , then there exists a divisor T of P containing Z such that X \ T
is dense in Y . We have the isomorphisms of MIC(•)(X,P, T/V):

(†T ) ◦ D(•)
Z ◦ D(•)

Z (E(•))
16.2.3.1.2
∼−→ D(•)

T ◦ D(•)
T ◦ (†T )(E(•))

8.7.7.3
∼−→ (†T )(E(•)).

We conclude by using the full faithfulness of the functor (†T ) of Theorem 16.2.2.1.

Proposition 16.2.3.3. Let E(•) ∈ MIC(•)(X,P, Z/V). For any closed subset Z ′ of P containing Z, we
have the canonical isomorphism of MIC(•)(X,P, Z ′/V):

(†Z ′) ◦ D(•)
Z (E(•))

∼−→ D(•)
Z′ ◦ (†Z ′)(E(•)). (16.2.3.3.1)

Proof. With the lemma 16.2.1.4, we reduce to the case where Y is integral and dense in X. If Z ′ contains
X, then the isomorphism 16.2.3.3.1 is 0

∼−→ 0. Suppose now Y ′ := X \ Z ′ is dense in Y . Since Z ′ is
the intersection of some divisors of P , then there exists a divisor T ′ of P containing Z ′ such that X \ T ′
is dense in Y ′ (and in Y ). By using the full faithfulness of the functor (†T ′) (see 16.2.2.1) and the
commutation of the duality with localisation outside a divisor (see 16.2.3.1.2), we are done.
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Proposition 16.2.3.4. Let (Y,X,P, Z) be a smooth c-frame over S. Let E ∈ MIC†(X,P, Z/K). We
have the canonical isomorphism:

sp
(•)
X↪→P,Z,+(E∨)

∼−→ D(•)
Z ◦ sp

(•)
X↪→P,Z,+(E),

where ∨ is the dual in MIC†(X,P, Z/K) and sp
(•)
X↪→P,Z,+ was defined at theorem 16.2.1.10.1.

Proof. With the lemma 16.2.1.4, we reduce to the case where Y is integral and dense in X. Since Z is
the intersection of some divisors of P , then there exists a divisor T of P containing Z such that X \ T
is dense in Y . By using the full faithfulness of (†T ) (see 16.2.2.1) and the commutation of the duality
with localisation (see 16.2.3.1.2), we reduce to the case where Z is a divisor, which was already checked
(see 16.1.11.6).

16.2.4 (Extraordinary) pullbacks, commutation with sp+

Proposition 16.2.4.1. Let θ = (b, a, f) : (Y ′, X ′,P′, Z ′) → (Y,X,P, Z) be a morphism of smooth c-
frames. Let E(•) be an object of (F -)MIC(•)(X,P, Z/K). Hence, for any integer j ∈ Z\{0}, the following
equality is satisfied: Hj

Z(RΓ†Y ′f
(•)!(E(•))[−dX′/X ]) = 0 (see notation 15.3.8.13). Moreover, we have the

factorisation

θ(•)! := RΓ†Y ′ ◦ f
(•)![−dX′/X ] : (F -)MIC(•)(X,P, Z/K)→ (F -)MIC(•)(X ′,P′, Z′/K). (16.2.4.1.1)

These functors are transitive with respect to the composition: if θ′ = (b′, a′, f ′) : (Y ′′, X ′′,P′′, Z ′′) →
(Y ′, X ′,P′, Z ′) is a morphism of smooth c-frames, we have the canonical isomorphism θ′(•)! ◦ θ(•)! ∼−→
(θ ◦ θ′)(•)!.

Proof. By definition of the t-structure, we reduce to check Hj(RΓ†Y ′f
(•)!(E(•))[−dX′/X ])|U′ = 0, where

U′ := P′ \ Z ′, i.e. we reduce to the case where Z is empty. This case was proved at 12.2.

Notation 16.2.4.2. Let θ = (b, a, f) : (Y ′, X ′,P′, Z ′)→ (Y,X,P, Z) be a morphism of smooth c-frames.
Let E(•) be an object of (F -)MIC∗(X,P, Z/K). With 16.2.4.1.1 and 16.2.3.1.1, we set

θ(•)+ := D(•)
Z′ ◦ θ

(•)! ◦ D(•)
Z : (F -)MIC(•)(X,P, Z/K)→ (F -)MIC(•)(X ′,P′, Z ′/K). (16.2.4.2.1)

It follows from 16.2.3.2 and 16.2.4.1 that these functors are transitive with respect to the composition:
if θ′ = (b′, a′, f ′) : (Y ′′, X ′′,P′′, Z ′′) → (Y ′, X ′,P′, Z ′) is a morphism of smooth c-frames, we have the
canonical isomorphism θ′(•)+ ◦ θ(•)+ ∼−→ (θ ◦ θ′)(•)+.

Corollary 16.2.4.3. Let θ = (β, α, φ) : (Y ′, X ′,P′, Z ′) → (Y,X,P, Z) be a morphism of smooth c-
frames.

(a) The functors θ(•)+, θ(•)! : MIC(•)(X,P, Z/K) → MIC(•)(X ′,P′, Z ′/K) are canonically isomorphic.
2 We can denote them by θ(•)∗.

(b) We have the canonical isomorphism:

sp
(•)
X′↪→P′,Z′,+ ◦ θ

∗ ∼−→ θ(•)+ ◦ sp
(•)
X↪→P,Z,+. (16.2.4.3.1)

Proof. With the lemma 16.2.1.4, we reduce to the case where Y (resp. Y ′) is integral and dense inX (resp.
X ′). Let T1, . . . , Tr be some of divisors of P such that Z = T1∩· · ·∩Tr. Since Z ′ ⊃ φ−1(T1)∩· · ·∩φ−1(Tr)
and Z ′ does not contains X ′ then there exists i0 such that Ti0 (resp. φ−1(Ti0)) does not contains X (resp.
X ′). In particular ‹Y := X\Ti0 is dense in Y . Set T̃ := Ti0 . Similarly, since Z ′∪φ−1(Ti0) is an intersection
of some divisor T ′1, . . . T ′r′ , there exists i

′
0 such that T ′i′0 does not contains X ′, i.e. ‹Y ′ := X ′\T ′i′0 is dense in

Y ′. Set T̃ ′ := T ′i′0
. Let θ̃ = (β̃, α, φ) : (‹Y ′, X ′,P′, T̃ ′)→ (‹Y ,X,P, T̃ ), ι : (‹Y ,X,P, T̃ )→ (Y,X,P, Z) and

ι′ : (‹Y ′, X ′,P′, T̃ ′)→ (Y ′, X ′,P′, Z ′) be the induced morphism of smooth c-frames. Let j̃ : (‹Y ,X,P)→
(Y,X,P) and j̃′ : (‹Y ′, X ′,P′)→ (Y ′, X ′,P′) be the frame morphism.

2Beware this isomorphism is not compatible with Frobenius, so for the Frobenius structure we need to distinguish both
inverse image functors: for instance, see 11.3.5.1.1
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(a) Since ι! = (†T̃ ) and ι+ ∼−→ (†T̃ ) (use 16.2.3.3.1 and 16.2.3.3.1), then by transitivity we get the
isomorphism:

θ̃(•)+ ◦ (†T̃ )
∼−→ (†T̃ ′) ◦ θ(•)+, θ̃(•)! ◦ (†T̃ )

∼−→ (†T̃ ′) ◦ θ(•)!.

Hence, by full faithfulness of (†T̃ ′) (see 16.2.2.1), we reduce to check the canonical isomorphism θ̃(•)+ ∼−→
θ̃(•)!, which is Theorem 16.1.10.5.

(b) We get the isomorphisms:

(†T̃ ′) ◦ sp
(•)
X′↪→P′,Z′,+ ◦ θ

∗
16.2.1.11.1
∼−→ sp

(•)
X′↪→P′,T̃ ′,+

◦ j̃′† ◦ θ∗ ∼−→ sp
(•)
X′↪→P′,T̃ ′,+

◦ θ̃∗ ◦ j̃†

16.1.8.6.1
∼−→ θ̃(•)+ ◦ sp

(•)
X↪→P,T̃ ,+

◦ j̃†
16.2.1.11.1
∼−→ θ̃(•)+ ◦ (†T̃ ) ◦ sp

(•)
X↪→P,Z,+

∼−→ (†T̃ ′) ◦ θ(•)+ ◦ sp
(•)
X↪→P,Z,+.

Hence, we conclude by using the full faithfulness of (†T̃ ′) (see 16.2.2.1).

16.2.5 Full faithfulness of the “restriction-inverse image” functor
Notation 16.2.5.1. Consider the commutative diagram

Y (0) �
� j(0)

//

b�� �

X(0) �
� u(0)

//
a��

P(0)

f��
Y �
� j // X �

� u // P,

(16.2.5.1.1)

where the left and middle squares are cartesian, f is a proper smooth morphism of separated and
smooth S-formal schemes, a is a proper surjective morphism of k-varieties, b is a generically finite and
etale morphism of smooth k-varieties, j and j(0) are open immersions, u and u(0) are closed immersions.
Let Z be a closed subscheme of P such that Y = X \ Z. We denote by U := P \ Z, Z(0) := f−1(Z),
U(0) := P(0) \Z(0) and g : U(0) → U the morphism induced by f . We denote by a = (b, a, f) the induced
morphism of smooth c-frames.

Proposition 16.2.5.2. With notation 16.2.5.1, the functor

(a(•)+, |U) : MIC(•)(X,P, Z/V)→ MIC(•)(X(0),P(0), Z(0)/V)×MIC(•)(Y (0),U(0)/V) MIC(•)(Y,U/V)
(16.2.5.2.1)

is fully faithful.

Proof. We can suppose P is integral. Since Z is a finite intersection of divisors of P , then there exists a
divisor T of P containing Z such that ‹Y := X\T is dense in Y . We denote by Ũ := P\T̃ , T̃ (0) := f−1(T̃ ),
Ũ(0) := P(0) \ T̃ (0), ‹Y (0) := X(0) \ T̃ (0), c : ‹Y (0) → ‹Y the morphism induced by a. Then ‹Y (0) is dense in
Y (0). We denote by ã = (c, a, f) the induced morphism of smooth d-frames. We denote by j̃ : ‹Y ↪→ X

and j̃(0) : ‹Y (0) ↪→ X(0) the induced open immersions. Consider the following diagram

MIC(•)(X,P, Z/V)
(a(•)+, |U)//

(†T̃ )��

MIC(•)(X(0),P(0), Z(0)/V)×MIC(•)(Y (0),U(0)/V) MIC(•)(Y,U/V)

((†T̃ (0)),|Ũ)��
MIC(•)(X,P, T̃ /V)

(̃a(•)+, |Ũ)// MIC(•)(X(0),P(0), T̃ (0)/V)×
MIC(•)(Ỹ (0),Ũ(0)/V)

MIC(•)(‹Y , Ũ/V).

(16.2.5.2.2)
Following 13.2.1.4, the local functors commute with extraordinary inverse images. It follows from
16.2.3.3.1, the localisation outside a divisor commutes with duality. This yields the commutativity
up to canonical isomorphism of the diagram 16.2.5.2.2. Since following 16.2.2.1 (resp. 16.1.5.2) the
left functor (resp. bottom) is fully faithful, as the right one is faithful, the upper functor is then fully
faithful.

Remark 16.2.5.3. The extension from the case of divisors to that of closed subschemes in 16.1.11.4 is not
clear since we need first to define the dual functor D(•

Z in this context.
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16.2.5.4. Let P be a smooth separated S-formal scheme, Z ⊂ Z ′ be two closed subschemes of P , X be
a closed subscheme of P . We set U := P \ Z, U′ := P \ Z ′, Y := X \ Z, Y ′ := X \ Z ′, j : Y ⊂ X and
j′ : Y ′ ⊂ X the canonical open immersions. We suppose moreover Y smooth and Y ′ dense in Y .

(a) Following the contagiosity theorem of Kedlaya (see 16.1.8.1), the bottom functor of the square

MIC(•)(X,P, Z/K)
((†Z′),|U) // MIC(•)(X,P, Z ′/K)×MIC(•)(Y,U,Z′∩U/K) MIC(•)(Y,U/K)

MIC†(Y,X/K)
(j′†,j∗) //

spX↪→P,Z,+

OO

MIC†(Y ′, X/K)×MIC†(Y ′,Y/K) MIC†(Y, Y/K)

(spX↪→P,Z′,+,spY ↪→U,+)

OO

(16.2.5.4.1)
is an equivalence of categories. Since this square is commutative up to canonical isomorphism,
since the vertical functors are equivalences of categories (see 16.2.1.10.1), then so is the top functor
((†Z ′), |U).

(b) When Z and Z ′ are in fact the support of some divisors T and T ′, then by using to 16.1.11.4, we can
explicitly build the quasi-inverse functor Glue of ((†T ′), |U) by setting, for any object (E ′,FU, ρ) ∈
MIC††(X,P, T ′/K)×MIC††(Y,U,T ′/K) MIC††(Y,U/K),

Glue(E ′,FU, ρ) := Im (DT ◦ DT ′(E ′)→ E ′) .

16.2.6 Tensor products, commutation with sp+

Let (Y,X,P, Z) and (Y ′, X ′,P′, Z ′) be two smooth c-frames (see the definition 16.2.1.8). We set P′′ :=
P×P′, X ′′ := X×X ′, Y ′′ := Y ×Y ′, j : Y ⊂ X, j′ : Y ′ ⊂ X ′ and j′′ : Y ′′ ⊂ X ′′ the canonical inclusions.
We denote by θ = (b, a, p) : (Y ′′, X ′′,P′′, Z ′′) → (Y,X,P, Z) and θ′ = (b′, a′, p′) : (Y ′′, X ′′,P′′, Z ′′) →
(Y ′, X ′,P′, Z ′) the morphisms of d-frames induced by the canonical projections, where Z ′′ = p−1(Z) ∪
p′−1(Z ′).

Divisorial case: When Z (resp. Z ′) are the support of a divisor T (resp. T ′), then we get smooth
d-frames (see the definition 12.2.1.1) and θ and θ′ becomes morphisms of d-frames.

Lemma 16.2.6.1. Let E(•),F (•) ∈ MIC(•)(X,P, Z/V), E ′(•) ∈ MIC(•)(X ′,P′, Z ′/V).

(a) For any integer j 6= 0, we have Hj(E(•)“�L
OS
E ′(•)) ∼−→ 0 in LD−→

b
Q,coh(“D(•)

P′′(Z
′′)). Moreover, H0(E(•)“�L

OS
E ′(•)) ∈

MIC(•)(X ′′,P′′, Z ′′/V).

(b) We have H0(E(•)“⊗L
O(•)

P

F (•)[dY/P ]) ∈ MIC(•)(X,P, Z/V) and the isomorphism in LD−→
b
Q,oc(“D(•)

P (Z)):

E(•)“⊗L
O(•)

P

F (•)[dY/P ]
∼−→ H0(E(•)“⊗L

O(•)
P

F (•)[dY/P ]).

Proof. 1) Suppose Z (resp. Z ′) are the support of a divisor T (resp. T ′).
a) Let us check (a). Let us denote by U := P\T , U′ := P′ \T ′, U′′ := P′′ \T ′′. As E(•)“�L

OS
E ′(•)|U′′ =

E(•)|U“�L
OS
E ′(•)|U′, following the already known case of completely smooth d-frames (see 12.2.1.8), then

we have E(•)“�L
OS
E ′(•)|U′′ ∈ MIC(•)(Y ′′,U′′/V). It is then sufficient to prove that E(•)“�L

OS
E ′(•) ∈

LD−→
b
Q,ovcoh(“D(•)

P′′(T
′′)). As E(•)“�L

OS
E ′(•) ∈ LD−→

b
Q,coh(“D(•)

P′′(T
′′)) the idea is as usual to proceed by descent:

with the lemma 16.1.2.9 (and the remark 16.1.2.10), we reduce to the case where Y is dense in X with X
integral and where Y ′ is dense in X ′ with X ′ integral. Following 16.1.11.1 there exist a morphism of d-
frames of the form α = (h, g, f) : (‹Y , ‹X,‹P, T̃ )→ (Y,X,P, T ) where ‹X is smooth, T̃ = f−1(T ) and T̃ ∩ ‹X
is a strict normal crossing divisor of ‹X, f is a proper and smooth morphism of separated and smooth
S-formal schemes, g is a proper, surjective, generically finite etale morphism of k-varieties. We set ‹P′′ :=‹P×P′, ‹X ′′ := ‹X×X ′, ‹Y ′′ := ‹Y ×Y ′, α′′ = (h′′, g′′, f ′′) : (‹Y ′′, ‹X ′′,‹P′′, T̃ ′′)→ (Y ′′, X ′′,P′′, T ′′) the mor-
phism of d-frames induced by α, where T̃ ′′ = f ′′−1(T ′′). We denote by θ̃ = (̃b, ã, p̃) : (‹Y ′′, ‹X ′′,‹P′′, T̃ ′′)→
(‹P, T̃ , ‹X,‹Y ) and θ̃′ = (p̃′, ã′, b̃′) : (‹Y ′′, ‹X ′′,‹P′′, T̃ ′′)→ (Y ′, X ′,P′, T ′) the morphisms of d-frames induced
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by the canonical projections. Let us denote by Ẽ(•) := α(•)(E(•)) = RΓ†
X̃
f

(•)!
T (E(•)). By stability of the

overcoherence by extraordinary inverse image (see 15.3.6.12), we get Ẽ(•) ∈ LD−→
b
Q,ovcoh(“D(•)

P̃
(T̃ )).

Following 16.1.11.2, E(•) is a direct summand of f (•)
T+(Ẽ(•)) in LD−→

b
Q,coh(“D(•)

P (T )). This implies that

E(•)“�L
OS
E ′(•) is a direct summand of f (•)

T+(Ẽ(•))“�L
OS
E ′(•) in LD−→

b
Q,coh(“D(•)

P′′(T
′′)). Moreover, following

9.4.4.2.2, we have the isomorphism f
(•)
T,+(Ẽ(•))“�L

OS
E ′(•) ∼−→ f

′′(•)
T ′′,+

Ä
Ẽ(•)“�L

OS
E ′(•)

ä
. By stability of the

overcoherence by the direct image of a proper morphism, we reduce then to the case where X is smooth
and T ∩ X is strict normal crossing divisor of X. In the same way, we reduce then to the case where
X ′ is smooth and T ′ ∩X ′ is a strict normal crossing divisor of X ′. In that case, following 12.2.1.8, we
obtain E(•)“�L

OS
E ′(•) ∈ MIC(•)(X ′′,P′′, T ′′/V).

b) Let us check (b). Let δ : P ↪→ P × P be the diagonal immersion. By using 9.2.5.15.1 (recall
also 9.1.2.8.1 and 9.2.5.3) in the case where (Y,X,P, T ) = (Y ′, X ′,P′, T ′), we get E(•)“⊗L

O(•)
P

F (•) ∼−→

δ(•)!(E(•)“�L
OS
F (•))[−dP ]. According to (a), we have E(•)“�L

OS
F (•) ∈ LD−→

b
Q,oc(“D(•)

P′′(T
′′)). By stability

of the overcoherence by extraordinary inverse image (see 15.3.6.12, this yields that E(•)“⊗L
O(•)

P

F (•) ∈

LD−→
b
Q,oc(“D(•)

P (T )). Hence, it is sufficient to check the lemma apart from T (e.g. we use 8.7.6.11, the
characterization of categories of the form MIC(•) (see 16.2.1.1)

Let us denote by U := P\T . Using the case treated in 12.2.1.13, this yields that E(•)“⊗L
O(•)

P

F (•)[dY/P ]|U =

E(•)|U“⊗L
O(•)

U

F (•)|U[dY/U ]
∼−→ H0(E(•)|U“⊗L

O(•)
U

F (•)|U[dY/U ]) ∈ MIC(•)(Y,U/V).

2) Let us go back to the general case. Since tensor products commute with extraordinary pullbacks
and with localisation functors (see 13.1.2.1), then the part (b) follows from the divisorial case. Since the
categories of the form MIC(•) commutes with inverse images, the part (a) is a consequence of (b) (recall
definition 9.2.5.1.5).

Corollary 16.2.6.2 (Divisorial case). Suppose Z (resp. Z ′) are the support of a divisor T (resp. T ′).
Let E ,F ∈ MIC††(X,P, T/V), E ′ ∈ MIC††(X ′,P′, T ′/V).

(a) We have H0(E
L
⊗†OP(†T )Q

F [dY/P ]) ∈ MIC††(X,P, T/V) and the isomorphism

E
L
⊗†OP(†T )Q

F [dY/P ]
∼−→ H0(E

L
⊗†OP(†T )Q

F [dY/P ]).

(b) For any integer j 6= 0, we have the isomorphism Hj(E
L
�†OS,T,T ′

E ′(•)) ∼−→ 0 and H0(E
L
�†OS,T,T ′

E ′(•)) ∈
MIC††(X ′′,P′′, T ′′/V).

Lemma 16.2.6.3. Let E,F ∈ MIC†(Y,X,P/K). We have the canonical isomorphism in MIC(•)(X,P, Z/V):

sp
(•)
X↪→P,Z,+(E ⊗j†O]X[P

F )
∼−→ sp

(•)
X↪→P,Z,+(E)“⊗L

O(•)
P

sp
(•)
X↪→P,Z,+(F )[dY/P ].

Proof. Following 16.2.1.10.1, we have the equivalence of categories sp
(•)
X↪→P,Z,+ : MIC†(Y,X,P/K) ∼=

MIC(•)(X,P, Z/V). Following the lemma 16.2.6.1.(b), this yields that the two terms are in MIC(•)(X,P, Z/V).
With the lemma 16.2.1.4 (and the remark 16.1.2.10), we reduce to the case where X is integral and Y is
dense in X. To come down to the case where X is smooth (already known case in 12.2.6.5), we use the
fully faithfulness theorem 16.2.5.2 as follows: following the theorem of desingularisation of de Jong (see
[dJ96, 4.1]), there exist a diagram of the form

Y (0) �
� j(0)

//

b�� �

X(0) �
� u(0)

//
a��

P(0)

f��
Y �
� j // X �

� u // P,

(16.2.6.3.1)

where the left square is cartesian, X(0) is smooth, f is a proper and smooth morphism of separated
and smooth S-formal schemes, a is a proper, surjective, generically finite etale morphism of k-varieties,
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T (0) := f−1(Z) is a divisor of P (0), j and j(0) are open immersions, u and u(0) are closed immersions.
Let us denote by θ := (b, a, f) the morphism of c-frames. We have the isomorphisms:

θ∗ ◦ sp
(•)
X↪→P,Z,+(E ⊗j†O]X[P

F )
∼−→

16.2.4.3.1
sp

(•)
X(0)↪→P(0),T (0),+

◦ θ∗(E ⊗j†O]X[P
F )

∼−→ sp
(•)
X(0)↪→P(0),T (0),+

Å
θ∗(E)⊗j(0)†O

]X(0)[
P(0)

θ∗(F )

ã
∼−→

12.2.6.5.1
sp

(•)
X(0)↪→P(0),T (0),+

(θ∗(E))“⊗L
O(•)

P(0)

sp
(•)
X(0)↪→P(0),T (0),+

(θ∗(F ))[dY (0)/P (0) ]

∼−→
16.2.4.3.1

θ∗ ◦ sp
(•)
X↪→P,Z,+(E)“⊗L

O(•)
P(0)

θ∗ ◦ sp
(•)
X↪→P,Z,+(F )[dY (0)/P (0) ]

∼−→ θ∗
Å

sp
(•)
X↪→P,Z,+(E)“⊗L

O(•)
P

sp
(•)
X↪→P,Z,+(F )[dY/P ]

ã
. (16.2.6.3.2)

Outside the divisor T (0), this isomorphism is 12.2.6.5.1. As the functor (θ∗, |U) is fully faithful (see
12.2.6.5, this yields the proposition.

Notation 16.2.6.4. Let E ∈ MIC†(Y,X,P/K) and E′ ∈ MIC†(Y ′, X ′,P′/K). With the notations of
16.1.2.8 (see also 16.1.6.11), we define the bifunctor −�− : MIC†(Y,X,P/K)×MIC†(Y ′, X ′,P′/K)→
MIC†(Y ′′, X ′′,P′′/K) by setting

E � E′ := θ∗(E)⊗j′′†O]X′′[
P′′

θ′∗(E′).

Proposition 16.2.6.5. With the notations 16.2.6.4, we have the canonical isomorphism in MIC(•)(X ′′,P′′, Z ′′/V):

sp
(•)
X′′↪→P′′,Z′′,+(E � E′)

∼−→ sp
(•)
X↪→P,Z,+(E)“�L

OS
sp

(•)
X′↪→P′,Z′,+(E′). (16.2.6.5.1)

Proof. By using 16.2.6.1.(a), the right term of 16.2.6.5.1 belongs to MIC(•)(X ′′,P′′, Z ′′/V). Since so is
the the left one, then using 15.3.8.2 and replacing the use of Proposition 12.2.6.5 by that of Lemma
16.2.6.3, 12.2.4.1.2 by 16.2.4.3, we can copy the proof of 12.2.6.7.

Theorem 16.2.6.6. We suppose P′ = P and that (Y ∩Y ′, X∩X ′,P, Z∪Z ′) is a smooth c-frame. Let us
denote by i : (Y ∩Y ′, X ∩X ′,P, Z ∪Z ′)→ (Y,X,P, Z), i′ : (Y ∩Y ′, X ∩X ′,P, Z ∪Z ′)→ (Y ′, X ′,P, Z ′)

the canonical morphisms of c-frames and j̃ : Y ∩ Y ′ ⊂ X ∩X ′ be the canonical inclusion.

(a) For any E(•) ∈ MIC(•)(X,P, Z/V), E ′(•) ∈ MIC(•)(X ′,P, Z ′/V), we have the canonical isomorphism
in MIC(•)(X ∩X ′,P, Z ∪ Z ′/V) of the form:

E(•)“⊗L
O(•)

P

E ′(•)[dY + dY ′ − dY ∩Y ′ − dP ]
∼−→ i(•)∗(E(•))“⊗L

O(•)
P

i′(•)∗(E ′(•))[dY ∩Y ′/P ]. (16.2.6.6.1)

(b) For any E ∈ MIC†(Y,X,P/K) and E′ ∈ MIC†(Y ′, X ′,P′/K), we have the canonical isomorphism
in MIC(•)(X ∩X ′,P, Z ∪ Z ′/V):

sp
(•)
X∩X′↪→P,Z∪Z′,+(i∗(E)⊗

j̃†O]X∩X′[P
i′∗(E′))

∼−→ sp
(•)
X↪→P,Z,+(E)“⊗L

O(•)
P

sp
(•)
X′↪→P,Z′,+(E′)[dY + dY ′ − dY ∩Y ′ − dP ]. (16.2.6.6.2)

Proof. Let us treat first 16.2.6.6.1. Since we have the isomorphisms RΓ†Y E(•) ∼−→ E(•), RΓ†Y ′E ′(•)
∼−→

E ′(•) and since RΓ†Y ◦ RΓ†Y ′
∼−→ RΓ†Y ∩Y ′ (see 13.1.5.6.1), then we get from 13.1.5.6.2 the isomorphism:

E(•)“⊗L
O(•)

P

E ′(•) ∼−→ RΓ†Y ∩Y ′(E
(•))“⊗L

O(•)
P

RΓ†Y ∩Y ′(E
′(•))

= i(•)∗(E(•))“⊗L
O(•)

P

i′(•)∗(E ′(•))[2dY ∩Y ′ − (dY + dY ′)]. (16.2.6.6.3)
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It follows from 16.2.4.3 that i(•)∗(E(•)), i′(•)∗(E ′(•)) ∈ MIC(•)(X ∩ X ′,P, Z ∪ Z ′/V). The lemma
16.2.6.1.(b) allow us to conclude the check of 16.2.6.6.1. Finally, the isomorphism 16.2.6.6.2 can be
built by composing the isomorphisms below:

sp
(•)
X∩X′↪→P,Z∪Z′,+(i∗(E)⊗

j̃†O]X∩X′[P
i′∗(E′))

16.2.6.3
∼−→ sp

(•)
X∩X′↪→P,Z∪Z′,+(i∗(E))“⊗L

O(•)
P

sp
(•)
X∩X′↪→P,Z∪Z′,+(i′∗(E′))[dY ∩Y ′/P ]

∼−→
16.2.4.3.1

i(•)∗ ◦ sp
(•)
X↪→P,Z,+(E)“⊗L

O(•)
P

i′(•)∗ ◦ sp
(•)
X′↪→P,Z′,+(E′)[dY ∩Y ′/P ]

= RΓ†Y ∩Y ′sp
(•)
X↪→P,Z,+(E)“⊗L

O(•)
P

RΓ†Y ∩Y ′sp
(•)
X′↪→P,Z′,+(E′)[dY + dY ′ − dY ∩Y ′ − dP ]

16.2.6.6.3
∼−→ sp

(•)
X↪→P,Z,+(E)“⊗L

O(•)
P

sp
(•)
X′↪→P,Z′,+(E′)[dY + dY ′ − dY ∩Y ′ − dP ].

16.2.7 Canonical independence in smooth c-frame
Lemma 16.2.7.1. Let f : P′ → P be a morphism of separated and smooth S-formal schemes, u′ : X ′ ↪→
P ′ be a closed immersion with X ′ integral, Z be a closed subscheme of P such that Z ′ := f−1(Z) is a
closed subscheme of P ′ not containing X ′ and such that Y ′ := X ′ \ Z ′ is smooth. We suppose f ◦ u′
proper. Let E ′(•) ∈ (F -)MIC(•)(X ′,P′, Z ′/V).

(a) We have f (•)
+ (E ′(•)) ∈ LD−→

b
Q,oc(

l“D(•)
P/S(Z)).

(b) If Z is the support of some divisor T and E ′ := →l
∗
Q(E ′(•)) ∈ (F -)MIC(•)(X ′,P′, Z ′/V) then DT ◦

fT,+(E ′(•)!) ∈ (F -)Db
oc(D†P(†T )Q).

(c) Suppose the induced morphism Y ′ → P is an immersion. Let X be the closure of Y ′ in P . Then
f

(•)
+ (E ′(•)) ∈ (F -)MIC(•)(X,P, Z/V).

Proof. Let us prove a): by using the stability of our category with respect to (extraordinary) inverse
images (see 16.2.4.3), by using the commutation of the pushforward by a proper morphism to the ex-
traordinary pullback (see 13.2.3.7), we reduce to check that for any divisor T of P containing Z we have
(†T )f

(•)
+ (E ′(•)) ∈ LD−→

b
Q,ovcoh(

l“D(•)
P/S(T )). We get

(†T ) ◦ f (•)
+ (E ′(•))

13.2.1.4.2
∼−→ f

(•)
+ ◦ (†f−1(T ))(E ′(•)).

We can suppose P ′ is integral. So either f−1(T ) is a divisor of P ′ or f−1(T ) = P ′. Since the second
case is obvious (because we get therefore (†f−1(T ))(E ′(•)) = 0, then we can suppose T ′ := f−1(T ) is a
divisor of P ′. Set ‹Y ′ := X ′ \ T ′. Set Ẽ ′(•) := (†T ′)(E ′(•)) ∈ (F -)MIC(•)(X ′,P′, T ′/V). It follows from de
Jong desingularization theorem that there exists a diagram of the form:‹Y ′′

�c′

��

// Y ′′

�

j′′ //

b′

��

X ′′
u′′ //

a′

��

P̂NP′
P̂Nf //

q′

��
�

P̂NP

q

��‹Y ′ // Y ′
j′ // X ′

u′ // P′
f // P,

(16.2.7.1.1)

where X ′′ is quasi-projective and smooth over k, q and q′ are the canonical projections, u′′ is a closed
immersion, a′−1(T ′∩X ′) is a strict normal crossing divisor ofX ′′, a′ is proper, surjective, generically finite
and etale. More precisely, there exists an immersion ι : X ′′ ↪→ P̂NS such that u′′ is the composition of the
graph of u′ ◦a′ with ι× id : X ′×P′ ↪→ P̂NP′ . Since u

′ ◦a′ and q are proper, then so is u′′ which is therefore
a closed immersion. Similarly, we can check that the morphism f̃ ◦ u′′ is an immersion which is closed
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because of the properness of f ◦ u′ ◦ a and q. Denote by f̃ := P̂Nf , ‹P := P̂NP , T̃ := q−1(T ),η′ := (c′, a′, q′)

and Ẽ ′′(•) := η′!(Ẽ ′(•)).
Since T ′′∩X ′′ = T̃ ∩X ′′, via 16.1.9.3.(b), then we get f̃ (•)

+ (Ẽ ′′(•)) ∈ (F -)MIC(•)(X ′′,‹P, T̃ /V). Since q
is proper, q(•)

+ preserves the overcoherence (see 15.3.6.14). Moreover, by transitivity of the direct image
f

(•)
+ ◦ q′(•)+ (Ẽ ′′(•)) ∼−→ q

(•)
+ ◦ f̃ (•)

+ (Ẽ ′′(•)). This yields that f (•)
+ ◦ q′(•)+ (Ẽ ′′(•)) ∈ (F -)LD−→

b
Q,ovcoh(∗‹D(•)

P/S(T )).

Since Ẽ ′(•) is a direct summand of q′(•)+ (Ẽ ′′(•)), then f (•)
+ (Ẽ ′(•)) is a direct summand of f (•)

+ ◦ q′(•)+ (Ẽ ′′(•))
Hence f (•)

+ (Ẽ ′(•)) ∈ (F -)Db
ovcoh(D†P(†T )Q).

Let us check (b). In the case where Z = T and Z ′ = T ′, set E ′′(•) := η′!(Ẽ ′(•)) and E ′′ := E ′′(•). Since
f+ ◦ q′+(E ′′) ∼−→ q+ ◦ f̃+(E ′′). Since f̃ (•)

+ (E ′′(•)) ∈ (F -)MIC(•)(X ′′,‹P, T̃ /V), then it follows from 16.1.11.3
that DT ◦ f+ ◦ q′+(E ′′) ∈ (F -)Db

ovcoh(D†P(†T )Q). Hence, we get DT ◦ f+(E ′(•)) is a direct summand of
DT ◦ f+ ◦ q′+(E ′′). Hence DT ◦ f+(E ′) ∈ (F -)Db

ovcoh(D†P(†T )Q).

Let us consider now c). Following a), it is already known that f (•)
+ (E ′(•)) ∈ LD−→

b
Q,oc(

l“D(•)
P/S(Z)).

Hence, it remains more to prove that f (•)
+ (E ′(•))|U ∈ MIC(•)(Y ′,U/V), where U := P \ T . This is a

consequence of the completely smooth d-frame case which was already treated at 16.1.9.3. Hence we are
done.

Corollary 16.2.7.2. With notation 16.2.7.1, let g : Q→ P be a smooth morphism of S-smooth formal
schemes. We denote by Q′ := P′ ×P Q, by f ′ : Q′ → Q and g′ : Q′ → P′ the two canonical projections,
U := g−1(Z), U ′ := g′−1(Z ′). There then exists a canonical isomorphism in LD−→

b
Q,oc(“D(•)

Q/S(U)):

g(•)! ◦ f (•)
+ (E ′(•)) ∼−→ f

′(•)
+ ◦ g′(•)!(E ′(•)). (16.2.7.2.1)

Proof. Using Lemma 16.2.7.1 and replacing the coherent version by the overconvergent version of Berthelot-
Kashiwara theorem (see 15.3.8.26), then we can indeed copy the proof of 13.2.3.7.

Lemma 16.2.7.3. Let P be a smooth separated S-formal scheme, X,X ′ be two smooth closed subschemes
of P , Z,Z ′ be two closed subschemes of P such that Z ∩ X = Z ′ ∩ X ′. We get then the equality:
(F -)MIC(•)(X,P, Z/V) = (F -)MIC(•)(X ′,P, Z ′/V).

Proof. This is checked similarly to 15.3.8.25

Proposition 16.2.7.4. Let P be a smooth separated S-formal scheme, X, Z, X ′ and Z ′ be some closed
subschemes of P such that Y := X \ Z is smooth and X \ Z = X ′ \ Z ′. Then we have the equality
(F -)MIC(•)(X,P, Z/V) = (F -)MIC(•)(X ′,P, Z ′/V). In particular, writing the schematic closure of Y in
P by Y , we get (F -)MIC(•)(X,P, Z/V) = (F -)MIC(•)(Y ,P, Y \ Y/V).

Proof. 1) Suppose Z = Z ′. This case is checked similarly to the part 1) of the proof of 16.1.9.2. we are
reduced to the case where X = X ′ = Y and X \ Z is not empty.

2) Suppose X = X ′ and Z ⊂ Z ′. Similarly to the part 2) of the proof of 16.1.9.2, we get
(F -)MIC(•)(X,P, Z/V) ⊂ (F -)MIC(•)(X,P, Z ′/V). Conversely, let E ′(•) be an object of (F -)MIC(•)(X,P, Z ′/V).
By 16.2.1.4, we can suppose that X is irreducible. It remains to show that E ′(•) ∈ LD−→

b
Q,oc(

l“D(•)
P/S(Z))

(indeed, the second condition of the definition 16.2.1.1 holds since we are in the completely smooth
context of 16.2.7.3). By using the stability of our category with respect to (extraordinary) inverse im-
ages (see 16.2.4.3), we reduce to check that for any divisor T of P containing Z we have (†T )E ′(•) ∈
LD−→

b
Q,ovcoh(

l“D(•)
P/S(T )). Since X is integral, then either T ∩X is a divisor of X or T ∩X = X. Since the

second case is obvious (because we get therefore (†T )(E ′(•)) = 0, then we can suppose D := T ∩X is a
divisor of X. Set ‹Y := X \ T . Set Ẽ ′(•) := (†T )(E ′(•)) ∈ (F -)MIC(•)(X,P, T ∪ Z ′/V). We have to check
that Ẽ ′(•) := (†T )(E ′(•)) ∈ (F -)MIC(•)(X,P, T/V).

Let T ′1, . . . , T ′r be some divisors of P such that T ∪Z ′ = T ′1 ∩ · · · ∩ T ′r. Since MIC(•)(X,P, T ∪Z ′/V)
is an abelian subcategory of LM−−→Q,poc(X,P, T ∪Z ′/V), then it follows from 15.3.8.19.1 that we have the
exact sequence

0→ Ẽ ′(•) → ⊕ri=1(†T ′i )(Ẽ ′(•))
θ2−θ1

−→ ⊕ri,j=1(†T ′i ∪ T ′j)(Ẽ ′(•)). (16.2.7.4.1)
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where θn : Ẽ ′(•) → ⊕ri=1(†T ′i )(Ẽ ′(•))→ ⊕ri,j=1(†T ′i ∪ T ′j)(Ẽ ′(•)) for n = 0, 1 are the canonical maps defined
at 15.3.8.19. Hence, we reduce to check that for any divisor T ′ containing T ∪Z ′, we have (†T ′)(Ẽ ′(•)) ∈
(F -)MIC(•)(X,P, T/V).

Set ‹Y := X \T and ‹Y ′ := X \T ′. It follows from de Jong desingularization theorem that there exists
a diagram of the form: ‹Y ′(0) �

� l(0)
//

d�� �

‹Y (0) �
� l(0)

//
c�� �

Y (0) �
� j(0)

//

b�� �

X(0) �
� u(0)

//

a��

P(0)

f��‹Y ′ � � l // ‹Y � � l // Y �
� j // X �

� u // P,

(16.2.7.4.2)

where the left and middle squares are cartesian, f is a proper smooth morphism of separated and
smooth S-formal schemes, a is a proper surjective morphism of k-varieties, b is a morphism of smooth
k-varieties, c is a generically finite and etale morphism, l, l(0), j and j(0) are open immersions, u and
u(0) are closed immersions, ‹Y is dense in Y and ‹Y (0) is dense in Y (0). We denote by j̃ : ‹Y ↪→ X and
j̃(0) : ‹Y (0) ↪→ X(0) the induced open immersions. We set U := P \ Z, Z(0) := f−1(Z), Z ′(0) := f−1(Z ′),
T (0) := f−1(T ),T ′(0) := f−1(T ′), U(0) := P(0) \ Z(0) and g : U(0) → U the morphism induced by f .

We denote by η = (c, a, f) and η′ = (d, a, f) the induced morphism of smooth d-frames. Since
Ẽ(•)(†T ′) ∈ (F -)MIC(•)(X,P, T ′/V), then it follows from 16.1.11.2 that Ẽ(•)(†T ′) is a direct factor of
η
′(•)
+ ◦ η′(•)!(Ẽ(•)(†T ′)), where η′(•)+ := f

(•)
+ . According to 16.2.4.1.1, we have η(•)!(Ẽ ′(•)) := RΓ†

Ỹ (0)
◦

f (•)!(Ẽ ′(•)) ∈ (F -)MIC(•)(‹Y (0), X(0),P(0), Z ′(0)∪T (0)). With 16.2.7.3, since (Z ′(0)∪T (0))∩X(0) = T (0)∩
X(0), this implies η(•)!(Ẽ ′(•)) ∈ (F -)MIC(•)(‹Y (0), X(0),P(0), T (0)). By stability of the overcoherence, via
the isomorphism

η
′(•)
+ ◦ η′(•)!(Ẽ(•)(†T ′))

∼−→ (†T ′) ◦ η(•)
+

Ä
η(•)!(Ẽ(•))

ä
,

(where η(•)
+ := f

(•)
+ ) we get η′(•)+ ◦ η′(•)!(Ẽ(•)(†T ′)) ∈ LD−→

b
Q,oc(“D(•)

P (T )). Hence, so is Ẽ(•)(†T ′) and we are
done.

3) Since X \ Z = X \ (Z ∪ Z ′) = X ′ \ (Z ∪ Z ′) = X ′ \ Z ′, then to check the general case we deduce
to the two preceding cases.

Notation 16.2.7.5. Let P be a smooth separated S-formal scheme, Y be some subscheme of P . We
write (F -)MIC(•)(Y,P/V) := (F -)MIC(•)(Y ,P, Y \ Y/V).

Proposition 16.2.7.6. Let θ = (id, a, f) : (Y,X ′,P′, Z ′) → (Y,X,P, Z) be a morphism of smooth c-
frames (see definition 16.2.1.8) such that a is proper.

(a) Let E(•) ∈ (F -)MIC(•)(X,P, Z/V), E ′(•) ∈ (F -)MIC(•)(X ′,P′, Z ′/V). For any l ∈ Z \ {0},

H l(RΓ†Y f
(•)!(E(•))) = 0, H l(f

(•)
+ (E ′(•))) = 0.

(b) The functors RΓ†Y f
(•)! and f (•)

+ induce canonically quasi-inverse equivalences between the categories
(F -)MIC(•)(X,P, Z/V) and (F -)MIC(•)(X ′,P′, Z ′/V).

Proof. Let E(•) ∈ (F -)MIC(•)(X,P, Z/V), E ′(•) ∈ (F -)MIC(•)(X ′,P′, Z ′/V). Denote by U := P \ Z and
U′ := P′\Z ′. Using 16.2.7.4, we can suppose Y is dense in X ′. Since a is proper, then the open immersion
Y ↪→ X ′ \ f−1(Z) is also closed. Hence, f−1(Z) is a closed subscheme of P ′ such that X ′ \ f−1(Z) = Y .
Following 16.2.7.4, we can suppose Z ′ = f−1(Z). Moreover, using lemma 16.2.1.4, we reduce to the case
where Y integral.

Since a is proper, then it follows from lemma 16.2.7.1.(c) (resp. thanks to the proposition 16.2.4.1), we
obtain the assertion (a) for the direct image (resp. the other functor) and f (•)

+ (E ′(•)!) ∈ (F -)MIC(•)(X,P, Z/V)

(resp. RΓ†X′f
(•)!(E(•)) ∈ (F -)MIC(•)(X ′,P′, Z ′/V)).

Let us now check that we have the canonical isomorphism: RΓ†X′ ◦ f (•)! ◦ f (•)
+ (E ′(•)) ∼−→ E ′(•)!. It

follows from the lemma 16.1.11.1), that there exists a diagram of the form 16.2.7.1.1 and satisfying the
required conditions. With these notations, since the functor (a′(•)!, |U′) is fully faithful (see 16.2.5.2),
it is sufficient to build two compatible isomorphisms a′(•)! ◦ RΓ†X′ ◦ f (•)! ◦ f (•)

+ (E ′(•)) ∼−→ a′(•)!(E ′(•)!)
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and |U′ ◦ RΓ†X′ ◦ f (•)! ◦ f (•)
+ (E ′(•)) ∼−→ E ′(•)!|U′. The second isomorphism is a consequence of the case

of the smooth partial compactification (see 16.1.9.5). Let us establish now the first. We recall that
a′(•)! = RΓ†X′′ ◦ q′!. Denote by f̃ := P̂Nf : P̂NP′ → P̂NP . Following 16.2.7.1.a, f (•)

+ (E ′(•)) is coherent. We
have the isomorphisms:

a′(•)! ◦ RΓ†X′ ◦ f
(•)! ◦ f (•)

+ (E ′(•)) ∼−→ RΓ†X′′ ◦ f̃
(•)! ◦ q(•)! ◦ f (•)

+ (E ′(•))
16.2.7.2
∼−→ RΓ†X′′ ◦ f̃

(•)! ◦ f̃ (•)
+ ◦ q′!(E ′(•))

∼−→ RΓ†X′′ ◦ f̃
(•)! ◦ f̃ (•)

+ ◦ a′(•)!(E ′(•)) ∼−→ a′(•)!(E ′(•)),

the last isomorphism, since X ′′ is smooth, coming from the completely smooth case of 16.1.9.5.
Similarly, we established the canonical isomorphism and f (•)

+ ◦RΓ†X′ ◦ f (•)!(E(•))
∼−→ E(•). Hence we

are done.

Corollary 16.2.7.7. Let (Y,X,P, Z) be a smooth c-frame over S. Denote by p1 : P × P → P and
p2 : P × P → P the left and right projections. For any E(•) ∈ (F -)MIC(•)(X,P, Z/V), we have the
canonical isomorphisms:

RΓ†Xp
(•)!
1 (E(•))

∼←− RΓ†Xp
(•)!
1 (E(•))

∼−→ RΓ†Xp
(•)!
2 (E(•))

∼−→ RΓ†Y p
(•)!
2 (E(•)), (16.2.7.7.1)

where by abuse of notation X is δ(X) and Y is δ(Y ).

Proof. Since δ(X)∩ (P × Y ) = δ(X)∩ (Y ×P ) = δ(Y ), then we get the first and the last isomorphisms.
Let δ : P ↪→ P × P be the diagonal immersion. Pour i = 1, 2, set F (•)

i := RΓ†Xp
(•)!
i (E(•)). We have

therefore the canonical isomorphisms:

F (•)
i

16.2.7.6
∼−→ δ

(•)
+ ◦ RΓ†Xδ

(•)!(F (•)
i )

∼−→ δ
(•)
+ (E(•)),

the last one coming from pi ◦ δ = id. Hence, we are done.

Definition 16.2.7.8. A “realizable pair (Y,X)/V( of k-varieties)” is the data of a k-variety X, of an open
set Y of X such that there exists a c-frame of the form (Y,X,P, Z). In that case we say that (Y,X,P, Z)
is a c-frame enclosing (Y,X)/V. A morphism (Y ′, X ′) → (Y,X) of realizable pairs of k-varieties is a
morphism of varieties a : X ′ → X such that a(Y ′) ⊂ Y .

Proposition 16.2.7.9 (and Definition). Let (Y,X,P, Z) be a c-frame.

(a) The category (F -)MIC(•)(X,P, Z/V) does not depend, up to canonical equivalence of categories, on
the choice of the c-frame enclosing (Y,X)/V.

(b) If there is no ambiguity, we denote therefore by (F -)MIC(•)(Y,X/V) instead of (F -)MIC(•)(X,P, Z/V).
Its objects are the “(F -)partially overcoherent isocrystals over (Y,X)/V” or simply “(F -)overcoherent
isocrystals over (Y,X)/V”.

Proof. Let (Y,X,P′, Z ′) be another c-frame enclosing (Y,X). Set P′′ := P × P′. Let q : P′′ → P,
q′ : P′′ → P′ the canonical projections and Z ′′ := q−1(Z). Following 16.2.7.6, the functors q(•)

+

and RΓ†Xq
(•)! (resp. q

′(•)
+ and RΓ†Xq

′!) induce then quasi-inverse equivalences between the categories
(F -)MIC(•)(X,P, Z/V) and (F -)MIC(•)(X,P′′, Z ′′/V) (resp. (F -)MIC(•)(X,P′, Z ′/V) and (F -)MIC(•)(X,P′′, Z ′′/V)).
Hence we are done.

16.2.7.10. Suppose there exists an automorphism σ : V ∼−→ V which is a lifting of the sth Frobenius
power of k. Let (Y,X,P, Z) be a smooth c-frames. We denote by P′ := Pσ the V-formal scheme
deduced from P by the base change defined by σ. We denote by Z ′ := Zσ, X ′ := Xσ, Y ′ := Y σ. Let
F sY/S : Y → Y ′ be the relative Frobenius of Y . The functor F ∗(•)X : LD−→

−
Q,qc(l“D(•)

P′/S) → LD−→
−
Q,qc(l“D(•)

X/S)

defined at 9.5.1.2.2 (with empty divisors) induces the functor:

F
∗(•)
X : MIC(•)(X ′,P′, Z ′/V)→ MIC(•)(X,P, Z/V). (16.2.7.10.1)

Composing the graph γF s
Y/S

: Y ↪→ Y ×Y ′ of F sY/S with the immersion Y ×Y ′ ↪→ P×P′, we get the
immersion γ : Y ↪→ P×P′. Let X ′′ be the closure Y in P ×P ′ and Z ′′ := (Z×P ′)∪ (P ×Z ′), we get the
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c-frame (Y,X ′′,P×P′, Z ′′). We get the morphisms of c-frames θ2 = (F sY/S , a, p2) : (Y,X ′′,P×P′, Z ′′)→
(Y ′, X ′,P′, Z ′), θ1 = (id, a, p1) : (Y,X ′′,P×P′, Z ′′)→ (Y,X,P, Z) where p1 and p2 are respectively the
left and the right projection. It follows from 16.2.7.6 that p1+ induces canonically the equivalence of
categories θ(•)

1+ = p
(•)
1+ : F -MIC(•)(X ′′,P×P′, Z ′′/V) ∼= F -MIC(•)(X,P, Z/V). We get the functor

θ
(•)
1+ ◦ θ

(•)!
2 : F -MIC(•)(X ′,P′, Z ′/V)→ F -MIC(•)(X,P, Z/V). (16.2.7.10.2)

which is canonically isomorphic to the functor F ∗(•)X defined of 16.2.7.10.1.
It follows from 16.2.7.6 and 16.2.4.1.1, that for any E(•) ∈ F -MIC(•)(X ′′,P×P′, Z ′′/V), we get the

isomorphism:
sp

(•)
X↪→P,Z,+ ◦ θ

(•)
1+(E(•))

∼−→ θ
(•)
1+ ◦ sp

(•)
X′′↪→P×P′,Z′′,+(E(•)).

Using again 16.2.4.1.1, since both functors 16.2.7.10.2 and 16.2.7.10.2 are isomorphic, this yields for any
E ′(•) ∈ F -MIC(•)(X ′,P′, Z ′/V)

sp
(•)
X↪→P,Z,+ ◦ F

∗(•)
X (E ′(•)) ∼−→ F

∗(•)
X sp

(•)
X′↪→P′,Z′,+(E ′(•)). (16.2.7.10.3)

16.2.7.11. Let (Y,X) be a pair of k-varieties. Following lemma 16.2.1.4, if Y is the closure of Y in X
then (F -)MIC(•)(Y, Y /V) = (F -)MIC(•)(Y,X/V).

Let (Y,X,P, Z) be a c-frame enclosing (Y,X). Since the equivalence of categories of 16.2.1.10.1
commutes with base change, using 16.2.7.10.3, we obtain the functor:

sp
(•)
X↪→P,Z,+ : (F -)MIC†(Y,X/V) ∼= (F -)MIC(•)(Y,X/V), (16.2.7.11.1)

which does not depend canonically on the choice of the c-frame (Y,X,P, Z) enclosing (Y,X) and will
be simply denoted by sp

(•)
(Y,X),+. When X/S is proper, sp

(•)
(Y,X),+ only depends on Y and will simply be

denoted by sp
(•)
Y+.

Proposition 16.2.7.12 (and Definition). Let Y be a smooth k-variety. We suppose there exists a c-frame
of the form (Y,X,P, Z), with X a proper k-variety.

(a) The category (F -)MIC(•)(X,P, Z/V) does not depend, up to canonical equivalence of categories, on
the choice of the c-frame of the form (Y,X,P, Z), with X a proper k-variety.

(b) We denote then by (F -)MIC(•)(Y/V) instead of (F -)MIC(•)(X,P, Z/V). Its objects are called “(F -)overcoherent
isocrystals over Y ”.

Proof. Let (Y,X ′,P′, Z ′) be another c-frame with X ′ proper. Let X ′′ be the closure of Y in X × X ′.
Since the projection X ′′ → X and X ′′ → X ′ are proper, we conclude the proof by using 16.2.7.6.

Notation 16.2.7.13. Let θ = (b, a, f) : (Y ′, X ′,P′, Z ′) → (Y,X,P, Z) be a morphism of smooth c-
frames. The functors θ(•)+, θ(•)! : MIC(•)(X,P, Z/V) → MIC(•)(X ′,P′, Z ′/V) of 16.2.4.3 only depends
on the morphism of realizable pairs (b, a) : (X ′, Y ′) → (Y,X). Following 16.2.4.3, those are isomorphic.
Hence we will denote it without ambiguity (b, a)∗.

16.3 Devissability in overconvergent isocrystals

16.3.1 Definition and first properties
Let P be a separated and smooth S-formal scheme.

Definition 16.3.1.1. Let Y be a subvariety of P . We say that Y is “d-embedabble in P ” if there exist
a divisor T of P such that Y is closed in P \ T . We remark that this is equivalent to suppose that there
exist a d-frame of the form (Y,X,P, T ). Moreover, if Y ′, Y are d-embedabble in P two subvarieties, then
Y ∩ Y ′ is d-embedabble in P .

Definition 16.3.1.2. Let Y be a subvariety of P .
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(a) A “stratification of Y ” is the data (for a certain integer r ≥ 1) of r subvarieties (Y1, Y2, . . . , Yr) such
that, by setting Y0 := ∅, for any integer i satisfying 1 ≤ i ≤ r − 1, the variety Yi is an open of
Y \ (∪0≤j≤i−1Yj) and such that Yr = Y \ (∪0≤j≤r−1Yj). In other words, we have the direct sum
Y = ti=1,...,rYi such that, for any 1 ≤ i ≤ r − 1, the variety Yi is an open subset of tj=i,...,rYj .
Taking care of the order, we also say such a split Y = ti=1,...,rYi is a stratification of Y .

(b) Let Y = ti=1,...,rYi be a stratification. We say that Y = ti=1,...,rYi or (Y1, Y2, . . . , Yr) is a smooth
stratification (resp. a d-stratification in P , resp. is a smooth d-stratification) if, for any 1 ≤ i ≤ r,
the variety Yi is smooth (resp. is d-embeddable, resp. is smooth and d-embeddable).

Remark 16.3.1.3. Let Y be a subvariety of P and Y = ti=1,...,rYi be a stratification. For any, E(•) ∈
LD−→

b
Q,qc(“D(•)

P ), for any 1 ≤ i ≤ r − 1, we have distinguished triangle of localisation

RΓ†tj=i+1,...,rYj
(E(•))→ RΓ†tj=i,...,rYj (E

(•))→ RΓ†Yi(E
(•))→ +1

Notation 16.3.1.4. Let Y be a smooth subvariety of P . Let us chooseX and Z be two closed subschemes
of P , such that Y = X \Z. We denote by LD−→

b
Q,isoc,X(“D(•)

P (Z)) the strictly full triangulated subcategory
of LD−→

b
Q,poc(Y,X,P, Z/S) (see notation 15.3.8.3) of complexes E(•) such that for any j ∈ Z, with notation

15.3.8.13 we have
Hj
Z(E(•)) ∈ MIC(•)(X,P, Z/V).

This category do not depend on the choice of the closed subschemes X an Z such that Y = X\Z. Indeed,
let X ′, Z ′ be a closed subschemes of P such that X ′ \ Z ′ = Y . It follows from 16.2.7.4 by devissage in
LD−→

b
Q,isoc,X(“D(•)

P (Z)) the inclusion LD−→
b
Q,isoc,X(“D(•)

P (Z)) ⊂ LD−→
b
Q,isoc,X′(

“D(•)
P (Z ′)). By symmetry, we get

this inclusion is an equality.
Hence, we can then simply denote LD−→

b
Q,isoc,X(“D(•)

P (Z)) by LD−→
b
Q,isoc,Y (“D(•)

P ).

The following notion of devissability into overconvergent isocrystals extends that of [Car06a] since
we do not bother with divisors (but both notions are equal).

Definition 16.3.1.5. Let Y be a subvariety of P . Let E(•) ∈ LD−→
b
Q,qc(l“D(•)

P ).

(a) The complex E(•) “splits into overconvergent isocrystals on Y ” if there exists a smooth stratification
of Y (see Definition 16.3.1.2) of the form Y = ti=1,...,rYi such that, for any i = 1, . . . , r, we have
RΓ†Yi(E

(•)) ∈ LD−→
b
Q,isoc,Yi

(“D(•)
P ). We also say that the complex “E(•) splits (or is devissable) into

overconvergent isocrystals on the smooth stratification Y = ti=1,...,rYi”.

(b) When Y = P , we say that E(•) splits (or is devissable) into overconvergent isocrystals. We will
denote by LD−→

b
Q,dev(l“D(•)

P ) the full subcategory of LD−→
b
Q,qc(l“D(•)

P ) of devissable into overconvergent
isocrystals complexes.

Lemma 16.3.1.6. Let Y, Y ′ be two smooth subvarieties of P such that Y ′ ⊂ Y . Let E(•) ∈ LD−→
b
Q,qc(l“D(•)

P ).

If RΓ†Y (E(•)) ∈ LD−→
b
Q,isoc,Y (“D(•)

P ) then RΓ†Y ′(E(•)) ∈ LD−→
b
Q,isoc,Y ′(

“D(•)
P ).

Proof. Following 16.2.4.3 and with notation 16.2.7.5 we have the exact functor RΓ†Y ′ : MIC(•)(Y,P/V)→
MIC(•)(Y ′,P/V). Hence we are done.

Lemma 16.3.1.7. Let Y be a subvariety of P , Y = ti=1,...,rYi be a stratification. For any i = 1, . . . , r,
let Yi = tj=1,...,jiYi,j a smooth stratification (see definition 16.3.1.2). Hence Y = (tj=1,...,j1Y1,j) t · · · t
(tj=1,...,jrYr,j) is a smooth stratification. We say that such a stratification is a “smooth substratification”
of Y = ti=1,...,rYi.

Proof. Let 1 ≤ i ≤ r and 1 ≤ j ≤ ji. As Yi is an open subset of ti′=i,...,rYi′ , then tj′=j,...,jiYi,j′ is an
open subset of Zi,j := (tj′=j,...,jiYi,j′) t (tj=1,...,ji+1

Yi+1,j) t · · · t (tj=1,...,jrYr,j). As Yi,j is an open
subset of tj′=j,...,jiYi,j′ , then Yi,j is an open subset of Zi,j .
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Proposition 16.3.1.8. Let E(•) ∈ LD−→
b
Q,qc(l“D(•)

P ), Y be a subvariety of P and Y = ti=1,...,rYi be a
stratification of Y . If, for any i = 1, . . . r, the complex E(•) splits into overconvergent isocrystals on
Yi, then the complex E(•) splits into overconvergent isocrystals on Y and more precisely on the smooth
substratification of Y = ti=1,...,rYi constructed from the smooth stratifications of Yi on which E(•) splits
into overconvergent isocrystals.

Proof. For any i = 1, . . . , r, let Yi = tj=1,...,jiYi,j a smooth stratification such that, for any j = 1, . . . , ji,
we have RΓ†Yij (E

(•)) ∈ LD−→
b
Q,isoc,Yij

(“D(•)
P ). Then we conclude with lemma 16.3.1.7.

Lemma 16.3.1.9. Let Y be a subvariety of P . There exists a smooth d-stratification of Y in P .

Proof. As P is smooth, we reduce to the case where P is integral (indeed, if (Pn)n are the irreducible
components of P , if we have d-stratifications of the form Pn ∩ Y = ti=1,...,rnYn,i, then by setting Yi :=
tnYn,i we obtain the d-stratification Y = ti≥1Yi). Let us denote by X the closure of Y . The case where
Y = X is obvious. If not, then there exist some divisors T1, . . . , Tr of P such that X \ Y = ∩j=1,...,rTj .
If y is a generic point of an irreducible component of dimension equal to dimY , then there exist a j such
that y 6∈ Tj . We set then Y1 := X \ Tj ⊂ Y . Proceeding by lexicographic induction on the dimension of
Y and on the number of irreducible components of maximal degree, this yields a smooth d-stratification
of Y \ Y1. Hence we are done.

Lemma 16.3.1.10. Let Y be a subvariety of P , Y ′ be a subvariety of Y . Let E(•) ∈ LD−→
b
Q,qc(l“D(•)

P ).
If E(•) splits into overconvergent isocrystals on Y then so is on Y ′. In particular, the converse of the
proposition 16.3.1.8 is valid.

Proof. Let Y = ti=1,...,rYi be a smooth stratification on which E(•) splits into overconvergent isocrystals.
We get the stratification Y ′ = ti=1,...,r(Yi∩Y ′). By using 16.3.1.8, we reduce then to the case where Y is
smooth and where RΓ†Y (E(•)) ∈ LD−→

b
Q,isoc,Y (“D(•)

P ). Following 16.3.1.9, there exists a smooth stratification

Y ′ = ti=1,...,rY
′
i . It follows from the lemma 16.3.1.6 that RΓ†Y ′

i
(E(•)) ∈ LD−→

b
Q,isoc,Y ′

i
(“D(•)

P ). Hence, E(•)

splits into overconvergent isocrystals on the stratification Y ′ = ti=1,...,rY
′
i .

Proposition 16.3.1.11. Let Y be a subvariety of P , E(•) ∈ LD−→
b
Q,qc(l“D(•)

P ). The following conditions
are equivalent:

(a) The complex E(•) splits into overconvergent isocrystals on Y .

(b) There exists a smooth d-stratification of Y in P of the form Y = ti=1,...,rYi such that, for any
i = 1, . . . , r, we have RΓ†Yi(E

(•)) ∈ LD−→
b
Q,isoc,Yi

(“D(•)
P ).

Proof. The implication (b) ⇒ (a) is tautological. The converse follows from 16.3.1.8, 16.3.1.9 and
16.3.1.10.

Proposition 16.3.1.12. Let Y be a subvariety of P .

(a) Let E(•),F (•) ∈ LD−→
b
Q,qc(l“D(•)

P ) be devissable in overconvergent isocrystals on Y objects. Then there
exists a smooth stratification of Y such that E(•) and F (•) split simultaneously into overconvergent
isocrystals on this one.

(b) The full subcategory of LD−→
b
Q,qc(l“D(•)

P ) of devissable in overconvergent isocrystals on Y complexes is
triangulated.

Proof. a) Let Y = ti=1,...,rYi be a smooth stratification of Y on which E(•) splits into overconvergent
isocrystals. Following 16.3.1.10, F (•) splits into overconvergent isocrystals on each Yi. Following 16.3.1.8,
the complex F (•) splits into overconvergent isocrystals on a smooth substratification of Y = ti=1,...,rYi.
Following 16.3.1.6, this is also the case of E(•) on this latter.

b) By devissage in overconvergent isocrystals of E(•),F (•) on the same smooth stratification, we
reduce then to the case where Y is smooth and where E(•) and F (•) are objects of LD−→

b
Q,isoc,Y (“D(•)

P ),
which is straightforward.
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Proposition 16.3.1.13. Let Y , Y ′ be two subvarieties of P . Let E(•) ∈ LD−→
b
Q,qc(l“D(•)

P ). The complex E(•)

splits into overconvergent isocrystals on Y ∪ Y ′ if and only if the complex E(•) splits into overconvergent
isocrystals on Y and on Y ′.

Proof. The necessity follows from 16.3.1.10.
Let us suppose that the complex E(•) splits into overconvergent isocrystals on Y and on Y ′. Since

Y ∪ Y ′ = Y t (Y ′ \ Y ), since E(•) splits into overconvergent isocrystals on Y ′ ⊂ Y (use again 16.3.1.10),
then replacing Y ′ by Y ′ \ Y if necessary we can suppose Y and Y ′ are disjoint. Let Y = ti=1,...,rYi
(resp. Y ′ = ti′=1,...,r′Y

′
i′) be a smooth stratification on which E(•) splits into overconvergent isocrystals.

By symmetry, we can suppose r′ ≤ r. For any r′ + 1 ≤ i′ ≤ r, we set Y ′i′ := ∅. For any j = 1, . . . r, we
set Y ′′j := Yj ∪ Y ′j . Then we get the smooth stratification Y ∪ Y ′ = tj=1,...,rY

′′
j . Since Yj ∩ Y ′j is empty,

then by using the distinguished triangle of Mayer-Vietoris we get the isomorphism

RΓ†Y ′′
j

(E(•))
∼−→ RΓ†Yj (E

(•))⊕ RΓ†Y ′
j
(E(•)) ∈ LD−→

b
Q,isoc,Y ′′

j
(“D(•)

P ).

Hence, we are done.

16.3.1.14. It follows from 16.3.1.12.(b), that the category LD−→
b
Q,dev(l“D(•)

P ) is the smallest full triangulated

subcategory of LD−→
b
Q,qc(l“D(•)

P ) containing LD−→
b
Q,isoc,Y ′(

“D(•)
P ), for any smooth subvariety Y ′ of P .

Notation 16.3.1.15. Let Y be a subvariety of P . We denote by LD−→
b
Q,dev(Y,P/V) the strictly full

subcategory of LD−→
b
Q,dev(l“D(•)

P ) of complexes E(•) such that there exist an isomorphism of the form
RΓ†Y (E(•))

∼−→ E(•).

Lemma 16.3.1.16. Let Y be a subvariety of P . The category LD−→
b
Q,dev(Y,P/V) is equal to the strictly

full subcategory of LD−→
b
Q,qc(l“D(•)

P ) of complexes E(•) devissable in overconvergent isocrystals on Y and
such that there exists an isomorphism of the form RΓ†Y (E(•))

∼−→ E(•).

Proof. Let E(•) ∈ LD−→
b
Q,qc(

l“D(•)
P ). If E(•) ∈ LD−→

b
Q,dev(Y,P/V), then E(•) splits into overconvergent isocrys-

tals on Y (see 16.3.1.10). Conversely, suppose E(•) devissable in overconvergent isocrystals on Y and such
that we have an isomorphism of the form RΓ†Y (E(•))

∼−→ E(•). Let X and Z be two closed subschemes
of P such that Y = X \Z. We get the stratification P = (P \X)tY t (X ∩Z). Since RΓ†P\X(E(•)) = 0,

RΓ†X∩Z(E(•)) = 0 (use 13.1.5.6.1 and RΓ†∅ = 0) and E(•) splits into overconvergent isocrystals on Y , then
we conclude via 16.3.1.8.

Lemma 16.3.1.17. Let (Y,X,P, Z) be a c-frame. For any E(•) ∈ LM−−→Q,povcoh(X,P, Z/S), there exists
a smooth, dense open Y ′ of Y such that RΓ†Y ′(E(•)) ∈ (F -)MIC(•)(Y ′,P/V).

Proof. Since P is the sum of its irreducible components, we reduce to the case where P is integral. Let
U′ be an affine open formal subscheme of P included in P \ Z such that Y ′ := U ′ ∩ X is smooth and
dense open of Y . Hence, E|U′ ∈ (F -)LM−−→Q,povcoh(Y ′,U′/V). Via 15.3.1.19 and 15.3.8.26, shrinking U′ if
necessary, we can suppose that E|U′ ∈ (F -)MIC(•)(Y ′,U′/V). Since E(•) ∈ LM−−→Q,povcoh(X,P, Z/S), this
yields RΓ†Y ′(E(•)) ∈ (F -)MIC(•)(Y ′,P/V).

Theorem 16.3.1.18. Let (Y,X,P, Z) be a c-frame. We have the inclusion

(F -)LD−→
b
Q,povcoh(X,P, Z/S) ⊂ (F -)LD−→

b
Q,dev(Y,P/S).

Proof. When dimY = 0, this is obvious. We proceed by induction on the dimension of Y by using the
preceding lemma 16.3.1.17.
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16.3.2 Stability by tensor product of the devissability in isocrystals
Let P and P′ be a two separated and smooth S-formal schemes. Let Y (resp. Y ′) be a subvariety of P
(resp. P′). Set P′′ := P×P′ and Y ′′ := Y × Y ′.

Lemma 16.3.2.1. Suppose Y (resp. Y ′) is a smooth subvariety of P (resp. P′).

(a) The bifunctor −“�L
OS
− induces

−“�L
OS
− : LD−→

b
Q,isoc,Y (“D(•)

P )× LD−→
b
Q,isoc,Y ′(“D(•)

P′ )→ LD−→
b
Q,isoc,Y ′′(“D(•)

P′′). (16.3.2.1.1)

(b) If P = P′ and if Y ∩ Y ′ is smooth, the bifunctor −“⊗L
OP
− induces:

−“⊗L
OP
− : LD−→

b
Q,isoc,Y (“D(•)

P )× LD−→
b
Q,isoc,Y ′(“D(•)

P )→ LD−→
b
Q,isoc,Y ∩Y ′(“D(•)

P ). (16.3.2.1.2)

Proof. As the category LD−→
b
Q,isoc,Y ′′(

“D(•)
P′′) (resp. LD−→

b
Q,isoc,Y ∩Y ′(

“D(•)
P )) is a triangulated subcategory

of LD−→
b
Q,qc(“D(•)

P′′) (resp. LD−→
b
Q,qc(“D(•)

P )), using distinguished triangles of truncation and proceeding by
induction on the number of nonzero cohomological space if necessary, we reduce to the case where
the complexes of LD−→

b
Q,isoc,Y (“D(•)

P ) (resp. LD−→
b
Q,isoc,Y ′(

“D(•)
P′ )) are objects of MIC(•)(X,P, T/V) (resp.

MIC(•)(X ′,P′, T ′/V)), i.e. to the situation already treated in respectively 16.2.6.1.(a) and 16.2.6.6.1.

Theorem 16.3.2.2. We have the factorisations

−“�L
OS
− : LD−→

b
Q,dev(Y,P/V)× LD−→

b
Q,dev(Y ′,P′/V)→ LD−→

b
Q,dev(Y ′′,P′′/V), (16.3.2.2.1)

−“⊗L
O(•)

P

− : LD−→
b
Q,dev(Y,P/V)× LD−→

b
Q,dev(Y,P/V)→ LD−→

b
Q,dev(Y,P/V). (16.3.2.2.2)

Proof. Let us check first 16.3.2.2.1. Let E(•) ∈ LD−→
b
Q,dev(Y,P/V) and E ′(•) ∈ LD−→

b
Q,dev(Y ′,P′/V). Let Y =

ti=1,...,rYi be a smooth stratification of Y on which E(•) splits into overconvergent isocrystals. Let Y ′ =
tj=1,...,sY

′
j be a smooth stratification of Y ′ in P ′ on which E ′(•) splits into overconvergent isocrystals.

As LD−→
b
Q,dev(Y ′′,P′′/V) is a triangulated subcategory of LD−→

b
Q,qc(

l“D(•)
P′′), we reduce by devissage (see the

remark 16.3.1.3) to the case where E(•) ∈ LD−→
b
Q,isoc,Yi

(“D(•)
P ) and E ′(•) ∈ LD−→

b
Q,isoc,Y ′

j
(“D(•)

P′ ). By using

16.3.2.1.1, this yields that E(•)“�L
OS
E ′(•) ∈ LD−→

b
Q,isoc,Yi×Y ′j

(“D(•)
P′′) ⊂ LD−→

b
Q,dev(Y ′′,P′′/V) (the inclusion is

a consequence of 16.3.1.16). Hence we are done. Let us treat now 16.3.2.2.2. Following 16.3.1.12, there
exists Y = ti=1,...,rYi a smooth stratification of Y on which E(•) and E ′(•) both split into overconvergent
isocrystals. We proceed then similarly to the check of 16.3.2.2.1 but by using 16.3.2.1.2 instead of
16.3.2.1.1.

16.3.3 Stability of the overcoherence by pushforward, base change isomor-
phism

The following proposition improves 13.2.3.4 by removing the hypothesis on realizability of the morphism.

Proposition 16.3.3.1. Let f : P′ → P be a morphism of separated and smooth S-formal schemes,
u′ : X ′ ↪→ P ′ be a closed immersion with X ′ integral, Z be a closed subscheme of P . We set Z ′ :=

f−1(Z). We suppose f ◦ u′ proper. For any E ′(•) ∈ LD−→
b
Q,ovcoh(X ′,P′, Z ′/V), we have f (•)

+ (E ′(•)) ∈
LD−→

b
Q,ovcoh(

l“D(•)
P/S(Z)).

Proof. By commutation of the local functors with pushforwards (see 13.2.1.4.2), by definition of the
overcoherence we can suppose Z is the support of a divisor T of P . We can suppose P ′ is integral.
So either f−1(T ) is a divisor of P ′ or f−1(T ) = P ′. Since the second case is obvious (because we get
therefore (†f−1(T ))(E ′(•)) = 0, then we can suppose T ′ := f−1(T ) is a divisor of P ′. Set Y ′ := X ′ \ T ′.
Following 16.3.1.18, 16.3.1.11 and by stability of the overcoherence by local functors (see 15.3.7.5.1),
there exists a smooth d-stratification ti=1,...,rY

′
i of Y ′ in P ′ such that RΓ†Y ′

i
(E ′(•)) ∈ LD−→

b
Q,isoc,Y ′

i
(“D(•)

P′ )∩
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LD−→
b
Q,ovcoh(X ′,P′, T ′/V), for any for any i = 1, . . . , r. Since LD−→

b
Q,ovcoh(

l“D(•)
P/S(T )) is a triangle subcate-

gory of LD−→
b
Q,qc(“D(•)

P/S), we reduce by devissage to check that g+RΓ†Y ′
i
(E ′(•)) ∈ LD−→

b
Q,ovcoh(

l“D(•)
P/S(T )). We

can suppose Y ′i integral. Let X ′i be the closure of Y ′i in P ′i , T ′i be a divisor of P ′ such that Y ′i = X ′i \ T ′i .
Again by devissage, we reduce to check g+

Ä
Hj(RΓ†Y ′

i
(E ′(•)))

ä
∈ LD−→

b
Q,ovcoh(“D(•)

P/S(T )) for any integer
j ∈ Z.

We have E ′(•)i,j := Hj(RΓ†Y ′
i
(E ′(•))) ∈ MIC(•)(X ′i,P

′, T ′i , /V) ∩ LM−−→Q,ovcoh(“D(•)
P′/S(T ′)). It follows from

de Jong desingularization theorem that there exists a diagram of the form:

X ′′i
u′′ //

a′

��

PNP ′ //

��

P̂NP′
P̂Ng //

q′

��

P̂NP

q

��
X ′i

u′ // P ′ // P′
g // P,

(16.3.3.1.1)

where X ′′i is k-smooth, q and q′ are the canonical projections, u′′ is a closed immersion, a′−1(T ′i ∩
X ′i) is a strict normal crossing divisor of X ′′i , a′ is surjective, generically finite and etale. Set T ′′i :=

q′−1(T ′i ), D′ := q′−1(T ′), D := q−1(T ). Put E ′′(•)i,j := RΓ†X′′
i
q′(•)!(E ′(•)i,j ) ∈ MIC(•)(X ′′i , P̂

N
P′ , T

′′
i , /V) ∩

LM−−→Q,ovcoh(“D(•)
P̂N
P′
/S

(D′)). Following 16.1.11.2, since E ′(•)i,j ∈ MIC(•)(X ′i,P
′, T ′i , /V), then E ′(•)i,j is a direct

factor of q′(•)+ (E ′′(•)i,j ).
By construction, the morphism X ′′i → P̂NP is an immersion (indeed, this is the composition of the

graph of X ′′i → P with the immersion X ′′i × P ↪→ P̂NP induced by an immersion of the form X ′′i ↪→
P̂NS). Since X ′′i is proper over P then X ′′i → P̂NP is more precisely a closed immersion. Since E ′′(•)i,j ∈
LM−−→Q,ovcoh(“D(•)

P̂N
P′
/S

(D′)), then it follows from 16.1.9.3.(b) that (P̂Ng )
(•)
+ (E ′′(•)i,j ) ∈ LM−−→Q,ovcoh(“D(•)

P̂N
P
/S

(D)).

Since q is proper, then q(•)
+ preserves the overcoherence and then g(•)

+ q′+(E ′′(•)i,j )
∼−→ q

(•)
+ ◦(P̂Ng )

(•)
+ (E ′′(•)i,j ) ∈

LD−→
b
Q,ovcoh(“D(•)

P/S(T )). Since E ′(•)i,j is a direct factor of q′(•)+ (E ′′(•)i,j ), then g
(•)
+ (E ′(•)i,j ) is a direct factor of

g
(•)
+ q

′(•)
+ (E ′′(•)i,j ). Hence, g(•)

+ (E ′(•)i,j ) ∈ LM−−→Q,ovcoh(“D(•)
P/S(T )) and we have done.

Proposition 16.3.3.2. Let f : Y→ X, and g : X′ → X be two morphisms of separated smooth S-formal
schemes. We suppose f smooth. Let f ′ : Y ×X X′ → X′, and g′ : Y ×X X′ → Y be the structural
projections. Let Z be a closed subscheme of X, Z ′ := g−1(Z), Z ′ := g−1(Z), U ′ := f ′−1(Z ′), U :=

f−1(Z). For any E ′(•) ∈ LD−→
b
Q,ovcoh(“D(•)

X′ (Z
′)) with proper support over X, we have the base change

isomorphism in LD−→
b
Q,ovcoh(“D(•)

Y (U)) of the form

f (•)!g
(•)
+ (E ′(•)) ∼−→ g

′(•)
+ f ′(•)!(E ′(•)). (16.3.3.2.1)

Proof. This is analogue to the proof 13.2.3.7: let E ′(•) ∈ LD−→
b
Q,ovcoh(“D(•)

X′ (Z
′)) with proper support over

X. First, we remark that by using 16.3.3.1, both objects of 16.3.3.2.1 belongs to LD−→
b
Q,ovcoh(“D(•)

Y (U)).
The morphism f is the composition of its graph γ : Y ↪→ X × Y with the projection π : X × Y → X.
Let g′′ : X′ × Y → X × Y, and π′ : X′ × Y′ → X′ be the canonical projections. Let γ′ : X′ ×X Y ↪→
X′ × Y be the closed immersion induced by base change via g′′ of γ. Following Theorem 9.4.4.3,
we have the isomorphism π(•)!g

(•)
+ (E ′(•)) ∼−→ g

′′(•)
+ π′(•)!(E ′(•)). This yields the second isomorphism

γ
(•)
+ f (•)!g

(•)
+ (E ′(•)) ∼−→ γ

(•)
+ γ(•)!π(•)!g

(•)
+ (E ′(•)) ∼−→ γ

(•)
+ γ(•)!g

′′(•)
+ π′!(E ′(•)). Using the commutation iso-

morphism 13.2.1.4.2 and Corollary 13.2.1.5, we get the first isomorphism γ
(•)
+ γ(•)!g

′(•)
+ π′(•)!(E ′(•)) ∼−→

g
′′(•)
+ γ

′(•)
+ γ′(•)!π′(•)!(E ′(•)) ∼−→ γ

(•)
+ g

′(•)
+ f ′(•)!(E ′(•)). Hence, by composition, we get the isomorphism

γ
(•)
+ f (•)!g

(•)
+ (E ′(•)) ∼−→ γ

(•)
+ g

′(•)
+ f ′(•)!(E ′(•)). Following Proposition 16.3.3.1, f (•)!g

(•)
+ (E ′(•)) and g′(•)+ f ′(•)!(E ′(•))

belongs to LD−→
b
Q,ovcoh(“D(•)

Y (U)). Hence we can use Berthelot-Kashiwara theorem of the form 15.3.8.26:

by applying γ(•)! to the isomorphism γ
(•)
+ f (•)!g

(•)
+ (E ′(•)) ∼−→ γ

(•)
+ g

′(•)
+ f ′(•)!(E ′(•)) we get the isomorphism

16.3.3.2.1.
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Chapter 17

Arithmetic D-modules associated with
overconvergent F -isocrystals over affine
and smooth varieties

Suppose the residue field k of V is a perfect field of characteristic p > 0. When we work with F -complex,
we suppose there exists an automorphism σ : V ∼−→ V which is a lifting of the sth Frobenius power of k.
The data s and σ are fixed in the remaining.

17.1 Weak formal schemes
We give some reminders on weak formal schemes defined by Meredith in [Mer72].

17.1.1 p-adic weak completion of commutative algebra, smooth w.c.f.g V-
algebra

Let R be a noetherian V-algebra.

Definition 17.1.1.1. Let A be an R-algebra. Let Â be the p-adic completion of A and ι : A → Â be
the canonical morphism. Let S ⊂ A. We denote by S† the subset of Â consisting of elements x having
representations

x =
∞∑
j=0

Pj(a1, . . . , an)

where a1, . . . , an ∈ ι(S), Pj ∈ pj ·R[X1, . . . Xn] and there exists a constant c such that degPj ≤ c(j + 1)
for all j. Beware that S† depends on the basis R and we might write A†/R if we would like to clarify.

The “p-adic weak completion as R-algebra of A” is A†. We denote by wA : A → A† the canonical
V-algebra homomorphism. We say that A is (p-adically) weakly complete (as R-algebra) if the canonical
map wA is a bijection.

We denote by Alg(R) the category of commutative R-algebras, by Algwc(R) the full subcategory of
Alg(R) consisting of p-adically weakly complete R-algebras.

Example 17.1.1.2. The p-adic weak completion as R-algebra of R is R̂, i.e. R†/R = R̂. Beware in
general, A†/R 6= Â.

Remark 17.1.1.3. We will extend the notion of the weak completion in the non-commutative case later
(see 17.7.1.1).

Theorem 17.1.1.4. Let A be an R-algebra.

(a) Then A† is p-adically weakly complete.

(b) pA† is contained in the Jacobson radical of A†.
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(c) Let f : A→ B be a morphism of R-algebra. Then there exists a unique homomorphism f† : A† → B†

such that f† ◦ wA = wB ◦ f . If f is surjective, then so is f†.

Proof. See [MW68, 1] (and the last sentence is obvious).

Remark 17.1.1.5. Let A be an R-algebra. Since R†/R = R̂, then it follows from 17.1.1.4.(c) that A†/R

is an R̂-algebra. Moreover, A†/R = (A†/R)†/R̂. However, it is more convenient (e.g. see 17.1.1.13 in the
case where A and R are w.c.f.g. V-algebras) not to assume R is p-adically complete.

Definition 17.1.1.6. Let A be an R-algebra. A subset S of A is said to be a set of weak generators of
the R-algebra A if A = S†. In that case A is said to be a weakly complete R-algebra A which is weakly
generated by S.

A w.c.f.g. R-algebra is a weakly complete R-algebra A having a finite set of weak generators. The
letters “w.c.f.g.” stand for weakly complete weakly finitely generated.

A w.c.f.g. R-algebra is naturally equipped with the p-adic topology. A morphism of w.c.f.g. R-
algebras is a map between two w.c.f.g. R-algebras which is a (unitary) ring morphism; such a morphism
is always continuous.

We denote by Algwcfg(R) the full subcategory of Alg(R) consisting of w.c.f.g. R-algebras.

Proposition 17.1.1.7. Let B(d) := R[t1, . . . , td]
†/R be the weak completion of the polynomial ring with

d variables. Then

B(d) :=

∑
n∈Nd

ant
n | an ∈ R̂,∃ λ > 0 such that vp(an) ≥ |n|

λ
− 1

 ⊂ R̂{t1, . . . , td}.
Proof. See [MW68, 2.3].

Example 17.1.1.8. Following Theorem 17.1.1.7, we get the equality B(d) = {t1, . . . , td}†/R. Hence,
B(d) is a w.c.f.g. R-algebra.

Theorem 17.1.1.9. Let A be a w.c.f.g. R-algebra. Then A is noetherian.

Proof. See [Ful69].

Corollary 17.1.1.10. A w.c.f.g. R-algebra is a Zariski noetherian ring. In particular, a quotient of a
w.c.f.g. R-algebra is a w.c.f.g R-algebra.

Proof. This follows from theorem 17.1.1.4.(b), 17.1.1.9 and [Mat80, Theorem 56].

Corollary 17.1.1.11. Let A be an R-algebra. The following conditions are equivalent:

(a) A is weakly generated by d elements.

(b) A is a quotient of B(d).

Proof. This is more or less contained in the proof of [MW68, 2.2].

17.1.1.12. Let A be a finitely generated R-algebra, i.e. is a quotient of R[t1, . . . , td]. Then A† is
a quotient of B(d) (see the last statement of 17.1.1.4.(c)). Hence, A†/R is a w.c.f.g. R-algebra (see
17.1.1.11). In other words, the image in A† of a finite set of generators of A provides a finite set of weak
generators of A†.

Conversely, if B is an R-algebra having a finite set S of weak generators, denoting by A the R-
subalgebra of B which is generated by S, then B = A†/R.

Theorem 17.1.1.13. Let A be a w.c.f.g. R-algebra. Then the following conditions are equivalent.

(a) A is flat over R.

(b) A/πA is a flat R/πR-algebra and A is p-torsion free.

(c) A/πi+1A is flat over R/πi+1R-algebra, for any i ∈ N.
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Proof. This follows from [MW68, 2.4] applied in the case where the ideal is πA.

Theorem 17.1.1.14. Let A be a w.c.f.g. R-algebra. Then the following conditions are equivalent.

(a) A/πA is a smooth (resp. étale) R/πR-algebra and A is p-torsion free.

(b) A/πA is a smooth (resp. étale) R/πR-algebra and A is flat over R.

(c) A/πi+1A is a smooth (resp. étale) R/πi+1R-algebra, for any i ∈ N.

Proof. This follows from [MW68, 2.5] (for the respective case, the proof is the same) and 17.1.1.13.

Definition 17.1.1.15. Let A be a w.c.f.g. R-algebra. We say that A is a smooth w.c.f.g. R-algebra
if the equivalent conditions of 17.1.1.14 hold. Beware that a smooth w.c.f.g. R-algebra is not a smooth
R-algebra.

Theorem 17.1.1.16. Let A/πA be a smooth (resp. étale) R/πR-algebra.

(a) There exist a smooth R-algebra such that A/πA ∼−→ A0. Such an A is called a smooth R-algebra
lifting of A0.

(b) Let A be a smooth R-algebra lifting of A0. The R-algebra A† is a smooth w.c.f.g. R-algebra such
that A†/πA† ∼−→ A0. Such an A† is called a w.c.f.g. smooth R-algebra lifting of A0.

Proof. This first part is [Ara01, 1.3.1]. The second one is obvious.

Remark 17.1.1.17. In the practice, we will use the lifting Theorem 17.1.1.16 in the case where R = V.
In that case, this lifting theorem was proven by Elkik in [Elk73].

Proposition 17.1.1.18. Let A → B and A → C be two morphisms of w.c.f.g. R-algebras. Then
B ⊗†A C, the weak completion of B ⊗A C, is a w.c.f.g. R-algebra.

Proof. As B is a quotient of B(n) and C is a quotient of B(m) for some integers n and m (see 17.1.1.11),
then B⊗RC is a quotient of B(n)⊗RB(m). Using the last sentence of 17.1.1.4, this yields that B⊗†AC
is a quotient of B(n)⊗†R B(m). Since B(n)⊗†R B(m)

∼−→ B(n+m), then we are done.

Theorem 17.1.1.19. Let f : A→ B be a homomorphism of w.c.f.g. R-algebras. Let f : A/πA→ B/πB
be the induced homomorphism.

(a) If f is injective, then so is f .

(b) If f is bijective and B is flat over R, then f is bijective.

(c) If f is injective and B is flat over R and πjR/πj+1 is flat over R/πR for any j ∈ N, then f is
injective.

Proof. This is a particular case of [MW68, Theorem 3.2].

Corollary 17.1.1.20. Let A0 be a smooth (resp. étale) R/πR-algebra. Let A and B be two smooth
w.c.f.g. R-algebra lifting of A0. Then A and B are (non-canonically) isomorphic.

We recall the notion of very smooth morphisms:

Definition 17.1.1.21. Let ∗ ∈ {wc,wcfg}. An algebra A ∈ Alg∗(R) is said to be “very smooth in
Alg∗(R)” when the following two conditions are verified:

(a) The algebra A := A/πA is smooth on R := R/πR.

(b) For any pair of morphisms of R-algebras B
p
� C

φ←− A, where B,C ∈ Alg∗(R) and p is surjective
(of arbitrary kernel), and for each morphism of R-algebras h : A/πA → B/πB verifying φ = p ◦ h,
there exists a lifting h : A→ B of h, such that φ = p ◦ h.

Theorem 17.1.1.22 (Arabia). Let A0 be a smooth R/πR-algebra.
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(a) For any R-smooth lifting A of A0, the algebra A† is very smooth in Algwc(R). For any other R-smooth
lifting A′ of A0, the algebras A† and A′† are isomorphic.

(b) Any w.c.f.g. smooth R-algebra lifting of A0 is very smooth in Algwc(R).

(c) Let A be a smooth w.c.f.g. R-algebra and B ∈ Algwc(R). Then, any morphism h : A/πA → B/πB
admits a lifting h : A→ B.

Proof. The first assertion is [Ara01, 3.3.2.(b)]. The second one is a consequence of (a) and of 17.1.1.16,
17.1.1.20. The last assertion, is a consequence of (b) and of [Ara01, 3.3.4].

Remark 17.1.1.23. For our purpose, we will use 17.1.1.22.(c) in the case where B is w.c.f.g. smooth,
which was proved by van der Put (see [vdP86, 2.4.4.(ii)])

17.1.2 Affine weak formal schemes
Let A be a w.c.f.g. V-algebra. We put A0 := A/πA. For any f ∈ A, let f be the image de f in A0 and
A[f ] be the weak completion of Af .

Definition 17.1.2.1. We denote by |Spff(A)| the set of open prime ideals of A. We endow |Spff(A)| with
a topology so that the canonical bijection ι : |Spff(A)| → | SpecA0| given by P 7→ P/πP is bicontinuous.
We denote by D(f) := { P ∈ |Spff(A)| ; f 6∈ P}. Then ι(D(f)) = D(f). A principal open subset of
|Spff(A)| is an open of the form D(f) for some f ∈ A.

For any f, g ∈ A, we haveD(g) ⊂ D(f) iff there exists a (unique) A0-algebra morphism (A0)f → (A0)g

iff f ∈ (A0)×g iff f ∈ A×[g] iff there exists a (unique) A-algebra morphism A[f ] → A[g] iff D(g) ⊂ D(f).
Set |X| := Spff(A) this topological space. Let OX be the presheaf on |X| such that for any f, g ∈ A

such that D(g) ⊂ D(f), OX(D(f)) → OX(D(g)) is the natural map A[f ] → A[g]. Following Meredith,
OX is in fact a sheaf and the affine weak formal scheme associated with A, is the ringed topological
space

Spff(A) := (|Spff(A)|,OX).

For any f ∈ A, we have D(f)
∼−→ Spff(A[f ]).

17.1.2.2. We have type A theorem on X = Spff (A) ([Mer72, 3.3]): the functors M 7→ M̃ := OX ⊗AM
and M 7→ Γ(X,M) are quasi-inverse equivalences between the category of coherent OX -modules and
that of A-modules of finite type. In addition, we have the theorem of type B ([Mer72, 2.14]): for any
coherent OX -moduleM,for all integer i > 0, Hi(X,M) = 0.

Notation 17.1.2.3. Let P be an open ideal of A. Put A[P] = lim−→f 6∈PA[f ] (the inductive system is
filtered). This is equipped with the ideal PA[P] = lim−→f 6∈P PA[f ].

Proposition 17.1.2.4. Let P be an open ideal of A. A[P] is a local ring with maximal ideal PA[P]. Its
residue field is isomorphic to the field of fractions of A/P.

Proof. 1) Since A[f ]/πA[f ]
∼−→ (A0)f , then for any f 6∈ P,

A[f ]/PA[f ]
∼−→ A/P⊗A A[f ]

∼−→ A/P⊗A0
A0 ⊗A A[f ]

∼−→ A/P⊗A0
(A0)f

∼−→ (A0)f/(P/πA)f 6= 0.

(17.1.2.4.1)
This implies that PA[f ] 6= A[f ] and a fortiori PA[P] 6= A[P] (one verifies that 1 6∈ PA[P]).

2) Let x be an element of A[P] not in PA[P]. To prove the first assertion, we have to check that x is
invertible. There exists f 6∈ P such that x comes from an element y of A[f ]. It follows from 17.1.2.4.1
that the canonical image y of y in A[f ]/πA[f ]

∼−→ (A0)f does not belong to (P/πA)f . This implies that
y = a/f

r
, where a ∈ A \ P and r ∈ N. Thus, g := af 6∈ P and the canonical image of y in (A0)g is

invertible. As πA[g] is included in the Jacobson ideal of A[g], it follows that the canonical image of y in
A[g] is invertible. Hence x is invertible.

Let S = Â \“P. By [Gro60, 0.7.6.17], Â{S} is a local ring with maximal ideal “PÂ{S}. The canonical
homomorphism A[P] → Â{S} is local. It induces a morphism A[P] → Â{S}/“PÂ{S}←̃Frac(A/P) (since
A/P

∼−→ Â/“PÂ, then the isomorphism follows from [Gro60, 0.7.6.17]). Since any element of A/P
comes from an element of A[P], then the last homomorphism is surjective. This yields the isomorphism
of residue fields: A[P]/PA[P]

∼−→ Â{S}/“PÂ{S}.
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17.1.2.5. The proposition 17.1.2.4 means that Spff A is a locally ringed space.

Lemma 17.1.2.6. Let φ, ψ : A→ B be two morphisms of weakly complete V-algebras. Let φ̂, ψ̂ : Â→ “B
be the induced morphisms.

(a) We have φ̂ = ψ̂ if and only if φ = ψ.

(b) Suppose A is a w.c.f.g. V-algebra. The morphism φ is an isomorphism if and only if so is φ̂.

Proof. Since B ⊂ “B then the equality φ̂ = ψ̂ implies φ = ψ. The converse is obvious. Suppose φ̂ is
an isomorphism. Since A ⊂ Â then φ is injective. Let C be a w.c.f.g. V-algebra included in B and
containing φ(A). It follows from [vdP86, 2.4.3] that the morphism A → C given by a 7→ φ(a) admit a
left inverse ψ so that the composition C → “C → “B ∼←− Â is the composition of ψ with the inclusion
A → Â. Hence ψ is injective and therefore bijective. Hence the morphism A → C given by a 7→ φ(a)
must be bijective (for any such a choice C) and then C = B.

17.1.2.7. Let φ : A→ B be a morphism of w.c.f.g. V-algebras, (X,OX) := Spff A and (Y,OY ) := Spff B.
We get a morphism of topological spaces aφ : Y → X defined by Q 7→ φ−1(Q). For any element f of
A, according to 17.1.1.4.(c) we have a unique morphism A[f ] → B[φ(f)] compatible with the canonical
morphism Af → Bφ(f). Moreover, for any multiple f ′ of f , we have the commutative diagram:

A[f ]
//

��

B[φ(f)]

��
A[f ′]

// B[φ(f ′)].

As aφ−1(D(f)) = D(φ(f)), these homomorphisms define therefore a homomorphism of sheaves of rings
φ̃ : OX → aφ∗OY . Thus we have constructed a morphism (aφ, φ̃) : Spff B → Spff A of ringed spaces.
Moreover, for any open prime ideal Q of B, we have a homomorphism of local rings A[φ−1(Q)] → B[Q].
The homomorphism (aφ, φ̃) is thus a homomorphism of locally ringed spacess. Via the proposition above,
they are all of this form.

Proposition 17.1.2.8. Let A and B be two w.c.f.g. V-algebras and let X = Spff A, Y = Spff B. A
morphism u = (ψ, θ) : Y → X of ringed spaces is of the form (aφ, φ̃), where φ is a homomorphism of
rings A→ B if and only if u is a morphism of locally ringed spaces.

Proof. By using 17.1.2.7, this is checked similarly to [Gro60, 10.2.2].

Remark 17.1.2.9. Let X and Y be two affine S-weak formal schemes. If X/S is smooth and if f0 : Y0 →
X0 is a morphism of k schemes, then there exists a morphism Y → X of S-weak formal schemes lifting
f0. Indeed, since X is smooth, then there exists a lifting “Y → “X of f0. We then conclude with [vdP86,
2.4.3].

17.1.3 Weak formal schemes and morphisms of weak formal schemes
Definition 17.1.3.1. The category of S-weak formal schemes is defined as follows: An S-weak formal
scheme is a locally ringed V-algebras space X = (|X|,OX) locally isomorphic to an affine S-weak formal
scheme (see [Mer72]). A morphism f : Y → X of S-weak formal schemes is a morphism of locally ringed
spaces.

Let f : Y → X a morphism of S-weak formal schemes. For any integer i, the V/πi+1V-scheme
induced by reduction modulo πi+1 is denoted by Xi. Moreover, “X or X denotes the S-formal scheme
obtained by p-adic completion of X, i.e. “X := lim−→i

Xi. Write fi : Yi → Xi and f̂ : Y→ X for the induced
morphisms. By abuse of notations, we sometimes denote them by f . We say that such a morphism is
smooth (resp. étale) if for all i, the fi are smooth (resp. étale) morphisms. Finally, f is separated when
f0 is separated. An S-weak formal scheme X is separated if so is its structural morphism X → Spff V.
The usual properties of separated morphisms remain true.

An affine open S-weak formal subscheme of X is an open S-weak formal subscheme Y of X which
is also an affine S-weak formal scheme.

A morphism f : Y → X of S-weak formal schemes is said to be affine if, for all affine open X ′ of X,
f−1(X ′) is an affine open of Y .

893



Proposition 17.1.3.2. Let Y be anS-weak formal scheme, X = Spff A an affineS-weak formal scheme.
There exists a bijective correspondence between the morphisms of S-weak formal schemes of the form
Y → X and the ring homomorphisms of the form A→ Γ(Y,OY ).

Proof. By using proposition 17.1.2.8, we can follows the algebraic or formal proof of [Gro60, 2.2.4 or
10.4.6].

Proposition 17.1.3.3. The category of S-weak formal schemes has fiber products.

Proof. If A → B and A → C are two morphisms of w.c.f.g. V-algebras, then it follows from 17.1.3.2
and 17.1.1.4.(c) that the S-weak formal scheme Spff (B)×Spff (A) Spff (C) := Spff (B ⊗†A C) satisfies the
universal property of fiber products. For the general case, one proceeds by glueing (in the same manner
as in the case of schemes: see [Gro60]).

17.1.3.4. Let X be an S-scheme of finite type. Meredith ([Mer72, 4]) constructs the sheaf O†X as
follows: if U ⊂ V ⊂ X are affine open of X, then Γ(U,O†X) := Γ(U,OX)†, Γ(V,O†X) := Γ(V,OX)† and
Γ(V,O†X) → Γ(U,O†X) is the canonical morphism induced by Γ(V,OX) → Γ(U,OX) (see 17.1.1.4.(c)).
Denoting by |X0| the underlying topological space of X0 = X×SpecV Spec(k), one verifies that the ringed
space X† := (|X0|,O†X) is an S-weak formal scheme and that we have a canonical morphism X† → X,
which is called the weak completion of X. We can check moreover that the map X 7→ X† induces
canonically (via 17.1.1.4.(c)) a functor from the category of S-schemes of finite type in that of S-weak
formal schemes.

For instance, Ad†S := (AdS)† and Pd†S := (PdS)†. If Y is an S-weak formal scheme, Ad†Y := Ad†S × Y and
Pd†Y := Pd†S × Y (recall 17.1.3.3).

Definition 17.1.3.5. Let U be an S-weak formal scheme. We say that a finite set t1, . . . , td of elements
of Γ(U,OU ) are “coordinates of U/S” if the corresponding S-morphism U → Ad†S is étale.

Proposition 17.1.3.6. Let U be a p-torsion free S-weak formal scheme and U be the p-adic completion of
U . Then U0/S0 has coordinates if and only if U/S has coordinates if and only if U/S has coordinates. Let
t1, . . . , td ∈ Γ(U,OU ) and t1, . . . , td ∈ Γ(U0,OU0

) be the images. The following conditions are equivalent:

(a) The map U0 → AdS0
induced by t1, . . . , td is étale ;

(b) The map U→ ÂdS induced by t1, . . . , td is étale ;

(c) The map U → Ad†S induced by t1, . . . , td is étale.

Proof. Let f0 : U0 → AdS0
be an étale map. We can lift this map to a map f : U → Ad†S (use 17.1.3.2

and 17.1.1.4.(c)). Hence, following 17.1.1.14, since U is p-torsion free then f is étale and so is its p-
adic completion f̂ : U → ÂdS. Conversely, an étale map U → ÂdS induces by base change the étale map
U0 → AdS0

.

Lemma 17.1.3.7. Let f, g : X → Y be two morphisms of S-weak formal schemes. We have f̂ = ĝ if
and only if f = g. Moreover, f̂ is an isomorphism if and only if so is f .

Proof. Suppose f̂ = ĝ. To check that f = g, we reduce to the case where Y is affine. Since Γ(X,OX)→
Γ(X, OX) is injective, then we conclude via the Proposition 17.1.3.2 (and its formal analogue [Gro60,
10.4.6]) that f = g.

Suppose f̂ is an isomorphism. To check that f is an isomorphism, we reduce to the case where Y is
of the form Y = Spff A. Since f̂ is an isomorphism, then the p-adic completion of A→ Γ(X,OX) is an
isomorphism. Via 17.1.2.6, this implies that A→ Γ(X,OX) is an isomorphism. For any a ∈ A, let Xa :=
f−1

0 (D(a)). Similarly, we check that the canonical morphism A[a] → Γ(Xa,OX) is an isomorphism. Since
f is an homeomorphism (because f = f0 as morphism of topological spaces), then the family {Xa} a∈A
is an open neighborhoods basis of |X|. Hence the canonical map f∗OX → OY is an isomorphism. This
yields the map X → Y is an isomorphism as morphism of ringed topological spaces.

Proposition 17.1.3.8. Let X be a p-torsion free S-weak formal scheme such that X0 is affine. Then
the canonical morphism X → Spff Γ(X,OX) is an isomorphism. In particular, X is an affine S-weak
formal scheme.
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Proof. Set Y := Spff Γ(X,OX) and let f : X → Y be the canonical morphism. By hypothesis, f0 is an
isomorphism. Since Xi/Si and Yi/Si are flat, and f0 is étale then so is fi. Since (fi)red = (f0)red is a
universal homeomorphism, then so is fi (see [Gro65, 2.4.3]). Hence fi is an isomorphism (use [Gro67,
17.9.1]). This yields that f̂ is an isomorphism. We conclude therefore by using 17.1.3.7.

17.1.4 Immersions
Proposition 17.1.4.1. Let X be a S-weak formal scheme and I a coherent ideal of OX . Let Y be the
support of OX/I.

(a) Y is a closed subspace of |X|.

(b) The ringed topological space (Y, (OX/I)|Y ) is a S-weak formal scheme. More precisely, if X is affine,
then (Y, (OX/I)|Y ) is canonically isomorphic to Spff (A/I), where A := Γ(X,OX), I := Γ(X, I).

(c) The canonical morphism (Y, (OX/I)|Y )→ (X,OX) is affine.

Proof. 1) Suppose X is affine and let A := Γ(X,OX), I := Γ(X, I). Since coherent OX -modules satisfy
theorem of type A, then the canonical morphism I ⊗A OX → I is an isomorphism. By flatness of
A→ OX , this yields A/I ⊗A OX

∼−→ OX/I.
i) Let us check the equality: Y = {P ∈ Spff A ; P ⊃ I}. Let x ∈ |X| and P be the associated

open prime ideal of A. Since OX,x = A[P], then we have (OX/I)x
∼−→ A/I ⊗A A[P]

∼−→ A[P]/IA[P].
Suppose I ⊂ P. Since A[P]/IA[P] � A[P]/PA[P] 6= 0, then we get (OX/I)x 6= 0. Otherwise, suppose
there exists f ∈ I \P.Then A/I ⊗A Af

∼−→ 0. Hence A/I ⊗A A[P]
∼−→ (A/I ⊗A Af ) ⊗Af A[P]

∼−→ 0,
and we are done.

ii) Following a), we get the bijection ε : Y
∼−→ |Spff A/I| given by P→ P/I. Let ι : |Spff (A/I)| ∼−→

|Spec(A0/I0)| be the canonical bijection given by P/I → (P/πA)/I0, where I0 = I/πA (see 17.1.2.1).
Let f ∈ I and f be its image in A/I. We compute ε−1(D(f)) = D(f)∩Y . Hence, ε is an homeomorphism
and Y is a closed subspace of |X|.

iii) Let us now prove that ε induces the isomorphism of ringed topological spaces of the form
(Y, (A/I ⊗A OX)|Y )

∼−→ Spff (A/I) =: V (I). Since A/I ⊗A OX has its support in the closed sub-
space Y , then we get for any f ∈ A the isomorphism:

ε : Γ(D(f) ∩ Y, (A/I ⊗A OX)|Y ) = Γ(D(f), A/I ⊗A OX)
∼−→ A/I ⊗A A[f ].

On the other hand, Γ(D(f), V (I))
∼−→ (A/I)[f ]. Hence, we have to check that for any f ∈ A and any

g ∈ A which is a multiple of f , we have a canonical isomorphism A/I ⊗A A[f ]
∼−→ (A/I)[f ] inducing the

commutative diagram
A/I ⊗A A[f ]

//

∼��

A/I ⊗A A[g]

∼��
(A/I)[f ]

// (A/I)[g],

where f, g ∈ A/I are the canonical images of f and g respectively.
The epimorphism Af � (A/I)f induces the following one (Af )† � ((A/I)f )† (see 17.1.1.4.(c)) and

therefore A/I ⊗A (Af )† � ((A/I)f )†. It is immediate that this is functorial in f . It remains to check
injectivity which results from the commutative diagram

A/I ⊗A (Af )† //
� _

��

((A/I)f )†
� _

��
A/I“⊗A(Af )†

∼ // ((A/I)f )∧,

where the vertical arrows are injective (because both top objects are w.c.f.g. V-algebras) and the bottom
arrow is an isomorphism.

2) It follows from the par 1) that the support Y is a closed subset of X and that (Y, (OX/I)|Y ) is a
S-weak formal scheme.

3) Suppose X = Spff A and I := Γ(X, I) as in 1). The canonical morphism A → A/I induces
Spff (A/I)→ Spff (A) (see 17.1.2.8). We compute that the composition of this latter morphism with the
isomorphism ε is the canonical map (Y, (OX/I)|Y )→ Spff (A). Hence, (Y, (OX/I)|Y )→ X is affine.
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Definition 17.1.4.2. We introduce the following terminology.

(a) A closed S-weak formal subscheme of an S-weak formal scheme X is a S-weak formal scheme of
the form (Y, (OX/I)|Y ), where I is a coherent ideal of OX ; we say that this is the closed S-weak
formal subscheme defined by I.

(b) A morphism f : Y → X of S-weak formal schemes is a “closed immersion” (resp. “an open immer-
sion”) if it factorises into Y g→ X ′

u→ X, where X ′ is a closed S-weak formal subscheme of X (resp.
X ′ is an open of X) and g an isomorphism.

(c) An “immersion” is the composition of a closed immersion followed by an open immersion.

17.1.4.3. A closed immersion is an affine morphism. Moreover, similarly to [Gro60, 10.14.4], we have
the following characterization of a closed immersion. Let f : Y → X be a morphism of S-weak formal
schemes, and let (Xα) be a covering of f(Y ) by affine opens of X, such that the f−1(Xα) are affine opens
of Y . The following conditions are therefore equivalent:

(a) f is a closed immersion.

(b) f(Y ) is a closed subset of X and, for all α, the homomorphism Γ(Xα,OX) → Γ(f−1(Xα),OY ),
induced via 17.1.2.8 by the restriction of f to f−1(Xα), is surjective.

Proposition 17.1.4.4. We have the following properties.

(a) If f : Z → Y and g : Y → X are closed immersions (resp. immersions) of S-weak formal schemes,
then g ◦ f is a closed immersion (resp. immersion).

(b) Let X, Y , Z be three S-weak formal schemes, f : Y → X a closed immersion (resp. immersion) and
Z → X a morphism. The morphism Y ×X Z → Z is a closed immersion (resp. immersion).

(c) Let X be an S-weak formal scheme. Suppose that the X-morphisms f : Y → Y ′ and g : Z → Z ′ are
closed immersions (resp. immersions), then f ×X g is a closed immersion (resp. immersion).

Proof. 1) First, let us prove the proposition in the non-respective case. Let A → C be a morphism of
w.c.f.g. V-algebras, I an ideal of A and B := A/I. The algebra B ⊗A C is a w.c.f.g. V-algebra. Thus,
C/IC

∼−→ B ⊗A C
∼−→ B ⊗†A C. With this remark, the proof is analogous to [Gro60, 10.14.5].

2) Let us treat now the respective case. First consider (i). Let j : Z → Y be an open immersion and
u : Y → X a closed immersion. The image of Z by j is an open subset of Y . Thus there exists an open
subset X ′ of X such that u−1(X ′) = j(Z). Let u′ : j(Z)→ X ′ denote the closed immersion induced by

u, u ◦ j decomposes into Z j→ j(Z)
u′→ X ′ ⊂ X. Thus, u ◦ j is the composition of a closed immersion

followed by an open immersion.
The assertions (ii) and (iii) follows from (i).

The following proposition gives examples of closed immersions.

Proposition 17.1.4.5. Let f : Z → Y and g : Y → X be morphisms of S-weak formal schemes. If g is
separated then the graph of f , Γf = (id, f)X : Z → Z ×X Y , is a closed immersion.

Proof. Similar to [Gro60, 10.15.4].

Proposition 17.1.4.6. Let f : X → Y be a morphism of S-weak formal schemes. The canonical
morphism δ = (id, id)Y : X → X ×Y X is an immersion. We call it the “ diagonal immersion ”.

Proof. Let (Xα) and (Yα) be coverings of respectively X and Y by affine opens such that f factors
through Xα → Yα. By construction of the fiber product X×Y X, the S-weak formal scheme Xα×YαXα

is an open subset of X ×Y X and δ−1(Xα ×Yα Xα) = Xα. Denote by Y ′ the union of Xα ×Yα Xα.
The morphism δ factors through a morphism δ′ : X → Y ′. According to the characterisation 17.1.4.3 of
closed immersions, in order to prove that δ′ is a closed immersion, it suffices to check that the canonical
homomorphisms Γ(Xα,OXα)→ Γ(Xα ×Yα Xα,OXα×YαXα) are surjective, which is immediate.

Corollaire 17.1.4.7. Let f : X → S, g : Y → S and φ : S → T be morphisms of S-weak formal schemes.
The canonical morphism X ×S Y → X ×T Y induced by φ is an immersion. In particular, when S = Y ,
the graph of f , X → X ×T Y , is an immersion.
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Proof. This results from X ×S Y
∼−→ S ×(S×TS) (X ×T Y ), 17.1.4.6 and from the fact that the closed

immersions are stable by base change (17.1.4.4).

17.2 D-modules over smooth S-weak formal schemes
Let U be a smooth S-weak formal scheme and m ∈ N.

17.2.1 Sheaf of differential operators of level m
Lemma 17.2.1.1. Let U an affine S-weak formal scheme equipped with coordinates t1, . . . , td and τ1 =
1⊗ t1− t1⊗ 1, . . . , τd = 1⊗ td− td⊗ 1. The sequence τ1, . . . , τd is a regular sequence of generators of the
ideal defining the closed immersion U ↪→ U ×S U .

Proof. This results from the “formal case”. Indeed, let A be the w.c.f.g. V-algebra of U and I the ideal
of A ⊗†V A corresponding to the closed immersion U ↪→ U × U . The canonical images of t1, . . . , td in Â
are coordinates of “U . Hence, it follows from [Gro67, 16.9.3] that the images of τ1, . . . , τd in A“⊗VA is
a quasi-regular sequence of Î and then by noetherianity (see [Gro67, 16.9.10]) is a regular sequence of
Î. Moreover, by faithful flatness of A ⊗†V A → A“⊗VA, as Î ∼−→ I ⊗A⊗†VA A

“⊗VA is generated by the

images of τ1, . . . , τd, then τ1, . . . , τd generates I. In addition, I/(τ1, . . . , τr)→ Î/(τ1, . . . , τr) is injective.
As multiplication by τr+1 est injective in Î/(τ1, . . . , τr), then so is in I/(τ1, . . . , τr).

17.2.1.2. We denote by I the coherent ideal of the diagonal immersion: U ↪→ U ×S U . Let B be the
category of affine opens of U and Alg be that of V-algebra. The contravariant functor B→ Alg given by
U ′ 7→ Pn(m)(Γ(U ′ ×S U ′)) is a sheaf. We define the algebra of principal parts of level m and order ≤ n of
U which we denote by PnU,(m), this sheaf also called the divided power envelop of level m and order ≤ n
of I. The two canonical projections U ×S U → U induce two structures of OU -algebras on PnU,(m): the
left structure and the right structure. It follows from 1.3.3.11 and 17.2.1.1 that, if U/S is equipped with
coordinates t1, . . . , td, for each of these structures of OU -algebras, the sheaf PnU,(m) is a free OU -module

and τ{k} = τ
{k1}
1 · · · τ{kd}d , for k ≤ n, form a base.

The sheaf of differential operators of level m and order ≤ n on U , denote by D(m)
U,n , is the OU -linear

dual of PnU,(m) for its left structure of OU -algebras. The sheaf of differential operators of level m on U is

the union: D(m)
U := ∪n∈N D(m)

U,n . Similarly to 1.4.2.1, we equip this sheaf with the structure of ring and
of two structures of OU -algebra, one right and the other left.

If U/S is equipped with coordinates, with the base of PnU,(m) consisting of τ{k} for k ≤ n, the elements

of the corresponding dual base of D(m)
U,n will be denoted by ∂〈k〉. The ∂〈k〉 form thus a base of D(m)

U .
The proposition 1.4.2.7 and the paragraph 1.4.2.8 remain true when we replace “scheme” by “S-

weakly formal scheme”. Likewise the definitions and results on the m-PD-stratifications (2.1) are again
true when we replace “formal” by “weakly formal”.

17.2.2 Coherent D(m)
U -modules

Lemma 17.2.2.1. Suppose U is affine. The ring Γ(U,D(m)
U ) (resp. D(m)

U,x for any x ∈ U) is left and
right noetherian.

Proof. By using 17.1.1.9, we proceed similarly to 1.4.2.11.

Proposition 17.2.2.2. Let j : U ↪→ P be an open immersion of smooth S-weak formal scheme such
that P0 \U0 is the support of a divisor. The sheaf of rings D(m)

P and j∗D(m)
U are left and right coherent.

Proof. The left and right coherence of D(m)
P is a particular case of that of j∗D(m)

U . Let us prove the left
coherence of j∗D(m)

U . There exists a basis B consisting of open subsets of P such that for any V ∈ B, the
S-weak formal schemes V and V ∩ U are affine. By 17.2.2.1, the ring Γ(V, j∗D(m)

U ) = Γ(U ∩ V,D(m)
U ) is

left and right noetherian. Moreover, for any open subsets V ′ ⊂ V of B, Γ(U ∩V,OU )→ Γ(U ∩V ′,OU ) is
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flat (since this is a homomorphism of smooth w.c.f.g. V-algebras whose reduction modulo π is flat then
this follows from Theorem 17.1.1.13). As Γ(U ∩ V ′,OU ) ⊗Γ(U∩V,OU ) Γ(V, j∗D(m)

U )
∼−→ Γ(V ′, j∗D(m)

U ),
Γ(V, j∗D(m)

U )→ Γ(V ′, j∗D(m)
U ) is flat. We conclude via 1.4.5.2.

17.2.2.3. For any integers n and n′, we denote by D(m)
U,n · D

(m)
U,n′ the image of the left and right OU -linear

homomorphism D(m)
U,n ⊗OU D

(m)
U,n′ → D

(m)
U,n+n′ .

Proposition 17.2.2.4. For n < 0, we put D(m)
U,n := 0. For any pair (r, s) ∈ N2,

∑
j=0,...,pm−1D

(m)
U,r−j ·

D(m)
U,s+j = D(m)

U,r+s.

Proof. Same computation as 4.1.3.5.

Similarly to 4.1.3.7, we introduce the following definition.

Definition 17.2.2.5. Let M be a D(m)
U -module. A filtration of M is a family (Mr)r∈N of sub-OU -

modules ofM such that:

(i) For all r, s ∈ N : Mr ⊂Mr+1, D(m)
U,r · Ms ⊂Mr+s,

(ii) M = ∪r∈NMr.

Definition 17.2.2.6. LetM be a left D(m)
U -module equipped with a filtration. The filtration is good if

and only if:

(i) For any r ∈ N,Mr is OU -coherent;

(ii) There exists an integer r1 ∈ N such that for any integer r ≥ r1, we have

Mr =

pm−1∑
j=0

D(m)
U,r−r1+j · Mr1−j .

Example 17.2.2.7. According to proposition 17.2.2.4, the family (D(m)
U,r )r∈N is a filtration of D(m)

U

satisfying condition (ii) of 17.2.2.6 for any integer r1. Since the condition (i) holds also, then this
filtration is therefore good. We call it the order filtration.

Proposition 17.2.2.8. A D(m)
U -module which is globally of finite presentation admits a good filtration.

Proof. Similar to 4.1.3.16.

Theorem 17.2.2.9 (Theorem B). Suppose U is affine and that M is a D(m)
U -module which is globally

of finite presentation. Then, for all integer i 6= 0, Hi(U,M) = 0.

Proof. This follows from 17.2.2.8, from theorem of type B for coherent OU -modules and from the fact
that, for all integer i 6= 0, since U is coherent then the functor Hi(U,M) commutes with filtered inductive
limits (see [SGA4.2, VI.5.3]).

Theorem 17.2.2.10 (Theorem A). Suppose U is affine.

(a) The functorsM 7→ Γ(U,M) and M 7→ M̃ are exact quasi-inverse equivalences between the category
of D(m)

U -modules globally of finite presentation and the category of Γ(U,D(m)
U )-modules of finite type.

(b) Let u : M → N be a morphism of Γ(U,D(m)
U )-modules of finite type. The D(m)

U -modules associated
to Keru, Imu, Cokeru, are respectively Ker ũ, Imũ, Coker ũ. In particular, the category of D(m)

U -
modules globally of finite presentation is an abelian category.

Proof. We can copy the proof of 4.1.3.19 to check the first part. The exactness of M 7→ M̃ (resp.
M 7→ Γ(U,M)) follows from the flatness of Γ(U,D(m)

U )→ D(m)
U (resp. from 17.2.2.9). We get the second

statement by using the exactness of M 7→ M̃ and the exact sequences:

0→ Keru→M → Imu→ 0, 0→ Imu→ N → Cokeru→ 0. (17.2.2.10.1)
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Remark 17.2.2.11. As the sheaf of rings D(m)
U is coherent (17.2.2.2), a D(m)

U -moduleM is coherent if and
only if it is locally of finite presentation, i.e., according to 17.2.2.10, if and only if it is locally of the form
M̃ , where M is a Γ(U,D(m)

U )-module of finite type.

Theorem 17.2.2.12. Let M be a D(m)
U -module. Then M is coherent if and only if it admits good

filtrations locally.

Proof. Similar to 4.1.3.21.

Proposition 17.2.2.13. Let j : U ⊂ P be an open immersion of smooth S-weak formal scheme such
that P0 \U0 is the support of a divisor andM a D(m)

U -module which is locally in P of finite presentation
(i.e. there exists a covering by open subsets of P = ∪αPα such that, for all α, M|U∩Pα is globally of
finite presentation). Then:

(a) The canonical morphism j∗M→ Rj∗M is an isomorphism;

(b) For all smooth morphism P → P ′ of S-weak formal schemes, for all open subset U ′ of P ′ such that
U = f−1(U ′), the canonical morphism j∗(Ω

•
U/U ′ ⊗OUM)→ Rj∗(Ω•U/U ′ ⊗OUM) is an isomorphism;

(c) The j∗D(m)
U -module j∗M is coherent. Moreover, if U is affine andM is a D(m)

U -module globally of
finite presentation, then j∗M is a j∗D(m)

U -module globally of finite presentation.

Proof. Proof of (a). As P0 \ U0 is a divisor, the assertion being local, we can suppose that Pα and
U ∩ Pα are affine. For any integer i, (Hij∗M)|Pα

∼−→ Hijα∗(M|U∩Pα), where jα : U ∩ Pα ↪→ Pα. Since
Hijα∗(MU∩Pα) is the sheaf associated to the presheaf which to any principal open subset P ′ of Pα
associate Hi(U ∩ P ′,M), then by theorem B of the form 17.2.2.9 we conclude the proof of (a).

The assertion (b) follows from (a) and from the fact that ΩU/U ′ is a OU -module which is locally in P
free of finite type (one take the open basis consisting of open subsets of P having coordinates above P ′).

Now we treat the assertion (c). Thanks to 17.2.2.2, it is sufficient to check the last statement. Suppose
we have a finite presentation of the form: (D(m)

U )r
φ→ (D(m)

U )s
ε→ M → 0. It results from (a) and

17.2.2.10.(b) that the functor j∗ is exact on the category of D(m)
U -modules globally of finite presentation.

Hence, by applying the functor j∗ we get the exact sequence: j∗(D(m)
U )r

j∗φ→ j∗(D(m)
U )s

j∗ε→ j∗N → 0.

17.2.3 Ind-coherent D(m)
U -modules

Suppose U is affine.

Definition 17.2.3.1. Let M be a Γ(U,OU )-module (resp. Γ(U,D(m)
U )-module). The OU -module (resp.

D(m)
U -module) associated to M is M̃ := OU ⊗Γ(U,OU ) M (resp. D(m)

U ⊗
Γ(U,D(m)

U
)
M). Such a module is

said to be ind-coherent.
If u : M ′ → M is a homomorphism of Γ(U,OU )-modules (resp. Γ(U,D(m)

U )-modules), ũ : M̃ ′ → M̃

denotes the canonically induced homomorphism. Since Γ(U,OU )→ OU and Γ(U,D(m)
U )→ D(m)

U are flat,
then both functors ∼ : M 7→ M̃ are exact.

Remark 17.2.3.2. (a) The sheaf “D(m)
U is not ind-coherent as D(m)

U -module.

(b) A left D(m)
U -module is ind-coherent as D(m)

U -module if and only if it is ind-coherent as OU -module. In-
deed, as D(m)

U is a filtered inductive limit of coherent OU -modules and since the functors OU⊗Γ(U,OU )

− and Γ(U,−) commute with filtered inductive limit, then we benefit from the canonical morphism
OU ⊗Γ(U,OU ) Γ(U,D(m)

U )→ D(m)
U is an isomorphism. This remark can be interpreted via the isomor-

phism 17.5.1.7.1.

Proposition 17.2.3.3. We have the following properties.

(a) Let u : M → N be a morphism of Γ(U,D(m)
U )-modules. The D(m)

U -modules associated to Keru, Imu,
Cokeru, are respectively Ker ũ, Imũ, Coker ũ.
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(b) If M is an inductive limit (resp. direct sum) of a family of Γ(U,D(m)
U )-modules (Mλ), M̃ is the

inductive limit (resp. direct sum) of the family (M̃λ), up to canonical isomorphism.

(c) If M and N are two Γ(U,D(m)
U )-modules, then the D(m)

U -modules associated to M ⊗Γ(U,OU ) N and
HomΓ(U,OU )(M,N) are respectively M̃ ⊗OU ‹N and HomOU (M̃, ‹N).

We have identical results when OU replaces D(m)
U .

Proof. Since the functor ∼ : M 7→ M̃ is exact, then we prove (a) similarly to 17.2.2.10.(b). Assertion (b)
results from the fact that inductive limit commutes with tensor product while (c) is easy and is left as
an exercise.

Remark 17.2.3.4. We have the following properties.

(a) A Γ(U,D(m)
U )-module is the filtered inductive limit of its sub-Γ(U,D(m)

U )-modules of finite type. Via
17.2.3.3.(b), this yields that an ind-coherent D(m)

U -module is the filtered inductive limit of its sub-
D(m)
U -modules globally of finite presentation. Hence, the category of ind-coherent D(m)

U -modules is
the smallest category stable by inductive limit and containing the D(m)

U -modules which are globally
of finite presentation, which justifies the name.

(b) LetM be a Γ(U,D(m)
U )-module and U ′ a principal open subset of U . As tensor product and Γ(U ′,−)

commute with filtered inductive limite, it follows from remark (i) and theorem of type A (17.2.2.10)
applied to U and U ′ that Γ(U ′, M̃)

∼−→ Γ(U ′,D(m)
U )⊗

Γ(U,D(m)

U
)
M .

Theorem 17.2.3.5 (Theorem B). For all ind-coherent D(m)
U -moduleM, for all integer i 6= 0, Hi(U,M) =

0. In particular, the functor Γ(U,−) is exact on the category of ind-coherent D(m)
U -modules.

Proof. This follows from 17.2.2.9, 17.2.3.4(a) and the fact that for all integer i 6= 0, the functor Hi(U,M)
commutes with filtered inductive.

Proposition 17.2.3.6. We have the following properties:

(a) The functors M 7→ M̃ and M 7→ Γ(U,M) induces exact quasi-inverse equivalences between the
category of Γ(U,D(m)

U )-modules and that of ind-coherent D(m)
U -modules.

(b) The category of ind-coherent D(m)
U -modules is a full abelian subcategory of that of D(m)

U -modules.

We get identical results when OU replaces D(m)
U .

Proof. a) Let M be a Γ(U,D(m)
U )-module. According to the remark above 17.2.3.4.(b), Γ(U, M̃)

∼−→ M .
Conversely, for any D(m)

U -module M isomorphic to M̃ , Γ(U,M)∼
∼−→ Γ(U, M̃)∼

∼−→ M̃
∼−→ M. The

exactness ofM 7→ Γ(U,M) follows from 17.2.3.5, while the other one is already known.
b) The statement (b) is a consequence of the part (a) and of 17.2.3.3.(a).

Proposition 17.2.3.7. Let 0 → E ′ → E → E ′′ → 0 be an exact sequence of D(m)
U -modules. If two of

these modules are ind-coherent, so is the third.

Proof. The case where E is ind-coherent is deduced from 17.2.3.3.(a). Suppose now E ′ and E ′′ are of
the form ‹E′ and ‹E′′. Via the theorem B for the ind-coherent D(m)

U -modules, we get that the sequence
0 → E′ → Γ(U, E) → E′′ → 0 is exact. By applying the exact functor ∼, using the five lemma we
conclude that the canonical homomorphism Γ(U, E)∼ → E is an isomorphism.
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17.2.4 Extraordinary pullbacks and pushforwards of finite order
Let g : U ′ → U and g′ : U ′′ → U ′ be two morphisms of smooth S-weak formal schemes.

Notation 17.2.4.1. Similarly to 5.1.1.2, we introduce the following transfert sheaves:

(a) The sheaf g∗D(m)
U is equipped with a canonical structure of (D(m)

U ′ , g
−1D(m)

U )-bimodule, which we
denote D(m)

U ′→U .

(b) We write D(m)
U←U ′ := ωU ′ ⊗OU′ g

∗
l (D(m)

U ⊗OU ω−1
U ), the index l indicating that we choose the left

structure of left D(m)
U -module.

17.2.4.2. Similarly to 5.1.1.4, we get the notion of extraordinary pullbacks as follows:

(a) The extraordinary inverse image by g of a complex E ∈ D−(lD(m)
U ) is defined by putting

g(m)!(E) := D(m)
U ′→U ⊗

L
g−1D(m)

U

g−1E [dU ′/U ], (17.2.4.2.1)

where dU ′/U is the relative dimension of U ′0/U0.

(b) The extraordinary inverse image by g of a complexM∈ D−(rD(m)
U ) is defined by putting

g(m)!(M) := g−1M⊗L
g−1D(m)

U

D(m)
U←U ′ [dU ′/U ],

(c) Similarly to 5.1.1.5.1, we have for anyM∈ D−(rD(m)
U ) the isomorphism

g(m)!(M)⊗OU′ ω
−1
U ′

∼−→ g(m)!(M⊗OU ω−1
U ).

(d) If there is no confusion on the level, we write g! instead. We have an isomorphism g′!◦g! ∼−→ (g◦g′)!.

17.2.4.3. Let E ∈ D−(lDU,Q). For any integer m ≤ m′, since the canonical morphisms D(m)
U,Q → D

(m′)
U,Q →

DU,Q are isomorphisms, then g(m)!(E)→ g(m′)!(E)→ g!(E) are isomorphisms, where

g!(E) := DU ′→U,Q ⊗L
g−1DU,Q g

−1E [dU ′/U ] (17.2.4.3.1)

and DU ′→U is the (DU ′ , g−1DU )-bimodule g∗DU . We have similar result forM∈ D−(rDU,Q).

Definition 17.2.4.4. A (left or right) D(m)
U -module E is said to be locally ind-coherent if there exists a

open basis {Ui} i∈I of U by affine S-weak formal schemes such that E|Ui is ind-coherent (see definition
17.2.3.1). Remark that a locally ind-coherent D(m)

U -module is locally a quotient of a free D(m)
U -module.

This is therefore a notion in the case of S-weak formal scheme which is similar to that of quasi-coherence
in the case of schemes (e.g. see 17.2.4.6) but beware this is a priori different from the notion of quasi-
coherence defined later (see 17.3.1.3).

For any ∗ ∈ {−,+,b}, we denote by D∗lic(rD(m)
U ) the strictly full subcategory of D∗lic(rD(m)

U ) consisting
of objects E such that for any j ∈ N the D(m)

U -module Hj(E) is locally ind-coherent.

Example 17.2.4.5. The sheaf D(m)
U ′→U is a locally ind-coherent left D(m)

U ′ -module. The sheaf D(m)
U←U ′ is

a locally ind-coherent right D(m)
U ′ -module. We check that the functors ωU ⊗OU − and −⊗OU ω−1

U induce
quasi-inverse equivalences between the category of left locally ind-coherent left D(m)

U -modules and that
of right locally ind-coherent left D(m)

U -modules.

Proposition 17.2.4.6. Let F ∈ D(rD(m)
U ) and G ∈ D(

l
g−1D(m)

U ).

(i) We have the canonical morphism in D(ZU ):

F ⊗L
D(m)

U

Rg∗(G)→ Rg∗
(
g−1F ⊗L

g−1D(m)

U

G
)
. (17.2.4.6.1)

Let D be a sheaf of rings such that (D,D(m)
U ) is right solvable and let F ∈ Dr−sol(D,D(m)

U ) (see
definition and notation 4.6.3.2). Then the morphism 17.2.4.6.1 can also be viewed as a morphism
of D(D).
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(ii) Suppose f is quasi-compact and quasi-separated. Suppose one of the following conditions:

(a) either F ∈ Db
lic(rD(m)

U ), and G ∈ D(
l
g−1D(m)

U ),

(b) or F ∈ D−lic(rD(m)
U ), and G ∈ D−(

l
g−1D(m)

U ).

Then the morphism 17.2.4.6.1 is an isomorphism.

Proof. With the remark of 17.2.4.4, we can copy the proof of 5.1.2.5.

Corollary 17.2.4.7. Let ∗, ∗∗ ∈ {l, r} such that both are not equal to r. Suppose f is quasi-compact and
quasi-separated. Suppose moreover one of the following conditions:

(a) either F ∈ Db
lic(∗D(m)

U ), and G ∈ D(
∗∗
g−1D(m)

U ),

(b) or F ∈ D−lic(∗D(m)
U ), and G ∈ D−(

∗∗
g−1D(m)

U ).

Then we have the following isomorphism of D−(
∗∗D(m)

U ) (see 5.1.2.7 for the right term):

F ⊗L
OU Rg∗(G)

∼−→ Rg∗
Ä
g−1F ⊗L

g−1OU G
ä
. (17.2.4.7.1)

Proof. Similarly to 5.1.2.8, this is a consequence of 17.2.4.6.

17.2.4.8. Similarly to 5.1.3.1, we get the notion of pushforward as follows:

(a) As g0 : U ′0 → U0 is a quasi-separated and quasi-compact morphism between noetherian schemes of
finite Krull dimension, the functor g0∗ = g∗ is of finite cohomological dimension. The direct image by
g is the functor g(m)

+ : D−(lD(m)
U ′ )→ D−(lD(m)

U ) which is defined by setting for any E ′ ∈ D−(lD(m)
U ′ ):

g
(m)
+ (E ′) := Rg∗(D(m)

U←U ′ ⊗
L
D(m)

U′
E ′).

(b) The direct image by g is the functor g(m)
+ : D−(rD(m)

U ′ )→ D−(rD(m)
U ) which is defined by setting for

anyM′ ∈ D−(lD(m)
U ′ ):

g
(m)
+ (M′) := Rg∗(M′ ⊗L

D(m)

U′
D(m)
U ′→U ).

(c) Similarly to 5.1.3.2.1 (indeed, the isomorphism of the form 17.2.4.7.1 holds because it is used in the
case where F = ωU is locally free of rank one), we have for any E ′ ∈ D−(lD(m)

U ′ ) the isomorphism

ωU ⊗OU g
(m)
+ (E ′) ∼−→ g

(m)
+ (ωU ′ ⊗OU′ E), (17.2.4.8.1)

(d) This is also written as g+. Thanks to 17.2.4.7.1, we can copy the proof in the context of schemes (see
5.1.3.8.1) to construct the canonical isomorphism g+ ◦ g′+(E ′′) ∼−→ (g ◦ g′)+(E ′′) which is functorial
in E ′′ ∈ D−(D(m)

U ′′ ).

17.2.4.9. For any integer m ≤ m′, since the canonical morphisms D(m)
U,Q → D

(m′)
U,Q → DU,Q are isomor-

phisms, then for any E ′ ∈ D−(lDU ′,Q), the morphisms g(m)
+ (E ′)→ g

(m′)
+ (E ′)→ g+(E ′) are isomorphisms,

where
g+(E ′) := Rg∗(DU←U ′ ⊗L

DU′ E
′)

and D(m)
U←U ′ := ωU ′ ⊗OU′ g

∗
l (DU ⊗OU ω−1

U ). We have similar result forM′ ∈ D−(rDU ′,Q).
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17.2.5 Closed immersion: adjunction, preservation of the coherence by push-
forward

Let m ∈ N. Let v : Y ↪→ U be a closed immersion of smooth S-weak formal schemes. Let I be the ideal
of OU given by v.

17.2.5.1 (Local description). Suppose U/S has coordinates t1, . . . , td such that tr+1, . . . , td generated
I and the image of t1, . . . , tr in Γ(Y,OY ) are coordinates of Y/S. Let F (m) ∈ D(D(m)

Y ). Using
similar to 5.2.2.4.1 isomorphism, we compute u(m)

+ (F (m))
∼−→ V{∂r+1, . . . , ∂d}(m) ⊗V F (m) (see no-

tation 5.2.2.2). Let F ∈ D(DY,Q). Using similar to 5.2.2.4.1 isomorphism (of level ∞), we compute
u+(F)

∼−→ V[∂r+1, . . . , ∂d]⊗V F (m).
It follows from these local description that the functors u+ and u(m)

+ are exact.

Proposition 17.2.5.2. Let ∗ ∈ {r, l},M∈ D(∗D(m)
U ), N ∈ D(∗D(m)

Y ). We have the isomorphisms

RHomD(m)

Y

(v
(m)
+ (N ),M)

∼−→ v∗RHomD(m)

Y

(N , v!(M)).

Proof. This is checked similarly to 5.2.6.3.

17.2.5.3. Let F (m) ∈ D(D(m)
Y ). It follows from 17.2.5.2 that we have the adjunction morphism

F (m) → v!(m)

◦ v(m)
+ (F (m)). (17.2.5.3.1)

Suppose is p-torsion free. Then similarly to 9.3.3.13 we compute that the adjunction morphism 17.2.5.3.1
is an isomorphism. When F (m) ∈ Db

coh(D(m)
Y ), the adjunction map 17.2.5.3.1 is compatible with the

standard one available on formal schemes of 9.3.2.5, i.e. we get the commutative diagram:“D(m)
Y,Q ⊗D(m)

Y

F (m) 17.2.5.3.1 //

9.3.2.5

��

“D(m)
Y,Q ⊗D(m)

Y

Ä
v!(m) ◦ v(m)

+ (F (m)))
ä

17.3.2.6.1∼
��

v̂!(m) ◦ v̂(m)
+

(“D(m)
Y,Q ⊗D(m)

Y

F (m)
)

v̂!(m)
(“D(m)

U,Q ⊗D(m)

U

v
(m)
+ (F (m)))

)
17.3.3.1.1

∼oo

(17.2.5.3.2)

Let E(m) ∈ D(D(m)
U ). It follows from 17.2.5.2 that we have the adjunction morphism

v
(m)
+ ◦ v!(m)

(E(m))→ E(m). (17.2.5.3.3)

For any E(m) ∈ Db
coh(D(m)

U ) such that v!(m)

(E(m)) ∈ Db
coh(D(m)

Y ), we get the commutative diagram:“D(m)
U,Q ⊗D(m)

U

v
(m)
+ ◦ v!(m)

(E(m))
17.2.5.3.3 //

17.3.3.1.1∼
��

“D(m)
U,Q ⊗D(m)

U

E(m)

v̂
(m)
+

(“D(m)
Y,Q ⊗D(m)

Y

v!(m)

(E(m))
)
17.3.2.6.1
∼
// v̂(m)

+ ◦ v̂!(m)
(“D(m)

U,Q ⊗D(m)

U

F (m))
)9.3.2.5

OO
(17.2.5.3.4)

Proposition 17.2.5.4. Suppose Y and U are affine. For all right globally of finite presentation D(m)
Y -

moduleM, v+(M) is globally of finite presentation and we have a canonical isomorphism:

Γ(U, v+(M))
∼−→ Γ(Y,M)⊗

Γ(Y,D(m)

Y
)

Γ(Y,D(m)
Y ↪→U ).

The same holds when “right module ” is replaced by “ left module”.

Proof. AsM is a right D(m)
Y -module globally of finite presentation, then we get from Theorem of type

A of 17.2.2.10 the canonical isomorphism:

M⊗D(m)

Y

D(m)
Y ↪→U

∼−→ Γ(Y,M)⊗
Γ(Y,D(m)

Y
)
D(m)
Y ↪→U .
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For any integer n, it follows from the OU -coherence of D(m)
U,n and theorem of type A for coherent OU -

modules that the canonical morphism Γ(Y,OY )⊗Γ(U,OU ) Γ(U,D(m)
U,n )→ Γ(Y, v∗D(m)

U,n ) is an isomorphism.
Since tensor products and the functor Γ(U,−) commute with filtered inductive limits (see [SGA4.2,
VI.5.3]), then the morphism Γ(Y,OY )⊗Γ(U,OU )Γ(U,D(m)

U )→ Γ(Y,D(m)
Y ↪→U ) is an isomorphism. Let U ′ be a

principal open subset of U and Y ′ := Y ∩U ′. We get Γ(Y ′,OY )⊗Γ(U ′,OU ) Γ(U ′,D(m)
U )

∼−→ Γ(Y ′,D(m)
Y ↪→U ).

Moreover, Γ(Y ′,OY )
∼−→ Γ(Y,OY )⊗Γ(U,OU ) Γ(U ′,OU ) (use the part 1) of the proof of 17.1.4.4). Finally,

we get:
Γ(Y,D(m)

Y ↪→U )⊗
Γ(U,D(m)

U
)

Γ(U ′,D(m)
U )

∼−→ Γ(Y ′,D(m)
Y ↪→U ).

As the functor “sheafification” commute with v∗ (indeed, v is a closed immersion), v∗(M⊗D(m)

Y

D(m)
Y ↪→U )

is the sheaf associated with the presheaf defined on the principal open subsets U ′ of U by:
U ′ 7→ Γ(Y,M) ⊗

Γ(Y,D(m)

Y
)

Γ(Y,D(m)
Y ↪→U ) ⊗

Γ(U,D(m)

U
)

Γ(U ′,D(m)
U ). Hence, following Theorem of type A of

17.2.2.10, it remains thus to check that Γ(Y,M)⊗
Γ(Y,D(m)

Y
)
Γ(Y,D(m)

Y ↪→U ) is a right Γ(U,D(m)
U )-module of

finite type. Since tensor product is right exact and Γ(Y,M) is a right Γ(Y,D(m)
Y )-module of finite type,

then it suffices to prove that Γ(Y,D(m)
Y ↪→U ) is a right Γ(U,D(m)

U )-module of finite type. We conclude via
Γ(U,D(m)

U ) � Γ(Y,OY )⊗Γ(U,OU ) Γ(U,D(m)
U )

∼−→ Γ(Y,D(m)
Y ↪→U ).

Corollaire 17.2.5.5. For all coherent D(m)
Y -moduleM, v+(M) is D(m)

U -coherent.

17.3 Comparaison between weak formal and formal cohomolog-
ical operations without overconvergent singularities

17.3.1 Quasi-coherent complexes over smooth S-weak formal schemes
Let U be a smooth S-weak formal scheme and m ∈ N. We keep notation 17.1.3.1, e.g. Ui := U ×S Si
for all i ∈ N. Let ∗ ∈ {l, r}.

17.3.1.1. We denote by U• the topos Top(U)N given by the canonical maps Ui+1 → Ui. The fam-
ily of maps D(m)

Ui+1
→ D(m)

Ui
induces a sheaf of rings D(m)

U•
on U• We get the morphism of ringed

topoi ←lU : (U•,D(m)
U•

) → (|U |,D(m)
U ). From [Sta22, 07A6] (or see 5.3.5.4), this yields the functors

R←lU∗ : D(∗D(m)
U•

)→ D(∗D(m)
U ) and L←l

∗
U

: D(∗D(m)
U )→ D(∗D(m)

U•
) which are adjoint:

Hom
D(D(m)

U•
)
(L←l
∗
U

(E),F•) = Hom
D(D(m)

U
)
(E ,R←lU∗(F•)) (17.3.1.1.1)

for any E ∈ D(∗D(m)
U ) and any F• ∈ D(∗D(m)

U•
).

We have also the morphism of ringed topoi←lU : (U•,OU• )→ (|U |,OU ). The bijection 17.3.1.1.1 still
holds. Both functors L←l

∗
U
(or R←lU∗) are canonically isomorphic (modulo the forgetful functor D(∗D(m)

U•
)→

D(∗OU•) and D(∗D(m)
U )→ D(∗OU ), so this is harmless to write them the same.

Notation 17.3.1.2. Let E be an object of D−(lD(m)
U ) and F ∈ D−(rD(m)

U ). Put E• := L←l
∗
U

(E) :=

D(m)
U•
⊗L
D(m)

U

E , F• := L←l
∗
U

(F) := F ⊗L
D(m)

U

D(m)
U•

and

F“⊗L
D(m)

U

E := R←lU∗(F• ⊗
L
D(m)

U•
E•) = R lim←−

i

Fi ⊗L
D(m)

Ui

Ei.

The same with D(m)
U replaced by OU or “D(m)

U or more generally a sheaf of rings on U . Choosing a flat
resolution of E and F , we construct a canonical morphism F ⊗L

D(m)

U

E → F“⊗L
D(m)

U

E which is bifunctorial

in E and F (i.e., a cube is commutative).

Definition 17.3.1.3. We define Db
qc(
∗D(m)

U ), with ∗ = l or ∗ = r, the full sub-category of Db(
∗D(m)

U )

consisting of complexes E such that, for all i ∈ N, Ei ∈ Db
qc(
∗D(m)

Ui
). Its objects will be called quasi-

coherent complexes.
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Example 17.3.1.4. When U is affine, a ind-coherent D(m)
U -module E (17.2.3.1) is a quasi-coherent

complex. Indeed, this is a consequence of the equivalence of categories 17.2.3.6: taking a flat resolution
P • of Γ(U, E) we get ‹P • a flat resolution of E by ind-coherent D(m)

U -module and we are done.
More generally, Db

lic(
∗D(m)

U ) is a full subcategory of Db
qc(
∗D(m)

U ) (see notation 17.2.4.4).

17.3.1.5. Let E ∈ Db(
∗D(m)

U ). The following properties are equivalent:

(a) E ∈ Db
qc(
∗D(m)

U )

(b) E• := L←l
∗
U
E := OU• ⊗L

OU E ∈ D
b
qc(OU•) (see notation 7.3.1.10).

(c) E• := L←l
∗
U
E := D(m)

U•
⊗L
D(m)

U

E ∈ Db
qc(D(m)

U•
) (see notation 7.3.1.12).

Lemma 17.3.1.6. The category Db
qc(D(m)

U ) is a triangulated subcategory of Db(D(m)
U ). The category

Db
coh(D(m)

U ) is a triangulated subcategory of Db
qc(D(m)

U ).

Proof. This follows from the fact that Db
qc(D(m)

Ui
) is a triangulated subcategory of Db(D(m)

U ) (resp.
Db

coh(D(m)
Ui

) is a triangulated subcategory of Db
qc(D(m)

Ui
) and that L←l

∗
U

preserves the coherence).

17.3.1.7. By adjunction (see 17.3.1.1), for any E ∈ Db(
∗D(m)

U ), we have the canonical morphism cE : E →
Ê where

Ê := R←lU∗L←l
∗
U

(E).

When ∗ = l, we remark that the canonical morphism OU“⊗L
OUE → D

(m)
U
“⊗L
D(m)

U

E is an isomorphism and

they are isomorphic to Ê ; similarly when ∗ = r. We get the functor Db(
∗D(m)

U )→ Db(
∗“D(m)

U ), given by
E 7→ Ê .

Following 7.3.2.10, the functor R←lU∗ : Db
qc(D(m)

U•
) → Db(D(m)

U ) factorises through the equivalence of
categories R←lU∗ : Db

qc(D(m)
U•

) ∼= Db
qc(“D(m)

U ). Hence, we get the functor Db
qc(
∗D(m)

U ) → Db
qc(
∗“D(m)

U ), given
by E 7→ Ê .

Lemma 17.3.1.8. Let E ∈ Db
qc(
∗D(m)

U ), F ∈ Db
qc(
∗“D(m)

U ) any morphism f : E → F a morphism of
Db(

∗D(m)
U ). With notation 17.3.1.7, there exists a unique morphism g : Ê → F such that g ◦ cE = f .

Proof. Remark first that for any G ∈ Db
qc(
∗D(m)

U ), we have G ∈ Db
qc(
∗“D(m)

U ) if and only if cG is an
isomorphism. Hence, by functoriality of E 7→ cE we can check that g = R←lU∗L←l

∗
U

(f) is the unique
factorisation.

17.3.2 Extraordinary pullbacks
Let m ∈ N.

Lemma 17.3.2.1. Let U be a smooth S-weak formal scheme and E ∈ Db
coh(D(m)

U ). The canonical
morphism: “D(m)

U ⊗D(m)

U

E → Ê is an isomorphism of Db
coh(“D(m)

U ).

Proof. With notation 17.3.1.7, since Ê ∈ Db
coh(“D(m)

U ) then the morphism cE : E → Ê induces canonically
via the flat extension D(m)

U → “D(m)
U the morphism “D(m)

U ⊗D(m)

U

E → Ê . To check that this morphism is
an isomorphism is local. Moreover, since the both side functors are wayout left, then we reduce to the
case where E is a free D(m)

U -module of finite type, which is obvious.

Lemma 17.3.2.2. Let A → A′ be a morphism of smooth w.c.f.g. V-algebras. Let g : U ′ → U be the
induced morphism of affine smooth S-weak formal schemes. For any ind-coherent left D(m)

U -module E,
the left D(m)

U ′ -module D(m)
U ′→U⊗g−1D(m)

U

g−1E is ind-coherent. Moreover, we have the canonical morphisms:

A′ ⊗A Γ(U, E)→ Γ(U ′,D(m)
U ′→U )⊗

Γ(U,D(m)

U
)

Γ(U, E)→ Γ(U ′,D(m)
U ′→U ⊗g−1D(m)

U

g−1E) (17.3.2.2.1)

are isomorphisms.

905



Proof. Since OU ′ ⊗g−1OU g
−1D(m)

U = D(m)
U ′→U , then by associativity of the tensor product we get that the

morphism OU ′ ⊗g−1OU g
−1E → D(m)

U ′→U ⊗g−1D(m)

U

g−1E is an isomorphism. Hence, these are ind-coherent.
Set E := Γ(U, E). Since E is ind-coherent as OU -module (see 17.2.3.2.(b)), then the canonical morphism
OU ⊗A E → E is an isomorphism. This yields, the canonical morphism OU ′ ⊗A E → OU ′ ⊗g−1OU g

−1E
is an isomorphism. Since OU ′ ⊗A E

∼−→ OU ′ ⊗A′ (A′ ⊗A E), then it follows from 17.2.3.6 that E ′ :=

D(m)
U ′→U ⊗g−1D(m)

U

g−1E is ind-coherent as OU ′ -module (and therefore as D(m)
U ′ -module) and that the

canonical morphism A′ ⊗A Γ(U, E) → Γ(U ′, E ′) is an isomorphism. Taking E = D(m)
U , this implies that

the canonical morphism A′⊗AΓ(U,D(m)
U )→ Γ(U ′,D(m)

U ′→U ) is an isomorphism. Hence, the left morphism
of 17.3.2.2.1 is an isomorphism and we are done.

Lemma 17.3.2.3. Let g : U ′ → U be a smooth morphism of affine smooth S-weak formal schemes. For
all D(m)

U -module E globally of finite presentation, D(m)
U ′→U ⊗g−1D(m)

U

g−1E is a D(m)
U ′ -module globally of

finite presentation.

Proof. Via 17.2.2.10, it follows from Lemma 17.3.2.2 that it suffices to prove that Γ(U ′,D(m)
U ′→U )⊗

Γ(U,D(m)

U
)

Γ(U, E) is of finite type on Γ(U ′,D(m)
U ′ ). Similarly to 5.3.2.1.1, by calculating in local coordinates, we

can check that the morphism D(m)
U ′ → D

(m)
U ′→U is surjective. By 17.2.3.3.(a) and 17.2.3.6, this yields the

surjective map Γ(U ′,D(m)
U ′ ) � Γ(U ′,D(m)

U ′→U ).

Proposition 17.3.2.4. Let g : U ′ → U be a morphism of smooth S-weak formal schemes and E ∈
Db

qc(D(m)
U ) (see notation 17.3.1.3).

(a) Then g!(E) ∈ Db
qc(D(m)

U ′ ) (see notation 17.2.4.2.1) and the canonical morphism“D(m)
U′
“⊗L
D(m)

U′
g!(E)→ ĝ!(“D(m)

U
“⊗L
D(m)

U

E), (17.3.2.4.1)

where ĝ! is the extraordinary pullback by ĝ : U′ → U of level m (see definition 7.5.5.6.1), is an
isomorphism of Db

qc(“D(m)
U′ ). Moreover, these are transitive with respect to the composition of such

morphism g.

(b) If E ∈ Db
coh(D(m)

U ) and g!(E) ∈ Db
coh(D(m)

U ′ ), then the canonical morphism “D(m)
U′ ⊗D(m)

U′
g!(E) →

ĝ!(“D(m)
U ⊗D(m)

U

E) is an isomorphism.

Proof. 1) According to notation 7.5.5.4, we write D(m)
U ′•→U•

the (D(m)
U ′•

, g−1D(m)
U•

)-bimodule given by the

canonical maps D(m)
U ′
i+1
→Ui+1

→ D(m)
U ′
i
→Ui . Since the canonical morphism OU ′• ⊗OU′ D

(m)
U ′ → D

(m)
U ′•

is an

isomorphism, then so is the canonical map D(m)
U ′•
⊗L
D(m)

U′
D(m)
U ′→U → D

(m)
U ′•→U•

. Hence,

D(m)
U ′•
⊗L
D(m)

U′
(D(m)

U ′→U⊗
L
g−1D(m)

U

g−1E)
∼−→ D(m)

U ′•→U•
⊗L
g−1D(m)

U

g−1E ∼−→ D(m)
U ′•→U•

⊗L
g−1D(m)

U•
g−1(D(m)

U•
⊗L
D(m)

U

E).

(17.3.2.4.2)
Since D(m)

U•
⊗L
D(m)

U

E ∈ Db
qc(D(m)

U•
), then following 7.5.5.8, the left term of 17.3.2.4.2 belongs to Db

qc(D(m)
U ′•

).

Hence,we obtain from 17.3.2.4.2 that D(m)
U ′→U ⊗L

g−1D(m)

U

g−1E ∈ Db
qc(D(m)

U ′•
) (see 17.3.1.5).

Since the canonical morphism Ê → “D(m)
U
“⊗L
D(m)

U

E is an isomorphism, then following 17.3.1.7, we have“D(m)
U
“⊗L
D(m)

U

E ∈ Db
qc(“D(m)

U ). We get the isomorphism of 17.3.2.4.1 by applying R←lU∗ to 17.3.2.4.2.

Corollary 17.3.2.5. Let g : U ′ → U be a smooth morphism of smooth S-weak formal schemes. Let
E ∈ Db

coh(D(m)
U ).

(a) g(m)!(E) ∈ Db
coh(D(m)

U ′ ).

(b) The canonical morphism “D(m)
U′ ⊗D(m)

U′
g(m)!(E)→ ĝ(m)!(“D(m)

U ⊗D(m)

U

E) is an isomorphism.
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Proof. The first part is a consequence of 17.3.2.3. Via 17.3.2.4, this yields the second assertion.

Proposition 17.3.2.6. Letm0 be an integer, g : U ′ → U a morphism of smooth S-weak formal schemes.
Let D(m0+•)

U be the inductive system of rings D(m
U → D(m′)

U for any m′ ≥ m ≥ 0. Let E(m0+•) ∈
Db(D(m0+•)

U ). For all integer m ≥ m0, put Ê(m) = “D(m)
U ⊗D(m)

U

E(m) and Ê(m)
Q = “D(m)

U,Q ⊗D(m)

U

E(m).

(a) Let m ≥ m0 such that E(m0)
Q → E(m)

Q is an isomorphism. Suppose for m′ ∈ {m0,m} we have

E(m′) ∈ Db
coh(D(m′)

U ) and g(m′)!(E(m′)) ∈ Db
coh(D(m′)

U ′ ). Then the canonical morphism“D(m)
U′,Q ⊗D̂(m0)

U′,Q
ĝ(m0)!(Ê(m0)

Q )→ ĝ(m)!(Ê(m)
Q ), (17.3.2.6.1)

where ĝ(m′)! is defined at 7.5.5.14.1, is an isomorphism.

(b) Suppose for any m ≥ m0, the morphisms E(m0)
Q → E(m)

Q are isomorphisms, E(m) ∈ Db
coh(D(m)

U ) and

g(m)!(E(m)) ∈ Db
coh(D(m)

U ′ ). Then the morphism

D†U′,Q ⊗D̂(m0)

U′,Q
ĝ(m0)!(Ê(m0)

Q )→ ĝ!†(D†U,Q ⊗D̂(m0)

U,Q

Ê(m0)
Q ) (17.3.2.6.2)

is an isomorphism. Moreover, these are transitive with respect to the composition of such a morphism
g.

Proof. a) If m is an integer such that E(m) ∈ Db
coh(D(m)

U ) and g(m)!(E(m)) ∈ Db
coh(D(m)

U ′ ) then it fol-
lows from 17.3.2.4.(b) that the canonical morphism “D(m)

U′,Q ⊗DU′,Q g
!(E(m)

Q ) → ĝ(m)!(Ê(m)
Q ) (see notation

17.2.4.3.1 concerning the functor g!) is an isomorphism. This implies that 17.3.2.6.1 is an isomorphism.
b) Using the part a), by tensoring with Q the following morphism

f : “D(m0+•)
U′ ⊗L

D̂(m0)

U′
ĝ(m0)!(Ê(m0))→ ĝ(m0+•)!(Ê(m0+•)), (17.3.2.6.3)

we get an isomorphism. Hence, it follows from 8.4.2.9 that that f is an isomorphism of D−→
b
Q(“D(m0+•)

U′ ).

i) On one hand, we have→l
∗
Q(“D(m0+•)

U′ ⊗L
D̂(m0)

U′
ĝ(m0)!(Ê(m0)))

∼−→ D†U′,Q ⊗D̂(m0)

U′,Q
ĝ(m0)!(Ê(m0)

Q ).

ii) Since the morphism “D(m0+•)
U ⊗L

D̂(m0)

U

Ê(m0) → Ê(m0+•) is an isomorphism after tensoring with Q,

then this is an isomorphism of D−→
b
Q(“D(m0+•)

U ) (use 8.4.2.9). Hence, Ê(m0+•) ∈ LD−→
b
Q,coh(“D(m0+•)

U ). Since

→l
∗
Q(Ê(m0+•))

∼−→ D†U,Q ⊗D̂(m0)

U,Q

Ê(m0)
Q , then then it follows from 9.2.1.24 that by applying the functor→l

∗
Q

to right term of 17.3.2.6.3, we get the right term of 17.3.2.6.2 up to canonical isomorphism.
iii) Hence, by applying the functor→l

∗
Q to 17.3.2.6.3, it follows from i) and ii) that we get the isomor-

phism 17.3.2.6.2.

Corollary 17.3.2.7. Let g : U ′ → U be a smooth morphism of smooth S-weak formal schemes and
E ∈ Db

coh(D(m)
U ). The canonical morphism

D†U′,Q ⊗D(m)

U′
g!(m)

(E)→ g!†(D†U,Q ⊗D(m)

U

E) (17.3.2.7.1)

is an isomorphism. Moreover, these are transitive with respect to the composition of such morphism g.

Proof. This follows from17.3.2.5 and 17.3.2.6 (or 9.4.1.7.1 since g is smooth).

17.3.3 Pushforwards
Let m ∈ N.

Lemma 17.3.3.1. Let g : U ′ → U be a morphism of separated smooth S-weak formal schemes and
E ′ ∈ Db

qc(D(m)
U ′ ) (see definition 17.3.1.3).
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(a) We have g(m)
+ (E ′) ∈ Db

qc(D(m)
U ).

(b) The canonical morphism “D(m)
U
“⊗L
D(m)

U

g
(m)
+ (E ′)→ ĝ

(m)
+ (“D(m)

U′
“⊗L
D(m)

U′
E ′) (17.3.3.1.1)

is an isomorphism. Moreover, these are transitive with respect to the composition of such morphism
g. In particular, if E ′ ∈ Db

coh(D(m)
U ′ ) and g(m)

+ (E ′) ∈ Db
coh(D(m)

U ) the canonical morphism “D(m)
U ⊗D(m)

U

g
(m)
+ (E ′)→ ĝ

(m)
+ (“D(m)

U′ ⊗D(m)

U′
E ′) is an isomorphism.

Proof. a) Via the exact sequence 0 → OU
πi+1

−→ OU → OUi → 0, we see that the projection map
OUi ⊗L

OU Rg∗(F ′) → Rg∗(g−1OUi ⊗L
g−1OU F

′) is a functorial in F ′ ∈ D(g−1D(m)
U ) isomorphism. This

yields the commutative diagram:

OUi ⊗L
OU Rg∗(D(m)

U←U ′ ⊗L
D(m)

U′
E ′)

��

∼// Rg∗(g-1OUi ⊗L

g-1OU
(D(m)

U←U ′ ⊗L
D(m)

U′
E ′))

��
OUi ⊗L

OU Rg∗(“D(m)
U←U′ ⊗L

D(m)

U′
E ′) ∼ //

��

Rg∗(g-1OUi ⊗L

g-1OU
(“D(m)

U←U′ ⊗L
D(m)

U′
E ′))

��
OUi ⊗L

OU Rg∗(“D(m)
U←U′

“⊗L
D(m)

U′
E ′) ∼ // Rg∗(g-1OUi ⊗L

g-1OU
(“D(m)

U←U′
“⊗L
D(m)

U′
E ′))

(17.3.3.1.2)

Moreover, the canonical morphismsD(m)
U←U ′ → “D(m)

U←U′ → D
(m)
Ui←U ′i

induce the isomorphisms: g−1OUi⊗L
g−1OU

D(m)
U←U ′

∼−→ g−1OUi ⊗L
g−1OU

“D(m)
U←U′

∼−→ D(m)
Ui←U ′i

. From this we have a commutative diagram:

Rg∗(g−1OUi ⊗L
g−1OU (D(m)

U←U ′ ⊗L
D(m)

U′
E ′)) ∼ //

��

Rg∗(D(m)
Ui←U ′i

⊗L
D(m)

U′
i

E ′i)

Rg∗(g−1OUi ⊗L
g−1OU (“D(m)

U←U′ ⊗L
D(m)

U′
E ′)) ∼ //

��

Rg∗(D(m)
Ui←U ′i

⊗L
D(m)

U′
i

E ′i)

Rg∗(g−1OUi ⊗L
g−1OU (“D(m)

U←U′
“⊗L
D(m)

U′
E ′)) ∼ // Rg∗(D(m)

Ui←U ′i
⊗L
D(m)

U′
i

E ′i).

(17.3.3.1.3)

Hence, by composing the top isomorphisms of 17.3.3.1.2 and 17.3.3.1.3, using 5.1.3.5 we get g(m)
+ (E ′) ∈

Db
qc(D(m)

U ).
b) By using 17.3.1.8, it follows from the part a) that the arrow 17.3.3.1.1 is therefore the unique

morphism of Db
qc(“D(m)

U ) making commutative the diagram below

g+(E ′) = Rg∗(D(m)
U←U ′ ⊗L

D(m)

U′
E ′) //

��

“D(m)
U
“⊗L
D(m)

U

g+(E ′)

��

Rg∗(“D(m)
U←U′ ⊗L

D(m)

U′
E ′)

��
Rg∗(“D(m)

U←U′
“⊗L
D̂(m)

U′

“D(m)
U′
“⊗L
D(m)

U′
E ′) ĝ+(“D(m)

U′
“⊗L
D(m)

U′
E ′)

(17.3.3.1.4)

Applying OUi ⊗L
OU − to 17.3.3.1.4, because of 17.3.3.1.2 and 17.3.3.1.3, the composition on the left

becomes an isomorphism. It follows by construction that 17.3.3.1.1 is an isomorphism. Finally, the
transitivity in g of the construction of 17.3.3.1.4 is easy and is left as an exercice.

Proposition 17.3.3.2. Let g : U ′ → U be a morphism of smooth S-weak formal schemes. For any
E ′ ∈ Db

coh(D(m)
U ′ ) such that g(m)

+ (E ′) ∈ Db
coh(D(m)

U ), the canonical morphism

D†U,Q ⊗D(m)

U

g
(m)
+ (E ′)→ g†+(D†U′,Q ⊗D(m)

U′
E ′) (17.3.3.2.1)
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is an isomorphism. Moreover, these are transitive with respect to the composition of such morphism g.

Proof. Let E ′ ∈ Db
qc(D(m)

U ′ ). It follows from 17.3.3.1,7.5.8.14.1 that the canonical morphism“D(m+•)
U

“⊗L
D(m)

U

g
(m)
+ (E ′)→ ĝ

(m+•)
+ (“D(m+•)

U′
“⊗L
D(m)

U′
E ′) (17.3.3.2.2)

is an isomorphism. Suppose E ′ ∈ Db
coh(D(m)

U ′ ) and g(m)
+ (E ′) ∈ Db

coh(D(m)
U ). Therefore, since→l

∗
Q(“D(m+•)

U′
“⊗L
D(m)

U′
E ′) ∼−→

D†U′,Q⊗D(m)

U′
E ′ and→l

∗
Q(“D(m+•)

U
“⊗L
D(m)

U

g
(m)
+ (E ′)) ∼−→ D†U,Q⊗D(m)

U

g
(m)
+ (E ′), then by applying the functor→l

∗
Q

to 17.3.3.2.2 we get 17.3.3.2.1.

17.3.4 Closed immersion: adjunction
Let m ∈ N. Let v : Y ↪→ U be a closed immersion of smooth S-weak formal schemes.

17.3.4.1. Let E(m0+•) ∈ Db(D(m0+•)
U ) such that for any m ≥ m0, the morphisms E(m0)

Q → E(m)
Q are

isomorphisms, E(m) ∈ Db
coh(D(m)

U ) and v(m)!(E(m)) ∈ Db
coh(D(m)

Y ). We have a commutative diagram

D†U,Q ⊗D(m)

U

v
(m)
+ v!(m0)

(E(m0))
adj

17.2.5.3.3//

∼��

D†U,Q ⊗D(m0)

U

E(m0)

v̂+† v̂
!†(D†U,Q ⊗D(m0)

U

E(m0))
adj

9.3.2.5.1 // D†U,Q ⊗D(m0)

U

E(m0),

where the isomorphism on the right follows from 17.2.5.5, 17.3.2.6 and 17.3.3.2.

17.3.4.2. Let F (m0+•) ∈ Db(D(m0+•)
Y ) such that for any m ≥ m0, the morphisms F (m0)

Q → F (m)
Q

are isomorphisms, F (m) ∈ Db
coh(D(m)

Y ) and v!(m)

v
(m)
+ (F (m)) ∈ Db

coh(D(m)
Y ). We have the commutative

diagram

D†Y,Q ⊗D(m)

Y

F (m)17.2.5.3.1// D†Y,Q ⊗D(m)

Y

v!(m)

v
(m)
+ (F (m))

∼��
D†Y,Q ⊗D(m)

Y

F (m) ∼
9.3.5.9

// v!†v+†(D
†
Y,Q ⊗D(m)

Y

F (m)),

where the isomorphism on the right follows from 17.3.2.6 and 17.3.3.2. Hence, the top morphism is an
isomorphism.

17.4 Comparaison between weak formal and formal cohomolog-
ical operations with overconvergent singularities

Let f : P ′ → P be a morphism of separated smooth S-weak formal schemes, T0 (resp. T ′0) a divisor
of P0 (resp. P ′0), U (resp. U ′) the open complement of T0 (resp. T ′0) in P (resp. P ′), j : U ↪→ P and
j′ : U ′ ↪→ P ′ be the open immersions. Suppose that f factors through g : U ′ → U . Let m be an integer.
We have defined the sheaves OP(† ∗ T0), D(m)

P († ∗ T0) and D†P(† ∗ T0) (see 8.7.3.25). Similarly, we set

DP(†T0)Q := OP(†T0)Q ⊗OP
D(m)

P , which does not depend on m up to canonical isomorphism. Finally,
we write

D(m)
P′→P(† ∗ T ′0) := OP′(

† ∗ T ′0)⊗f−1OP(†∗T0) f
−1D(m)

P († ∗ T0)

←̃OP′(
† ∗ T ′0)⊗OP′ (OP′ ⊗f−1OP

f−1D(m)
P ) = OP′(

† ∗ T ′0)⊗OP′ D
(m)
P′→P.

Similarly we put D(m)
P←P′(

† ∗ T ′0) := OP′(
† ∗ T ′0)⊗OP

D(m)
P←P′ .
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17.4.1 Faithful flatness theorem
17.4.1.1. There exists a canonical homomorphism j∗OU → OP(†∗T0) making commutative the diagram

j∗OU

&&

// j∗OU

OP(† ∗ T0).

OO (17.4.1.1.1)

Indeed, following 8.7.6.12, the right arrow is faithfully flat and in particular injective. Hence, to check
the factorisation we can suppose P = Spff A affine and there exists f ∈ A such that Z := V (f) where f is
the image of f in A/πA. We have Γ(P, j∗OU ) = A[1/f ]†/V , Γ(P,OP(† ∗ T0)) = Â[1/f ]†/Â (see 8.7.3.26)
and Γ(P, j∗OU) = Â{1/f}. The inclusion A[1/f ]†/V ⊂ Â{1/f} factors through A[1/f ]†/V ⊂ Â[1/f ]†/Â

and we are done.
Similarly, we computation in local coordinates, there exists a canonical homomorphism j∗D(m)

U →
D(m)

P († ∗ T0) whose composition with D(m)
P († ∗ T0) → j∗D(m)

U gives the canonical morphism j∗D(m)
U →

j∗D(m)
U .

Proposition 17.4.1.2. For all integers m, there exists canonical homomorphisms j∗OU → OP(† ∗ T0),
j∗D(m)

U → D(m)
P († ∗ T0) and j∗DU,Q → DP(†T0)Q which are left and right faithfully flat. Moreover, we

have the canonical left and right flat homomorphisms j∗DU → D†P(† ∗ T0) and j∗D(m)
U → D†P(†T0)Q.

Proof. Consider first the faithfully flatness. As T0 is a divisor, then there exists a neighborhood basis of
P consisting of affine opens of P whose intersection with U are affine. Now, for any affine opens V of
U , the extension Γ(V,OU ) → Γ(V,OU) is left and right faithfully flat. The extension j∗OU → j∗OU is
therefore left and right faithfully flat. Using 8.7.6.12, this yields so is the morphism j∗OU → OP(† ∗ T0)
making commutative the diagram 17.4.1.1.1.

For any open P ′ of P , if P ′/S has coordinates then so is P ′ ∩ U/S. Hence, we easily compute that
the morphism

OP(† ∗ T0)⊗j∗OU j∗D
(m)
U → D(m)

P († ∗ T0), (17.4.1.2.1)

constructed by extension from the map j∗D(m)
U → D(m)

P († ∗ T0) of 17.4.1.1, is an isomorphism. Hence,
the result for the second morphism is a consequence of the first one. We get the third morphism from
the second one by applying the functor ⊗Q, which yields the faithfulness.

Next consider the question of flatness. For all m, the extensions j∗D(m)
U → j∗“D(m)

U are flat. Passing
the limit on the level, this yields that j∗DU → j∗D†U is flat. Using Proposition 8.7.6.12, this implies the
first case. In addition to the previous arguments the flatness of the second morphism results from the
flatness of j∗“D(m)

U → j∗“D(m)
U,Q → j∗D†U,Q (for the later, following the proof of 8.7.5.3 we have such flatness

for global sections on affine formal schemes, then use the fact that T0 is a divisor as explained above).

17.4.2 Extraordinary inverse images

Lemma 17.4.2.1. There exists a canonical morphism j′∗D
(m)
U ′→U → D

(m)
P′→P(†∗T ′0) of (j′∗D

(m)
U ′ , j

′
∗g
−1D(m)

U )-

bimodules. Moreover, the induced by extension morphism, D(m)
P′ (†∗T ′0)⊗

j′∗D
(m)

U′
j′∗D

(m)
U ′→U → D

(m)
P′→P(†∗T ′0),

is an isomorphism.

Proof. The canonical injection D(m)
U ′→U ↪→ D(m)

U′→U induces the following one j′∗D
(m)
U ′→U ↪→ j′∗D

(m)
U′→U. Since

the morphism OP′(
† ∗ T ′0) → j′∗OU′ is injective, by a computation in local coordinates, we get the

injections (adjunction of j′∗ then completion)

D(m)
P′→P(† ∗ T0) ↪→ j′∗D

(m)
U′→U ↪→ j′∗

“D(m)
U′→U.

Since we have the canonical injection j′∗OU ′ ↪→ OP′(
† ∗ T ′0), then via a computation in local coordinates
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we get the factorisation:

j′∗“D(m)
U′→U

j′∗D
(m)
U ′→U

//
?�

OO

D(m)
P′→P(† ∗ T ′0).
V6

ii

where the two other maps has been defined above. By extension, we obtain OP′(
†∗T ′0)⊗j′∗OU′ j

′
∗D

(m)
U ′→U →

D(m)
P′→P(† ∗ T ′0). By a computation in local coordinates, we check that this is an isomorphism. We finish

using the canonical isomorphism OP′(
† ∗ T ′0)⊗j′∗OU′ j

′
∗D

(m)
U ′→U

∼−→ D(m)
P′ († ∗ T ′0)⊗

j′∗D
(m)

U′
j′∗D

(m)
U ′→U which

follows from 17.4.1.2.1.

Proposition 17.4.2.2. Suppose f is smooth. For any D(m)
U -module F locally in P of finite presentation,

we have a canonical isomorphism of coherent D†P′(†T ′0)Q-modules:

D†P′(
†T ′0)Q ⊗j′∗D(m)

U′
j′∗(D

(m)
U ′→U ⊗g−1D(m)

U

g−1F)

∼−→ D†P′→P(†T ′0)Q ⊗f−1D†
P

(†T0)Q
f−1(D†P(†T0)Q ⊗j∗D(m)

U

j∗F). (17.4.2.2.1)

In addition, these are transitive with respect to the composition of such morphism f .

Proof. We have the canonical morphisms:

D(m)
P′→P(† ∗ T ′0)⊗

f−1D(m)

P
(†∗T0)

f−1(D(m)
P († ∗ T0)⊗

j∗D(m)

U

j∗F)

∼−→ D(m)
P′→P(† ∗ T ′0)⊗

f−1j∗D(m)

U

f−1j∗F
adj−→ D(m)

P′→P(† ∗ T ′0)⊗
j′∗g
−1D(m)

U

j′∗g
−1F

∼−→ D(m)
P′ († ∗ T ′0)⊗

j′∗D
(m)

U′
j′∗D

(m)
U ′→U ⊗j′∗g−1D(m)

U

j′∗g
−1F

adj−→ D(m)
P′ († ∗ T ′0)⊗

j′∗D
(m)

U′
j′∗(D

(m)
U ′→U ⊗g−1D(m)

U

g−1F). (17.4.2.2.2)

where the first adj is induced by canonical morphism f−1j∗ → j′∗g
−1 (which is constructed by adjunction)

and the second adjunction map comes from the adjoint pair (j′−1, j′∗). As F is locally in P of finite
presentation, it follows from 17.3.2.3 that D(m)

U ′→U ⊗g−1D(m)

U

g−1F is locally in P ′ of finite presentation.

Hence, using 17.2.2.13, the bottom term of 17.4.2.2.2 is locally of finite presentation as D(m)
P′ († ∗ T ′0)-

module, i.e. is a coherent D(m)
P′ († ∗T ′0)-module (recall the ring D(m)

P′ († ∗T ′0) is coherent following 8.7.3.27).

It follows from 17.2.2.13 that D(m)
P (†∗T0)⊗

j∗D(m)

U

j∗F is a coherent D(m)
P (†∗T0)-module. Hence, since f

is smooth, then similarly to 5.3.2.7 this yields the top term of 17.4.2.2.2 is a coherent D(m)
P′ (†∗T ′0)-module.

Hence, we get the morphism of coherent.

D†P′(
†T ′0)Q ⊗D(m)

P′
(†∗T ′0)

(D(m)
P′→P(† ∗ T ′0)⊗

f−1D(m)

P
(†∗T0)

f−1(D(m)
P († ∗ T0)⊗

j∗D(m)

U

j∗F))

→ D†P′(
†T ′0)Q ⊗j′∗D(m)

U′
j′∗(D

(m)
U ′→U ⊗g−1D(m)

U

g−1F). (17.4.2.2.3)

As 17.4.2.2.2 is an isomorphism above U′, then it follows from 8.7.6.14 that 17.4.2.2.3 is an isomorphism.
To conclude the construction of the isomorphism of 17.4.2.2, it suffices therefore to check that the

canonical homomorphism D†P′(†T ′0)Q⊗D(m)

P′
(†∗T ′0)

D(m)
P′→P(†∗T ′0)→ D†P′→P(†T ′0)Q, induced by extension is

an isomorphism. As f is smooth, then this is a morphism of coherent D†P′(†T ′0)Q-modules. By 8.7.6.11,

il suffices to establish that its restriction to U′ is an isomorphism. Now, as g is smooth, D(m)
U′→U is

D(m)
U′ -coherent. The morphism “D(m)

U′ ⊗D(m)

U′
D(m)

U′→U → “D(m)
U′→U is therefore an isomorphism. We get the

isomorphism: “D(m)
U′,Q ⊗D(m)

U′
D(m)

U′→U
∼−→ “D(m)

U′→U,Q. It follows from 9.4.1.7.1, that we get the canonical

isomorphism D†U′,Q ⊗D̂(m)

U′,Q

“D(m)
U′→U,Q

∼−→ D†U′→U,Q. Hence, we are done.

Remark 17.4.2.3. We can check that the restriction on U′ of the morphism 17.4.2.2.1 is canonically
isomorphic to 17.3.2.7.1.
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17.4.3 Pushforwards
Lemma 17.4.3.1. For all integer m, there exists a canonical homomorphism j′∗D

(m)
U←U ′ → D

(m)
P←P′(

†∗T0)

of (j′∗g
−1D(m)

U , j′∗D
(m)
U ′ )-bimodules.

Proof. By adding the sheaf of differential forms of maximum degree, this is verified in a analogous manner
as 17.4.2.1.

Proposition 17.4.3.2. Suppose T ′0 = f−1(T0). Let E ′ be a D(0)
U ′ -module locally in P ′ of finite pre-

sentation such that g+(E ′) is a D(0)
U -module locally in P of finite presentation. We have the canonical

morphism:

D†P(† ∗ T0)⊗
j∗D(0)

U

j∗g+(E ′)

→ Rf∗(D†P←P′(
† ∗ T0)⊗L

D†
P′

(†∗T ′0)
(D†P′(

†∗T ′0)⊗L
j′∗D

(0)

U′
j′∗E ′)). (17.4.3.2.1)

This is an isomorphism on U. Moreover, these are transitive with respect to the composition of such
morphism f .

Proof. I) Let us construct 17.4.3.2.1. 0) The morphism f is the composition of its graph γ : P ′ ↪→ P ′×P
followed by the projection $ : P ′ ×S P → P . Set P ′′ := P ′ ×S P , U ′′ := U ′ ×S U . By 17.2.5.4, since
γ is a closed immersion (see 17.1.4.5), then γ+(E ′) is a D(0)

U ′′ -module locally in P ′′ of finite presentation.
Hence, we reduce to the case where f is either smooth or a closed immersion.

1) Since g+(E ′) = g∗(D(0)
U←U ′ ⊗L

D(0)

U′
E ′) is a D(0)

U -module locally in P of finite presentation, then we

get the isomorphism:

j∗Rg∗(D(0)
U←U ′ ⊗

L
D(0)

U′
E ′)

17.2.2.13
∼−→ Rj∗Rg∗(D(0)

U←U ′ ⊗
L
D(0)

U′
E ′) ∼−→ Rf∗Rj

′
∗(D

(0)
U←U ′ ⊗

L
D(0)

U′
E ′).

2) The morphism j′∗D
(0)
U←U ′ ⊗L

j′∗D
(0)

U′
j′∗E ′ → Rj′∗(D

(0)
U←U ′ ⊗L

D(0)

U′
E ′) is an isomorphism.

i) Suppose f is smooth. Similarly to 7.5.10.3.1, we have a canonical quasi-isomorphism Ω•U ′/U ⊗OU′
D(0)
U ′ [dU ′/U ]→ D(0)

U←U ′ . In particular, D(0)
U←U ′ admits a bounded resolution by free D(0)

U ′ -modules of finite
type and we are done.

ii) If f is a closed immersion, then D(0)
U←U ′ is a free D(0)

U ′ -module and we are done.
3) By composition, we get from 1) and 2) the morphism j∗g+(E ′) ∼−→ Rf∗(j′∗D

(0)
U←U ′ ⊗L

j′∗D
(0)

U′
j′∗E ′).

We have a canonical morphism D(m)
P←P′(

† ∗ T0) → D†P←P′(
† ∗ T0). By composing with 17.4.3.1, we get

j′∗D
(m)
U←U ′ → D

†
P←P′(

† ∗ T0). This yields the first morphism:

Rf∗(j
′
∗D

(0)
U←U ′ ⊗

L
j′∗D

(0)

U′
j′∗E ′)→ Rf∗(D†P←P′(

† ∗ T0)⊗L
j′∗D

(0)

U′
j′∗E ′)

∼−→ Rf∗(D†P←P′(
† ∗ T0)⊗L

D†
P′

(†∗T ′0)
D†P′(

†∗T ′0)⊗L
j′∗D

(0)

U′
j′∗E ′)

We obtain by composition: θ : j∗g+(E ′) → Rf∗(D†P←P′(
† ∗ T0) ⊗L

D†
P′

(†∗T ′0)
D†P′(†∗T ′0) ⊗L

j′∗D
(0)

U′
j′∗E ′). The

construction of the morphism of 17.4.3.2.1 follows by extension.
II) Let us prove that the restriction of 17.4.3.2.1 on U is an isomorphism. The restriction to U of θ

corresponds to the morphism: Rg∗(D(0)
U←U ′ ⊗L

D(0)

U′
E ′) → Rg∗(D†U←U′ ⊗L

D(0)

U′
E ′), which is an isomorphism

according to 17.3.3.2.1.

17.5 Explicit description of the arithmetic D-module associated
to an overconvergent isocrystal on an affine smooth scheme
having coordinates

Let Y † = Spff A† be a smooth affine S-weak formal scheme. By using the lifting property 17.1.1.16
and its unicity 17.1.1.20, there exists a smooth affine V-scheme Y = SpecA whose weak completion is
isomorphic to Y †. We set DY † := Γ(Y †,DY †) and D(m)

Y †
:= Γ(Y †,D(m)

Y †
) for any m ∈ N.
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17.5.1 Functor spY †∗

Notation 17.5.1.1. We introduce the following categories.

(a) We denote by MIC(A†K/K) the category of coherent A†K-modules endowed with an integral connec-
tion, i.e. to the category of left DY †,K-module which are coherent as A†K-module.

(b) Let X be the closure of SpecA in some projective space PrV and j : Y0 ⊂ X0 be the open immersion.
Denote by MIC(Y0, X0,X/K) the category of coherent j†OXK endowed with an integrable connection.
Following [Ber96b, 2.5.2], the functor Γ(Xan

K ,−) induces an equivalence of categories between the
category MIC(Y0, X0,X/K) and MIC(A†K/K).

(c) We denote by MIC†(A†K/K) the strictly full subcategory of MIC(A†K/K) so that the functor Γ(Xan
K ,−)

induces an equivalence between the categories MIC†(Y0, X0,X/K) and MIC†(A†K/K). The objects
of MIC†(A†K/K) are by definition the coherent A†K-modules endowed with an overconvergent con-
nection.

(d) Denote by MIC(Y †/S) the category of DY †,Q-modules globally of finite presentation which are
also OY †,Q-coherent. The functors Γ(Y †,−) and DY †Q ⊗DY †Q

− induce quasi-inverse equivalence
between MIC(Y †/S) and MIC(A†K/K). Indeed, for any E ∈ MIC(A†K/K), the canonical morphism
OY †Q⊗A†

K
E → DY †Q⊗DY †Q

E is an isomorphism. We get therefore by composition the equivalence
of categories denoted by : MIC(Y0, X0,X/K)→ MIC(Y †/S) denoted by spY †∗.

(e) We denote by MIC††(Y †/S) the strictly full subcategory of MIC(Y †/S) so that the functor spY †∗
induces an equivalence between the categories MIC†(Y0, X0,X/K) and MIC††(Y †/S). The functors
Γ(Y †,−) andDY †Q⊗DY †Q

− induce quasi-inverse equivalence between MIC††(Y †/S) and MIC†(A†K/K).

17.5.1.2. When there exists a finite etale morphism of smooth S-weak formal schemes of the form
Y † → An†V , we will give later a description of MIC†(A†K/K) in term of D†-module (see 17.7.3.7).

17.5.1.3. Let b : Y ′† → Y † be a morphism of affine smooth S-weak formal schemes. Let A′† :=
Γ(Y ′†,OY ′†). We have the commutative diagram up to canonical isomorphism:

MIC†(Y0/K)

b∗0

��

∼=

17.5.1.1.(b) // MIC†(A†K/K)

A′†
K
⊗
A
†
K

−

��

∼=

D
Y †Q⊗DY †Q

−
// MIC††(Y †/S)

D
Y ′†→Y †,Q⊗b−1D

Y †,Q
b−1−

��
MIC†(Y ′0/K) ∼=

17.5.1.1.(b) // MIC†(A′†K/K) ∼=

D
Y ′†Q⊗DY ′†Q

−
// MIC††(Y ′†/S),

(17.5.1.3.1)

Indeed, following [Ber96b, 2.5.6], the left square is commutative up to canonical isomorphism. For
the right one, this is obvious. For simplicity, set b∗ := DY ′†→Y †,Q ⊗b−1D

Y †,Q
b−1− : MIC††(Y †/S) →

MIC††(Y ′†/S). When dY ′/Y = 0, we prefer the notation b!.
If b, b′ : Y ′† → Y † are two morphisms of affine smooth S-weak formal schemes such that b0 = b′0,

it follows from the commutative up to canonical isomorphism 17.5.1.3.1 that we have the canonical
isomorphism τb,b′ : b

′∗ ∼−→ b∗ of functors MIC††(Y †/S) → MIC††(Y ′†/S). We have τb,b = id. Let
b′′ : Y ′† → Y † be a third lifting of b0. The cocycle condition τb,b′ ◦τb′,b′′ = τb,b′′ holds. For any morphisms
c : Z ′† → Y ′† and d : Y † → U† of affine smooth S-weak formal schemes, we have c∗(τb,b′) = τb◦c,b′◦c and
(τb,b′) ◦ d∗ = τd◦b,c◦b′ (modulo the transitivity of pullbacks).

17.5.1.4. Let b : Y ′† → Y † be a finite and étale morphism of affine smooth S-weak formal schemes. Let
A′† := Γ(Y ′†,OY ′†). We have the commutative diagram up to canonical isomorphism:

MIC†(Y ′0/K)

b∗

��

∼=

17.5.1.1.(b) // MIC†(A′†K/K)

f

��

∼=

D
Y ′†,Q⊗DY ′†,Q−// MIC††(Y ′†/S)

b+=b∗(DY †←Y ′†,Q⊗DY ′†,Q−)

��
MIC†(Y0/K) ∼=

17.5.1.1.(b) // MIC†(A†K/K) ∼=

D
Y †Q⊗DY †Q

−
// MIC††(Y †/S),

(17.5.1.4.1)
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where the middle vertical functor f is the forgetful one and where the left vertical functor is well defined
because b is finite and étale (or, if we would like to avoid the use of pushforwards of overconvergent
isocrystals, this functor can be defined so that the left square is commutative).

17.5.1.5. With notation 17.5.1.1.(b) and 11.1.1.7, we get the commutative up to canonical isomorphism
diagram:

MIC(Y0, X0,X/K)

|YK

��

∼=

Γ(Xan
K ,−)// MIC(A†K/K)

ÂK⊗
A
†
K

−
��

MIC(Y0, Y0,Y/K) ∼=

Γ(YK ,−)// MIC(ÂK/K),

(17.5.1.5.1)

where the top equivalence of categories is 17.5.1.1.(b) and the bottom one is 11.1.1.7. We have such a
commutative up to canonical isomorphism diagram 17.6.3.2.2 whose horizontal functors are equivalent
by adding some symbol †, i.e replacing MIC by MIC†.

Proposition 17.5.1.6. Let DY/S := Γ(Y,DY/S) and D†Y/S := Γ(Y,D†Y/S). We assume that Y †/S

has coordinates. Let E ∈ MIC†(A†K/K).

(a) Then the canonical morphisms

ÂK ⊗A†
K
E → DY,K ⊗D

Y †,K
E → D†Y,K ⊗DY †,K E (17.5.1.6.1)

are isomorphisms.

(b) We have G := D†Y,K ⊗DY †,K E ∈ MIC†(ÂK/K) and G := D†Y,Q ⊗DY,K
G ∈ MIC††(Y/V).

Proof. a) Since the canonical morphism ÂK ⊗A†
K
DY †,K → DY,K is an isomorphism, then we get the

first isomorphism of 17.5.1.6.1. Since E ∈ MIC†(A†K/K) then DY,K ⊗D
Y †,K

E ∈ MIC†(ÂK/K) (see
17.5.1.5). Hence, we get the isomorphism

DY,K ⊗D
Y †,K

E
11.1.1.7.1
∼−→ D†Y,Q ⊗DY,Q (DY,K ⊗D

Y †,K
E)

∼−→ DY,K ⊗D
Y †,K

E.

b) It follows from 17.5.1.5 and 11.1.1.7.

Lemma 17.5.1.7 (Theorem A). We denote by MIC(m)(A†/V) the category of coherent D(m)

Y †
-modules

which are also coherent as A†-module. We denote by MIC(m)(Y †/S) the category of globally of finite
presentation D(m)

Y †
-modules which are also coherent as OY †-module.

(a) The functors D(m)

Y †
⊗D†

Y †
− and Γ(Y †,−) are quasi-inverse equivalences between MIC(m)(A†) and

MIC(m)(Y †/S).

(b) For any E ∈ MIC(m)(A†), the canonical morphism

OY † ⊗A E → D
(m)

Y †
⊗
D

(m)

Y †
E (17.5.1.7.1)

are isomorphisms.

Proof. According to 17.1.2.2 and 17.2.2.10, coherent OY †-modules and globally of finite presentation
D(m)

Y †
-modules satisfy theorem of type A. Hence, (a) is a consequence of (b). Since the canonical

morphism: OY† ⊗A D
(m)

Y †
→ D(m)

Y †
is an isomorphism (see 17.2.3.2.(b)), then we are done.

Proposition 17.5.1.8. Suppose Y †/S has coordinates t1, . . . , td. Let E ∈ MIC††(Y †/S) and m ∈ N.
There exists a E(m) ∈ MIC(m)(Y †/S) together with a DY †,Q-linear isomorphism E(m)

Q
∼−→ E .
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Proof. Write A† := Γ(Y †,OY †) and E := Γ(Y †, E). As E is a projective A†K-module of finite type,
there exists a A†K-module F , an integer r and a A†K-linear isomorphism: E ⊕ F

∼−→ (A†K)r. Write“E := ÂK ⊗A†
K
E and “F := ÂK ⊗A†

K
F ,we obtain the isomorphism “E⊕ “F ∼−→ (ÂK)r as well as canonical

injections E ↪→ “E and F ↪→ “F . By abuse of notations, we consider all the sets included in (ÂK)r.
We put E(m) := {e ∈ E| ∀k, ∂〈k〉(m)e ∈ E ∩ (A†)r}. It follows from the formulas 1.4.2.7.1 and

1.4.2.7.(c) which are still valid in D(m)

Y †
, that E(m) is a sub-D(m)

Y †
-module of E ∩ (A†)r. By noetherianity

of A†, E(m) is of finite type as A†-module and therefore as D(m)

Y †
-module. Since D(m)

Y †
is noetherian

(see 17.2.2.1), this yields that E(m) is of finite presentation. Hence E(m) ∈ MIC(m)(A†/V). Following
17.5.1.7, the module E(m) := D(m)

Y †
⊗

Γ(Y †,D(m)

Y †
)
E(m) is a D(m)

Y †
-module globally of finite presentation and

is also OY †-coherent It remains to prove E(m)
Q

∼−→ E .
Let vπ be the π-adic norm on ÂK given by Â (see definition 8.7.1.6). Let ‖ ∗ ‖:= p−vπ(∗), which is a

Banach norm on ÂK . We have ‖ a ‖≤ 1 if and only if a ∈ Â. ÂKN � “E. We still write ‖ − ‖ for the
norm on E (which is a Banach norm) by restriction via the inclusion “E ⊂ ÂK . Hence, for any e ∈ “E, if
‖ e ‖≤ 1 then e ∈ “E ∩ (Â)r.

With notation 1.2.1.2, according to 8.7.1.7, there exists η < 1, c ∈ R such that |q(m)
k !| ≤ cηk for all k.

For all e ∈ “E and k ∈ Nd, this yields the inequality: ‖ ∂〈k〉(m)e ‖= |q(m)
k !| ‖ ∂[k]e ‖≤ cdη|k| ‖ ∂[k]e ‖. As“E ∈ MIC†(ÂK/K) (see 17.5.1.5), then the last term tends to 0 when |k| goes to infinity (see 11.1.1.7.2).

For all e ∈ “E, there exists thus an integer N such that |k| ≥ N implies ∂〈k〉(m)e ∈ “E ∩ (Â)r.
Since A†/πA† ∼−→ Â/πÂ, then A† ∩ πÂ = πA†. Since Â is p-torsion free, this yields the equality:

A†K ∩ Â = A†. Hence, we get the last equality: E ∩ (Â)r = E ∩ (A†K)r ∩ (Â)r = E ∩ (A†)r. This implies
∀e ∈ E, ∃N ∈ N, ∀k such that |k| ≥ N , ∂〈k〉(m)e ∈ E ∩ (A†)r. Hence, ∀e ∈ E, ∃M ∈ N, ∀k we have
∂〈k〉(m)(pMe) ∈ E ∩ (A†)r. This yields the canonical inclusion E

(m)
Q → E is in fact an isomorphism.

Hence, so is OY †Q ⊗A† E(m) → OY †Q ⊗A†
K
E. Via 17.5.1.1.(d) and 17.5.1.7.1 we are done.

Proposition 17.5.1.9. Let m ∈ N, E(m) be a left D(m)

Y †
-module which is coherent as OY †-module.

(a) We have E(m) ∈ MIC(m)(Y †/S).

(b) Let Ê(m) be the p-adic completion of E(m). We have the commutative diagram of isomorphisms:

OY ⊗O
Y †
E(m) ∼ //

∼ ++

“D(m)
Y ⊗D

Y †
E(m)

∼ssÊ(m).

(17.5.1.9.1)

Proof. The first assertion is checked similarly to 7.5.2.1.(a). Since OY ⊗O
Y †
E(m) is a coherent OY-

module then the left bottom morphism of 17.5.1.9.1 is an isomorphism. Since “D(m)
Y ⊗D

Y †
E(m) is a

coherent “D(m)
Y -module then the left bottom morphism is an isomorphism. Hence, so is the top morphism

of 17.5.1.9.1.

Corollaire 17.5.1.10. Suppose Y †/S has coordinates t1, . . . , td. Let E ∈ MIC††(Y †/S).

(a) The morphism OY,Q ⊗O
Y †,Q
E → D†Y,Q ⊗DY †,Q E is an isomorphism.

(b) The functor D†Y,Q ⊗DY †,Q − factors through D†Y,Q ⊗DY †,Q − : MIC††(Y †/S)→ MIC††(Y/S) making
commutative up to canonical isomorphism the diagram:

MIC†(Y0, X0,X/K)

|YK

��

∼=

sp
Y †∗ // MIC†(A†K/K)

D†
Y,Q⊗DY †,Q−
��

MIC†(Y0, Y0,Y/K) ∼=

sp∗ // MIC††(Y/S),

(17.5.1.10.1)

where sp∗ is the pushforward via the specialisation morphism sp: YK → Y.
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(c) The functor spY †∗ is exact.

Proof. Let E(m) ∈ MIC(m)(Y †/S) together with a DY †,Q-linear isomorphism E(m)
Q

∼−→ E (see 17.5.1.8).
Tensoring with Q the top isomorphism of 17.5.1.9.1 used for E(m), we get that the canonical morphism
OY,Q ⊗O

Y †,Q
E → “D(m)

Y,Q ⊗DY †,Q E is an isomorphism. We get the first part of the corollary by taking
the limit on the level. The second part follows from the first one and from 17.5.1.5. Since the functor
sp∗ : MIC†(Y0, Y0,Y/K) → MIC††(Y/S) is exact, then we get the last part from the commutativity of
17.5.1.10.1 and the full faithfulness of OY †,Q → OY,Q.

17.5.2 Construction of the functor sp+

Let P † be a separated smooth S-weak formal scheme, T0 a divisor of P0, U† the open complement of
T0 in P †, j : U† ↪→ P † the open immersion and v : Y † ↪→ U† a closed immersion of smooth S-weak
formal schemes. Suppose in addition Y † is affine and Y †/S has coordinates t1, . . . , td. Let X0 be the
schematic closure of Y0 in P0 and (F -)Coh(X0,P, T0) the category of coherent (F -)D†P(†T0)Q-modules
with support in X0.

Example 17.5.2.1. Let Y † be an affineS-weak formal scheme such that Y †/S has coordinates t1, . . . , td.
Following 17.1.1.16 and 17.1.1.20, there exists a smooth affine Spec(V)-scheme Y whose weak completion
is isomorphic to Y †. Choose a closed immersion Y ↪→ ArV . Write P := PrV , U := ArV and T the divisor
P \ U . We get a closed immersion v : Y † ↪→ U† of smooth S-weak formal schemes and the inclusion
j : U† ⊂ P †.

Remark 17.5.2.2. If X0 is smooth, then T0 ∩X0 is a divisor of X0. Indeed, as X0 is the direct sum of its
irreducible components, we can assume that X0 is irreducible. Thus since T0 6⊃ X0, then we are done.

17.5.2.3. Let E ∈ MIC†(Y0/K) and E := spY †∗(E) ∈ MIC††(Y †/S) be the associated globally of finite
presentation DY †,Q-module which is also OY †,Q-coherent (see 17.5.1.1.(e)). We set:

spY †↪→U†,T0,+(E) := ‹spY †↪→U†,T0,+(E) := D†P(†T0)Q ⊗j∗DU†,K j∗v+(E). (17.5.2.3.1)

where v+(E) := v∗(DU†←Y †,Q ⊗DY †,Q E).

Choose E(0), a D(0)

Y †
-module globally of finite presentation, OY † -coherent and satisfying E(0)

Q
∼−→

E (see 17.5.1.8). Let “E ∈ MIC†(Y0, Y0,Y/K) be the convergent isocrystal on Y0 induced by E, i.e.“E = E|YK . We set Ê := D†Y,Q ⊗DY †,Q E . Following 17.5.1.10.1, we have the isomorphism: Ê ∼−→
sp∗(“E). By proposition 17.2.5.4, theD(0)

U†
-module v(0)

+ (E(0)) is globally of finite presentation. According to
17.2.2.13.(c), j∗D(0)

U†
-module j∗v

(0)
+ (E(0)) is globally of finite presentation. Since we have the isomorphism:

spY †↪→U†,T0,+(E)
∼−→ D†P(†T0)Q ⊗j∗D(0)

U†
j∗v

(0)
+ (E(0)), (17.5.2.3.2)

then spY †↪→U†,T0,+(E) is a D†P(†T0)Q-module globally of finite presentation with support in X0. This
yields the functors spY †↪→U†,T0,+ : MIC†(Y0/K) → Coh(X0,P, T0) and ‹spY †↪→U†,T0,+ : MIC††(Y †/K) →
Coh(X0,P, T0). When T0 is empty, we omit it in the notation.

Remark 17.5.2.4. The construction of 17.5.2.3.1 is very explicit. However, its defect is (until the proof of
the opposite) of not having a generalization for MIC†(Y,X/K) instead of MIC†(Y/K) when the partial
compactification X of Y is not not proper.

Proposition 17.5.2.5. With notations 17.5.2.3, we have canonical isomorphisms

spY †↪→U†,T0,+(E)|U ∼−→ spY0↪→U+(“E)
∼−→ v†+Ê .

Proof. Choose a D(0)

Y †
-module E(0) globally of finite presentation, OY †-coherent and satisfying E(0)

Q
∼−→

E . Since v(0)
+ (E(0)) is a coherent D(0)

U†
-module, then we get the isomorphism: spY †↪→U†,T0,+(E)|U =

D†U,Q⊗D(0)

U†
v+(E(0))

17.3.3.2.1
∼−→ v†+(D†Y,Q⊗D(0)

Y †
E(0)). We conclude via Ê ∼−→ D†Y,Q⊗D(0)

Y †
E(0) (17.5.1.10) and

17.5.2.3.2.
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With the remark 17.5.2.2, the following corollary is straightforward.

Corollary 17.5.2.6. With notations 17.5.2.3, suppose X0 is smooth. Then we have spY †↪→U†,T0,+(E) ∈
MIC††(X0,P, T0/V) (see notation 12.2.1.4).

Remark 17.5.2.7. We will check later that the smoothness hypothesis of corollary 17.5.2.6 is useless (see
17.5.2.6)

Proposition 17.5.2.8. The functor spY †↪→U†,T0,+ is exact and faithful.

Proof. According to 17.2.2.13, the canonical morphism j∗v+(E(0))→ Rj∗v+(E(0)) is an isomorphism for
any D(0)

Y †
-module E(0) globally of finite presentation, OY †-coherent. Tensoring by Q, using 17.5.1.8,

this yields that the the canonical morphism j∗v+(E) → Rj∗v+(E) is an isomorphism for any E ∈
MIC††(Y †/S). Following 17.5.1.10.(c) (resp. 17.2.5.1), the functor spY †∗ (resp. v+) is exact. Hence,
so is the functor E 7→ j∗v+spY †∗(E). As the extension DP(†T0)Q → D†P(†T0)Q is left and right flat,
it follows from 17.4.1.2 that D†P(†T0)Q is left and right j∗DU†,Q-flat. The functor spY †↪→U†,T0,+ is thus
exact.

Next we treat the faithfulness. Via 8.7.6.11, it suffices to establish that the faithfulness of E 7→
spY †↪→U†,T0,+(E)|U ∼−→

17.5.2.5
v†+Ê

∼−→ v†+ ◦ sp∗(“E) (see 17.5.2.3). Since the functor E 7→ “E is faithful (this

follows from [Ber96b, 2.1.11]), as sp∗ : MIC†(Y0, Y0,Y/K)→ MIC††(Y/S) is an equivalence of category
and v†+ is fully faithful on the category of coherent D†Y,Q-modules, then the result follows.

We close this subsection by the following proposition.

Proposition 17.5.2.9. Consider the commutative diagram of smooth S-weak formal schemes:

Y ′† �
� v′ //

b

��

U ′† �
� j′ //

g

��

P ′†

f

��
Y † �
� v // U† �

� j // P †,

(17.5.2.9.1)

where f and g are smooth morphisms, b is a morphism of affine smooth S-weak formal schemes, j and j′
are open immersions, v and v′ are closed immersions. We suppose there exists a divisor T0 of P0 (resp.
T ′0 of P ′0) such that U† = P † \ T0 (resp. U ′† = P ′† \ T ′0). Let X0 (resp. X ′0) denote the closure of of Y0

(resp. Y ′0) in P0 (resp. P ′0).
For any object E ∈ MIC†(Y0/K) such that RΓ†X′0

f !
T ′0,T0

(spY †↪→U†,T0,+(E)) ∈ Db
coh(D†P′(†T ′0)Q), there

exists a canonical isomorphism

spY ′†↪→U ′†,T ′0,+(b∗E)[dY ′0/Y0
]
∼−→ RΓ†X′0

f !
T ′0,T0

(spY †↪→U†,T0,+(E)) (17.5.2.9.2)

making commutative the diagram

spY ′†↪→U ′†,T ′0,+(b∗E)[dY ′0/Y0
]
∼

17.5.2.9.2
//

17.5.2.5

��

RΓ†X′0
f !
T ′0,T0

(spY †↪→U†,T0,+(E))

17.5.2.5

��
spY ′0 ↪→U′+(b∗“E)[dY ′0/Y0

]
12.2.4.1.2 // RΓ†Y ′0

g!spY0↪→U+(“E)

(17.5.2.9.3)

In addition, these are transitive with respect to the composition of diagrams of the form 17.5.2.9.1.

Proof. I) We construct the morphism 17.5.2.9.2. Let E := spY †∗(E) ∈ MIC††(Y †/S). Choose a D(•)
Y †

-
module E(•) such that for any m ∈ N the module E(m) is p-torsion free, globally of finite presentation as
D(m)

Y †
-module, coherent as OY †-module and satisfying E(m)

Q
∼−→ E (use 17.5.1.8).

1) Set E ′(•) := b(•)!(E(•))[−dY ′0/Y0
]. Then for any m ∈ N the module E ′(m) is p-torsion free, globally of

finite presentation as D(m)

Y ′†
-module, coherent as OY ′†-module. Moreover, it follows from 17.5.1.3.1 that

we have the isomorphism E ′(m)
Q

∼−→ spY ′†∗(b
∗(E)).
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2) We have the morphisms:

v
′(0)
+ b(0)!(E(0))

17.2.5.3.1
∼−→ v

′(0)
+ b(0)!v(0)!v

(0)
+ (E(0))

∼−→ v
′(0)
+ v′(0)!g(0)!v

(0)
+ (E(0))

17.2.5.3.3−→ g(0)!v
(0)
+ (E(0))
(17.5.2.9.4)

3) We get the morphisms:

spY ′†↪→U ′†,T ′0,+(b∗E)[dY ′0/Y0
]

step 1)
∼−→ D†P′(

†T ′0)Q ⊗j′∗D(0)

U′†
j′∗v
′(0)
+ b(0)!(E(0))

−→
17.5.2.9.4

D†P′(
†T ′0)Q ⊗j′∗D(0)

U′†
j′∗g

(0)!v
(0)
+ (E(0))

17.4.2.2
∼−→ f !

T ′0,T0

Å
D†P(†T0)Q ⊗j∗D(0)

U†
j∗v

(0)
+ (E(0))

ã
∼−→ f !

T ′0,T0
(spY †↪→U†,T0,+(E)). (17.5.2.9.5)

As spY ′†↪→U ′†,T ′0,+(b∗E) ∈ Coh(P′, T ′0, X
′
0), then by applying the functor RΓ†X′0

to the composite mor-

phism 17.5.2.9.5 (this is well defined since this composite is a morphism of Db
coh(D†P′(†T ′0)Q)), we get the

arrow 17.5.2.9.2.
II) It remains to check this is an isomorphism. Set Ê := D†Y,Q ⊗DY †,Q E . Using 8.7.6.11, it remains

to check that the restriction on U′ of the arrow 17.5.2.9.2 is an isomorphism. Since b(•)!(E(•))) and
v
′(•)
+ b(•)!(E(•))) satisfy the required conditions of 17.3.2.6 and 17.3.3.2, we get

D†U′,Q ⊗D(0)

U′†
v
′(0)
+ b(0)!(E(0))

∼−→ v′+b
!(D†U,Q ⊗D(0)

U†
E(0)). (17.5.2.9.6)

We have the commutative diagram:

spY ′†↪→U ′†,T ′0,+(b∗E)|U′[dY ′0/Y0
]

step 1)∼
��

17.5.2.9.5 // f !
T ′0,T0

(spY †↪→U†,T0,+(E))|U′

D†U′,Q ⊗D(0)

U′†
v
′(0)
+ b(0)!(E(0))

17.5.2.9.4//

17.5.2.9.6∼
��

D†U′,Q ⊗D(0)

U′†
g(0)!v

(0)
+ (E(0))

17.4.2.2
∼
// g!(D†U,Q ⊗D(0)

U†
v

(0)
+ (E(0)))

∼

OO

17.3.3.2∼
��

v′+b
!(D†Y,Q ⊗D(0)

Y †
E(0))

∼
��

// g!v+(D†Y,Q ⊗D(0)

Y †
(E(0)))

∼
��

spY ′0 ↪→U′+(b∗“E)[dY ′0/Y0
] // g!spY0↪→U+(“E)

(17.5.2.9.7)
where the top morphism of the bottom square is induced by the morphism v′+b

! → g!v+ constructed
by adjunction similarly to 17.5.2.9.4 (but using the formal version of 9.3.2.5). Indeed, the top square
is commutative by construction, that of the middle one follows from 17.2.5.3.2 and 17.2.5.3.4 and the
bottom one is tautological. By applying the functor RΓ†Y ′0

to 17.5.2.9.7 we get 17.5.2.9.3. Since the
bottom morphism of 17.5.2.9.3 is an isomorphism, then so is the top one.

Example 17.5.2.10. Suppose the left square of the diagram 17.5.2.9.1 is cartesian. Let E ∈ MIC†(Y0/K).
In that case, the morphism RΓ†X′0

f !
T ′0,T0

(spY †↪→U†,T0,+(E))→ f !
T ′0,T0

(spY †↪→U†,T0,+(E)) is an isomorphism

of Db
coh(D†P′(†T ′0)Q). Hence, we get the isomorphism:

spY ′†↪→U ′†,T ′0,+(b∗E)[dX′0/X0
]
∼−→ f !

T0
(spY †↪→U†,T0,+(E)).

In particular, when f = id, we have the functorial in E ∈ MIC†(Y0/K) isomorphism: (†T ′0)spY †↪→U†,T0,+(E)
∼−→

spY ′†↪→U ′†,T ′0,+(j′†E).
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Lemma 17.5.2.11. Consider the diagram of smooth S-weak formal schemes

Y
′† v′ //

b��

U
′† j′ //

g��

P
′†

f��
Y †

v // U†
j // P †,

(17.5.2.11.1)

where f is proper, j and j′ are open immersions, the right square is cartesian, v and v′ are closed
immersions, b is finite and étale and Y † is affine. Suppose in addition that T0 := P0\U0 and T ′0 := P ′0\U ′0
are the support of divisors.

For any E′ ∈ MIC†(Y ′0/K), with notation 17.5.1.4.1, we have then a canonical isomorphism

spY †↪→U†,T0,+(b∗E
′)
∼−→ f†T0,+

(spY ′†↪→U ′†,T ′0,+(E′)). (17.5.2.11.2)

Moreover, these are transitive with respect to the composition of diagrams of the form 17.5.2.11.1.

Proof. Set E ′ := spY ′†∗(E
′) ∈ MIC††(Y ′†/S). Choose a D(0)

Y ′†
-module E ′(0) such that for any m ∈ N the

module E ′(m) is p-torsion free, globally of finite presentation as D(m)

Y ′†
-module, coherent as OY ′† -module

and satisfying E ′(m)
Q

∼−→ E ′ (use 17.5.1.8). We put F ′(0) := v
′(0)
+ (E ′(0)) and E(0) := b

(0)
+ (E ′(0)).

As g(0)
+ (F ′(0)) = g

(0)
+ v

′(0)
+ (E ′(0))

∼−→ v
(0)
+ b

(0)
+ (E ′(0)), then it follows from 17.2.5.4 that F ′(0) (resp.

g
(0)
+ (F ′(0))) is locally in P ′† (resp. P †) of finite presentation. Hence, tensoring by Q a morphism of the
form 17.4.3.2.1, we have therefore the morphism

D†P(†T0)Q ⊗j∗D(0)

U†
j∗g+(F ′(0))→ Rf∗(D†P←P′(

†T0)Q ⊗L
D†

P′
(†T ′0)

D†P′(
†T ′0)⊗L

j′∗D
(0)

U′†
j′∗F ′(0))

17.5.2.3.2
∼−→ f†T0,+

(spY ′†↪→U ′†,T ′0,+(E′)). (17.5.2.11.3)

Since 17.5.2.11.3 is an isomorphism on U, since this is a morphism of Db
coh(D†P(†T0)Q) (because f is

proper), then with 8.7.6.11 we get that 17.5.2.11.3 is an isomorphism.
Since E(0) is a D(0)

Y †
-module of globally of finite presentation, is OY †-coherent and since E(0)

Q =

b
(0)
+ (E ′(0))Q

∼−→ b+(E ′) = b+ ◦ spY ′†∗(E
′)

17.5.1.4.1
∼−→ spY †∗(b∗(E

′)), then we get the isomorphism:

spY †↪→U†,T0,+(b∗E
′)

17.5.2.3.2
∼−→ D†P(†T0)Q ⊗j∗D(0)

U†
j∗v

(0)
+ (E(0))

∼−→ D†P(†T0)Q ⊗j∗D(0)

U†
j∗g+(F ′(0)).

(17.5.2.11.4)
By composing 17.5.2.11.4 with 17.5.2.11.3 we obtain the isomorphism 17.5.2.11.2.

Proposition 17.5.2.12. Suppose there exists two liftings v1, v2 : Y † ↪→ U† of v0 : Y0 ↪→ U0.

(a) We have the canonical isomorphism

τv1,v2
: spY †↪→

v2

U†,T,+
∼−→ spY †↪→

v1

U†,T,+ τv1,v2
: ‹spY †↪→

v2

U†,T,+
∼−→ ‹spY †↪→

v1

U†,T,+. (17.5.2.12.1)

(b) With notation 17.5.2.5, for any E ∈ MIC†(Y0/K) we have

spY †↪→
v2

U†,T,+(E)

17.5.2.5
��

17.5.2.12.1

τv1,v2
// spY †↪→

v1

U†,T,+(E)

17.5.2.5
��

v†2+Ê
9.2.2.3.1

τv1,v2
// v†1+Ê

(17.5.2.12.2)

(c) Let v3 : Y † ↪→ U† be a third lifting of Y0 ↪→ U0. The cocycle condition τv1,v2 ◦ τv2,v3 = τv1,v3 holds.
Moreover, τv1,v1 = id.
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Proof. a) Denote by w = (v1, v2) : Y † ↪→ U† × U†, H0 := (P0 × P0) \ (U0 × U0) the divisor of P0 × P0,
p1 : P ×P → P and p2 : P ×P → P the left and right projections. Following the proposition 17.5.2.9
(to be able to use the second proposition, recall the finiteness property of 17.6.1.7), the functors of the
form sp+ commute with inverse images, i.e., we have the canonical isomorphisms

spY †↪→
w
U†×U†,H0,+

17.5.2.9
∼−→ RΓ†X0

p!
1,H0,T0

◦ spY †↪→
v1

U†,T,+

∼−→ RΓ†X0
(†H0)p!

1,T0
◦ spY †↪→

v1

U†,T,+
∼−→ RΓ†Y0

p!
1,T0
◦ spY †↪→

v1

U†,T,+. (17.5.2.12.3)

By using 17.5.2.11.2 (in the case where b = id), we get the isomorphism:

spY †↪→
v2

U†,T,+

17.5.2.11.2
∼−→ p2,T0,+ ◦ spY †↪→

w
U†×U†,H0,+

17.5.2.12.3
∼−→ p2,T0,+RΓ†Y0

p!
1,T0
◦ spY †↪→

v1

U†,T,+.

Following 16.2.7.6, the functor p2,T0,+RΓ†Y0
p!

1,T0
is an autoequivalence of the category MIC††(X0,P, T0/K).

We conclude the construction of the canonical isomorphism 17.5.2.12.1 by using Theorem 17.6.1.7.
b) The commutativity of 17.5.2.12.2 follows from 17.5.2.9.3.
c) The last part is a consequence of the similar properties in the formal context (see 9.2.2.3) and of

b).

17.6 On the equivalence between the category of overcoherent
isocrystals to that of overconvergent isocrystals over an
affine and smooth variety

17.6.1 Overcoherence of the essential image of spY †↪→U†,T0,+
Definition 17.6.1.1. Let Y0 be a smooth affine k-scheme, Y0 ↪→ X0 an open immersion. The open
immersion Y0 ↪→ X0 “ideally desingularizes” or “is ideally desingularisable” if there exists a surjective
morphism a0 : X ′0 → X0, which decompose into a closed immersion X ′0 ↪→ PrX0

followed by the canonical
projection PrX0

→ X0, such that

(i) X ′0 is smooth ;

(ii) the morphism Y ′0 := a−1
0 (Y0)→ Y0 induced by a0 is finite and étale ;

(iii) the morphism Y ′0 ↪→ PrY0
induced by X ′0 ↪→ PrX0

lifts to a morphism of smooth S-weak formal
scheme of the form Y

′† → Pr†
Y †

, where Y † is a smooth affine S-weak formal scheme lifting Y0.

Remark 17.6.1.2. We keep notations of 17.6.1.1.

(a) If X0 is smooth, then Y0 ↪→ X0 ideally desingularizes.

(b) The condition (iii) is independent of the choice of the smooth lifting Y † because these are isomorphic
(see 17.1.1.20).

(c) If Y0 ↪→ X0 ideally desingularizes then for all affine open ‹Y0 of Y0 so does the induced open immersion‹Y0 ↪→ X0. Indeed, the morphism ‹Y ′0 := a−1
0 (‹Y0) → ‹Y0 induced by a0 is finite and étale. Moreover,

noting ‹Y † the open subset of Y † with underlying space ‹Y0, the projection Y
′† ×Pr†

Y †
Pr†
Ỹ †
→ Pr†

Ỹ †
is a

lifting of ‹Y ′0 → Pr
Ỹ0

.

17.6.1.3. Let P † be a separated smooth S-weak formal scheme, T0 a divisor of P0, U† the open com-
plement of T0 in P †, j : U† ↪→ P † the open immersion and v : Y † ↪→ U† a closed immersion of S-weak
formal schemes. Suppose in addition that Y † is smooth affine. Let X0 be the schematic closure of Y0

dans P0.
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Theorem 17.6.1.4. We keep notations 17.6.1.3 and we suppose that Y0 ↪→ X0 ideally desingularizes.
Then, for any E ∈ MIC†(Y0/K), the D†P(†T0)Q-module spY †↪→U†,T0,+(E) ∈ MIC††(X0,P, T0/K).

Proof. By hypotheses, there exists a surjective morphism a0 : X ′0 → X0, which decomposes into a closed
immersion X ′0 ↪→ PrX0

followed by the canonical projection PrX0
→ X0, such that X ′0 is smooth, the

morphism Y ′0 = a−1
0 (Y0) → Y0 is finite and étale and such that there exists a lifting Y

′† → Pr†
Y †

of
Y ′0 ↪→ PrY0

. Composing this lifting with the canonical projection Pr†
Y †
→ Y † (resp. with the closed

immersion Pr†
Y †

↪→ Pr†
U†

), we get a surjective finite and étale morphism b : Y
′† → Y † (resp. a closed

immersion v′ : Y
′† ↪→ Pr†

U†
). Write T ′0 := f−1T0, U

′† := Pr†
U†

, P
′† := Pr†

P †
, j′ : U

′† ↪→ P
′† the open

immersion, f : P
′† → P † and g : U

′† → U† the projections, we obtain a commutative diagram of the
form 17.5.2.11.1, with b surjective.

Let E ∈ MIC†(Y0/K). It is sufficient to check that spY †↪→U†,T0,+(E) is D†P(†T0)Q-overcoherent.
According to 17.5.2.11, there is a canonical isomorphism

sp+(b∗b
∗E)

∼−→ fT0,+†(sp
′
+(b∗E)), (17.6.1.4.1)

where sp+ = spY †↪→U†,T0,+ and sp′+ = spY ′†↪→U ′†,T ′0,+. As X ′0 is smooth, then following 17.5.2.6,
sp′+(b∗E) ∈ MIC††(X ′0,P, T

′
0/V). Now, by 16.1.1.7, this yields sp′+(b∗E) is D†P′(†f−1T0)Q-overcoherent.

With 15.3.6.14 and 17.6.1.4.1, it follows that sp+(b∗b
∗E) is D†P(†T0)Q-overcoherent.

Next, since b is finite, étale and surjective, then E is a direct factor of b∗b∗E. The module sp+(E) is
thus a direct factor of sp+(b∗b

∗E) and we are done.

The following proposition is just a simple extension of [Har70, II.3.1].

Proposition 17.6.1.5. Let k be a field, P a smooth proper k-scheme, U an affine and dense open of
P , T the closed subscheme of P complementary to U . Then T is the support of a divisor.

Proof. As P is k-smooth then, according to [E.G.A.IV 17.15.2], P is regular. As a regular local ring is
integral, then OP,x is an integral local ring for all x ∈ P . According to [E.G.A. I.4.5.5], P is then the
sum of its irreducible components (i.e., the irreducible components of P do not meet, are open and are
identical to the connected components). The fact that U is affine and dense in P is equivalent then to
the trace of U on each of the irreducible components of P being affine and dense. Moreover, the assertion
T is the support of a divisor is equivalent to the trace of T on each of the components irreducible of P is
a divisor. We therefore come back to the case where P is a proper, smooth and integrated scheme. The
set T is then the support of a divisor if and only if T has pure codimension equal to 1 in P . Let k be
an algebraic closure of k. P ⊗k k is a proper and smooth k-scheme, U ⊗k k is an open affine of P ⊗k k
complementary to the closed subscheme T ⊗k k. According to [E.G.A.IV.4.1.4], dimP = dimP ⊗k k.
Let P ′ be an irreducible component of P ⊗k k. According to [E.G.A.IV.4.4.1.], the image of P ′ by the
projection morphism P ⊗k k → P is irreducible and therefore is equal to P . As the projection morphism
is quasi-compact, we therefore have dimP ′ ≥ dimP . As we also have dimP ′ ≤ dimP ⊗k k = dimP ,
then the irreducible components of P ⊗k k all have the same dimension which is equal to that of P .
Similarly, if T ′ is an irreducible component of T then the irreducible components of T ′ ⊗k k are all of
the same dimension which is equal to that of T ′.

Let us now show that T ⊗k k is of pure dimension equal to dim(P ⊗k k) − 1 = dimP − 1. As
P ⊗k k is smooth with pure dimension equal to dimP , we can further assume that the scheme is P ⊗k k
integral. According to [Har70, II.3.1], T ⊗k k has pure codimension equal to 1. Now, according to
[Har77, ex.II.3.20], T ⊗k k is of pure codimension equal to 1 if and only if T ⊗k k is of dimension pure
dimP ⊗k k − 1.

We have therefore shown that T ⊗k k has dimension dim(P ⊗k k)− 1 = dim−1.
Finally, if T ′ is an irreducible component of T , as the dimension of T ′ is equal to that of irreducible

components of T ′ ⊗k k (which is a subset of the irreducible components of T ⊗k k) we therefore deduce
that dimT ′ = dimP − 1. According to [Har77, ex.II.3.20], we deduces that T has pure codimension
equal to 1. As P is smooth, T is therefore the support of a divisor.

Proposition 17.6.1.6. With notations 17.6.1.3, suppose X0 is integral and P † is either proper or affine.
There exists then a divisor T̃ 0 of P0 containing T0 such that ‹Y0 := (P0 \ T̃ 0) ∩X0 is affine dense in

Y0 and the open immersion ‹Y0 ↪→ X0 ideally desingularizes.
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Proof. By de Jong’s desingularisation theorem ([dJ96]) and replacing Y0 by an affine dense open subset,
there exists a projective surjective morphism a0 : X ′0 → X0, which decomposes into a closed immersion
X ′0 ↪→ PrX0

followed by the canonical projection PrX0
→ X0, such that

(i) X ′0 is integral and smooth ;

(ii) the morphism b0 : Y ′0 := a−1
0 (Y0)→ Y0 induced by a0 is finite and étale.

It remains to check that, shrinking Y0 if necessary, the property (iii) of 17.6.1.1 holds. Write v′0 for the
closed immersion Y ′0 ↪→ PrY0

. If x0, . . . , xr are the projective coordinates of Prk, we write, for all integers
α ∈ {0, . . . , r}, Dα for the divisor of Prk defined by the equation xα = 0 and Dα,Y0

:= Dα ×Pr
k

PrY0
. As

the intersection of the divisors Dα,Y0
is empty, there exists a integer α0 such that v′0(Y ′0) is not included

in Dα0,Y0 . As Y ′0 is integral, we obtain dimY ′0 ∩Dα0,Y0 < dimY ′0 . Via [Gro65, 5.4.2], the finiteness of b0
implies dim b0(Y ′0 ∩Dα0,Y0) = dimY ′0 ∩Dα0,Y0 . As b0 is surjective, we also have dimY ′0 = dimY0 and thus
dim b0(Y ′0 ∩Dα0,Y0

) < dimY0. It follows from the last inequality that there exists an affine open subset‹U0 of U0 such that the open subset ‹Y0 := ‹U0 ∩ Y0 of Y0 is dense and is included in Y0 \ b0(Y ′0 ∩Dα0,Y0
).

Set T̃0 := P0 \ ‹U0. Then using 17.6.1.5 in the case where P is proper or choosing ‹U0 to be a standard
open subset of P0 in the affine case, we can suppose that T̃0 is the support of divisor of P0.

Put T̃X0 = T̃0∩X0 and T̃X′0 := a−1
0 (T̃X0). The inclusion b0(Y ′0 ∩Dα0,Y0) ⊂ T̃X0 (resp. X0 \ T̃X0 ⊂ Y0)

implies then Y ′0 ∩ Dα0,Y0
⊂ T̃X′0 (resp. X ′0 \ T̃ ′X0

⊂ Y ′0). From this follows the factorisation ‹Y ′0 :=

X ′0 \ T̃X′0 ↪→ (Prk \Dα0
)× (X0 \ T̃X0

) = Ar
Ỹ0

.

As ‹Y0/S0 (resp. ‹Y ′0/S0) is smooth affine, then there exists a very smooth affine S-weak formal scheme‹Y † (resp. ‹Y ′†) lifting it (see 17.1.1.20 and 17.1.1.22.(c)). We get a lifting ‹Y ′† → ‹Y † of the map ‹Y ′0 → Ar
Ỹ0

(we might invoke 17.1.1.22.(c)) but here this is obvious). Thus the canonical morphism ‹Y ′0 → Pr
X0\T̃X0

lifts to a morphism of smooth S-weak formal scheme of the form ‹Y ′† → Pr†
Ỹ †

. Hence, the open immersion‹Y0 ↪→ X0 ideally desingularizes.

Theorem 17.6.1.7. With the notations of 17.5.2, we have spY †↪→U†,T0,+(E) ∈ MIC††(X0,P, T0/K),
for any E ∈ MIC†(Y0/K).

Proof. 0 Since this is local in P, we can suppose that Y0, U0 and P0 are integral and affine. Put
E := spY †↪→U†,T0,+(E). Let E(•) ∈ LM−−→Q,coh(‹D(•)

P (T0)) be such that→l
∗
Q E

(•) ∼−→ E .
I) Let Z0 be a closed (reduced) subscheme of X0. We prove, by induction on (dimZ0, cmaxZ0)

(for the lexicographical order), where cmaxZ0 denotes the number of irreducible components of Z0 of
dimension dimZ0, the following assertion:

“ If RΓ†Z0
E(•) ∈ LD−→

b
Q,coh(‹D(•)

P (T0)), then RΓ†Z0
E(•) ∈ LD−→

b
Q,ovcoh(‹D(•)

P (T0))” (17.6.1.7.1)

Beware that RΓ†Z0
E(•) ∈ LD−→

b
Q,coh(D†P(†T0)Q) is a priori stronger than RΓ†Z0

E ∈ LD−→
b
Q,coh(‹D(•)

P (T0)).
The reason why we need this stronger property is that when we work with coherent complexes, the
composition of local cohomological functors (for instance) might be problematic in categories of the form
Db

ovcoh(D†P(†T0)Q) (contrary to overcoherent complexes).
1) Let us treat the case where dimZ0 = 0. Since Z0 → S0 is finite and étale (see 15.3.3.3), then

there exists a finite étale morphism Z→ S which lift X0 → S0. We get a lifting u : Z ↪→ P of Z0 → P0.
If RΓ†Z0

E(•) ∈ LD−→
b
Q,coh(‹D(•)

P (T0)), then following Berthelot-Kashiwara u(•)!RΓ†Z0
E(•) ∈ LD−→

b
Q,ovcoh(‹D(•)

Z )

and then RΓ†Z0
E(•) ∼−→ u

(•)
+ u(•)!RΓ†Z0

E(•) ∈ LD−→
b
Q,ovcoh(‹D(•)

X ) and we are done.
2) i) Suppose now dimZ0 > 0. Let C0 be an irreducible component of Z0 such that dimC0 =

dimZ0. Let C ′0 be the union of the other irreducible components of Z0. If T0 ⊃ C0 then RΓ†C0
E(•) = 0

which implies RΓ†C′0
E(•) ∼−→ RΓ†Z0

E(•) (use 13.1.4.15) and by using the induction hypotheses this yields

RΓ†Z0
E ∈ Db

ovcoh(D†P(†T0)Q). We therefore come back to assuming that T0 6⊃ C0. Hence, V0 := C0 ∩ U0

and C0 \ (C ′0 ∪ T0) are dense opens of C0. This yields, there exists a principal open subset Ũ of U such
that ‹V0 := ‹U0 ∩ C0 = ‹U0 ∩ Z0 and ‹V0 is smooth and dense in C0. By setting T̃0 := P0 \ ‹U0, remark T̃0

is the support of a divisor. Shrinking ‹U0 if necessary, by 17.6.1.6, we can furthermore suppose the open
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immersion ‹U0 ∩ C0 ↪→ C0 ideally desingularizes. Denote by ‹Y † (resp. ‹U†) the open subset of Y † (resp.
U†) complementary to T̃0 and by ‹E := j†

T̃0

E ∈ MIC†(‹Y0/K). We set Ẽ(•) := (†T̃0)E(•) and Ẽ := (†T̃0)E .

We obtain→l
∗
QẼ

(•) ∼−→ Ẽ ∼−→ sp
Ỹ †↪→Ũ†,T̃0,+

(‹E) (see 17.5.2.10).

ii) Since by hypothesis RΓ†Z0
E(•) ∈ LD−→

b
Q,coh(‹D(•)

P (T0)), since ‹V0 := ‹U0 ∩ C0 = ‹U0 ∩ Z0, then

RΓ†C0
(Ẽ(•))

∼−→ RΓ†
Ṽ0

(E(•))
∼−→ (†T̃0)(RΓ†Z0

E(•)) ∈ LD−→
b
Q,coh(‹D(•)

P (T̃0)). (17.6.1.7.2)

As ‹V0/S0 is smooth affine, there exists a very smooth affine S-weak formal scheme ‹V † lifting it (see
17.1.1.16). Choose b : ‹V † ↪→ ‹Y † a closed immersion lifting ‹V0 ↪→ ‹Y0 (see 17.1.1.22.(c)). We get the
commutative diagram: ‹V † � � ṽ′ //

a

��

‹U† � � j′ //

id

��

P †

id

��‹Y † � � ṽ // ‹U† � � j // P †,

(17.6.1.7.3)

where ṽ : ‹Y † ↪→ ‹U† is the closed immersion induced by v and ṽ′ := ṽ ◦ a. Via 17.5.2.9, since ‹V0 is dense
in C0, since following the step i) we have Ẽ ∼−→ sp

Ỹ †↪→Ũ†,T̃0,+
(‹E), this yields the isomorphism:

sp
Ṽ †↪→Ũ†,T̃0,+

(a∗‹E)
∼−→ RΓ†C0

(Ẽ)[−d
Ṽ0/Ỹ0

] =: ‹F . (17.6.1.7.4)

With 17.6.1.4, this yields ‹F ∈ MIC††(C0,P, T̃0/K), in particular ‹F is D†P(†T0)Q-overcoherent. Set‹F (•) := RΓ†C0
(†Ẽ(•))[−d

Ṽ0/Ỹ0
] ∈ LD−→

b
Q,coh(‹D(•)

P (T̃0)), since→l
∗
Q
‹F (•) ∼−→ ‹F then following 15.3.6.6 ‹F (•) ∈

LD−→
b
Q,ovcoh(‹D(•)

P (T̃0)).
iii) Using de Jong’s desingularisation theorem, we obtain the commutative diagram (use 16.1.11.1):‹U0

//

�

U0
//

�

P0
// P‹Y0

//

�

OO

Y0
//

�

OO

X0
//

OO

P‹V0
//

�

a
OO

V0
//

�

OO

C0
//

OO

P‹V ′0 //
b
OO

V ′0 //

OO

C ′0 //
h
OO

P̂NP ,

q
OO

in which the squares in the two columns on the left are cartesian, C ′0 is smooth, q is the canonical
projection, h is a projective, surjective, generically finite and étale morphism, such that h−1(C0 ∩ T̃0)
is a strict normal crossing divisor divisor of C ′0, the horizontal arrows of the right squares are closed
immersions. Put T ′0 := q−1(T0) and T̃ ′0 := q−1(T̃0). As C ′0/S0 is smooth and C ′0 ∩ T̃ ′0 is a divisor of C ′0,
then C ′0 ∩ T0 is also a divisor of C ′0. Since RΓ†C′0

q!(‹F) ∈ MIC††(C ′0, P̂
N
P , T̃

′
0/K), since C ′0/S0 is smooth

then following 12.2.2.6 there exists a (unique up to isomorphism) ‹E′ ∈ MIC†(‹V ′0 , C ′0, P̂NP/K) such that

RΓ†C′0
q!(‹F)

∼−→ spC′0↪→P′,T̃ ′0
(‹E′). (17.6.1.7.5)

iv) In this step, we check that ‹E′ ∈ MIC†(‹V ′0 , C ′0, P̂NP/K) comes from an object of MIC†(V ′0 , C
′
0, P̂

N
P/K).

Set U′ := P̂NP \ T ′0. Since V ′0/S0 is smooth, then using the theorem of contagiosity of Kedlaya
(see 16.1.8.1), we reduce to check that the restriction of ‹E′ on MIC†(‹V ′0 , V ′0 ,U′/K) comes from an
object of MIC†(V ′0 , V

′
0 ,U
′/K). In other words, we reduce to the case where the divisor T0 is empty,

i.e. U0 = P0, C0 = V0, C ′0 = V ′0 and T ′0 is empty. In that case, denoting by G ∈ MIC†(Y0, Y0/K) the
convergent isocrystal on Y0 associated to E, we get from 17.5.2.5 the isomorphism E ∼−→ spY0↪→U+(G)

923



of MIC††(Y0,U/K). With 17.6.1.7.4 and 17.6.1.7.5 we get therefore the isomorphism:

spV ′0 ↪→U′,T̃ ′0
(‹E′) ∼−→ RΓ†V ′0

q!RΓ†V0
(†T̃0)(spY0↪→U+(G))[−d

Ṽ0/Ỹ0
]

∼−→ (†T̃ ′0)
(

RΓ†V ′0
q!(spY0↪→U+(G))[−d

Ṽ0/Ỹ0
]
) 16.2.4.3

∼−→ (†T̃ ′0)(spV ′0 ↪→U′+(G′))
16.2.4.3
∼−→ spV ′0 ↪→U′,T̃ ′0

(j†
T̃ ′0
G′)

where G′ = h∗(G) ∈ MIC†(V ′0 , V
′
0/K). Since the functor spV ′0 ↪→U′,T̃ ′0

is fully faithfull, then we are done.
v) Set P′ := P̂NP . Following the step iv), there exists E′ ∈ MIC†(V ′0 , C

′
0,P

′/K) such that the
induced object of MIC†(‹V ′0 , C ′0,P′/K) is isomorphic to ‹E′. Put E ′ := spC′0↪→P′,T ′0

(E′). Let E ′(•) ∈
LM−−→Q,ovcoh(‹D(•)

P′ (T
′
0)) be such that→l

∗
Q E
′(•) ∼−→ E ′. It follows from 17.6.1.7.6 the isomorphism:

RΓ†C′0
q!(‹F)

∼−→ (†T̃ ′0)(E ′). (17.6.1.7.6)

Since ‹F (•) ∈ LD−→
b
Q,ovcoh(‹D(•)

P (T̃0)), then RΓ†C′0
q(•)!(‹F (•)) ∈ LD−→

b
Q,ovcoh(‹D(•)

P (T̃ ′0)). Since E ′(•) ∈ LM−−→Q,coh(‹D(•)
P′ (T

′
0)),

then (†T̃ ′0)(E ′(•)) ∈ LM−−→Q,coh(‹D(•)
P′ (T̃

′
0)). Since→l

∗
Q is fully faithful on LD−→

b
Q,coh(‹D(•)

P′ (T̃
′
0)), then we get from

17.6.1.7.6 the isomorphism of LD−→
b
Q,coh(‹D(•)

P′ (T̃
′
0)):

RΓ†C′0
q(•)!(‹F (•))

∼−→ (†T̃ ′0)(E ′(•)). (17.6.1.7.7)

Since (†T̃ ′0)(E ′(•)) ∈ LM−−→Q,ovcoh(‹D(•)
P′ (T

′
0)), then so is RΓ†C′0

q(•)!(‹F (•)). By 15.3.6.14, this yields q(•)
+ RΓ†C′0

q(•)!(‹F (•)) ∈

LD−→
b
Q,ovcoh(‹D(•)

P (T0)). By 16.1.11.2, ‹F (•) is a direct summand of q(•)
+ RΓ†C′0

q(•)!(‹F (•)). This yields ‹F (•) ∈

LD−→
b
Q,ovcoh(‹D(•)

P (T0)).
vi) Write the localisation triangle in T̃0 of RΓ†Z0

E as:

RΓ†
Z0∩T̃0

E(•) → RΓ†Z0
E(•) → RΓ†Z0

(†T̃0)E(•) → +1. (17.6.1.7.8)

The middle term of 17.6.1.7.8 is coherent by hypothesis. Moreover, via the isomorphism 17.6.1.7.2,
following the step v) we have RΓ†Z0

(†T̃0)E(•) ∈ LD−→
b
Q,ovcoh(‹D(•)

P (T0)). Hence, from 17.6.1.7.8 we get

RΓ†
Z0∩T̃0

E(•) ∈ LD−→
b
Q,coh(‹D(•)

P (T0)). As ‹V0 is dense in C0, then dimC0 ∩ T̃0 < dimC0 = dimZ0. Hence,

either dimZ0 ∩ T̃0 < dimZ0 or dimZ0 ∩ T̃0 = dimZ0 and cmax(Z0 ∩ T̃0) < cmax(Z0). By the induction
hypotheses, it follows that RΓ†

Z0∩T̃0

E(•) ∈ LD−→
b
Q,ovcoh(‹D(•)

P (T0)). We conclude the induction via 17.6.1.7.8.

II) Applying 17.6.1.7.1 to the case Z0 = X0, we obtain the D†P(†T0)Q-overcoherence of E . Hence,
using 17.5.2.5 we get E ∈ MIC††(X0,P, T0/K).

17.6.2 The functor spY ↪→U†,T,+

Let P † be a separated and smooth S-weak formal scheme with special fiber P0, let T0 be a divisor of P0,
U† the open set of P † complementary to T0, U0 the special fiber of U†, j : U† ↪→ P † the open immersion,
v0 : Y0 ↪→ U0 be a closed immersion of smooth k-schemes. We denote by X0 the closure of Y0 in P0. In
this subsection, using 17.1.1.22.(c) we fix the following lifting choices:

17.6.2.1. Let (P †α)α∈Λ be an open covering of P †. We set P †αβ := P †α∩P
†
β , P

†
αβγ := P †α∩P

†
β ∩P †γ , U

†
αβ :=

U† ∩ P †αβ , U
†
αβγ := U† ∩ P †αβγ . We denote by Yα0 := Y0 ∩ Uα0, Yαβ0 := Y0 ∩ Uαβ0, Yαβγ0 := Y0 ∩ Uαβγ0.

We set Tα0 := T0 ∩ Pα0, Tαβ0 := T0 ∩ Pαβ0, Tαβγ0 := T0 ∩ Pαβγ0.
We suppose that for every α ∈ Λ, P †α, U†α are affine and U†α/S has coordinates.
For any 3uple (α, β, γ) ∈ Λ3, fix Y †α (resp. Y †αβ , Y

†
αβγ) some smooth S-weak formal scheme lifting Yα0

(resp. Yαβ0, Yαβγ0), p
αβ
1 : Y †αβ → Y †α (resp. pαβ2 : Y †αβ → Y †β ) some lifting of the inclusions Yαβ0 → Yα0

(resp. Yαβ0 → Yβ0).
Similarly, for any (α, β, γ) ∈ Λ3, fix some lifting pαβγ12 : Y †αβγ → Y †αβ , p

αβγ
23 : Y †αβγ → Y †βγ , p

αβγ
13 : Y †αβγ →

Y †αγ , p
αβγ
1 : Y †αβγ → Y †α , p

αβγ
2 : Y †αβγ → Y †β , p

αβγ
3 : Y †αβγ → Y †γ , vα : Y †α ↪→ U†α, vαβ : Y †αβ ↪→ U†αβ and

vαβγ : Y †αβγ ↪→ Uαβγ .
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Definition 17.6.2.2. For any α ∈ Λ, let Eα ∈ MIC††(Y †α/V). A glueing data on (Eα)α∈Λ is the data for
any α, β ∈ Λ of an isomorphism of MIC††(Y †αβ/V) of the form:

θαβ : pαβ!
2 (Eβ)

∼−→ pαβ!
1 (Eα),

satisfying the cocycle condition: θαβγ13 = θαβγ12 ◦ θαβγ23 , where θαβγ12 , θαβγ23 and θαβγ13 are the isomorphisms
making commutative the following diagram

pαβγ!
12 pαβ!

2 (Eβ)
τ
∼
//

pαβγ!
12 (θαβ)∼ ��

pαβγ!
2 (Eβ)

θαβγ12��
pαβγ!

12 pαβ!
1 (Eα)

τ
∼
// pαβγ!

1 (Eα),

pαβγ!
23 pβγ!

2 (Eγ)
τ
∼
//

pαβγ!
23 (θβγ)∼ ��

pαβγ!
3 (Eγ)

θαβγ23��
pαβγ!

23 pβγ!
1 (Eβ)

τ
∼
// pαβγ!

2 (Eβ),

pαβγ!
13 pαγ!

2 (Eγ)
τ
∼
//

pαβγ!
13 (θαγ)∼ ��

pαβγ!
3 (Eγ)

θαβγ13��
pαβγ!

13 pαγ!
1 (Eα)

τ
∼
// pαβγ!

1 (Eα),

(17.6.2.2.1)
where τ are the glueing isomorphisms defined at 17.5.1.3.

Definition 17.6.2.3. We define the category MIC††((Y †α )α∈Λ/V) as follows:

(a) an object is a family (Eα)α∈Λ of objects Eα ∈ MIC††(Y †α/V) for each α ∈ Λ together with a glueing
data (θαβ)α,β∈Λ,

(b) a morphism ((Eα)α∈Λ, (θαβ)α,β∈Λ)→ ((E ′α)α∈Λ, (θ′αβ)α,β∈Λ) is a family of morphisms fα : Eα → E ′α of
MIC††(Y †α/V) commuting with glueing data, i.e., such that the following diagrams are commutative:

pαβ!
2 (Eβ)

pαβ!
2 (fβ) ��

θαβ

∼
// pαβ!

1 (Eα)

pαβ!
1 (fα)��

pαβ!
2 (E ′β)

θ′αβ

∼
// pαβ!

1 (E ′α).

(17.6.2.3.1)

17.6.2.4. It follows from 17.5.1.1 that we get an equivalence of categories spY0∗ : MIC†(Y/K)→ MIC††((Y †α )α∈Λ/V)
by setting spY0∗(E) := ((spY †α∗(E|Yα0))α∈Λ, (θαβ)α,β∈Λ)), where

θαβ : pαβ!
2 (Eβ) = pαβ!

2 (spY †
β
∗(E|Yβ0))

17.5.1.3.1
∼−→ spY †

αβ
∗(E|Yαβ0))

17.5.1.3.1
∼−→ pαβ!

1 (spY †α∗(E|Yα0)) = pαβ!
1 (Eα),

17.6.2.5. We define the functor ‹spY0↪→U†,T,+ : MIC††((Y †α )α∈Λ/V) → MIC††(X0,P, T0/K) as follows:
Let ((Eα)α∈Λ, (θαβ)α,β∈Λ) ∈ MIC††((Y †α )α∈Λ/V). Let wαβ1 : U†αβ ∩ Y †α ↪→ U†αβ be the the restriction of
vα. The morphism wαβ1 is a closed immersion of affine and smooth S-weak formal scheme which is a
lifting of Yαβ0 ↪→ Uαβ0. Since pαβ1 : Y †αβ → Y †α is a lifting of the open inclusion Yαβ0 ⊂ Yα0 then pαβ1

factor through qαβ1 : Y †αβ → Y †α ∩U
†
αβ . Setting v

αβ
1 := wαβ1 ◦ q

αβ
1 and jαβ1 : U†αβ ⊂ U†α, we get the equality

jαβ1 ◦ vαβ1 = uα ◦ vαβ1 . Hence, it follows from 17.5.1.3 and 17.5.2.9 the first isomorphism:‹spY †α ↪→
vα

U†α,Tα,+
(Eα)|Pαβ

∼−→ ‹spY †
αβ

↪→
v
αβ
1

U†
αβ
,Tαβ ,+

(pαβ!
1 (Eα))

17.5.2.12
∼−→ ‹spY †

αβ
↪→
vαβ

U†
αβ
,Tαβ ,+

(pαβ!
1 (Eα)).

(17.6.2.5.1)

Similarly to 17.6.2.5.1, we get the first isomorphism:

ταβ : ‹spY †
β
↪→
vβ

U†
β
,Tβ ,+

(Eβ)|Pαβ
∼−→ ‹spY †

αβ
↪→
vαβ

U†
αβ
,Tαβ ,+

(pαβ!
2 (Eβ))

θαβ
∼−→ ‹spY †

αβ
↪→
vαβ

U†
αβ
,Tαβ ,+

(pαβ!
1 (Eα))

17.6.2.5.1
∼−→ ‹spY †α ↪→

vα

U†α,Tα,+
(Eα)|Pαβ . (17.6.2.5.2)

It follows from the commutativity of the diagram 17.5.2.12.2 that so is the following one:‹spY †
β
↪→
vβ

U†
β
,Tβ ,+

(Eβ)|Uαβ
ταβ //

17.5.2.5
��

‹spY †α ↪→
vα

U†α,Tα,+
(Eα)|Uαβ

17.5.2.5
��

v̂β+(Êβ)
∼ // v̂αβ+(p̂αβ!

2 (Êβ))
∼
θαβ

// v̂αβ+(p̂αβ!
1 (Êα))

∼ // v̂α+(Êα),

(17.6.2.5.3)
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where the composition of the bottom morphisms is the morphism ταβ constructed at 9.3.7.6.2. Hence,
since the family (v̂α+(Êα))α∈Λ glues (see 9.3.7.6) then so is (‹spY †α ↪→

vα

U†α,Tα,+
(Eα))α∈Λ.

17.6.2.6. By setting spY0↪→U†,T0,+ := ‹spY0↪→U†,T0,+ ◦ spY0∗, we get the functor

spY0↪→U†,T0,+ : MIC†(Y0/K)→ MIC††(X0,P, T0/K). (17.6.2.6.1)

Remark 17.6.2.7. The functor spY †↪→U†,T,+ is the one we will need to check main Theorem 17.7.4.6 of
the whole chapter, i.e. it is be used when Y0 has a smooth lifting. However, the proof of the comparison
between both functors sp+ (see 17.6.3.2) requires a priori to slightly extend the functor spY †↪→U†,T,+ by
glueing in the context of 17.6.2.6.1.

Proposition 17.6.2.8. Consider the commutative diagram :

Y ′0
� � v′ //

b

��

U ′† �
� j′ //

g

��

P ′†

f

��
Y0
� � v // U† �

� j // P †,

(17.6.2.8.1)

where f and g are smooth morphisms of separated and smooth S-weak formal schemes, b is a morphism
of smooth k-varieties, j and j′ are open immersions, v and v′ are closed immersions. We suppose there
exists a divisor T0 of P0 (resp. T ′0 of P ′0) such that U† = P † \ T0 (resp. U ′† = P ′† \ T ′). Denote by X ′0
the closure of Y ′0 in P ′0. Then we have, for any E ∈ MIC†(Y/K), the canonical isomorphism

spY ′0 ↪→U ′†,T ′,+ ◦ b
∗(E)

∼−→ RΓ†Y ′0
◦ f ! ◦ spY0↪→U†,T,+(E)[−dY ′0/Y0

]. (17.6.2.8.2)

Proof. This is a consequence by glueing of 17.5.2.10 and 17.5.2.9.

17.6.3 Comparison between spY ↪→U†,T,+ and spX↪→P,T,+

Lemma 17.6.3.1. With the notations of 17.5.2, suppose U† is affine. LetM∈ MIC††(Y †/S). SetM :=

Γ(Y †,M) ∈ MIC†(A†K/K) (see 17.5.1.1), DY † := Γ(Y †,DY †) DU†←Y † = Γ(Y †,DU†←Y †), v+(M) :=
DU†←Y †,K ⊗DY †,K M . We have the canonical isomorphism

D†P(†T0)Q ⊗D
U†,K

v+(M)
∼−→ D†P(†T0)Q ⊗j∗DU†,Q j∗v+(M). (17.6.3.1.1)

Proof. We have, for any left DU†-module M , the functorial in M morphism of the form

j∗DU†,Q ⊗DU†,K M → j∗(DU†,Q ⊗DU†,K M). (17.6.3.1.2)

When M is a free DU†,K-module, this is clearly an isomorphism (when M is of finite type this is
obvious, otherwise because of the coherence of U† both functors commute with filtered inductive limits:
use[SGA4.2, VI.5.3]). Following 17.2.2.13, the functors j∗DU†,Q ⊗DU†,K − and j∗(DU†,Q ⊗DU†,K −) are
right exact on the abelian category of left DU†,K-modules. Hence, by the using the five lemma, this
yields the morphism 17.6.3.1.2 is an isomorphism. In particular we get the canonical isomorphism
j∗DU†,Q ⊗DU†,K v+(M)

∼−→ j∗(DU†,Q ⊗DU†,K v+(M)).
Moreover, it follows from 17.2.5.4 (switching from the right to the left module), we have the isomor-

phism: DU†,Q ⊗DU†,K v+(M)
∼−→ v+(M). Hence, j∗DU†,Q ⊗DU†,K v+(M)

∼−→ j∗v+(M). By applying
the functor D†P(†T0)Q ⊗j∗DU†,Q − to this latter isomorphism, we get 17.6.3.1.1.

The following proposition 17.6.3.2 will be improved later in 17.6.3.3.

Proposition 17.6.3.2. With notation 17.6.2, the diagram

MIC†(Y0/K)
|(Y0,X0) //

sp
Y0↪→U†,T,+ ((

MIC†(Y0, X0/K)

spX0↪→P,T0,+

∼=

uu
MIC††(Y0, X0/K)

(17.6.3.2.1)

where |(Y0, X0) is the canonical restriction, is commutative up to canonical isomorphism.
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Proof. I) Firstly, suppose P † affine and T0 defined by a equation local and Z0 := X0 ∩ T0 is a divisor of
X0. Let U† be the open of P † which is topologically U0 and let j : U† ⊂ P † be the inclusion. Moreover,
let u : X† ↪→ P † be the closed immersion of affine smooth S-weak formal schemes which is a lifting of
X0 ↪→ P0. Let v : Y † ↪→ U† be the induced by u closed immersion. Let α : Y † ↪→ X† be the open
inclusion. Following 17.4.1.1, we have the injections j∗DY †,Q → D

†
X(†Z)Q and j∗OY †,Q → OX(†Z0)Q. Let

E ∈ MIC†(Y0/K) and with 17.5.1.1.(e) letM := spY †∗(E) ∈ MIC††(Y †/S) (we have changed the letter
in order to avoid confusion between Γ(Y †,M) and E).

1) We get the commutative diagram up to canonical isomorphism:

MIC†(Y0/K)

|(Y0,X0)

��

∼=

sp
Y †∗ // MIC††(Y †/S)

OX(†Z0)Q⊗α∗OY †,Qα∗−
��

MIC†(Y0, X0,X/K) ∼=

spX∗ // MIC††(X0,X, Z0/K).

(17.6.3.2.2)

By construction, we have: spX0↪→P,T0,+(E|(Y0, X0)) = u†+spX∗(E|(Y0, X0)). Since D†X(†Z0)Q ⊗α∗DY †,Q
α∗(M) is a coherent D†X(†Z0)Q-module whose restriction over Y belongs to MIC††(Y †/S) (see the
corollary 17.5.1.10), then D†X(†Z0)Q ⊗α∗DY †,Q α∗(M) ∈ MIC††(X,X, Z/K) (see 12.2.1.5). In particular,
this latter is OX(†Z0)Q-coherent. Since the canonical arrow

OX(†Z0)Q ⊗α∗OY †,Q α∗(M)→ D†X(†Z0)Q ⊗α∗DY †,Q α∗(M)

is a morphism of coherent OX(†Z0)Q-modules which is an isomorphism outside Z0, then this is an
isomorphism. This yields the canonical isomorphism:

spX0↪→P,T0,+(E|(Y0, X0))
∼−→ u†+

Ä
D†X(†Z0)Q ⊗α∗DY †,Q α∗(M)

ä
. (17.6.3.2.3)

2) Using 17.6.3.1 and with its notations, we get the isomorphism: spY †↪→U†,Z0,+(E)
∼−→ D†X(†Z)Q⊗D

U†,Q

v+(M). Using the canonical map DU†←Y †,Q → Γ(X,D†P←X(†T0)Q), we get the arrow

v+(M)→ u†+(D†X(†Z)Q ⊗α∗DY †,Q α∗(M))

This yields by extension the canonical morphism

spY †↪→U†,T,+(E)→ u†+(D†X(†Z)Q ⊗α∗DY †,Q α∗(M)). (17.6.3.2.4)

This arrow 17.6.3.2.4 is a morphism of coherent D†P(†T )Q-modules whose restriction outside T is an
isomorphism (this is a consequence of 17.5.1.10 and 17.5.2.5). Following 8.7.6.11, this implies that the
morphism 17.6.3.2.4 is in fact an isomorphism. Hence we are done for the first case.

II) Let us now prove the general case. Let (P †α)α∈Λ be an affine open covering of P † such that T ∩Pα is
defined by a equation. We denote by U†α := P †α ∩U†, Yα0 := Pα0 ∩ Y0, Tα0 := Pα0 ∩ T0, Xα0 := Pα ∩X0.
Since Xα0

is affine and smooth, using the lifting theorem 17.1.1.20, there exists an S-formal scheme
weak affine and smooth X†α which is a lifting of Xα0. We denote by jα : P †α ⊂ P † the canonical open
immersion. Following 17.1.1.22.(c), there exist uα : X†α ↪→ P †α a closed immersion which is a lifting of
Xα0 ↪→ Pα0. Since U†α is a principal open set of P †α, then the open set X†α ∩ U†α of X†α is also principal.
In particular, it is affine. Setting Y †α := X†α ∩ U†α, we get the open immersion αα : Y †α ↪→ X†α and the
closed immersion vα : Y †α ↪→ U†α such that uα ◦ λα = jα ◦ vα. Similarly, we choose lifting of Xαβ0 and
Xαβγ0 and we reduce by glueing the general case from the first treated case of I).

Theorem 17.6.3.3. With notation 17.6.2, the diagram

MIC†(Y0/K) //

sp
Y0↪→U†,T0,+ ))

MIC†(X0,P, T0/K)

spX0↪→P,T0,+

∼=

uu
MIC††(X0,P, T0/K)

(17.6.3.3.1)

is commutative up to canonical isomorphism.
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Proof. Let E ∈ MIC†(Y0/K) and E|(Y0, X0) the induced object of MIC†(Y0, X0/K) = MIC†(X0,P, T0/K).
With the lemma 16.1.2.9 (and the remark 16.1.2.10) we reduce to the case where X0 is integral and Y0 is
dense in X0. Via the theorem of desingularisation of de Jong (and with the help of the lemma 16.1.6.10),
there exist a divisor T̃0 containing T0 and a diagram of the form

Y
(0)
0

�

� � j
(0)
0 //

b0��

X
(0)
0
� � u

(0)
0 //

a0��

P
(0)†
0

f��
Y0
� � j0 // X0

� � u0 // P †,

(17.6.3.3.2)

where the left square is cartesian, f is a proper and smooth morphism of separated and smooth S-weak
formal schemes, a0 is a proper, surjective and generically finite étale morphism of k-varieties with X(0)

0

smooth, j0 and j
(0)
0 are open immersions, u0 and u

(0)
0 are closed immersions. We have the canonical

isomorphisms:

spY (0)↪→U(0)†,T (0),+ ◦ b∗(E)
17.6.2.8
∼−→ RΓ†

Y (0) ◦ f ! ◦ spY ↪→U†,T,+(E);

spX(0)↪→P(0),T (0),+(a∗(E|(Y,X)))
16.1.8.6.1
∼−→ RΓ†

Y (0) ◦ f !spX↪→P,T,+(E|(Y,X)). (17.6.3.3.3)

As X(0) is smooth, then following 17.6.3.2, the left terms of 17.6.3.3.3 are canonically isomorphic. Then
so are similarly right terms. We get moreover the isomorphisms:

spY0↪→U†,T0,+(E)|U ∼−→ spY0↪→U†,∅,+(E)
17.6.3.2
∼−→ spX0↪→U,∅,+(E|(Y0, Y0))

∼−→ spX0↪→P,T0,+(E|(Y0, X0))|U.

Thanks to the fully faithfulness theorem 16.1.5.2, this yields the result.

Corollary 17.6.3.4. With notation 17.6.2, we suppose P0 proper. The functor spY0↪→U†,T0,+ induced
then the equivalence of categories:

spY0↪→U†,T0,+ : MIC†(Y/K) ∼= MIC††(Y0/K). (17.6.3.4.1)

Proof. This is a consequence of 16.1.8.4 and 17.6.3.3.

17.6.4 Commutation of the tensor product with sp+ in the weakly smooth
case

17.6.4.1. Let P †, P ′† be two smooth weak formal V-schemes and separated, T0 (resp. T ′0) a divisor of
P0 (resp. P ′0), U† (resp. U ′†) the open of P † (resp. P ′†) complementary to T0 (resp. T ′0), j : U† ↪→ P †

(resp. j′ : U ′† ↪→ P ′†) the open immersion and v : Y0 ↪→ U0 (resp. v′ : Y ′0 ↪→ U ′0) a closed immersion of
k-schemes smooth. We denote by P ′′† := P † × P ′†, U ′′† := U† × U ′†, T ′′0 the divisor reduced of P ′′0 of
space topological P ′′0 \ U ′′0 , Y ′′0 := Y0 × Y ′0 , b : Y ′′0 → Y0 and b′ : Y ′′0 → Y ′0 the canonical projections.

Let E ∈ MIC†(Y0/K) and E′ ∈ MIC†(Y ′0/K). We have the canonical functors b∗ : MIC†(Y0/K) →
MIC†(Y ′′0 /K) and b′∗ : MIC†(Y ′0/K) → MIC†(Y ′′0 /K) (see [Ber96b, 2.3.6] and [Car07, 1.4.1])). The
exterior tensor product of E and E′ is defined by setting E � E′ := b∗(E) ⊗ b′∗(E′), which gives the
bifunctor

−�− : MIC†(Y0/K)×MIC†(Y ′0/K)→ MIC†(Y ′′0 /K).

Proposition 17.6.4.2. With the notations 17.6.4.1, we have a canonical isomorphism

spY ′′0 ↪→U ′′†,T ′′0 +(E � E′)
∼−→ spY0↪→U†,+(E)

L
�†OS,T0,T ′0

spY ′0 ↪→U ′†,′+(E′). (17.6.4.2.1)

Proof. Let us denote by X0 (resp. X ′0, resp. X ′′0 ) the closure of Y0 in P0 (resp. of Y ′0 in P ′0, resp. of Y ′′0
in P ′′0 ). By using 16.2.6.5, the right square of the canonical diagram

MIC†(Y0/K)×MIC†(Y ′0/K)

−�−
��

// MIC†(X0,P, T0/K)×MIC†(P ′, T ′0, X ′0/K)

−�−
��

sp+×sp+// MIC††(X0,P, T0/K)×MIC†(P ′, T ′0, X ′0/K)

−�−
��

MIC†(Y ′′0 /K) // MIC†(P ′′, T ′′0 , X ′′0 /K)
spX′′

0
↪→P′′,T ′′

0
,+

// MIC††(P ′′, T ′′0 , X ′′0 /K).

(17.6.4.2.2)
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is commutative, up to canonical isomorphism. As the left square is also commutative, then the theorem
17.6.3.3 allow us to conclude.

Proposition 17.6.4.3. With the notations of 17.6.4.1, we suppose moreover on P † = P ′† and Y0 ∩ Y ′0
smooth (e.g., Y0 = Y ′0). By denoting i∗ : MIC†(Y0/K) → MIC†(Y0 ∩ Y ′0/K) and i′∗ : MIC†(Y ′0/K) →
MIC†(Y0 ∩ Y ′0/K) the canonical functors, then we have the canonical isomorphism:

spY0∩Y ′0 ↪→U†∩U ′†,T0∪T ′0,+
(i∗(E)⊗ i′∗(E′)) (17.6.4.3.1)

∼−→ (†T0 ∪ T ′0) ◦ spY0↪→U†,+(E)
L
⊗†OP0

(†T0∪T ′0)Q
(†T0 ∪ T ′0) ◦ spY ′0 ↪→U ′†,′+(E′)[dY0

+ dY ′0 − dY0∩Y ′0 − dP0
].

(17.6.4.3.2)

Proof. This is a consequence of 16.2.6.6 and of 17.6.3.3.

17.7 Application: characterization of overconvergent isocrystals
on certain subschemes of the affine space

The purpose of this section is to prove Theorem 17.7.4.6 which gives a sufficient condition for that an
arithmetical D-module to be an isocrystal overconvergent. This is the main ingredient in the proof of
the stability of the holonomicity for projective and smooth S-formal schemes (see the proof of Theorem
18.3.3.1). Roughly speaking, on certain subschemes of projective space, it the arithmetical D-module
comes from a convergent isocrystal outside the singularities then it comes from an overconvergent isocrys-
tal. Set D(m) := Γ(Ank ,D

(m)

An†V
) and D := Γ(Ank ,DAn†V

).

17.7.1 p-adic weak completion of non-commutative V-algebra
Let us recall the definition of the p-adic weak completion given by Noot-Huyghe in [Huy03, 1.3] in the
case of a not necessarily commutative V-algebra:

Definition 17.7.1.1. For any integer N , we denote by BN the non-commutative V-algebra of polyno-
mials with N variables with coefficients in V (i.e. the tensor V-algebra of VN ). Let A be a not necessarily
commutative V-algebra. We denote by Â the p-adic completion of A and A† the subset of Â of elements
z such that there exist a constant c ∈ R, some elements x1, . . . , xn ∈ Im(A → Â) and, for any j ∈ N,
some polynomials Pj ∈ πjBn such that degPj ≤ c(j + 1) and

z =
∑
j∈N

Pj(x1, . . . , xn). (17.7.1.1.1)

The set A† is a V-subalgebra of Â and is called “the p-adic weak completion of A as V-algebra ” or
“the p-adic weak completion of A” if there is no ambiguity with basis V. We also say that “z is weakly
completely generated on V by the elements x1, . . . , xn of A”.

We denote by wA : A → A† the canonical V-algebra homomorphism. We say that A is p-adically
weakly complete as V-algebra if the canonical map wA is a bijection. We write AK := A ⊗V K and
A†K := A† ⊗V K.

Remark 17.7.1.2. When A is commutative, we retrieve the definition 17.1.1.1.
With the notations of 17.7.1.1, the polynomial Pj appearing in the sum 17.7.1.1.1 can be chosen so

that each monomials have a π-adic valuation equal to j. Indeed, let us denote by R0 = 0 and, for any
j ∈ N, define by induction on j ≥ 0 the polynomials Qj and Rj+1 by setting: Rj +Pj = Qj +Rj+1 where
Qj is the sum of monomials of Rj + Pj having π-adic valuation equal to j whereas Rj+1 is the sum of
other terms. We have the equality z =

∑
j∈N Qj(x1, . . . , xn) with degQj ≤ c(j + 1) and all monomials

of Qj have a π-adic valuation equal to j (also, degRj+1 ≤ c(j + 1) and Rj+1 ∈ πj+1Bn).

The next proposition gives an important example that we will need by using its corollary 17.7.4.2.

Proposition 17.7.1.3 (Huyghe). Let P be a smooth S-formal scheme and T0 be a divisor of P0. With
notation 8.7.3.25, D†P(† ∗ T0) is a sheaf of weakly complete V-algebras.
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Proof. See a proof in [Huy07, 2.2].

Remark 17.7.1.4. In fact, Huyghe proved that The sheaf D†P(† ∗ T0) is a sheaf of weakly complete OP-
algebras, but for our purpose we prefer to focus on the notion of weakly complete V-algebras.

Proposition 17.7.1.5. Let A be a V-algebra, c ∈ R, y1, . . . , yn ∈ A†, and, for any j ∈ N, Pj ∈ πjBn
be some polynomials such that degPj ≤ c(j + 1). Hence the element z :=

∑
j∈N Pj(y1, . . . , yn) belongs

to A†. More precisely, if y1, . . . , yn are all weakly completely generated on V by the elements x1, . . . , xm
of A, then z is weakly completely generated on V by x1, . . . , xm. In particular, we have the equality
A† = (A†)†, i.e., the p-adic weak completion of a V-algebra is p-adically weakly complete.

Proof. 0) Increasing c if necessary, by definition of A†, there exist x1, . . . , xm ∈ Im(A→ Â) such that for
any i′ = 1, . . . , n, for any k ∈ N, there exist some polynomials Pi′,k ∈ πkBm such that degPi′,k ≤ c(k+1)
and yi′ =

∑
k∈N Pi′,k(x1, . . . , xm).

1) For any j ∈ N, Pj is a finite sum of monomials of the form P (Y1, . . . , Yn) = λ · Yφ(1)Yφ(2) · · ·Yφ(r)

with r ∈ N, φ(1), . . . , φ(r) ∈ {1, . . . , n} and λ ∈ V are such that vπ(λ) ≥ j and r ≤ c(j + 1). For such
monomial P , we get

P (y1, . . . , yn) =
∑

k1∈N,...,kr∈N

λ · Pφ(1),k1
(x1, . . . , xm) · · ·Pφ(r),kr (x1, . . . , xm).

Let us denote by P(k1,...,kr)(X1, . . . , Xm) := λ ·Pφ(1),k1
(X1, . . . , Xm) · · ·Pφ(r),kr (X1, . . . , Xm) the polyno-

mials of Bm appearing in this sum. Then we have degP(k1,...,kr) =
∑r
i=1 degPφ(i),ki ≤ c

∑r
i=1(ki + 1).

Let us denote by vπ(P(k1,...,kr)) the minimal element of the set of π-adic valuations of the coefficients of
P(k1,...,kr). By construction, vπ(P(k1,...,kr)) ≥ j +

∑r
i=1 ki.

2) Fix J ∈ N. Moreover, since for any j the polynomial Pj is a finite sum of monomials P such
as in the step 1), as vπ(P(k1,...,kr)) ≥ j +

∑r
i=1 ki (see the step 1), then there exist a finite number

of such polynomials P(k1,...,kr) and such that vπ(P(k1,...,kr)) = J . Let QJ(X1, . . . , Xm) be the sum
of all polynomials P(k1,...,kr)(X1, . . . , Xm) such that vπ(P(k1,...,kr)) = J . Hence vπ(QJ) ≥ J and z =∑
J∈N QJ(x1, . . . , xm).
3) It remains to find an upper bound of the degree of QJ : Let P(k1,...,kr) be one of these polynomials

such that vπ(P(k1,...,kr)) = J . As r ≤ c(j + 1), as J ≥ j +
∑r
i=1 ki, this yields then degP(k1,...,kr) ≤

c(J − j+ c(j+ 1)) ≤ c(J + 1 + c(J + 1)) = c(1 + c)(J + 1). Let us denote by C = c(1 + c). Then we have
established degQJ ≤ C(J + 1). Hence we are done.

The lemma below is left as an exercise:

Lemma 17.7.1.6. Let N1, N2 ∈ N, c ∈ R and, for any j ∈ N, let Pj , Qj ∈ πjBn be such that degPj ≤
c(j + N1), degQj ≤ c(j + N2). We define the following elements of V[t1, . . . , tn]† by setting: z =∑
j∈N Pj(t1, . . . , tn), u =

∑
j∈N Qj(t1, . . . , tn).

(a) For any k ∈ Nn, there exists a family {‹Pj}j∈N of polynomials such that ‹Pj ∈ πjBn, deg ‹Pj ≤ c(j+N1)

and ∂〈k〉(m)(z) =
∑
j∈N

‹Pj(t1, . . . , tn).

(b) There exists a family {Rj}j∈N of polynomials such that Rj ∈ πjBn, degRj ≤ c(j + max{N1, N2})
and z + u =

∑
j∈N Rj(t1, . . . , tn).

(c) There exists a family {R̃j}j∈N of polynomials such that R̃j ∈ πjBn, deg R̃j ≤ c(j + N1 + N2) and
zu =

∑
j∈N R̃j(t1, . . . , tn).

Proposition 17.7.1.7. Let A be a V-algebra.

(a) If B is p-adically separated quotient of A† then B is p-adically weakly complete.

(b) For any i ∈ N, the canonical map A/πi+1A→ A†/πi+1A† is an isomorphism.

(c) Let f : A→ B be a morphism of V-algebra. Then there exists a unique homomorphism f† : A† → B†

such that f† ◦ wA = wB ◦ f . If f is surjective, then so is f†.

(d) pA† is contained in the Jacobson radical of A†.
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Proof. This is checked similarly to the commutative case of [MW68, 1].

Remark 17.7.1.8. Let A be a V-algebra. If A is left Noetherian then so is its Rees ring Ã := ⊕n∈Np
nA.

Indeed, if A is left Noetherian then so is the polynomial ring A[T ], where T is commuting with A. Since
the map A[T ]→ Ã given by

∑
akT

k 7→
∑
pkak is a ring epimorphism then we are done.

Beware that if A is left Noetherian then A† may not be Noetherian. For instance, take A =
Γ(Ank ,DAn†V

).
If A is a left Noetherian weakly complete V-algebra then it follows from 17.7.1.7.(d) and from the

first remark that A is a Zariskian ring (see [LvO96, II.2.1 Definition]). Beware that D† is not a Zariskian
ring so we are not able to use properties on Zariskian rings in the context of the weak completion of a
differential operators ring.

17.7.1.9. Let A be the category of V-algebras and A† be the category of p-adic weakly complete V-
algebras. It follows from 17.7.1.7.(c) that the functor weak completion † : A→ A† is a left adjoint of the
forgetful functor f : A† → A. Hence, the functor † : A → A† commutes with inductive limits. Since the
functor † is essentially surjective and since A admits injective limits, this yields that A† admits injective
limits and if F : I → A† is a functor then lim−→F = (lim−→(f ◦ F ))†.

When I is filtered then since the set of the elements x1, . . . , xn satisfying 17.7.1.1.1 is finite, then
lim−→(f ◦ F ) ∈ A† (this makes a difference with respect to p-adically complete V-algebras). Hence, in that
case, both inductive limits computed in A† or in A are equal. For example, since D ∼−→ lim−→D(m), then
we get D† ∼−→ lim−→m∈N

D(m)†, where lim−→m∈N
is the inductive limit computed in A.

17.7.2 Weak completion of the global section of the sheaf of differential op-
erators on a finite and etale scheme over an affine space

Let X† be a smooth S-weak formal scheme. It follows from Kedlaya’s work on etale covers of affines
spaces (see [Ked02] or [Ked05]) and from the lifting theorem 17.1.1.20, that there exist an affine dense
open U† of X† and a finite etale morphism of the form g : U† → An†V . We prove in this section that the
canonical homomorphisms D(m)† → Γ(U†,D(m)†

U†
) are D† → Γ(U†,D†

U†
) are finite, right and left fully

faithful (see 17.7.2.4).

Lemma 17.7.2.1. Let f : Y′ → Y be an etale morphism of affine smooth S-formal schemes such
that Y/S is endowed with coordinates. Set A := Γ(Y,OY), A′ := Γ(Y′,OY′), “D(m)

Y := Γ(Y, “D(m)
Y )“D(m)

Y′ := Γ(Y′, “D(m)
Y′ ), D†Y := Γ(Y,D†Y) and D†Y′ := Γ(Y′,D†Y′). Since f is etale then following 9.2.1.22

we get the ring homomorphism: f−1“D(m)
Y → “D(m)

Y′ and f−1D†Y → D
†
Y′ .

(a) The induced morphisms A′“⊗A“D(m)
Y → “D(m)

Y′ , “D(m)
Y
“⊗AA′ → “D(m)

Y′ are isomorphisms.

(b) If f is moreover finite, then the induced morphisms A′ ⊗A D†Y → D†Y′ , D
†
Y ⊗A A′ → D†Y′ are

isomorphisms.

Proof. Let us denote by fi : Y ′i → Yi (resp. Ai, A′i) the reduction modulo πi+1 of f (resp. A, A′). Since
fi is étale, then following 5.1.3.6 the canonical morphisms A′i ⊗Ai D

(m)
Yi
→ D

(m)
Y ′
i
, D(m)

Yi
⊗Ai A′i → D

(m)
Y ′
i

are isomorphisms. Hence we are done by taking projective and inductive limits.

Lemma 17.7.2.2. Let g : U ′† → U† an etale morphism of affine and smooth S-weak formal schemes.

(a) The canonical morphism of left D(m)

U ′†
-modules D(m)

U ′†
→ g∗D(m)

U†
is an isomorphism.

(b) The composite morphism g−1D(m)

U†
→ g∗D(m)

U†
∼←− D(m)

U ′†
is a morphism of V-algebras.

We have similar results replacing D(m) by D.

Proof. Since this is local, we can suppose U ′† are affine and U†/S has coordinates. Similarly to 5.1.3.6,
this is an easy computation (more precisely, see 17.7.2.3).
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17.7.2.3. With notation 17.7.2.2, suppose that U† and U ′† are affine and U†/S has coordinates. Set
A† := Γ(U†,OU†), A′† := Γ(U†,OU ′†). Let E be either (Γ(U,D(m)

U†
) or (Γ(U,DU†). Let E′ be either

(Γ(U ′,D(m)

U ′†
) or (Γ(U ′,DU ′†). By taking the global sections, it follows from 17.7.2.2 that we get a

morphism of V-algebras D(m)

U†
→ D

(m)

U ′†
. Moreover, we compute that the induced maps

A′† ⊗A† E → E′, E ⊗A† A′† → E′ (17.7.2.3.1)

are isomorphisms (which proves locally 17.7.2.2).
By functoriality of the p-adic weak completion of V-algebras, we get the morphism D

(m)†
U†

→ D
(m)†
U ′†

.
Taking the inductive limit on the level, this gives the canonical morphism of V-algebras: D†

U†
→ D†

U ′†
.

Proposition 17.7.2.4. Let g : U† → An†V be a finite etale morphism of smooth S-weak formal schemes
and A† := Γ(U†,OU†). Set D(m)

U†
:= Γ(U†,D(m)

U†
), DU† := Γ(, U†,DU†). The induced (from 17.7.2.3)

canonical A†-linear morphisms

A† ⊗V[t]† D
(m)† → D

(m)†
U†

, D(m)† ⊗V[t]† A
† → D

(m)†
U†

, (17.7.2.4.1)

A† ⊗V[t]† D
† → D†

U†
, D† ⊗V[t]† A

† → D†
U†

(17.7.2.4.2)

are isomorphisms.

Proof. By symmetry and by passage to the inductive limit on the level (use 17.7.1.9), we reduce to check
that the canonical morphism θ : A† ⊗V[t]† D

(m)† → D
(m)†
U†

is an isomorphism.
As A† is a finite V[t]†-algebra, then V{t} ⊗V[t]† A

† ∼−→ Â. This yields the first isomorphism:

A† ⊗V[t]†
“D(m) ∼−→ Â⊗V{t} “D(m) ∼−→ Â“⊗V{t}“D(m)

17.7.2.1
∼−→ “D(m)

U .

This composition isomorphism fits in the commutative diagram:

A† ⊗V[t]†
“D(m) ∼ // “D(m)

U

A† ⊗V[t]† D
(m)† θ //

?�

OO

D
(m)†
U†

.
?�

OO
(17.7.2.4.3)

As A† is a flat extension of V[t]†, since D(m)† and D
(m)†
U†

are separated (for the p-adic topology), this
yields that the vertical arrows of 17.7.2.4.3 are injective. So we get the injectivity of θ.

Let us now check the surjectivity of θ via the following steps :
0) Let us fix some notations. Let x1, . . . , xs ∈ A† generating A† as V[t1, . . . , tn]†-module. Let us

denote by X the column vector of coordinates x1, . . . , xs.
i) For any a = (a1, . . . , an) ≤ pm (i.e. a1, . . . , an ≤ pm), let A(a) = (a

(a)
ij )1≤i,j≤s ∈ Ms(V[t1, . . . , tn]†)

be such that
∂〈a〉(m)(X) = A(a)X, (17.7.2.4.4)

where ∂〈a〉(m)(X) is the column vector of coordinates ∂〈a〉(m)(x1), . . . , ∂〈a〉(m)(xs). There exists a real
constant c ≥ 1 and, for any k ∈ N, some polynomials P (a)

ijk ∈ πkBn such that degP
(a)
ijk ≤ c(k + 1) and

a
(a)
ij =

∑
k∈N P

(a)
ijk (t1, . . . , tn).

ii) For any 1 ≤ b ≤ s, let B(b) = (b
(b)
ij )1≤i,j≤s ∈Ms(V[t1, . . . , tn]†) such that

xb ·X = B(b)X, (17.7.2.4.5)

where xb · X is the column vector of coordinates xbx1, . . . , xbxs. Increasing c if necessary, there exist
for any k ∈ N, some polynomials P (b)

ijk ∈ πkBn such that degP
(b)
ijk ≤ c(k + 1) and satisfying b

(b)
ij =∑

k∈N P
(b)
ijk(t1, . . . , tn).

1) Let z ∈ D(m)†
U†

. Then there exists some elements y1, . . . , ye of D(m)

U†
such that z is weakly com-

pletely generated by y1, . . . , ye. Since D(m)

U†
is a V[t1, . . . , tn]†-algebra generated by x1, . . . , xs and by
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∂〈a〉(m) for a ≤ pm, then every elements y1, . . . , ye are weakly completely generated by x1, . . . , xs, by
t1, . . . , tn and by ∂〈a〉(m) for a ≤ pm. Using 17.7.1.5 this yields that z is weakly completely gener-
ated by x1, . . . , xs, t1, . . . , tn and ∂〈a〉(m) for a ≤ pm. Let us denote by N := n + s + n(pm + 1).
Hence, there exists for any J ∈ N, some polynomials ZJ ∈ πJBN such that degZJ ≤ c(J + 1) and
z =

∑
J∈N ZJ(t1, . . . , tn, x1, . . . , xs, ∂

〈a〉(m) , a ≤ pm).
2) Following the formulas 1.4.2.7.1 and 1.4.2.7.(d) the passage from the right to the left of a polynomial

in t1, . . . , tn with respect to an operator of the form ∂〈a〉(m) do not increase the degree in t1, . . . , tn. We
can then suppose that ZJ is a finite sum of monomials of the form :

MJ = πJP (t1, . . . , tn)Q1(∂〈a〉(m) , a ≤ pm)P1(x1, . . . , xs) · · ·Qr(∂〈a〉(m) , a ≤ pm)Pr(x1, . . . , xs),

where P is a monomial of Bn and, for i = 1, . . . , r, Pi is a unitary monomial of Bs and Qi is a unitary
monomial Bn(pm+1). We have degMJ = degP +

∑r
u=1(degPu + degQu) ≤ c(J + 1).

3) Linearisation of P1(x1, . . . , xs), . . . , Pr(x1, . . . , xs). Let 1 ≤ u ≤ r. When deg(Pu) ≤ 1, then
we keep it. If deg(Pu) ≥ 2, then there exist a line vector L(u) = (l

(u)
1 , . . . , l

(u)
s ) with coefficients in

V[t1, . . . , tn]† and, for any 1 ≤ i ≤ s and j ∈ N, some polynomials L(u)
ij ∈ πjBn such that deg(L

(u)
ij ) ≤

c(j + deg(Pu) − 1), l(u)
i =

∑
j∈N L

(u)
ij (t1, . . . , tn) and Pu(x1, . . . , xs) = L(u)X. Indeed, we proceed by

induction on deg(Pu). When deg(Pu) = 2, this is a consequence of 17.7.2.4.5. The heredity of the
induction follows from 17.7.2.4.5 and 17.7.1.6.(b-c).

4) Passage from the right to the left handside with respect to ∂〈a〉(m) of linear combinations of
x1, . . . , xs with coefficients in V[t1, . . . , tn]†. For any a ≤ pm, we have the equalities:

∂〈a〉(m)L(u)X
1.4.2.7.1

=
∑
h≤a

¶
a
h

©
∂〈a−h〉(m)(L(u)X)∂〈h〉(m)

4.1.1.2.1
=

∑
h≤a

¶
a
h

© ∑
h′≤a−h

¶
a−h
h′

©
∂〈a−h−h

′〉(m)(L(u))A(h′)X∂〈h〉(m)

=
∑
h≤a

L
(u,a)
h X∂〈h〉(m) , (17.7.2.4.6)

where L(u,a)
h := (l

(u,a)
h,1 , . . . , l

(u,a)
h,s ) :=

¶
a
h

©∑
h′≤a−h

¶
a−h
h′

©
∂〈a−h−h

′〉(m)(L(u))A(h′) is a line vector with
coefficients in V[t1, . . . , tn]†. Moreover, following 17.7.1.6, there exist, for any i = 1, . . . , s and ev-
ery j ∈ N, some polynomials L(u,a)

h,ij ∈ πjBn such that deg(L
(u,a)
h,ij ) ≤ c(j + deg(Pu)) and l

(u,a)
h,i =∑

j∈N L
(u,a)
h,ij (t1, . . . , tn).

To sum-up: the passage from the right to the left with respect to ∂〈a〉(m) of linear combinations of
x1, . . . , xs needs the add of “1” in the inequality of the form deg(L

(u,a)
h,ij ) ≤ c(j + deg(Pu)). This number

1 corresponds also to the degree of the monomials ∂〈h〉(m) (because h ≤ pm).
5) By reiterating the process of the step 4) (and also using again 17.7.2.4.5 and 17.7.1.6.(b-c) when

we multiply two linear combinations of x1, . . . , xs), the monomial MJ is therefore equal to a finite sum
of terms of the form:

RJ = πJLXQ(∂〈a〉(m) , a ≤ pm)

where Q ∈ Bn(pm+1) with deg(Q) ≤ deg(Q1) + · · · + deg(Qr) ≤ deg(MJ), L = (l1, . . . , ls) is a line
vector with coefficients in V[t1, . . . , tn]† such that for any i = 1, . . . , s and every j ∈ N, there exist some
polynomials Lij ∈ Bn such that deg(Lij) ≤ c(j + deg(MJ)) and li =

∑
j∈N π

jLij(t1, . . . , tn).
6) Conclusion. Let us denote by SJ,j := Lij(t1, . . . , tn)Q(∂〈a〉(m) , a ≤ pm) ∈ Bn+n(pm+1). So,

RJ =
s∑
i=1

xi
∑
j∈N

πJ+jSJ,j .

As deg(MJ) ≤ deg(PJ) ≤ c(J + 1), then deg(Q) ≤ c(J + 1) and deg(Lij) ≤ c(j + c(J + 1)). Hence :
deg(SJ,j) ≤ c(j + c(J + 1)) + c(J + 1) ≤ c(1 + c)(J + j + 1).
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When j and J are fixed, the set of polynomials of the form SJ,j defined as above has a finite cardinal.
Let us denote by S̃J,j the finite sum of elements of this set. We get then the sum

z =
s∑
i=1

xi
∑
J,j∈N

πJ+jS̃J,j .

As deg(S̃J,j) ≤ c(1 + c)(J + j + 1), this yields that
∑
J,j∈N π

J+jS̃J,j ∈ D(m)†.

Corollary 17.7.2.5. Let g : U† → An†V a finite etale morphism of smooth S-weak formal schemes. The
canonical homomorphisms D(m)† → D

(m)†
U†

are D† → D†
U†

are right and left fully faithful (see 17.7.2.3).

Proof. It follows from 17.7.2.4 that the functors D(m)†
U†

⊗D(m)† −, − ⊗D(m)† D
(m)†
U†

D
(m)†
U†

⊗D(m)† − and
−⊗D(m)† D

(m)†
U†

are canonically isomorphic to A†⊗V[t]† −. Since V[t]† → A† is faithfully flat (because so
is V{t} → Â), then we are done.

Proposition 17.7.2.6. We keep the notations and hypotheses of 17.7.2.4. The canonical morphisms

D†
ÂnV
⊗D† D

†
U†
→ D†U, D†

U†
⊗D† D

†
ÂnV
→ D†U

are isomorphisms.

Proof. By applying the functor D†
ÂnV
⊗D† − to 17.7.2.4 we get:

D†
ÂnV
⊗D† D

†
U†

17.7.2.4
∼←− D†

ÂnV
⊗D† D† ⊗V[t]† A

† ∼←− D†
ÂnV
⊗V[t]† A

†.

Moreover, as A† is a finite V[t]†-algebra, then V{t}⊗V[t]† A
† ∼−→ Â. Hence, D†

ÂnV
⊗V{t} Â

∼−→ D†
ÂnV
⊗V[t]†

A†. The isomorphism D†
ÂnV
⊗V{t} Â

∼−→ D†U of 17.7.2.1 allows us to conclude by composing these

isomorphisms.

17.7.3 Explicit description of overconvergent isocrystals on finite and etale
schemes over affine spaces

We give a description of overconvergent isocrystals on the affine space (see 17.7.3.3 and 17.7.3.5). Next
we deduce, thanks to the preceding section, a description of overconvergent isocrystals on the finite and
etale schemes over the affine space (see 17.7.3.7).

In this subsection, we will keep the following notations : let P := P̂nV be the formal projective space
on V of dimension n, u0, . . . , un the projective coordinates of P, H0 the hyperplan defined by u0 = 0,
i.e., H0 := Pnk \ Ank . We denote by OP(†H0)Q (resp. D†P(†H0)Q) the sheaf of fonctions (resp. differential
operators of finite level) on P with overconvergent singularities along of H0 (see [Ber96c, 4.2]). We set
moreover on DP(†H0)Q := OP(†H0)Q ⊗OP,Q DP,Q, where DP is the sheaf usuel of differential operators
on P.

Following the theorem of comparison of Noot-Huyghe (see [Huy97] or [Huy98]), we have in this
geometrical situation the isomorphism: D†K := D†

An†V ,K

∼−→ Γ(P,D†P(†H0)Q). She established moreover
on the formula:

Γ(P,D†P(†H0)Q) =

 ∑
k,l∈Nn

ak,lt
k∂[l] | ak,l ∈ K,∃η < 1,∃c ≥ 1 such that |ak,l| < cη|k|+|l|

 ,

where t1 = u1

u0
, . . . , tn = un

u0
are the coordinates on the affine space. Moreover, we set: V[t]†K :=

V[t1, . . . , tn] †/V ⊗V K
∼−→ Γ(An†V ,OAn†V ,Q

)
∼−→ Γ(,P,OP(†H0)Q). We have also: Γ(,P,DP(†H0)Q)

∼−→
DK .

17.7.3.1 (Huyghe’s theorems of type A). Let E be a coherent D†P(†H0)Q-module.
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(a) Following the theorem of type A for coherent D†P(†H0)Q-modules (see [Huy97]), E := Γ(P, E) is a
coherent D†K-module and the canonical morphism

D†P(†H0)Q ⊗D†
K
E → E (17.7.3.1.1)

is an isomorphism. Moreover, the functors Γ(P,−) and D†P(†H0)Q ⊗D†
K
− induce quasi-inverse

equivalences between the category of coherent D†P(†H0)Q-modules and that of coherent D†K-modules.

(b) We have Similarly, the functors Γ(P,−) and OP(†H0)Q ⊗V[t]†
K
− (resp. DP(†H0)Q ⊗V[t]†

K
−) induce

quasi-inverse equivalences between the category of coherent DP(†H0)Q-modules (resp. coherent
OP(†H0)Q-modules) and that of coherent DK-modules (resp. coherent V[t]†K-modules).

(c) For any affine open U′ ⊂ ÂnV , following the theorem of type A for coherent D†U′,Q-modules (see 8.7.5.5),
the canonical morphism

D†U′,Q ⊗D†
U′,K

Γ(U′, E)→ E|U′ (17.7.3.1.2)

is an isomorphism.

(d) By combining 17.7.3.1.2 and 17.7.3.1.1, this yields that the canonical morphism

D†U′,K ⊗D†
K
E → Γ(U′, E) (17.7.3.1.3)

is an isomorphism.

17.7.3.2. Using Theorems of 17.7.3.1, since the homomorphism D†P(†H0)Q → j∗D†
ÂnV ,Q

is faithfully flat,

then so is the global version analogue D†K → D†
ÂnV ,Q

where D†
ÂnV ,Q

:= Γ(ÂnV ,D
†
ÂnV ,Q

) (use also 8.7.6.2).

17.7.3.3. Denote by MIC(P, H0/V) the category of DP(†H0)Q-modules, which are also coherent as
OP(†H0)Q-modules It follows from the theorems of type A of 17.7.3.1 that the functors Γ(P,−) and
DP(†H0)Q⊗D†

K
− induce quasi-inverse equivalences between the category MIC(P, H0/V) and MIC(V[t]†K/K),

the category of DK-modules which are V[t]†K-coherent (see notation 17.5.1.1).
By using 11.2.1.14, the category MIC††(P, H0/V) is equal to that of coherent D†P(†H0)Q-modules,

which are also coherent as OP(†H0)Q-module. Using theorems of type A of 17.7.3.1, this yields the func-
tors Γ(P,−) andD†P(†H0)Q⊗D†

K
− induce quasi-inverse equivalences between the category MIC††(P, H0/V)

and the category of coherent D†K-modules which are V[t]†K-coherent.

17.7.3.4. By definition(see 17.5.1.1.(c) used in the case where Y † = An†V , X = PnV and then Xan
K = PK),

the functor Γ(PK ,−) induces an equivalence between the category MIC†(Ank ,P
n
k ,P/K) and MIC†(V[t]†K/K).

On The functor sp∗, where sp: PK → P is the specialisation morphism, gives an equivalence between
MIC†(Ank ,P

n
k ,P/K) and MIC††(P, H0/V). Since Γ(P,−)◦sp∗ = Γ(PK ,−), then we deduce from 17.7.3.3

that the functor Γ(P,−) induces an equivalence between MIC††(P, H0/V) and MIC†(V[t]†K/K). This
yields that MIC†(V[t]†K/K) is equal to the category of coherent D†K-modules which are V[t]†K-coherent

Lemma 17.7.3.5. Let E ∈ MIC(P, H0/V) and E := Γ(P, E) ∈ MIC(V[t]†K/K). The following assertions
are equivalent:

(a) E ∈ MIC†(V[t]†K/K) ;

(b) E ∈ MIC††(P, H0/V) ;

(c) The canonical morphism E → D†K ⊗DK E is an isomorphism ;

(d) E is endowed with a structure of coherent D†K-module extending its structure of DK-module.
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Proof. The equivalence (b) ⇔ (a) follows from 17.7.3.4. Suppose E ∈ MIC††(P, H0/V) and let us check
that E satisfies (c). Following 11.2.1.9.2, the canonical morphism E → D†P(†H0)Q ⊗DP(†H0)Q

E is an
isomorphism. We conclude using theorems of type A for respectively coherent D†P(†H0)Q-modules and
coherent DP(†H0)Q-modules (see 17.7.3.1). By noetherianity of DK , E is therefore DK-coherent. Hence,
(c)⇒ (d). Using 17.7.3.3 and Theorem of type A (see 17.7.3.1), we get the implication: (d)⇒ (b).

Proposition 17.7.3.6. Let g : U† → An†V be a finite etale morphism of smooth S-weak formal schemes,
A† := Γ(U†,OU†) and DU† := Γ(U†,DU†). Let E ∈ MIC(A†K/K) (see 17.5.1.1). Let us denote by g∗(E)

the module E viewed as an element of MIC(V[t]†K/K) via the ring homomorphism DK → DU†,K . The
following assertions are equivalent:

(a) The connection of E is overconvergente, i.e. E ∈ MIC†(A†K/K);

(b) The connection of g∗(E) is overconvergente, i.e. g∗(E) ∈ MIC†(V[t]†K/K) ;

(c) E is endowed with a structure of coherent D†
U†,K

-module extending its structure of DU†,K-module ;

(d) The canonical DU†,K-linear morphism E → D†
U†,K

⊗D
U†,K

(E) is an isomorphism.

Proof. By using [LS07, 7.2.15], we get the equivalence between the two first assertions. Following
17.7.2.3.1, we have that the canonical isomorphism: DK ⊗V[t]† A

† ∼−→ DU†,K . By using 17.7.2.4.2,
this yields that the canonical morphism : D†K ⊗DK DU†,K → D†

U†,K
is an isomorphism. Via 17.7.3.5,

this yields the equivalence between (b) and (d). The implication (d)⇒ (c) is obvious. Moreover, if E is
endowed with a structure of coherent D†

U†,K
-module extending its structure of DU†,K-module then g∗E

is endowed with a structure of coherent D†K-module extending its structure of DK-module. Via 17.7.3.5,
this proves the implication (b)⇒ (c).

Corollary 17.7.3.7. Let g : U† → An†V be a finite etale morphism of smooth S-weak formal schemes,
A† := Γ(U†,OU†) and DU† := Γ(U†,DU†).

(a) Let φ : E → F be a DU†,K-linear map between two objects of MIC†(A†K/K). Then φ is D†
U†,K

-linear.

(b) The category MIC†(A†K/K) is equal to the strictly full subcategory of that of D†
U†,K

-modules consisting
of coherent D†

U†,K
-modules which are also coherent as A†K-module.

Lemma 17.7.3.8. Let F ∈ MIC††(P, H0/V). Set F := Γ(P,F) ∈ MIC†(V[t]†K/K). The canonical
morphisms:

V{t} ⊗V[t]† F → D†
ÂnV
⊗D† F → Γ(ÂnV ,F)

are isomorphisms.

Proof. Using respectively the theorems of typeA for coherentD†P(†H0)Q-modules and coherentOP(†H0)Q-
modules (see 17.7.3.1), we get the homomorphisms: V{t} ⊗V[t]† F → Γ(ÂnS,F) and D†

ÂnV
⊗D† F →

Γ(ÂnS,F) are isomorphisms. Hence, we are done.

Proposition 17.7.3.9. Let g : U† → An†V be a finite etale morphism of smooth S-weak formal schemes,
A† := Γ(U†,OU†) and DU† := Γ(U†,DU†). Set DU := Γ(U,DU) and D†U := Γ(U,D†U). Let E ∈
MIC†(A†K/K).

(a) Then the canonical morphism
ÂK ⊗A†

K
E → D†U,K ⊗D†

U†,K
E

is an isomorphism.
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(b) We have G := D†U,K ⊗D†
U†,K

E ∈ MIC†(ÂK/K) (see notation 11.1.1.7) and G := D†U,Q ⊗D†
U,K

G ∈

MIC††(U/V).

Proof. a) Let us check the first assertion. i) Following 17.7.3.6, g∗E ∈ MIC†(V[t]†K/K). Let F :=

D†P(†H0)Q ⊗D†
K
g∗E (and then g∗E = Γ(P,F)). Following 17.7.3.5, we have F ∈ MIC††(P, H0/V).

Using 17.7.3.8, this yields the canonical morphism V{t} ⊗V[t]† g∗E → D†
ÂnV
⊗D† g∗E is an isomorphism.

ii) As A† is a finite V[t]†-algebra, then V{t} ⊗V[t]† A
† ∼−→ Â. Hence, the canonical morphism

V{t} ⊗V[t]† g∗E → ÂK ⊗A†
K
E is an isomorphism. It follows from 17.7.2.6 that the canonical morphism

D†
ÂnV
⊗D† g∗E → D†U,K ⊗D†

U†,K
E is an isomorphism. Hence, using the last isomorphism of the part i) of

the proof we are done.
b) This follows from a) and from 17.7.3.9.

Lemma 17.7.3.10. We keep notation 17.7.3.9. Let E ∈ MIC†(A†K/K), “F ∈ MIC†(ÂK/K).
We suppose that there exist a DU†,K-linear morphism E → “F and such that the induced morphism

V{t} ⊗V[t]† E → “F is bijective. The induced morphism ÂK ⊗A†
K
E → “F is therefore an isomorphism of

MIC†(ÂK/K).

Proof. The canonical morphism V{t}⊗V[t]† E → ÂK ⊗A†
K
E → E is an isomorphism. Hence, this follows

from 17.7.3.9.

17.7.4 The main result
We keep notations of 17.7.3. Moreover, let U† be an affine open subspace of An†V , j : U† ⊂ Pn†V the
open immersion, U its p-adic completion, T0 := Pnk \ U0 be the reduced divisor of Pnk whose support is
complementary to U0 (see 17.6.1.5). We set DU† := Γ(U†,DU†) and D(m)

U†
:= Γ(U†,D(m)

U†
) (and similarly

replacing U† by another affine smooth S-weak formal scheme). Let v : Y † ↪→ U† be a closed immersion
of affine and smooth S-weak formal schemes, with Y0 integral and dimY0 = n−r for some integer r. Let
X0 be the closure of Y0 in P . We suppose moreover there exist a finite etale morphism g0 : U0 → Ank such
that g0(Y0) ⊂ An−rk , where An−rk is the closed subscheme defined by the equations t1 = 0, . . . , tr = 0.
We denote by g : U† → An†V a lifting of g0. The p-adic completions of v or g will still be denoted by
respectively v or g. The main result of this section is the characterization of 17.7.4.6 of overconvergent
isocrystals on Y0.

17.7.4.1. As U† is an open subset of An†V , we obtain the canonical morphism of restriction (for any level
m) D(m)

An†V
→ D

(m)

U†
. By functoriality of the p-adic weak completion this yields D(m)†

An†V
→ D

(m)†
U†

. Since

DU†
∼−→ lim−→m

D
(m)

U†
, then following 17.7.1.9 we have D†

U†
∼−→ lim−→m

D
(m)†
U†

(and similarly replacing U†

by An†V ). By passage to the limit on the level, we get therefore the canonical morphism :

Γ(P,D†P(†H0)Q)
∼−→ D†

An†V
→ D†

U†
. (17.7.4.1.1)

Lemma 17.7.4.2. We have the canonical maps D†U → Γ(P,D†P(† ∗ T0)) and D†U,K → Γ(P,D†P(†T0)Q).

Proof. Following 17.4.1.2, we have the homomorphism j∗DU → D†P(† ∗ T0). This yields the map DU →
Γ(P,D†P(† ∗ T0)). Since Γ(P,D†P(† ∗ T0)) is a weakly complete V-algebra (see 17.7.1.3), then using the
universal property of a weak completion, we get the first map. Since Γ(P,D†P(†∗T0)Q) = Γ(P,D†P(†T0)Q),
then we get the second one.

Remark 17.7.4.3. The V-algebra Γ(P,D†P(T0)) is weakly complete (use 17.7.1.9 and the fact that a com-
plete V-algebra is a weak V-algebra). However, we do not have a map of the form D†U → Γ(P,D†P(T0)).

Lemma 17.7.4.4. Let α : P̂n−rV ↪→ P̂nV be the closed immersion defined by u1 = 0, . . . , ur = 0. Let E
be a coherent D†P(†H0)Q-module with support in Pn−rk and E := Γ(P̂nV , E). Then Γ(P̂n−rV , α!(E))

∼−→
∩ri=1 ker(ti : E → E).
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Proof. Let us denote by P′ := P̂n−rV , I the ideal of OP given by the closed immersion α. By taking the
p-adic completion of D(m)

P′→P
∼−→ α−1(D(m)

P /ID(m)
P ), we get “D(m)

P′→P
∼−→ α−1(“D(m)

P /I“D(m)
P ). By adding

overconvergent singularities along of H0, by taking the limit on the level and by tensorizing by Q, we get
then the isomorphism D†P′→P(†H0)Q

∼−→ α−1(D†P(†H0)Q/ID†P(†H0)Q). This implies

α!(E) = D†P′→P(†H0)Q ⊗L
α−1D†

P
(†H0)Q

α−1E [−r] ∼−→ α−1(OP(†H0)Q/IOP(†H0)Q ⊗L
OP(†H0)Q

E)[−r].

The ideal IOP(†H0)Q of OP(†H0)Q is generated by the global sections t1, . . . , tr, i.e. via the theorem A of
coherent OP(†H0)Q-modules (see 17.7.3.1), Γ(P, IOP(†H0)Q) is the ideal of V[t]†K generated by t1, . . . , tr.
Via the Koszul resolution induced by the regular sequence of elements t1, . . . , tr which generate the ideal
IOP(†H0)Q of OP(†H0)Q, we compute H0(α∗α

!(E))
∼−→ ∩ri=1 ker(ti : E → E). Moreover, since E has

its support in Pn−rk , using the theorem of Berthelot-Kashiwara of 9.3.5.9), we get H0(α!(E))
∼−→ α!(E).

Hence α∗α!(E)
∼−→ ∩ri=1 ker(ti : E → E). We conclude by applying to this latter the global sections

functor.

Lemma 17.7.4.5. Let α : P̂n−rV ↪→ P̂nV be the closed immersion defined by u1 = 0, . . . , ur = 0. Let
β : Ân−rV ↪→ ÂnV be the morphism induced by α. Let E be a coherent D†P(†H0)Q-module with support in
Pn−rk . The canonical diagram

Γ(Pn−rk , α!(E))
∼

17.7.4.4
//

� _

��

∩ri=1 ker(ti : Γ(Pnk , E)→ Γ(Pnk , E))� _

��
Γ(An−rk , α!(E)) Γ(An−rk , β!(E|Ank ))

∼
9.3.1.20.2

// ∩ri=1 ker(ti : Γ(Ank , E)→ Γ(Ank , E),

(17.7.4.5.1)

where the horizontal isomorphisms come from 17.7.4.4 and 9.3.1.20.2, is commutative.

Proof. This is a consequence of the construction of horizontal isomorphisms.

Theorem 17.7.4.6. Let E be a coherent D†P(†H0)Q-module such that E|U ∈ MIC††(Y0,U/K). Then
there exists G ∈ MIC†(Y0/K) and a D†P(†T0)Q-linear isomorphism of the form:

spY †↪→U†,T0,+(G)
∼−→ E(†T0).

In other words, E(†T0) ∈ MIC††(X0,P, T0/K).

Proof. Put A† := Γ(U†,OU†), E := Γ(P, E) and E′ := D†
U†
⊗D† E where the extension D† → D†

U†

defining the tensor product is the one induced by the open immersion U† ⊂ An†V , i.e., that of 17.7.4.1.1.
Let us denote by ‹Y † := g−1(An−r†V ), a : ‹Y † → An−r†V the finite etale morphism induced by g. Let
w : Y † ↪→ ‹Y † (resp. ṽ : ‹Y † ↪→ U†) a lifting of the closed immersion Y0 ↪→ ‹Y0 (resp. ‹Y0 ↪→ U0). Let us
denote by β : An−r†V ↪→ An†V and α : Pn−r†V ↪→ Pn†V the canonical closed immersions given by respectively
t1 = 0, . . . , tr = 0 and u1 = 0, . . . , ur = 0. The p-adic completions of morphisms of smooth S-weak
formal schemes are still abusively designated by the same letter, e.g., β : Ân−rV ↪→ ÂnV or α : P̂n−rV ↪→ P̂nV .
Finally, let us denote by x1, . . . , xn the local coordinates of U† corresponding to t1, . . . , tn via g∗. Let us
denote by G := ∩ri=1 ker(xi : E

′ → E′).
I) The module G ∈ MIC†(A†K/K) (see notation 17.5.1.1).
One main problem is to establish that the module G is a coherent Γ(Y †,OY †,Q)-module. The idea is

to reduce via the morphism g to the case where the compactification of Y0 in P0 is smooth.
0) i) The morphism g induces a ring homomorphism ρg : D†K → D†U,K (see the end of 17.7.2.3). We

denote by g∗(E′) the module E′ viewed as a D†K-module via ρg. We construct a canonical isomorphism
of coherent D†

ÂnV ,K
-modules of the form D†

ÂnV ,K
⊗D†

K
g∗(E

′)
∼−→ Γ(ÂnV , g+(E|U)) as follows: We have the

D†
ÂnV ,K

-linear isomorphism:

D†
ÂnV ,K

⊗D†
K
g∗(E

′)
17.7.2.6
∼−→ D†U,K ⊗D†

U†,K
E′

∼−→ D†U,K ⊗D†
K
E

17.7.3.1.3
∼−→ Γ(U, E). (17.7.4.6.1)
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Moreover, as g is finite etale, then following 9.2.4.15.2 we have the isomorphism g+(E|U)
∼−→ g∗(E|U)

of D†
ÂnV ,Q

-modules. Since g is proper and E|U is a coherent D†U,Q-module, then g+(E|U) is more precisely

a coherent D†
ÂnV ,Q

-module. Hence, following the theorem of type A (e.g. see 17.7.3.1.2), we get the

isomorphisms of coherent D†
ÂnV ,Q

-modules:

Γ(U, E)
∼−→ Γ(ÂnV , g∗(E|U))

∼−→ Γ(ÂnV , g+(E|U)). (17.7.4.6.2)

Composing 17.7.4.6.1 and 17.7.4.6.2, we are done.
ii) Since the extension D†K → D†

ÂnV ,K
is faithfully flat (see 17.7.3.2), since D†K is a coherent ring, then

we deduce from i) that g∗(E′) is a coherent D†K-module. Hence, we construct a coherent D†P(†H0)Q-
module by setting

F := D†P(†H0)Q ⊗D†
K
g∗(E

′).

1) Let us check the isomorphism F|ÂnV
∼−→ g+(E|U).

Since F|U ∼−→ D†
ÂnV ,Q

⊗D†
K
g∗(E

′) is a coherent D†
ÂnV ,Q

-modules, then it follows from theorem of type

A the first isomorphism:

Γ(ÂnV ,F)
∼−→ D†

ÂnV ,K
⊗D†

K
g∗(E

′)
0.i)
∼−→ Γ(ÂnV , g+(E|U)).

Since F|ÂnV and g+(E|U) are both coherent, then we conclude via theorem of type A.
2) Put H := v!(E|U). Since H ∈ MIC††(Y/V) (see notation 11.1.1.3), then H is a coherent D†Y,Q-

module which is also coherent as OY,Q-module (see 11.1.1.2). Moreover, as dim‹Y0 = dimY0 and as‹Y0 is smooth, Y0 is then a connected component of ‹Y0. This yields that ‹H := w+(H) is a coherent
D†

Ỹ,Q
-module which is coherent as O

Ỹ,Q
-module, i.e. ‹H ∈ MIC††(‹Y/V).

3) We have the isomorphism F|ÂnV
∼−→ β+a+(‹H). Indeed, since E|U has its support in Y then

following the theorem of Berthelot-Kashiwara (see 9.3.5.9), we have the canonical isomorphism E|U ∼−→
v+(H). Moreover, following the step 1), F|ÂnV

∼−→ g+(E|U). This yields: F|ÂnV
∼−→ g+v+(H)

∼−→
g+ṽ+(‹H)

∼−→ β+a+(‹H).
4) The sheaf F has its support in Pn−rk .

Let us denote by H1, . . . ,Hr the hyperplans of Pnk corresponding to u1 = 0, . . . , ur = 0. It follows from
the isomorphism of the step 3) that F|ÂnV has its support in An−rk . So, for any s = 1, . . . , r, F(†Hs) is a
coherent D†P(†Hs ∪H0)Q-module which is null outside Hs ∪H0. By 8.7.6.11, this implies F(†Hs) = 0.
By using the triangle of localisation with respect to Hs, this yields the isomorphism RΓ†Hs(F)

∼−→ F .
Since Pn−rk = H1 ∩ · · · ∩Hr, using 13.1.5.6.1 we get therefore the isomorphism RΓ†

Pn−r
k

(F)
∼−→ F . This

is equivalent to saying that F has its support in Pn−rk and we are done.
5) Let us check that F ∈ MIC††(P ′,P, H0/V) and α!(F) ∈ MIC††(P′, H0/V), i.e. they are associated

to an isocrystal of MIC†(An−rk /K).
Following the step 4), it is sufficient to establish that α!(F) ∈ MIC††(P′, H0/V). Following the theorem
of Berthelot-Kashiwara, it follows from the step 4) that α!(F) is a coherent D†

P̂n−rV
(†H0∩Pn−rk )Q-module

and we have the isomorphism: α+ ◦ α!(F)
∼−→ F . Following the characterization 11.2.1.14.(e) of an

overconvergent isocrystal, to check that α!(F) ∈ MIC††(P ′,P′, H0/V), it is therefore sufficient to estab-
lish that α!(F)|Ân−rV ∈ MIC††(Ân−rV /V). We have the isomorphisms: α!(F)|Ân−rV

∼−→ β!(F|ÂnV)
∼−→
3)

β!β+a+(‹H)
∼−→ a+(‹H). Moreover, following the step 2), ‹H ∈ MIC††(‹Y/V). As a is finite etale, then the

functor a+ factors through a+ : MIC††(‹Y/V)→ MIC††(Ân−rV /V). Hence, we are done.
6) Set Ã† := Γ(‹Y †,O

Ỹ †
). The module G belongs to MIC†(Ã†K/K) (see notation 17.5.1.1) and

Γ(P̂n−rV , α!(F)) = a∗(G).
a) As α!(F) ∈ MIC††(P′, H0/V), following 17.7.3.3 (with n replaced by n − r), Γ(P̂n−rV , α!(F)) is a
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coherent D†
An−r†V ,K

-module, V[tr+1, . . . , tn]† ⊗V K-coherent, i.e. Γ(P̂n−rV , α!(F)) ∈ MIC††(An−r†V /V).

b) In this step, we check that G ∈ MIC(Ã†K/K).
i) First, let us construct a structure of left D

Ỹ †,K
-module on G extending its structure of Γ(‹Y †,O

Ỹ †
)-

module A priori this structure depends on the choice of the coordinates x1, . . . , xr (we will not need it
but this is left to the reader to check its canonicity).

Let Ĩ be the ideal of A† generated by x1, . . . , xr. Then Ĩ is the ideal defining the closed immersion
ṽ, i.e. Γ(‹Y †,O

Ỹ †
) = A†/Ĩ =: ‹B†.

We denote by D
ṽ,x,K

the free A†K-module with the basis {∂[(0,i)] | i ∈ Nn−r}, where 0 := (0, . . . , 0) ∈
Nr. The sheaf D

ṽ,x,K
is equal to the sub-V-algebra of DU],K which is generated by A†K , by ∂i for any

i = n− r + 1, . . . , n.
Since DU†,K is a free left D

ṽ,x,K
-module with the basis {∂[(h,0)] | h ∈ Nr}, where 0 := (0, . . . , 0) ∈

Nn−r. This means that the canonical homomorphism of V-algebras

µ : V[∂1, . . . , ∂r]⊗V Dṽ,x,K

∼−→ DU†,K (17.7.4.6.3)

given by P ⊗Q 7→ PQ is also an isomorphism of left D
ṽ,x,K

-modules.

Since x1, . . . , xr generate Ĩ and are in the center of D
ṽ,x,K

, then we compute ĨD
ṽ,x,K

= D
ṽ,x,K

Ĩ.

Hence, we get a canonical V-algebra structure on D
ṽ,x,K

/ĨD
ṽ,x,K

induced by that of D
ṽ,x,K

. Since

ĨD
ṽ,x,K

= D
ṽ,x,K

∩ ĨDU†,K , then we get the inclusion

D
ṽ,x,K

/ĨD
ṽ,x,K

↪→ DU†,K/ĨDU†,K .

The morphism 17.7.4.6.3 induces the isomorphism of left D
ṽ,x,K

/ĨD
ṽ,x,K

-modules:

V[∂1, . . . , ∂r]⊗V (D
ṽ,x,K

/ĨD
ṽ,x,K

)
∼−→ DU†,K/ĨDU†,K . (17.7.4.6.4)

Taking the structure of A†K-module induced by the structure of left DU†,K-module on D
ṽ,x,K

(resp.
induced by the structure of left D

Ỹ †,K
-module on D

Ỹ †,K
), we denote by

σ
ũ,x̃

: D
ṽ,x,K

→ D
Ỹ †,K

, (17.7.4.6.5)

the A†K-linear morphism given by σ
ũ,x̃

(∂[(0,i)]) = ∂[i], for any i ∈ Nn−r.

The kernel of σ
ũ,x̃

is ĨD
ṽ,x,K

and we get therefore the ‹B†K-linear isomorphism (for the left structures):

σ
ũ,x̃

: D
ṽ,x,K

/ĨD
ṽ,x,K

= D
ṽ,x,K

/D
ṽ,x,K

Ĩ
∼−→ D

Ỹ †,K
. (17.7.4.6.6)

which satisfies the formula σ
ũ,x̃

(ξ[(0,i)]) = ∂[i], for any i ∈ Nn−r, where ξ[(0,i)] is the image of ∂[(0,i)]. We

denote by ϑ := (σ
ũ,x̃

)−1 by [−]
Ỹ †

: D
ṽ,x,K

→ D
ṽ,x,K

/ĨD
ṽ,x,K

the projection.
We define the structure of D

Ỹ †,K
-module on G as follows: Let Q ∈ D

Ỹ †,K
. Choose any QU† ∈ Dṽ,x,K

such that ϑ(Q) = [QU† ]Ỹ † . For any x ∈ G, we set

Q · x := QU† · x. (17.7.4.6.7)

Since G is annihilated by Ĩ, then we can check this is well defined.
ii) Since a is finite then Ã†K is a finite V[tr+1, . . . , tn]†-algebra. This yields that G is a coherent

Ã†K-module, i.e. G ∈ MIC(Ã†K/K).
c) Following 17.7.4.4, as g∗(E′) = Γ(P̂nV ,F), then we obtain the equalities:

Γ(P̂n−rV , α!(F)) = ∩ri=1 ker(ti : g∗(E
′)→ g∗(E

′)) = ∩ri=1 ker(xi : E
′ → E′) = G. (17.7.4.6.8)

We denote by a∗(G) the induced coherent DAn−r†V ,K-module via the canonical morphism DAn−r†V ,K →
D
Ỹ †,K

induced by a. Comparing the formulas 17.7.4.6.7 and 9.3.1.20.3, we compute that the equality
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17.7.4.6.8 is an equality of DAn−r†V ,K-modules, i.e. Γ(P̂n−rV , α!(F)) = a∗(G). Using 17.7.3.6 and the step

a) and b), this yields that G ∈ MIC†(Ã†K/K).
7) We denote by O

Ỹ
:= Γ(‹Y,O

Ỹ
) the p-adic completion of Ã†. We set “G := D†

Ỹ,K
⊗D†

Ỹ †,K

G ∈

MIC†(O
Ỹ,K

/K) (see notation 17.7.3.9). In this step, we check the isomorphism “G ∼−→ Γ(‹Y, ‹H) of

MIC†(O
Ỹ,K

/K).

a) Following 17.7.2.6, the canonical morphism of (D†
ÂnV ,K

, D†
U†,K

)-bimodules D†
ÂnV ,K

⊗D†
K
D†
U†,K

→

D†U,K is an isomorphism. This yields theD†
ÂnV ,K

-linear isomorphism : D†U,K⊗D†
U†,K

E′
∼←− D†

ÂnV ,K
⊗D†

K
E′.

Since g is proper, then it follows from 13.2.3.7.1 (see also example 13.2.3.2) that we have the base change
isomorphism: α! ◦ g+

∼−→ a+ ◦ ṽ!. Since g and a are finite and etale then g+ = g∗ and a+ = a∗. With
9.3.1.20.2 and via the theorem A for coherent D†

Ân−r,Q
-modules (resp. coherent D†

Ân,Q
-modules), for any

D†U,K-module M the equality a∗(∩ri=1 ker(xi : M → M)) = ∩ri=1 ker(ti : g∗M → g∗M) is an equality as
D†

Ân−rV ,K
-modules. Hence, we obtain the D†

Ân−r,K
-linear bottom morphism of the following commutative

diagram

G = ∩ri=1 ker(xi : E
′ → E′)� _

��

∩ri=1 ker(ti : E
′ → E′)� _

��
∩ri=1 ker(xi : D

†
U,K ⊗D†

U†,K
E′ → D†U,K ⊗D†

U†,K
E′) ∩ri=1 ker(ti : D

†
ÂnV ,K

⊗D†
K
E′ → D†

ÂnV ,K
⊗D†

K
E′).∼

oo

(17.7.4.6.9)
b) It follows from the step 2) and 17.7.3.9 that Γ(‹Y, ‹H) ∈ MIC†(O

Ỹ,K
/K). Moreover, the left bottom

term of 17.7.4.6.9 is canonically isomorphic to Γ(‹Y, ‹H). Indeed, as ‹H ∼−→ ṽ!(E|U), then using 9.3.1.20.2
we get the isomorphism: Γ(‹Y, ‹H)

∼−→ ∩ri=1 ker(xi : Γ(U, E) → Γ(U, E)). Moreover, we have checked in
17.7.4.6.1 the isomorphism D†U,K ⊗D†

U†,K
E′

∼−→ Γ(U, E). Hence we are done.

c) We compute moreover that the left (resp. right) arrow of 17.7.4.6.9 is D
Ỹ †,K

-linear (resp. DAn−r†,K-
linear).
d) According to the theorem of type A of 17.7.3.1.1, we get Γ(P̂nV ,F)

∼−→ g∗E
′. Via 17.7.3.8, this

yields that the injection Γ(P̂nV ,F) ⊂ Γ(ÂnV ,F) is canonically isomorphic the morphism E′ → D†
ÂnV ,K

⊗D†
K

E′. Following 17.7.4.5.1, this yields that the right arrow of 17.7.4.6.9 is isomorphic to the injection
Γ(P̂n−rV , α!(F)) ⊂ Γ(Ân−rV , α!(F)). Since α!(F) ∈ MIC††(P′, H0/V) (see step 5), then Γ(P̂n−rV , α!(F)) ⊂
Γ(Ân−rV , α!(F)) induced by extension the isomorphism V{tr+1, . . . , tn} ⊗V[tr+1,...,tn]† Γ(P̂n−rV , α!(F))

∼−→
Γ(Ân−rV , α!(F)) (see 17.7.3.8). This yields that the injection G ↪→ Γ(‹Y, ‹H) (left arrow of 17.7.4.6.9
modulo the isomorphism of 7.b)) induced by extension the isomorphism

V{tr+1, . . . , tn} ⊗V[tr+1,...,tn]† G
∼−→ Γ(‹Y, ‹H).

e) Via a), b), c), d), we conclude thanks to the lemma 17.7.3.10.
8) The module G ∈ MIC†(A†K/K).

Using the equivalence of categories of 17.5.1.1.(e), we get from the step 6) G̃ := D
Ỹ †,Q

⊗D
Ỹ †,K

G ∈

MIC††(‹Y †/V) and from 17.5.1.6, D†
Ỹ,Q
⊗D

Ỹ †,K
G̃ ∈ MIC††(‹Y/V). Via the equivalence of categories of

17.5.1.1.(e), the step 7) means that we have the isomorphism: D†
Ỹ,Q
⊗D

Ỹ †,K
G̃ ∼−→ ‹H of MIC††(‹Y †/V). As‹H = w+(H) = w∗(H), then the restriction of ‹H on Y[ := ‹Y \Y is null. Since the functor D†

Ỹ,Q
⊗D

Ỹ †,K

− : MIC††(‹Y †/V) → MIC††(‹Y/V) is faithful (see 17.5.1.6 and use the full flatness of Ã†K → O
Ỹ,K

),

this yields G̃|Y[ = 0. As w!(G̃) ∈ MIC††(Y †/V), then we get the second equality: G = Γ(‹Y †, G̃) =

Γ(Y †, w!(G̃)) ∈ MIC††(A†K/K).
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II) Construction of the isomorphism spY †↪→U†,T0,+(GY0
)
∼−→ E(†T0), where GY0

means the object of
MIC†(Y0/K) associated with G ∈ MIC†(A†K/K) via the equivalence of categories 17.5.1.1.(c))

1) Let G := DY †,Q ⊗DY †,K G ∈ MIC††(Y †/V). Since Γ(Y,G)
∼−→ G, then with notation 17.6.3.1.1 we

get the isomorphism:

D†P(†T0)Q ⊗D
U†,K

v+(G)
17.6.3.1.1
∼−→ D†P(†T0)Q ⊗j∗DU†,Q j∗v+(G) = spY †↪→U†,T0,+(GY0). (17.7.4.6.10)

2) Let us denote by G̃ := w+(G) the direct image of G by w (beware as D-module and not as
D†-module), ṽ+(G) := Γ(U†,D

U†←Ỹ †,Q) ⊗D
Ỹ †,K

G. Let ∂1, . . . , ∂n be the derivations corresponding to

the coordinates x1, . . . , xn. Similarly to 5.2.6.1, as G = ∩ri=1 ker(xi : E
′ → E′) we get the canonical

DU†,K-linear morphism ṽ+(G) → E′. Modulo the isomorphism ṽ+(G)
∼−→ K[∂1, . . . , ∂r] ⊗K G (same

computation as in 5.2.6.1), the map is ṽ+(G)→ E′ is given by ∂i ⊗ x 7→ ∂i · x.
By transitivity of the direct image, we obtain v+(G)

∼−→ ṽ+(G̃). As G̃ is a coherent D
Ỹ †,Q

-module

such that Γ(‹Y †, G̃) = Γ(Y †,G) = G, this yields (thanks to 17.2.5.4): v+(G)
∼−→ ṽ+(G). Hence the

DU†,K-linear morphism : v+(G)→ E′. This yields the D†
U†,K

-linear morphism :

D†
U†,K

⊗D
U†,K

v+(G)→ E′ = D†
U†,K

⊗D†
K
E. (17.7.4.6.11)

Moreover, we have following 17.7.4.2 the mapD†
U†,Q → D

†
P(†T0)Q. By applying the functorD†P(†T0)Q⊗D†

U†,K

− to the map 17.7.4.6.11, we obtain: D†P(†T0)Q ⊗D
U†,K

v+(G)→ D†P(†T0)Q ⊗D†
K
E. Moreover,

D†P(†T0)Q ⊗D†
K
E
∼−→ D†P(†T0)Q ⊗D†

P
(†H0)Q

D†P(†H0)Q ⊗D†
K
E

17.7.3.1.1
∼−→ D†P(†T0)Q ⊗D†

P
(†H0)Q

E = E(†T0),

Hence, we get by composition the map:

D†P(†T0)Q ⊗D
U†,K

v+(G)→ E(†T0). (17.7.4.6.12)

3) By composing the inverse of 17.7.4.6.10 with 17.7.4.6.12, we obtain therefore the canonical mor-
phism φ : spY †↪→U†,T0,+(GY0

) → E(†T0). Via 17.5.2.5, we check that φ is an isomorphism apart from
T0. Following 8.7.6.11, since φ is a morphism of coherent D†P(†T0)Q-modules, this yields that φ is an
isomorphism.

Remark 17.7.4.7. In the proof of 17.7.4.6, we have used the theorem of type A of the form 17.7.3.1.1 (see
the step II.2). Hence, unless some new idea arises, the hypothesis that the coherent D†P(†T0)Q-module
E(†T0) comes by extension from a coherent D†P(†H0)Q-module is essential (what is important in fact is
that H0 is ample).
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Chapter 18

Coefficients stable under
Grothendieck’s six operations with
Frobenius structure

Suppose the residue field k of V is a perfect field of characteristic p > 0. When we work with F -complex,
we suppose there exists an automorphism σ : V ∼−→ V which is a lifting of the sth Frobenius power of k.
The data s and σ are fixed in the remaining.

18.1 Overholonomicity

18.1.1 Overholonomicity (after any base change) in a smooth V-formal scheme

Definition 18.1.1.1. Let E be an object of (F -)D(D†P,Q). We define by induction on the integer r ≥ 0,
the notion on of r-overholonomicity in P, as follows:

(a) The complex E is “0-overholonomic in P” if E is overcoherent in P ;

(b) for any integer r ≥ 1, E is “ r-overholonomic in P” if E is r − 1-overholonomic in P and for any
divisor T of X, the complex D ◦ (†T )(E) is r − 1-overholonomic in P.

We say that E is “∞-overholonomic in P” or “overholonomic in P” if E is r-overholonomic in P for any
integer r ≥ 0. Finally, for any r ∈ N ∪ {+∞}, a (F -)D†P,Q-module is r-overholonomic in P if so is as an
object of (F -)Db(D†P,Q).

Definition 18.1.1.2. Let r ∈ N ∪ {+∞} and E be an object of (F -)D(D†P,Q). We say that E is
“r-overholonomic in P after any base change” if, for any morphism V → V ′ of DVR(V), denoting by
S′ := Spf V ′, P′ := P ×S S′, f : P′ → P the projection, the complex D†P′/S′,Q ⊗f−1D†

P/S,Q
f−1E is

r-overholonomic in P′, i.e. the base change f !(E) of E via V → V ′ is r-overholonomic in P′ (see 9.2.7.1).
An D†P,Q-module is r-overholonomic in P after any base change if so is as an object of (F -)Db(D†P,Q).
We denote by Db

h(D†P,Q) the full subcategory of Db
coh(D†P,Q) consisting of overholonomic after any base

change in P complexes.

Proposition 18.1.1.3. Let E ∈ Db(D†P,Q) and r ∈ N∪{+∞}. Then, the complex E is r-overholonomic
in P after any base change if and only if for any integer j ∈ Z the modules Hj(E) are r-overholonomic
in P after any base change.

Proof. It comes from 15.3.5.4 that r-overholonomic after any base change complexes in P are holonomic.
Then we check the corollary by induction on r by using the fact that the dual functor D (resp. the
localisation functor (†T ) outside a divisor T of P ) is exact on the category of holonomic (resp. coherent
and then holonomic) D†P,Q-modules.
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18.1.2 Overholonomicity (after any base change) and stability
We denote by P an smooth S-formal scheme.

Definition 18.1.2.1. Let E be an object of (F -)D(D†P,Q). We define by induction on the integer r ≥ −1,
the notion of r-overholonomicity, as follows:

(a) E is 0-overholonomic if and only if E ∈ (F -)Db
ovcoh(D†P,Q) (see notation 15.3.6.2);

(b) For any integer r ≥ 1, E is r-overholonomic if and only if E is r − 1-overholonomic and, for any
smooth morphism f : P′ → P of S-formal schemes, for any divisor T ′ of X ′, the complex D(†T ′)f !(E)
is r − 1-overholonomic.

(c) We say that E is∞-overholonomic or simply overholonomic if E is r-overholonomic for any integer r.
We denote by (F -)Db

ovhol(D
†
P,Q) the full subcategory of (F -)Db

coh(D†P,Q) consisting of overholonomic
complexes.

(d) A (F -)D†P,Q-module is r-overholonomic (resp. overholonomic ) if so is as an object of (F -)Db(D†P,Q).

Definition 18.1.2.2. Let r ∈ N ∪ {+∞} and E be an object of (F -)D(D†P,Q). We say that E is “r-
overholonomic after any base change” if, for any morphism V → V ′ of DVR(V), denoting by S′ := Spf V ′,
P′ := P×S S′, f : P′ → P the projection, the complex D†P′/S′,Q ⊗f−1D†

P/S,Q
f−1E is r-overholonomic,

i.e. the base change f !(E) of E via V → V ′ is r-overholonomic (see 9.2.7.1). An D†P,Q-module is r-
overholonomic after any base change if so is as an object of (F -)Db(D†P,Q). We denote by Db

h(D†P,Q) the
full subcategory of Db

coh(D†P,Q) consisting of overholonomic after any base change complexes.

Let E(•) ∈ LD−→
b
Q,qc(‹D(•)

P ). We say that E(•) is r-overholonomic (after any base change) if E(•) ∈
LD−→

b
Q,coh(‹D(•)

P ) and if→l
∗
Q(E(•)) is r-overholonomic (after any base change). We denote by LD−→

b
Q,ovhol(

‹D(•)
P )

(resp. LD−→
b
Q,h(‹D(•)

P )) the full subcategory of LD−→
b
Q,qc(‹D(•)

P ) consisting of overholonomic (resp. overholo-
nomic after any base) complexes.

18.1.2.3. Let E(•) ∈ LD−→
b
Q,qc(‹D(•)

P ). It follows from 15.3.6.6 that E(•) is 0-overholonomic if and only if
E(•) is overcoherent in the sense of definition 15.3.6.1. Using the dual functor 9.2.4.21, we could have
defined the overholonomicity by copying the definition 18.1.2.1 in the context of categories of the form
LD−→

b
Q,qc(‹D(•)

P ) (similarly to 15.3.6.1). The stability properties of the overholonomicity of the subsection

is still valid replacing categories of the form D(D†P,Q) by that of LD−→
b
Q,qc(‹D(•)

P ).

Remark 18.1.2.4. (a) Let r′ ≥ r be two nonnegative integers and let E be an r′-overholonomic complex
of (F -)D(D†P,Q). Then E is r-overholonomic. In particular E ∈ (F -)Db

ovcoh(D†P,Q).

(b) This is an open question wether the category Db
ovcoh(D†P,Q) is stable by dual functors (for any smooth

S-formal scheme P). If this was true then, for any integer r, the notion of r-overholonomicity would
be equivalent to that of overcoherence (i.e. 0-overholonomicity) and then to that of overholonomicity.
By 15.3.2.8, then this would also imply that overcoherent complexes are holonomic.

Proposition 18.1.2.5. Let E ∈ Db(D†P,Q) and r ∈ N ∪ {+∞}. Then E is r-overholonomic if and only
if, for any smooth morphism f : P′ → P of S-formal schemes, f !(E) is r-overholonomic in P′.

Proof. The case concerning the overcoherence results from the commutation of the extraordinary inverse
image with the functor of localisation (see 13.2.1.4.1). The case of the r-overholonomic can be checked
by induction on r. We proceed in a similar way by using moreover the isomorphism 11.3.5.1.1 checked
by Abe.

Corollary 18.1.2.6. Let E ∈ Db(D†P,Q) and r ∈ N ∪ {+∞}. Then, the complex E is r-overholonomic
after any base change if and only if for any integer j ∈ Z the modules Hj(E) are r-overholonomic after
any base change.

Proof. This follows from 18.1.1.3, from the characterization of 18.1.2.5 and from the fact that the functor
f∗ is acyclic for any smooth morphism f : P′ → P on the category of coherent D†P,Q-modules.
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Remark 18.1.2.7. The isomorphism 11.3.5.1.1 of Abe is necessary in order to check the characteriza-
tion 18.1.2.5 of the overholonomicity. However, it is possible to check directly the corollary 18.1.2.6
from 15.3.5.4 without using this isomorphism by using the arguments of acyclicity of the dual functor,
localisation and extraordinary inverse image by a smooth morphism.

Proposition 18.1.2.8. The D†P,Q-module OP,Q is overholonomic.

Proof. By induction on n ≥ 0, let us prove the following property (Pn): the D†P,Q-module OP,Q is n-
overholonomic. The assertion P0 is exactly 15.3.6.3 . For n ≥ 0, assuming Pn true, we prove Pn+1.
As the constant coefficient is stable under extraordinary inverse images and base change, then it is a
question of proving that D ◦ (†T )(OP,Q) is n-overholonomic. Since this is local in P, we can suppose P
is affine.

1) i) First suppose that T = ∅. Following 11.2.6.3.4, D(OP,Q)
∼−→ O∨P,Q

∼−→ OP,Q. We then conclude
by induction hypothesis.

ii) It follows from i) that D ◦ (†T )(OP,Q) is n-overholonomic if and only if D(•) ◦ RΓ†T (O(•)
P ) is n-

overholonomic.
2) Let us now treat the case where T is a smooth divisor. Since T is affine and smooth, then there

exists an affine and smooth S-formal schemes i : T ↪→ P which is a lifting of the closed immersion
T ↪→ P . By applying the dual functor D(•) to the localization triangle of O(•)

P with respect to T , we
obtain the distinguished triangle

D(•)(†T )(O(•)
P )→ D(•)(O(•)

P )→ D(•) ◦ RΓ†T (O(•)
P )→ D(•)(†T )(O(•)

P )[1]. (18.1.2.8.1)

We have the isomorphism:

D(•)◦RΓ†T (O(•)
P )

∼−→
13.2.1.5.1

D(•)◦i(•)+ ◦i(•)!(O
(•)
P )

∼−→ D(•)◦i(•)+ (O(•)
T [−1])

∼−→
9.4.5.2

i
(•)
+ ◦D(•)(O(•)

T )[1]
∼−→

11.2.6.3.4
i
(•)
+ (O(•)

T )[1].

Since O(•)
T is n-overholonomic by induction hypothesis, then it follows from the theorem 18.1.2.15 that

i
(•)
+ (O(•)

T )[1] is n-overholonomic and therefore that D(•) ◦ RΓ†T (O(•)
P ) is n-overholonomic. Hence, thanks

to 1)ii), we are done.

3) Now suppose that T is a strict normal crossing divisor (see 4.5.2.5) Denote by T1, . . . , Tr the
irreducible components of T . Let us then proceed with a (second) recurrence on r ≥ 1. The case where
r = 1 was treated in ii). Consider the distinguished triangle from Mayer-Vietoris (13.1.4.15.2):

RΓ†∪r
i=2

T1∩Ti (O(•)
P )→ RΓ†T1

(O(•)
P )⊕ RΓ†∪r

i=2
Ti

(O(•)
P )→ RΓ†∪r

i=1
Ti

(O(•)
P )→ RΓ†∪r

i=2
T1∩Ti(O

(•)
P )[1].

(18.1.2.8.2)
Let us choose a lifting i1 : T1 ↪→ P of the closed immersion T1 ↪→ P . Since RΓ†T1

∼−→ i
(•)
1+i

(•)!
1 (see

13.2.1.5.1), by ??, we obtain the isomorphism

RΓ†∪r
i=2

T1∩Ti (O(•)
P )

∼−→
9.3.5.13

i
(•)
1+i

(•)!
1 RΓ†∪r

i=2
T1∩Ti (O(•)

P )

∼−→
13.2.1.4.1

i
(•)
1+ ◦ RΓ†∪r

i=2
T1∩Ti(i

(•)!
1 O(•)

P )
∼−→ i

(•)
1+ ◦ RΓ†∪r

i=2
T1∩Ti(O

(•)
T1

[−1]). (18.1.2.8.3)

As ∪ri=2T1 ∩ Ti is a strict normal crossing divisor of T1, then by using the induction hypothesis on r
and 1.ii), we obtain that D(•)◦RΓ†∪r

i=2
T1∩Ti(O

(•)
T1

[−1]) is n-overholonomic. It follows from the preservation
of n-overholonomy by direct image by a proper morphism (see 18.1.2.15), that

D(•) ◦ RΓ†∪r
i=2

T1∩Ti (O(•)
P )

∼−→
18.1.2.8.3

D(•) ◦ i(•)1+ ◦ RΓ†∪r
i=2

T1∩Ti(O
(•)
T1

[−1])
∼−→

9.4.5.2
i1+ ◦ D(•) ◦ RΓ†∪r

i=2
T1∩Ti(O

(•)
T1

[−1])

(18.1.2.8.4)

is n-overholonomic. We further obtain by induction hypothesis on r (and again using 1.ii) that D(•) ◦
RΓ†T1

(O(•)
P )⊕D(•)◦RΓ†∪r

i=2
Ti

(O(•)
P ) is n-overholonomic. By applying the functor D(•) to the distinguished

triangle 18.1.2.8.2, this implies that the complex D(•) ◦RΓ†T (O(•)
P ) is n-overholonomic. Then, using 1.ii),

we are done.
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4) Finally, let’s move on to the case where T is any divisor but different from the empty set. Using
de Jong’s desingularization theorem ([dJ96]), there exist a projective smooth morphism f : Q′ → P, a
smooth scheme X ′ over k, a closed immersion ι′0 : P ′ ↪→ Q′, a projective, surjective, generically finite and
étale morphism a0 : P ′ → P such that a0 = f0 ◦ ι′0 and T ′ := a−1

0 (T ) is a strict normal crossing divisor
of P ′. Since (†T )(O(•)

P ) ∈ MIC(•)(P, T/V), then following 16.1.11.2, (†T )(O(•)
P ) is a direct summand of

f
(•)
+ RΓ†P ′f

(•)!((†T )(O(•)
P )). Hence, D(•) ◦ (†T )(O(•)

P ) is a direct summand of

D(•) ◦ f (•)
+ RΓ†P ′f

(•)!((†T )(O(•)
P ))

∼−→
9.4.5.2

f
(•)
+ ◦ D(•)RΓ†P ′f

(•)!((†T )(O(•)
P )).

Since the morphism f is proper, then using 18.1.2.15 we reduce therefore to check the n-overholonomicity
of D(•)RΓ†P ′f

(•)!((†T )(O(•)
P )). Since this is local on Q′, then we can suppose that there exists a lifting

ι′ : P′ ↪→ Q′ of ι′0.

D(•)RΓ†P ′f
(•)!((†T )(O(•)

P ))
∼−→

13.2.1.5.1
D(•) ◦ ι′(•)+ ◦ ι′(•)!f (•)!((†T )(O(•)

P ))

∼−→
13.2.1.4.1

D(•) ◦ ι(•)+ ◦ (†T ) ◦ ι′(•)!f (•)!(O(•)
P )

∼−→ D(•) ◦ ι′(•)+ ◦ (†T ′)(O(•)
P′ )

∼−→
9.4.5.2

ι
′(•)
+ ◦ D(•) ◦ (†T ′)(O(•)

P′ ).

(18.1.2.8.5)

Following the step 3), D(•)◦(†T ′)(O(•)
P′ ) is n-overholonomic. Hence, thanks to 18.1.2.8.5 and 18.1.2.15.

Proposition 18.1.2.9. Let r ∈ N ∪ {∞}.

(a) Let E ∈ Db
coh(D†P,Q) be an r + 1-overholonomic complex. Then D(E) is r-overholonomic

(b) For any r ∈ N ∪ {∞}, a direct summand of an r-overholonomic complex is r-overholonomic.

(c) Let r ∈ N ∪ {∞} and E ′ → E → E ′′ → E ′[1] be a distinguished triangle of D(D†P,Q). If two of the
three complexes are r-overholonomic then so is the third. In particular, Db

ovhol(D
†
P,Q) is a triangulated

subcategory of Db
ovcoh(D†P,Q).

(d) Let r ≥ 1 be an integer or r =∞ and E be an r-overholonomic D†P,Q-module. Then E is holonomic.

(e) Let r ∈ N ∪ {∞} and E ∈ Db
coh(D†P,Q) be an r-overholonomic complex. Then, for any subscheme Y

of P , the complex RΓ†Y (E) is r-overholonomic.

(f) For any smooth morphism f : P′ → P of S-formal schemes, for any r-overholonomic complex
E ∈ Db

coh(D†P,Q), the complex f !(E) is r-overholonomic.

Proof. The property a) is tautological (with the notations of 18.1.2.1, it is sufficient to take T ′ empty
and f equal to the identity). The properties b) and c) are already known when r = 0 (see 15.3.6 when
the divisor T is empty). The general case easily follows by induction on r ∈ N. Now let us deal with
d). Following the remark 18.1.2.4.(a), it is sufficient to check it when r = 1. Thanks to a), if E is a
1-overholonomic D†P,Q-module then D(E) is overcoherent and therefore has finite extraordinary fibers
(see 15.3.6.12). By 15.3.2.8, this implies that E is holonomic. Hence d). Now, let’s establish e). Since
this is local, we can suppose P is integral. The case r = 0 has already been treated (see 15.3.6.9). Let
r ≥ 1 be an integer and E ∈ Db

coh(D†P,Q) be an r-overholonomic complex.
Let T be a divisor of P . We obtain from the induction hypothesis that RΓ†T (E) and (†T )(E) are

r − 1-overholonomic. Moreover, for any smooth morphism f : P′ → P of S-formal schemes, for any
divisor T ′ of X ′, we have the isomorphisms:

D(†T ′)f !(†T )(E)
13.2.1.4.1
∼−→ D(†T ′)(†f−1(T ))f !(E)

13.1.5.6.1
∼−→ D(†T ′ ∪ f−1(T ))f !(E).

Since T ′ ∪ f−1(T ) is a divisor of P ′, as E is r-overholonomic, then by definition D(†T ′ ∪ f−1(T ))f !(E) is
r − 1-overholonomic (see 18.1.2.1). Hence so is the complex D(†T ′)f !(†T )(E). This means that (†T )(E)
is r-overholonomic. By using the triangle of localisation in T (see 13.1.5.6.3) and via c), this yields that
RΓ†T (E) is r-overholonomic.
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Let Z be a closed subscheme of X. Following 13.1.3.6, there exists some divisors T1, . . . , Tn of X such
that Z = ∩i=1,...,nTi. By setting Z ′ := ∩i=2,...,nTi, we have the distinguished triangle of Mayer-Vietoris
(see 13.1.4.15.1):

RΓ†Z(E)→ RΓ†Z′(E)⊕ RΓ†T1
(E)→ RΓ†Z′∪T1

(E)→ RΓ†Z(E)[1].

Since Z ′ and Z ′ ∪ T1 are the intersections of n − 1 divisors, we end the proof thanks to c) and by
proceeding by induction on n.

Finally, the statement (f) is obvious by definition.

Corollary 18.1.2.10. Let T be a divisor of X and E ∈ Db
coh(D†P(†T )Q). Then E ∈ Db

ovhol(D
†
P,Q) if and

only if DT (E) ∈ Db
ovhol(D

†
P,Q).

Proof. a) Suppose E ∈ Db
ovhol(D

†
P,Q). The canonical morphism E → (†T )(E) is a morphism of coherent

D†P(†T )Q-modules which is an isomorphism apart from T . By 8.7.6.11, this implies that E → (†T )(E)
is an isomorphism. However, following 9.2.4.22.3 dual functors commute with localisation, i.e., DT ◦
(†T )(E)

∼−→ (†T ) ◦ D(E). We obtain then DT (E)
∼−→ (†T ) ◦ D(E). Hence, using 18.1.2.9.(a) and

18.1.2.9.(e) this yields DT (E) ∈ Db
ovhol(D

†
P,Q).

b) The converse comes from the biduality isomorphism DT ◦DT (E)
∼−→ E (see 8.7.7.3) and from the

part a).

Like coherence, we verify that the notion of overholonomicity is local on P. Moreover, we extend the
standard properties of coherent modules to overholonomic modules. For example, we have the following
two propositions:

Proposition 18.1.2.11. Let Φ: E → F be a morphism of coherent D†P,Q-modules and r ∈ N ∪ {∞}. If
E and F are r-overholonomic, then so are Ker Φ, Coker Φ and ImΦ.

Proof. We proceed by induction on r ≥ 0. The case r = 0 is 15.3.6.4.(a). Suppose now the theorem
holds for r − 1 ≥ 0 and let us check it for r. Let f : P′ → P be a smooth morphism of S-formal
schemes, T ′ be a divisor of P ′. Since the functor (†T ′) ◦ f∗ is exact and preserves the r-overholonomic
(see 18.1.2.9), then by induction hypothesis we reduce to check that D(ker Φ), D(Coker Φ) and D(ImΦ)

are r − 1-overholonomic. By 18.1.2.9.(d), since r ≥ 1, then Φ is a morphism of holonomic D†P,Q-
modules. Hence, it follows from 15.2.4.14 that ker Φ, Coker Φ and ImΦ are holonomic. Let us recall
that following the homological criterion of holonomicity (see 15.2.4.8), if G is a holonomic D†P,Q-module,
then by setting G∗ := H0D(G) we get G∗ ∼−→ D(G). We get the morphism Φ∗ := H0D(Φ): F∗ → E∗.
Since the functor H0D is exact on the category of holonomic D†P,Q-modules, then (Im(φ))∗

∼−→ Im(φ∗),
(ker Φ)∗

∼−→ Coker(Φ∗), (Coker Φ)∗
∼−→ ker(Φ∗). By definition of the r-overholonomic, Φ∗ is a morphism

of r − 1-overholonomic D†P,Q-modules. By induction hypothesis, this yields that (Im(φ))∗, (ker Φ)∗,
(Coker Φ)∗ are r − 1-overholonomic, q.e.d.

Proposition 18.1.2.12. Let E1 → E2 → E3 → E4 → E5 an exact sequence of coherent D†P,Q-modules.
For any r ∈ N ∪ {∞}, if E1, E2, E4, E5 are r-overholonomic, then E3 is r-overholonomic.

Proof. The case r = 0 is already known (see 15.3.6.4.(b)). Suppose now the proposition holds for r−1 ≥ 0
and let us prove it for r. Let f : P′ → P be a smooth morphism of S-formal schemes, T ′ be a divisor
of P ′. Since the functor (†T ′) ◦ f∗ is exact and preserves the r-overholonomic (see 18.1.2.9), then by
induction hypothesis we reduce to check that D(E3) is r − 1-overholonomic.

By 18.1.2.9.(d), since r ≥ 1, then E1, E2, E4, E5 are holonomic. Denote by F2 (resp. F3) the image
of E2 → E3 (resp. E3 → E4). Using 15.2.4.14, since E2 (resp. E4) is holonomic, then so is F2 (resp.
F3). Since we have the exact sequence 0 → F2 → E3 → F3 → 0 with F2 and F3 holonomic then so
is E3 (thanks to 15.2.4.14). Hence, D(E3)

∼−→ E∗3 . Since the functor H0D is exact on the category of
holonomic D†P,Q-modules (see 15.2.4.15), then we get the exact sequence E∗5 → E∗4 → E∗3 → E∗2 → E∗1 . By
induction hypothesis, E∗3 is therefore r − 1-overholonomic.

Corollary 18.1.2.13. Let N ∈ N. For N ≥ p, q ≥ 0, r0 ≥ 1, let Ep,qr0 ⇒ E
n be a spectral sequence

of coherent D†P,Q-modules. If, for any p, q, the D†P,Q-modules Ep,qr0 are r-overholonomic, then so are the
D†P,Q-modules En for any n ∈ N.
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Proof. It follows from 18.1.2.11 that the D†P,Q-modules Ep,q∞ are r-overholonomic. With 18.1.2.12, this
implies that so are En.

Theorem 18.1.2.14. Let f : Y → P be a morphism of smooth S-formal schemes, E ∈ Db
coh(D†P,Q),

∈ N ∪ {∞} and r ∈ N. If E is r-overholonomic then so is f !(E).

Proof. We proceed by induction on r ≥ 0. For r = 0, this is 15.3.6.12. Now let us suppose the theorem
holds for r − 1 ≥ 0 and let us prove it for r.

Since f factors as the composition of an immersion (its graph Y ↪→ Y×S P) followed by the smooth
projection Y×S P→ P, then it is sufficient to treat the case where f is smooth and where f is a closed
immersion. Since the case where f is smooth is obvious (see 18.1.2.9.(f)) then we reduce to treat the
case where f is a closed immersion.

Let g : Y′ → Y be a smooth morphism and Z ′ be a closed subscheme of Y ′. By induction hypothesis
on r, it is sufficient to check that D ◦RΓ†Z′ ◦ g!(f !(E)) is r− 1-overholonomic. Indeed, taking Z ′ equal to
Y ′, this implies that D ◦ g!(f !(E)) is r− 1-overholonomic. By applying the dual functor D to the triangle
of localisation of g!(f !(E)) in Z ′ (see 13.1.5.6.3), then it follows from 18.1.2.9.c that D ◦ (†Z ′) ◦ g!(f !(E))
is r − 1-overholonomic.

Let us prove now that D ◦ RΓ†Z′ ◦ g!(f !(E)) is r − 1-overholonomic. Since this is local on Y′, we can
then suppose that g factors in a closed immersion Y′ ↪→ ÂnY followed by the projection ÂnY → Y. Let
p : ÂnP → P be the projection and i the closed immersion Y′ ↪→ ÂnP. Since, f ◦ g = p ◦ i, then we get the
first isomorphism:

D ◦ RΓ†Z′ ◦ g
!(f !(E))

∼−→ D ◦ RΓ†Z′ ◦ i
! ◦ p!(E)

∼−→
13.2.1.4.1

D ◦ i! ◦ RΓ†Z′ ◦ p
!(E)

∼−→
9.3.5.11.1

i! ◦ D ◦ RΓ†Z′ ◦ p
!(E),

(18.1.2.14.1)

where the last isomorphism follows from the fact that RΓ†Z′p
!(E) ∈ Db

coh(D†Q′,Q) is coherent with support
in Y ′ (because E is overcoherent). Following 18.1.2.9, since E is r-overholonomic then the complex
D ◦ RΓ†Z′p

!(E) is r − 1-overholonomic. By induction hypothesis, this yields i!D ◦ RΓ†Z′p
!(E) is also r − 1-

overholonomic. Hence, we are done.

Theorem 18.1.2.15. Let f : Y → P be a realizable (in the sense of 13.2.3.1) morphism of smooth
V-formal schemes. For any F ∈ Db

coh(D†Y,Q) with proper support over P , for any integer r, if F is
r-overholonomic then f+(F) is r-overholonomic.

Proof. We proceed by induction on the integer r ≥ 0. The case r = 0 has been checked in 16.3.3.1 (in
fact, the version of 15.3.6.14 is sufficient). Now, let us suppose the theorem holds for r − 1 ≥ 0 and
let us check it for r. Let F be an r-overholonomic complex of Db

coh(D†Y,Q), g : P′ → P be a smooth
morphism of S-formal schemes and T ′ be a divisor of P ′. Denote by Y′ := Y×P P′, f ′ : Y′ → P′ and
g′ : Y′ → Y the respective projections. We have to check that D(†T ′)g!f+(F) is r − 1 overholonomic.
However, by using the isomorphism of base change of the direct image of a realisable morphism by a
smooth morphism g!f+(F)

∼−→ f ′+g
′!(F) (see 13.2.3.7), the commutation of the direct image with the

local cohomological functor (see 13.2.1.4.2) and to the relative duality theorem (see 13.2.4.1), we get the
isomorphisms:

D(†T ′)g!f+(F)
∼−→ D(†T ′)f ′+g

′!(F)
∼−→ Df ′+(†f ′−1T ′)g′!(F)

∼−→ f ′+D(†f ′−1T ′)g′!(F).

Following the proposition 18.1.2.9 and the theorem 18.1.2.14, the complex D(†f ′−1T ′)g′!(F) is r − 1-
overholonomic. By induction hypothesis, this yields that the complex f ′+D(†f ′−1T ′)g′!(F) is r − 1-
overholonomic.

Theorem 18.1.2.16 (Overholonomic version of Berthelot-Kashiwara theorem). Let f : Y → P be a
closed immersion of smooth V-formal schemes, r ∈ N ∪ {∞}.

(a) For any r-overholonomic D†P,Q-module E with support in Y , any r-overholonomic D†Y,Q-module F
and any integer k 6= 0, Hkf+(F) = 0 and Hkf !(E) = 0.

(b) The functors f+ and f ! induce canonically quasi-inverse equivalences between the category of r-
overholonomic D†P,Q-modules with support in Y and that of r-overholonomic D†Y,Q-modules.
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Proof. The a) part results from the coherent version of the theorem of Kashiwara due to Berthelot (see
9.3.5.9)) and of the fact that a r-overholonomic D†Y,Q-module (resp. a r-overholonomic D†P,Q-module
with support in Y ) is a coherent D†Y,Q-module (resp. a coherent D†P,Q-module with support in Y ). The
assertion b) comes from of 9.3.5.9) and from the stability of the r-overholonomicity by direct image and
extraordinary inverse image by a closed immersion (see 18.1.2.14 and of 18.1.2.15).

18.2 Acyclicity of u+ and u! when the underlying formal scheme
morphism is the identity

Let m ∈ N ∪ {∞}, S := Spf V. Let X → S be a smooth morphism of formal schemes. Let Z ⊂ X
be a relative to X/S strict normal crossing divisor (see definition 4.5.2.7). Let Y be the open of X
complementary to Z and j : Y ⊂ X be the open immersion. Set X] := (X,M(Z)). Let Z[,D ⊂ Z be
subdivisors of Z such that Z = Z[ ∪ D and the irreducible components of Z[ and D are disjoint. Set
X[ := (X,M(Z[)). Let u : X] → X[ be the canonical morphism. The underlying morphism of smooth
S-formal schemes is the identity of X.

The goal of this section is to establish the theorem 18.2.3.13. The first part of the theorem is a
consequence of 18.2.3.1 (which follows from 18.2.1.6). The second part of the theorem 18.2.3.13 (or also
18.2.3.11) corresponds in some way (modulo the twist “(Z)”) to an isomorphism of (logarithmic) relative
duality to the canonical morphism X] → X. It can be proved similarly to the complex case of [CMNM05,
3.1.2] by using the isomorphism of associativity of 4.5.3.3 (or more precisely the induced isomorphism
4.5.3.8.1).

18.2.1 Finite order case
Let BX be an OX -algebra endowed with a compatible structure of left ‹D(m)

X[
-module. We get a structure

of left ‹D(m)

X]
-module on BX = u∗BX whose stratification (εu

∗BX
n )n given by the pullbacks via the algebra

homomorphisms Pn
X[/S(m)

→ PnX]/S(m) (see 4.4.2). Hence, εu
∗BX
n are PnX]/S(m)-algebra isomorphisms,

i.e. the induced structure of left ‹D(m)

X]
-module of BX is compatible. Hence, for any 0 ≤ m′ ≤ m, we get

the OS-algebras by setting ‹D(m′)

X]
:= BX ⊗OX

D(m′)

X]
and ‹D(m′)

X[
:= BX ⊗OX

D(m′)

X[
. Recall, the canonical

morphism ‹D(m)

X]/S
→ ‹D(m)

X[/S
is a ring morphism (use a similar to 4.5.2.18.3 diagram).

18.2.1.1 (Local description). Suppose there exist nice coordinates t1, . . . , td of X]/S so that Z is empty
or Z is cut out by

∏
1≤j≤r tj for some r ≥ 1, and Z[ is either empty of cut out by

∏
1≤j≤s tj for some

r ≥ s ≥ 1 (which is always locally possible following 4.5.2.14). Then the coordinates t1, . . . , td of X]/S
are semi-nice coordinates of X[/S (because when r > s, tr is not invertible). We get the description
4.5.2.18.(b). We get the bases {∂k(r) : k ∈ Nd} of ‹D(0)

X]/S
and {∂k(s) : k ∈ Nd} of ‹D(0)

X[/S
. According to

4.5.1.9, in the computations of the subsection, when we refer to some logarithmic formulas, we will mean
its semi-logarithmic avatar.

We have the commutative canonical diagram‹D(0)

X[
σ // gr ‹D(0)

X[

‹D(0)

X]
σ //

?�

OO

gr ‹D(0)

X]

?�

OO
(18.2.1.1.1)

where the vertical arrows are injective. For any i = 1, . . . , d, we set ξi,(s) := σ(∂i,(s)) and ξi,(r) := σ(∂i,(r))

(this latter can be viewed as an element of gr ‹D(0)

X[
).

Lemma 18.2.1.2. We keep hypotheses and notation of 18.2.1.1 and we suppose t1, . . . , td is a regular
sequence of BX (e.g. OX).

(a) The sequence ξ1,(r), . . . , ξd,(r) of gr ‹D(0)

X[
is regular.
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(b) We have the equality

σ(‹D(0)

X[
(∂1,(r), . . . , ∂d,(r))) = (gr ‹D(0)

X[
)(ξ1,(r), . . . , ξd,(r)). (18.2.1.2.1)

Proof. a) Since t1, . . . , td nice coordinates of X]/S, then they are semi-logarithmic coordinates of X[/S
and we get: gr ‹D(0)

X[
= BX[ξ1,(s), . . . , ξd,(s)]. For any integer i such that 1 ≤ i ≤ s and r+1 ≤ i ≤ d, we have

ξi,(r) = ξi,(s). For any integer i such that s+ 1 ≤ i ≤ r, we have ξi,(r) = tiξi,(s). Hence, for any 1 ≤ i ≤ s,
gr ‹D(0)

X[
/(ξ1,(r), . . . , ξi,(r)) = BX[ξi+1,(s), . . . , ξd,(s)] ; for any r + 1 ≤ i ≤ s, gr ‹D(0)

X[
/(ξ1,(r), . . . , ξi,(r)) =(

OX[ξr+1,(s), . . . , ξi,(s)]/(tr+1ξr+1,(s), . . . , tiξi,(s))
)

[ξi+1,(s), . . . , ξd,(s)]. Since the sequence t1, . . . , td of BX
is regular, then ti+1ξi+1,(s) is a nonzerodivisor of gr ‹D(0)

X[
/(ξ1,(r), . . . , ξi,(r)). Hence, we are done.

b) Let us prove now the equality 18.2.1.2.1. To simplify notation, for any integers 1 ≤ i ≤ d and
n ≥ 0, we set δi := ∂i,(r), ξi := ξi,(r), D := ‹D(0)

X[
, I := D(δ1, . . . , δd), Dn := ‹D(0)

X[,n
. Let Dd → I

be the epimorphism given by (P1, . . . , Pd) 7→
∑
i Piδi and let In be the image of Ddn−1 by this map.

We get σ(D(δ1, . . . , δd) = ⊕n≥1(I ∩ Dn + Dn−1)/Dn−1 and grD(ξ1, . . . , ξd) = ⊕n≥1In + Dn−1/Dn−1.
Hence, we have to check I ∩ Dn + Dn−1 = In + Dn−1 for any n ≥ 1. Since In ⊂ I ∩ Dn then
In + Dn−1 ⊂ I ∩ Dn + Dn−1 is obvious. Conversely, let P ∈ I ∩ Dn. Let P1, . . . , Pd ∈ D such that
P =

∑
i Piδi. We prove P ∈ In + Dn−1 by induction on the maximal order N of the operators Pi

(i = 1, . . . , d), i.e. on N := min{n ≥ 1 ; such that Pi ∈ Dn for any i = 1, . . . , d} . If N ≤ n − 1, then
P ∈ In and we are done. Suppose now N ≤ n. Let K be the the set of subindices j such that Pj
has order N . If

∑
i∈K σ(Pi)ξi 6= 0, then σ(P ) =

∑
i∈K σ(Pi)ξi ∈ DN+1, which is absurd. Hence,∑

i∈K σ(Pi)ξi = 0. We set Gi := σ(Pi) for any i ∈ K, and Gi = 0 for any i 6∈ K. This yields∑d
i=1Giξi = 0. As the sequence ξ1, . . . , ξd of grD = BX[ξ1,(s), . . . , ξd,(s)] is regular (from the part a),

then there exists homogeneous polynomials (Gij)1≤i<j≤d) of grD of order N − 1 such that

(G1, . . . , Gd) =
∑

1≤i<j≤d

Gij(ξj~ei − ξi~ej),

where ~ei = (0, . . . , 0, 1, 0, . . . , 0) is the element of Nd with 1 at the ith position. We choose for any
1 ≤ i < j ≤ d operators Qij ∈ DN−1 such that σ(Qij) = Gij . We set (Q1, . . . , Qn) := (P1, . . . , Pn) −∑

1≤i<j≤dQij(δj~ei − δi~ej). Let σN : DN → grN D be the canonical map. For i = 1, . . . , d, we compute
σN (Pi) = Gi and σN (Qij) = σ(Qij) = Gij . Since σN is BX-linear and multiplicative (with respect
to the product of two elements staying in DN ), this yields (σN (Q1), . . . , σN (Qn)) = (Q1, . . . , Qn) −∑

1≤i<j≤dGij(ξj~ei − ξi~ej) = 0. Hence, Q1, . . . , Qd ∈ DN−1. Moreover, since the family (ξi)i commutes
two by two, we get:

d∑
i=1

Qiδi =
d∑
i=1

Piδi −
∑

1≤i<j≤d

Qij(ξiξj − ξjξi) = 0.

By using the induction hypothesis, we get (Q1, . . . , Qd).

Theorem 18.2.1.3. We suppose BX is OX-flat. Let E be a left coherent ‹D(0)

X]
-module which is coherent

and flat on BX. Then, the complex ‹D(0)

X[
⊗D̃(0)

X]

Sp•
D̃(0)

X]

(E), where Sp•
D̃(0)

X]

(E) is the Spencer complex of

4.7.3.7.1 is acyclic.

Proof. 0) We have to check the exactness of the sequence:

0→ ‹D(0)

X[
⊗BX
∧d‹TX]⊗BX

E ε→ · · · ε→ ‹D(0)

X[
⊗BX
∧1‹TX]⊗BX

E ε→ ‹D(0)

X[
⊗BX
E $→ ‹D(0)

X[
⊗D̃(0)

X]

E → 0, (18.2.1.3.1)

where $ is the canonical epimorphism and where ε is induced by extension from the Spencer complex
(see the formula of 4.7.3.4), i.e. is the morphism of left ‹D(0)

X[
-modules

ε : ‹D(0)

X[
⊗BX

∧i‹TX] ⊗BX
E → ‹D(0)

X[
⊗BX

∧i−1‹TX] ⊗BX
E (18.2.1.3.2)
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given by

ε (P ⊗ (v1 ∧ · · · ∧ vi)⊗ u) =
i∑

a=1

(−1)a−1Pva ⊗ (v1 ∧ · · · ∧ “va ∧ · · · ∧ vi)⊗ u
−

i∑
a=1

(−1)a−1P ⊗ (v1 ∧ · · · ∧ “va ∧ · · · ∧ vi)⊗ vau
+

∑
1≤a<b≤i

(−1)a+bP ⊗ ([va, vb] ∧ v1 ∧ · · · ∧ “va ∧ · · · ∧ “vb ∧ · · · ∧ vi)⊗ u
1) As E is flat on BX, we get the following filtration of 18.2.1.3.1 for n ∈ N:‹D(0)

X[,n−d ⊗BX
∧d‹TX] ⊗BX

E ε→ · · · ε→ ‹D(0)

X[,n−1
⊗BX

∧1‹TX] ⊗BX
E ε→ ‹D(0)

X[,n
⊗BX

E $→ $(‹D(0)

X[,n
⊗BX

E).

(18.2.1.3.3)
The induced morphism by ε morphism

εn,i : grn−i(‹D(0)

X[
)⊗BX

∧i‹TX] ⊗BX
E → grn−i+1(‹D(0)

X[
)⊗BX

∧i−1‹TX] ⊗BX
E (18.2.1.3.4)

is given by

εn,i
(
P ⊗ (v1 ∧ · · · ∧ vi)⊗ u

)
=

i∑
a=1

(−1)a−1Pva ⊗ (v1 ∧ · · · ∧ “va ∧ · · · ∧ vi)⊗ u.
Moreover, since E is flat as BX-module, then we get

$(‹D(0)

X[,n
⊗BX

E)/$(‹D(0)

X[,n−1
⊗BX

E)
∼−→ $(‹D(0)

X[,n
)/$(‹D(0)

X[,n−1
)⊗BX

E),

where $ : ‹D(0)

X[
→ ‹D(0)

X[
⊗D̃(0)

X]

BX is the canonical morphism (i.e. this is $ in the case where E = BX).
Hence, the graded complex induced by the filtration 18.2.1.3.3 is canonically isomorphic to the graded
complex induce by the filtration 18.2.1.3.3 where E is equal to BX tensored by E above BX. As E is flat
on BX, we reduce therefore to the case where E = BX.

2) Let us check the graded complex induced by the filtration 18.2.1.3.3 is acyclic when E = BX. Since
this is local, we can suppose the local situation of 18.2.1.1 holds and we use the notation of the proof
of 18.2.1.2.1. Since ‹D(0)

X]
/‹D(0)

X]
(δ1, . . . , δd)

∼−→ BX, then ‹D(0)

X[
⊗D̃(0)

X]

BX
∼−→ ‹D(0)

X[
/‹D(0)

X[
(∂1,(r), . . . , ∂d,(r)) =

D/I. Hence, $(‹D(0)

X[,n
) = Dn+I/I and therefore $(‹D(0)

X[,n
)/$(‹D(0)

X[,n−1
) = Dn+I/Dn−1 +I = Dn/(I ∩

Dn+Dn−1). Since BX is a flatOX-algebra, then we get from 18.2.1.2.1 the equality grD/ grD(ξ1, . . . , ξd) =
grD/σ(I). As σ(I) = ⊕n≥0(I ∩ Dn +Dn−1)/Dn−1, this yields:

grD/ grD(ξ1, . . . , ξd) = grD/σ(I) = ⊕n≥0Dn/(I ∩ Dn +Dn−1) = ⊕n≥0$(‹D(0)

X[,n
)/$(‹D(0)

X[,n−1
).

(18.2.1.3.5)
Since ‹TX] is a free BX-module whose basis is given by δ1, . . . , δd, then the map ⊕n∈Nεn,i (where εn,i is
defined at 18.2.1.3.4 with E = BX) is the i-th map given by the Koszul complex of the ring grD with
respect to the sequence ξ1, . . . , ξd. Since the sequence ξ1, . . . , ξd of grD is regular (see 18.2.1.2), then the
Koszul complex is acyclic. Using 18.2.1.3.5, we are done.

Corollary 18.2.1.4. We suppose BX is OX-flat. Let E be a left coherent ‹D(0)

X]
-module which is coherent

and flat on BX. The canonical homomorphism ‹D(0)

X[
⊗L
D̃(0)

X]

E → ‹D(0)

X[
⊗D̃(0)

X]

E is then an isomorphism.

Proof. This is a consequence of 4.7.3.6 and 18.2.1.3.

Remark 18.2.1.5. Following a counter-example of Noot-Huyghe, the extension ‹D(0)

X]
→ ‹D(0)

X[
is not flat.

The corollary 18.2.1.4 is then not valid for any left coherent ‹D(0)

X]
-module.
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Example 18.2.1.6. Let T be a divisor of X. Then OX(†T )Q is OX-flat. We have DX](
†T )Q :=

OX(†T )Q ⊗OX
DX] = OX(†T )Q ⊗OX

D(0)

X]
. Let E be a left coherent DX](

†T )Q-module which is locally
projective of finite type as OX(†T )Q-module. The canonical homomorphism DX[(

†T )Q ⊗L
D

X]
(†T )Q

E →
DX[(

†T )Q ⊗D
X]

(†T )Q
E is therefore an isomorphism.

Notation 18.2.1.7. According to 3.4.5.1, the sheaf ωX[ (resp. ωX[) is endowed with a canonical structure
of right DX] -module (resp. right DX[-module). Via the homomorphism DX] ⊂ DX[ , ωX[ can also be
viewed as a right DX]-module. Hence, we get from 4.2.3.5.(c), two left DX] -modules by setting:

OX(D) := HomOX
(ωX[ , ωX]),OX(−D) := HomOX

(ωX] , ωX[). (18.2.1.7.1)

Both sheaves OX(D) and OX(−D) are locally free OX-modules of rank 1 (buy beware neither OX(D) nor
OX(−D) are sheaves of rings). Let U be an open of X such that there exist nice coordinates t1, . . . , td of
U]/S so that Z∩U is empty or Z∩U is cut out by

∏
1≤j≤r tj for some r ≥ 1, and Z[ ∩U is either empty

of cut out by
∏

1≤j≤s tj for some r ≥ s ≥ 1. By applying j∗ = |Y to the canonical morphisms ωX → ωX]

and ωX → ωX] we get isomorphisms. Indeed, since this is local in X, we reduce to check it on U∩Y. The
canonical morphisms ωU → ωU] is given by dt1∧· · ·∧dtd → t1d log t1∧· · ·∧trd log tr∧dtr+1∧· · ·∧td and the
canonical morphisms ωU → ωU[ is given by dt1∧· · ·∧dtd → t1d log t1∧· · ·∧tsd log ts∧dts+1∧· · ·∧td, which
conclude the check. Hence, we get theDY-linear isomorphism: OX(D)|Y ∼−→ HomOX

(ωY, ωY)
∼−→ OY.

Hence we get by adjunction the DX]-linear map OX(D)→ j∗OY. If X = U, then V (ts+1 · · · tr) = D and
we compute that OX(D)→ j∗OY is given by 1 7→ 1

ts+1···tr , which justifies the notation.
Using 4.2.4.11.1, we get the DX] -linearity of 18.2.1.7.2 .

ev : ωX[ ⊗OX
OX(D)

∼−→ ωX] , ev : ωX] ⊗OX
OX(−D)

∼−→ ωX[ . (18.2.1.7.2)

By evaluating twice, we obtain from 18.2.1.7.2 the DX] -linear isomorphism : ωX] ⊗OX
OX(−D) ⊗OX

OX(D)
∼−→ ωX] . Hence, we get the DX]-linear isomorphism :

OX(−D)⊗OX
OX(D)

∼−→ OX. (18.2.1.7.3)

Notation 18.2.1.8. For any integer n ∈ N, this yields of left DX] -modules by setting: OX(nD) :=
OX(D)⊗n and OX(−nD) := OX(−D)⊗n, where ⊗n means that we tensorise n-times as OX-module. For
any n, n′ ∈ Z, using 18.2.1.7.3, the canonical isomorphisms OX(nD) ⊗OX

OX(n′D)
∼−→ OX((n + n′)D)

are DX] -linear.
According to 4.3.4.4, we get the left ‹D(m)

X]
-module BX(nD) := BX ⊗OX

OX(nD). Let E (resp. M)
is a left (resp. right) ‹D(m)

X]
-module and n ∈ Z. Following 4.3.4.12, we define a left (resp. right) ‹D(m)

X]
-

module by setting E(nD) := OX(nD)⊗OX
E ∼−→ BX(nD)⊗BX

E (resp. M(nD) :=M⊗OX
OX(nD)

∼−→
M⊗BX

BX(nD)).
Following 4.2.5.1.1, we have the so called transposition isomorphism of ‹D(m)

X]
-bimodule γBX(nD) : ‹D(m)

X]
⊗BX

BX(nD)
∼−→ BX(nD)⊗BX

‹D(m)

X]
. Following 4.2.5.1.2, then we check the formula

γBX(nZ)(∂
〈k〉
] ⊗ e) =

∑
h≤k

¶
k
h

©
∂
〈k−h>
] e⊗ ∂〈h>] .

We get a ‹D(m)

X]
-bimodule by setting ‹D(m)

X]
(nD) := OX(nD)⊗OX

‹D(m)

X]
. Using 4.2.4.3, we have the canonical

isomorphisms: E(nD)
∼−→ ‹D(m)

X]
(nD) ⊗D̃(m)

X]

E and M(nD)
∼−→ M⊗D̃(m)

X]

(‹D(m)

X]
⊗BX

BX(nD))

γBX(nD)

∼−→

M⊗D̃(m)

X]

‹D(m)

X]
(nD). This yields the isomorphisms:

M(nD)⊗D̃(m)

X]

E ∼−→ M⊗D̃(m)

X]

‹D(m)

X]
(nD)⊗D̃(m)

X]

E ∼−→ M⊗D̃(m)

X]

E(nD). (18.2.1.8.1)

18.2.1.9. The functor ωX[ ⊗OX
− is an equivalence of category between the category from the left‹D(m)

X]
-modules to that of right ‹D(m)

X]
-modules, and the functor −⊗OX

ω−1
X[

= HomOX
(ωX[ ,−) is a quasi-

inverse. Indeed, for any left ‹D(m)

X]
-module E , right ‹D(m)

X]
-module M, using the right part of 4.2.4.11.2

(resp. 4.2.4.11.1), we get the left (resp. right) canonical morphism

E → HomOX
(ωX[ , ωX[ ⊗OX

E), ev : ωX[ ⊗OX HomOX (ωX[ ,M)→M (18.2.1.9.1)
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is ‹D(m)

X]
-linear. Since ωX[ is locally free of rank one, then these morphisms are isomorphisms and we are

done.

Lemma 18.2.1.10. Let E be a left ‹D(m)

X]
-module andM be a right ‹D(m)

X]
-module. We have the following

canonical isomorphisms of ‹D(m)

X]
-modules :

ωX[ ⊗OX
E(D)

∼−→ ωX] ⊗OX
E , ωX] ⊗OX

E(−D)
∼−→ ωX[ ⊗OX

E , (18.2.1.10.1)

E(D)
∼−→ (ωX] ⊗OX

E)⊗OX
ω−1
X[
, E(−D)

∼−→ (ωX[ ⊗OX
E)⊗OX

ω−1
X]
, (18.2.1.10.2)

M(D)
∼−→ ωX] ⊗OX

(M⊗OX
ω−1
X[

), M(−D)
∼−→ ωX[ ⊗OX

(M⊗OX
ω−1
X]

). (18.2.1.10.3)

Proof. By applying the functor −OX
E to the isomorphism 18.2.1.7.2, via the associativity isomorphism

of the tensor product of 4.2.4.1, we get the isomorphisms 18.2.1.10.1. Via 4.3.5.4 and 18.2.1.9, this yields
the other isomorphisms of ‹D(m)

X]
-modules.

Notation 18.2.1.11. According to 5.1.1.2, we set ‹D(m)

X[←X]
:= ωX]

r
⊗OX

(‹D(m)

X[
⊗OX

ω−1
X[

) viewed as
(‹D(m)

X[
, ‹D(m)

X]
)-bimodule, where the symbol “r” means that to compute the tensor product we choose

the right structure of left ‹D(m)

X[
-module of ‹D(m)

X[
⊗OX

ω−1
X[

. Following 18.2.1.10.3, ‹D(m)

X[←X]
is canonically

isomorphic to ‹D(m)

X[
⊗OX

OX(D), which justifies the notation. We can also denote by ‹D(m)

X]→X[
:= ‹D(m)

X[

considered as a (‹D(m)

X]
, ‹D(m)

X[
)-bimodule.

Definition 18.2.1.12. We denote by X̃] (resp. X̃[) the ringed V-logarithmic formal scheme (X],BX)
(resp. (X],BX)), and by ũ : X̃] → X̃[ the induced morphism of ringed V-logarithmic formal schemes
by the diagram. Similarly to 5.1.3.1 (we had not considered the “algebraic version” of pushforwards on
formal schemes), for any E ∈ D(l‹D(m)

X]
),M ∈ D(r‹D(m)

X]
), we define respectively the direct image by ũ of

E andM by setting:

ũ
(m)
+ (E) := ‹D(m)

X[←X]
⊗L
D̃

X]
E ∼−→ (‹D(m)

X[
⊗OX

OX(D))⊗L
D̃

X]
E ,

ũ
(m)
+ (M) :=M⊗L

D̃(m)

X]

‹D(m)

X]→X[
=M⊗L

D̃(m)

X]

‹D(m)

X[
. (18.2.1.12.1)

18.2.1.13. By reversing the roles of D and Z[, we define similarly to 18.2.1.7.1 and 18.2.1.8 the left‹D(m)

X[
-modules OX(nZ[) for any n ∈ Z. In fact, by an easy computation, we can check that OX(nZ[) is a

left ‹D(m)

X[
-submodule of j∗OY. Let E] be a left ‹D(m)

X]
-module.

By applying OX(nZ[)⊗OX
− to the canonical map of left ‹D(m)

X]
-modules E] → ‹D(m)

X[
⊗D̃(m)

X]

E], we get

the morphism of of left ‹D(m)

X]
-modules OX(nZ[)⊗OX

E] → OX(nZ[)⊗OX
(‹D(m)

X[
⊗D̃(m)

X]

E]). This yields by

extension the morphism of left ‹D(m)

X[
-modules‹D(m)

X[
⊗D̃(m)

X]

(OX(nZ[)⊗OX
E])→ OX(nZ[)⊗OX

(‹D(m)

X[
⊗D̃(m)

X]

E]). (18.2.1.13.1)

This morphism is an isomorphism. Indeed, we construct an inverse map as follows. Using 18.2.1.13.1 for
−n and with OX(nZ[)⊗OX

E] instead of E] we get the morphism:‹D(m)

X[
⊗D̃(m)

X]

E] ∼−→ ‹D(m)

X[
⊗D̃(m)

X]

(OX(−nZ[)⊗OX
OX(nZ[)⊗OX

E])

−→
18.2.1.13.1

OX(−nZ[)⊗OX

Å‹D(m)

X[
⊗D̃(m)

X]

(OX(nZ[)⊗OX
E])
ã
. (18.2.1.13.2)

By applying OX(nZ[)⊗OX
− to 18.2.1.13.2 we get the morphism

OX(nZ[)⊗OX
(‹D(m)

X[
⊗D̃(m)

X]

E])→ ‹D(m)

X[
⊗D̃(m)

X]

(OX(nZ[)⊗OX
E]). (18.2.1.13.3)

The morphism 18.2.1.13.3 is an inverse of 18.2.1.13.1 and we are done.
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SImilarly, for any E ∈ D(l‹D(m)

X]
),M∈ D(r‹D(m)

X]
), we construct the canonical isomorphisms:‹D(m)

X[
⊗L
D̃(m)

X]

(OX(nZ[)⊗OX
E]) ∼−→ OX(nZ[)⊗OX

(‹D(m)

X[
⊗L
D̃(m)

X]

E]), (18.2.1.13.4)

(OX(nZ[)⊗OX
M])⊗L

D̃(m)

X]

‹D(m)

X[
∼−→ OX(nZ[)⊗OX

(M⊗L
D̃(m)

X]

‹D(m)

X[
). (18.2.1.13.5)

Proposition 18.2.1.14. For any E ∈ D(l‹D(m)

X]
),M∈ D(r‹D(m)

X]
), we have the canonical isomorphisms:

ũ
(m)
+ (M)⊗OX

ω−1
X[

∼−→ ũ
(m)
+ (M⊗OX

ω−1
X]

), ωX[ ⊗OX
ũ

(m)
+ (E)

∼−→ ũ
(m)
+ (ωX] ⊗OX

E).

(18.2.1.14.1)

Moreover, if E ∈ Db
perf(

l‹D(m)

X]
) (resp. M∈ Db

perf(
r‹D(m)

X]
)) then ũ(m)

+ (E) ∈ Db
perf(

l‹D(m)

X[
) (resp. ũ(m)

+ (M) ∈
Db

perf(
r‹D(m)

X[
)).

Proof. We construct the left isomorphism of 18.2.1.14.1 as follows:

ũ
(m)
+ (M)⊗OX

ω−1
X[

∼−→
4.2.4.3

M⊗L
D̃(m)

X]

(‹D(m)

X[
⊗OX

ω−1
X[

)
∼−→

4.3.5.6.1
(ωX]

l
⊗OX

(‹D(m)

X[
⊗OX

ω−1
X[

))⊗L
D̃(m)

X]

(M⊗OX
ω−1
X]

)

∼−→
4.2.5.6.3

(ωX]
r
⊗OX

(‹D(m)

X[
⊗OX

ω−1
X[

))⊗L
D̃(m)

X]

(M⊗OX
ω−1
X]

) = ũ
(m)
+ (M⊗OX

ω−1
X]

),

The symbol “ l” and “r” meaning respectively that to compute the tensor product we choose the left
and right structure of left ‹D(m)

X[
-module of ‹D(m)

X[
⊗OX

ω−1
X[

. This yields by passage from right to left
(i.e., via the equivalences of categories of 4.3.5.5) the right isomorphism of 18.2.1.14.1. Concerning
the the preservation of the perfectness, The case of right modules is straightforward. As equivalence of
categories between left and right modules of the form 4.3.5.7 are exact and preserve the local projectivity
of finite type, then they also preserve perfect complexes. Hence, the left case is then a consequence of
18.2.1.14.1.

Definition 18.2.1.15. For any ∗ ∈ { l, r}, we define the dual functors D(m)

X̃]
: Db

perf(
∗‹D(m)

X]
)→ Db

perf(
∗‹D(m)

X]
)

as follows. Let E ∈ Db
perf(

l‹D(m)

X]
), M ∈ Db

perf(
r‹D(m)

X]
). Similarly to 5.1.4.1 (we are working with formal

schemes), we define the ‹D(m)

X]
-linear duals of E and ofM by setting

D(m)

X̃]
(E) = RHomD̃(m)

X]

(E , ‹D(m)

X]
)⊗OX

ω−1
X]

[dX ], D(m)

X̃]
(M) = ωX] ⊗OX

RHomD̃(m)

X]

(M, ‹D(m)

X]
)[dX ].

We also consider the ‹D(m)

X[
-linear duals: D(m)

X̃[
: Db

perf(
∗‹D(m)

X[
)→ Db

perf(
∗‹D(m)

X[
).

18.2.1.16. Let E ∈ Db
perf(

l‹D(m)

X]
), M ∈ Db

perf(
r‹D(m)

X]
). Similarly to 5.1.4.4, we have the biduality iso-

morphism: D(m)

X̃]
◦ D(m)

X̃]
(E)

∼−→ E (similarly for M). Similarly to 5.1.4.3, we get the isomorphisms:

D(m)

X̃]
(ωX] ⊗OX

E)
∼−→ ωX] ⊗OX

D(m)

X̃]
(E) and D(m)

X̃]
(M⊗OX

ω−1
X]

)
∼−→ D(m)

X̃]
(M)⊗OX

ω−1
X]

.

18.2.1.17. It follows from 18.2.1.9 that for any E ∈ D(l‹D(m)

X]
),M∈ D(r‹D(m)

X]
), we have

RHomD̃(m)

X]

(ωX[ ⊗OX
E ,M)

∼−→ RHomD̃(m)

X]

(E ,M⊗OX
ω−1
X[

), (18.2.1.17.1)

RHomD̃(m)

X]

(M⊗OX
ω−1
X[
, E)

∼−→ RHomD̃(m)

X]

(M, ωX[ ⊗OX
E). (18.2.1.17.2)

Definition 18.2.1.18. For any ∗ ∈ {l, r}, we define the extraordinary direct image by ũ the functor
ũ

(m)
! : ũ

(m)
! : Db

perf(
∗‹D(m)

X]
)→ Db

perf(
∗‹D(m)

X[
) by setting

ũ
(m)
! := D(m)

X̃[
◦ ũ(m)

+ ◦ D(m)

X̃]
.

Proposition 18.2.1.19. For any E ∈ Db
perf(

l‹D(m)

X]
), M ∈ Db

perf(
r‹D(m)

X]
), we have the canonical isomor-

phisms

ũ
(m)
! (M⊗OX

ω−1
X]

)
∼−→ ũ

(m)
! (M)⊗OX

ω−1
X[
, ωX[ ⊗OX

ũ
(m)
! (E)

∼−→ ũ
(m)
! (ωX] ⊗OX

E). (18.2.1.19.1)
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Proof. This comes by composition from 18.2.1.14 and 18.2.1.16.

Proposition 18.2.1.20. For any E ∈ Db
perf(

l‹D(m)

X]
), M ∈ Db

perf(
r‹D(m)

X]
), we have the canonical isomor-

phisms:

ũ
(m)
! (E)

∼−→ ‹D(m)

X[
⊗L
D̃

X]
E , ũ(m)

! (M)
∼−→ M⊗L

D̃
X]

(OX(−D)⊗OX
‹D(m)

X[
). (18.2.1.20.1)

Proof. Set F := D(m)

X̃]
(E). By definition, D(m)

X̃[
◦ũ(m)

+ (F)
∼−→ RHomD̃(m)

X[

((ωX]
r
⊗OX

(‹D(m)

X[
⊗OX

ω−1
X[

))⊗L
D̃

X]

F , ‹D(m)

X[
⊗OX

ω−1
X[

)[d], the symbol “r” meaning that to compute the internal tensor product we choose the
right structure of left ‹D(m)

X[
-module of ‹D(m)

X[
⊗OX

ω−1
X[

. Via the transposition isomorphism β
X̃[

: ‹D(m)

X[
⊗OX

ω−1
X[

∼−→ ‹D(m)

X[
⊗OX

ω−1
X[

(see 4.2.5.6.3), we get the isomorphisms of (‹D(m)

X[
, ‹D(m)

X]
)-bimodules:

ωX]
r
⊗OX

(‹D(m)

X[
⊗OX

ω−1
X[

)
∼−→
β
X̃[

ωX] ⊗OX
‹D(m)

X[
⊗OX

ω−1
X[
, (18.2.1.20.2)

where the structure of left ‹D(m)

X[
-module (resp. left ‹D(m)

X]
-module) of the right term is the twisted structure

induced by the right ‹D(m)

X[
-module (resp. the left ‹D(m)

X]
-module) structure of ‹D(m)

X[
. Hence, we get:

D(m)

X̃[
◦ ũ(m)

+ (F)

β
X̃[

∼−→ RHomD̃(m)

X[

((ωX] ⊗OX
‹D(m)

X[
⊗OX

ω−1
X[

)⊗L
D̃

X]
F , ‹D(m)

X[
⊗OX

ω−1
X[

)[d].

∼−→
18.2.1.17.2

RHomD̃(m)

X[

((ωX] ⊗OX
‹D(m)

X[
)

l
⊗L
D̃

X]
F , ωX[ ⊗OX

‹D(m)

X[
⊗OX

ω−1
X[

)[d]
∼−→

4.2.5.6.2

RHomD̃(m)

X[

((ωX] ⊗OX
‹D(m)

X[
)

l
⊗L
D̃

X]
F , ‹D(m)

X[
)[d]

∼−→ RHomD̃(m)

X]

((ωX] ⊗OX
‹D(m)

X]
)

l
⊗L
D̃

X]
F , ‹D(m)

X[
)[d]

∼−→
4.2.5.6.1

RHomD̃(m)

X]

(ωX] ⊗OX
F , ‹D(m)

X[
)[d]

∼−→ ‹D(m)

X[
⊗L
D̃(m)

X]

RHomD̃(m)

X]

(ωX] ⊗OX
F , ‹D(m)

X]
)[d]

∼−→
18.2.3.6.1

‹D(m)

X[
⊗L
D̃(m)

X]

RHomD̃(m)

X]

(F , (‹D(m)

X]
⊗OX

ω−1
X]

)r)[d]

∼−→
4.2.5.6.1

‹D(m)

X[
⊗L
D̃(m)

X]

RHomD̃(m)

X]

(F , (‹D(m)

X]
⊗OX

ω−1
X]

)l)[d]
∼−→

4.6.6.4
‹D(m)

X[
⊗L
D̃(m)

X]

DX](F). (18.2.1.20.3)

where the second isomorphism is 18.2.1.17.2 used in the case where ] = [, where the symbol “r” (resp.
“l”) means that to compute RHomD̃(m)

X]

we choose the right (resp. left) structure of ‹D(m)

X]
⊗OX

ω−1
X]

. Since

by biduality DX](F)
∼−→ E (see 18.2.1.16), then we get the first isomorphism of 18.2.1.20.1. In order to

establish the second one, we can supposeM = ωX] ⊗OX
E . We get:

u!(M)
∼−→

18.2.1.19.1
ωX[ ⊗OX

u!(E)
∼−→

18.2.1.20.1
(ωX[ ⊗OX

‹D(m)

X[
)⊗L
D̃

X]
E ∼−→

δ
(ωX[ ⊗OX

‹D(m)

X[
)

l
⊗L
D̃

X]
E

∼−→
4.3.5.6.1

(ωX] ⊗OX
E)⊗L

D̃
X]

((ωX[ ⊗OX
‹D(m)

X[
)

l
⊗OX

ω−1
X]

)
∼−→

18.2.1.10.2
M⊗L

D̃
X]

(OX(−D)⊗OX
‹D(m)

X[
).

The following proposition means that the relative duality isomorphism of the canonical morphism
X] → X[ necessity of use a twist (see 18.2.1.21).

Proposition 18.2.1.21. For any ∗ ∈ {l, r}, for any E ∈ Db
perf(

∗‹D(m)

X]
), we have the canonical isomor-

phism:
ũ

(m)
+ (E)

∼−→ ũ
(m)
! (E(D)). (18.2.1.21.1)

Proof. With 18.2.1.14.1 and 18.2.1.19.1, it is sufficient to treat the left case (i.e. ∗ = l). Let P[ be a
resolution of ‹D(m)

X[
by flat ‹D(m)

X]
-bimodule and P] be a resolution of E by flat left ‹D(m)

X]
-modules. Hence

we have isomorphisms:

(ωX[ ⊗OX
E)⊗L

D̃(m)

X]

‹D(m)

X]
∼←− (ωX[ ⊗OX

P])⊗D̃(m)

X]

P[
4.5.3.8.1
∼−→ (ωX[ ⊗OX

P[)
l
⊗D̃(m)

X]

P]

∼−→ (ωX[ ⊗OX
‹D(m)

X]
)

l
⊗D̃(m)

X]

P] ∼−→
4.2.5.6.1

ωX[ ⊗OX
(‹D(m)

X]
⊗D̃(m)

X]

P]) ∼−→ ωX[ ⊗OX
(‹D(m)

X]
⊗L
D̃(m)

X]

E).
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With 18.2.1.12.1, 18.2.1.20, we get therefore ũ(m)
+ (ωX[ ⊗OX

E)
∼−→ ωX[ ⊗OX

ũ
(m)
! (E). By applying to

it the functor − ⊗OX
ω−1
X[

, via 18.2.1.10.2, 18.2.1.14.1 this yields the isomorphism: ũ(m)
+ (E(−D))

∼−→
ũ

(m)
! (E).

Corollary 18.2.1.22. For any ∗ ∈ {l, r}, for any E ∈ Db
perf(

∗‹D(m)

X]
), we have the canonical isomorphism:

ũ
(m)
+ (E(Z[))

∼−→ (ũ
(m)
+ (E))(Z[), ũ

(m)
! (E(Z[))

∼−→ (ũ
(m)
! (E))(Z[). (18.2.1.22.1)

Proof. This is a consequence of 18.2.1.13.4, 18.2.1.13.5, 18.2.1.20 and 18.2.1.21.

18.2.1.23. Using 18.2.1.12.1, 18.2.1.20 and 18.2.1.21, for any E ∈ Db
perf(

l‹D(m)

X]
),M ∈ Db

perf(
r‹D(m)

X]
), we

get the isomorphism

(‹D(m)

X[
⊗OX

OX(Z))⊗L
D̃

X]
E ∼−→ ‹D(m)

X[
⊗L
D̃

X]
(OX(Z)⊗OX

E),

(M⊗OX
OX(−Z))⊗L

D̃
X]

‹D(m)

X[
∼−→ M⊗L

D̃
X]

(OX(−D)⊗OX
‹D(m)

X[
).

Proposition 18.2.1.24. We suppose BX is OX-flat. Let E be a left coherent ‹D(0)

X]
-module which is

coherent and flat on BX. For any l 6= 0,

H l(ũ
(m)
+ (E)) = 0, H l(ũ

(m)
! (E)) = 0. (18.2.1.24.1)

Proof. For any l 6= 0, the equality H l(ũ
(m)
! (E)) = 0 follows from 18.2.1.20 and 18.2.1.4. Moreover,

ũ
(m)
+ (E)

∼−→
18.2.1.21.1

ũ
(m)
! (E(D))

∼−→
18.2.1.20

‹D(m)

X[
⊗L
D̃

X]

(E(D)). Since BX(nD) is a flat BX-module, since

E(nD) := OX(nD) ⊗OX
E ∼−→ BX(nD) ⊗BX

E , then E(nD) is a flat BX-module. Hence, we conclude
using 18.2.1.4.

18.2.2 Preliminaries on complete level m context
We keep notation 18.2.1 and we suppose BX be an OX-algebra commutative satisfying the hypotheses of
7.5.3. We set D] := BX ⊗OX

D(m)

X]
, “D] := BX“⊗OX

D(m)

X]
, D[ := BX ⊗OX

D(m)

X[
, “D[ := BX“⊗OX

D(m)

X[
, which

are coherent sheaves of rings (see 7.5.1.3). By p-adic completion, we get from the ring homomorphism
D] → D[, the ring homomorphism “D] → “D[.

The purpose of this subsection is mainly to prove 18.2.2.4.2 which will be used to check later 18.2.3.5.2,
a key ingredient in the proof of 18.2.3.11.

18.2.2.1. Since OX(nD) is a coherent OX-module then it is p-adically complete and therefore endowed
with a structure of “D]-module extending its structure of D-module. Moreover, the canonical morphism
OX(nD)“⊗OX

D → OX(nD)⊗OX
“D] is an isomorphism. Hence, OX(nD)⊗OX

“D] is endowed with a struc-
ture of “D]-bimodule extending canonically its structure of D-bimodule. Similarly, “D] ⊗OX

OX(nD) is
endowed with a canonical structure of “D]-bimodule. By p-adic completion of the transposition isomor-
phism of 4.2.5.1.1, we get γ̂BX(nD) : “D] ⊗OX

OX(nD)
∼−→ OX(nD) ⊗OX

“D]. This yields a “D]-bimodule
by setting “D](nD) := OX(nD)⊗OX

“D].
Let E (resp. M) be a left (resp. right) “D]-module and n ∈ Z. Using 4.2.4.3, we compute that the

canonical isomorphisms OX(nD) ⊗OX
E ∼−→ “D](nD) ⊗D̂] E andM⊗OX

OX(nD)
∼−→ M⊗D̂] (“D] ⊗BX

BX(nD))

γ̂BX(nD)

∼−→ M ⊗D̂]
“D](nD) are D-linear. Hence, E(nD) := OX(nD) ⊗OX

E (resp. M(nD) :=

M⊗OX
OX(nD)) is canonically endowed with a structure of left (resp. right) “D]-module extending its

structure of left (resp. right) D]-module. Similarly to 18.2.1.8.1, we get the isomorphisms:

M(nD)⊗D̂] E
∼−→ M⊗D̂]

“D](nD)⊗D̂] E
∼−→ M⊗D̂] E(nD). (18.2.2.1.1)

18.2.2.2. We keep notation 18.2.2.1.
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(a) Since ωX[⊗OX
“D] is p-adically complete, then they are endowed with a structure of right “D]-bimodule

extending there structure of right D-modules.

(b) It follows from 4.2.4.3 that if E is a left “D]-module, then ωX[⊗OX
E is endowed with a structure of right“D]-module extending canonically its structure of right D-module making “D]-linear the isomorphism:

ωX[ ⊗OX
E ∼−→ (ωX[ ⊗OX

“D])⊗D̂] E . (18.2.2.2.1)

(c) Via 4.2.4.4, if M is a right “D]-module, then M⊗OX
ω−1
X[

= HomOX
(ωX[ ,M) is endowed with a

structure of right “D]-module extending canonically its structure of left D-module making “D]-linear
the isomorphism:

HomOX
(ωX[ ,M)

∼−→ HomD̂](ωX[ ⊗OX
“D],M). (18.2.2.2.2)

(d) Since ωX[ is locally free (of rank one), the canonical OX-linear morphism, then we have the “D]-linear
isomorphism

ωX[ ⊗OX
HomOX

(ωX[ ,M)
∼−→ (ωX[ ⊗OX

“D])⊗D̂] HomD̂](ωX[ ⊗OX
“D],M)

∼−→ M, (18.2.2.2.3)

where the last isomorphism is the evaluation one. We have the canonical ‹D(m)

X]/S]
-linear isomorphism:

E ∼−→ HomD̂](ωX[ ⊗OX
“D], ωX[ ⊗OX

“D] ⊗D̂] E)
∼−→ HomOX

(ωX[ , ωX[ ⊗OX
E). (18.2.2.2.4)

(e) Similarly to 4.3.5.6, this yields that for any left (resp. right) ‹D(m)

X]/S]
-module E (resp. M), we have

the following isomorphism of OS-modules:

M⊗D̂] E
∼−→ (ωX[ ⊗OX

E)⊗D̂] (M⊗OX
ω−1
X[

). (18.2.2.2.5)

(f) As for 4.3.5.7, using the above results, we can check that the functors −⊗OX
ω−1
X[

= HomOX
(ωX[ ,−)

and ωX[ ⊗OX
− induce quasi-inverse equivalences between the category of (resp. coherent, resp. flat,

resp. locally projective of finite type) left “D]-modules and that of (resp. coherent, resp. flat, resp.
locally projective of finite type) right “D]-modules. These equivalences extends to complexes.

Lemma 18.2.2.3. Let E be a left “D]-module and M be a right “D]-module. Via the structure of “D]-
modules defined at 18.2.2.2 and 7.5.1.13, we have the following canonical isomorphisms of “D]-modules:

ωX[ ⊗OX
E(D)

∼−→ ωX] ⊗OX
E , ωX] ⊗OX

E(−D)
∼−→ ωX[ ⊗OX

E , (18.2.2.3.1)

E(D)
∼−→ (ωX] ⊗OX

E)⊗OX
ω−1
X[
, E(−D)

∼−→ (ωX[ ⊗OX
E)⊗OX

ω−1
X]
, (18.2.2.3.2)

M(D)
∼−→ ωX] ⊗OX

(M⊗OX
ω−1
X[

), M(−D)
∼−→ ωX[ ⊗OX

(M⊗OX
ω−1
X]

). (18.2.2.3.3)

Proof. It follows by functoriality from 18.2.1.10.1, that we have the canonical isomorphism of right D-
bimodules ωX[ ⊗OX

“D](D)
∼−→ ωX] ⊗OX

“D]. Since they are p-adically complete, then this is in fact an
isomorphism of right “D]-bimodules. Hence, we get the third isomorphism:

ωX[ ⊗OX
E(D)

18.2.2.2.1
∼−→ (ωX[ ⊗OX

“D])⊗D̂] (“D](D)⊗D̂] E)

∼−→ (ωX[ ⊗OX
“D](D))⊗D̂] E

∼−→ (ωX] ⊗OX
“D])⊗D̂] E 7.5.1.13

∼−→ ωX] ⊗OX
E .

We get the other isomorphisms by using 18.2.2.2 and 7.5.1.13.

18.2.2.4. Let E] ∈ Db
coh(l“D]) and F [ ∈ D(l“D[). Using 18.2.2.2.(f), by applying ωX[ ⊗BX

− to the
morphism E] → “D[ ⊗L

D̂]
E] of Db

coh(l“D]), we get the morphism of Db
coh(r“D]): ωX[ ⊗BX

E] → ωX[ ⊗BX

(“D[ ⊗L
D̂]
E]). This yields by extension the homomorphism of coherent right “D[-modules :

(ωX[ ⊗BX
E])⊗L

D̂]
“D[ → ωX[ ⊗BX

(“D[ ⊗L
D̂]
E]). (18.2.2.4.1)
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Following 4.5.3.8.2, this map is isomorphism modulomi+1. Since the complexes are coherent and therefore
quasi-coherent, then 18.2.2.4.1 is an isomorphism. Using 7.5.1.13.7 instead of 4.3.5.10.1, similarly to
4.5.3.8.1 we get from 18.2.2.4.1 the isomorphism:

(ωX[ ⊗OX
E])⊗L

D̂]
F [ ∼−→ (ωX[ ⊗OX

F [)⊗L
D̂]
E]. (18.2.2.4.2)

18.2.3 Holonomicity and acyclicity of the image by u+ and u! of overconver-
gent log isocrystals

Let T be a divisor of X. Applying the functor→l
∗
Q to the ring homomorphism “D(•)

X]
(T ) → “D(•)

X[
(T ) (see

18.2.2), we get the ring homomorphism D†
X]

(†T )Q → D†X[(
†T )Q.

Theorem 18.2.3.1. Let E be a coherent D†
X]

(†T )Q-module which is a locally projective OX(†T )Q-module
of finite type. The canonical morphism

D†
X[

(†T )Q ⊗L
D†

X]
(†T )Q

E → D†
X[

(†T )Q ⊗D†
X]

(†T )Q
E (18.2.3.1.1)

is an isomorphism.

Proof. Since E be a left coherent DX](
†T )Q-module, then according to 18.2.1.6 the canonical morphism

DX[(
†T )Q ⊗L

D
X],Q
E → DX[(

†T )Q ⊗D
X],Q
E (18.2.3.1.2)

is an isomorphism. Since the extensions DX[(
†T )Q → D†X[(

†T )Q, DX](
†T )Q → D†X](

†T )Q are flat, this
yields that the canonical morphism

D†
X[

(†T )Q⊗L
D†

X]
(†T )Q

(D†
X]

(†T )Q⊗D
X]

(†T )Q
E)→ D†

X[
(†T )Q⊗D†

X]
(†T )Q

(D†
X]

(†T )Q⊗D
X]

(†T )Q
E) (18.2.3.1.3)

is an isomorphism. We conclude via 11.2.1.9.2.

18.2.3.2. Tensoring with Q and passing to the inductive limit on the level, we get from 18.2.2.1 the
following properties: OX(nD) is endowed with a structure of D†

X]
(†T )Q-module extending its structure

of DX](
†T )Q-module. The transposition isomorphism of 18.2.2.1 induces the isomorphism of D†

X]
(†T )Q-

bimodule of the form: γ : D†
X]

(†T )Q ⊗OX
OX(nD)

∼−→ OX(nD) ⊗OX
D†

X]
(†T )Q. We get a D†

X]
(†T )Q-

bimodule by setting D†
X]

(†T )Q(nD) := OX(nD)⊗OX
D†

X]
(†T )Q.

Let E (resp. M) be a left (resp. right) D†
X]

(†T )Q-module and n ∈ Z. The sheaves E(nD) :=
OX(nD) ⊗OX

E (resp. M(nD) := M ⊗OX
OX(nD)) is canonically endowed with a structure of left

(resp. right) D†
X]

(†T )Q-module extending its structure of left (resp. right) DX](
†T )Q-module. Similarly

to 18.2.1.8.1, we get the isomorphisms:

M(nD)⊗D†
X]

(†T )Q
E ∼−→ M⊗D†

X]
(†T )Q

D†
X]

(†T )Q(nD)⊗D†
X]

(†T )Q
E ∼−→ M⊗D†

X]
(†T )Q

E(nD). (18.2.3.2.1)

LetM∈ D−(rD†
X]

(†T )Q), F ∈ D−(lD†
X]

(†T )Q). By taking flat resolutions ofM and F , we construct
from 18.2.3.2.1 the canonical isomorphism:

M⊗L
D†

X]
(†T )Q

(OX,Q(Z)⊗OX,Q F)
∼−→ (M⊗OX,Q OX,Q(Z))⊗L

D†
X]

(†T )Q
F . (18.2.3.2.2)

18.2.3.3. We keep notation 18.2.3.2.

(a) Tensoring with Q and passing to the inductive limit on the level, we get from 18.2.2.2 that ωX[ ⊗OX

D†
X]

(†T )Q is endowed with a structure of right D†
X]

(†T )Q-bimodule extending there structure of right
DX](

†T )Q-modules.

(b) It follows from 4.2.4.3 that if E is a left D†
X]

(†T )Q-module, then ωX[ ⊗OX
E is endowed with a

structure of right D†
X]

(†T )Q-module extending canonically its structure of right DX](
†T )Q-module

making D†
X]

(†T )Q-linear the isomorphism:

ωX[ ⊗OX
E ∼−→ (ωX[ ⊗OX

D†
X]

(†T )Q)⊗D†
X]

(†T )Q
E . (18.2.3.3.1)
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(c) Via 4.2.4.4, ifM is a right D†
X]

(†T )Q-module, thenM⊗OX
ω−1
X[

= HomOX
(ωX[ ,M) is endowed with

a structure of right D†
X]

(†T )Q-module extending canonically its structure of left DX](
†T )Q-module

making D†
X]

(†T )Q-linear the isomorphism:

HomOX
(ωX[ ,M)

∼−→ HomD†
X]

(†T )Q
(ωX[ ⊗OX

D†
X]

(†T )Q,M). (18.2.3.3.2)

(d) Since ωX[ is locally free (of rank one), the canonical OX-linear morphism, then we have the D†
X]

(†T )Q-
linear isomorphism

ωX[⊗OX
HomOX

(ωX[ ,M)
∼−→ (ωX[⊗OX

D†
X]

(†T )Q)⊗D†
X]

(†T )Q
HomD†

X]
(†T )Q

(ωX[⊗OX
D†

X]
(†T )Q,M)

∼−→ M,

(18.2.3.3.3)
where the last isomorphism is the evaluation one. We have the canonical ‹D(m)

X]/S]
-linear isomorphism:

E ∼−→ HomD†
X]

(†T )Q
(ωX[⊗OX

D†
X]

(†T )Q, ωX[⊗OX
D†

X]
(†T )Q⊗D†

X]
(†T )Q

E)
∼−→ HomOX

(ωX[ , ωX[⊗OX
E).

(18.2.3.3.4)

(e) Similarly to 4.3.5.6, this yields that for any left (resp. right) ‹D(m)

X]/S]
-module E (resp. M), we have

the following isomorphism of OS-modules:

M⊗D†
X]

(†T )Q
E ∼−→ (ωX[ ⊗OX

E)⊗D†
X]

(†T )Q
(M⊗OX

ω−1
X[

). (18.2.3.3.5)

(f) As for 4.3.5.7, using the above results, we can check that the functors −⊗OX
ω−1
X[

= HomOX
(ωX[ ,−)

and ωX[ ⊗OX − induce quasi-inverse equivalences between the category of (resp. coherent, resp.
flat, resp. locally projective of finite type) left D†

X]
(†T )Q-modules and that of (resp. coherent, resp.

flat, resp. locally projective of finite type) right D†
X]

(†T )Q-modules. These equivalences extends to
complexes.

Lemma 18.2.3.4. Let E be a left D†
X]

(†T )Q-module andM be a right D†
X]

(†T )Q-module. Via the struc-
ture of D†

X]
(†T )Q-modules defined at 18.2.3.3 and 8.7.2.2, we have the following canonical isomorphisms

of D†
X]

(†T )Q-modules:

ωX[ ⊗OX
E(D)

∼−→ ωX] ⊗OX
E , ωX] ⊗OX

E(−D)
∼−→ ωX[ ⊗OX

E , (18.2.3.4.1)

E(D)
∼−→ (ωX] ⊗OX

E)⊗OX
ω−1
X[
, E(−D)

∼−→ (ωX[ ⊗OX
E)⊗OX

ω−1
X]
, (18.2.3.4.2)

M(D)
∼−→ ωX] ⊗OX

(M⊗OX
ω−1
X[

), M(−D)
∼−→ ωX[ ⊗OX

(M⊗OX
ω−1
X]

). (18.2.3.4.3)

Proof. It follows by functoriality from 18.2.1.10.1, that we have the canonical isomorphism of right
DX](

†T )Q-bimodules ωX[ ⊗OX
D†

X]
(†T )Q(D)

∼−→ ωX] ⊗OX
D†

X]
(†T )Q. Since they are p-adically complete,

then this is in fact an isomorphism of right D†
X]

(†T )Q-bimodules. Hence, we get the third isomorphism:

ωX[ ⊗OX
E(D)

18.2.2.2.1
∼−→ (ωX[ ⊗OX

D†
X]

(†T )Q)⊗D†
X]

(†T )Q
(D†

X]
(†T )Q(D)⊗D†

X]
(†T )Q

E)

∼−→ (ωX[ ⊗OX
D†

X]
(†T )Q(D))⊗D†

X]
(†T )Q

E ∼−→ (ωX] ⊗OX
D†

X]
(†T )Q)⊗D†

X]
(†T )Q

E
7.5.1.13
∼−→ ωX] ⊗OX

E .

We get the other isomorphisms by using 18.2.2.2 and 7.5.1.13.

18.2.3.5. Let E] ∈ Db
coh(lD†

X]
(†T )Q). Let λ0 : N→ N an increasing map such that pλ0(0) ≥ e/(p−1) (see

1.2.4.2) and λ0(m) ≥ m, for any m ∈ N. Let B̃(m)
X (T ) := B(λ0(m))

X (T ), ‹D(m)

X]
(T ) := B̃(m)

X (T )“⊗OX
“D(m)

X]
. It

follows from the equivalence 8.7.5.4.1, that there exists E(•) ∈ LD−→
b
Q,coh(‹D(•)

X]/S
(T )) such that→l

∗
Q(E(•))

∼−→
E . By definition (see 8.4.1.1), we can suppose there exists λ ∈ L(N) large enough such that E(•) ∈
Db

coh(λ∗‹D(•)
X]/S

(T )). Let F (•) ∈ Db(lλ∗‹D(•)
X[/S

(T ), rλ∗‹D(•)
X[/S

(T )) and F [ :=→l
∗
Q(lF (•)) ∈ Db(D†

X[
(†T )Q,

rD†
X[

(†T )Q).

It follows from 18.2.2.4.2 that we have the canonical isomorphism of Db(rλ∗‹D(•)
X[/S

(T )):

(ωX[ ⊗OX
E(•))⊗L

λ∗D̃(•)
X]/S

(T )
F (•) ∼−→ (ωX[ ⊗BX

F (•))⊗L
λ∗D̃(•)

X]/S
(T )
E(•)). (18.2.3.5.1)
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By applying the functor→l
∗
Q this yields the isomorphism of Db(rD†

X[
(†T )Q):

(ωX[ ⊗OX
E])⊗L

D†
X]

(†T )Q
F [ ∼−→ (ωX[ ⊗OX

F [)⊗L
D†

X]
(†T )Q

E]). (18.2.3.5.2)

18.2.3.6. It follows from 18.2.3.3 that for any E ∈ D(l‹D(m)

X]
),M∈ D(r‹D(m)

X]
), we have

RHomD̃(m)

X]

(ωX[ ⊗OX
E ,M)

∼−→ RHomD̃(m)

X]

(E ,M⊗OX
ω−1
X[

), (18.2.3.6.1)

RHomD̃(m)

X]

(M⊗OX
ω−1
X[
, E)

∼−→ RHomD̃(m)

X]

(M, ωX[ ⊗OX
E). (18.2.3.6.2)

Definition 18.2.3.7. Let ∗ ∈ {l, r}. The pushforward by u with coefficients in OX(†T )Q of finite level
(as in 18.2.1.12) is denoted by ualg

T,+ : D−(∗DX](
†T )Q)→ D−(∗DX[(

†T )Q). This later functor do not have
to be confound with the usual pushforward uT,+ : D−(∗D†

X]
(†T )Q) → D−(∗D†

X[
(†T )Q) (see 9.2.4.14),

which is defined by setting for any F ∈ D−(lD†
X]

(†T )Q),M∈ D−(rD†
X]

(†T )Q),

uT,+(F) := D†
X[←X]

(†T )Q ⊗L
D†

X]
(†T )Q

F , uT,+(M) :=M⊗L
D†

X]
(†T )Q

D†
X]→X[

(†T )Q,

where D†
X]→X[

(†T )Q := D†
X[

(†T )Q as (D†
X]

(†T )Q,D†X[(
†T )Q)-bimodule and where D†

X[←X]
(†T )Q is the

(D†
X[

(†T )Q,D†X](
†T )Q)-bimodule

D†
X[←X]

(†T )Q := ωX]
r
⊗OX

(D†
X]

(†T )Q ⊗OX
ω−1
X[

)
∼−→

18.2.3.4.3
D†

X]
(†T )Q ⊗OX

OX(D)
∼−→

18.2.3.2
OX(D)⊗OX

D†
X]

(†T )Q.

Concerning the dual functors, we keep notation 9.2.4.22.1 and 9.2.4.22.2.
This yields the extraordinary pushforward by u with coefficients in OX(†T )Q of finite level or not:

ualg
T,! : D−(∗DX](

†T )Q)→ D−(∗DX[(
†T )Q) and uT,! : D−(∗D†

X]
(†T )Q)→ D−(∗D†

X[
(†T )Q) by setting ualg

T,! =

Dalg
X[,T

◦ ualg
T,+ ◦ Dalg

X],T
and uT,! = DX[,T ◦ uT,+ ◦ DX],T .

These functors preserves perfectness.

Proposition 18.2.3.8. For any E ∈ Db
perf(

lD†
X]

(†T )Q), M ∈ Db
perf(

rD†
X]

(†T )Q), we have the canonical
isomorphisms

u!(M⊗OX
ω−1
X]

)
∼−→ u!(M)⊗OX

ω−1
X[
, ωX[ ⊗OX

u!(E)
∼−→ u!(ωX] ⊗OX

E). (18.2.3.8.1)

Proof. Following 9.2.4.8.2 and 9.2.4.17 (resp. 9.2.4.20.3 and 9.2.4.22.(f)), we have such commutation
isomorphisms for pushforward (duality). Hence, the proposition follows by composition.

Proposition 18.2.3.9. For any E ∈ Db
perf(

lD†
X]

(†T )Q), M ∈ Db
perf(

rD†
X]

(†T )Q), we have the canonical
isomorphisms:

u!(E)
∼−→ D†

X[
(†T )Q ⊗L

D†
X]

(†T )Q
E , u!(M)

∼−→ M⊗L
D†

X]
(†T )Q

(OX(−D)⊗OX
D†

X[
(†T )Q). (18.2.3.9.1)

Proof. Using 8.7.2.4 (resp. 18.2.3.6.2, resp. 18.2.3.4) instead of 4.2.5.6 (resp. 18.2.1.17.2, resp. 18.2.1.10),
we can copy the proof of 18.2.1.20.

Lemma 18.2.3.10. Let E ∈ Db
perf(

lDX](
†T )Q) and M ∈ Db

perf(
rDX](

†T )Q). We have the canonical
isomorphisms:

ualg
T,+(M)⊗D

X[
(†T )Q

D†
X[

(†T )Q
∼−→ uT,+(M⊗D

X]
(†T )Q

D†
X]

(†T )Q), (18.2.3.10.1)

D†
X[

(†T )Q ⊗D
X[

(†T )Q
ualg
T,+(E)

∼−→ uT,+(D†
X]

(†T )Q ⊗D
X]

(†T )Q
E). (18.2.3.10.2)

In the same way by replacing the direct image by the extraordinary direct image.

Proof. As the dual functor commutes with scalar extensions (see 4.6.4.4.1), then it is sufficient to treat
the case of the direct image. The isomorphism 18.2.3.10.1 is straightforward. Setting D(m)

X[
(T ) :=

B̃(m)
X ⊗OX

D(m)

X[
, “D(m)

X[
(T ) := B̃(m)

X
“⊗OX

D(m)

X[
, we have the canonical bijection“D(m)

X[
(T )⊗D(m)

X[
(T )

((D(m)

X[
(T )⊗OX

OX(D))
∼−→ (“D(m)

X[
(T )⊗OX

OX(D)) (18.2.3.10.3)
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given by associativity of the tensor product. Since the source and the target are “D(m)

X[
(T )-coherent, then

they are p-adically complete. Hence, it follows from 4.2.4.3.1 by p-adic completion that 18.2.3.10.3 is an
isomorphism of (“D(m)

X[
(T ), “D(m)

X]
(T ))-bimodules. Tensoring by Q and taking inductive limit on the level,

this yields the isomorphism of (D†
X[

(†T )Q,D†X](
†T )Q)-bimodules:

D†
X[

(†T )Q ⊗D
X[

(†T )Q
((DX[(

†T )Q ⊗OX
OX(D))

∼−→ (D†
X[

(†T )Q ⊗OX
OX(D)) (18.2.3.10.4)

The isomorphism 18.2.3.10.2 is built as follows:

D†
X[

(†T )Q ⊗D
X[

(†T )Q
ualg
T,+(E)

∼−→ D†
X[

(†T )Q ⊗D
X[

(†T )Q
((DX[(

†T )Q ⊗OX
OX(D))⊗L

D
X]

(†T )Q
E)

∼−→
18.2.3.10.4

(D†
X[

(†T )Q ⊗OX
OX(D))⊗L

D
X]

(†T )Q
E ∼−→

∼−→ (D†
X[

(†T )Q ⊗OX
OX(D))⊗L

D†
X]

(†T )Q
D†

X]
(†T )Q ⊗L

D
X]

(†T )Q
E ∼−→ uT,+(D†

X]
(†T )Q ⊗D

X]
(†T )Q

E).

The following proposition means that the isomorphism of relative duality to the canonical morphism
X] → X[ necessity of use a twist (see 18.2.3.11).

Proposition 18.2.3.11. We have, for any E ∈ Db
perf(

∗D†
X]

(†T )Q), of the canonical isomorphism:

u+(E)
∼−→ u!(E(D)). (18.2.3.11.1)

Proof. Using 9.2.4.8.2 and 9.2.4.17, 18.2.3.8, it is sufficient to treat the left case (i.e. ∗ = l). Replacing
4.5.3.8.1 (resp. 4.2.5.6, 18.2.1.12.1, 18.2.1.20, 18.2.1.10.2) by 18.2.3.5.2 (resp. 8.7.2.4, 18.2.3.7, 18.2.3.9.1,
18.2.3.4), we can copy the proof of 18.2.1.21.1.

Corollary 18.2.3.12. Let E ∈ Db
perf(D

†
X]

(†T )Q). We have the canonical quasi-isomorphism:

Ω•X]/T,Q ⊗OX,Q E
∼−→ Ω•X/T,Q ⊗OX,Q uT+(E). (18.2.3.12.1)

Proof. It follows from 18.2.3.9 and 18.2.3.11 that we have the isomorphism:

uT,+(E)
∼−→ uT,!(E(D))

∼−→ D†
X[

(†T )Q ⊗L
D†

X]
(†T )Q

E(D). (18.2.3.12.2)

We have isomorphisms:

Ω•X],Q ⊗OX,Q E
∼−→ (Ω•X],Q ⊗OX,Q D

†
X]

(†T )Q)⊗D†
X]

(†T )Q
E

∼−→
8.7.7.5.a)

ωX],Q(†T )⊗L
D†

X]
(†T )Q

E [−d]
∼−→

18.2.1.10.1
(ωX,Q(†T )⊗OX,Q OX,Q(Z))⊗L

D†
X]

(†T )Q
E [−d]

∼−→
18.2.3.2.2

ωX,Q(†T )⊗L
D†

X]
(†T )Q

E(Z)[−d]
∼−→

18.2.3.12.2
ωX,Q(†T )⊗L

D†
X

(†T )Q
uT,+(E)[−d]

∼−→
8.7.7.5.a)

Ω•X,Q ⊗OX,Q uT,+(E). (18.2.3.12.3)

Theorem 18.2.3.13. Let E be a coherent D†
X]

(†T )Q-module which is a locally projective OX(†T )Q-module
of finite type.

(a) For any l 6= 0,
H l(uT,+(E)) = 0, H l(uT,!(E)) = 0. (18.2.3.13.1)

(b) We have isomorphisms uT,+(E)
∼−→ uT,!(E(D))

∼−→ D†
X[

(†T )Q ⊗D†
X]

(†T )Q
E(D).

(c) We have the canonical isomorphism:

DX,T ◦ uT,+(E)
∼−→ uT,+(E∨(−D)). (18.2.3.13.2)
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(d) The sheaves uT,+(E) and uT,!(E) are D†X(†T )Q-holonomic (see 15.2.4.5).

Proof. The (a), (b) assertions are a consequence of 18.2.3.1 and 18.2.3.12.2. Let us check (c). By
biduality (see 8.7.7.3), it follows from uT,+(E)

∼−→ uT,!(E(D)) the isomorphism DX,T ◦ uT,+(E)
∼−→

uT,+ ◦ DX],T (E(D)) (see the notation 9.2.4.22). By 11.2.6.3.4, DX],T (E(D))
∼−→ (E(D))∨

∼−→ E∨(−D).
Hence, we are done. Finally, (d) is a easy consequence of (a) and (c).

18.2.3.14. Let n ∈ Z. Similarly to 18.2.1.13.4, 18.2.1.13.5, for any E] ∈ Db
perf(

lD†
X]

(†T )Q), M] ∈
Db

perf(
rD†

X]
(†T )Q), we construct the canonical isomorphisms:

D†
X[

(†T )Q ⊗L
D†

X]
(†T )Q

(OX(nZ[)⊗OX
E]) ∼−→ OX(nZ[)⊗OX

(D†
X[

(†T )Q ⊗L
D†

X]
(†T )Q

E]), (18.2.3.14.1)

(OX(nZ[)⊗OX
M])⊗L

D†
X]

(†T )Q
D†

X[
(†T )Q

∼−→ OX(nZ[)⊗OX
(M⊗L

D†
X]

(†T )Q
D†

X[
(†T )Q). (18.2.3.14.2)

Hence, it follows from 18.2.3.9 and 18.2.3.11 that for any ∗ ∈ {l, r}, for any G ∈ Db
perf(

∗‹D(m)

X]
), we have

the canonical isomorphism:

uT,+(E(nZ[))
∼−→ (uT,+(E))(nZ[), uT,!(nE(Z[))

∼−→ (uT,!(E))(nZ[). (18.2.3.14.3)

For \ ∈ {qc, coh}, we have the functor (Z[) : LD−→
b
Q,\(

“D(•)
X]

(T )) → LD−→
b
Q,\(

“D(•)
X]

(T )) by setting for any

E(•) ∈ LD−→
b
Q,\(

“D(•)
X]

(T )):

(Z[)(E(•)) = O(•)
X (Z[)⊗O(•)

X

E(•), (18.2.3.14.4)

where O(•)
X (Z[) is the constant sheaf given by OX(Z[). For any divisor T ′ of X, we have the canonical

isomorphism of LD−→
b
Q,\(

“D(•)
X]

(T )):

(†T ′) ◦ (Z[)
∼−→ (Z[) ◦ (†T ′), RΓ†T ′ ◦ (Z[)

∼−→ (Z[) ◦ RΓ†T ′ . (18.2.3.14.5)

Indeed, the left isomorphism of 18.2.3.14.5 is a consequence of the isomorphism 9.1.1.5.2. By construction
of the local cohomological functor with strict support over a divisor (see 13.1.1.4), using [BBD82, 1.1.9]
this yields the right canonical isomorphism of 18.2.3.14.5.

When T is empty, Db
perf(

∗D†
X],Q = Db

coh(∗D†
X],Q) (see 8.7.7.7 and 1.4.3.29). Let E(•) ∈ LD−→

b
Q,coh(∗“D(•)

X]
).

It follows from 18.2.3.14.3 that we get the isomorphism:

u
(•)
+ (E(•)(nZ[))

∼−→ (u
(•)
+ (E(•)))(nZ[), u

(•)
! (E(•)(nZ[))

∼−→ (u
(•)
! (E(•)))(Z[). (18.2.3.14.6)

Proposition 18.2.3.15. The canonical ring homomorphisms “D(m)

X]
(T∪D)→ “D(m)

X[
(T∪D) and “D(m)

X[
(T∪

D) → “D(m+1)

X[
(T ∪ D) are injective. Via theses injections, we get the inclusion: p“D(m)

X[
(T ∪ D) ⊂“D(m+1)

X]
(T ∪D). In particular, the ring homomorphism “D(•)

X]
(T ∪D) → “D(•)

X[
(T ∪D) is an isomorphism

of LD−→
b
Q(“D(•)

X]
(T ∪D)). The canonical morphism D†

X]
(†T ∪D)Q → D†X[(

†T ∪D)Q is a ring isomorphism.

Proof. The assertion is local on X. We can suppose that there exists local coordinates t1, . . . , td of X such
that Z = V (t1 . . . tr), Z[ = V (t1 . . . ts) and D = V (ts+1 . . . tr) for some 0 ≤ s ≤ r. Then t1, . . . , td of X]/S
are semi-nice coordinates of both X]/S and X[/S. We get the description 7.5.1.6. For instance, we get
the bases {∂〈k〉(m)

(r) : k ∈ Nd} of B̃(m)
X (T ∪D)⊗OX

D(m)

X]/S
and {∂〈k〉(m)

(s) : k ∈ Nd} of B̃(m)
X (T ∪D)⊗OX

D(m)

X[/S
.

For any integer m ≥ 0, using the description 7.5.1.6, since ∂〈k〉(m)

(r) ∈ “D(m)

X[
(T ∪D) for any k ∈ Nd (recall

4.5.1.1.1), then we get “D(m)

X]
(T ∪D) ⊂ “D(m)

X[
(T ∪D).

For any integer k ≥ 0, we denote by q
(m)
k , q(m+1)

k , r(m)
k , r(m+1)

k , r̃(m)
k the integers satisfying the

following conditions: k = pmq
(m)
k + r

(m)
k , 0 ≤ r(m)

k < pm, k = pm+1q
(m+1)
k + r

(m+1)
k , 0 ≤ r(m+1)

k < pm+1,
q

(m)
k = pq

(m+1)
k +r̃

(m)
k , 0 ≤ r̃(m)

k < p. We recall that the p-adic valuation of k! is vp(k!) = (k−σ(k))/(p−1),
where σ(k) =

∑
i ai if k =

∑
i aip

i with 0 ≤ ai < p. We compute: vp(q
(m)
k !) − vp(q(m+1)

k !) = (q
(m)
k −

q
(m+1)
k − r̃(m)

k )/(p−1) = q
(m+1)
k . Let uk ∈ Z×p be a unit such that q(m)

k !/q
(m+1)
k ! = ukp

q
(m+1)

k . Let s+1 ≤
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i ≤ r be an integer. By 1.4.2.5.2 (and via “D(m)
X,Q ⊂ “D(m+1)

X,Q ), we have: ∂〈k〉(m)

i = q
(m)
k !/q

(m+1)
k !∂

〈k〉(m+1)

i .
Hence, we compute:

p∂
〈k〉(m)

i = ukp
q
(m+1)

k
+1∂

〈k〉(m+1)

i = ukt
pm+1−r(m+1)

k
i

Ç
p

tp
m+1

i

åq(m+1)

k
+1

tki ∂
〈k〉(m+1)

i ∈ “D(m+1)

X]
(T ∪D).

This yields the inclusion pd“D(m)

X[
(T ∪D) ⊂ “D(m+1)

X]
(T ∪D).

Let λ ∈ L(N) given by m 7→ m+1 and χ ∈M(N) given by m 7→ m+1. Then we get the commutative
square: “D(•)

X]
(T ∪D) //

��

“D(•)
X[

(T ∪D)

vv ��
λ∗χ∗“D(•)

X]
(T ∪D) // λ∗χ∗“D(•)

X[
(T ∪D)

(18.2.3.15.1)

Then, by applying the functor →l
∗
Q to 18.2.3.15.1, we get the canonical morphism D†

X]
(†T ∪ D)Q →

D†
X[

(†T ∪D)Q is an isomorphism.

Corollary 18.2.3.16. Let X (resp. X′) be a smooth S-formal scheme and D ⊂ X (resp. D′ ⊂ X′)
be a relative to X/S (resp. X′/S) strict normal crossing divisor. Set X] := (X,M(D)) and X′] :=
(X′,M(D′)). Let f : X] → X′] be a morphism of log-smooth S-log formal schemes. Let T , T ′ be two
divisors such that f−1

0 (T ) ⊂ T ′, Z ⊂ T and Z ′ ⊂ T ′. We have the equalities

(a) The categories MIC††(X], T/S]) and MIC††(X, T/S]) (resp. MIC††(X′], T ′/S]) and MIC††(X′, T ′/S]))
are canonically equivalent. Moreover, modulo theses identifications, the functors f ]∗T ′,T : MIC††(X], T/S])→
MIC††(X′], T ′/S) and f∗T ′,T : MIC††(X, T/S]) → MIC††(X′, T ′/S) of 11.2.3.5 and the functors
Lf ]∗(•)T ′,T : MIC(•)(X], T/S) → MIC(•)(X′], T ′/S) and Lf∗(•)T ′,T : MIC(•)(X, T/S) → MIC(•)(X′, T ′/S)
of 11.2.3.5.1 are equals.

(b) Let E(•) ∈ MIC(•)(X]/S) and E :=→l
∗
Q E

(•) ∈ MIC††(X]/S). We have therefore the isomorphism of
coherent D†X′(†T ′)Q-modules, OX′(

†T ′)Q-coherent:

(†T ′)(f ](E))
∼−→ f∗T ′,T (E(†T )), (†T ′)(f ](•)(E(•)))

∼−→ f
(•)∗
T ′,T (E(•)(†T )). (18.2.3.16.1)

Proof. The first part is a consequence of 18.2.3.15. Using 13.2.1.4.1, this yields the second part.

18.2.3.17. Let E be a coherent D†
X]

(†T )Q-module which is a locally projective OX(†T )Q-module of finite
type. We get the map:

E(D) = OX(D)⊗OX
E → OX(†T ∪D)Q ⊗OX(†T )Q

E ∼−→ D†
X]

(†T ∪D)Q ⊗D†
X]

(†T )Q
E = E(†T ∪D).

(18.2.3.17.1)
Since E(D) is a coherent D†

X]
(†T )Q-module, this yields by extension the morphism of coherent D†

X]
(†T ∪

D)Q-module:

E(D)(†T∪D) = D†
X]

(†T∪D)Q⊗D†
X]

(†T )Q
(E(D))→ D†

X]
(†T∪D)Q⊗D†

X]
(†T )Q

E = E(†T∪D). (18.2.3.17.2)

Since the map 18.2.3.17.2 is an isomorphism outside T ∪D, then it is an isomorphism. It follows from
18.2.3.15 that E(†T ∪D) is a coherent D†

X[
(†T ∪D)Q. Hence, we get by extension from 18.2.3.17.1 the

last D†
X[

(†T )Q-linear morphism:

ρE : uT,+(E)
∼−→

18.2.3.13.(b)
D†

X[
(†T )Q ⊗D†

X]
(†T )Q

E(D)→ E(†T ∪D), (18.2.3.17.3)

ρE being by definition the composite morphism. This yields by extension from 18.2.3.17.3 the homomor-
phism of coherent D†

X[
(†T ∪D)Q-modules:

(†T ∪D)(uT,+(E)) = D†
X[

(†T ∪D)Q ⊗D†
X[

(†T )Q
uT,+(E)→ E(†T ∪D), (18.2.3.17.4)

963



Since the map 18.2.3.17.4 is an isomorphism outside T ∪D, then it is an isomorphism.
Let E(•) ∈ LM−−→Q,coh(“D(•)

X]
(T )) such that→l

∗
Q E

(•) ∼−→ E . It follows from 18.2.3.15 that the functor“D(•)
X[

(T ∪D) ⊗L
D̂(•)

X]
(T∪D)

− : LD−→
b
Q,coh(“D(•)

X]
(T ∪D)) → LD−→

b
Q,coh(“D(•)

X[
(T ∪D)) and we can identify them.

Then similarly to 18.2.3.17.4 we construct the morphism of LD−→
b
Q,coh(“D(•)

X[
(T ∪D)) of the form:

(†D) ◦ u(•)
T,+(E(•))→ (†D)(E(•)), (18.2.3.17.5)

which is an isomorphism thanks to 18.2.3.17.4.

18.3 Stability of the (over)holonomicity with a Frobenius struc-
ture

18.3.1 A comparison theorem between log-de Rham complexes and de Rham
complexes

Let X be a separated, quasi-compact and smooth V-formal scheme and g : X → Spf V be the structural
morphism. Let Z be a relative to X/S strict normal crossing divisor, Y := X \ Z, and let j : Y ⊂ X
be the open immersion. Let Z1, . . . ,Zr be the irreducible components of Z and Z[ := ∪i≥2 Zi. We set
X] := (X,M(Z)), X[ := (X,M(Z[)). We get a relative strict normal crossing divisor on Z1/S defined
by D1 := i−1

1 (Z[) := Z1 ∩ Z[ :=
⋃r
i=2(Z1 ∩ Zi) and we set Z[1 := (Z1,M(D1)). Let i1 : Z1 ↪→ X be

the corresponding closed immersion and i[1 : Z[1 ↪→ X[ be the induced exact closed immersion. We put
u : X] → X, u1 : X] → X[, v1 : X[ → X, w1 : Z[1 → Z1 be the canonical morphisms.

Suppose the residue field k of V is a perfect field of characteristic p > 0. When we work with F -
complex, we suppose there exists an automorphism σ : V ∼−→ V which is a lifting of the sth Frobenius
power of k. The data s and σ are fixed in the remaining.

Let T be a divisor of X such that U := T ∩ Z1 is a divisor of Z1. Let λ0 : N→ N an increasing map
such that pλ0(0) ≥ e/(p−1) (see why at 1.2.4.2) and λ0(m) ≥ m, for any m ∈ N. We put then B̃(m)

X (T ) :=

B(λ0(m))
X (T ), B̃(m)

Z1
(U) := B(λ0(m))

Z1
(U), “D(m)

X[
(T ) := B̃(m)

X (T )“⊗OX
“D(m)

X[
, “D(m)

Z[1
(U) := B̃(m)

Z1
(U)“⊗OZ1

“D(m)

Z[1
.

Definition 18.3.1.1. We denote by MIC††0 (X], T/S) the full subcategory of MIC††(X], T/S) consisting
of objects which are locally projective of finite type as OX(†T )Q-module and having nilpotent residues
along each irreducible components of D not included in T .

We denote by MIC††NL(X], T/S) the full subcategory of MIC††(X], T/S) consisting of objects which
are locally projective of finite type as OX(†T )Q-module and such that the following conditions hold:

(a) none of differences of exponents along each irreducible components of D not included in T of E is a
p-adic Liouville number,

(b) none of exponents along each irreducible components of D not included in T of E is a p-adic Liouville
number.

When the divisor is empty, we simply write MIC††\ (X]/S), with \ ∈ {NL, 0}.

Proposition 18.3.1.2. The category MIC††0 (X], T/S) is abelian.

Proof. When T is empty, this is [Ked07, 3.2.14] (see also the definition [Ked07, 2.3.7]). Let U be the
open of X complementary to T . Let E → F be a morphism MIC††0 (X], T/S). We have to check that
its kernel and cokernel belong to MIC††0 (X], T/S). Since this is Zariski local on X, we can suppose X
and T defined by an equation. This yields U is affine. Using theorem of type A concerning coherent
OX(†T )Q-modules, we reduce to check that Γ(X, E) is a projective Γ(X,OX(†T )Q)-module of finite type.

Following the case where T is empty, we get that E is a locally projective OU,Q-module of finite type.
Since U is affine, then via theorem of type A for coherent OU,Q-modules we get Γ(U, E) is a projective
Γ(U,OU,Q)-module of finite type. Theorem of type A concerning coherent OX(†T )Q-modules implies
that the canonical morphism Γ(U,OX(†T )Q) ⊗Γ(X,OX(†T )Q) Γ(X, E) → Γ(U, E) is an isomorphism. Since
Γ(U,OX(†T )Q) = Γ(U,OU,Q), since Γ(X,OX(†T )Q)→ Γ(U,OU,Q) is faithfully flat (this is checked in the
proof of 8.7.6.8), then this implies that Γ(X, E) is a projective Γ(X,OX(†T )Q)-module of finite type.
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Remark 18.3.1.3. The category MIC††NL(X], T/S) is not abelian. For instance, OX,Q and OX,Q(Z1) are
objects of MIC††NL(X]/S) but not the cokernel of the canonical inclusion OX,Q → OX,Q(Z1).

18.3.1.4 (Inverse image). Let V → V ′ be a morphism of mixed characteristic complete discrete valuation
rings, k → k′ be the induced morphism of perfect residue fields, X be a smooth V-formal scheme, X′
be a smooth formal V ′-scheme and Z (resp. Z′) be a relative to X/S (resp. relative to X′/ Spf V ′)
strict normal crossing divisor. Let f0 : (X ′,M(Z′)) → (X,M(Z)) be a morphism of log-schemes over
Spec k (see notation 4.5.2.14). We have a canonical inverse image functor under f0 denoted by f∗0 :
Iconv,et((X,M(Z))/ Spf V) → Iconv,et((X

′,M(Z′))/Spf V ′) (this is obvious from the definition [Shi02,
2.1.5, 2.1.6]). We get from 11.2.1.5.(b) an inverse image functor under f0, also denoted by f∗0 , from the
category of coherent D†(X,M(Z)),Q-modules, locally projective of finite type over OX,Q to the category of

coherent D†(X′,M(Z′)),Q-modules, locally projective of finite type over OX′,Q. When there exists a lifting
f : (X′,M(Z′))→ (X,M(Z)) of (X ′,M(Z′))→ (X,M(Z)) then f∗0 is canonically isomorphic to the usual
functor f∗.

18.3.1.5 (Frobenius structure). Suppose now that V → V ′ is σ (which is a fixed lifting of the ath
Frobenius power of k) and f0 is F(X,Z) (or simply F ) the ath power of the absolute Frobenius of (X,Z).
A “coherent F -D†(X,M(Z)),Q-module, locally projective of finite type over OX,Q” or “coherent D†(X,M(Z)),Q-
module, locally projective of finite type over OX,Q and endowed with a Frobenius structure” is a coherent
D†(X,M(Z)),Q-module E , locally projective of finite type over OX,Q and endowed with a D†(X,M(Z)),Q-linear
isomorphism E ∼−→ F ∗(E). This notion is compatible (via the equivalence of categories 11.2.1.5.(b))
with Shiho’s notion of convergent F -log-isocrystal on (X,Z) (see [Shi02, 2.4.2]). By [Shi02, 2.4.3], an
F -log-isocrystal on (X,Z) is strikingly locally free.

We translate 10.3.4.23 (beware we have changed the notation) in the arithmetic D-modules side as
follows:

Theorem 18.3.1.6. We assume that g : X → S factors through a smooth morphism g1 : X → Z1 over
S such that g1 ◦ i1 = id and Z[ = g−1

1 ◦ i−1
1 (Z[). Let g]1 : X] → Z[1 be the morphism induced by g1. Let

E ∈ MIC††NL(X], T/S) (see notation 11.2.1.4).

(i) We suppose that none of exponents along Z1 of E is a nonnegative integer. Then the canonical
morphism g]1,T+(E)→ g]1,T∪Z1+(E(†Z1)) is an isomorphism.

(ii) Suppose there exist n ∈ Z and G ∈ MIC††0 (X], T/S) such that E := G(nZ1). Then

Cone
Ä
g]1,T+(E)→ g]1,T∪Z1+(E(†Z1))

ä
(18.3.1.6.1)

is isomorphic to a complex of Db(MIC††0 (Z[1, T/S)).

Proof. 1) We set E := sp∗(E), Y1 := X \Z1, j1 : Y1 ⊂ X be the open immersion. Since Ω•
X]
K
/Z[

1K

⊗O]X[X

E ∼= j†Ω•
X]
K
/Z[

1K

⊗j†O]X[X
E, since the functor Γ†]Z1[X

is exact, since mapping cones commute with the

functor Rg1K∗(Ω
•
X]
K
/Z[

1K

⊗O]X[X
−) then we obtain the isomorphisms:

Rg1K∗Γ
†
]Z1[X

(
Ω•

X]
K
/Z[

1K

⊗O]X[X
E
)
∼= Rg1K∗

(
Ω•

X]
K
/Z[

1K

⊗O]X[X
Γ†]Z1[X

E
)

∼= Rg1K∗

(
Cone

(
Ω•

X]
K
/Z[

1K

⊗O]X[X
E → Ω•

X]
K
/Z[

1K

⊗O]X[X
j†1E

)
[−1]

)
∼= Cone

(
Rg1K∗(Ω

•
X]
K
/Z[

1K

⊗O]X[X
E)→ Rg1K∗(Ω

•
X]
K
/Z[

1K

⊗O]X[X
j†1E)

)
[−1] (18.3.1.6.2)
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2) We have the following commutative diagram:

Rsp∗Rg1K∗(Ω
•
X]
K
/Z[

1K

⊗O]X[X
E) //

∼
��

Rsp∗Rg1K∗(Ω
•
X]
K
/Z[

1K

⊗O]X[X
j†Y1

E)

∼
��

Rg1∗(Ω
•
X]/Z[1,Q

⊗OX,Q sp∗(E)) //

∼
��

Rg1∗(Ω
•
X]/Z[1,Q

⊗OX,Q sp∗(j
†
Y1
E)),

11.2.7.2.1∼
��

Rg1∗(Ω
•
X]/Z[1,Q

⊗OX,Q E) //

9.4.1.6.1∼
��

Rg1∗(Ω
•
X]/Z[1,Q

⊗OX,Q E(†Z1)),

9.4.1.6.1∼
��

g]1,T+(E)[−1] // g]1,T∪Z1+(E(†Z1))[−1],

(18.3.1.6.3)

where both top vertical arrows can be constructed by using the canonical isomorphism Rsp∗ ◦Rg1K∗
∼−→

Rg1∗ ◦ Rsp∗ and by using 10.1.2.3.2.
3) By applying the functor Rsp∗ to the left top term of 18.3.1.6.2, following 10.3.4.23 (and via the

equivalence of categories 11.2.1.5.(a)) we get either the null complex in the case (i) of the theorem or
a complex isomorphic to a complex of coherent D†

Z[1
(†U)Q-modules belonging to MIC††0 (Z[1, U/S) in the

second case (see the description of the right part of 10.3.4.23.1, we have two terms with nilpotent residues
on Z[1). Hence, we conclude thanks to the steps 1) and 2).

18.3.1.7. Since i[∗1 (OX(nZ[))
∼−→ OZ[1

(nD1), then for any E(•) ∈ LD−→
b
Q,qc(“D(•)

X]
(T )) we obtain the iso-

morphism:
i
[(•)!
1 (E(•)(nZ[))

∼−→ i
[(•)!
1 (E(•))(nD1)). (18.3.1.7.1)

By using Berthelot-Kashiwara theorem of the form 9.3.5.13, for any F (•) ∈ LD−→
b
Q,coh(“D(•)

Z]1
(U)) we get

from 18.3.1.7.2 the isomorphism:

i
[(•)
1+ (F (•))(nZ[)

∼−→ i
[(•)
1+ (F (•)(nD1)). (18.3.1.7.2)

The following paragraph means that the context of Theorem 18.3.1.6 is Zariski local up to an étale
morphism.

18.3.1.8 (Local situation). Suppose X := Spf A affine and there exists φ : X→ ÂdV be an étale morphism
of V-formal schemes such that, denoting by t1, . . . , td ∈ Γ(X,OX) the coordinates given by φ, for any
i = 1, . . . , r, we have Zi = V (ti).

Let t2, . . . , td be the global sections of OZ1
induced by t2, . . . , td and let φ1 : Z1 → Âd−1

V be the étale
morphism induced by the coordinates t2, . . . , td. We get the morphism of smooth V-formal schemes
id×φ1 : Â1

V × Z1 → Â1
V × Âd−1

V = ÂdV . Let ι0 : Spf V ↪→ Â1
V be the closed immersion given by 0 and

ι0 := ι0× id : Z1 = Spf V×Z1 ↪→ Â1
V×Z1. By putting X′′ := (Â1×Z1)×

Âd
X, we get the closed immersion

i′1 : Z1 ↪→ X′ making commutative the left diagram:

Z1

ι0 ,,
i′′1

//

i1 %%

X′′

f ′��
φ′′
//

�

Â1 × Z1
id×φ1��

X //
φ

// Âd

, Z1

ι0 ,,

i′1

//

i1 %%

X′

f��
φ′
// Â1 × Z1

id×φ1��
X //

φ
// Âd

(18.3.1.8.1)

whose square is cartesian and has étale morphisms and where f ′ and φ′′ are the canonical projections.
Putting Z′′1 := f ′−1(Z1) = Z1 ×X X′′, we get a section (id, i′′1) : Z1 ↪→ Z′′1 of the étale projection Z′′1 → Z1.
Hence, by using SGA1 Exp. I Corollary 5.3., there exists a dense open X′ of X′′ such that Z1

∼−→ Z1×XX
′.

We get therefore the right diagram of 18.3.1.8.1. Let g1 : X′ → Z1 be the canonical morphism, i.e. the
composition of φ′ and the projection Â1 × Z1 → Z1. By construction, i′1 is a section of g1.

We put T ′ := f−1(T ), Z′ := f−1(Z), Z′[ := f−1(Z[), X′] := (X′,M(Z′)), X′[ := (X′,M(Z′[)). We
denote by f [ : X′[ → X[, f ] : X′] → X], u′1 : X′] → X′[, g]1 : X′] → Z[1, g[1 : X′[ → Z[1, i′[1 : Z[1 → X′[,

966



v′1 : X′[ → X′ the associated morphisms. We summarize the notation and the above properties in the
following commutative diagrams:

Z1
��
i′1

//

�

X′
g1
uu

f
�� �

X′[
v′1

oo

f[�� �

g[1 **
Z[1_?

i′[1

oo

Z1
� � i1 // X X[

v1

oo Z[1,?
_i[1oo

w1

kk

X′[

f[ �� �

X′]
u′1oo

f]��
X[ X]

u1

oo

(18.3.1.8.2)

where squares (including the below “square” containing w1) are cartesian, where the commutativity of
the top part means that i′1 is a section of g1 and i′[1 is a section of g[1.

We remark that Z′[ = g−1
1 (Z[1). Indeed, since Z[ = φ−1(V (x2 . . . xr)), then using the commuta-

tivity of the square of the right diagram of 18.3.1.8.1 we get Z′[ = f−1φ−1(V (x2 . . . xd)) = φ′−1(id ×
φ1)−1(V (x2 . . . xr)) = φ′−1(Â1 × Z[1) = g−1

1 (Z[1). Moreover, since i′−1
1 (Z′[) = i−1

1 (Z[) = Z[1, this implies
Z′[ = g−1

1 ◦ i′−1
1 (Z′[).

Remark 18.3.1.9. With the notation 18.3.1.6, let E(•) ∈ LM−−→
b
Q,perf(

“D(•)
X]

(T )) an object such that→l
∗
Q E

(•) ∼−→
E (see 8.4.5.6). We have the isomorphism (see 13.1.5.6.3):

→l
∗
Qg

](•)
1+ ◦ RΓ†Z1

(E(•))
∼−→ Cone

Ä
g]1T+(E)→ g]1T∪Z1+(E(†T ∪ Z1))

ä
[−1]. (18.3.1.9.1)

Corollary 18.3.1.10. Let G ∈ MIC††0 (X], T/S) (see notation 18.3.1.1). Let n ∈ Z and E := G(nZ1).
Let E(•) ∈ LM−−→Q,coh(“D(•)

X]
(T )) such that→l

∗
Q E

(•) ∼−→ E. The following properties are then satisfied:

(a) We have i[(•)!1 ◦ u(•)
1+(E(•)) ∈ LD−→

b
Q,coh(“D(•)

Z[1
(U)).

(b) If n ≥ 0, then i[(•)!1 ◦ u(•)
1+(E(•))

∼−→ 0 and the canonical morphism u1+(E) → E(†Z1) is an isomor-
phism.

(c) Suppose we are in the situation 18.3.1.8. Then, the complex i[!1 ◦ u1+(E) is isomorphic to a complex
(with two terms) of Db(MIC††0 (Z[1, U/S)).

Proof. 0) Since the proposition is Zariski local on X, then we can suppose we are in the situation 18.3.1.8
and we take its notation. By using the right cartesian square of 18.3.1.8.2 and thanks to the base
change isomorphism of a proper pushforward by a smooth pullback (more precisely, see 13.2.3.7) which
gives the isomorphism f [(•)! ◦ u(•)

1+(E(•)) ∼−→ u
′(•)
1+ ◦ f ](•)!(E(•)), since →l

∗
Q ◦ f

](•)!(E(•)) ∼−→ f ]!(E) ∈
MIC††0 (X′], T ′/S), then we reduce to the case where there exists a smooth morphism g1 : X → Z1 such
that g1 ◦ i1 = id and Z[ = g−1

1 ◦ i−1
1 (Z[).

1) Let us check (a) and (c). Since i[1 is an exact immersion, then following 13.2.1.5.1 we have
i
[(•)
1+ ◦ i

[(•)!
1

∼−→ RΓ†Z1
. As (†Z1) ◦ u(•)

1+(E(•))
∼−→ E(•)(†Z1) (see 18.2.3.17.5), then we get from 13.1.1.5

the distinguished triangle of LD−→
b
Q,qc(“D(•)

X[
(T )):

i
[(•)
1+ ◦ i

[(•)!
1 ◦ u(•)

1+(E(•))→ u
(•)
1+(E(•))→ E(•)(†Z1)→ i

[(•)
1+ ◦ i

[(•)!
1 ◦ u(•)

1+(E(•))[1]. (18.3.1.10.1)

By applying the functor g[(•)1+ to the triangle 18.3.1.10.1, as g[(•)1+ ◦ i
[(•)
1+ = id, since g[(•)1+ ◦ u

(•)
1+ = g

](•)
1+ , we

get then the distinguished triangle of LD−→
b
Q,qc(“D(•)

Z[1
(U)):

i
[(•)!
1 ◦ u(•)

1+(E(•))→ g
](•)
1+ (E(•))→ g

](•)
1+ (E(•)(†Z1))→ i

[(•)!
1 ◦ u(•)

1+(E(•))[1]. (18.3.1.10.2)

As u(•)
1+(E(•)) ∈ LM−−→

b
Q,coh(“D(•)

X[
(T )), then→l

∗
Q ◦ i

[(•)!
1 ◦ u(•)

1+(E(•))
∼−→ i[!1 ◦ u1,T+(E). Hence, by applying the

functor→l
∗
Q to 18.3.1.10.2, we obtain:

i[!1 ◦ u1,T+(E)→ g]1,T+(E)→ g]1,T∪Z1+(E(†Z1))→ i[!1 ◦ u1,T+(E)[1]. (18.3.1.10.3)
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Using Theorem 18.3.1.6.(ii), we deduce from 18.3.1.10.3 that i[!1 ◦ u1+(E) is isomorphic to a com-
plex of Db(MIC††0 (Z[1, T/S)). Using 14.3.3.9, 14.3.3.1 and 18.3.1.2, this yields i[(•)!1 ◦ u(•)

1+(E(•)) ∈
LD−→

b
Q,coh(“D(•)

Z[1
(U)).

2) It remains to check (b). When n ≥ 0, then E satisfies the conditions (a), (b) and (p) of 18.3.1.6.(i),
and then the canonical morphism g]1,T+(E)→ g]1,T∪Z1+(E(†Z1)) is an isomorphism. With 18.3.1.10.3, this

implies that i[!1 ◦u1,T+(E)
∼−→ 0. Since i[(•)!1 ◦u(•)

1+(E(•)) ∈ LD−→
b
Q,coh(“D(•)

Z[1
(U)), since→l

∗
Q◦i

[(•)!
1 ◦u(•)

1+(E(•))
∼−→

i[!1 ◦ u1,T+(E), then i
[(•)!
1 ◦ u(•)

1+(E(•))
∼−→ 0. With 18.3.1.10.1, this yields u(•)

1+(E(•)) → E(•)(†Z1) is an
isomorphism. By applying→l

∗
Q we are done.

Corollary 18.3.1.11. Let G ∈ MIC††0 (X], T/S) (see notation 18.3.1.1). The canonical morphism
uT,+(G)→ G(†Z) of 18.2.3.17.3 is an isomorphism.

Proof. We proceed by induction on r as follows. We have u+(G)
∼−→ v1,+(u1,+(G))

∼−→
18.3.1.10.(b)

v1,+(G(†Z1).

By induction hypothesis, since G(†Z1) ∈ MIC††0 (X[, T∪Z1/S) (see 18.2.3.17.3), then we get v1,+(G(†Z1))
∼−→

G(†Z1)(†Z[)
∼−→ G(†Z).

Remark 18.3.1.12. Let G be a coherent D†
X]

(†T )Q-module which is a locally projective OX(†T )Q-module
of finite type. Moreover, if we do not make some assumptions on the exponents, the homomorphism
the canonical morphism u+(G)→ G(†Z) of 18.2.3.17.3 is not always an isomorphism, i.e. the hypothesis
G ∈ MIC††0 (X], T/S) in 18.3.1.11 is crucial. Here are two counter-examples:

(a) When Z is non-empty, we check that ρOX(†T )Q(−Z) is not an isomorphism. Indeed, by 8.7.6.11, we
reduce to the case where T is empty. Let us suppose X]/S that there exist nice local coordinates
t1, . . . , td such that Z = V (t1 . . . ts) (see definition 4.5.2.15). We computeDX],Q/DX],Q(∂],1, . . . , ∂],d)

∼−→
OX,Q. Following 11.1.1.6.(c), this yields :

D†X,Q/D
†
X,Q(t1∂1, . . . , td∂d)

∼−→ D†X,Q ⊗D†
X],Q

OX,Q
∼−→

18.2.3.13.(b)
uT,+(OX,Q(−Z)).

Moreover, we deduce from 12.1.2.3.1 the first isomorphism:

D†X,Q/D
†
X,Q(∂1t1, . . . , ∂sts, ∂s+1, . . . , ∂d)

∼−→ OX(†Z)Q
∼−→ (OX,Q(−Z))(†Z).

When s ≥ 1, we conclude then noticing D†X,Q(t1∂1, . . . , td∂d) 6= D†X,Q(∂1t1, . . . , ∂sts, ∂s+1, . . . , ∂d).

(b) When X is proper and T is empty, the fact that ρG is an isomorphism implies that the rigid coho-
mology of the overconvergent isocrystal G(†Z) would be of finite dimension. Hence we can consider
the overconvergent isocrystal (which comes from a log-isocrystal convergent) described by Berthelot
in the last remark of [Ber96c] to notice that this is not always the case.

Corollary 18.3.1.13. Let E be an isocrystal on X] overconvergent along T with nilpotent residues.
Suppose that there exists a smooth morphism X → T of smooth formal schemes over S such that Z is
a relative strict normal crossing divisor of X over T. Then the canonical morphism Ω•X]/T,Q ⊗OX,Q E →
Ω•X/T,Q ⊗OX,Q E(†Z) is a quasi-isomorphism.

Proof. This follows from 18.3.1.11 and 18.2.3.12.

18.3.2 Overholonomicity of overconvergent F -isocrystals and stability
Theorem 18.3.2.1. Let X be a smooth V-formal scheme, Z a relative to X/S strict normal crossing
divisor, Let X] := (X,M(Z)) be the induced log smooth V-log formal scheme and u : X] → X the canonical
morphism. Let Z1, . . . ,Zl be the irreducible components of Z. Let G ∈ MIC††0 (X]/S) (see notation
18.3.1.1). Let n ∈ Z and E := G(nZ). Then u+(E) is overholonomic.

Proof. For convenience, an object F of D(D†X,Q) is said to be −1-overholonomic if E ∈ Db
coh(D†X,Q). Let

r ≥ −1, n ≥ 0 be two integers and let us consider the next properties:
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(Pn,r) If dimX ≤ n then the module u+(E) is r-overholonomic (see 18.1.2.1).

(Qn,r) If dimX ≤ n then the complex RΓ†Zu+(E) is r-overholonomic.

(Rn,r) If dimX ≤ n then the module E(†Z) is r-overholonomic.

(I) (Pn,−1), (Qn,−1) and (Rn,−1) are satisfied.
Since the functor u+ preserves the coherence, then (Pn,−1) is satisfied. Following 18.3.1.11, u+(G)

∼−→
G(†Z). Since G(†Z)

∼−→ E(†Z) (see 18.2.3.17.2), then (Rn,−1) is satisfied. By using the exact triangle of
localisation with respect to Z, this yields that (Qn,−1) is satisfied.
(II) For any n ≥ 1, r ≥ 0, we check the implication (Pn−1,r)⇒ (Qn,r).

Let G(•) ∈ LM−−→Q,coh(“D(•)
X]

) such that→l
∗
Q G

(•) ∼−→ G. We set E(•) := G(•)(nZ). Since this is local, we
can suppose we are in the local situation 18.3.1.8 and we use its notation (within notation 18.3.1). and
u1+ ◦ (lZ[)

∼−→ (lZ[) ◦ u1+, and since RΓ†Z1
commutes with pushforwards, then we get the isomorphism

Since G(•)(lZ1) ∈ LM−−→Q,coh(“D(•)
X]

), then we get the second isomorphism:

RΓ†Z1
◦ u(•)

+ (E(•))
∼−→ RΓ†Z1

◦ v(•)
1+ ◦ u

(•)
1+ ◦ (lZ[) ◦ (G(•)(lZ1))

∼−→
18.2.3.14.6

RΓ†Z1
◦ v(•)

1+ ◦ (lZ[) ◦ u(•)
1+ ◦ (G(•)(lZ1))

∼−→
13.2.1.4.2

v
(•)
1+ ◦ RΓ†Z1

◦ (lZ[) ◦ u(•)
1+ ◦ (G(•)(lZ1))

∼−→
18.2.3.14.5

v
(•)
1+ ◦ (lZ[) ◦ RΓ†Z1

◦ u(•)
1+(G(•)(lZ1)). (18.3.2.1.1)

Set F (•)
1 := i

[(•)!
1 ◦ u(•)

1+(G(•)(lZ1)) and F1 :=→l
∗
Q F

(•)
1 . Following 18.3.1.10.(a), F (•)

1 ∈ LD−→
b
Q,coh(“D(•)

Z[1
) and

according to 18.3.1.10.c, F1 is isomorphic to a complex (with two terms) of Db(MIC††0 (Z[1/S)). Since i[1
is an exact immersion, then following 13.2.1.5.1 we have i[(•)1+ ◦ i

[(•)!
1

∼−→ RΓ†Z1
. Hence, we get the first

isomorphism:

v
(•)
1+ ◦ (lZ[) ◦ RΓ†Z1

◦ u(•)
1+(G(•)(lZ1))

∼−→
13.2.1.5.1

v
(•)
1+ ◦ (lZ[) ◦ i[(•)1+ ◦ i

[(•)!
1 ◦ u(•)

1+(G(•)(lZ1))

= v
(•)
1+ ◦ (lZ[) ◦ i[(•)1+ (F (•)

1 )
∼−→

18.3.1.7.2
v

(•)
1+ ◦ i

[(•)
1+ ◦ (lD1)(F (•)

1 )
∼−→ i

(•)
1+ ◦ w

(•)
1+ ◦ (lD1)(F (•)

1 ). (18.3.2.1.2)

Composing 18.3.2.1.1 and 18.3.2.1.2 and applying the functor→l
∗
Q, we get the isomorphism: RΓ†Z1

u
(•)
+ (E(•))

∼−→
i
(•)
1+ ◦ w

(•)
1+ ◦ (lD1)(F (•)

1 ). Hence, it follows from 9.4.2.4 that RΓ†Z1
u

(•)
+ (E(•)) ∈ LD−→

b
Q,coh(“D(•)

X ). The
hypothesis (Pn−1,r) implies that w1+ ◦ (lD1)(F1) is r-overholonomic. Hence, so is RΓ†Z1

u+(E)
∼−→

i1+ ◦ w1+ ◦ (lD1)(F1) and therefore RΓ†Z1
u

(•)
+ (E(•)). Symmetrically, we obtain for any i = 1, . . . , r

that RΓ†Ziu
(•)
+ (E(•)) is r-overholonomic. Using Mayer-Vietoris exact triangle and the stability of the r-

overholonomicity under local cohomological functors, this implies that RΓ†Zu
(•)
+ (E(•)) is r-overholonomic.

(III). We prove the implication (Pn,r−1)⇒ (Rn,r) for any n ≥ 0, r ≥ 0.
We suppose dimX ≤ n. We suppose r = 0 (resp. r ≥ 1). Since G(†Z)

∼−→ E(†Z), then we
reduce to the case where G = E , i.e l = 0. Moreover, in the respective case, this implies that G(†Z)
is r − 1-overholonomic (and in particular overcoherent). Let α : P → X be a smooth morphism. Then
α−1(Z) is a relative to P/S strict normal crossing divisor. Let P] := (P,M(α−1(Z))) be the induced
log smooth V-log formal scheme and α] : P] → X] be the induced morphism. Then following 18.2.3.16.1,
α]!(G)[−dP/X ] ∈ MIC††0 (P]/S) and (†α−1(Z))◦α]!(G)

∼−→ α! ◦ (†(Z))(G). Hence, it is sufficient to prove
that for any divisor T of X, G(†Z ∪T ) is D†X,Q-coherent (resp. DX(G(†Z ∪T )) is (r− 1)-overholonomic).
Using de Jong’s desingularization theorem ([dJ96]), there exist a projective smooth morphism f : P′ → X,
a smooth scheme X ′ over k, a closed immersion ι′0 : X ′ ↪→ P′, a projective, surjective, generically finite
and étale morphism a0 : X ′ → X such that a0 = f0 ◦ ι′0 and Z ′′ := a−1

0 (Z ∪T ) is a strict normal crossing
divisor of X ′. Since G(†Z ∪ T ) ∈ MIC††(X, Z ∪ T/V), then following 16.1.11.2 G(†Z ∪ T ) is a direct
summand of f+RΓ†X′f

!(G(†Z ∪ T )). By using the stability of the coherence under pushforwards (resp.
the stability of the (r−1)-overholonomicity under pushforwards and the fact that f+ commutes with DX

because f is proper following 13.2.4.1), it remains to prove that RΓ†X′f
!(G(†Z ∪ T )) is D†P′,Q-coherent
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(resp. DP′ ◦RΓ†X′ ◦f !(G(†Z ∪T )) is (r−1)-overholonomic. Since this is local on P′, then we can suppose
that there exists a lifting ι′ : X′ ↪→ P′ of ι′0 and that Z ′′ lifts to a relative to X′/S strict normal crossing
divisor Z′′ (see 4.5.2.17). We set X′] := (X′,M(Z′′)). Since this is Zariski local on X ′, we can suppose
the canonical morphism a]0 : X ′] → X] (because Z ′′ = a−1

0 (Z ∪T )) lifts to a morphism a] : X′] → X] (see
4.5.2.17). We denote by a : X′ → X the underlying morphism of formal schemes.

We have the isomorphism:

RΓ†X′f
(•)!(G(•)(†Z ∪ T ))

∼−→
13.2.1.5.1

ι
′(•)
+ ι′(•)!f (•)!(G(•)(†Z ∪ T ))

∼−→ ι
′(•)
+ a(•)!(G(•)(†Z ∪ T )).

Hence, by using the stability of the coherence (resp. (r − 1)-overholonomicity) under pushforwards, we
come down to prove that a(•)!(G(•)(†Z∪T )) = a(•)∗(G(•)(†Z∪T )) ∈ LD−→

b
Q,coh(“D(•)

X′ ) (resp. DX′a
!
Z∪T (G(†Z∪

T )) is r − 1-overholonomic ). Following 11.2.3.5.1, a(•)!(G(•)(†Z ∪ T )) ∈ MIC(•)(X′, Z ∪ T/S). Using
9.1.6.3, we reduce therefore in the non respective case to check that a!

Z∪T (G(†Z∪T )) = a∗Z∪T (G(†Z∪T )) is
D†X′,Q-coherent. We get from 18.2.3.16.1 the following isomorphism: a∗Z∪T (G(†Z∪T ))

∼−→ (†Z ′′)(a]∗(G)).
Thus, it remains to prove that (†Z ′′)(a]∗(G)) is D†X′,Q-coherent (resp. DX′ ◦ (†Z ′′)(a]∗(G)) is (r − 1)-
overholonomic ). We check this separately:

Non-respective case. Since G ∈ MIC††0 (X]/S), then a]∗(G) ∈ MIC††0 (X′]/S) (for the nilpotence of the
residues, see 10.3.4.4.a). Hence, using 18.3.1.11 this yields u′+(a]∗(G))

∼−→ (†Z ′′)(a]∗(G)). This yields
that (†Z ′′)(a]∗(G)) is D†X′,Q-coherent.

Respective case. The log-relative duality isomorphism of 18.2.3.13.2 gives: DX′ ◦ u′+(a]∗(G))
∼−→

u′+((a]∗(G))∨(−Z′′)). Since (a]∗(G))∨ ∈ MIC††0 (X′]/S), then by using (Pn,r−1) we obtain that u′+((a]∗(G))∨(−Z′′))
is (r − 1)-overholonomic. Since DX′ ◦ (†Z ′′)(a]∗(G))

∼−→ DX′ ◦ u′+(a]∗(G)), then this yields that DX′ ◦
(†Z ′′)(a]∗(G)) is (r − 1)-overholonomic.
(III). Conclusion.

For any n ≥ 0, we know that (Pn,−1) is true. Also, for any r ≥ −1, (P0,r) is already known (see
18.1.2.8).

We get from the two previous steps that, for any r ≥ 0 and n ≥ 1, (Pn−1,r) + (Pn,r−1) ⇒ (Qn,r) +
(Rn,r). Using the exact triangle of localization of u+(E) with respect to Z we get (Qn,r)+(Rn,r)⇒ (Pn,r).
Thus, (Pn,r−1) + (Pn−1,r)⇒ (Pn,r). This implies that (Pn,r) is true for any r ≥ −1 and n ≥ 0.

The following is the main result of [CT12]:

Theorem 18.3.2.2 (Caro-Tsuzuki). Let (Y,X,P, Z)/S be a smooth c-frame over S (see definition
16.2.1.8). Let E ∈ F -MIC†(X,P, Z/K). With notation 16.2.1.10.1, sp

(•)
X↪→P,Z,+(E) is overholonomic

after any base change.

Proof. Since sp
(•)
X↪→P,Z,+ commutes with base change, then we reduce to prove the overholonomicity of

sp
(•)
X↪→P,Z,+(E). Since this is local in P, we can suppose P is integral. Hence, writing Z as a finite

intersection of divisor of P , using 16.2.7.4.1, we reduce to the case where Z is a divisor. Since E admits
a semistable reduction (see 10.3.3.3), then there exists a commutative diagram of the form:

Y ′ //

b0��

X ′
ι′0 //

a0��

P′

f��
Y // X

ι0 // P,

(18.3.2.2.1)

such that f is a proper smooth morphism of smooth V-formal schemes, the left square is cartesian,
X ′ is a smooth scheme over k, ι′0 is a closed immersion, a0 is a projective, surjective, generically fi-
nite and étale morphism, a−1

0 (Z) is a strict normal crossing divisor of X ′ and the F -isocrystal a∗0(E)
on Y ′ overconvergent along a−1

0 (Z) is log-extendable on X ′. We set E := spX↪→P,T,+(E). We have
RΓ†X′f

!
T (E)

∼−→ spX′↪→P′,f−1(T ),+(a∗0(E)) (see 16.2.4.3). Then by 16.1.11.2 we check that E is a di-
rect factor of fT,+spX′↪→P′,f−1(T ),+(a∗0(E)). Since the overholonomicity is stable under direct image by
a proper morphism (see 18.1.2.15), it is therefore sufficient to prove that spX′↪→P′,f−1(T ),+(a∗0(E)) is
overholonomic. This last statement is local on P′. Then, we can suppose that there exists a lifting
ι′ : X′ ↪→ P′ of ι′0 and that a−1

0 (Z) lifts to a relative strict normal crossing divisor Z′ of X′ over S.
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Then, spX′↪→P′,f−1(T ),+(a∗0(E))
∼−→ ι′+sp∗(a

∗
0(E)), where sp: X′K → X′ is the specialization morphism

of X′. It remains to check that sp∗(a
∗
0(E)) is overholonomic. But since a∗0(E) is an F -isocrystal on Y ′

overconvergent along a−1
0 (Z) which is log-extendable on X ′, it follows from 18.3.2.1 that sp∗(a

∗
0(E)) is

overholonomic.

Theorem 18.3.2.3. Let (Y,X,P, Z) be a c-frame. Let E(•) ∈ F -LD−→
b
Q,qc(“D(•)

P ) such that RΓ†Y E(•) ∼−→
E(•). Then the following assertions are equivalent:

(a) The F -complex E(•) belongs to F -LD−→
b
Q,povcoh(X,P, Z/S);

(b) The F -complex E(•) belongs to F -LD−→
b
Q,ovcoh(“D(•)

P )

(c) The F -complex E(•) belongs to F -LD−→
b
Q,h(X,P, Z/S)

(d) The F -complex E(•) belongs to F -LD−→
b
Q,dev(Y,P/S).

Proof. Following 16.3.1.18, we have (a) ⇒ (d). By 18.3.2.2, we get by devissage (d) ⇒ (c). Finally, the
implications (c)⇒ (b)⇒ (a) are tautological.

Remark 18.3.2.4. The theorem 18.3.2.3 is wrong without Frobenius structure even when Z = T is a di-
visor. Indeed, by using the counter-example of Berthelot given at the end of [Ber96c], there exists some
D†P(†T )Q-modules OP(†T )Q-coherent which are not D†P,Q-coherent. Moreover, following 16.1.1.7, coher-
ent D†P(†T )Q-modules OP(†T )Q-coherent are D†P(†T )Q-overcoherent. This yields that an overcoherent
D†P(†T )Q-module is not necessarily D†P,Q-coherent nor a fortiori D†P,Q-overcoherent.

Notation 18.3.2.5. Let P be a separated and smooth S-formal scheme. Let Y be a subvariety of P .
We denote by (F -)Db

h(Y,P/V) (resp. (F -)Db
h(Y,X,P, Z/V)) the full subcategory of (F -)Db

h(D†P,Q)

of (F -)complexes E such that there exists an isomorphism of the form RΓ†Y (E)
∼−→ E .

We denote by (F -)LD−→
b
Q,h(Y,P/V) the strictly full subcategory of (F -)LD−→

b
Q,h(l“D(•)

P ) of complexes E(•)

such that there exist an isomorphism of the form RΓ†Y (E(•))
∼−→ E(•). With notation 16.3.1.15, we get

the equality F -LD−→
b
Q,h(Y,P/V) = F -LD−→

b
Q,h(Y,P/V).

Corollary 18.3.2.6. Let P and P′ be a two separated and smooth S-formal schemes. Let Y (resp. Y ′)
be a subvariety of P (resp. P′). Set P′′ := P×P′ and Y ′′ := Y × Y ′. We have the factorisations

−“�L
OS
− : LD−→

b
Q,dev(Y,P/V)× LD−→

b
Q,dev(Y ′,P′/V)→ LD−→

b
Q,dev(Y ′′,P′′/V), (18.3.2.6.1)

−“⊗L
O(•)

P

− : LD−→
b
Q,h(Y,P/V)× LD−→

b
Q,h(Y,P/V)→ LD−→

b
Q,h(Y,P/V). (18.3.2.6.2)

Proof. By using 16.3.1.18 and 18.3.2.3, this is a straightforward consequence of 16.3.2.2.2.

18.3.3 Berthelot’s conjectures on the holonomicity stability on projective
and smooth V-formal schemes

The theorem 18.3.3.1 below means that the conjecture [Ber02, 5.3.6.D)] of Berthelot is satisfied when
the divisor is ample.

Theorem 18.3.3.1. Let P be a proper and smooth V-formal scheme, H0 be an ample divisor of P0, A
the open of P complementary to H0. Let E ∈ F -Db

coh(D†P(†H0)Q) such that E|A ∈ F -Db
hol(D

†
A,Q). Hence

E ∈ F -Db
h(D†P,Q).

Proof. There exists a closed immersion α0 : P0 ↪→ Pnk such that (Pnk \ Ank ) ∩ P0 = H0. Following the
theorem of Berthelot-Kashiwara α!

0 ◦α0+(E)
∼−→ E (see 9.3.5.9). Moreover E|A is holonomic if and only

if so is α0+(E)|ÂnV (for the holonomic version of the theorem of Berthelot-Kashiwara, see 15.2.4.19). As
α0+(E) is a coherent F -D†

P̂nV
(†Pnk \ Ank )Q-module such that α0+(E)|ÂnV is a holonomic F -D†

ÂnV ,Q
-module,

since the overholonomicity is closed by extraordinary inverse image (see 18.1.2.14), we reduce then to
the case where P = P̂nV and H0 = Pnk \ Ank .
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We proceed now by induction on the lexicographical order (dim Supp(E), Ncmax), where dim Supp(E)
is the dimension of the support of E and Ncmax means the number of irreducible components of the
support of E whose dimension is dim Supp(E), i.e., its maximal dimension. The case where dim Supp(E) ≤
1 is a consequence of 15.3.3.4, 15.3.3.9 and 18.3.2.3. Then let us suppose dim Supp(E) ≥ 1.

For any integer j, Hj(E) is a coherent F -D†P(†H0)Q-module such that E|A is a holonomic F -D†A,Q-
module. Moreover, to establish that E ∈ F -Db

ovhol(D
†
P,Q), it is sufficient to check that for any integer j,

Hj(E) is an overholonomic D†P,Q-module. We reduce therefore to the case where the complex E is in fact
a module.

Let us denote by X0 the support of E . Let U be an affine open of P included in A such that
Y0 := X0 ∩ U0 is integral, smooth and dense in an irreducible component of X of dimension dimX.
There exist a lifting v : Y ↪→ U of the closed immersion Y0 ↪→ U0. Following the theorem of Berthelot-
Kashiwara (see 15.2.4.19), as E|U is holonomic and with support in Y0, then v!(E|U) is a holonomic
F -D†Y,Q-module. By 15.3.1.20, shrinking U and Y if necessary, we can suppose that v!(E|U) is OY,Q-
coherent. Let us denote by T0 the reduced divisor of P0 complementary to U0 (see 17.6.1.5). Shrinking
U if necessary, we can suppose U endowed with local coordinates x1, . . . , xn such that Y is defined by
the ideal generated by x1, . . . , xr. Moreover, via [Ked05, Theorem 2] (applied to the point 0 and with
the irreducible divisors defined by x1 = 0, . . . , xr = 0), shrinking U if necessary, we can suppose that
there exist a finite etale morphism g0 : U0 → Ank such that g0(Y0) ⊂ An−rk . Thanks to theorems 17.7.4.6,
17.6.3.3 and 18.3.2.2, this yields that E(†T0) is overholonomic. We conclude the induction by using the
triangle of localisation of E in T0.

Remark 18.3.3.2. The theorem 18.3.3.1 is false if the complex E is not endowed with a Frobenius structure.
Indeed, it is about using the example gives every to the end of [Ber96c] by Berthelot where P = P̂1

V
and A = Gm,k. Following this example, there exist a coherent D†P(†H0)Q-module E such that E|A
is OA,Q-coherent and then D†A,Q-holonomic and D†A,Q-overholonomic. But, this module E is same not
D†P,Q-coherent.

With this same counter-example, the theorem 18.3.3.4 is false without Frobenius structure.

Corollary 18.3.3.3. Let P be a proper and smooth V-formal scheme, H0 be an ample divisor of P0, A
the open of P complementary to H0, X0 be a closed smooth subscheme of P0 and Y0 := X0 \H0. Then
MIC††(X0,P, H0/V) (see notation 12.2.1.4) is equal to the full subcategory of Coh(X0,P, H0/V) (see
notation 9.3.7.4) whose objects E satisfy the following condition: E|A ∈ MIC††(Y0,A/V).

Proof. It follows from 15.1.5.4 and from the holonomic version of the Berthelot-Kashiwara theorem
of 15.2.4.19 that E|A ∈ MIC††(Y0,A/V) Following 18.3.3.1, this implies that a coherent F -D†P(†H0)Q-
module E tel that E|A is in the essential image of spY0↪→A,+ is a F -isocrystal overconvergent on Y0. The
converse is straightforward.

The theorem 18.3.3.1 remains valid by replacing “holonomic ” by “having finite extraordinary fibers”
(see the definition 15.3.2.1):

Theorem 18.3.3.4. Let P be a proper and smooth V-formal scheme, H0 be an ample divisor of P0, A
the open of P complementary to H0 and E ∈ F -Db

coh(D†P(†H0)Q). If E|A has finite extraordinary fibers
(see 15.3.2.1) then E ∈ F -Db

h(D†P,Q).

Proof. The proof is similar to that of 18.3.3.1 but with slight changes: we reduce similarly to the case
where P0 = Pnk and H0 = Pnk \ Ank . We still proceed by induction on the lexicographical order of
(dim Supp(E), Ncmax). The case dim Supp(E) ≤ 1 is still a consequence of 15.3.3.4, 15.3.3.9 and 18.3.2.3.
The difference here is that we can not reduce directly to the case where E is a module because the
property of having finite extraordinary fibers does not “a priori” hold for the cohomological spaces H l(E),
l ∈ Z. Let us denote by X0 the support of E . By replacing 15.3.1.20 by 15.3.2.5, we check similarly (to
the proof of 18.3.3.1) that there exist an affine open formal subscheme U of P included in A such that
Y0 := X0∩U0 is integral, smooth and dense in a irreducible component of X of dimension dimX and such
that v!(E|U) ∈ Db

coh(OY,Q). Moreover, since E|U ∈ Db
coh(D†U,Q) and has its support in Y0, then following

the theorem of Berthelot-Kashiwara (see 9.3.5.9), for any integer r, v!(Hr(E|U))
∼−→ Hr(v!(E|U)), Hence,

v!(Hr(E)|U) is OY,Q-coherent. Let us denote by T0 the reduced divisor of P0 complementary to U0. By
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using [Ked05, Theorem 2], shrinking U0 if necessary, we can suppose that there exist a finite etale
morphism g0 : U0 → Ank such that g0(Y0) ⊂ An−rk . Via the theorems 17.7.4.6, 17.6.3.3 and 18.3.2.2, this
yields that (HrE)(†T0) is overholonomic. As (HrE)(†T0)

∼−→ Hr(E(†T0)), the complex E(†T0) is then
overholonomic. We conclude the induction by using the triangle of localisation of E with respect to
T0.

Theorem 18.3.3.5. Let P be a projective and smooth V-formal scheme, E ∈ F -Db
coh(D†P,Q). The

following assertions are equivalent :

(a) The F -complex E belongs to F -Db
hol(D

†
P,Q).

(b) The F -complex E has finite extraordinary fibers.

(c) The F -complex E belongs to F -Db
ovcoh(D†P,Q).

(d) The F -complex E belongs to F -Db
h(D†P,Q).

Proof. Following 18.3.2.3, we already know (d) ⇔ (c). The implication (c) ⇒ (b) is clear. Using
18.1.2.9.(d) and 18.1.2.6, we get the implication (d)⇒ (a). Let us check now (a)⇒ (d). Let us suppose
then E ∈ F -Db

hol(D
†
P,Q). Since P is projective, using the theorem of Berthelot-Kashiwara, we reduce

to the case where P = P̂nV . Let H be the hyperplan of P̂nV defined by u0 = 0, i.e. H0 := Pnk \ Ank .
Hence, following 18.3.3.1, E(†H0) is overholonomic. Via the triangle of localisation of E in H0, this
yields that RΓ†H0

(E) is also holonomic. Denoting by α : H ↪→ P̂nV the canonical closed immersion we
get α!(E)

∼−→ α!(RΓ†H0
(E)). Following the holonomic version of the theorem of Berthelot-Kashiwara

(see 15.2.4.19) this yields that α!(E) is holonomic. By proceeding by induction on n, we get then the
overholonomicity of α!(E). Since RΓ†H0

(E)
∼−→ α+α

!(E) (see 14.3.3.1), then using 15.2.4.19 we get the
overholonomicity of RΓ†H0

(E). Via the localisation triangle of E with respect to H0, this yields that E is
also overholonomic. Hence, we have checked (a) ⇒ (d). Finally, to establish the implication (b) ⇒ (d)
we proceed similarly to the proof of (a)⇒ (d) by replacing the use of theorem 18.3.3.1 by 18.3.3.4.

Via the stability 18.1.2.15 and 18.1.2.14 of the overholonomicity, we obtain the following corollary
which answers positively in the projective case to the conjectures [Ber02, 5.3.6.A),B)] of Berthelot.

Corollary 18.3.3.6. Let f : P′ → P be a morphism of V-formal schemes projective smooth, E ∈
F -Db

hol(D
†
P,Q), E ′ ∈ F -Db

hol(D
†
P′,Q). Hence f+(E ′) ∈ F -Db

hol(D
†
P,Q) and f !(E) ∈ F -Db

hol(D
†
P′,Q).

This will give the stability under Grothendieck six operations in the context of quasi-projective
varieties (see 19.2.4).

973



Chapter 19

Coefficients stable under
Grothendieck’s six operations

Suppose the residue field k of V is a perfect field of characteristic p > 0. When we work with F -complex,
we suppose there exists an automorphism σ : V ∼−→ V which is a lifting of the sth Frobenius power of k.
The data s and σ are fixed in the remaining.

19.1 Data of coefficients

19.1.1 Definitions
Definition 19.1.1.1. A data of coefficients C over V will be the data for any object W of DVR(V) (see
notation 9.2.6.12), for any smooth formal scheme X overW of a strictly full subcategory of LD−→

b
Q,coh(“D(•)

X ),
which will be denoted by C(X/W), or simply C(X) if there is no ambiguity with the base W. If there is
no ambiguity with V, we simply say a data of coefficients.

Examples 19.1.1.2. We have the following data of coefficients.

(a) We define the data of coefficients B∅ as follows: for any objectW of DVR(V), for any smooth formal
scheme X over W, the category B∅(X) is the full subcategory of LD−→

b
Q,coh(“D(•)

X ) whose unique object

is O(•)
X (where O(•)

X is the constant object O(m)
X = OX for any m ∈ N with the identity as transition

maps).

(b) We will need the larger data of coefficients Bdiv defined as follows: for any objectW of DVR(V), for
any smooth formal scheme X over W, the category Bdiv(X) is the full subcategory of LD−→

b
Q,coh(“D(•)

X )

whose objects are of the form B(•)
X (T ), where T is any divisor of the special fiber of X. From Corollary

12.2.7.2, we have B(•)
X (T ) ∈ LD−→

b
Q,coh(“D(•)

X ).

(c) We define Bcst as follows: for any objectW of DVR(V), for any smooth formal scheme X overW, the
category Bcst(X) is the full subcategory of LD−→

b
Q,coh(“D(•)

X ) whose objects are of the form RΓ†YO
(•)
X ,

where Y is a subvariety of the special fiber of X and the functor RΓ†Y is defined in 13.1.5.1. Recall
following 13.1.5.5, theses objects are coherent.

(d) We define M∅ (resp. Msncd, resp. Mdiv) as follows: for any object W of DVR(V), for any smooth
formal scheme X overW, the categoryM∅(X) (resp. Msncd(X), resp. Mdiv(X)) is the full subcategory
of LD−→

b
Q,coh(“D(•)

X ) consisting of objects of the form (†T )(E(•)), where E(•) ∈ MIC(•)(Z,X/K) (see
notation 12.2.1.6), with Z is a smooth subvariety of the special fiber of X, and where T is an empty
divisor (resp. a strict normal crossing divisor, resp. a divisor) of Z. Recall that following 13.2.2.1,
these objects are indeed coherent.

Definition 19.1.1.3. In order to be precise, let us fix some terminology. Let C and D be two data of
coefficients over V.
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(a) We say that the data of coefficients C is stable under pushforwards if for any object W of DVR(V),
for any realizable (see 13.2.3.1) morphism g : X′ → X of smooth formal schemes over W, for any
object E ′(•) of C(X′) with proper support over X via g, the complex g+(E ′(•)) is an object of C(X).

(b) We say that the data of coefficients C is stable under extraordinary pullbacks (resp. under smooth
extraordinary pullbacks) if for any objectW of DVR(V), for any morphism (resp. smooth morphism)
f : Y→ X of smooth formal schemes over W, for any object E(•) of C(X), we have f !(E(•)) ∈ C(Y).

(c) We still say that the data of coefficients C satisfies the first property (resp. the second property)
of Berthelot-Kashiwara theorem or satisfies BK ! (resp. BK+) for short if the following property
is satisfied: for any object W of DVR(V), for any closed immersion u : Z ↪→ X of smooth formal
schemes over W, for any object E(•) of C(X) with support in Z, we have u!(E(•)) ∈ C(Z) (resp. for
any object G(•) of C(Z), we have u+(G(•)) ∈ C(X)). Remark that BK ! and BK+ hold if and only if
the data of coefficients C satisfies (an analogue of) Berthelot-Kashiwara theorem, which justifies the
terminology.

(d) We say that the data of coefficients C is stable under base change if for any morphism W → W ′ of
DVR(V), for any smooth formal scheme X overW, for any object E(•) of C(X), we haveW ′“⊗L

WE(•) ∈
C(X×SpfW SpfW ′).

(e) We say that the data of coefficients C is stable under tensor products (resp. duals) if for any object
W of DVR(V), for any smooth formal scheme X over W, for any objects E(•) and F (•) of C(X) we
have F (•)“⊗L

OX
E(•) ∈ C(X) (resp. DX(E(•)) ∈ C(X)).

(f) We say that the data of coefficients C is stable under local cohomological functors (resp. under
localizations outside a divisor), if for any object W of DVR(V), for any smooth formal scheme X
over W, for any object E(•) of C(X), for any subvariety Y (resp. for any divisor T ) of the special
fiber of X, we have RΓ†Y E(•) ∈ C(X) (resp. (†T )(E(•)) ∈ C(X)).

(g) We say that the data of coefficients C is stable under cohomology if, for any object W of DVR(V),
for any smooth formal scheme X over W, for any object E(•) of LD−→

b
Q,coh(“D(•)

X ), the property E(•) is
an object of C(X) is equivalent to the fact that, for any integer n, Hn(E(•)) is an object of C(X).

(h) We say that the data of coefficients C is stable under shifts if, for any object W of DVR(V), for any
smooth formal scheme X over W, for any object E(•) of C(X), for any integer n, E(•)[n] is an object
of C(X).

(i) We say that the data of coefficients C is stable by devissages if C is stable by shifts and if for any
objectW of DVR(V), for any smooth formal scheme X overW, for any exact triangle E(•)

1 → E(•)
2 →

E(•)
3 → E(•)

1 [1] of LD−→
b
Q,coh(“D(•)

X ), if two objects are in C(X), then so is the third one.

(j) We say that the data of coefficients C is stable under direct summands if, for any objectW of DVR(V),
for any smooth formal scheme X over W we have the following property: any direct summand in
LD−→

b
Q,coh(“D(•)

X ) of an object of C(X) is an object of C(X).

(k) We say that C contains D (or D is contained in C) if for any object W of DVR(V), for any smooth
formal scheme X over W the category D(X) is a full subcategory of C(X).

(l) We say that the data of coefficients C is local if for any object W of DVR(V), for any smooth formal
scheme X over W, for any open covering (Xi)i∈I of X, for any object E(•) of LD−→

b
Q,qc(“D(•)

X ), we have
E(•) ∈ ObC(X) if and only if E(•)|Xi ∈ ObC(Xi) for any i ∈ I. For instance, it follows from 8.4.5.8.b
that the data of coefficients LD−→

b
Q,coh is local.

(m) We say that the data of coefficients C is quasi-local if for any object W of DVR(V), for any smooth
formal scheme X over W, for any open immersion j : Y ↪→ X for any object E(•) ∈ C(X), we have
j(•)!E(•) ∈ C(Y).

We finish the subsection with some notation.

975



19.1.1.4 (Duality). Let C be a data of coefficients. We define its dual data of coefficients C∨ as follows:
for any object W of DVR(V), for any smooth formal scheme X over W, the category C∨(X) is the
subcategory of LD−→

b
Q,coh(“D(•)

X ) of objects E(•) such that DX(E(•)) ∈ C(X).

Notation 19.1.1.5. Let C be a data of coefficients. We denote by C+ the smallest data of coefficients
containing C and stable under shifts. We define by induction on n ∈ N the data of coefficients ∆n(C) as
follows: for n = 0, we put ∆0(C) = C+. Suppose ∆n(C) is constructed for n ∈ N. For any object W of
DVR(V), for any smooth formal scheme X over W, the category ∆n+1(C)(X) is the full subcategory of
LD−→

b
Q,coh(“D(•)

X ) of objects E(•) such that there exists an exact triangle of the form E(•) → F (•) → G(•) →
E(•)[1] such that F (•) and G(•) are objects of ∆n(C)(X). Finally, we put ∆(C) := ∪n∈N∆n(C). The data
of coefficients ∆(C) is the smallest data of coefficients containing C and stable under devissage.

Example 19.1.1.6. Using the isomorphisms 13.1.5.6.2, and Theorem 13.2.1.4, we check that B+
cst

satisfies BK+, and is stable under local cohomological functors, extraordinary pullbacks and tensor
products.

The following lemma is obvious.

Lemma 19.1.1.7. Let D be a data of coefficients over V. If D is stable under pushforwards (resp.
extraordinary pullbacks, resp. smooth extraordinary pullbacks, resp. tensor products, resp. base change,
resp. local cohomological functors, resp. localisation outside a divisor) then so is ∆(D). If D satisfies
BK+ (resp. is quasi-local) then so is ∆(D). If D satisfies BK ! and is stable under local cohomological
functors then so is ∆(D).

19.1.1.8. Beware also that if D is local (resp. stable under cohomology, resp. satisfies BK !), then it is
not clear that so is ∆(D).

Since the converse of 19.1.1.7 is not true, let us introduce the following definition.

Definition 19.1.1.9. Let D be a data of coefficients over V. Let P be one of the stability property of
19.1.1.3. We say that D is ∆-stable under P if there exists a data of coefficients D′ over V such that
∆(D′) = ∆(D) and D′ is stable under P .

Lemma 19.1.1.10. The data of coefficients D is ∆-stable under pushforwards (resp. extraordinary
pullbacks, resp. smooth extraordinary pullbacks, resp. tensor products, resp. base change, resp. local
cohomological functors, resp. localisation outside a divisor) if and only if ∆(D) is stable under push-
forwards (resp. extraordinary pullbacks, resp. smooth extraordinary pullbacks, resp. tensor products,
resp. base change, resp. local cohomological functors, resp. localisation outside a divisor). The data of
coefficients D satisfies ∆-BK+ (resp. is ∆-quasi local) if and only if ∆(D) satisfies BK+ (is quasi-local).

Proof. This is a translation of Lemma 19.1.1.7.

Beware, it is not clear that if D satisfies ∆-BK ! and is ∆-stable under local cohomological functors
then ∆(D) satisfies BK !.

19.1.2 Overcoherence, (over)holonomicity (after any base change) revisited
and complements

Definition 19.1.2.1. Let C and D be two data of coefficients.

(a) We denote by S0(D,C) the data of coefficients defined as follows: for any objectW of DVR(V), for any
smooth formal scheme X over W, the category S0(D,C)(X) is the full subcategory of LD−→

b
Q,coh(“D(•)

X )

of objects E(•) satisfying the following properties:

(?) for any smooth morphism f : Y→ X of smooth W-formal schemes, for any object F (•) ∈ D(Y),
we have F (•)“⊗L

OY
f !(E(•)) ∈ C(Y).

(b) We denote by S(D,C) the data of coefficients defined as follows: for any objectW of DVR(V), for any
smooth formal scheme X over W, the category S(D,C)(X) is the full subcategory of LD−→

b
Q,coh(“D(•)

X )

of objects E(•) satisfying the following (??) property
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(??) for any morphism W →W ′ of DVR(V), we have W ′“⊗L
WE(•) ∈ S0(D,C)(X×SpfW SpfW ′).

(c) Let ] be a symbol so that either S] = S0 or S] = S.

Examples 19.1.2.2. We retrieve previous notions as follows:

(a) We denote by LD−→
b
Q,ovcoh = S0(Bdiv, LD−→

b
Q,coh) (see the second example of 19.1.1.2). We denote by

LD−→
b
Q,oc = S(Bdiv, LD−→

b
Q,coh). These notions correspond to that of the overcoherence (after any base

change) as defined in 15.3.6.1. More precisely, for any object W of DVR(V), for any smooth formal
scheme X over W, we get the equality LD−→

b
Q,ovcoh(X) = LD−→

b
Q,ovcoh(“D(•)

X ).

(b) We put H0 := S(Bdiv, LD−→
b
Q,coh) and by induction on i ∈ N, we put Hi+1 := Hi ∩ S(Bdiv,H

∨
i )

(see Notation 19.1.1.4). The coefficients of Hi are called i-overholonomic after any base change.
We get the data of coefficients LD−→

b
Q,h := H∞ := ∩i∈NHi whose objects are called overholonomic

after any base change. This correspond to that of the overholonomicity as defined in 18.1.2.2,
i.e. for any object W of DVR(V), for any smooth formal scheme X over W, we get the equality
LD−→

b
Q,ovhol(X) = LD−→

b
Q,ovhol(

“D(•)
X ).

(c) Replacing S by S0 in the definition of LD−→
b
Q,h, we get a data of coefficients that we will denote by

LD−→
b
Q,ovhol. This correspond to that of the overholonomicity after any base change as defined in

18.1.2.2, i.e. for any object W of DVR(V), for any smooth formal scheme X over W, we get the
equality LD−→

b
Q,h(X) = LD−→

b
Q,h(“D(•)

X ).

(d) Finally, we set LM−−→Q,? := LD−→
b
Q,? ∩ LM−−→Q,coh, for ? ∈ {ovcoh, oc,h, ovhol}.

Remark 19.1.2.3. (a) Let C be a data of coefficients. The data of coefficients C is stable under smooth
extraordinary inverse image and localizations outside a divisor (resp. under smooth extraordinary
inverse image, localizations outside a divisor, and base change) if and only if S0(Bdiv,C) = C (resp.
S(Bdiv,C) = C).

(b) By construction, we remark that LD−→
b
Q,ovhol is the biggest data of coefficients which contains Bdiv,

is stable by devissage, dual functors and the operation S0(Bdiv,−). Moreover, LD−→
b
Q,h is the biggest

data of coefficients which contains Bdiv, is stable by devissage, dual functors and the operation
S(Bdiv,−).

We will need later the following Lemmas.

Lemma 19.1.2.4. Let C be a data of coefficients stable under devissage.

(a) We have the equality ∆(Bdiv) = ∆(Bcst) (see Notation 19.1.1.2).

(b) The data of coefficients C is stable under local cohomological functors if and only if it is stable under
localizations outside a divisor (see Definitions 19.1.1.3).

Proof. Both statements are checked by using exact triangles of localisation 13.1.4.3.3 and Mayer-Vietoris
exact triangles 13.1.4.15.2.

Lemma 19.1.2.5. Let C be a data of coefficients stable under local cohomological functors. Then the
data of coefficients C is stable under smooth extraordinary pullbacks and satisfies BK ! if and only if C
is stable under extraordinary pullbacks.

Proof. Since the converse is obvious, let us check that if C is stable under smooth extraordinary pullbacks
and satisfies BK ! then C is stable under extraordinary pullbacks. Let W be an object of DVR(V),
f : Y→ X be a morphism of smooth formal schemes over W, and E(•) be an object of C(X). Since f is
the composition of its graphY ↪→ Y×X followed by the projectionY×X→ X which is smooth, then using
the stability under smooth extraordinary pullbacks, we reduce to the case where f is a closed immersion.
From the stability under local cohomological functors, RΓ†Y E(•) ∈ C(X). Since C satisfies BK !, then
f !RΓ†Y E(•) ∈ C(Y). We conclude using the isomorphism f !RΓ†Y E(•) ∼−→ f !(E(•)) (use 13.2.1.4).
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Lemma 19.1.2.6. Let D be a data of coefficients over V. If D contains Bdiv, and if D is stable under
tensor products, then D is stable under localizations outside a divisor.

Proof. This is a consequence of the isomorphism 13.1.5.6.2 (we use the case where E(•) = O(•)
X ).

Lemma 19.1.2.7. Let C be a data of coefficients. If the data of coefficients C is local (resp. is stable
under devissages, resp. is stable under direct summands, resp. is stable under pushforwards, resp. is
stable under base change, resp. satisfies BK !), then so is C∨ (see Notation 19.1.1.4).

Proof. The stability under pushforwards is a consequence of the relative duality isomorphism (see
13.2.4.1). It follows from 9.3.5.11.1, that if C satisfies BK !, then so is C∨. The other stability properties
are straighforward.

Lemma 19.1.2.8. Let C and D be two data of coefficients.

(a) If D ⊂ C then D∨ ⊂ C∨.

(b) We have the equality ∆(C)∨ = ∆(C∨).

Proof. The first statement is obvious. Moreover, since C ⊂ ∆(C) then C∨ ⊂ ∆(C)∨. From 19.1.2.7,
∆(C)∨ is stable under devissage. Hence ∆(C∨) ⊂ ∆(C)∨. By replacing in the inclusion C by C∨, since
(C∨)∨ = C, we get ∆(C) ⊂ ∆(C∨)∨. Hence, ∆(C)∨ ⊂ (∆(C∨)∨)∨ = ∆(C∨).

Lemma 19.1.2.9. Let C and D be two data of coefficients. With the notation of 19.1.2.1, we have the
following properties.

1. If D contains B∅ (see Notation 19.1.1.2) then S](D,C) is contained in C. If D contains Bdiv, then
S0(D,C) (resp S(D,C)) is included in LD−→

b
Q,ovcoh (resp. LD−→

b
Q,oc).

2. If C ⊂ C′ and D′ ⊂ D, then S](D,C) ⊂ S](D′,C′).

3. If either C or D is stable under devissages (resp. shifts), then so is S](D,C) and we have the
equality S](∆(D),C) = S](D,C) (resp. S](D+,C) = S](D,C)).

4. Suppose that D is stable under smooth extraordinary pullbacks, tensor products (resp. and base
change), and that C contains D.

(a) The data of coefficients S0(D,C) contains D (resp. S(D,C) contains D).

(b) If D contains B∅, if either C or D is stable under shifts, then S0(D,C) = S0 (D, S0(D,C))
(resp. S(D,C) = S (D, S(D,C)) ).

(c) If either C or D is stable under shifts then S0 (S0(D,C), S0(D,C)) (resp. S (S(D,C), S(D,C)))
contains D.

Proof. The assertions 1), 2), 3), 4.a) and 4.b) are obvious. Let us prove 4)c). Let us suppose moreover C
stable under shifts. Since tensor products and extraordinary inverse images commute with base change,
to check the second part, we reduce to establish the non-respective case. LetW be an object of DVR(V),
X be a smooth formal scheme overW, and E(•) ∈ D(X). Let f : Y→ X be a smooth morphism of smooth
W-formal schemes. Let F (•) ∈ S0(D,C)(Y). We have to check that F (•)“⊗L

OY
f !(E(•)) ∈ S0(D,C)(Y).

Let g : Z → Y be a smooth morphism of smooth W-formal schemes, and G(•) ∈ D(Z). We have the
isomorphisms

G(•)“⊗L
OZ
g!
(
F (•)“⊗L

OY
f !(E(•))

)
∼−→

9.2.1.27.1

(
G(•)“⊗L

OZ
g!F (•)

)“⊗L
OZ

(f ◦ g)!(E(•))[−dZ/Y ]

∼−→
(
G(•)“⊗L

OZ
(f ◦ g)!(E(•))

)“⊗L
OZ
g!F (•)[−dZ/Y ]. (?)

Since D is stable under smooth extraordinary pullbacks and tensor products, then G(•)“⊗L
OZ

(f ◦g)!(E(•)) ∈
D(Z). Since F (•) ∈ S0(D,C)(Y), then

(
G(•)“⊗L

OZ
(f ◦ g)!(E(•))

)“⊗L
OZ
g!F (•)[−dZ/Y ] ∈ C(Z). Hence, using

(?) we conclude. The respective case is treated similarly.
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Remark 19.1.2.10. Let C, D be two data of coefficients.

1. If C is stable under devissages, then using 19.1.2.9.3 and 19.1.2.4 we get S](Bdiv,C) = S](B
+
cst,C).

2. Let D′ be a data of coefficients such that ∆(D′) = ∆(D). If C is stable under devissages, then
S](D

′,C) = S](D,C). Hence, in the case of stable properties appearing in Lemma 19.1.1.10 and
when C is stable under devissages, to study S](D,C) it is enough to consider ∆-stable properties
instead of stable properties satisfied by D (e.g. see the beginning of the proof of 19.1.2.12).

3. If D is stable under smooth extraordinary pullbacks, tensor products, and that D contains Bdiv

and is contained in C, if moreover either C or D is stable under shifts, then using 19.1.2.9 (1, 2 and
4.b), we get

S0(D,C) = S0 (D, S0(Bdiv,C)) = S0 (D, S0(D,C)) . (19.1.2.10.1)

If moreover D is stable under base change, then

S(D,C) = S (D, S(Bdiv,C)) = S (D, S(D,C)) . (19.1.2.10.2)

Lemma 19.1.2.11. Let C and D be two data of coefficients. We have the following properties.

1. If C is local and if D is quasi-local then S](D,C) is local. If C is stable under direct summands,
then so is S](D,C).

2. The data of coefficients S0(D,C) (resp. S(D,C)) is stable under smooth extraordinary pullbacks
(resp. and under base change).

3. If D is stable under local cohomological functors (resp. localizations outside a divisor), then so is
S](D,C).

4. Suppose that C is stable under pushforwards and shifts. Suppose that D is stable under extraordinary
pullbacks. Then the data of coefficients S](D,C) are stable under pushforwards.

5. Suppose that C is stable under shifts, and satisfies BK !. Moreover, suppose that D satisfies BK+.
Then the data of coefficients S](D,C) satisfies BK !.

Proof. a) Using 8.4.5.8 (beware that tensor products do not preserve coherence), we check that if C is
local and if D is quasi-local then S](D,C) is local. The rest of the assertions 1) and 2) are obvious.

b) Let us check 3). From the commutation of the base change with local cohomological functors, we
reduce to check that S0(D,C) is stable under local cohomological functors (resp. localisations outside
a divisor). Using 13.1.5.6.2 and the commutation of local cohomological functors with extraordinary
inverse images (see 13.2.1.4), we check the desired properties.

c) Let us check 4). From the commutation of base changes with pushforwards (see 9.2.6), we reduce
to check the stability of S0(D,C) under pushforwards. LetW be an object of DVR(V). Let g : X′ → X be
a realizable morphism of smooth W-formal schemes. Let E ′(•) ∈ S0(D,C)(X′) with proper support over
X. We have to check that g+(E ′(•)) ∈ S0(D,C)(X). Let f : Y → X be a smooth morphism of smooth
W-formal schemes. Let f ′ : Y ×X X′ → X′, and g′ : Y ×X X′ → Y be the structural projections. Let
F (•) ∈ D(Y). We have to check F (•)“⊗L

OY
f !g+(E ′(•)) ∈ C(Y). Using the hypotheses on C and D, via the

isomorphisms

F (•)“⊗L
OY

f !g+(E ′(•)) ∼−→
13.2.3.7.1

F (•)“⊗L
OY

g′+f
′!(E ′(•)) ∼−→

9.4.3.1.1
g′+

(
g′!(F (•))“⊗L

OY
f ′!(E ′(•))

)
[−dX′/X ],

we check that F (•)“⊗L
OY

f !g+(E ′(•)) ∈ C(Y).
d) Let us check 5) (we might remark the similarity with the proof of 15.3.6.12). Since extraordinary

pullbacks commute with base change, we reduce to check that S0(D,C) satisfies BK !. Let W be an
object of DVR(V), and u : X ↪→ P be a closed immersion of smooth formal schemes over W. Let E(•) ∈
S0(D,C)(P) with support in X. We have to check that u!(E(•)) ∈ S0(D,C)(X). We already know that
u!(E(•)) ∈ LD−→

b
Q,coh(“D(•)

X ) (thanks to Berthelot-Kashiwara theorem 9.3.5.13). Let f : Y→ X be a smooth

morphism of smoothW-formal schemes, and F (•) ∈ D(Y). We have to check F (•)“⊗L
OY

f !(u!E(•)) ∈ C(Y).
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The morphism f is the composite of its graph Y ↪→ Y×X with the projection Y×X→ X. We denote by
v the composite of Y ↪→ Y×X with id× u : Y×X ↪→ Y×P. Let g : Y×P→ P be the projection. Set
U := Y×P. SinceD satisfiesBK+, then v+(F (•)) ∈ D(U). Since E(•) ∈ S0(D,C)(P) and g is smooth, this
yields v+(F (•))“⊗L

OU
g!(E(•)) ∈ C(U). Since C satisfiesBK !, this implies v!

(
v+(F (•))“⊗L

OU
g!(E(•))

)
∈ C(Y).

Since v!
(
v+(F (•))“⊗L

OU
g!(E(•))

)
∼−→ v!v+(F (•))“⊗L

OY
v!g!(E(•))[r] with r an integer (see 9.2.1.27.1), since

v!v+(F (•))
∼−→ F (•) (see Berthelot-Kashiwara theorem 9.3.5.13), since C is stable under shifts, since by

transitivity v!g! ∼−→ f !u!, then we get F (•)“⊗L
OY

f !u!(E(•)) ∈ C(Y).

Proposition 19.1.2.12. Let C and D be two data of coefficients. We suppose D contains Bdiv, satisfies
∆-BK+, and is ∆-stable under extraordinary pullbacks and tensor products (resp. D contains B∅,
satisfies ∆-BK+, and is ∆-stable under extraordinary pullbacks and local cohomological functors). We
suppose C is local, satisfies BK !, is stable under devissages, pushforwards, and direct summands.

In that case, the data of coefficients S](D,C) is local, stable under devissages, direct summands, local
cohomological functors, extraordinary pullbacks, pushforwards (S(D,C) is moreover stable under base
change).

Proof. Let us check the non-respective case. Using 19.1.1.10, ∆(D) satisfies the same properties than
D without the symbol ∆. Following 19.1.2.9.3, since C is stable under devissage, then S](D,C) =
S](∆(D),C). Hence, we reduce to the case ∆(D) = D. Using 19.1.2.11 (except 3), we get S](D,C)
is local, is stable under devissages, direct summands, smooth extraordinary pullbacks, pushforwards,
satisfies BK ! and S(D,C) is moreover stable under base change. Using 19.1.2.6, we check D is stable
under localizations outside a divisor. This yields by 19.1.2.4.(b) that D is stable under under local
cohomological functors. Hence, using 19.1.2.11.3 so is S](D,C). By applying 19.1.2.5 this yields that
S](D,C) is stable under extraordinary pullbacks. Similarly, the respective case is a straightforward
consequence of 19.1.2.5 and 19.1.2.11.

Corollary 19.1.2.13. Let i ∈ N∪{∞}. The data of coefficients LD−→
b
Q,ovcoh (resp. LD−→

b
Q,oc, resp. Hi) con-

tains Bcst, is local, stable under devissages, direct summands, local cohomological functors, extraordinary
pullbacks, pushforwards (resp. and base change). Moreover, LD−→

b
Q,h is stable under duality.

Proof. For any i ∈ N, since Hi+1 ⊂ Hi∩H∨i , we get the stability under duality of H∞. Using 19.1.2.10.1, we
get LD−→

b
Q,ovcoh = S0(B+

cst, LD−→
b
Q,coh) (resp. LD−→

b
Q,oc = S(B+

cst, LD−→
b
Q,coh), resp. S(Bdiv,H

∨
i ) = S(B+

cst,H
∨
i )).

Since B+
cst satisfies BK+, and is stable under local cohomological functors, extraordinary pullbacks

and tensor products (see 19.1.1.6), since LD−→
b
Q,coh is local, satisfies BK !, is stable under devissages,

pushforwards, direct summands then we conclude by applying 19.1.2.7 and 19.1.2.12.

Notation 19.1.2.14. Let C be a data of coefficients. We denote by C0 the data of coefficients defined
as follows. Let W be an object of DVR(V), X be a smooth formal scheme over W. Then C0(X) :=

C(X) ∩ LM−−→Q,coh(“D(•)
X ).

Lemma 19.1.2.15. Let C be a data of coefficients.

(a) If C is stable under cohomology, then ∆(C) = ∆(C0).

(b) If C is stable under devissages and cohomology, then for any objectW of DVR(V), any smooth formal
scheme X over W, the category C0(X) is an abelian strictly full subcategory of LM−−→Q,coh(“D(•)

X ) which
is stable under extensions (i.e. is a weak Serre subcategory of LM−−→Q,coh(“D(•)

X ) in the sense of [Sta22,
02MP]).

(c) If for any objectW of DVR(V), any smooth formal scheme X overW, the category C0(X) contains the
zero objects, is an abelian strictly full subcategory of LM−−→Q,coh(“D(•)

X ) which is stable under extensions,
then D := ∆(C0) is stable under devissages and cohomology and D0 = C0.

Proof. a) Since ∆(C0) ⊂ ∆(C), it remains to check C ⊂ ∆(C0). Let E(•) ∈ C(X). By using some exact
triangles of truncations (for the canonical t-structure on LD−→

b
Q,coh(“D(•)

X ) as explained in 13.1.4.18), we
check E(•) ∈ ∆n(C0)(X) where n is the cardinal of {j ∈ Z ; Hj(E(•)) 6= 0}.

980



b) Let f : E(•) → F (•) be a morphism of C0(X). By considering the mapping cone of f and by using
the stability properties of C, we check that Ker f and Coker f are objects of C0(X). The stability under
extensions is obvious. Hence, we are done.

c) Denote by D(X) the full subcategory of LD−→
b
Q,coh(“D(•)

X ) consisting of objects E(•) such that, for any
integer n, Hn(E(•)) is an object of C0(X). By devissage, we get ∆(C0) ⊃ D(X). Conversely, since C0(X) is
a weak Serre category (see [Sta22, 0754]), then for any exact triangle of LD−→

b
Q,coh(“D(•)

X ) whose two objects
belong to D(X), using the induced long exact sequence, then we prove that the third object is an object
of D(X), i.e. D(X) is stable under devissage. Since C0 ⊂ D(X), this yields that ∆(C0) ⊂ D(X). Hence,
we have proved D(X) = ∆(C0). This yields that ∆(C0) is stable under devissage and cohomology.

Proposition 19.1.2.16. Let X be a smooth V-formal scheme. Let A be an abelian strictly full sub-
category of LM−−→Q,coh(“D(•)

X ) containing the zero object. We denote by A the (strictly) full subcategory of
LM−−→Q,coh(“D(•)

X ) consisting of object E(•) such that there exists a filtration 0 = E(•)
0 ⊂ E(•)

1 ⊂ . . . E(•)
r = E(•)

of length r ≥ 1 of E(•) by objects E(•)
i of LM−−→Q,coh(“D(•)

X ) such that E(•)
i+1/E

(•)
i belong to A for any

0 ≤ i ≤ r − 1. Then A is the smallest weak Serre subcategory of LM−−→Q,coh(“D(•)
X ) containing A (in

the sense of [Sta22, 02MP]).

Proof. 0) A contains A.
1) We easily check that if 0 → F (•) → E(•) → G(•) → 0 is an exact sequence of LM−−→Q,coh(“D(•)

X ), if
F (•) ∈ A admits a filtration of length r and G(•) ∈ A admits a filtration of length s then E(•) ∈ A admits
a filtration of length r + s. In particular, A is closed under extension.

2) Let φ : E(•) → F (•) be a morphism of A. Let us prove kerφ ∈ A. Set K(•) := kerφ.
a) Suppose F (•) ∈ A. Let 0 = E(•)

0 ⊂ E(•)
1 ⊂ . . . E(•)

r = E(•) be a filtration of E(•) such that
E(•)
i+1/E

(•)
i ∈ A for any 0 ≤ i ≤ r− 1. We proceed by induction on r. The case r = 1, i.e. E(•) ∈ A follows

from the abelianity of A. Suppose r ≥ 2 and the property checked for r − 1. Let K(•)
1 be the kernel of

the map E(•)
1 → F (•) induced by φ. Then K(•)

1 = K(•) ∩ E(•)
1 ∈ A. By induction hypothesis, K(•)/K(•)

1 ,
the kernel of the map E(•)/E(•)

1 → F (•)/φ(E(•)
1 ) induced by φ, belongs to A. Hence, using the step 1),

this yields K(•) ∈ A.
b) Suppose E(•) ∈ A. Let 0 = F (•)

0 ⊂ F (•)
1 ⊂ . . .F (•)

s = F (•) be a filtration of F (•) such that
F (•)
j+1/F

(•)
j ∈ A for any 0 ≤ j ≤ s − 1. We proceed by induction in s. When s = 1, this follows from

the abelianity of A. Suppose s ≥ 2. By induction hypothesis, E(•)
1 := ker

Ä
E(•) → F (•)/F (•)

1

ä
∈ A. Then

K(•) is equal to the kernel of the map E(•)
1 → F (•)

1 . Since F (•)
1 ∈ A and E(•)

1 ∈ A, then following a), we
get K(•) ∈ A.

c) Let us treat now the general case. Let 0 = E(•)
0 ⊂ E(•)

1 ⊂ . . . E(•)
r = E(•) be a filtration of E(•) such

that E(•)
i+1/E

(•)
i ∈ A for any 0 ≤ i ≤ r − 1. We proceed by induction on r. The case r = 1, i.e. E(•) ∈ A,

is the step b). Suppose r ≥ 2 and the property holds for r − 1. Let K(•)
1 = K(•) ∩ E(•)

1 be the kernel
of the map E(•)

1 → F (•) induced by φ. Then following b) we have K(•)
1 ∈ A. By induction hypothesis,

K(•)/K(•)
1 , the kernel of the map E(•)/E(•)

1 → F (•)/φ(E(•)
1 ) induced by φ, belongs to A. Hence, using the

step 1), this yields K(•) ∈ A.
3) Let E(•) ⊂ F (•) be a monomorphism of A. Let us check that F (•)/E(•) ∈ A.
a) Suppose E(•) ∈ A. Let 0 = F (•)

0 ⊂ F (•)
1 ⊂ . . .F (•)

s = F (•) be a filtration of F (•) such that
F (•)
j+1/F

(•)
j ∈ A for any 0 ≤ j ≤ s− 1. We proceed by induction in s. Since E(•) ∩ F (•)

s−1 is the kernel of
the morphism E(•) → F (•)/F (•)

s−1 of A, then E(•) ∩ F (•)
s−1 belongs to A. Hence, (F (•)

s−1 + E(•))/F (•)
s−1

∼←−
E(•)/E(•) ∩F (•)

s−1 ∈ A. Using the exact sequence 0→ (F (•)
s−1 + E(•))/F (•)

s−1 → F (•)/F (•)
s−1 → F (•)/(F (•)

s−1 +

E(•)) → 0, this yields that F (•)/(F (•)
s−1 + E(•)) ∈ A. Via the exact sequence 0 → (F (•)

s−1 + E(•))/E(•) →
F (•)/E(•) → F (•)/(F (•)

s−1 + E(•)) → 0, since (F (•)
s−1 + E(•))/E(•) ∼←− F (•)

s−1/(E(•) ∩ F (•)
s−1) ∈ A (induction

hypothesis), since F (•)/(F (•)
s−1 + E(•)) ∈ A, then we get from the step 1) that F (•)/E(•) ∈ A.

b) Let us go back to the general case. Let 0 = E(•)
0 ⊂ E(•)

1 ⊂ . . . E(•)
r = E(•) be a filtration of E(•)

such that E(•)
i+1/E

(•)
i ∈ A for any 0 ≤ i ≤ r − 1. Using the exact sequence 0→ F (•)/E(•)

1 → F (•)/E(•) →
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E(•)/E(•)
1 → 0, since E(•)/E(•)

1 ∈ A, since following the step a) we have F (•)/E(•)
1 ∈ A, then using the

step 1) we get F (•)/E(•) ∈ A.
4) It follows from the steps 2) and 3) that for any morphism φ of A, Cokerφ ∈ A.

Proposition 19.1.2.17. Let A be a data of coefficients over V such that for any object W of DVR(V)
(see notation 9.2.6.12), for any smoothW-formal scheme X, A(X) is an abelian strictly full subcategory of
LM−−→Q,coh(“D(•)

X ). Then, ∆(A) is the smallest data of coefficients containing A and stable under devissage
and cohomology.

Proof. Let A be the data of coefficients over V such that for any object W of DVR(V) (see nota-
tion 9.2.6.12), for any smooth W-formal scheme X, A(X) is the smallest weak Serre subcategory of
LM−−→Q,coh(“D(•)

X ) containing A(X) (see 19.1.2.16). Since A ⊂ A, then ∆(A) ⊃ ∆(A). Moreover, since
A ⊂ ∆(A), then ∆(A) ⊂ ∆(A). Hence, ∆(A) = ∆(A). The proposition is therefore an obvious conse-
quence of 19.1.2.16 and 19.1.2.15.

Proposition 19.1.2.18. Let A be a data of coefficients over V such that for any object W of DVR(V)
(see notation 9.2.6.12), for any smooth W-formal scheme X, A(X) is an abelian strictly full subcategory
of LM−−→Q,coh(“D(•)

X ). We denote by Aloc the data of coefficients over V such that for any object W of
DVR(V), for any smoothW-formal scheme X, Aloc(X) is the full subcategory of LM−−→Q,coh(“D(•)

X ) consisting
of objects which are locally in X in the smallest weak Serre subcategory of LM−−→Q,coh(“D(•)

X ) containing A(X)
(see 19.1.2.16). Then, ∆(Aloc) is the smallest data of coefficients containing A which is local and stable
under devissage and cohomology.

Proof. By definition, Aloc is local. Let W be an object of DVR(V) and X be a smooth formal scheme
over W. Let 0 → F (•) → E(•) → G(•) → 0 be an exact sequence of LM−−→Q,coh(“D(•)

X ) such that
F (•),G(•) ∈ Aloc(X). Since the property E(•) ∈ Aloc(X) is local, we can suppose that F (•),G(•) ∈ A(X)
(see notation of the proof of 19.1.2.17). Hence, following 19.1.2.16, E(•) ∈ Aloc(X). Similarly, we get the
remaining properties to check that Aloc(X) is a weak Serre subcategory of LM−−→Q,coh(“D(•)

X ). Hence, fol-
lowing 19.1.2.15.(c), ∆(Aloc) is stable and under devissage and cohomology and ∆(Aloc)0 = Aloc. Hence,
∆(Aloc)(X) is equal to the full subcategory of LD−→

b
Q,coh(“D(•)

X ) consisting of objects E(•) such that, for any
integer n, Hn(E(•)) is an object of Aloc(X). Since Aloc is local, this yields that so is ∆(Aloc). Hence,
∆(Aloc) is a data of coefficients containing A which is local, stable and under devissage and cohomology.
Let D is a data of coefficients containing A which is local, stable and under devissage and cohomology.
Then D must contains Aloc and therefore ∆(Aloc). Hence, we are done.

Notation 19.1.2.19. Let W be an object of DVR(V) and X be a smooth formal scheme over W. Let
F -H(D†X,Q) be the category of overholonomic D†P,Q-modules endowed with a Frobenius structure. We
get a data of coefficients A over V by setting A(X) := F -H(D†X,Q). Since this is an abelian category
then following 19.1.2.18 and according to its notation we get LD−→

b
Q,F - h := ∆(Aloc) the smallest data of

coefficients over V which is local and stable under devissage and cohomology and containing A. Then
it follows from 18.3.2 that LD−→

b
Q,F - h is local, stable by devissages, direct summands, local cohomological

functors, pushforwards, extraordinary pullbacks, base change, tensor products, duals, cohomology. Such
objects are called of Frobenius type. 1

Lemma 19.1.2.20. Let C be a data of coefficients stable under devissages and cohomology and which
is local. Let W be an object of DVR(V), T := Spf W, X and Y be two smooth formal schemes over W,
E0(•) ∈ LM−−→Q,coh(“D(•)

X ), E(•) ∈ LD−→
b
Q,coh(“D(•)

X ), and F (•) ∈ LD−→
b
Q,coh(“D(•)

Y ). Recall exterior tensor products
is defined in 9.2.5.8.1.

(a) The following properties are equivalent

(i) for any n ∈ Z, E0(•)“�L
OT
Hn(F (•)) ∈ C0(X) ;

(ii) E0(•)“�L
OT
F (•) ∈ C(X).

(b) If for any n ∈ Z we have E(•)“�L
OT
Hn(F (•)) ∈ C(X), then E(•)“�L

OT
F (•) ∈ C(X).

1This has previously been called ‘F -able’ in the literature in the context of overconvergent isocrystal.
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Proof. Since this is local, we can suppose X affine. The first statement is an obvious consequence
of 9.2.5.12.(b). Following 8.4.5.11, there exists G(•) ∈ Db(LM−−→Q,coh(‹D(•)

X/T)) such that G(•) is isomor-

phic to e(E(•)) (resp. H(•) ∈ Db(LM−−→Q,coh(‹D(•)
Y/T)) such that H(•) is isomorphic to e(F (•)) where e

is defined at 8.1.5.14.1). Following 9.2.5.12.(a), we get the spectral sequence in LM−−→Q,coh(‹D(•)
X×Y/T)

of the form Hr(G(•))“�L
OT
Hs(H(•)) =: Er,s2 ⇒ En := Hn

(
G(•)“�L

OT
H(•)). Since C0(X × Y) is an

abelian strictly full subcategory of LM−−→Q,coh(‹D(•)
X×Y/S) closed under extensions (see 19.1.2.15.b), since

Hr(G(•))“�L
OT
Hs(H(•)) ∈ C0(X×Y) (use 8.4.5.7.1 and the part (a) of the Lemma), thenHn

(
G(•)“�L

OT
H(•)) ∈

C0(X×Y). Using 9.2.5.11.1 and 8.4.5.7.1, this yields Hn
(
E(•)“�L

OT
F (•)) ∈ C0(X×Y).

Proposition 19.1.2.21. Let C be a data of coefficients. Suppose that C is stable under cohomology, and
devissage. Then S](B+

cst,C) is stable under devissages and cohomology.

Proof. Following 19.1.2.10, S](B+
cst,C) = S](Bdiv,C). Since localizations outside a divisor and the

functor f (•)∗ when f is any smooth morphism are t-exact (for the canonical t-structure of LD−→
b
Q,coh),

then this is straightforward.

Corollary 19.1.2.22. The data of coefficients LD−→
b
Q,ovcoh, and LD−→

b
Q,oc are stable under cohomology.

Proposition 19.1.2.23. Let C and D be two data of coefficients. Suppose that D is stable under
cohomology, smooth extraordinary pullbacks, and that C is local and stable under cohomology, devissage,
extraordinary pullbacks. Then S](D,C) is stable under devissages and cohomology.

Proof. 1) We prove the case where ] = 0. Let W be an object of DVR(V), X be a smooth formal scheme
over W, E(•) ∈ LD−→

b
Q,coh(“D(•)

X ). Let f : Y → X be a smooth morphism of smooth W-formal schemes,
F (•) ∈ D(Y).

a) Suppose that E(•) ∈ S0(D,C)(X). Since D is stable under cohomology and smooth extraordinary
pullbacks, then Hr(F (•))“�L

Wf
!(E(•)) ∈ C(Y×SpfWY), for any r ∈ Z. Since C is local and is stable under

cohomology and devissage, then using 19.1.2.20.a, we get Hr(F (•))“�L
WH

s(f (•)!(E(•))) ∈ C0(Y ×SpfW
Y), for any r, s ∈ Z. Hence, since Hs(f (•)!(E(•)))

∼−→ f∗(•)Hs−df (E(•)), using 19.1.2.20.a, we get
F (•)“�L

Wf
∗(•)Hs(E(•)) ∈ C(Y×SpfW Y), for any s ∈ Z. Since C is stable under extraordinary pullbacks

and shifts, this yields F (•)“⊗L
OY

f∗(•)Hs(E(•)))
∼−→ Lδ∗(•)(F (•)“�L

Wf
∗(•)Hs(E(•))) ∈ C(Y), where δ : Y ↪→

Y×SpfW Y is the diagonal immersion. Hence, Hs(E(•)) ∈ S0(D,C)(X), for any s ∈ Z.
b ) Conversely, suppose Hs(E(•)) ∈ S0(D,C)(X), for any s ∈ Z. Then F (•)“�L

Wf
∗(•)Hs(E(•)) ∈

C(Y×SpfWY). Using 19.1.2.20.b, this yields F (•)“�L
Wf

(•)!(E(•)) ∈ C(Y×SpfWY). Hence, F (•)“⊗L
OY

f (•)!(E(•)) ∈
C(Y).

2) For any morphism W → W̃ of DVR(V), set X̃ := X ×SpfW Spf W̃, and Ẽ(•) := W̃“⊗L
WE(•). The

property E(•) ∈ S(D,C)(X) is equivalent to the property Ẽ(•) ∈ S0(D,C)(X̃) (for any such morphism
W → W̃). The property Ẽ(•) ∈ S0(D,C)(X̃) is equivalent from the first part to Hn(Ẽ(•)) ∈ S0(D,C)(X̃)
for any n ∈ Z. Since the functors Hn commute with base change, this latter property is equivalent to
W̃“⊗L

WH
n(E(•)) ∈ S0(D,C)(X̃) for any n ∈ Z, i.e. Hn(E) ∈ S(D,C)(X̃) for any n ∈ Z.

19.1.2.24. LetW be an object of DVR(V), X be a smooth formal scheme overW, E(•) ∈ LM−−→Q,coh(“D(•)
X ).

Following 9.2.4.20.1, we have the dual functor D(•) : LD−→
b
Q,coh(“D(•)

X/S) → LD−→
b
Q,coh(“D(•)

X/S). Similarly to

15.2.4.8, we say that E(•) is holonomic if for any i 6= 0, Hi(D(•)(E(•))) = 0. We denote by LM−−→Q,hol(“D(•)
X/S)

the strictly subcategory of LM−−→Q,coh(“D(•)
X/S) of holonomic “D(•)

X -modules. By copying 15.2.4.14, we check

LM−−→Q,hol(“D(•)
X/S) is in fact a Serre subcategory of LM−−→Q,coh(“D(•)

X/S).

We denote by LD−→
b
Q,hol(

“D(•)
X/S) the strictly full subcategory of LD−→

b
Q,coh(“D(•)

X/S) consisting of complexes

E(•) such that HnE(•) ∈ LM−−→Q,hol(“D(•)
X/S) for any n ∈ Z. This yields the t-exact equivalence of categories

D(•) : LD−→
b
Q,hol(

“D(•)
X/S) ∼= LD−→

b
Q,hol(

“D(•)
X/S). It follows from 15.3.5.4 that LM−−→Q,oc ⊂ LM−−→Q,hol. This yields

LD−→
b
Q,oc ⊂ LD−→

b
Q,hol. (19.1.2.24.1)
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Lemma 19.1.2.25. Let C be a data of coefficients stable under cohomology and included in LD−→
b
Q,oc.

Then C∨ is stable under cohomology.

Proof. This is a straightforward consequence of 19.1.2.24.1.

Corollary 19.1.2.26. Let i ∈ N ∪ {∞}. The data of coefficients Hi is stable under cohomology.

19.1.2.27. Let C be a data of coefficients stable under devissages and cohomology. LetW be an object of
DVR(V), X be a smooth formal scheme over W. We get a canonical t-structure on C(X/W) whose heart
is C0(X/W) and so that the t-structure of C(X/W) is induced by that of LD−→

b
Q,coh(“D(•)

X ) (which is defined

at 13.1.4.18), i.e. the truncation functors are the same and C≥n(X/W) := LD−→
≥n
Q,coh(“D(•)

X ) ∩ C(X/W),

C≤n(X/W) := LD−→
≤n
Q,coh(“D(•)

X ) ∩ C(X/W).
For instance, using 19.1.2.22 and 19.1.2.26, we get for ? ∈ {ovcoh, oc,h,hol} a canonical t-structure

on LD−→
b
Q,?. The heart of LD−→

b
Q,? is LM−−→

b
Q,?.

Corollary 19.1.2.28. The data of coefficients LD−→
b
Q,coh, LD−→

b
Q,ovcoh, and LD−→

b
Q,oc are stable under special

descent of the base.

Definition 19.1.2.29. Let C and D be two data of coefficients.

(a) We denote by �0(D,C) the data of coefficients defined as follows: for any object W of DVR(V),
for any smooth formal scheme X over W, the category �0(D,C)(X) is the full subcategory of
LD−→

b
Q,coh(“D(•)

X ) consisting of objects E(•) satisfying the following property:

(?) for any smooth W-formal scheme Y, for any object F (•) ∈ D(Y), we have E(•)“�L
OSpfW

F (•) ∈
C(X×SpfW Y).

(b) We denote by �(D,C) the data of coefficients defined as follows: for any objectW of DVR(V), for any
smooth formal scheme X over W, the category �(D,C)(X) is the full subcategory of LD−→

b
Q,coh(“D(•)

X )

consisting of objects E(•) satisfying the following property:

(??) for any morphism W →W ′ of DVR(V), W ′“⊗L
WE(•) ∈ �0(D,C)(X×SpfW SpfW ′).

(c) Let ] be a symbol so that either �] = �0 or �] = �.

Lemma 19.1.2.30. Let C and D be two data of coefficients.

(a) If D contains B∅, then �](D,C) is contained in C.

(b) If C ⊂ C′ and D′ ⊂ D, then �](D,C) ⊂ �](D′,C′).

(c) If C is stable under devissage then so is �](D,C). Moreover, �](D,C) = �](∆(D),C).

(d) The data �(D,C) is stable under base change.

(e) If C is stable under pushforwards (resp. satisfies BK !, resp. is local, resp. is stable under direct
summands), then so is �](D,C).

(f) If C is local and is stable under devissages and cohomology, and if D is stable under cohomology,
then �](D,C) is stable under cohomology.

Proof. The first forth statements are obvious. The non-respective case and the first respective case of
the fifth one is a consequence of 9.4.4.1. The other cases are obvious. It remains to check the sixth one.
Following 19.1.2.15.(a), since D is stable under cohomology, then ∆(D) = ∆(D0). Hence, from the third
part of our lemma, we get �](D,C) = �](D0,C). Then, we conclude by using 19.1.2.20.(a).
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19.1.3 Constructions of stable data of coefficients
Following 19.1.2.19, we have already a data of coefficients stable under Grothendieck operations for
objects of “Frobenius type”. However, we would like such stability for more general coefficients, e.g.
containing convergent isocrystals (without Frobenius structure).

Definition 19.1.3.1. Let D be a data of coefficients over V. We say that D is almost stable under dual
functors if the following property holds: for any data of coefficients C over V which is local, stable under
devissages, direct summands and pushforwards, if D ⊂ C then D∨ ⊂ C. Remark from the biduality
isomorphism that the inclusion D∨ ⊂ C is equivalent to the following one D ⊂ C∨.

Lemma 19.1.3.2. Let D be a data of coefficients over V. The data D is almost stable under dual
functors if and only if ∆(D) is almost stable under dual functors.

Proof. This is a consequence of 19.1.2.8.

Lemma 19.1.3.3. With notation 19.1.1.2, we have the equalities M∨∅ = M∅, (∆(M∅))
∨ = ∆(M∅) and

∆(Msncd) = ∆(M∅).

Proof. The first equality is a consequence of 12.2.5.6. The second one follows from 19.1.2.8. It remains
to check the inclusion Msncd ⊂ ∆(M∅). Let W be an object of DVR(V), X be a smooth formal scheme
over W, Z be a smooth subvariety of the special fiber of X, T be a strict normal crossing divisor of Z,
and E(•) ∈ MIC(•)(Z,X/K). We have to prove that (†T )(E(•)) ∈ ∆(M∅)(X). We proceed by induction
on the dimension of T and next the number of irreducible components of T . Let T1 be one irreducible
component of T and T ′ be the union of the other irreducible components. We have the localisation
triangle

(†T ′ ∩ T1)RΓ†T1
(E(•))→ (†T ′)(E(•))→ (†T )(E(•))→ +1 (19.1.3.3.1)

Following 12.2.1.9, we have RΓ†T1
(E(•))[1] ∈ MIC(•)(T1,X/K). Hence, since T ′ ∩ T1 is a strict normal

crossing divisor of T1, by induction hypothesis we get (†T ′ ∩ T1)RΓ†T1
(E(•)) ∈ ∆(M∅)(X). By induction

hypothesis, we have also (†T ′)(E(•)) ∈ ∆(M∅)(X). Hence, by devissage, we get (†T )(E(•)) ∈ ∆(M∅)(X).

Proposition 19.1.3.4. The data of coefficients Bdiv, Mdiv, and Bcst are almost stable under duality.

Proof. I) Since ∆(Bcst) = ∆(Bdiv) (see 19.1.2.4.a) and using 19.1.3.2, since the case Bdiv is checked
similarly, we reduce to prove the almost dual stability of Mdiv.

II) Let C be a data of coefficients over V which contains Mdiv, and which is local, stable under
devissages, direct summands and pushforwards. Let W be an object of DVR(V), X be a smooth formal
scheme over W, Z be a smooth subvariety of the special fiber of X, T be a divisor of Z, and E(•) ∈
MIC(•)(Z,X/K) such that (†T )(E(•)) ∈ C∨(X). We have to check that (†T )(E(•)) ∈ C∨(X).

0) Let l be the residue field of W. Since this is local in X, we can suppose Z integral. Following
the de Jong ’s desingularisation theorem (of the form 10.4.1.2), there exist a smooth integral l-variety
Z ′, a projective generically finite and etale morphism of l-varieties φ : Z ′ → Z such that Z ′ is quasi-
projective and T ′ := φ−1(T ) is a strict normal crossing divisor of Z ′. Hence, there exists a closed
immersion of the form u : Z ′ ↪→ PnZ whose composition with the projection PnZ → Z is φ. Let X′ := P̂nX,
f : X′ → X be the projection. Following 16.1.11.2, E(•) is a direct summand of f (•)

+ RΓ†Z′f
(•)!(E(•)).

Hence, (†T )(E(•)) is a direct summand of (†T )f
(•)
+ RΓ†Z′f

(•)!(E(•)) Using the commutation of localisation
functor with pushforwards, this yields (†T )(E(•)) is a direct summand of f (•)

+ (†T ′)RΓ†Z′f
(•)!(E(•)).

1) Since E ′(•) := RΓ†Z′f
(•)!(E(•)) ∈ MIC(•)(Z ′,X′/K) (use 12.2.1.9), then (†T ′)(E ′(•)) ∈ Msncd(X′).

Since C contains Msncd and is stable under devissages, then using 19.1.3.3 we get Msncd ⊂ C∨. Hence,
(†T ′)(E ′(•)) ∈ C∨(X′). Since C is stable under direct summands and pushforwards, we are done.

Notation 19.1.3.5. Let C,D be two data of coefficients. We put T0(D,C) := S(D,C). By induction
on i ∈ N, we set Ui(D,C) := Ti(D,C) ∩ Ti(D,C)∨, T̃i(D,C) := S(D, Ui(D,C)) and Ti+1(D,C) :=

S(T̃i(D,C), T̃i(D,C)). We put T (D,C) := ∩i∈NTi(D,C).

Theorem 19.1.3.6. Let Bdiv ⊂ D ⊂ C be two data of coefficients. We suppose

985



1. The data D is stable under cohomology ;

2. The data ∆(D) satisfies BK+, is stable under extraordinary pullbacks, base change, tensor products
and is almost stable under dual functors ;

3. The data C satisfies BK !, is local and stable under devissages, direct summands, pushforwards,
cohomology.

Then, the data of coefficients T (D,C) (see Definition 19.1.3.5) is included in C, contains D, is local, stable
by devissages, direct summands, local cohomological functors, pushforwards, extraordinary pullbacks, base
change, tensor products, duals, cohomology.

Proof. I) First, we check by induction on i ∈ N that the data of coefficients Ti(D,C) contains D, is
contained in C, is local, stable under devissages, direct summands, local cohomological functors, push-
forwards, extraordinary pullbacks, base change and cohomology (which implies such stability properties
for T (D,C)).

a) Let us verify that T0(D,C) satisfies these properties. Using 19.1.2.9.3, we get from 19.1.2.9.1
(resp. 19.1.2.9.4) that T0(D,C) is included in C (resp. contains D). Using 19.1.1.6 and (the non-
respective case of) 19.1.2.12, we check that S(D,C) and S(B+

cst,C) are both local, stable under devissages,
direct summands, local cohomological functors, extraordinary pullbacks, pushforwards and base change.
Following 19.1.2.21 S(B+

cst,C) is also stable under cohomology. Moreover, it follows from 19.1.2.23
that S

(
D, S(B+

cst,C)
)
is also stable under cohomology. Using 19.1.2.10 (specially the left equality of

19.1.2.10.2), we get the equalities S(D,C) = S(∆(D),C) = S
(
∆(D), S(B+

cst,C)
)

= S
(
D, S(B+

cst,C)
)
.

Hence, we are done.
b) Suppose that the properties hold for Ti(D,C) for some i ∈ N.
i) Since D is almost stable under duals, then Ui(D,C) contains D. Since ∆(D) is stable by tensor

products, extraordinary pullbacks, and base change then, using 19.1.2.9.4 (where C is replaced by Ui(D,C)

which is stable under devissage), this implies that D is contained in T̃i(D,C) and Ti+1(D,C). Using
19.1.2.9.1, we get that T̃i(D,C) and Ti+1(D,C) are included in C.

ii) From Lemma 19.1.2.7, Ui(D,C) satisfies BK !, is local, stable under pushforwards, under devis-
sages, direct summands, base change/ It follows from 19.1.2.9.1 that Ti(D,C) is included in LD−→

b
Q,oc.

Using 19.1.2.25, this yields that Ui(D,C) is stable under cohomology. Hence, by applying the step I)a)
in the case where C is replaced by Ui(D,C), we get that T̃i(D,C) is local, stable under devissages, di-
rect summands, local cohomological functors, pushforwards, extraordinary pullbacks, base change and
cohomology.

Using (the respective case of) 19.1.2.12, this yields that Ti+1(D,C) is local, stable under devissages,
direct summands, local cohomological functors, extraordinary pullbacks, pushforwards and base change.
By applying 19.1.2.23 we check moreover that Ti+1(D,C) is stable under cohomology.

II) From 19.1.2.9.1, Ti+1(D,C) is contained in T̃i(D,C) and T̃i(D,C) is contained in Ti(D,C) ∩
Ti(D,C)∨. Hence, by construction, the tensor product of two objects of Ti+1(D,C) is an object of
Ti(D,C) and the dual of an object of Ti+1(D,C) is an object of Ti(D,C).

Example 19.1.3.7. We can choose D = B+
div and C = LD−→

b
Q,coh.

Lemma 19.1.3.8. Let C be a data of coefficients which contains Mdiv and is stable under shifts. We
have the inclusions:

(a) The data M+
div is stable under base change, smooth extraordinary pullbacks and tensor products.

(b) Mdiv ⊂ S(Bdiv,C).

(c) Mdiv ⊂ � (�(Mdiv,C),�(Mdiv,C)).

Proof. The first statement is a consequence of 12.2.1.9 and 12.2.1.13. The other ones are easy conse-
quences of the first statement.

Notation 19.1.3.9. We put T0 := S(Bdiv, LD−→
b
Q,coh). By induction on i ∈ N, we set Ui := Ti ∩ T∨i ,‹Ui := �(�(Mdiv, Ui),�(Mdiv, Ui)), and Ti+1 := S(Bdiv,‹Ui). We put T := ∩i∈NTi.
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Theorem 19.1.3.10. The data of coefficients T contains Mdiv, is local, stable by devissages, direct sum-
mands, local cohomological functors, pushforwards, extraordinary pullbacks, base change, tensor products,
duals and cohomology

Proof. I) We prove by induction on i that Ti contains Mdiv, is local, stable under devissages, direct
summands, local cohomological functors, pushforwards, extraordinary pullbacks, base change and coho-
mology.

a) For T0 = LD−→
b
Q,oc, this comes from the step I)a) of the proof of 19.1.3.6, and of 19.1.3.8.b.

b) Suppose that this is true for Ti for some i ∈ N.
i) Since Mdiv is almost stable under duality (see 19.1.3.4), then Ui contains Mdiv. Hence, using

19.1.3.8, ‹Ui contains Mdiv.
ii) Similarly to the first part of the step I)b)ii) of the proof of 19.1.3.6, we check that Ui satisfies BK !,

is local, stable under pushforwards, under devissages, direct summands, base change and cohomology.
Hence, following 19.1.2.30, we check that so is �(Mdiv, Ui) and then so is ‹Ui. Hence, using the step I)a)
of the proof of 19.1.3.6, we get that Ti+1 satisfied the desired properties.

II) Using first 19.1.2.9.1, and next 19.1.2.30.a we get the inclusions Ti+1 ⊂ ‹Ui ⊂ �(Mdiv, Ui) ⊂ Ui ⊂
Ti. Hence, by construction, the exterior tensor product of two objects of Ti+1 is an object of Ti and the
dual of an object of Ti+1 is an object of Ti.

19.2 Grothendieck six operations over realizable pairs
We shall define here Grothendieck six operations for arithmetic D-modules over realizable pairs.

Let W be an object of DVR(V), and l be its residue field.

19.2.1 Data of coefficients over frames
Definition 19.2.1.1. We define the category of frames over W as follows.

(a) A frame (Y,X,P) overW means that P is a realizable smooth formal scheme overW (see definition
13.2.3.1), X is a closed subscheme of the special fiber P of P and Y is an open subscheme of X. Let
(Y ′, X ′,P′) and (Y,X,P) be two frames overW. A morphism θ = (b, a, f) : (Y ′, X ′,P′)→ (Y,X,P)
of frames over W is the data of a morphism f : P′ → P of realizable smooth formal schemes over
W, a morphism a : X ′ → X of l-schemes, and a morphism b : Y ′ → Y of l-schemes inducing the
commutative diagram

Y ′

b

��

� � // X ′

a

��

� � // P′

f

��
Y
� � // X �

� // P.

If there is no ambiguity with W, we simply say frame or morphism of frames.

(b) A morphism θ = (b, a, f) : (Y ′, X ′,P′) → (Y,X,P) of frames over W is said to be complete (resp.
strictly complete) if a is proper (resp. f and a are proper).

Remark 19.2.1.2. To avoid confusion with the notion of frames in the context of isocrystals (see 10.1.1.4),
one might call a frame (Y,X,P) as defined in 19.2.1.1 a realizable frame. However, hoping that this does
not cause any confusion, in order not to overload the notations we prefer not to add the term realizable.

Definition 19.2.1.3. (a) We define the category of realizable pairs over W as follow. A realizable pair
(Y,X) overW means the two first data of a frame overW of the form (Y,X,P). A frame of the form
(Y,X,P) is said to be enclosing (Y,X). A morphism of realizable pairs u = (b, a) : (Y ′, X ′)→ (Y,X)
over W is the data of a morphism of l-schemes of the form a : X ′ → X such that a(Y ′) ⊂ Y and
b : Y ′ → Y is the induced morphism.

(b) A morphism of realizable pairs u = (b, a) : (Y ′, X ′) → (Y,X) over W is said to be complete if a is
proper.
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Remark 19.2.1.4. (a) Let u = (b, a) : (Y ′, X ′) → (Y,X) be a complete morphism of realizable pairs
over W. Then there exists a strictly complete morphism of frames over W of the form θ =
(b, a, f) : (Y ′, X ′,P′) → (Y,X,P). Indeed, by definition, there exist some frames over W of the
form (Y ′, X ′,P′′) and (Y,X,P). There exists an immersion P′′ ↪→ Q′′ with Q′′ a proper and
smooth W-formal scheme. Hence, put P′ := Q′′ ×P and let f : P′ → P be the projection. Since a
is proper, X ↪→ P is proper, and f is proper, then the immersion X ′ ↪→ P′ is also proper.

(b) Let u = (b, a) : (Y ′, X ′)→ (Y,X) be a morphism of realizable pairs overW. Similarly, we check that
there exists a morphism of frames over W of the form θ = (b, a, f) : (Y ′, X ′,P′)→ (Y,X,P).

Notation 19.2.1.5. Let C be a data of coefficients over V. Let (Y,X,P) be a frame overW. We denote
by C(Y,P/W) the full subcategory of C(P) of objects E such that there exists an isomorphism of the
form E ∼−→ RΓ†Y (E). We remark that C(Y,P/W) only depend on the immersion Y ↪→ P which explains
the notation. We might choose X equal to the closure of Y in P .

Notation 19.2.1.6. Let C be a data of coefficients stable under devissages and cohomology. Let (Y,X,P)
be a frame over W. Choose U an open set of P such that Y is closed in U.

(a) We define a canonical t-structure on C(Y,P/W) as follows. We denote by C≤n(Y,P/W) (resp.
C≥n(Y,P/W)) the full subcategory of C(Y,P/W) of complexes E such that E|U ∈ C≤n(Y,U/W) :=
C(Y,U/W) ∩ C≤n(U/W) (resp. E|U ∈ C≥n(Y,U/W) := C(Y,U/W) ∩ C≥n(U/W)), where the t-
structure on C(U/W) is the canonical one (see 19.1.2.27). Since the restriction on an open formal
subscheme is r-acyclic, then we get the independance on the choice of the open U such that Y is
closed in U. The heart of this t-structurewill be denoted by C0(Y,P/W). Finally, we denote by Hit
the ith space of cohomology with respect to this canonical t-structure.

(b) Suppose Y is smooth. Then, we denote by Cisoc(Y,P/W) (resp. C≥nisoc(Y,P/W), resp. C≤nisoc(Y,P/W),
resp. C0

isoc(Y,P/W)) the full subcategory of (resp. C≥n(Y,P/W), resp. C≤n(Y,P/W), resp.
C0(Y,P/W)) consisting of complexes E(•) such that Hi(E(•)|U) ∈ MIC(•)(Y,U/K). We refer “ isoc”
as isocrystals. Remark that when C is included in LD−→

b
Q,coh then C0

isoc(Y,P/W) = C0(Y,P/W) ∩
MIC(•)(Y,X,P, Z/K) is X is the closure of Y in P and Z = X \ Y (see 16.2.1.1).

Remark 19.2.1.7. Let C be a data of coefficients stable under devissages and cohomology. Let P be a
smooth W-formal scheme, Y be a subscheme of P , Z be a closed subscheme of Y , and Y ′ := Y \ Z.

(a) We get the t-exact functor (†Z) : C(Y,P/W)→ C(Y ′,P/W). Beware the functor (†Z) : C(Y,P/W)→
C(Y,P/W) is not always t-exact.

(b) We say that Z locally comes from a divisor of P if locally in P , there exists a divisor T of P such
that Z = Y ∩T (this is equivalent to saying that locally in P , the ideal defining Z ↪→ Y is generated
by one element). In that case, we get the t-exact functor (†Z) : C(Y,P/W) → C(Y,P/W). Indeed,
by construction of our t-structures, we can suppose Y is closed in P (and then we reduce to the
case where the t-structure on C(Y,P/W) is induced by the standard t-structure of LD−→

b
Q,coh(“D(•)

P )).
Since the property is local, we can suppose there exists a divisor T such that Z = T ∩Y . Then both
functors (†Z) and (†T ) of C(Y,P/W) → C(Y,P/W) are isomorphic. Since (†T ) is t-exact, we are
done.

19.2.2 Grothendieck six operations over realizable pairs
Theorem 19.2.2.1 (Independence). Let C be a data of coefficients over V which contains Bdiv, which is
stable under devissages, pushforwards, extraordinary pullbacks, and under local cohomological functors.

Let θ = (b, a, f) : (Y ′, X ′,P′) → (Y,X,P) be a morphism of frames over W such that a and b are
proper.

(a) For any E(•) ∈ C(Y,P/W), for any E ′(•) ∈ C(Y ′,P′/W) (recall notation 19.2.1.5, we have

HomC(Y,P/W)(f
(•)
+ (E ′(•)), E(•))

∼−→ HomC(Y ′,P′/W)(E ′(•),RΓ†Y ′f
!(•)(E(•))).
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(b) Suppose that Y ′ = Y and b is the identity, and that C is stable under cohomology. Then, for any
E(•) ∈ C0(Y,P/W), for any E ′(•) ∈ C0(Y,P′/W), for any n ∈ Z \ {0}, we have

Hnt RΓ†Y f
(•)!(E(•)) = 0, Hnt f

(•)
+ (E ′(•)) = 0.

(c) Suppose that Y ′ = Y and b is the identity. For any E(•) ∈ C(Y,P/W), for any E ′(•) ∈ C(Y,P′/W),
the adjunction morphisms RΓ†Y f

(•)!f
(•)
+ (E ′(•)) → E ′(•) and f

(•)
+ RΓ†Y f

(•)!(E(•)) → E(•) are isomor-
phisms. In particular, the functors RΓ†Y f

(•)! and f (•)
+ induce quasi-inverse equivalences of categories

between C(Y,P/W) and C(Y,P′/W).

Proof. I) Let us check the first statement. Replacing X and X ′ by the closure of Y in P and Y ′ in P ′,
we can suppose Y is dense in X and Y ′ is dense in X ′. Let E(•) ∈ C(Y,P/W), and E ′(•) ∈ C(Y ′,P′/W).
Since a is proper, using 13.2.4.2.2, the stability of C under extraodinary pullbacks, and the equivalence
of categories 8.4.5.6, we get the bijection

Hom
LD−→

b
Q,coh

(D̂(•)
P

)
(f

(•)
+ (E ′(•)), E(•))

∼−→ Hom
LD−→

b
Q,coh

(D̂(•)
P′

)
(E ′(•), f !(•)(E(•))).

Since a and b are proper, then the open immersion Y ′ ⊂ a−1(Y ) is proper. Since Y ′ is dense in
X ′, then Y ′ = a−1(Y ). Hence, the functors RΓ†X′f

!(•) and RΓ†Y ′f
!(•) (resp. f

(•)
+ and RΓ†Y f

(•)
+ ) are

isomorphic over C(Y,P/W) (resp. C(Y ′,P′/W)). Hence, the functor RΓ†X′f
!(•) (resp. f

(•)
+ ) induces

RΓ†X′f
!(•) : C(Y,P/W) → C(Y ′,P′/W) (resp. f (•)

+ : C(Y ′,P′/W) → C(Y,P/W)). Since C(Y ′,P′/W) is
a strictly full subcategory of LD−→

b
Q,coh(“D(•)

P′ ), we conclude using the equality

Hom
LD−→

b
Q,coh

(D̂(•)
P′

)
(E ′(•), f !(•)(E(•))) = HomC(Y ′,P′/W)(E ′(•),RΓ†X′f

!(•)(E(•))).

II) Now let us check at the same time the last two statements. Using the stability properties that
C satisfies, we check that the functors f (•)

+ : C(Y,P′/W) → C(Y,P/W) and RΓ†Y f
!(•) : C(Y,P/W) →

C(Y,P′/W) are well defined. Since C is included in LD−→
b
Q,ovcoh, we reduce to check the case where

C = LD−→
b
Q,ovcoh. Choose U (resp. U′) an open set of P (resp. P′) such that Y is closed in U (resp. Y

is closed in U′), and such that f(U′) ⊂ U. The functor |U : LD−→
b
Q,ovcoh(Y,P/W) → LD−→

b
Q,ovcoh(Y,U/W)

is t-exact, and the same with some primes. Moreover, for any E(•) ∈ LM−−→Q,ovcoh(Y,P/W) (or E(•) ∈
LD−→

b
Q,ovcoh(Y,P/W)), the property E(•) = 0 is equivalent to E(•)|U = 0. Hence, we can suppose U = P

and U′ = P′, i.e. Y ↪→ P and Y ↪→ P ′ are closed immersions.
1) In this case we treat the case where Y is smooth. Since the theorem is local, we can suppose

there exists a smooth formal scheme Y which is a lifting of Y . Hence, this is an obvious consequence of
Berthelot-Kashiwara theorem 9.3.5.13.

2) Let us go back to the general case. We proceed by induction on the dimension of Y . When
dimY = 0, then using 15.3.3.3, this is a consequence of the step 1).

Now, suppose dimY ≥ 1 and the theorem valid when Y is replaced by a variety of inferior dimension.
Since l is perfect, since the theorem is local on P, we can suppose P integral and affine, and there exists
a (reduced) divisor T of P such that, putting Z := Y ∩ T , we have Y \ Z is a smooth l-variety, and
dimZ < dimY .

3) We check in this step that for any E ′(•) ∈ LM−−→Q,ovcoh(Y,P′/W), for any integer r 6= 0,Hrf (•)
+ (E ′(•)) =

0.
Since Z locally comes from a divisor of P ′, then the functor (†Z) : LD−→

b
Q,ovcoh(Y,P′/W)→ LD−→

b
Q,ovcoh(Y,P′/W)

is t-exact (see 19.2.1.7.b). Hence, the localisation triangle in Z of E ′(•) induces the exact sequence in
LM−−→Q,ovcoh(Y,P′/W):

0→ H†,0Z (E ′(•))→ E ′(•) → (†Z)(E ′(•))→ H†,1Z (E ′(•))→ 0. (19.2.2.1.1)

Let F ′(•) be the kernel of the epimorphism (†Z)(E ′(•)) → H†,1Z (E ′(•)). We get the exact sequence in
LM−−→Q,ovcoh(Y,P′/W)

0→ F ′(•) → (†Z)(E ′(•))→ H†,1Z (E ′(•))→ 0.
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By applying the functor f (•)
+ to this latter exact sequence, we get a long exact sequence. We have

(†Z)(E ′(•)) ∈ LM−−→Q,ovcoh(Y \ Z,P′/W) and H†,1Z (E ′(•)) ∈ LM−−→Q,ovcoh(Z,P′/W). Hence, following the
step 1), using the induction hypothesis, using the long exact sequence, we check that for any integer
r 6∈ {0, 1}, we have Hr(f (•)

+ )(F ′(•)) = 0. Moreover, H1(f
(•)
+ )(F ′(•)) = 0 if and only if the morphism

s : H0(f
(•)
+ )((†Z)(E ′(•))) → H0(f

(•)
+ )(H†,1Z (E ′(•))) is an epimorphism. We split the check of this latter

property in the following two steps a) and b).
3.a) In this step, we check that the morphism s′ := H0(RΓ†Y ◦ f (•)!)(s) is an epimorphism. Since

(†Z)(E ′(•)) ∈ LM−−→Q,ovcoh(Y \ Z,P′/W), since the functors RΓ†Y ◦ f (•)! and RΓ†Y \Z ◦ f
(•)! are canonically

isomorphic over LD−→
b
Q,ovcoh(Y \ Z,P/W) then following the step 1), the canonical morphism

(†Z)(E ′(•))→ H0(RΓ†Y ◦ f
(•)!) ◦ H0(f

(•)
+ )((†Z)(E ′(•)))

is an isomorphism. SinceH†,1Z (E ′(•)) ∈ LM−−→Q,ovcoh(Z,P′/W), since the functors RΓ†Y ◦f (•)! and RΓ†Z ◦f (•)!

are canonically isomorphic over LD−→
b
Q,ovcoh(Z,P/W) then by induction hypothesis the canonical morphism

H†,1Z (E ′(•))→ H0(RΓ†Y ◦ f
(•)!) ◦ H0(f

(•)
+ )(H†,1Z (E ′(•)))

is an isomorphism. Since (†Z)(E ′(•))→ H†,1Z (E ′(•)) is an epimorphism, this yields that so is s′.
3.b) Let us check that s is an epimorphism. Let F (•) ∈ LM−−→Q,ovcoh(Y,P/W) be the image of s, and

i be the canonical monomorphism F (•) ↪→ H0(f
(•)
+ )(H†,1Z (E ′(•))). Since H0(f

(•)
+ )(H†,1Z (E ′(•))) has his

support in Z, then i is in fact a monomorphism of LM−−→Q,ovcoh(Z,P/W). Using the induction hypothesis,
since the functors RΓ†Y ◦ f (•)! and RΓ†Z ◦ f (•)! are canonically isomorphic over LD−→

b
Q,ovcoh(Z,P/W) this

yields that i′ := H0(RΓ†Y ◦ f (•)!)(i) is a monomorphism. Since s′ is an epimorphism, then so is i′. Hence,
the morphism i′ is an isomorphism. Using the induction hypothesis, this implies that i is an isomorphism.
This yields that s is an epimorphism.

3.c) Hence, we have checked that for any integer r 6= 0, we have Hr(f (•)
+ )(F ′(•)) = 0. From 19.2.2.1.1,

we get the exact sequence 0 → H†,0Z (E ′(•)) → E ′(•) → F ′(•) → 0. By applying the functor f (•)
+ to this

latter sequence, we get a long exact sequence. Looking at this later one, we remark that the property
“for any r 6= 0, Hr(f (•)

+ )(F ′(•)) = 0 and Hr(f (•)
+ )(H†,0Z (E ′(•))) = 0”, implies that "for any r 6= 0,

Hr(f (•)
+ )(E ′(•)) = 0".

4) Similarly to the step 3), we check that for any r 6= 0, for any E(•) ∈ LM−−→Q,ovcoh(Y,P/W), we have
Hr(RΓ†Y ◦ f (•)!)(E(•)) = 0.

5) It remains to check the last statement of the theorem. Let E(•) ∈ LD−→
b
Q,ovcoh(Y,P/W). Using the

localisation triangle with respect to Z, to check that the morphism f
(•)
+ ◦ RΓ†Y ◦ f (•)!(E(•))→ E(•) is an

isomorphism, we reduce to check we get an isomorphism after applying RΓ†Z and (†Z). Using 13.2.1.4
and 13.1.5.6.1, after applying RΓ†Z , we get a morphism canonically isomorphic to the canonical morphism
f

(•)
+ ◦RΓ†Z ◦f (•)!(RΓ†ZE(•))→ RΓ†ZE(•). By induction hypothesis, this latter is an isomorphism. Moreover,
after applying (†Z), we get the morphism f

(•)
+ ◦ RΓ†Y \Z ◦ f

(•)!(RΓ†Y \ZE
(•)) → RΓ†Y \ZE

(•), which is an
isomorphism following the step 1).

We proceed similarly to check that the canonical morphism E ′(•) → RΓ†Y ◦ f (•)! ◦ f (•)
+ (E ′(•)) is an

isomorphism for any E ′(•) ∈ LD−→
b
Q,ovcoh(Y,P′/W).

Corollary 19.2.2.2. Let C be a data of coefficients over V which contains Bdiv, which is stable under
devissages, pushforwards, extraordinary pullbacks, and local cohomological functors. Let Y := (Y,X) be
a realizable pair over W.

(a) Choose a frame of the form (Y,X,P). The category C(Y,P/W) does not depend, up to a canonical
equivalence of categories, on the choice of the frame (Y,X,P) over W enclosing (Y,X). Hence, we
can simply write C(Y/W) instead of C(Y,P/W) without ambiguity (up to canonical equivalence of
categories).

(b) If moreover C is stable under cohomology, then we get a canonical t-structure on C(Y/W).
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Proof. Let (Y,X,P) and (Y,X,P′) be two frames overW enclosing (Y,X). The closed immersions X ↪→
P and X ↪→ P′ induce X ↪→ P×P′. Denoting by π1 : P×P′ → P and π2 : P×P′ → P′ the structural
projections, we get two morphisms of frames over W of the form (id, id, π1) : (Y,X,P×P′)→ (Y,X,P)

and (id, id, π2) : (Y,X,P×P′)→ (Y,X,P′). From 19.2.2.1, the functors π(•)
2+RΓ†Y π

!(•)
1 and π(•)

1+RΓ†Y π
(•)!
2

are canonically quasi-inverse equivalences of categories between C(Y,P/W) and C(Y,P′/W). When C is
stable under cohomology then these equivalences are t-exact. Hence we are done.

Lemma 19.2.2.3. Let C be a data of coefficients over V which contains Bdiv, which is stable under de-
vissages, pushforwards, extraordinary pullbacks, local cohomological functors, and duals. Let Y := (Y,X)

be a realizable pair over W. Choose a frame of the form (Y,X,P). The functor RΓ†Y DP : C(Y,P/W)→
C(Y,P/W) does not depend, up to canonical isomorphism, of 19.2.2.2 (more precisely, we have the com-
mutative diagram 19.2.2.3.1 up to canonical isomorphism), on the choice of the frame enclosing (Y,X).
Hence, we will denote by DY : C(Y/W)→ C(Y/W) the functor RΓ†Y DP.

Proof. As in the beginning of the proof, 19.2.2.2, let (Y,X,P1) and (Y,X,P2) be two frames over W
enclosing (Y,X). Let π1 : P1×P2 → P1 and π2 : P1×P2 → P2 be the structural projections. We have
to check that the diagram

C(Y,P1/W)
RΓ†

Y
π

!(•)
1

∼= //

RΓ†
Y

DP1

��

C(Y,P1 ×P2/W)
π

(•)
2+

∼= //

RΓ†
Y

DP1×P2

��

C(Y,P2/W)

RΓ†
Y

DP2

��
C(Y,P1/W)

RΓ†
Y
π

!(•)
1

∼=
// C(Y,P1 ×P2/W)

π
(•)
2+

∼=
// C(Y,P2/W)

(19.2.2.3.1)

is commutative, up to canonical isomorphisms. Let E(•) ∈ C(Y,P1×P2/W). From 13.2.4.1, we have the
isomorphism DP2

π
(•)
2+(E(•))

∼−→ π
(•)
2+DP1×P2

(E(•)). Hence, by applying the functor RΓ†Y to this isomor-
phism, we get the first one RΓ†Y DP2π

(•)
2+(E(•))

∼−→ RΓ†Y π
(•)
2+DP1×P2(E(•))

∼−→
13.2.1.4

π
(•)
2+RΓ†

π−1
2 (Y )

DP1×P2(E(•)).

The immersion Y ↪→ π−1
2 (Y ) is in fact a closed immersion. This yields Y = Y ∩ π−1

2 (Y ), where Y is
the closure of Y in P1 × P2. Since DP1×P2(E(•)) has in support in Y , then RΓ†

π−1
2 (Y )

DP1×P2(E(•))
∼−→

RΓ†
π−1

2 (Y )
RΓ†

Y
DP1×P2

(E(•))
∼−→ RΓ†Y DP1×P2

(E(•)). Hence, we have checked the commutativity, up to

commutative isomorphism, of the right square of 19.2.2.3.1. From 19.2.2.1, π(•)
1+ is canonically a quasi-

inverse of the equivalence of categories RΓ†Y π
!(•)
1 : C(Y,P1 × P2/W) ∼= C(Y,P1/W) (we means that

we have canonical isomorphisms π(•)
1+RΓ†Y π

!(•)
1

∼−→ id and id
∼−→ RΓ†Y π

!(•)
1 π

(•)
1+). Hence, we get the

commutativity, up to canonical isomorphism, of the left square of 19.2.2.3.1.

Lemma 19.2.2.4. Let C be a data of coefficients over V which contains Bdiv, which is stable under devis-
sages, pushforwards, extraordinary pullbacks, and local cohomological functors. Let u = (b, a) : (Y ′, X ′)→
(Y,X) be a morphism of realizable pairs over W. Put Y := (Y,X) and Y′ := (Y ′, X ′). Let us choose a
morphism of frames θ = (b, a, f) : (Y ′, X ′,P′)→ (Y,X,P) over W enclosing u.

(a) The functor θ!(•) := RΓ†Y ′ ◦f (•)! : C(Y,P/W)→ C(Y ′,P′/W) does not depend on the choice of such θ
enclosing u (up to canonical equivalences of categories). Hence, it will be denoted by u! : C(Y/W)→
C(Y′/W).

(b) Suppose that u is complete, i.e. that a : X ′ → X is proper. The functor θ+ := f
(•)
+ : C(Y ′,P′/W)→

C(Y,P/W) does not depend on the choice of such θ enclosing u (up to canonical equivalences of
categories). Hence, it will be denoted by u+ : C(Y′/W)→ C(Y/W).

Proof. To check the first assertion, we proceed as in the proof of 19.2.2.3 (use also the commutation of
local cohomological functors with extraordinary inverse images given in 13.2.1.4). Let us check that the
functor f (•)

+ : C(Y ′,P′/W) → C(Y,P/W) is well defined. Let E(•) ∈ C(Y ′,P′/W). Since a is proper,
then f

(•)
+ (E(•)) ∈ C(P). We compute RΓ†Y f

(•)
+ (E(•))

∼−→ f
(•)
+ RΓ†f−1Y (E(•)). Since Y ′ is included in

f−1(Y ) and E(•) ∈ C(Y ′,P′/W), then RΓ†f−1Y (E(•))
∼−→ E(•). Hence, RΓ†Y f

(•)
+ (E(•))

∼−→ f
(•)
+ (E(•)),

which implies that f (•)
+ (E(•)) ∈ C(Y,P/W). To check that the functor does not depend on the choice of

θ enclosing u, we proceed as in the proof of 19.2.2.3.
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Lemma 19.2.2.5. Let C be a data of coefficients over V which contains Bdiv, which is stable under
devissages, pushforwards, extraordinary pullbacks, and tensor products. Let Y := (Y,X) be a realizable
pair over W. Choose a frame of the form (Y,X,P). The bifunctor −“⊗L

OP
− [−dimP ] : C(Y,P/W) ×

C(Y,P/W)→ C(Y,P/W) does not depend, up to the canonical equivalences of categories of 19.2.2.2, on
the choice of the frame enclosing (Y,X). It will be denoted by ‹⊗Y : C(Y/W)× C(Y/W)→ C(Y/W).

Proof. From Lemmas 19.1.2.4.b and 19.1.2.6, the data of coefficients C is also stable under local co-
homological functors. From 9.2.1.27.1 (resp. 13.1.5.6.2), extraordinary inverse images (resp. local
cohomological functors) commute with tensor products (up to a shift). Proceeding as in the proof of
19.2.2.3 with its notation, RΓ†Y π

!(•)
1 and RΓ†Y π

!(•)
2 commute with tensor products and then so are π(•)

1+

and π(•)
2+ .

19.2.2.6 (Grothendieck six operations). Let C be a data of coefficients over V which contains Bdiv,
which is stable under devissages, pushforwards, extraordinary pullbacks, duals, and tensor products.
To sum-up the above Lemmas we can define Grothendieck six operations on realizable pairs as follows.
Let u = (b, a) : (Y ′, X ′) → (Y,X) be a morphism of realizable pairs over W. Put Y := (Y,X) and
Y′ := (Y ′, X ′).

(a) We have the dual functor DY : C(Y/W)→ C(Y/W) (see 19.2.2.3).

(b) We have the extraordinary pullback u! : C(Y/W) → C(Y′/W) (see 19.2.2.4). We get the pullbacks
u+ := DY′ ◦ u! ◦ DY.

(c) Suppose that u is complete. Then, we have the functor u+ : C(Y′/W)→ C(Y/W) (see 19.2.2.4). We
denote by u! := DY ◦ u+ ◦ DY′ , the extraordinary pushforward by u.

(d) We have the tensor product −‹⊗Y− : C(Y/W)× C(Y/W)→ C(Y/W) (see 19.2.2.5)

Examples 19.2.2.7. (a) We recall the data of coefficients LD−→
b
Q,ovhol and LD−→

b
Q,h are defined respec-

tively in 19.1.2.2.b and 19.1.2.2.c. Using Lemmas 19.1.2.5 and 19.1.2.11 (and 19.1.2.10), they are
stable under local cohomological functors, pushforwards, extraordinary pullbacks, and duals. Hence,
with the notation 19.2.2.2, using Lemmas 19.2.2.4, 19.2.2.5, and 19.2.2.3, for any frame (Y,X,P)
over W, we get the categories of the form LD−→

b
Q,h(Y,P/W), LD−→

b
Q,h(Y/W), LD−→

b
Q,ovhol(Y,P/W) or

LD−→
b
Q,ovhol(Y/W) endowed with five of Grothendieck cohomological operations (the tensor product is

a priori missing).

(b) With notation 19.1.2.19, the data of coefficients LD−→
b
Q,F - h is local, stable by devissages, direct sum-

mands, local cohomological functors, pushforwards, extraordinary pullbacks, base change, tensor
products, duals, cohomology. Hence, LD−→

b
Q,F - h is endowed with Grothendieck six cohomological

operations.

(c) Following theorem 19.1.3.10, there exist a data of coefficients T which contains Mdiv, is local, stable
by devissages, direct summands, local cohomological functors, pushforwards, extraordinary pull-
backs, base change, tensor products, duals, cohomology and special descent of the base. Hence, for
any frame (Y,X,P) overW, we get the triangulated category T (Y,P/W) or T (Y/W), endowed with
a t-structure and Grothendieck six operations.

19.2.3 Grothendieck six operations over realizable varieties
Definition 19.2.3.1 (Proper compactification). (a) A frame (Y,X,P) over W is said to be proper if P

is proper. The category of proper frames over W is the full subcategory of the category of frames
over W whose objects are proper frames over W.

(b) The category of proper realizable pairs over W is the full subcategory of the category of realizable
pairs over W whose objects (Y,X) are such that X is proper. We remark that if (Y,X) is a proper
realizable pair over W then there exists a proper frame over W of the form (Y,X,P).
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(c) A realizable variety overW is a l-scheme Y such that there exists a proper frame overW of the form
(Y,X,P). For such frame (Y,X,P), we say that the proper frame (Y,X,P) encloses Y or that the
proper realizable pair (Y,X) encloses Y .

19.2.3.2 (Grothendieck six operations). Let C be a data of coefficients over V which contains Bdiv, which
is stable under devissages, pushforwards, extraordinary pullbacks, duals, and tensor products. Similarly
to Lemma 19.2.2.2, we check using Theorem 19.2.2.1 that the category C(Y,P/W) (resp. C(Y,X/W))
does not depend, up to a canonical equivalence of categories, on the choice of the proper frame (Y,X,P)
(resp. the proper realizable pair (Y,X)) overW enclosing Y . Hence, we simply denote it by C(Y/W). As
for 19.2.2.6, we can define Grothendieck six operations on realizable varieties as follows. Let u : Y ′ → Y
be a morphism of realizable varieties over W.

(a) We have the dual functor DY : C(Y/W)→ C(Y/W) (see 19.2.2.3).

(b) We have the extraordinary pullback u! : C(Y/W) → C(Y ′/W) (see 19.2.2.4). We get the pullbacks
u+ := DY ′ ◦ u! ◦ DY .

(c) We have the functor u+ : C(Y ′/W)→ C(Y/W) (see 19.2.2.4). We denote by u! := DY ◦u+ ◦DY ′ , the
extraordinary pushforward by u.

(d) We have the tensor product −‹⊗Y− : C(Y/W)× C(Y/W)→ C(Y/W) (see 19.2.2.5)

19.2.4 Stability of the holonomicity by Grothendieck’s six operations on
quasi-projective k-varieties, algebraic stacks, crystallin companion

Let us introduce a projective version of the notion of data of coefficients of 19.1.1.1.

Definition 19.2.4.1. A projective data of coefficients C over V will be the data for any object W of
DVR(V) (see notation 9.2.6.12), for any projective smooth formal scheme P over W of a strictly full
subcategory of LD−→

b
Q,coh(“D(•)

P ), which will be denoted by C(P/W), or simply C(P) if there is no ambiguity
with the base W. If there is no ambiguity with V, we simply say a projective data of coefficients.

Replacing data of coefficients by projective data of coefficients in 19.1.1.3, we get similar stability
notions.

Notation 19.2.4.2. Let W be an object of DVR(V) and X be a smooth formal scheme over W. Let
F -Hol(D†X,Q) be the category of holonomic D†X,Q-modules endowed with a Frobenius structure. We get
a data of coefficients A over V by setting A(X) := F -Hol(D†X,Q). Since this is an abelian category then
following 19.1.2.17 we get ∆(A) the smallest data of coefficients over V which is stable under devissage
and cohomology and containing A. We denote by LD−→

b
Q,F - hol the underlying projective data of coefficients

of ∆(A).

19.2.4.3 (Complexes of arithmetic D-modules with bounded and F -holonomic cohomology on quasi-pro-
jective k-variety). Let Y be a variety quasi-projective on k. Then there exists a projective and smooth
V-formal schemeP, such that Y is a subscheme of the special fiber P ofP. We denote by F -Db

hol(Y,P/V)

(resp. LD−→
b
Q,F - hol(Y,P/V)) the full subcategory of F -Db

hol(D
†
P,Q) (resp. LD−→

b
Q,F - hol(P/V)) of complexes

E such that there exists an isomorphism of the form RΓ†Y (E)
∼−→ E . Similarly to 19.2.2.1, we can check

that the category F -Db
hol(Y,P/V) (resp. LD−→

b
Q,F - hol(Y,P/V)) is independent, up to canonical isomor-

phism, of the choice of the immersion Y ↪→ P into a projective and smooth V-formal scheme. We write
it F -Db

hol(Y/V) (resp. LD−→
b
Q,F - hol(Y/V)).

19.2.4.4 (Operations cohomological on quasi-projective k-varieties). Let b : Y ′ → Y be a morphism of
quasi-projective varieties on k. Similarly to 19.2.3.2 (use 18.3.3.5 and the stability of the overholonomic-
ity with Frobenius structure), we get the functors b+, b! : F -Db

hol(Y
′/V) → F -Db

hol(Y/V) called respec-
tively direct image and extraordinary direct image by b ; we have the functors b+, b! : F -Db

hol(Y/V) →
F -Db

hol(Y
′/V) called respectively inverse image and extraordinary inverse image by b, the dual functor

DY : F -Db
hol(Y/V) → F -Db

hol(Y/V) and the tensor product −‹⊗OY − : F -Db
hol(Y/V) × F -Db

hol(Y/V) →
F -Db

hol(Y/V).
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Similarly to 19.2.3.2, we get the functors b+, b! : LD−→
b
Q,F - hol(Y/V) → LD−→

b
Q,F - hol(Y

′/V) called respec-
tively inverse image and extraordinary inverse image by b, the dual functor DY : LD−→

b
Q,F - hol(Y/V) →

LD−→
b
Q,F - hol(Y/V) and the tensor product−‹⊗OY − : LD−→

b
Q,F - hol(Y/V)×LD−→

b
Q,F - hol(Y/V)→ LD−→

b
Q,F - hol(Y/V).

19.2.4.5 (Arithmetic D-modules for algebraic stacks). In [Abe18, 2], T. Abe construct construct a p-
adic cohomology theory for algebraic stacks from the quasi-projective case. He first needs to construct
a theory for algebraic spaces, and making use of the theory, he may construct that for algebraic stacks.

19.2.4.6 (Crystalline companion). The Weil conjectures were finally proven by P. Deligne in the 1970s,
culminating in the theory of weights for l-adic cohomology in his celebrated paper [Del80]. A p-adic
analogue of such a theory of weights were proved by K. Kedlaya for overconvergent isocrystals in [Ked06b],
and by T. Abe and the author for arithmetic D-modules in [AC18]. Moreover, in his famous paper,
Deligne made the following conjecture on the existence of compatible systems :

Conjecture (Deligne [Del80, 1.2.10]). Soient X un schéma normal connexe de type fini sur Fp, et
F un faisceau lisse irréducible dont le déterminant est défini par un caract‘ere d’ordre fini du groupe
fondamental.

(ii) Il existe un corps de nombres E ⊂ Ql tel que le polynôme det(1 − Fxt,F) pour x ∈ |X|, soit à
coefficients dans E.

(v) Pour E convenable (peut-être plus grand qu’en (ii)), et chaque place non archimédienne λ première
à p, il existe un Eλ-faisceau compatible à F (mêmes valeurs propres des Frobenius).

(vi) Pour λ divisant p, on espère des petits camarades cristallins.

The part (vi) is written vaguely because a good theory of p-adic cohomology was not available at
the time Deligne conjectured it. R. Crew made this conjecture more precise in [Cre92, 4.13] after P.
Berthelot’s foundational works in p-adic cohomology theory. This conjecture has been one of the driving
forces in developing a p-adic cohomology theory over fields of positive characteristic parallel to the l-
adic cohomology theory (e.g., see the introduction of [Chi98]). When X is a curve, all parts of the the
conjecture except for (vi) are consequences of the Langlands correspondence, which was proven by V.
Drinfeld in the rank 2 case and by L. Lafforgue in the higher rank case. Moreover, Deligne and Drinfeld
proved all parts of the conjecture except for (vi) for any smooth scheme X as a consequence of the
Langlands correspondence. When X is a curve, T. Abe proves a correspondence between irreducible
overconvergent F -isocrystals with finite determinant on an open dense subscheme of X and cuspidal
automorphic representations of the function field of X with finite central character (see [Abe18, Theorem
4.2.2]). This implies in particular the part (vi) of Deligne’s conjecture in the curve case. T. Abe also
proves in [Abe18, Theorem 4.4.5] the converse of Deligne’s conjecture when X is smooth using the
techniques of Deligne and Drinfeld in [EK12] and [Dri12] assuming the Bertini-type conjecture (more
precisely, see [Abe18, Theorem 4.4.2]): for any overconvergent F-isocrystal over a smooth scheme, there
exists an l-adic companion for any l 6= p. His strategy of proof uses similar ingredients to the l-adic case:
for instance, he needs the product formula for epsilon factors, which was proven in the p-adic setting by
Abe and A. Marmora in [AM].

19.2.5 Constructible t-structure
For completeness, we introduce the notion of constructibility. Let C be a data of coefficients over V
which contains Bdiv, which is stable under devissages, pushforwards, extraordinary pullbacks, duals,
tensor products, and cohomology.

19.2.5.1 (Constructible t-structure). Let Y := (Y,X) be a realizable pair. Choose a frame (Y,X,P). If
Y ′ → Y is an immersion, then we denote by iY ′ : (Y ′, X ′,P) → (Y,X,P) the induced morphism where
X ′ is the closure of Y ′ in X. We define on C(Y/W) the constructible t-structure as follows. An object E ∈
C(Y/W) belongs to Cc,≥0(Y/W) (resp. Cc,≤0(Y/W)) if there exists a special morphism W → (W ′,W[)

such that, denoting by P′ := P ×SpfW SpfW ′, Y ′ := (Y ×SpfW SpfW ′)red and E ′(•) := W ′“⊗L
WE(•),

there exists a smooth stratification (see 16.3.1.2) (Y ′i )i=1,...,r of Y ′ such that for any i, the complex
i+Y ′
i
(E ′(•))[dY ′

i
] (see notation 19.2.2.6) belongs to C≥0

isoc(Y
′
i ,P

′/W) (resp. C≤0
isoc(Y

′
i ,P

′/W)).
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Proposition 19.2.5.2. Let Y := (Y,X) be a realizable pair.

(a) Let E ′(•) → E → E ′′(•) → E ′(•)[1] be an exact triangle in C(Y/W). If E ′(•) and E ′′(•)are in Cc,≥0(Y/W)
(resp. Cc,≤0(Y/W)) then so is E.

(b) Suppose that Y is smooth. Let E ∈ Cisoc(Y/W). Then E ∈ Cc,≥0(Y/W) (resp. E ∈ Cc,≤0(Y/W)) if
and only if E ∈ C≥dXisoc (Y/W) (resp. E ∈ C≤dXisoc (Y/W)).

Proof. This is left to the reader.

19.3 Comparison between p-adic de Rham type cohomologies

19.3.1 A comparison between rigid and D-module cohomology for constructible
isocrystals of Frobenius type

19.3.1.1. Let P be a smooth separated formal scheme over S. Let Z and X be two closed subschemes
of P such that X \ Z is smooth over Spec k. Following 16.2.7.11.1, we have constructed the canonical
equivalence of categories

sp
(•)
Y,+ = sp

(•)
X↪→P,Z,+ : (F -)MIC†(X,P, Z/K) ∼= (F -)MIC(•)(X,P, Z/V).

Let Y be a realisable smooth k-variety. By embedding Y inside a smooth and proper formal V-scheme
P, it follows from 18.3.2.2 that the above functor sp+ has the factorisation:

spY,+ : F -Isoc†(Y,P/V)→ F -Db
h(Y,P/V),

spY,+ : Isoc†F (Y,P/V)→ Db
F - h(Y,P/V),

where Isoc†F (Y,P/V) is the category of overconvergent isocrystals on Y of Frobenius type, where F -Db
h(Y,P/V)

is the category of complexes of Db
h(Y,P/V) having a Frobenius structure, and Db

F - h(Y,P/V) is the cate-
gory of overholonomic complexes after any base change on Y/V of Frobenius type (i.e. according to nota-
tion 19.1.2.19, the functor→l

∗
Q induces the equivalence of categories LD−→

b
Q,F - h(Y,P/V) ∼= Db

F - h(Y,P/V)).
It follows from 11.3.5.3 (similarly to the remark of [AL22, 7.1.2]), that for any E ∈ F -MIC†(Y,P/K),
we have the isomorphism of F -Db

h(Y,P/V):

spY+(E∨)
∼−→ DY ◦ spY+(E)(dY ). (19.3.1.1.1)

In fact, thanks to a descent construction of T. Abe [Abe19], the fully faithful functor spY,+ can be
extended to any (non necessarily smooth) realisable k-variety. In the Rieman-Hilbert’s correspondence
point of vue, using notation 8.8.3.3, we write

spRH
Y,+ := spY,+[−dY ](−dY )2. (19.3.1.1.2)

19.3.1.2 (Constructible isocrystals). In [LS14, LS16], B. Le Stum’s introduced a theory of constructible
isocrystals. Le Stum’s category of constructible isocrystals on P corresponds to a rigid cohomological
analogue of the category of constructible `-adic sheaves, and consists of convergent ∇-modules on PK ,
which become locally free on the tubes of each stratum in some stratification of P.

Theorem 19.3.1.3 (Abe-Lazda). Let P be a realisable smooth formal V-scheme, and F is a constructible
isocrystal of Frobenius type. Then spRH

! F is a dual constructible complex of overholonomic D†PQ-modules.
If F is supported on some locally closed subscheme Y ↪→ P , then so is sp!F , where spRH

! := Rsp∗[dimP].

Proof. The strategy is to use de Jong’s theory of alterations to reduce to the case of overconvergent
isocrystals on completely smooth d-frames. To get the overholonomicity, the fundamental result of
18.3.2.2 is needed. This descent requires also a rather delicate verification of the compatibility of the
functor sp! with the rigid analytic trace map defined in [AL20]. For more details, see [AL22, 6.2.1].

2Beware in [AL22], spRH
Y,+ (resp. spY,+) is denoted by sp+ (resp. ‹sp+)
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Abe and Lazda also prove the compatibility of sp! with arbitrary pullback, as well as pushforward
along a locally closed immersion. Both functors sp+ and sp! are compatible as follows, which justifies
the notation:

Theorem 19.3.1.4 (Abe-Lazda). Let Y be a realisable smooth k-variety, and E an overconvergent
isocrystal of Frobenius type on Y . Then there is a natural isomorphism

spRH
+ E ∼= DY spRH

! E∨

in Db
F - h(Y ).

Proof. Given this descent result, and compatibility with pullbacks, the proof of Theorem 19.3.1.4 is
actually relatively straightforward. The point is that the objects involved lie in an abelian category
which satisfies h-descent. Thus to construct such an isomorphism locally for the h-topology on Y . Via
some de Jong’s alterationd, they reduce to the case when Y has a smooth compactification, which then
locally lifts to a smooth formal V-scheme. It is then possible to compare spRH

! with spRH
+ more or less

directly. For more details, see [AL22, 7.1.1].

Theorem 19.3.1.5 (Abe-Lazda). Let Y/k be a realisable k-variety, f : Y → Spec k its structure mor-
phism. Let E be an overconvergent isocrystal on Y of Frobenius type. We denote by H∗rig(Y,E) (resp.
H∗c,rig(Y,E)) the rigid cohomology (the rigid cohomology with compact support) of E.

(a) There is a canonical isomorphism

H∗c,rig(Y,E) ∼= H∗(f! ◦ spRH
Y,+(E))

of finite dimensional, graded K-vector spaces. When E ∈ F -Isoc†(Y,P/V), this is compatible with
Frobenius.

(b) Suppose Y is either smooth or proper. There is a canonical isomorphism

H∗rig(Y,E) ∼= H∗(Y, f+ ◦ spRH
Y,+(E))

of finite dimensional, graded K-vector spaces. When E ∈ F -Isoc†(Y,P/V), this is compatible with
Frobenius.

Proof. Let us only give few ingredients of Abe-Lazda’s proof. Given an embedding of iY : Y ↪→ P into
a smooth and proper formal V-scheme, the proof of the part (a) boils down to computing the deRham
cohomology of the constructible ∇-module iY !E on PK . Using 19.3.1.4, we reduce to check a similar
isomorphism with spRH

Y,! instead of spRH
Y,+. The functor spRH

! has a genuinely global definition which
make easier to prove this comparison theorem for compactly supported cohomology. A key ingredient
in achieving this is the trace morphism in rigid analytic geometry defined in [AL20], which enables to
interpret the deRham cohomology of iY !E as the rigid Borel–Moore homology of Y with coefficients in
E. The part (b) is a consequence of the part (a) and Poincaré duality. See [AL22, 7.2.1 and 7.2.2] for
more details.

19.3.1.6. Kedlaya proved that the rigid cohomology with or without compact support H∗c,rig(Y,E) and
H∗c,rig(Y,E) of an overconvergent F -isocrystals E, have finite cohomological dimension (see [Ked06a]),
which is the culmination of a long series of finiteness results of these rigid cohomologies: We first got the
first finiteness result by Crew in the case where Y is an affine and smooth curve (see [Cre98]). When E
is equal to the constant coefficient, i.e. E = j†OPK , the finiteness of H∗rig(Y/K), the rigid cohomology
with or without compact support was first proved Berthelot proved in [Ber97b] in the case where Y/S
is smooth. Via a proper cohomological descent and using de Jong’s desingularisation theorem, Tsuzuki
proved in [Tsu03], the finiteness of H∗c,rig(Y/K) and H∗c,rig(Y/K) for any k-scheme of finite type Y .
Grosse Könne gave a second proof of this later result in [GK02] via his theory of dagger spaces“dagger
spaces”.
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19.3.2 L-functions associated with arithmetic D-modules
Let q = ps be a power of a prime number. We assume the residual field k is equal to a field with q
elements Fq. Let Y be a variety quasi-projective on k. Choose a projective and smooth V-formal scheme
P, such that Y is a subscheme of the special fiber P of P. Let X be the closure of Y in P and j : Y ⊂ X
be the open immersion.

19.3.2.1. Let Y 0 be the set of closed points of Y . Let y ∈ Y 0. Then we denote by iy : Spec k(y) ↪→ Y
the induced closed immersion. Choose a morphism (by abuse of notation still denoted by iy) of smooth
V-formal schemes of the form iy : SpV(y) ↪→ P which is a lifting of the closed immersion Spec k(y) ↪→ Y
induced by iy. Let iy,K : SpK(y) ↪→ PK be the induced morphism of rigid analytic K-spaces.

Definition 19.3.2.2. With notation 19.2.4.3, let (E , Φ) ∈ F -Db
hol(Y/V). We define the L-function

associated with (E , Φ) 3 by setting:

L(Y, E , t) =
∏
y∈Y 0

∏
r∈Z

detK
(
1− tdeg yF deg y|Hr(i+y (E))

)(−1)r+1/ deg y
.

19.3.2.3 (Link with the L-functions associated with overconvergent F -isocrystals). Let (E,Φ) ∈ F - Isoc†(Y,P/K).
For any closed point y of Y , let Ey := H0

rig(Spec k(y), i∗y,KE) the fiber of E in y and F |Ey its Frobenius
automorphism.

In [ÉLS93, 2.3], the L-function associated with (E,Φ) is given by

L(Y,E, t) :=
∏
y∈Y 0

detK(1− tdeg yF deg y|Ey)−1/ deg y. (19.3.2.3.1)

They proved in [ÉLS93] the cohomological formula:

L(Y,E, t) :=
∏
i

detK(1− tdeg yF |Hi
c,rig(Y,E))(−1)i+1

. (19.3.2.3.2)

Viewing Hi
ét,c(Xk,Qp) as the kernel of the action of 1−F acting on Hi

c,rig(Y/K) they checked in [ÉLS97]
Katz’s conjecture is valid for the constant coefficient, i.e. the function

Z(X, t)/det(1− tF |Hi
ét,c(Xk,Qp))

(−1)i+1

has neither zero nor pole on the unit disk (k denotes an algebraic closure of Fq).
Building on work of Crew, Kedlaya proved in [Ked06b] a rigid cohomological analogue of the main

result of Deligne’s of “Weil II” (i.e. [Del80]), which gives a purely p-adic proof of the Weil conjectures.
Ingredients include a p-adic analogue of Laumon’s application of the geometric Fourier transform in the
l-adic setting or that of Huyghe’s one as exposed in 9.4.6. This gives a rigid avatar of Deligne’s theory
of weights. Such a theory has an arithmetic D-modules analogue (see [AC18]).

The computation of Weil’s zeta functions via p-adic methods leads to new algorithms (e.g. see
[Ked04c], [Har07]).

Proposition 19.3.2.4. Suppose Y is smooth. Let (E,Φ) ∈ F - Isoc†(Y,P/K). Since the functor spY+

commutes with pullbacks (see 16.2.4.3.1), then we get a Frobenius structure on spY+E. We have the
equality:

L(Y,E, t) = L(Y, spRH
Y+(E), t).

Proof. Using 19.3.1.1.1 and 19.3.1.1.2, we reduce to check

L(Y,E∨, t) = L(Y,DX,T (spY+E)[dY ], t).

Let y be a closed point of Y . By transitivity of the isomorphism 16.2.4.3.1, the canonical functorial in E
isomorphism: spy+ ◦ i∗y,K(E)

∼−→ i!y T ◦ spY+(E)[dX] is therefore compatible with Frobenius, where spy+

is equal to the pushforward spy∗ by the specialisation morphism spy : SpK(y)→ Spf V(y). Furthermore,
as E is a j†OPK -locally free module of finite type, we have a K(y)-linear isomorphism compatible with
Frobenius: spy+ ◦ i∗y,K(E∨)

∼−→ Dy ◦ spy+ ◦ i∗y,K(E). Hence: spy+ ◦ i∗y,K(E∨)
∼−→ Dy ◦ i!y, T (spY+E)[dX ].

Using the isomorphism compatible with Frobenius i+y (DY (spY+E))
∼−→ Dy ◦ i!y, T (spY+E), we then

conclude the proof.
3Compared to [Car06b, 3.1.1 and 3.1.3], we have multiplied by (−1)dY both L-function and cohomological function
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Example 19.3.2.5. Let j†O]X[P be the constant isocrystal on Y/K and let KY := spY+(j†O]X[P) be
the associated object of F -Db

h(Y,P/V). Then

L(Y,KY , t) = L(Y, j†O]X[P , t) = Z(Y, t),

where Z(Y, t) it the Weil zeta function.

Theorem 19.3.2.6. For any complex (E , Φ) ∈ F -Db
hol(Y/V), we have the equality:

L(Y, E , t) =
∏
r∈Z

detK (1− tF |Hr(fT,!E))
(−1)r+1

.

Proof. By devissage, we reduce to the case where Y is smooth and (E , Φ) comes from an overconvergent
F -isocrystal. In that case, we have the cohomological interpretation of Étesse et Le Stum (see 19.3.2.3.2).
Using the comparison between both L-functions (19.3.2.4) and cohomology (see 19.3.1.5.(b)), then we
are done.

19.3.3 Comparison with some other cohomologies
19.3.3.1. E. Grosse-Klönne in [GK00] defines a category of “rigid spaces with overconvergent structures
sheaf”, which he calls “dagger spaces”. He develops a theory of coherent analytic sheaves for his spaces,
and shows that it satisfies an analogue of Serre duality. He also defines de Rham cohomology, and de
Rham cohomology with compact support, and shows that these satisfy Poincaré duality and the Künneth
formula. Finally, he compares this de Rham cohomology theory to Berthelot’s rigid cohomology and
proved its finiteness (see [GK02]).

19.3.3.2 (Comparison with overconvergent de Rham-Witt cohomology). Let W = W (k) be the ring of
Witt vectors over k, and let K = W [1/p]. Let X be a smooth variety over k. The rigid cohomology
groups Hi

rig(X/K) are finite-dimensional K-vector spaces. One might wonder whether there is an in-
tegral cohomology theory with similar finiteness properties. If X is proper over k, then the crystalline
cohomology Hi

crys(X/W ) is a finitely generated W -module, and its image in Hi
rig(X/K) is a lattice in

Hi
rig(X/K). However, without the properness assumption, Hi

crys(X/W ) is not always finitely generated.
L. Illusie introduced in [Ill79] a canonical sheaf of differential graded algebras WΩ•X/k on the Zariski site
of X, called the de Rham-Witt complex, whose degree zero component is the ring of Witt vectors WOX
of the structure sheaf OX . He proved that its cohomology Hi(X,WΩ•X/k) is isomorphic to Hi

crys(X/W ).
Later, A. Langer, and T. Zink generalize Illusie’s definition of the de Rham-Witt complex to a relative
situation, i.e. more precisely for a proper and smooth morphism (see [LZ04]).

In [DLZ11, DLZ12], C. Davis, A. Langer, and T. Zink introduced a natural differential graded sub-
algebra W †Ω•X/k ⊂ WΩ•X/k, called the overconvergent de Rham-Witt complex, and shows that its
cohomology tensored with Q computes the rigid cohomology of X in case X is quasi-projective, i.e.
Hi(X,W †Ω•X/k)⊗W K is isomorphic to Hi

rig(X/W ). The degree zero term W †OX is called the sheaf of
overconvergent Witt vectors, and its main properties were already developed in a previous work by the
same authors; it is defined in terms of a growth condition for the components of the Witt vectors that is
too technical to reproduce here. These growth conditions are then extended to the whole de Rham-Witt
complex, to define the overconvergent subcomplex.

The torsion subgroup of Hi(X,W †Ω•X/k) can be infinitely generated (e.g. in the case X = A1
k and

i = 1). However, one might still wonder if the image of Hi(X,W †Ω•X/k) in Hi
rig(X/W ), the ith space of

the integral overconvergent de Rham-Witt cohomology modulo torsion, is a lattice. In [ES20], V. Ertl
and A. Shiho show that if X is a smooth affine curve over k whose smooth compactification has genus
zero, then the image of Hi(X,W †Ω•X/k) in Hi

rig(X/W ) is a finitely generated W -module. However, they
construct a counter-example if the genus is instead positive. They conjecture that if the genus is positive,
then the image is never finitely generated.

Generalizing a definition of Bloch, V. Ertl introduced overconvergent de Rham-Witt connections in
[Ert16]. This provides a tool to extend the comparison morphisms of Davis, Langer and Zink between
overconvergent de Rham-Witt cohomology and Monsky-Washnitzer respectively rigid cohomology to
coefficients. Another step toward an interpretation of F-isocrystals as overconvergent de Rham-Witt
connections has been made by R. Muñoz--Bertrand in [MB22] and [MB24].
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